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A reconstruction methodology based on different-phase-neighbor (DPN) pixel swapping and multigrid
hierarchical annealing is presented. The method performs reconstructions by starting at a coarse image and
successively refining it. The DPN information is used at each refinement stage to freeze interior pixels of preformed
structures. This preserves the large-scale structures in refined images and also reduces the number of pixels to
be swapped, thereby resulting in a decrease in the necessary computational time to reach a solution. Compared
to conventional single-grid simulated annealing, this method was found to reduce the required computation
time to achieve a reconstruction by around a factor of 70–90, with the potential of even higher speedups for
larger reconstructions. The method is able to perform medium sized (up to 3003 voxels) three-dimensional
reconstructions with multiple correlation functions in 36–47 h.
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I. INTRODUCTION

A detailed knowledge of the structure of porous media is
paramount in many engineering and geological applications,
such as electrochemical systems, CO2 sequestration, food pro-
cessing, and textiles. Several parameters, such as porosity, pore
size, pore connectivity, surface area, and percolating volume
dictate its physical properties. It is therefore critical to develop
methodologies to analyze, reconstruct, and design porous
structures. Porous media can be characterized by several
stochastic correlation functions, such as n-point correlation
functions, lineal path function, and chord length function [1].
The complete characterization of the microstructure is known
to be dependent upon an infinite set of such n-point correlation
functions [1]. In reality, however, only a selected few of these
correlation functions can be computed. Reconstructing the
microstructure from a limited number of statistical descriptors
is an inverse problem, which has gained significant interest in
recent years [2].

Several stochastic methods have been proposed in the
literature to reconstruct porous media [3–19,19–29]. Initials
attempts used a Gaussian random field truncated by linear and
nonlinear filters [3–6]. The filters correlated the truncated field
to the two-point correlation functions. This method, although
reasonably accurate and fast, has its limitations, as one can
only use two-point correlation functions. Other two-point
statistics-based methods include the gradient-based method
[30] and phase recovery method [31]. These methods use fast
Fourier transforms (FFT) for estimating two-point statistics,
which are then used for reconstruction purposes. Due to the
restriction of using only two-point statistics, these methods
suffer from the same issues as the Gaussian field methods. To
overcome these issues, the simulated annealing (SA) method
was proposed [10,14,15]. The simulated annealing method
is based on a Monte Carlo process, where an initial random
field is slowly changed (annealed) to a final structure with
correlation functions as close as possible to the target [15,28].
The SA method can include as many correlation functions
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as practically possible [15,28], and therefore can result in
a reconstruction that better represents the original structure.
The method of simulated annealing has been extensively used
for reconstructing porous media structures and suspensions
[12–16,19,20,24,26,28]. Apart from correlation functions, the
raster path method [27] and multiple point statistics have also
been used with SA to improve long-range connectivity of the
reconstructed phases [18,19,32].

Even with the advantages of including several correlation
functions and enhanced accuracy, the conventional simulated
annealing method still suffers from two major issues:

(1) Reconstruction speed: The conventional simulated
annealing method with random pixel swapping is extremely
slow, especially at the final stages of reconstruction [20,24,28].
Further, the time to compute the updated correlation functions
after swap is directly dependent on the image size, i.e.,
the larger the image size, the more time it takes to com-
pute the function. This causes the reconstruction method to
become impractical for large image sizes, as the method can
take several weeks to obtain a single structure. It is therefore
imperative to improve the reconstruction speed of the method.

(2) Reduced long-range connectivity: Due to random
swapping, final reconstructed images with SA have many
isolated pixels left. These stray pixels contribute to dead
volume (nonconnectivity) and reduce the long-range connec-
tivity of the reconstructed image compared to the reference
image. The inability to reproduce long-range connectivity is
inherent to the SA technique and is exacerbated for large
image sizes. Since the SA method works by pixel swapping
(i.e., a minor structure perturbation at a time), the probability
that a large-scale feature, such as connected cluster can be
reproduced by multiple repetitive minor perturbations is low.
Each pixel swap is a local scale interaction, which cumulatively
is unlikely to generate a large-scale global feature.

To overcome the disadvantages associated with random
pixel swapping, biased pixel swapping methods have been
recently proposed [20,24,28]. Tang et al. [24] and Pant
et al. [28] showed that a different-phase-neighbor (DPN)
based method reduces the reconstruction steps significantly
and also removes the number of unphysical isolated pixels,
thereby improving the overall accuracy of the reconstruction.
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The DPN-based method gives priority to pixels which are
surrounded by more pixels of different phases. The DPN
method, however, has not been studied extensively, and most
studies have dealt with small three-dimensional (3D) images
(e.g., upto 1283 voxels). Even though the DPN method reduces
the required number of swaps, each swap takes a longer amount
of time due to the extra computations. For large image sizes,
therefore, even the DPN method in its current state is not
practical.

Multigrid hierarchical simulated annealing (HSA) methods
have been presented in the literature to overcome the disad-
vantages associated with large image sizes [29,33–35]. In the
HSA method, the large-scale refined structures are obtained
by successively refining and annealing coarser structures.
Reconstruction at each scale is treated as an independent
simulated annealing problem. Initial attempts by Campaigne
et al. [33] and Alexander et al. [34] used a simple hierarchical
annealing where the reconstruction is started at a coarse scale.
Then, after achieving convergence at the coarse scale, the
image is refined and further annealed. This process is repeated
until the desired reconstruction size has been obtained. Even
though this method showed some improvements in recon-
struction speed, it also has several issues. Since each step is
treated as an independent SA problem, the structure generated
at the coarse scale can be melted during reconstruction at
refined scales, unless the annealing temperature is precisely
controlled. Furthermore, the swapping procedure can still
permutate among all the pixels at the refined scale, thereby
keeping the computational cost high. The frozen state methods
presented by Campaigne and Fieguth [35] and Chen et al.
[29] resolve these issues. The frozen state methods generate
the large-scale structures at the coarse scales and keep them
frozen at refined scales (i.e., the frozen pixels are not allowed
to be swapped at refined scales). Only local fine-resolution
details are added with scale refinement (image size increase),
which significantly reduces the number of pixels available
for swapping. These method has shown significant speed
advantages compared to conventional methods [35].

Even with all the advantages of the frozen-state HSA
method, only a few studies in the literature have explored
it. Campaigne and Fieguth [35] used neighborhood matching
instead of correlation function optimization with the gray-scale
HSA method. It is therefore unclear how much of the reported
time advantage is due to the HSA method and how much
is due to introducing neighborhood matching. To the best of
authors’ knowledge, only Chen et al. [29] have used it for 3D
image reconstruction with correlation functions but have not
presented any comparison with other methods. Furthermore, it
has not been used in conjunction with DPN-based swapping.
The DPN-based method may be able to further improve the
accuracy of the HSA method. Apart from the speed and
accuracy advantages of the DPN method, it provides an easy
way to freeze pixels during refinement. While Campaigne and
Fieguth [35] and Chen et al. [29] introduce an extra gray
phase for freezing, DPN-based methods can simply assign a
zero priority to the frozen pixels. This greatly reduces the
implementation complexity and provides both the benefits of
DPN and HSA.

This article presents a DPN-assisted frozen-state hierar-
chical annealing method. This method uses DPN information

for freezing pixels during refinement, thereby eliminating the
need for introducing gray-scale pixels. This is a continuation
of earlier work by Pant et al. [28], combining the speed
and accuracy of DPN method with a multigrid methodology.
These improvements were necessary for medium-size 3D
reconstructions to be effectively performed. A comparison
to other methods in the literature is also provided and the
differences between methods are discussed. Section II presents
an overview of the reconstruction methodology used with
an explanation of the multigrid methodology. Section III
discusses the results and findings of the work and compares
our results to other methods in the literature. Finally, Sec. IV
summarizes the findings of the article.

II. RECONSTRUCTION METHODOLOGY

Consider a heterogeneous media with N phases. A statis-
tical descriptor for some phase j (j ∈ [1,N ]) is expressed as
f

(j )
0 (r) for the reference image. The same statistical descriptor

for the reconstructed image is expressed as f
(j )
r,t (r) during a

particular step t of the reconstruction procedure. Consider that
M such descriptors are being used to characterize the media.
The discrepancy of the structure at step t compared to the
target (reference) structure is expressed as the L2 norm-based
error in the statistical descriptors. The total discrepancy in the
heterogeneous media is expressed as:

Et =
M∑
i=1

N∑
j=1

rmax∑
r=0

αij

[
f

(j )
i,0 (r) − f

(j )
i,r,t (r)

]2
, (1)

where r is the length at which the statistical descriptor
is evaluated; i represents the type of correlation function,
e.g., two-point correlation function, lineal path function or
chord length function; and αij is the weight assigned to the
energy of phase j using the correlation function i. The aim
of the reconstruction procedure is to evolve the structure
in such a way that the energy goes to zero (or it is at
least minimized to a practically negligible value). Several
different types of statistical descriptors (correlation functions)
can be used for the reconstruction. In this study, two-point
correlation function [S2(r)], lineal path function [L(r)], chord
length function [C(r)], and two-point cluster function [C2(r)]
are used for analysis and/or reconstruction. Details of these
correlation functions, including the evaluation methods have
been discussed in detail by Yeong and Torquato [15] and Pant
et al. [28].

A. Simulated annealing

Simulated annealing is a Monte Carlo process–based
energy minimization algorithm, which resembles the method
used to anneal molten metal [10,15]. At each step of the
simulated annealing, two pixels from different phases are
interchanged (this keeps the volume fractions constant). This
interchange will modify the correlation functions and, as a
result, will also modify the system energy Et . If the energy after
interchange is represented as Et+1, then the energy change will
be calculated as �Et = Et+1 − Et . Depending on the sign of
the energy change, the interchange will either take the structure
closer to the reference structure (negative energy change)
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or away from it (positive energy change). The interchange
has traditionally been accepted using the probability-based
selection rule by Metropolis et al. [36]. In recent work,
Pant et al. [28] have shown that a threshold-based selection
rule results in marginally faster reconstructions without any
compromise in accuracy. Using the threshold-based rule, the
pixel swap at any step t is accepted with the following
probability [28,37]:

p(�Et ) =
{

1, �Et � Eth,

0, otherwise,
(2)

where Eth is known as the threshold energy for acceptance
(Eth � 0). The reconstruction procedure starts with a high
threshold energy, which is equivalent to high annealing
temperature, and allows all possible moves that can result
in a reconstruction. The threshold energy is then slowly
reduced mimicking the cooling in annealing, so in later stages
only energy decreasing moves are accepted. Like a thermal
annealing process, the threshold energy is slowly reduced in
small steps. The methodology for determining the cooling
schedule and the initial threshold energy have been discussed
in previous work [28].

B. Pixel swapping method

Several methods are used in the literature for the pixel
interchange at each reconstruction step, such as random
[15], interfacial [16,38] or DPN-based swapping [20,24,28].
Comparison studies carried out by Tang et al. [24] and Pant
et al. [28] showed that, among all these methods, the DPN-
based method can achieve the most accurate reconstructions in
the least number of reconstruction steps. A detailed description
of the methodology has been given by Tang et al. [24] and Pant
et al. [28].

The DPN-based method favors the pixels with higher
number of different phase neighbors. The neighbors of a pixel
are defined as the pixels that are a pixel distance away either
along axes or along diagonals, as shown in Fig. 1. The different
phase neighbor count is equal to the number of neighbors
that do not belong to the phase of the pixel of interest. The
maximum possible number of DPNs are 8 and 26 in 2D and
3D geometries, respectively.

FIG. 1. Neighborhood of a pixel in a 2D and 3D image.

The first step of the DPN method is grouping pixels in
each phase with the same number of DPNs. Define n(Si) as
the number of pixels with i DPNs. Define also the probability
of selecting a pixel from this group as p(Si). The maximum
DPN in the system is then defined as M , where M = max(i) :
n(Si) �= 0. The probability of selecting a pixel from any set is
given as follows:

p(Si) = ωn(Si)
√

i i = 0,1 . . . M, (3)

where ω is a normalization factor. Since the probabilities for
all sets should add up to 1, ω is found using:

M∑
i=0

p(Si) =
M∑
i=0

ωn(Si)
√

i = 1. (4)

With this probability distribution, a DPN set is selected and a
random pixel is picked from the selected DPN set. The same
procedure is used to select a pixel from another phase. The
two selected pixels are then swapped. The expression for the
probability of selecting a pixel differs from Tang et al. [24]
and Pant et al. [28] because this expression was found to better
reconstruct the porous media structures in a computationally
efficient manner.

C. Multigrid hierarchical annealing

To solve the problem of slow convergence in large-scale
reconstruction problems, a DPN-based multigrid hierarchical
annealing method is proposed. The multigrid method is
initiated by reconstructing a small-scale coarse image, which
is then continuously refined until the desired size has been
achieved. At each scale, the reconstruction is performed as an
independent simulated annealing problem. Two critical parts
of the multigrid method are the reference image synthesis and
the reconstructed image refinement.

To perform a reconstruction at coarser scales (small size), a
reference image is required at the corresponding scale. Figure 2
shows the schematic of the process for synthesizing coarse
reference images from the original high-resolution image. Let
�s represent a binary image at refinement scale s, where
increasing s represents a coarser image. The binary image
is represented as a collection of pixel values �s

ij . The pixel
values at a coarser scale s are obtained by averaging the values
of its parent pixels at finer scale s − 1, where the average is

represented as �
s−1
ij

�s
ij =

⎧⎪⎪⎨
⎪⎪⎩

0 if �
s−1
ij < 126.5,

255 if �
s−1
ij > 126.5,

0 or 255 otherwise (i.e., �
s−1
ij = 126.5).

(5)

For the third case, the pixel values are randomly assigned in
such a way that the volume fraction of each phase is conserved;
however, due to the digitized nature of the image, the volume
fractions may not stay exactly the same at each scale. This
method can be thought of as a two-step process, which involves
image coarsening followed by image thresholding. It is evident
that the uncertain pixels in the reference images will always
end up at the interfaces of coarser images.

The second part of the multigrid process is the refinement
of images during reconstruction. The reconstruction starts at
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FIG. 2. Schematic depicting the reference image synthesis for
smaller scales (black and white colors show two different phases).

the coarsest scale, where the reconstruction is performed using
SA for the required size. Once a final solution is obtained, each
pixel is broken into four new pixels (children pixels), which
are then assigned a phase and a frozen status. This process
is repeated until a reconstruction at desired size has been
obtained. To avoid deterioration of the coarse scale structures,
all the internal pixels are frozen in the refinement, and the
interfacial pixels are nonfrozen. In this work, the interfacial
pixels can be handled using one of two separate methods:
(1) all the children of interfacial pixels at the coarse scale are
allowed to be swapped at the next refined scale or (2) only
the interfacial pixels in the refined structure are allowed to
be swapped. When an interfacial pixel at the coarse scale is
refined, not all of its children will necessarily be at the interface
in the refined image. Since the second method does not allow
the noninterfacial children to be swapped, it will reduce the
number of pixels to be swapped.

Figure 3 shows the schematic of image synthesis and pixel
freezing for method 1. The frozen status of a pixel in the refined
image is decided based on its parent’s DPN value. Children
of all the pixels with nonzero DPN (interfacial pixels) at the
coarse scale are not frozen, while the rest of the pixels are
frozen. If the parent of a pixel (�s

ij ) at a refined scale s is

�s+1
ij at a coarse scale s + 1, then the refined image will be

synthesized as:

Color
(
�s

ij

) = Color
(
�s+1

ij

)
,

Status
(
�s

ij

) =
{

Frozen if ns+1
DPN,ij = 0

Not frozen otherwise,

(6)

where ns+1
DPN,ij is the number of different phase neighbors for

the parent pixel at coarse scale.

FIG. 3. Schematic depicting the reconstructed image refinement
and pixel freezing using method 1. DPN values are calculated using
periodic boundaries on the images (black and white show two
different phases. Gray is only used for depiction of frozen state and
does not represent a new phase).

For method 2, the frozen status is defined based on the DPN
of the refined image itself, and the image is synthesized as:

Color
(
�s

ij

) = Color
(
�s+1

ij

)
,

Status
(
�s

ij

) =
{

Frozen if ns
DPN,ij = 0

Not frozen otherwise.

(7)

Not only is the freezing status determined using the
DPN information of the image, it also is enforced using
the DPN methodology. While assembling the pixels in dif-
ferent DPN sets, all the pixels with a frozen status are not
included in the sets. This ensures that the frozen pixels are
not included in the swapping process and are therefore not
moved. In summary, the DPN-assisted multigrid hierarchical
annealing method uses DPN values to freeze the interior pixels
of clusters at refined scales. This ensures that the structure does
not erode at refined scales, irrespective of the threshold energy
or temperature schedule. The swapping of interfacial pixels
allows the small-scale features to develop at refined scales
while keeping the majority of the structure intact. This method
also reduces the number of visited pixels at refined stages
without needing to introduce gray-scale values.
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D. Computational implementation
An in-house code has been developed in C++ using object-

oriented programming for the multigrid hierarchical annealing
process. The overall algorithm of the multigrid method is given
by Algorithm 1. It is essentially an extended and improved
version of the earlier 2D algorithm by Pant et al. [28]. Some
of the critical features of the reconstruction program are as
follows:

(a) The correlation functions for each line of the image are
stored, and after each swap, only the lines belonging to the
swapped pixels are updated. This saves an enormous amount
of time, as the whole image does not need to be analyzed.

(b) Computation of DPN sets is an extremely time-
consuming task, especially for large images. This program
saves the DPN information of the entire image and implements
efficient updating algorithms to only update the DPN informa-
tion in the neighborhood of the swapped pixels. The DPN sets
are only computed at the beginning of the reconstruction at
each image refinement and are only updated after each swap.
This results in time saving of several order of magnitude for
large images.

Algorithm 1 Algorithm for DPN assisted multigrid hi-
erarchical simulated annealing

Read original reference image Ω0
ref;

Define number of multigrid stages as n;
for i = 1 to n-1 do

Generate coarse image Ωi
ref from Ωi−1

ref ;
end for
for i = n-1 to 0 do

procedure Obtain the starting image for stage i
if i == (n-1) then First (coarsest) stage

Generate random pixel distribution;
Set all pixels as not frozen;

else Some refinement stage
Get reconstructed image at scale i + 1;
Get DPN information at scale i + 1;
Generate pixel color values using Eq. (6) or (7);
Generate pixel status using Eq. (6) or (7);

end if
end procedure
procedure Obtain reconstruction for stage i

Read starting image (Ωi
rec);

while E > Etol and Iterfailed < Iterfailed,max do
Swap two pixels among not frozen set;
Compute update correlation functions;
Compute new energy and ΔE;
Compute applicable threshold energy Eth;
if ΔE ≤ Eth then

Accept pixel swap;
Update image information;
Reset Iterfailed;

else
Reset image information;
Increment Iterfailed;

end if

e

e

c
R
w

Increment total iterations;
end while

e
p

Save the final image Ωi
rec;

e
o

end procedure
end for

(c) The program uses openMP interface for parallel com-
puting. Even though the overall Monte Carlo process cannot be
run in parallel due to its sequential nature (each step depends
on the previous step), the computations related to each swap
can be performed in parallel.

III. RESULTS

The aim of this article is to introduce a DPN-based multigrid
hierarchical simulated annealing method which can accurately
reconstruct large images with minimal computational cost. The
multigrid method was compared against conventional single
grid simulated annealing and the effect of coarsening stages
was studied. Since reconstructing a large 3D image (e.g., a 6003

voxel image) with a single grid method takes an impractical
amount of time, initial comparison studies were done using a
2D image of size 6002 pixels. The 2D image reconstructions
are also easier for visualization and qualitative assessment.
The two freezing methods were also compared. Finally, the
best methods were used to reconstruct 3D images of a fuel cell
catalyst layer (CL) and a ceramic with a size of 3003 voxels.
Multiple correlation functions were used to reconstruct the 3D
structures and an optimum combination was obtained for the
best overall optimization. All the simulations were performed
using a PC with Intel(R) Xeon(R) E5-2690 CPU with clock
speed of 3.00 GHz. The PC runs on an openSUSEx86_64
operating system.

A. Multigrid reconstruction of 2D images

A scanning electron micropscope (SEM) image of an inkjet
printed fuel cell CL [39] was taken as the reference image of
2D reconstructions [see Fig. 4(a)]. The image was resized to
a size of 6002 pixels and binarized using the Otsu algorithm
[40] in IMAGEJ software [41]. The final reference image is
shown in Fig. 4(b). As discussed in Sec. I, one of the major
factors in deciding the reconstruction time is the time required
to compute correlation functions. A study on the computation
time for different correlation functions was performed using
different image sizes. The maximum span of the correlation
functions was kept fixed. Figure 5 shows the increase in
computation time as the image size increases. For a given span
size, the computation time increases linearly with image size

FIG. 4. Images of a fuel cell catalyst layer. (a) Original SEM
image. (b) Binarized image used as the reference image for 2D
reconstruction (black shows the solid phase, and white shows the
void phase).
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FIG. 5. (Color online) Effect of image size on computation time
for different correlation functions. The time is normalized by
computation time of chord length function for a size of 100 pixels.

for all correlation functions. The increment factor was found
to be higher for two-point correlation functions compared to
lineal path and chord length functions. For an n times increase
in image size, the computation time increased by 1.5n, 1.02n,
and 0.96n times for S2(r) (two-point correlation function),
L(r) (lineal path function), and C(r) (chord length function),
respectively. It was also found that the absolute time taken
by S2(r) is higher than the time taken by L(r) and C(r) by a
factor of the span (in this study 50). During reconstruction, the
computational time increment factor is expected to be slightly
higher, as the spans of the correlation functions also increase
with image sizes.

It is evident that image size plays a critical role in recon-
struction time. In the multigrid method, the reconstruction
sizes can be decreased by introducing additional coarse grid
levels. The effect of grid levels was studied by performing
reconstructions using different grid levels. The binary SEM
image shown in Fig. 4(b) was used as a reference image. A
void phase two-point correlation function [S(v)

2 (r)] is used for
reconstruction. The general simulated annealing parameters
are shown in Table I. For an explanation of the parameters

TABLE I. General simulated annealing parameters used for
multigrid reconstruction.

Parameter Value

Reconstructed image size 600 × 600 pixels
Number of multigrid levels Varies (1–4)
Maximum allowed failed iterations 105

Target energy 10−6

Markov chain size 5000
Energy threshold update factor (λ) 0.95
Initial energy factor (p0) 0.5
Initial iterations (t0) 5000
Correlation functions used S

(v)
2 (r)

Cutoff energy for switching to DPN 5 × 10−3

Initial energy factor after starting DPN 0.25
Number of processors 2

TABLE II. Comparison of average reconstruction times for
different multigrid reconstructions (final image size 600 × 600). The
margins of error are based on 10 trials and represent a 95% confidence
interval

Type of Reconstruction Average advantage
reconstruction time (min) (t single/t)

Single level 448.34 ± 1.8 1
Two levels (Freeze1) 45.46 ± 0.56 9.86
Three levels (Freeze1) 38.09 ± 1.55 11.77
Four levels (Freeze1) 35.38 ± 0.43 12.67
Two levels (Freeze2) 42.38 ± 0.39 10.57
Three levels (Freeze2) 30.53 ± 0.35 14.66
Four levels (Freeze2) 28.69 ± 0.24 15.62

not defined in this article, please refer to the previous work
by Pant et al. [28]. Table II shows the average reconstruction
time for different multigrid levels. The margins of error are
reported for 10 samples with a 95% confidence interval and
are calculated using Microsoft EXCEL. The levels refer to the
number of grid levels used for reconstruction, e.g., a single
grid means reconstruction on original size, two levels means
reconstruction at a coarse scale (300 × 300) followed by
reconstruction at the final scale (600 × 600), and so on. Freeze1

refers to instances where freezing was done using method 1,
i.e, Eq. (6), whereas Freeze2 refers to instances where freezing
was done using method 2, i.e., Eq. (7). The results clearly
show that increasing grid levels reduces the reconstruction
time; however, the incremental reduction in time is reduced
with each additional grid level. It is therefore expected that
coarsening below a certain size by adding more grid levels will
not result in additional time savings. By introducing four grid
levels, the reconstruction time reduced by a factor of 15. The
reduction factor will be dependent on the final reconstruction
size, i.e., time advantages will be more substantial for larger
images than for smaller ones. The reconstruction time for very
large images (e.g., above 20002 pixels) may, however, still be
high enough to make reconstruction impractical. The proposed
method therefore is suitable only for medium image sizes.

There are two primary reasons for the observed reduction in
the reconstruction time with more grid levels: (a) The reduction
in image size for coarser grid levels and (b) the smaller number
of pixels to permutate at higher sizes. As all the interior pixels
are frozen at coarse scales, very few of the pixels need to be
visited by the swapper at refined scales. This reduces the total
number of required swaps and hence the reconstruction time.
Figure 6 shows the fraction of nonfrozen pixels at each grid
scale (ratio of image size at current scale to the image size
at finest scale). The fraction of permuting pixels at the finest
scale is around 0.1–0.2, thereby reducing the number of swaps
required at the finest scale by a significant amount compared
to a conventional method, where all the pixels are permuting
at the finest scale. As expected, Freeze2 freezes more pixels
at each stage compared to Freeze1, which results in Freeze2

providing more time advantage compared to Freeze1.
The energy evolution for the Freeze2-based method was

also studied for different grid levels. Figure 7 shows multiple
energy evolutions during reconstruction for a different number
of multigrid levels. The starting energy is lower when more
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FIG. 6. (Color online) Fraction of nonfrozen (permutating) pix-
els at each refinement level for multigrid methods. Values show
average over 10 trials. Margins of error are less than 1% and therefore
not visible in the plot.

coarse levels are introduced, as it reduces the starting image
size. Since the starting energy is lower, fewer iterations
will be required to converge to a given final tolerance. The
number of iterations at the finest level (towards the end
of the reconstruction) become smaller with increasing grid
levels due to the pixel freezing. Since image size is one of
the main contributing factors towards computational time,
fewer iterations at higher sizes will result in significant time
reduction.

Figure 8 shows the evolution of the reconstructed image
through all the grid levels (indicated by s). The overall structure
does not change significantly after the first grid level. After
each refinement, most of the changes occur at the interfaces,
where more refinements to the structure are added. Due to the
use of DPN-based pixel swapping, almost no isolated pixels
remain in the final reconstruction.

The overall effect of image size on total reconstruction time
was also studied. Table III shows the average computational

100 101 102 103 104 105 106 107
Iterations

10−6
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10−4

10−3

10−2

10−1

100

En
er
gy

Single level
Two levels
Three levels
Four levels

FIG. 7. (Color online) Change in energy with reconstruction
progress for different grid-based methods.

FIG. 8. Reconstructed images at different scales using the multi-
grid method (black shows the solid phase, and white shows the void
phase). Images are to scale. (a) Initial starting image for s = 3. (b)
Reconstructed image for s = 3. (c) Reconstructed image for s = 2.
(d) Reconstructed image for s = 1. (e) Final reconstructed image
(s = 0).

time for reconstructing 2D CL images of different sizes using
S

(v)
2 (r). The Freeze2 method with four grid levels was used for

all image sizes. The overall time for reconstruction increases
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TABLE III. Reconstruction time for different final reconstructed
image sizes. All reconstructions are performed using Freeze1 with
four grid levels. The margins of error are based on 10 trials and
represent a 95% confidence interval.

Image Image size Reconstruction Average time
size increment factor (L/80) time (min) increment (t̄/t̄80)

80 × 80 1 1.45 ± 0.25 1
160 × 160 2 3.36 ± 0.25 2.31
240 × 240 3 4.85 ± 0.20 3.34
320 × 320 4 7.19 ± 0.20 4.95
400 × 400 5 13.02 ± 0.41 8.79
600 × 600 7.5 28.69 ± 0.24 19.78

nonlinearly with increase in image size. The increase in time
can be divided into two parts: (1) Time increase due to
additional cost of computing S

(v)
2 (r), which increases by a

factor of approximately 1.5 with image size, and (2) time
increase due to more pixel swaps (i.e., more iterations) at
larger image sizes. It can be observed that the time increment
due to increase in swaps is higher than the time increment due
to increase in correlation function computing time. Due to the
nonlinear increase in reconstruction time, reconstructing very
large images (20002 pixels or bigger) may become impractical.

All the reconstructions so far have been performed by
minimizing the energy based on only the void phase two-point
correlation function. The primary advantage of the simulated
annealing method is the ability to include more correlation
functions to better characterize the porous structure. Therefore,
more reconstructions were performed using different correla-
tion functions and combinations. In the earlier study by Pant
et al. [28], a combination of void phase two-point correlation
function [S(v)

2 (r)], void phase lineal path function [L(v)(r)], and
solid phase lineal path function [L(s)(r)] was found to result
in the best overall optimization. Similar results are observed
in the current study. Table IV shows the discrepancy in each
correlation function for the best [S(v)

2 (r), L(v)(r), and L(s)(r)]
and worst case [S(v)

2 (r) only] reconstruction scenarios. A visual
comparison between the correlation functions of reference
and reconstructed images can be found in the Supplemental
Material [42, Section 1.1]. It can be observed that not only the
error in L(v)(r) and L(s)(r) has reduced as expected, the error in
C(v)(r) and C(s)(r) has also reduced. Qualitatively, the recon-
structed images look similar to Fig. 8(e) and therefore are not
shown. The two-point cluster functions could not be optimized
using any of the other functions, as it essentially represents

three-dimensional connectivity of porous media and is not
applicable to the 2D cases. Three-dimensional reference and
reconstructed images are required to completely characterize
and compare the cluster functions in a porous medium. The
addition of several correlation functions to the objective energy
function results in an increase in computational requirements.
Whereas the four grid level reconstruction using only S

(v)
2 (r)

on two processors took 28.68 ± 0.24 minutes, the average
time using S

(v)
2 (r), L(v)(r), and L(s)(r) on three processors was

around 288.6 ± 39.1 min. This time, however, is still much
lower than the time taken by conventional single grid method
using only S

(v)
2 (r), as shown in Table II.

B. Multigrid reconstruction of 3D images

Once the two-dimensional reconstructions were completed
and an optimal set of parameters was obtained, three-
dimensional reconstruction of porous media was studied.
Since the primary aim of the reconstruction process is to
provide a physical domain for studying physical processes
in the porous media, 3D reconstructions are critical to assess
the performance of any reconstruction methodology. For this
study, 3D reconstructions of two porous media, (1) a fuel cell
CL and (2) a ceramic, were performed. For the CL, the SEM
image shown in Fig. 4(b) is used for 3D reconstructions as well.
Figure 9 shows the binary x-ray microtomography image of
the ceramic used as a reference image for the reconstruction.
These two porous media were chosen in order to test the
reconstruction method on both high- and low-porosity media.
Also, these two media have different porous structures and
therefore different energy landscapes during reconstruction.
Since the information in the third direction is not available, the
reference correlation functions in the z direction are obtained
by averaging the x and y direction correlation functions
of the 2D reference image. Three grid levels are used for
reconstructing a CL of size 3003 voxels and a ceramic of
size 3003 voxels. Freeze2 is used for pixel freezing and three
processor cores are used for all the 3D reconstructions. The
rest of the parameters are the same as shown in Table I.

First, 3D reconstructions were created by using only
two-point correlation function. Figure 10(a) shows the recon-
structed 3D image of CL and Fig. 10(b) shows a reconstructed
3D image of the ceramic. The interior cross sections of the
3D structures are also shown to analyze the pore connectivity
and internal features. Qualitatively, the reconstructed images
show similar features to their reference images with good
connectivity of the pore and solid phases. Five reconstructions

TABLE IV. Comparison of discrepancy in different correlation functions for 2D reconstructions using different correlation function
combinations. Both sets used four grid levels. The margins of error are based on 10 trials and represent a 95% confidence interval.

Average L2 norms of error for the function

Functions used S
(v)
2 (r) C

(v)
2 (r) C

(s)
2 (r) L(s)(z) L(v)(z) C(s)(z) C(v)(z)

S
(v)
2 (r) (9.99 ± 0.00) (4.61 ± 2.06) (3.26 ± 2.88) (3.71 ± 0.79) (1.20 ± 0.33) (3.72 ± 0.22) (3.94 ± 0.20)

×10−7 ×10−1 ×10−2 ×10−2 ×10−3 ×10−3

S
(v)
2 (r), L(v)(r) (1.83 ± 0.11) (6.64 ± 3.64) (4.30 ± 4.08) (2.31 ± 1.04) (5.14 ± 1.07) (7.28 ± 0.32) (9.85 ± 0.42)

L(s)(r) ×10−7 ×10−1 ×10−6 ×10−7 ×10−4 ×10−4
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FIG. 9. Binarized SEM image of a ceramic used as reference
image for 3D reconstruction (black shows the solid phase, and white
shows the void phase).

of each media were performed using S
(v)
2 (r). The average

time taken for the reconstructions to converge to an energy
of 10−6 was 22.67 ± 0.11 h for CL and 27.39 ± 0.03 h for
ceramic. The reason for difference in reconstruction times is
likely due to the difference between the correlation functions
of the CL and ceramic (see the Supplemental Material
[42, Section 2]). This may result in a more complex energy
landscape for ceramic and therefore a higher computational
time. Even though these reconstruction times may appear large
in absolute terms, it must be noted that single grid instances of
these reconstructions using conventional random swapping did
not converge even after one and a half months. For example,
the energy for the ceramic went from 0.2 to approximately
3 × 10−4 in 35 days. Given that the energy reduction is slower
at later stages, it can be expected that a final convergence to

FIG. 10. (Color online) 3D reconstructions using only S
(v)
2 (r).

Blue shows the solid phase and red shows the void phase. (a) Catalyst
layer; (b) ceramic.

FIG. 11. (Color online) 3D reconstructions using S
(v)
2 (r), L(v)(r),

and L(s)(r). Blue shows the solid phase and red shows the void phase.
(a) Catalyst layer and (b) ceramic.

10−6 would have taken at least 30–40 additional days. Based
on this, it can be concluded that the DPN and multigrid method
provided at least around a 70- to 90-times speedup.

After obtaining 3D reconstructions based on only two-point
correlation functions, reconstructions were performed using
several correlation function combinations. Similarly to the 2D
images, the combination of S

(v)
2 (r), L(v)(r), and L(s)(r) was

found to result in the best overall optimization of the structure.
Figure 11(a) shows the reconstructed 3D image of the CL,
and Fig. 11(b) shows a reconstructed 3D image of the ceramic
using this combination. Qualitatively, the images are similar
to the reference images and also to the two-point correlation-
function-based reconstructions shown in Fig. 10. Looking at
the internal cross sections of the reconstructed images, the
phase connectivity seems to have improved compared to only
S

(v)
2 (r)-based reconstructions. For quantitative comparison,

the discrepancy in all the correlation functions is computed
and compared between the different reconstructions. Table V
shows the average discrepancy in all correlation functions for
the different reconstructions. A visual comparison between the
correlation functions of reference and reconstructed images
can be found in the Supplemental Material [42, Section 1.2]. It
can be observed that the addition of L(v)(r) and L(s)(r) not only
decreases the discrepancy of L(v)(r) and L(s)(r) as expected
but also decreases the discrepancy of C(v)(r) and C(s)(r). This
improvement in statistical accuracy could, however, differ for
other porous media and for the physical properties of the
porous media. Since a 2D reference image is used, the cluster
functions are still not properly characterized, resulting in high
discrepancy of C

(v)
2 (r) and C

(s)
2 (r).

Similarly to the 2D images, the improvement in the
reconstruction comes at the cost of reconstruction time.
While the S

(v)
2 (r)-based reconstruction times for CL and

ceramic were 22.67 ± 0.11 h and 27.39 ± 0.03 h, respectively,
S

(v)
2 (r)-, L(v)(r)-, and L(s)(r)-based reconstruction times were

36.85 ± 0.41 h for CL and 47.19 ± 0.41 h for ceramic. As with
the S

(v)
2 (r)-based reconstructions, ceramic reconstructions take

longer to perform than CL. The addition of correlation
functions increases the reconstruction time. There are two
primary reasons for the time increase. First, addition of extra
correlation functions requires extra computations after each
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TABLE V. Comparison of discrepancy in different correlation functions for 3D reconstructions using different correlation function
combinations. The margins of error are based on five trials and represent a 95% confidence interval.

Average L2 norms of error for the function

Porous media Functions used S
(v)
2 (r) C

(v)
2 (r) C

(s)
2 (r) L(s)(z) L(v)(z) C(s)(z) C(v)(z)

CL S
(v)
2 (r) (1.00 ± 0.00) (9.24 ± 0.03) (6.76 ± 0.06) 2.96 ± 0.25) (2.89 ± 0.22) (5.52 ± 0.06) 6.61 ± 0.04)

×10−6 ×10−2 ×10−2 ×10−3 ×10−3 ×10−3

S
(v)
2 (r), (5.71 ± 0.17) (9.18 ± 0.01) (6.77 ± 0.02) (1.00 ± 0.00) (5.36 ± 0.11) (2.61 ± 0.07) (2.86 ± 0.07)

L(v)(r),L(s)(r) ×10−7 ×10−2 ×10−6 ×10−7 ×10−3 ×10−3

Ceramic S
(v)
2 (r) (1.00 ± 0.00) (3.11 ± 0.00) (1.37 ± 0.00) (2.67 ± 0.51) (9.80 ± 1.01) (9.46 ± 0.07) (1.19 ± 0.00)

×10−6 ×10−2 ×10−3 ×10−3 ×10−2

S
(v)
2 (r), (6.57 ± 0.11) (3.08 ± 0.01) (1.37 ± 0.00) (1.00 ± 0.00) (8.68 ± 0.44) (6.49 ± 0.16) (7.52 ± 0.12)

L(v)(r),L(s)(r) ×10−7 ×10−6 ×10−7 ×10−3 ×10−3

swap, thereby increasing the total reconstruction time. Second,
the energy landscape with multiple correlation function may be
more complex than with a single correlation function, thereby
requiring more time to exit local minima.

It is evident from these studies that the use of the proposed
multigrid method results in a significant amount of time
savings compared to the conventional single-grid method.
Table VI shows a comparison of reconstruction times between
the current work and the limited information available in
literature (unfortunately, very few articles in the reconstruction
literature report the computing specifications and times). It can
be seen that the proposed method outperforms all single-grid
methods [17,21,25,28]. Among the single-grid methods, the
one by Capek et al. [21] shows the most promising results

due to fine-tuned simulated annealing parameters and an
adaptive temperature schedule; however, the proposed method
outperforms it even when using all three correlation functions
for reconstruction.

The multigrid methods by Alexander et al. [34] and
Campaigne and Fieguth [35] seem to largely outperform
the proposed method in terms of reconstruction time. These
method, however, use either neighborhood matching [35]
(instead of correlation function optimization) or a higher
energy tolerance [34]. The final energy in Refs. [34,35] is
three orders of magnitude higher, i.e., �10−3, than our current
method. A higher tolerance in our method results in a dramatic
decrease in computational time. For example, the average
reconstruction time [S(v)

2 (r) based] for reconstructing a 2D

TABLE VI. Comparison of simulated annealing-based reconstruction times in the literature to the proposed method. Acronyms used are
as follows, SG, single grid; MG, multigrid; PA, probability-based selection; TA, threshold-based selection; RND, random swapping; INT,
interfacial swapping; DPN, DPN-based swapping; GSM, gray-scale methods (multigrid) using extra phase for freezing; and Ef , final energy of
the reconstructed structure. Neighborhood refers to the cases where local neighborhood matching is carried out instead of correlation function
optimization.

System Correlation Reconstruction
Ref. specs. functions Size time (h) Remarks

Current Intel E5-2690 S
(v)
2 (r) 600 × 600 0.5 Unified DPN (a = 0,

work 3.00 GHz b = 0.5), MG, TA, Ef = 10−6

S
(v)
2 (r) + L(v)(r) + L(s)(r) 5

S
(v)
2 (r) 3003 22–28

S
(v)
2 (r) + L(v)(r) + L(s)(r) 36–47

S
(v)
2 (r) + C(s)(r) 500 × 500 220 RND, SG, PA, Ef = 10−4

[17] IBM RS/6000 C(v)(r) + C(s)(r) 500 × 500 55

[21] SGI Altix 350, S
(v)
2 (r) + L(v)(r) 3203 160–400 INT, SG, PA, Ef ∼ O(10−7),

1.5 Ghz or S
(v)
2 (r) + L(s)(r) Adaptive temperature

[25] Chebyshev supercomputer S
(v)
2 (r) 200 × 200 48–72 RND, SG, PA, Ef = 10−7

[28] Intel E5-2690 S
(v)
2 (r) 200 × 200 1.5 DPN, SG, TA, Ef = 10−6

3.00 GHz S
(v)
2 (r) + L(v)(r) + L(s)(r) 200 × 200 15

S
(v)
2 (r) + C(v)(r) 512 × 512 0.25 RND,MG, PA, Ef = 0.483

[34] N/A Neighborhood 8192 × 8192 96 RND, MG, PA, Ef ∼ O(10−3)a

[35] N/A Neighborhood 512 × 512 0.04 RND, GSM, PA, Ef ∼ O(10−3)a

8192 × 8192 2–14

aEf is not known from the reference article. Approximate value is estimated from the available comparison of reference and reconstructed
correlation functions.
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image of size 600 × 600 with a final energy of 1 × 10−3 was
0.1 ± 0.006 h, which is less than half of the time reported by
Alexander et al. [34] for a similarly sized 2D image. When
compared to Campaigne and Fieguth [35], it must be noted
that the total time saving is due to the gray-scale method as
well as neighborhood matching. Comparing the reported time
(0.1 ± 0.006 h) to the one for a similarly sized image using the
method by Campaigne and Fieguth [35], it can be seen that the
combination of gray-scale method and neighborhood matching
results in a speed advantage of around 2 times. Based on this
result, it appears that the major time advantage of Campaigne
and Fieguth’s [35] method over the proposed method may be
due to the use of neighborhood matching and not to the use of
the gray-scale-based pixel freezing.

In summary, the proposed method based on multigrid
hierarchical SA with DPN-based pixel selection outperforms
all conventional single grid methods and the multigrid method
by Alexander et al. [34]. The gray-scale method by Campaigne
and Fieguth [35] is faster than the proposed method due to
the use of neighborhood matching; however, the correlation
function of the reconstruction does not match the reference
image statistical correlation functions very well [the L2
norm is approximately ∼O(10−3)]. Even though the proposed
method is able to perform medium size (200–600 pixel length)
reconstructions in practical amounts of time, it may still not
be suited for very large scale image reconstructions (6003 and
above).

IV. CONCLUSIONS

A multigrid hierarchical simulated annealing with a DPN-
based pixel selection reconstruction method has been pre-
sented. The method performs reconstructions at small length
scales and successively refines them. DPN information is

used to freeze pixels at higher length scales in order to
preserve the large-scale structure and reduce reconstruction
time. The method uses efficient DPN storage and updating
methods to reduce computational costs, especially for large
image sizes. Several 2D reconstructions were used to compare
the method to the conventional single grid methodology.
The multigrid method was found to result in a speedup
factor of around 70–90 compared to single grid methods,
which can be even more for larger image sizes. Use of the
proposed method in reconstructing 3D images of size 3003

with multiple correlation functions showed that it is capable
of reconstructing porous structures with high accuracy in
practical amounts of time. A comparison with literature results
shows that the method introduced largely outperforms all the
other simulated annealing-based methods, and the multigrid
method by Alexander et al. [34]. The gray-scale multigrid
method by Campaigne and Fieguth [35] appears to be superior
to the proposed method; however, the gray-scale method is
more difficult to implement and the performance benefits may
be primarily due to neighborhood matching.
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