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ABSTRACT

The heating of ions in a magnetized plasma by the use of the
second order fields generated by the nonlinear mixing of two whistler
modes is examined. The resulting kinetic equations describing the
mixing and heating process are solved using the method of orbit
integrations. Two techniques aré available for the optimization
of the energy dissipated by the ions. One is to allow the mixed
wave to approach a natural mode in the plasma, resulting in a field
resonance. A second method is to have the ions absorb energy through
cyclotron damping. The resulting sensitivities to fluctuations in
frequency, density, static magnetic field and inclination of the

incident sources are given for the two techniques.
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CHAPTER 1 INTRODUCTION

The present state of research indicates that the most promising
heating techniques for the attainment of controlled thermonuclear
conditions are those for which the energy is selectively coupled to
the ions. Techniques dependent upon ion-electron collisional effects
become inefficient for plasmas with temperatures greater than 100ev.
For this reason, heating schemes which employ an ion.éyclotron

resonance effect are of great interest.

In this chapter, a summary of the techniques that have been used
to date will be given, followed by a discussion on the method of

difference frequency harmonic ion heating.

1.1 Heating Techniques Used to Date

Some. of the schemes that have been employed to date in the heating
of plasmas are enumerated below. Those involving magnetic pumping have
been described by Bergerl. A survey of experiments in which an ion
cyclotron resonance effect is employed for ion heating is given by

Hooke and Rothmanz.

(i) Obmic Heating. The use of ohmic heating in the stellarator
experiments is described by Rose and Clark3 (pp. 440 to 449)., Plasma

heating arises strictly from the resistivity of a plasma to a current
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which is produced by a unidirectional electric field pulse. This
method of heating will be efficient only at low temperatures, because.

3/2

the plasma resistivity is proportional to T ', where T is the
temperature of the plasma, Electrons are heated selectively in Ohmic
heating, and since the transfer of electron energy to the ions is
inefficient, this technique is not well suited for the heating of ions,
(ii) Collisional Heating. This method of heating is often referred

to as magnetic pumping. The magnetic field is modulated in time,

with the resulting heating in the perpendicular direction being
‘ transferred through collisions to tﬁe parallel direction. The
principle involved is that the energy increase in a two dimensional
or radial adiabatic compression is greater than in a three dimensional
compresSions. This technique is limited to low frequencies, because
at high frequencies only the surface layers are compressed, resulting
"in only the surface layers being heated.

(iii) Transit Time Heating. In this method of ion heating, the

magnetic field is modulated spatially and in time. This process

will heat the ions in a direction parallel to the magnetic field,

with the conversion to random energy resulting through collisioms.

The basis of the method is that the magnetic moment of a particle

may be considered to be constant if the frequency at which the
magnetic field is modulated is sufficiently low.

| (iv) Rapid Compression. Using a pulsed magnetic field, the
rapid radial compression of a plasma can give ion energies of

400 (+) ev, However the conditions required for a positive energy

yield in a thermonuclear reaction using a 'fast-pinch" technique
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implies an instantaneous release of approximately 10lo joules4,
which is equivalent to several tons of TNT.

(v) ICRH. A technique that has been used extensively for the
heating of ions in a plasma is ion cyclotron resonance heating (ICRH).
This technique has been used for ion heating in the B-65 stellerators,
the C stelleratore, the B~66 mirror device7, and in various other
mirror machiness’g. In ICRH, the energy in an ion cyclotron wave is
converted into the random motion of ions through the process of cyclo-
tron damping. Because the ions are accelerated directly, ICRH schemes
are promising for the attainment of high ion temperatures.

- In the schemes that have been employed to date, an ion cyclotron.
- wave is generated in a region of the plasma where Q+ is typically in
the range of .5 to .85. This wave is then allowed to propagate along a
direction of decreasing magnetic field strength, until the local
cyclotron frequency approaches that of the propagating wave. The
wave energy will be absorbed by the ions in this region through
cyclotron damping. This region of decreasing magnetic field is
referred to as a "magnetic beach" because of the analogy to the
breaking of water waves at a shoreline. In experiments of this nature,
the electron temperature remains much less than the ion temperature
because of the effects of electron radiation and the selectivé coup-
ling of energy to the ions at the magnetic beach,

Three techniques that have been used for coupling the rf power
from an external source to an ion cyclotron wave in the plasma are:

(1) Reverse-turn induction coil. This type of coil is normally

referred to as a Stix coil. A complete analysis of its use in
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coupling rf energy from an.external source to a plasma is given by
Stixlo (Chapter 5), The Stixlcoil has been used for the generation

of ion cyclotron waves in the B-65 and C-stellerators, and by the
Kharkov group.for a linear discharge in a uniform fieldll° The-
efficiency with which rf energy may be coupled to a plasma is in the
range of 0.3 to 0.6 for plasmas with densities of 1012/cm3 to 1013/cm3.
Powers up to 1MW at 25 M Hertz have been usedse

An -example of the results that may be obtained for the heating
of plasmas by the use of a Stix coil are those given by Nazarovlz°
For a plasma with a radius of 3.5 cm, and a density of 1013/cm3, an
ion energy of 2 Kev was obtained. The electrons remained much cooler
with a temperature of approximatley 30 ev.

The reverse coil is suited to the generation of ion cyclotron
waves in plasmas of moderate density only, that is for densities of
less than 1014/cm3. It cannot be used for the efficient generation
of the short wavelengths required for high density plasmas. That is,
as the spacing between the sections of the coil become smaller than
the coil diameter, the electromagnetic field of the coil decreases
very rapidly as one moves radially inward toward the plasma column.
Also, the Kharkov group2 has reported that the use of a Stix coil
at power levels greater than 10 to 20 KW has resulted in the density
of the plasma rapidly decaying during the heating pulse. This would
appear to place an upper bound on the maximum power that may be used.

(2) Coaxial Electrodes. Rf power may be applied to coaxial
electrodes at the end of a mirror device for the generation of ion

cyclotron waves in a plasmal3. The theoretical coupling efficiency



may be estimated by considering the device as a coaxial waveguide,
filled with a material with a dielectric constant of 4nc2/Bz. This
approximation is valid for frequencies much lower than the ion cyclo-
tron frequency.

In the experiment performed by Boley, Wilcox et all4, the
" transfer of energy from a 1 MW, 8.3 M hertz oscillator to a plasma
with a density of 6 x 1012/cm3 was found to be 65% efficient. Better
than 907 of the wave energy was absorbed by the ions at the magnetic
beach,

9’15-on the Vikhr'

A similar experiment was performed by Shvets
(Whirlwind) device. A dense plasma was produced in a metal discharge
tube. TIon cyclotron waves were then generated near the magnetic
mirror, and propagated in the axial direction. The wave energy was
absorbed by the ions through cyclotron damping at a magnetic beach.

In this experiment, an ion temperature of 250 ev was obtained in a
plasma of density of 2 x 1014/cm3. Some of the features of the device

9,15 for ion heating are:

used by Shvets
(1) The system has a low input impedance and does not require
high voltages for the introduction of rf power into the plasma.
(i1) Good Coupling between the plasma and the electrodes is obtained.
(iii)At the magnetic beach, the energy from the wave is initially
coupled to ion motion which is perpendicular to the static
magnetic field, thus improving stability.
(iv) Two gases may be heated simultaneously. In this particular
case, argon ions reached the same temperature as the protons.

The use of a coaxial electrode scheme for the generation of ion

cyclotron waves in a plasma is limited to mirror confining structures.
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For instance, this scheme cannot be used for ion heating in a closed
systen.

(3) Spatially Rotating Magnetic Field, In the experiment of Karr,
Knapp, and Risenfeld 8, a plasma was injected into a spatially rota-
ting static magnetic field from a coaxial plasma gun. The transverse
component of the magnetic field (v 190 gauss) was produced by a
helical winding placed coaxially in the mirror device. This field
was superimposed on an axial field of approximately 3000 gauss. By

relating the coil wavelength (Az) to the velocity of the plasma jet

(v,) by

the plasma saw, in its frame of reference, a rotating electromagnetic
field at the ion cyclotron frequency. Through the ion cyclotron
damping of this wave, approximately one half of the longitudinal energy
in the jet was converted into transverse energy, producing a plasma

with T = 1 Kev and a density of 1014/cm3.

1.2 Difference Frequency Harmonic Ion Heating

In an attempt to overcome some of the Problems associated with
the heating schemes discussed in Section (1.1), James and Thompson16
have suggested the use of the difference frequency harmonic which is

generated by the nonlinear mixing of two waves, for ion heating. This
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indirect method for generating low frequency waves (0~ 9+) in a
plasma is inherently inefficient because the waves used in the nonlin-
ear mixing process are selected such that they readily penetrate the
plasma. However, since the difference frequency wave is generated in-
ternally in the plasma, a large volume of the plasma may be heated
simultaneously., This may be contrasted with the absorption Qf the
wave energy by.the ions at a magnetic beach for the case where either
a Stix coil or cgaxial electrodes are used to couple rf energy to a
plasma. By choosing the frequencies for the waves used in the non-
linear mixing process to be greater than the electron plasma and
electron cyclotron frequencies (see Section (1,2.1)), ioms may be
heated in plasmas confined by either open or closed systems. This
may be contrasted with the use of coaxial electrodes or a spatially
rotating magnetic field for ion heating, in which case a mirror
device (open system) is required.

In this thesis, the use of Whistlers in the nonlinear mixing
process will be investigated. It will be shown that plasmas with
densities in the range 1012 to 1016/cm3 may be heated through the
nonlinear mixing of whistler modes below the infrared region.

As mentioned above, the waves used in the nonlinear mixing
process are selected such that they readily penetrate the plasma.

Two possible choices for these waves are listed below.
(1) High Frequency Waves. These are waves with a frequency
greater than or equal to the electron plasma and electron
cyclotron frequencies. This category includes the use of

lasers in the mixing process.



(i1) Whistler Waves., These are waves with a frequency in the
range between the ion and electron cyclotron frequencies,
and which propagate approximately parallel to the static
magnetic field.

The power absorbed by the ions from the difference frequency
wave will be shown to be proportional to the fourth power of the
driven . electric field intensity. Therefore, the successful implemen-
tation of difference frequency harmonic ion heating will require
the use of driving waves with high electric field intensities.

The results for the nonlinear mixing of high frequency waves
and that of whistlers are summarized in Sections (1.2.1) and (1.2.2)

respectively.

1.2.1 H F Heating

Two schemes have been suggested recentlyl7’18 for the use of waves
with frequencies greater than or equal to the electron plasma and.
cyclotron frequencies in the mixing process. In both schemes, the
energy absorbed by the ions through the collisional damping of the
mixed wave is optimized by a resonance in the magnitude . of the second
order fields, This is achieved by allowing the mixed wave to approach
a natural mode in the plasma. 1In the above cases, this was chosen
to be an extra-ordinary Alfvén wave Propagating perpendicularly
to the static magnetic field. The requirements for a field resonance

place stringent restrictions on the allowable fluctuatuions in the
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angle of incidence for the sources, the density of the plasma, the static

magnetic field, and the frequency of the waves.

1,2.2 Wwhistler Heating

The nonlinear mixing of whistlers for the heating of ions in a
magnetized plasma will be investigated in this thesis. In order that
collisionless damping effects be included, a kinetic analysis will
be used to describe the heating and mixing process.

The use of a second order ion current resonance, obtained by
allewing the difference frequency wave to approach the ion cyclotron
frequency for optimizing the power absorbed by the ions from the
difference frequency wave will be investigated. It will be shown that
this technique may be used to gain an order of magnitude in the power
absorbed by the ions over that obtained by James and Thompsoni7, as
well as the relaxation of the restrictions on the allowable density
fluctuations and perturbations in the angle of incidence for the incident
waves.. A gain of two orders of magnitude is obtained in the sensitivity
to frequency disturbances, and one order of magnitude in the sensitivity
to static magnetic field fluctuations.

The use of the second order ion current resonance coupled with
the field resonance effect described in Section (1.2.1) will also be
investigated. It will be shown that this technique may be used to

gain two orders of magnitude in the power absorbed by the ions over
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that obtained by James and Thompson17. A gain of two orders of
magnitude is obtained in the sensitivity to frequency, density and
d-c magnetic field fluctuations. The heating process is less
sensitive by two orders of magnitude to perturbations in the angle of

incidence for the incident waves.



CHAPTER 2 NONLINEAR INTERACTION OF WAVES IN A PLASMA

In this chapter, a kinetic analysis will be used to describe
the nonlinear mixing of two waves. The waves will be assumed to have
frequencies in the whistler frequency domain. Ion and electron con-
tributions to the net current and charge perturbations will be con-
sidered. The selection of the static magnetic field will be such that
the collisionless damping effects on the incident waves are negligible.
A cold plasma analysis may be used to show that terms of order of the
electron collisdion frequency divided by the electron gyro-frequency
(vei/Q_) are introduced by the collisional effects on the incident
waves, provided the incident frequencies are not too close to a gyro
resonant frequency. For typical plasmas under consideration, this term
is of the order of 10_5. In the following analysis, the collisional
damping effects on the incident waves will be neglected. Collisional

effects will be included in the second order induced currents.

2.1 Kinetic Equations

The kinetic approach used to describe the mixing and heating
process begins with the collisionless Boltzmann equation expressed
in Lagrangian coordinates. ' That is, the change in the distrib-

ution function with time is written in a coordinate frame
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moving with the zero'th order trajéctory of a particle. To solve the
resulting kinetic equation, the method of orbit integration givén in

Stixlo, will be extended to include second order fields and currents

(see Appendix A), Later in Section (2.4), the cqrrections accounting
for effects of collisions between.the species will be discussed.

The Boltzmann equation for the j'th species may be expressed

as follows:

o Lyl o +{Jﬂ‘(§+ﬂ).?ﬂ{=o oo (2.1)
w® ox m; c ¥
where Zje = magnitude of the charge on species j
sj = sign of the charge on species j
mj = mass of species j

The change in the distribution function along the zero'th order

trajectory of a particle is given by

d.;"’) = >’ + fo‘ . C_f_:_ ¥ BCj .dy
gt /e P v dt ¥ d
)
= X a v ¥ 4 Zegg yxB, . HF
2t ¢ M c 2

000(2.2)

The solution to equation (2.2) will be expanded as follows:
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3 N £ B A N 547
L N oY . G0 iKex-wgt) | 2 | ilker-028) | 87 i (Ky-wt)
= e + e + e
E o E, E, 3
B B, E B B
i | B | | =] L ey

+ Conjugate terms + higher order terms
where K =X -K and w = Wy = Wy
The equilibrium distribution function for the ions and electrons is

represented by f: and f; respectively. The first and second order.

: +

perturbations to the distribution function are given by fi 2 and
’

+

fg respectively.

The zero'th order trajectory for the ions and electrons is given

by
d;vl = E’!lx 2 QL
dat
where v' = velocity vector at time t'
g = 9+ or _, depending upon the species being considered.
Q = eBg
+ ¥
QN = e Bo
- m.c

€ sign of charge on species being considered.

The solution to the above equation may be obtained by setting

I+

u = v;.i iev; and applying the boundary condition that v' = v for

I

t' = t. This gives
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V< = Vx cos (Qe-R&) - £vy sin(Rt-52¢7)

VS' = &Vy Stn (Ne-2¢) ¢+ Vy cos (S2¢t-52¢') (2.4)

The velocity components in equation (2.4) may be integrated,

and with the use of the boundary condition that r' = r for t' = t,

X' = -Vx s Q7' o+ £Vy (1-cos.Q't') + X
\pA B
y' = - EVx (1-00s8R7) - Vy e 0T ty
N 52
' = -Vt o+ oz o v (2.5)
v = t-+

The collisionless Boltzmann equation given by equation (2.1),
together with equations (2.2) and (2.3) may be used to express the
change in the equilibrium distribution function along the zero'th
order trajectory of a particle as follows:

t
(drg) =0
dt /o

The most general solution to the above equation is of the type

b4
& = 5 (ngvz) ves(2.6)

where L and z refer to directions perpendicular and parallel to the

static magnetic field, and V_J_2 = vi + vio
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For the specific case considered in this thesis, fi willAbe taken

to be Maxwellian, with equal temperatures in the directions perpendicular

and parallel to the static magnetic field. That is,

(EWKTx) e (e (vEeuD)) cee(2.7)

The velocity gradient of fi may be expressed as follows:

b +
br" = Vx 'co.l.
D Vg
t t
of, = Vy Qo;.
]Vﬂ
2t ot
-sv: - oz |
oo o (Zo 8)
Ty Iy
where oL > ?/L
)
By using equation (2.4), it may be shown that £ ft

, and ft will have
oL 0oz

the same form in primed and unprimed coordinates.

This is the result
of (v!) 2

and v; being constants of the zero order motion.

2.2 Solution for the Incident Fields

Through the use of equation (2.1) to (2.3), the equations

governing the first order perturbations induced in the plasma by
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the incident fields, may be expressed as

(ﬁf) ] -Z*e& (was) \s.-_r-u."c)

«ee(2.9)

+
plus a similar equation for fi

Through the use of the following Maxwell's equation

:
(.‘.',M\'L) = "Z;\-_QS: t. e
My
| + oy'k. - (!I- E\) [ a¥o d{/
o, ) SV v+ (2.10)

The first order current in the plasma may be obtained by taking the
velocity moments of X_fi. The dispersion relation for the first incident
wave may then be obtained by substituting the resulting expression for
the first order current into Maxwell's equations. A similar analysis

is applicable for the second incident wave.
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2.2,1 Dispersion Relation for the Incident Waves

The results given in StixlO(Chapter 9) may be used to express

the first order current. as,

5 = mee (<yf > - <ufY) = 7 sl Mg vee (2.11)
K Ao
+ oo t
where < Y'?i > = f Y'p; dx
S0

i = 1,2 and denotes the first and second incident waves respec-

tively.

n, = plasma density/cm3

mpk = plasma frequency for species k
k

g%_= mobility tensor for species k
€ = sign of charge on species k

In the following analysis, only two species will be considered, namely
ions and electrons (k =+, -).
If finite Larmor radius effects are neglected, as well as

collisionless damping and finite temperature effects

—
-

18£S, - L S | Qe/ 4 | 0
2 ((A-X{-ﬁgzt P Wi-Sit E(w.wﬂg w;-ﬂt‘)

[ES
W

i —81'( i -1 5) iCe Qe 4 4 _4
2\ Wi+ ., W-9s 7(maa'.‘ﬁ=3 0

_ o o] el [, ,(2.12)
Wi J
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Equations (2.11) and (2.12) may be used to express the total first

order currents as follows:

3 4 2
ix = & Eix v 2 By
ae 4

.oo(.2913)
4t W
where
1 2
a; = untop[ L - 1 ]
2 Ll ) (wi-5) (Wi -2.)(wWi+924)
a; = W w,,"’[ -1 N 1
2 (Wi + SL(w; - S24) (W - 52.) (W;+ W)
2 U)E
W = Wp. (1+ m)
my

By using equation (2.3) and Maxwell's equations

eoe(2.14)
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Through the use of the continuity equation and Poisson's dqgéfion,

the above equation may be expressed as follows:

[(%" - K:E]Ei = “%"[(%’L)E-: - (8;+ ;) Kr]

ees(2,15)
where 1 = 1,2
In solving equation (2.15) for the dispersion relation, it will be

convenient to use the refractive index for the plasma, which is

defined by

e K.
W 0se(2.16)

If the incident waves are assumed to be Whistler modes with

Q+<w1<9_, the z-component of equation (2.15) gives

NG 1 _ . B o
Ep = oty (w. 1 [as £y ~ Ty t::,] ve(2.17)

iz \Wp (1-;%:)(1-&:) Wi wr

where £zt

(QL)E (1-m7)/ (4 - oY)

Wp
The x and y components of equation (2.15) may now be expressed in

matrix form as follows:

(4-n7-at (Leze)  iab (1e2e)] [E0] 0 ]
w; Wi
-1 a_:':‘. 1-/”:2 _O_I’:- Eiﬂj OJ -to(2n18)
L w1 o 1L -
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where L éai = % eal (nugmz_ + wtx (1"‘ z’=|)j
j (”lcz. ‘1)(!- 82‘

A non-trivial solution for Ei and E; implies that det [ ] = 0.

This gives

(1-m; ) —ali-m)+ &) a +[(a ](uac.)

w( w\ ) c(2019)

The solution of equation (2.19) will give the dispersion relation for

the incident waves.

2.2.2 Reflections at the Plasma-Vacuum Interface

The assumed geometry of the plasma-vacuum interface is given
in Figure (2.1). An oblique configuration is considered so that the
results obtained may be applicabde to the case where the effects of
perturbations on the slope of the plasma-vacuum interface is studied.
A similar calculation for the refiection coefficients has been made

by Unzlg, Schmidt ZQ and SluijteIZl.
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PLASMA - VACUUM INTERFACE

VACUUM PLASMA HALF SPACE

Figure 2.1 Geometry of Plasma-Vacuum Interface.

The notation used in Figure (2.1) is as follows:

5; = propagator for the reflected wave

gi = propagator for the incident wave

git = propagator for the transmitted component with RH elliptical
polarization

Kit = propagator for the transmitted component with LH elliptical
polarization

i = 1,2 and denotes the first and second incident waves respectively

The notation that will be used for the refractive indicies of the
plasma to the waves given in Figure (2.1) will be that used for the

propagation vectors, with n replacing K. For example
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it .
A; = ey K;

The transmitted portion of the wave incident on a plasma vacuum
interface, as depicted in Figure (2.1) will decompose into two com~
ponents, one right-hand and the other left-hand elliptically polarized
(Rose & Clark3). If the incident frequency is taken in the range
between the ion and electron gyro-frequencies, the LH polarized compon-
ent will not be transmitted in the plasma. This is the result of the
strong attenuation of the wave through cyclotron damping near the ion
cyclotron frequency, and the negative value for the square of the
refractive index for frequencies greater than the ion cyclotron freq-
uencyza. However, the RH elliptically polarized component, normally
referred to as a Whistler mode may be made to penetrate the plasma
by a suitable choice for the incident frequency and the static magnetic
field. It is this component which will be considered in the nonlinear
mixing process,

The following relations may be obtained from Figure (2.1):

Ko = (gc_c)[s‘mtm 61), 0, cos(o+ e?)]

K: = (ﬁ)[sm(e?-e), o ,-cos(e?—e)]
c
it it it it ;
K = [KJ:.. Sin6 + '4; cs 8, o, K}'.. ¢os @ - Kffj sin e] <0+ (2.20)

it . .8
where Kiy, = (%) Sin G;
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The solution to equation (2.19) may then be written as follows:

LB . - , .
) =1 - {ﬁ (1+ 2 + (3-21)3?[“ 28" 4 (:4> (Pi’t)z];
Wi w; 2
[}

it\2
= (m:‘ ) + SlV\E Bf 900 (2(21)

where

g = %f i i) (1) s () (s - é’i:t)]
[ens)™][w - 7]

Ej.t = (wi\* B—(mft;é]
(wp) [1 ‘(M;‘: 2]

j = 1,2 and denotes waves with a RH and LH elliptically polarized
electric field respectively,

For the cases that will be considered,|eit|<< 1. The solution for
nit in equation (2.21) will be obtained through an iterative procedure.

A first approximation to the solution for nit is obtained by setting
jt jt

€] to zero. An approximate value for €y may be obtained by substitut-
ing the above solution for nit into the expression given by equation
(2.21) for eito A better approximation to the solution for nit may be
obtained by substituting the above value for eit into the equation for
(nit)zo The accuracy of the expressions for the dispersion relations

may be improved by further iterations. In the limit that (wi/wp)2 <<],

J

and if terms of order (eit)2/2 are neglected, the dispersion relation

for the incident waves in the plasma may be written as

jeN? s it 4 2
(’“m) = o8’ B, - (4+ £ )(% + 12-2)) a_-'> voo(2.22)
i W
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where the value for eit is obtained by substituting

Ly 2
it 2 S ' g
m. s 6, - a; + (3-2 _La
( M ces & ( o i) ; ) , into the expression

jt
i .

The required expressions for the propagation vectors may be

given by equation (2.21) for €

obtained by substituting the results from equation (2.21) (or from
“equation (2.22) in the limit that (sit)z/z << 1) into equation (2.20).

The transmitted field components will now be expressed in terms

of Et and E2E

1% 1x by the use of equation (2.17) and (2.18).

it it _dt
Eiz = rﬂz Ehn
) (20 23)

. o
Ey =TTy Ei

where 1 = 1,2 and denotes the first and second incident waves
respectively.
j = 1,2 and denotes waves with RH and LH elliptically polarized

electric fields respectively.

{e it 4
Mz = -y G2
Nz
1t . +
TT"S s i (1- g; )
it 26 .
rriz = -y Qiz
iz
2¢ -
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+
S; = 1 - i N
1\ 4t ) 1¢ 1\2 4 \21%R
ai \ & 1+28 +(a) (&
E(a',?)' +[+ +C7,f) ‘)] }
1t 4 j
= £"'. (14'%%__)/(11— S:t(ira,-i/aa,)) { for ,€?£,<<1)
= — 1 n — i
at at 2¢ \2 2t a] 2
{(Z:a_) & [1+2£‘ +(%) ()
¢ 2
= (1 - a?/a;‘-’)/(u e (1-0ai/a®) (for IFY 1)
A7 = (Wwi+ 2 (-2
A-‘i- = (w:-Q-)(w;+52+)
+ _ 2 + +
e, = _——wi [1_—_9.2 + S
2¢ -
s Ly A
- 2 - -/ -
a,., = Wi [ 1 - S’,/E + 9.‘/2
2¢ - +
BT (G o

Through the use of Maxwell's equations, the magnetic field components

associated with the incident waves may also be expressed in terms of
1t 2t
Eix and Eix“

co0(2.24)
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where i = 1,2 and denotes the first and second incident waves.res-
pectively.
j = 1,2 and denotes waves with RH and LH elliptically polarized

electric fields respectively.

The following relations may be obtained by the use of equations (2.23)

and (2;24):

it it it
le = ﬁix Eix
it it je .
Bi% - Cig Eix
it t _je
Bi'L = 8‘1 E'X 000(2.25)
where
It It it
an = -< Kz rrhj
i
it it it it
ﬁﬂs = Igj (Kip - K, MM, )
(] .
it it __it

The incident waves may be taken as being transverse in free space,

that is

00+ (2.26)

g
=3
)
H
o
|5
(LN
U

w/c (sin (6 + e:), 0, cos (® + ei))

1]

propagation vector for the i'th incident wave in free space.
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i=1,2

By using equations (2.24) and (2.26), the following relations may be

derived for the magnetic field components in free space:

s S
Bix = -cos(®+ ef) Eiﬂ
S S
By = 1/cos(o+6]) Ey
S . s S
Bz = sn(&+89) Eiy ... (2.27)

Both E:x and Eiy are known, since these are the chosen components for

the incident waves. The electric field components perpendicular to the

y-axis for the incident waves in free space will be denoted by EiL'
That is,
S S A S A
EiL = BEx& + Ep &, .. (2.28)

By taking the reflected wave as being transverse and using
Maxwell's equations to express the relationship between the magnetic
and electric field components, the following relations may be obtained

for the reflected wave.

Ki = %@{sm(e,s-e), O,—cos(S?-Q)}
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r

A\S S
zE‘z." tan (B -0) E,«

(e o g r
B‘x - cos (9; -6) E‘S

B}; - -1/cos (ef-0) €7,
: 000(2629)
; B;rz = sin ( Qf - ©) E:'i

A definition similar to that made in equation (2.28) for the,
incident waves is now made for the waves reflected from the plasma-

vacuum interface. That is gz | 1s defined as follows:
cK + Efz_ gz oao(2030)

The application of the tangential boundary conditioms, namely,
the continuity of the electric and magnetic field components tangen-

tial to the plasma-vacuum interface yields

1t 2t 7
Frng My o -1
i at S
cos &-TT;, sih® cos ©-[T,, sm® -cos O +tan(B;-B)sind O
1t 2t °
A Bry 1 feos (6F-©) 0 |
at it 2t 2t
B, cos ©-3,,5nB (35 cosd -(Sl.z sme O ’COS(Q,-S-G)CO".O
+8in (87-0) sin
n J

(continued on page 29)
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LR " —S T
Eix tig

gt S S
Eix E;y cos B

x = S e 0o (2.31)
Eix Eir

X S S

The transmitted field components may be uncoupled from the reflected
field components by combining the first and last equations and the

second and third equations obtained by the expansion of equation (2.31).

By defining

a; = cos (9?-9)(.‘056— sin(egs- )
/ s .
a, = cos® -tan (O;-0)sin 6
. 1t
Ny = (cos o- fT;t_tSm 9)/4{ + cos (9?— 9)(3,3
at ad
Nipg = (eose-1T, smG)/a;’ + cos (67 -0) By
1t 1t FU
N'-s = fTIB - (ﬁ;x cos © - 6iZ Sin 9)/0-'.
24 e ot ee0(2.32)
Nig = |Ti3 "( @ix cos & - @iz S 9)/0.,-
NI"5' = cos (9?—9) (i + 1/&;)
Nig = I+ COS(G?-G)/af

the equations governing the transmitted field components may be

expressed as follows:

1t s

Niy Niz | |Eix Nig| |Eis
ae| s

Nig Nig | {Eix Nig] [Eiy

00e(2:33)
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The solution to the above equation may be readily obtained through

the use of Cramer's Rule.

1t g e
Ex = (NisNig By, - NieNi Eig )
DET,
2¢ .
Eix  (NigNu Eiy - NisNig i) vee(2.36)
DET,
where PETy = NigNig -NizNiz

The reflected field components may be found by substituting the

results obtained in equation (2.34) into equation (2.31). This gives

S 9 it at 2¢
£ = Er cos (©1-0)- Riy o3 (06;-B)Epy -, cos(6i-6) Eix

1R (S

Y s it 4+ 2¢ _2¢
By = -Eiy + Ty B + Ty Eix

000 (2035)
With the help of equation (2.3), the percentage of the power in an

incident wave that is reflected at the plasma-vacuum interface may be

vy 2 Y-
shown to be equal to 100 i = |E'l5 } .
=S 2
IEEJE + |t§

The normal configuration that will be assumed for the incident
waves and the plasma-vacuum interface is depicted in Figure (2.2). The

above relation for the reflected power will be used when examples are

considered in Chapter 3.
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L

VACUUM PLASMA HALF SPAcCE

FIGURE 2.2. Wave Vectors and Plasma-Vacuum Interface. Only the waves
considered in the mixing process are shown in this Figure.
The two strongly attenuated LH polarized modes have not

been shown.

A resonance in the magnitude of the fields associated with the
mixed wave may be realized if the propagation vector of the mixed wave
approaches that of a natural mode in the plasma. In this particular
case, if the mixed wave is taken as propagating approximately perpend-
icular to Eo’ the natural mode is an extra—ordinary Alfven wave. If a
field resonance is to occur in the plasma for the cése that.§2|L§0, the
required angle of incidence for the first incident wave may be approxi-
mated as follows by the use of the results given in Spitzer23 for the

dispersion relation for an extra-ordinary Alfven wave:

-1
o ~ sintw [1 - e . v (2.36)
L wf - Rene + WPRE (1- 22)
wpa - wZ 4 S22,
2 2
where Wp = wpo (1+M/my)

The propagation vector for the difference frequency wave (See Figure
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(2.2)) is given by

0e0(2.37)
The object of this thesis is to investigate the use of this difference

frequency wave for the heating of ions in a plasma.

2.3 Second Order Fields And Currents

In this section, the second order fields and currents will be
obtained. Through the use of equation (2.1), (2.2), and (2.3), the

equation governing the second order perturbations may be expressed as

+ t
d_-c_33 = ‘Ztefﬁ'. (E3 + l XB )0 2__2.
dat ‘o My ¢ Y
t
- Zs eL‘:(Ea *Vng) Bi e..(2.38)
-Zrele (£, + yxBy). o
my c W

The velocity moments of fg will give rise to three terms. The
first term will be an induced component from which the ion energy
absorption will be calculated. The remaining two terms correspond to
driving terms. The contributions to the second order distribution
function will be denoted as follows:

* * x t

fs = fi5 + f32 + 85, ver(2.39)
The first, second and third terms on the RHS of equation (2.39) will
denote the resulting contributions. to f§ from the first, second, and
third terms respectively, on the RHS of equation (2.38).

The procedure that will be used to solve for the various com-
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+

3
Specific reference to a particular species will not be made since

given in equation (3.39) is outlined below for f;zo

ponents of f
necessary signs and factors are preserved in terms as e, Z, and n.
From equation (2.38)

t
4'\32 = lim -_Z_f_gf (Ea“"’ X x B;)'EL dt’

000 (2.40)
-T

" By using the expression given for f1 in equation (2.10), the above

equation may be expressed in the following form:

Fsz = § ( dvde @ (L (r0) Egtr, e, v) or (2,41)
T v
- where

with the integration limits on 1 and t' being [0,*) and [0,x]

respectively., The derivation of equation (2.41) is given in Appendix B.

2.3.1 Velocity Moments of f32

Following the procedure outlined in equation (2.38) to (2.41)
and Appendix B, the first step in solving for f32 is to find an expres-
sion for fl(t'). This may be obtained from equation (2.10). By using
equation (2.5), the resulting phase term, i(glﬂg" - wlt'f) may be

expressed in terms of the variables at r' and t'. That is
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iKyex” it = (K ov'-iwt' - us% (- snf2r’)

L, ' o, N, ee e (2.42)
+.eﬁva_ Kix(i-cosﬂ'c) + Vg (—Kiz_’t)+'w1'r ’
where t' = t' - t"'
By performing a similar analysis for the term
\ (K\ ‘v”" wﬂ.t) 1" "
Eq e [14_,! K _(1/,51)].')-&(!)
U’i -Dyn
fl(z_' ,¥',t') may be expressed as follows:
(ke x -t ;Ev_zl Ky 5nS1T" + vy €Kqx (1- cos 2 ')
Flr Vi) = ~Zee e Jd're 3L g
) m
o

+ Vg (—K,_z'r')+w'c"] ,
{Eix(‘lx cos ' - ey sinS?'c')[#oJ__ + ¥z ($oz -VZFOJ)]
Ly

¢ Ery (Ew{sinQe’ + v cos2e’) [$or + Kip (Foz - ¥4 0s)]
Ly

+ Eyqp [V_;{_ ( - Kix coSQ'I-’) + vy €Kiy Sin Sz'f'](‘poz - Ve wco.x.)*" Euz foz
(A7E w4

From the results given by equation (2.8) for a plasma with a Maxwelli:an
equilibrium distribution, and with equal témperatures in the directions
perpendicular and parallel to the static magnetic field, it is easy to
show that (foz - v; f0 ) = 0. For this particular case, the above

expression for f_ (r',v',t') simplifies to
l —
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£ N0, E) = -Zep

. oQ ’
P (Ksox'-,t) Vo ['v,’m sin Q2!
e dr e S
m ()

+v9' 85&5 (i-cos .Q’t') - \/,_l Kd.z?"* wl'z—'] ,
s2 Eax ( Vx cos '

< Evy Sin Q‘l")%,._ + Egq (&g sinSlx' + vy eos Sl’r? for + Euz -f’,,_}

ooa(2c43)
* *
By using that 52 = c/w2§2 X §2 s equation (2.40) may be expressed

- as follows:

¢
v i(Kaex'-uat)

f32 = -Zee_f Er e : [1+ ke - (v 52)]'3.‘;""":*')
m s Wp ~We v’

000 (2.44)
where fl(E'a!'st') is given by equation (2.43),

If only the transmitted incident waves with a RH elliptically
polarized electric field are considered in the mixing process, the
following relatioms may~be obtained from equation (2.23):

Eay = ¢ (1-8)) Egy
* . eo0(2.45)
Eay = -iEax
In deriving equation (2.45), the propagation vector for the second
incident wave was assumed to be parallel to the static magnetic
field in the plasma (see Figure 2,2). Through the use of equations
(2.43) and (2.45), the partial derivative of fl(E'aZ"t') with respect

to v' may be shown to be equal to
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-]

i(Kaox'- wa.{:')
(e v't') = -Zee e §, Egg | dt' expi [-Vx Kix Stn S22'
— m TT
N ¢
! ' [} f , ‘f-Q-'l’l . ot 7
+ vy 8&(I-cosﬂ'c)-vz Kiz T +w11] Ve & -idy (CVxSmQ’t‘
Y]
+ Vé cos Sh-') + \I,f (Eu)][ &(M_ Ve o+ i Kyx s'm.SZ'e') + fﬂ(m v,;
Eax KT L KT
. /) A icﬂ't' . AT . .)
"\8__‘5_1} (" COSS?—T')) + ?L(.{%;‘_ V:_ + 1 Kiz't') - 9x ( e -ls.‘ £ SIV\Q'('
17
e st
'(eVH( el - ?;: COSSZ'?') - E (E—Eixi)} c...,(2046)
where v'! = v' + iv'
+ X y

By the use of equations (2.4) and (2.5), the variables in equations
(2.44) and (2.46) may be expressed in terms of r, v, and 1, where
T=+¢t-t' . Equations (2.44) and (2.46) may then be combined to

give the following equation for f32: ‘

ol -
f32 = 22 & Eqx E;:,‘ ( f drdr’ -co expi(lﬁ.:-wt) expi [—- %vx sinS2e')
mE s Jo
e (et
*EST* £ vy (1-cosStr+m)) + T (- Ky Vy) + ' (W -Kiz)]{[v‘r e +)
ei’* ( v eisufrw') _.'Su'n/t')) w(Es L - Kev v _IEQUY
- - Ve € + L - KeVg}fm_V.e
—El ¢ € Z(E.lx ][( wa)(KT
£K (e'.cm'l 1)) T e (v, ki) (1
* - - -—
£Ks + Ve Tf;(?r z+-l<u"r)] ( %av,_)
e’ es2e’ -t
(ae - g; e ) "V— e Sz'r-‘f—z- (—Ei) .ou(2.47)
Wa \Eyy

where K_=K; (for X [ B, » see Figure (2.2))

= + i
v, =V, 1vy
v =v_ - iv
W =w, -w, = difference frequency

1 2
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The next step in the analysis will be to express the integrand in

equation (2.47) in terms of the various powers of the velocity compon-

ents v. and v .
X y

where

Equation (2.47) may then be expressed as:

2o _ _ . ilK.w-wt)
2 E (m f f drder’ q (otay v,f-; olggv;‘
m? P KT NEEA

+ Lda‘s VXVJ + quVx + ldas\/ﬂf o‘a‘) a,‘P[laV* - MV {-l‘b\/ﬂ

ZKT
2
My +-‘¢] v (2.48)

KT

71 = (i‘l' 1 KT KEKQ_z’fl)

m wg
Yﬁ. = (4 - Kav (e'cn?‘ 1
(4 - ) )

e’ o [LU- 7 anlee)rse!
Aay = % fi [een’r —89+(e&[“ €)’t+’r]_ e * ])]

Lpp = m §1 [eicSZ'r _ g+(eiﬂl:(l-£)'t‘-"t] N e_iQ kredrvsn ])]

isufa-e) ' sifeeed v’
oba = - S: ?1 (1- &) e [ T+t]+ +€) e [as +]
3 KT 7
HAY: ! + I -0 '
Loy = XKy [e““'“'r)_z:&(eg‘ +’l")_e Q('rwr))]
2 2
ENT
* (T -k (Es)e
w Eax
eS2 (14 2') ; i)
doe = EYiks [e + %( nc'rm-) o + )]
2
®

- _ieQQ
‘(ﬁﬂ‘/z-&)_:’-’- e
KT W2 Eix

<z, = (1 - Kab:)/:)[-(a-g;) KL %(g'i)vz( .cﬂfc_i)]

() el

2KT
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o = -Ky am U+’
2

b = ekx (1 - co%SlL'c-\—'r‘))

y = (w- Kzvz) T + (g - Kyzvz) '

In the next step, an integration over the velocity components
Ve and vy will be performed for the various velocity moments of f32°
Following the notation used in Stixlo, the velocity moment for q(v) in

the x-y velocity space is:

gy, = (( £52 quddidyy .+4(2.50)

Note that the expression for f32 given by equation (2.48) still requiréé

an integration over T and t'. This will be performed later in the

analysis.

In the integration of equation (2.48) over v and,vy, integrals

of the following type appear (see Stixlo, pp 173):

G(pa) = /_M oV -
Pe) = (o) [o v exp(iav ';—,ZT) dv vos(2.51)

By completing the square in the exponential,

, 2
e & o -@KT g (V- iefD)
G(p,a\=(m ) ( v e e dv

ZrKT Jw

A standard integral form is obtained by defining u = v - i akT . The
m
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results for p = 0, 1, 2, and 3 are as follows:

alo,a) = exp—(qak'r>
2m
G (1,0) = (aKT exp- (aa\cr>
m 2m
...(2.52)
g (2a) = k- a.aKaTg) exp - (@®kT
TmE 2m

m

G (3, a) s ta (%)2(3 - d KT exp (ZKT)

When an integration over Ve and vy is performed, it is evident from
equation (2.52) that an exponential term with the exponent -(a2 + bZ)KTIZm
will appear for all values of p. This exponent may be expanded by the

use of the definitions for a and b to give

2 2
- b)KT = -A - R+ :
(4 B)KT (1 - cosnutr+e)) ver(2.53)
where A = Kg KT

QF m

The factor A is proportional to the square of the ratio of the Larmor
radius to the wavelength perpendicular to the static magnetic field.
This factor represents the finite Larmor radius correction terms and
will later appear as an expansion parameter. In the case being con-
sidered, namely an electromagnetic wave with a frequency somewhere in
the range between the ion and electron cyclotron frequencies, incident
on a plasma half-space, (See Figure (2.2)) the following inequality

may be shown for A+:

2 + 2 S
A = K KT <1e8 x0TV sin® e
> t Twax SN Ty vee(2.54)
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where T+ = Jjon temperature in degrees Kelvin

U.)‘ = 01 QH

ﬂla
QU= () = Hybrid frequency

If the ions and electrons are taken to be at the same temperature,

A = (_r&) A

My

By using the notation given in equation (2.62), the various

velocity moments of f32 in the x-y velocity space may be expressed
as follows:

(K. x -t) 2 9
<F = 2282 g gL &K f dr de' qlv. Loy KT (4-02
=L T I B || AT gtRle g < g (1-dig)
2 : a .
+°<22K—';{-(1'b%)-lda-sab(‘%r) +'°‘24 Q%—iasbéﬂ!'} 0(2‘}

*®
X

- ol
2 2
{xf320, = ZZe EyEp
m KT

e“"r"‘")y ( drdt' g(vp) 1.? {i oLay a(&&)a

o

(3- 1) + fctan o) (1- ) - ez bliz) (1 i)

2 ) 2
4+ olpy KT - KT) - T
L] ;(i a_m) I Lpe ab(K_w\_) + lolgg al;:‘\'}

(=X

LY 2
dr dr' qtv. i blxgr
2 e g & i bl

(1 - aafw_}’) + i ol b(KWT)a(z- ba%nl) - oLay a(%-)a(i-szWT)

od o0
ez i(K.x —wt)
<V5 f32 >_|_ = Z e Ey Ez: S-

- Lay ab(gv;':’)a ¥ 5425(%)(1 - ba%) +ieda, b(g)}

ee0(2.55)

=

where z? = -2 (1 - cos Q('t-+'t')) + (0 -KeVe)r +i (v - Kazvz) '



—-41-

]
The term eAcosQ(T + ")

will be expanded by the use of the Bessel
function equality
o0

2 cos SL LT+ Z inS2lr+n)
e =

Im (1) e ¢ e e (2.56)
msz -0

where In(A) =41i® Jn(ik). In order that terms with a common

exponential dependence may be collected so that the integrations over

7, T', and v, may be performed, the coefficients appearing in equation

(2.68), namely a, az, ... must be evaluated. This is done below.

aKT = if{ e;s)_'r"_ e.'m?'?
m
2 iz _anr
aa(%) = —h’a(e -P +e T)
. (1] . " - " ot Q (1)
a’ ('KIY * -iy3( e-’m’t -3 +3e r“-- e.|3 i
m

£y (2 - e.'ar - e.-m'ru)

>(5%)

b* (|_<_1_')2 = Ya (6- 46' - 43_.521‘“+ e;EQT“-’- e.-"aﬂ‘r")
m
5 (K—J)z =Y (Eo 15T &Y b (7 i

e+ (2.57)

_ (e{'SS?'t‘“ _|3S'Zt'"))

ab (%)a = ieY? (E(e_"m“- e“fmu) - e;am-“ _.'am")

+ e
3 3 1Sttt - 2" .iznet
Qab(KT;E) = -£Y (—4+ e' + & r2(e + e
3T _izswe”
ce L )
_ n-r" _.SZ'r canet  _iast"
aba(K_T = iv’ (s(e ) - a(e )
iaset” i3S
4+ & - e )
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In the next section, the integration with respect to t' in equation
(2.55) will be performed. This requires that the terms with a common
exponential dependence in t' be collected. After some manipulation,

equation (2.55) may be expressed as follows:

2 2 » (K -X - wé) a
<F3Z>J_ = £—e EﬂX EE)& e f f deT" 3 exP i [mﬂ(q-,,_t.-)

mKT

-E2T
+ {U) -'(IVz)’r + ‘U)i —Kiz\ll)'r’] {\ e [ s‘;[ EIfn-c -.%:_ ( (£+I) Iy._1

+ (I-L‘)I.,,,+1) t —Z‘r( 8Im.g + 4Tn. (1+8) + AIn,g.e + é’l(BIm-g +8Tn4q
2

+ 8¢ %rn -2(84) Iopp + 2(8-1) Imez -naI,,))] -35(1- szl) [(r—a)r - (442¢)
wa,

4
+ (8"’1) I’n+1-a€ +2In_a{_' - &_(—4Iy\_c + 21—“_(,.’8) + 2In+1_8)]
2

-V ( Syvem -5@ ‘=u)( (148 Toneg + (£-2) Topeg -EELn) 1- 5211-_)("2
KT Eu. W2

+
+ 8 o+ fvp Kx (Eif-) In-c] +A(1- L‘-Vf-)[ (8-1) In-(1+€) + (£+1) Toecasey
Eax 2 Wy

+ EIfn_g - gi (-"l'In + ‘?I'n-i + 2Ih+1) - 8(1 Kg_z)\/z Kx E'.d.l) Z
2

...(2
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=]

Q0 s
o i(Kr-wt).a :
<Vx.¢32>J_ = 78 &® Eix Eax e e Z S. d'rd’t'g expi [nmwc')
m KT Mz« o °
g +
+ (W -Kevg) T+ (w,-kizvz)'c'] {e —‘6?1[ 8"'%2‘ Ine -8i(-8eT,
’ 2

+ 28-10) Iy + 2(8+41) Tpyg + 2(84+4) I -20-2) l‘ma) -% (Is(;n-_e)l,,.g
I

+
"4 In-(ze6) *4Tnmzre - S (-86In -202 T, + 2e(Tpg +Tpnyy)

+4(2+ 0 I,.p -#(2-E)Ia -2 T3 + aa-e)Im,))]

+2Y (1- Kavp [aI cag - 81 (m=2) T +(2-87-€Kx Vv, E. )T
( —DE) n-ae R 1 -ﬁ* z E’L:)('z’a?_) -2

4’%_('25’ In-2¢ +4(,°_'1;%’£3 In-2e + (£-1) Tnoze4e) + (148) Ih,,_a(,_g)

+ H
—%f- ('B(z’%‘é) Lo 42In z4ey -2Tnia g ))] + (?1‘/1 ‘.K—”}— ,%é) %:.[ In

+::}\_( 2T, 42 In + (#) L,z 4 (n-z)Ima)]] -2\’(1"‘5“_;{:,-) [f’In-c

+
‘Qaag\_In -svz%;s

4

2T+ 2(-2Tne + 42D Ty
+
+ (&) I, mee) + (€+1)I'vna-_e - _S_;g ('3»—".7‘\-In + 21,2 ‘EIn-va))]}

ve¢(2.59)

- o0

- Y x (K.x-wt)_ = ©

{Vy S‘za)_‘_ = i2Z e k4 Epy e e _/j f fdrdm'gcxpi[mﬂww')
m KT b o

s-00 ©

-1ET
+ (w- K,_\l,_)'r + (wi-Kﬁ_z)q-'] {e [Y% [“"In-(uc) = 41m1-€

+
+8I,.¢ - 8§ (40 In - (30+10e)T, 4 -(30-106)T,,4 + (1R +86) T2
2

*(2- 8 Tnee - 204 DTy -2 (1-8) Tppq ) )]+ 2 (\-‘%)[ Tn.ze
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- _5’_5_ (Tp-taved * Tnss-e - 12—(— (4-26) T (1426) -4+ 28) Iy 4.2

+ (-T2 (g4e) * (2+OTnia(4-£) +6Tn-2¢ +§g_('21n-e -8In-(49)
-8Tn,44e + BIp (mee) t Blnsa- g))] (5’1 Vg = (Eil) (81'“ -2 (¢eTIn
-2(4+ T .q + 2(1- Iy g + (24 Tpez -(4- S)In+a) *Y(1 kav’-)(a'* 8
+evs ke E_ﬁ) (2In_e ~Tn-(a+0) - Tnpgog) ~2¥ (1- '%/:)[In-e - %f(r "
+Tnee) - %—(érn-e -(4-20 Tn-(14¢) - (4+20 Tpnyq_p + (1-) Iy (24e)
+ (D Tpmp - g;_; (-12Tn + 8T-1 + 8Inis ~2Tn.2 -2Tnia) )]

Y (1-KeVe) Ve Kx Eaz (2Tn -Tnog - .+ (2.60)
(- Wa Q&Ez( nome Im‘)z

The integration with respect to t' in equations (2.58) to (2.60)
will now be performed. The asymptotic form of the assumed solutions

for the incident fields is as follows:

_ i (Kay X' - Wy (21t
Eun (¥it) = Exmye

However, in the limit that t' - «, the field must vanish since it must

be switched on at some finite time. Therefore, w, may be thought of as
having a very small, but finite positive imaginary component. Solutions
for steady state and damped oscillations may be obtained from the sloutions
for which Im(ml) > 0, by an analytic continuation in the frequency

domain (see Stixlo, pages 169 and 179). Two types of integrals involving

1' occur in equations (2.58), (2.59) and (2.60).
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(1) Integrals with t' in an exponential term only. These are
integrals of the type
o0

f dv' () expi(mSUswy -KyzVe )T where ¢ ) 1S independent of ¥’

[>]

1f Wy has a small positive imaginary component, this integral

may be shown to be equal to

i( )/(mSl+w1 'Kj_z\/z)

(ii) Integrals involving 7' in an exponential term and linearly in
the remainder of the integrand. These are integrals of the

type
oQ
y dr' ( V7 expi (MRU+ W - Ky V) T
(]
The above integral may easily be integrated by parts, and if

Wy is taken to have a positive imaginary component, the

application of L'Hospital's rule will give the following result:

S' de' (It expilmQewy -Kyz V) = - ( )/(mn\«wi_xﬂv,_)a

=]

The results obtained in parts (i) and (ii) may be expanded asymptoti-

cally as follows:

1 ~ 4 [1 t Kz Vz 4.,
(W4 -KyzvVe) (Wq+7Q) (g +741) (2.61)
1 _ i 4 + 2Kz V. ...]
(W +MCL - KyzV2) (0)14MQ)a[ (u);zm;i;
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The expansions given by equation (2.61) will converge if Wy is
sufficiently removed from the ion and electron cyclotron frequencies
and their harmonics. The integration with respect to t' in equations
(2.58) to (2.60) will now be performed .and terms with the exponent
i(w + n® —szz) summed. Terms of the order (VG/Vpl(Z)z)z will be
neglected, where Yo is the thermal velocity for the species being
considered, and vPlz and vp2 are the phase velocities along the static

magnetic field for the first and second incident waves respectively in

the plasma. Through the use of the following definitions:

°

Fin i |1 -KaKyy KT 4
(Wem) | T m (Dgema)
\
?I)’V\ = iKi'L
(w1+-nﬂ)a

i, = _ir

hn (Wy+ ms2) ren(2.62)
0(|°,Y\. = £52

(w1+mﬂ)(w1+(m+c)‘ﬂ)
din = Ky { S S
(W +n2)? (W + (me2)R)2

equations (2.58) to (2.60) may be rewritten as follows after the inte-

gration with respect to t' is performed:

o0
(K y-0t) A
Y = 222 Ey Eox & é Z yar 90) expi [0mf2 -Kevp

mKT
Mz-00 ©

° i
§ (Symee + %mw)[ 2Tn - S{_ ((CM) Tneg-4 + (1-8) I,H.“;_-) +% (BIn
2

+
-4Ih~1 +4Tp,4 - & (‘ 8Tlnee-4 - el-ng-j_ - 8g(m+€) In+8 +28+) Lnyp-2
2 . Aa
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i -
-2(5'-4) Topepep t 12 IYHL'.))] + %[ 9‘:51 (1 - KEV:) +o(1,—nvz][(i'-1).l.n-a¢c)
+ °
-(€+1) Theg-g + EIM~8 - % (-4]:" t2I,. + EIV\-M.)] - [ Kﬁ" (?lm-&C' Vz

1
+ Tmee Vf) - Ymee Ko (1- Kiz Vg )][(“’5) Tnetve + (80T, 40
2 (gt (m16)52)

2 1 2
-E’el‘mc]ir_ A ‘::g.[ Ay (V2 - Kav,_) + c(d‘,anJI“
e

Exx k) Egn
1 « -
t+ [ Yh"nfc (i- l<gv‘l.) + ?1"7'-0& vz] (’a"' ?1*) "'h ) (2.63)
Y We
. (grx-wd) g -l
vy F327, = 2862 Eix Eax @ e Z fd'r aw,_) expi[w+'n§1-l<,_v,_]:c
m KT ne.0 O

° 1 + ,
Y - ? m+e + Si nie Vz 8n In - EL - BEImc + 2“"5) In+e-1 +2 (5‘41) In48+1
1 1) 2

+20842) Ton-pae -20-8)Tonypye - %( le%l'n -4Tp2 + 4Tp, -gg(-seImg
-2o (_'71_-011_3_\ Tonse + Ee(rvwe—i +rm+e+1) +4(24€) T2 -4(2-)T pyp.

- 1
204 Tpee.z + 20-2)T,,q, e))] -z[ozfm (1- Kavg) + ocim\/z][s’l’,\.c
. Wa

1

|
)
2R

In + %(-2{;1‘"_9 + #(m;f\ T,e ¢ (8—1)1‘,,_(2,& + (842) Tpym g

— 2
- Sh (—B'n I, + 2T,_p - 2_Ln+a))] + B¢ [d,fn(vz - I(a\lz)
2 2 T2

— i
t d:ﬂ Vf]ﬁé iz m I, *'(4’25’.0[ Yi,mee (1- K"V‘) * Tome Vz]@fiIn
S2 Eyx X W2

° i 2
+-L[ Somme Ve + ?'»'VHC Vz - :«l Ka EM]EE Lae + 2 (_EIME’
¥ Wa v ole, 4

-4g 4’711’8\ IVHe + LH’e) IYH Y- +<"e) In+£_2)]} .-.(2.64)
A
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hd
. e 2 _ »* ;(‘S‘r'we)_a
VgfaV, = ieZ°e EqEpy e é drng)eth[wmQ-sz,]
mKT m:=-30 o

o 1
' {( ?1\'”-08 + ?1.7142 Vz)[-AIn'i - 4Ineg +8In - g; ( (6+26) T\ 4
2
+(6-200T,, ¢ BT, 24 +2(-D Ly, 206 -8Tnie ) +2 (-z41.
+
+ 16 IY\-i + ’6In+1 ‘4Ih-2 "4Iy|+g - & (40Ime *(39'“05)1-“_,3.1
2
_ J
-(20-108)T 000 + (124 8T, _oue + (12-80T 2, -204T, _1.p
_ ° 1 +
-2(‘- 9) ln*g*c))] - 2[ °‘1,~\. (1 - KEVz) + di'an] [Iﬂ—e "%(In_i
Wa
+IV\+4) - %\_( 6In-g -{“I—ZC) I-n_(1+:) - ("I\LEC)IVH.i_g +("8)IYI~CE'*8)

+
+ (1'6) In,',a_c - % (—l?rn ‘f' 81_“—1 + Brn*i -EIY\-E. —2In+a))]

o 2 4 a2 +
'2%)(_ z_ﬂ ["(inm (Vz "Ki)vz) + di’mvz][z.ln "In_i _Ih+1] - (2' Si) [
4% 2
] i 2 X £
Fumic V2 + Symae Vo - X -‘éﬁ =NeO LS "‘"’] 4z I:"Ime '3-(‘£'In+e
-} ¥ Eax 4

214200100 +20-26)Tpi0,q + (£41) Thag.2 -u-e)rmm)]}

LI ] (2. 65)
The integrals still to be evaluated are of the type
00 o8
FP = K—z‘ fd\’zfd'c V; exp (_ M‘I'za. +£"!“(w+'nQ-Ksz)> oon(2.66)
w A 2k

where p = 0, 1, 2, or 3 . The results given in St:i.xl0 for integrals
of this type may be generalized to include the case where p = 3. In
order to demonstrate the convergence of the integration with respect

to T in equation (2.66) for either positive or negative values for the
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imaginary component of w, the square in the exponent may be completed

to give[10]

L)
o 2

2 2 P . '
f dr exp[i(wmmfr -K, KT ] dvp v, exp -E"‘?T[\/v' Kz'-j-;""t']. ..(2.67)
(] -l

-“
#
=1

As is evident from equation (2.67), convergence will exist for either
positive or negative values for Im(w). Therefore, FP may be considered
to be an entire function of w.

In the next step, Fl’ F2; and F3 will be expressed in terms of Fo'
For Im(w) > O, the integration with respect to T in equation (2.66)

may be performed first, to give

2
- : s p - vz
"‘P = IKz I‘ d\/z VZ e 2wr 0-\0(2.68)
U o (0+mSl - Ka¥z)

Since Fp is an entire function of w (see equation (2.67)), the value
for Fp.in the lower w half-plane may be obtained by analytic contin-
uation.

From equation (2.68)

a2
o0 _mvg
Fﬂ = l'Kz ( dv, Vv, e KT

m o (wemsL - KzVD

The integrand in the above equation may be expressed as follows:

Vz = -1 (w+m$2) 1
(W 4+ - Kz\/-;_) Kz Kz (W+mS2 - Kpvy)

The integration with respect to v, may then be performed to give
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Fy = -:@ + cw+222) F,

In a similar fashion

i—'2 = i (W+nS2) 2Ky + (wwm. EFO
Kz m KZ
F-‘.': = - (EKT)sIQ‘-F (wan)EFKT + ( 2tn)3 E
2 m Kz m Kz e

900(2069)

000(2.70)

" Eitherangsymptotic or convergent series may be written for Fo’

the latter being required when w is close to a multiple of the

respective gyro-frequency or when the Landau damping of a wave is

significant. The convergent series for Fo is obtained by first

integrating with respect to v, in the expression given by equation

(2.67) for Fo°' By defining

oy = (WS [T
Ke 2KT

and making the following transformation of variables,

w = Kzt —.'J'E»‘« oLy
KT

the integration with respect to T may be performed. This gives

- #n
F, o= Kz JIT e + 21 Ste,)
Kz}

owo(2.71)

00 (2:,72)
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where S(z) is the complex error function and is given by

2 =z
-z
Sz) =

2
= & fe_tdt

o]

vee(2.73)

The functioﬂ Fo at this stage may be evaluated in two ways. One is the

use of tabulated values given by B.D. Fried and S.D.Conte 24 for the
function

wlz) = rr'ila {ﬁ-'r exp -(Z®) + 2i S(z\}

Another is the development of either a convergent or asymptotic series,
depending upon the absolute value of o .

A convergent series is obtained by the integration of equation
(2.73) by parts. This yields

2

2.z
{e_z e ],, - f e etzdt}
(o]

S(z)

-Izzatz
=z - € feee dt
[-]

This procedure may be repeated to give the series

3
S(z) = Z - 2Z + 2.2 zs
31

5.3.4

cee(2.74)

Convergence will exist for |z| < 1, which implies that if the conver-
gent series is to be used, Ianl <1,

An asymptotic expansion for Fo’ valid when |anl > 1, is given in

Stix10 (pp.179). The technique used in obtaining this expansion will
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be briefly outlined below, From equation (2.68)

o0 _mve o 4B

T -t

F, = -iKg dvy @ EKT = __Lf e dt
Ny K - -

T 1 Ke(vz (u_:%&)) VT ) toedm

000 (2.75)-

. pfT S :)
= = e dt 4+ i Kz exp(-«
T e tn Kzl . £

where the symbol P denotes the principal value of the integral.
If the expression for Fo in equation (2.69) is compared with equation

(2.75), an alternate expression for S(z) 1is obtained, namely

°0 ta
St2) = _1_ PS“ & at
AL .ee(2.76)

The asymptotic expansion for S(z) may be obtained by first expanding
the integral given in equation (2.76) for z real, then forming the
analytic continuation into the complex plane using a Taylor series,
The asymptotic expansion for S(z) in the region where |Re(an)|>|Im(an)|

is given by

3(7-) = + i + 1'3 + e

i
2Z ?’2 23 2_2.2 zg 090(2.77)

In the region where IRe(an)|<|Im(an)|, a different expansion is
required. Thus the asymptotic expansion for S(z) exhibits a Stokes
phenomenon (see Stixlo (pp. 180) and Morse and Feshbachzs). An asymptotic
expansion in this region will not be required in this thesis.

Equations (2.63) to (2.65) will now be used for obtaining expressions

for the electron and ion driving current. The remaining integra-
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tions with respect to 1 and v, in these equations may be evaluated

in terms of Fo’ Fl’ F2, and F3. F0 will be approximated as follows:

F:, = Jm Kz + 2i ¢, Lov la(nl <e 4 ( convergent <evieg)

K]

a . 000(20,7'8)
Fy, = Um Ko exp -ft,) + _n_<1+ 1 +..) for lotn|®y 1 :

1Kzl olr B2
(asgmpiotic sevies)
Where o is given by equation (2.71). In the second expression in
equation (2.74), the first term gives the contribution of the
collisionless damping effects, the first component in the second . term
gives the normal cold plasma contribution, while the second component
gives the first temperature correction term.

In obtaining the various current components, only terms to the
zero'th order in A (where A is given by equation (2.53)) will be
included. Such an analysis will be sufficiently general to account
for Landau or Cherenkov damping and cyclotron damping at the cyclotron
frequency for the species. Expansions to higher orders in X may be
used to account for finite Larmor radius effects as well as tramsit
time damping, that is, the effects of fluctuations in the static
magnetic field. Such a generalization would also account for the
effects of cyclotron damping at the higher harmonics of the gyro-
frequency.

From equation (2.39) it is evident that the second order current,
given by the velocity moments of f; will have three separate compon-

ents, two driving components and one induced component. The notation

that will be used to represent the driving terms is as follows:
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J_t(x) £ <y $t 3 . D; Zw‘*’ n.:(k)
S MNoefyd = é i (n)
3¢ 3K N0 Hn 009(20 79)

where 1 = 1,2,3 and denotes components in the x, y, and z directions

respectively.

k =1, 2 and complies with the notation used in equation (2.39).

n refers to o_ used in the evaluation of Fo’ Fl’ FZ’ and F3.

n
- -]
= (8] Wp, Ku (M= oy
D &) e ET(,SEKT ax Bax
+ ]" " "‘ 3 A
D = (_.% 2“ My EnEa* = %1‘_: D ('pa\' T 2T )

+
The T coefficients are evaluated to order zero in A~ through
the use of equations (2.63) to (2.65), and are enumerated below

for k = 2., Only the non-zero terms are listed.

¥ (@)

—_ ) + ° ! F . ' F.
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— 1
- Y1 Ke (Fy - Kyp r)) B - Ex Einlolyo (F - KaFs) v 410 )
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Wa

+(2\ D 1
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¥ L 2a, de
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My = L {‘2’ 6)( SaFa+ Goot®e) + E( 25 (Sa-aFe+r GaFs)

o —
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0952 Egx - Eax We
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- Eax 2
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ﬁu)a

+ JBT(?M Fy o+ (7)1,1 Fa -kT ke Xi——) }
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. + (] 1
Moy = 218 (T F, + Gy F,_)
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2.3.2 Velocity Moments of f31

In this section, the distribution function f31 and its velocity

moments ‘will be evaluated. From equations (2,38) and (2.39),

N ¢ tx
f54 = -Zeets Y dt! (Ey + ¥'xB1). 265
m: L4 ) 2y -+ (2.81)

In the analysis to follow, specific reference to ions or electrons .
will be dropped until currents are to be evaluated. The first step

*
in the analysis will be the evaluation of fz(t'). This is given by

. ¢
£o (&) = —Z_eﬁf [g;‘ (r'e) + y"x B (x",t")]. oA vee(2.82)
M c 'bvll
- o —

The assumed exponential dependence for the second incident wave is

as follows:

»® -i (Ka.¥" - 6-); .‘_")
E. (x",tﬁ) = E}r e

-

Through the use of the Maxwell equation

I

VXE :—_1._?
(o4

o/
[

vequation (2.82) may be written in terms of E; alone. With the aid
of equation (2.4) and (2.5), the variables in r'' and t'' may be
expressed in terms of r' and t'. If the equilibrium distribution
function (fo) is assumed to be Maxwellian with equal temperatures
in the directions perpendicular and parallel to the static magnetic

field, and if only the RH circularly polarized portion of the second

incident wave is considered in the nonlinear mixing process
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o
—i (Kz.x'-wat") i (Kovad —w2 —e)e!
?;(e‘) = Zeg E'; e J‘ dr'e BTETTE
KT o

[ =) 4] vee(2.83)

After the velocity gradient and dot product in equation (2,81)

are performed, the variables in r' and t' may be expressed in terms
‘of r and t by the use of equations (2.4) and (2.5). The Jjustification
for this step is discussed in Appendi; B. If the propagation vector
52 is taken to be parallel to the static magnetic field (see Figure
(2.2)), 1' will appear uncoupled from the variable T in the exponent
of the equation for f31. This may be compared with the exponent in
“equation (2.47) which involves terms such as cos 0 (t + 1'), This
presents a considerable simplification over the analysis for f32,
since now the integration with respect to 1’ may be performed before
any of the velocity integrations or the integration over t. Two types
of integrals are encountered in the integration with respect to t'.

These are

Ii = 5‘ de! ( ) exp -1 (b)a' - Ka\/z + CQ)’I"
(>

IE = Y dr' ( )T. exp ~i (()z. - KaVy, +2Q) 2! b (2'84)
]

where ( ) is independent of 1'. The integration may readily be
carried out by parts., If W, is assumed to have a positive imaginary

component, integrals Il and 12 become
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Ii = —i( ) IE= __L—_;—l————a
(b.)a - KaVz s QQ) (Wa - Kavz + 99-)

The above results are expanded by the use of an asymptotic expansion

as in equation (2.61).

T, ~ -iC ) [1+ Ke Ve ,]

(wa+ £9) {124 £52)
+ee(2,85)
12 ~ —( )2[1 + EKEV: +--.]
(Wa + &50) (We +£92)

The expansion will converge if the frequency w, is sufficiently
removed from the ion and electron cyclotron frequencies and their
harmonics. As in the analysis for the velocity moments of f32, terms
of the order of (ve /vplz(2))2 will be neglected, where ve'is the
thermal velocity for the species being considered, and vplz and vp2
are the phase velocities along the static magnetic field for the
first and second incident waves respectively, in the plasma.

The integrand in the equation for f31 will now be expressed in

terms of the various powers of the velocity components Ve and vy (see

equation (2.48) for a similar equation for f32).

2 2 _ » ;(5‘£"Jé) 00 2
.F = Z e E iy E, e m ) ( 47 qlvg) ex fQVyx - mV,
317 e txTex Grer . 3 P ((fav T

. a . 2 - .
Hibv - mvy + i) {dii\’X ¥ oolapVy Fidyg Vely + oy Vx + i g Wy i—d:e}

2KT
ano(2.86)
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where a = -~Kx sm e
. S
b = £2Kx (1-cosNt)
SL
b = (W-Kzv )
g V) -'-(ﬂ_)/a [i - KelKsz lsl']
2rKT wy(wgse2) ™M
]
?a = _iKp
(Wz +£52)*
s iKeke (k1)
2wy (Wa+ £2)2
¢, = +
8 = 51<_-r_ [a-&)ﬁ - Kz Egp
(aresH Y ™M Wy (W2+£5) Eax
S o= oifm AT &)
4 T [ Bz + kT (I-§, Ksz.]
(Wz+9) | €, ™ 01 (Wa+eR)
2
?‘-} = iKE. m 'lr._ -00(2.87)
lu>z+£'ﬂ)a il Eax
?0
s = i K"' (z-¢
(g + 650) 1)
1
s =_i KT['&Eg -LE-QI)(E«_L_—_>
(Wa1 £52) Vs B Wi (0p4e52)
4 + FO-Y _ili1+8)Sl
=—S’°+7vzm[1-e€’e -e m
(e * o) i [ 4 - 20 )l sg
AT I R YA SN ST 1D R A ed
e + e )
_ 1 ’ HU-)RT iR
iz = -(F + ?P_Vz)mi-_éi(e et T)J -m el Ey
Kt 3 kT 3=
RS
-y _.'(|+c\SZ'r)
e - e
|2£Q’(" -~ 2!
Lyy = (? +S)g z)e + Zm ?3517.9_2“2?
KT Esx
oL o o 1 2 2\rm T
14 = (S’q + ?q vz + ?‘! Vz)d—;—.‘. e = -0(14

<36

\)—%:r(?;* 5351\/7_)
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If ¢ 1s defined as follows:

g = A (1= cos¥) +i (- KzVp) v .o (2.88)

the results from equations (2.51) to (2.53) may be used to express the

velocity moments of f3l over v_ and vy as follows:

2\ , 2
KT - (bKT - biT i olyn QKT - bKT « oL
*“‘ia(y—n (W))'““‘” (BI) + ¥ oaq AT -bKT <45 + “}

.00(2.89)
((Kox -0t) &
xfaa7, = i:i EexEox € fd’f'al\’z)eq {ia(“(b(gv_x)a-aab l%)’)
m
[~}

4; iolap (a(l%‘f - aab(!svlv\:)3) - oAy ( a(%)a- abg(%)z) t olgy ( KT

CEEY) s an) i o] -+ (2.90)

. e b oQ
Qvy £347, = ZT:% Epx Epn o (KX -0t [ dr givy) ? {:'o(u (b(l%)‘?_aab(%g)
vz (3500) - (5507 - s (a )= o (D)7) - ar(s)

vi oys (K1 - (B5D)7) +iwy, b%} v (2.91)

- In order. that. terms with a common exponent can be collected so that
the remaining integrations over v, and T can be performed, the various
coefficients such as az(kT/m)2 appearing in equations (2.89) to (2.91)

must be evaluated. These are obtained by replacing (t + ') by 1 in
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equation (2.57). By the use of the Bessel function equality given by
equation (2'.5‘6), the velocity moments of f3l given by equations (2.89)
to (2.91) may be expressed in an infinite series as follows:

« i(Ex-wE) R

o6
<fi4 >J. = ‘.—52:: EiyEay € e Z g dar 3“’:\ exp i [w— KzVz -w'fl]'f

N2 =D

5 (9 + ?aiv:)[ 2T, - 522 (Lm:') Tneie-) * (n-e)IM“w)) " %(-e'_[n

+
+al,, +4I,,, - gé' ( 8T - (T30 T, 0, -17-30I,, 4,0y *4Tmsce

*4In+ce+e) -(-8TI,, 02 - 0140 1',,1“3“ﬂ t 4el ,op g '4"Imu+zc)

-2 Tp,2(e.00 + 2{'Ih+eq+e)>)] + %i[(ne)l‘nw_i +(-€)T

N+(4+€)
EAx

-4¢el

n+e-2

‘ %( -(1450) T, 4 -(21-50)T,,.,, +4eL neger

+ (1-8) IVNC-3 + (1+8)In+3+e _HCI"+29-1 * 4ern+1+2c +2€In+eu‘-ﬂ

- ° 1 2 2
'Eth-&z(“g))J -Y( ?4 t ?,, Vz + §4Vz )J:ﬁ.r[(i* £) Tpnigq ~U-O)T

+(148)
° 1
“2eTnc] -Jm (4 7 v,_)In} v (2.92)
. ilKy-wd) a2 A
<Vx ¢31> = _Za_ea EJ-XEZ.‘X e_' Te Z d’ral\/z) exPi Q—szz§.q4ﬂ
* mKT e - %

o 1 + _
{ (?z + ?Evz)[ a_—.% I, - Eé* (-ec L, * (1+3:)Imc_& -(1-3;)1,\,,(2*,_.)
vHel, 0 -2¢ Thize-g -2¢T, +(1+ac)) t % ('BIV\-!. +8L,,, +4T,.2
.‘ —
—4IV\+2 - g‘% (68 IY\"C + AIVI-}S"’. "4In+‘1+c) - (61’48) 'LVH'E'-E

*e-4T, ooy + ATpiez 9T, ae) -(|-8)I'me_4 +(1+6) Ty g
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“88Llp,pe +t 0T n . + 281,400y *4ET + 4eT,

iz (£-4) +2(14 8)

~281p, pp.3 ’2‘-'In+c3+ee)))] * ?sgﬂ-[(“g)l-me-a ~5-T 0 2y
4X

-2€In*e —4£In+28 +2€In+ae_i + EeIn+(1..2€) + % (IOCIV\.M _quV\-"f-i

~ 48T, (14e) -2(420) I, » t2(4-20 1, p. ) + 46T p,o 3 t 481, (415

+4-8)Tpn,pq W+ T, ey t 8800, 20T, 00, -28T, (). 20

- ]
-4eTnipieny -4 Tnraqaae) * B Tn00.5 + 20T, L3+z£'))] —ﬁi(ﬁ,

mr
1 4 -
+ S;A vz ¥ g Vi)[ vac + % (‘Elm—c 'Qerme-i + 2£In+1+£’ * (“e)Inw-z
— o 1 o
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oQ o)
_a ilkY-we) 2
<vgfygy, = -ieZ e By Epy @ re Z Ydfg(Vl) exp [u)-szz-mQ]'t'
m T nr-00 4
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{ (3, + ?a vz)[ 8I, -4I,_ ,-4T,,, - % ( (6+28) T, 0 4 +(62) T 0400y
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+16T_, + 16Ty -4Tn -4T,,2 -‘% (30T, -(26+6)T,, 0,

(B -8 Iy (qug) + (k20 Ty 0 p + (16-20T,, o 0y ~(620)T, 0 5

-+ 2 Typg +U-D T p.q + (14T, 4y py +108T 00y -1081, 4, 0p

’BEI\m—a(e—i) t 881, o0440) * EEIVHZE-:{ -EeL"""('S*Ef)))]

+ 9y ggf[ “2Llpe + (246 Typ0.4 + (2-60) Ty (qppy * (4430, 0
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- (2-14¢) 1 y 18T, 00 1L, 0,0 +(2-40) T p 3 + (246D T, 40

N+ (44 €

S(4-T 0, - (AT, 0y ~108T 204 +108 10y (442e) +82Tniz (1)

0 1
8T s a0140) -ZfTnipe.z *+ 281, £1+ze))] -%{J_%I <?4 + s,"Vz)[ el,

e C4re) - (40 T\ p.p +4-O)T, +ca+¢ﬂ

[ (5 Fowe) (2T -To -rm,)} ve i (2.95)

+ _’1\. -6 T + (2+4e) T -(2-46)T
n+g Nn+t-4

The integration with respect to T and v, still to be performed
in equations (2.92) to (2.94) are of the same type considered in equation
(2.66) for the velocity moments of f32. By using the results obtained
for the integral in equation (2.66), and the notation for the driving
currents as given by equation (2.79), the I coefficients, evaluated

to order zero in Ai for k = 1 may be expressed as follows:

+L1 . 1 2
Mooy = -C2: 91)(? Fyt SDar'_a) 2:: s "n 4 EF ? F, +?4F2*?4F3>
° 1
+#\;‘g_r(?sa+ )
+(1) Y .
Moen = “2[& (5 + 7 16) + 2% [ (2R QR)(-) -5 ]
s »
-1 o 1 - 1 2
My = 28 (SR GR)- 25 Beh -2 (475 R0

° i
+% %(?s‘:i* ?SFZ)
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— ° 1 2 _
Il'.’:(i) = 26_‘;&1—(?4 Fi+ ?4F2 t ﬁ; "3)
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@) _ . . "
21y = ! [-—E(E’- ?:)( ?a ot 3"2‘?1)-45’3:__%}70 +J—KV7?(?:F0+ ?:Fa_).l

ee+(2.95)

Equations (2.79), (2.80), and (2.95) may now be used to express
the total second order driving current with the exponent. i(gﬂg - wt)

as follows:

Toa = ZUad 2 Tak) = e[ty -af507] 1 (2.96)
K

where k = 1, 2 (see equation (2.39)). If the ions and electrons are
assumed to be at the same temperature, the total second order driving

current may be expressed as follows:

Jad = TQZ (& Mo - o) & .. (2.97)

t £14) £
where (T“n\ = 'T:(n\ + [T, 2)

i)
i =1, 2, 3 and denotes components in the x, y, and z directions
respectively.

+
The Hi(n) coefficients are evaluated below through the use of equations

(2.80) and (2.95).

+

Mo = iﬁ[ (2- 6)) KaKiz KT w(wywa-9F) - 2Kz Eyp w(wwp -922)
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Wi (W2+Sk) W1 (Wa+Sl) ¥ L wiwaz (W1+0)

+ Ky (Ka - Kiz z)]gﬂ-.
20 \ (W2 +524)° (WD+§2)/ ) Eax
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2.3.8 Velocity Moments of f33

The results for the induced second order current, namely the
current that is obtained from the velocity moments of f33 in equation
(2.39), may be obtained directly from the results given by Stixlo (
section 9.2). In the analysis by Stixlo, the currents are obtained by

first defining a mobility tensor as follows:
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“w

My . Eq vee(2.99)

<
Bo
As in Stix10 (section 10.8), a correction to the mobility tensor will be
made to account for collisional effects between the species under
consideration. Before this can be accomplished, the mobility tensor

for a collisionless plasma must be obtained. Terms of order A will be
neglected in the evaluation of the mobility tensor below. The terms

Fo’ Fl, «es (where Fp is given by equation (2.66)) will be denoted as:
Fo(h)’ Fl(n)’ .+, where n refers to the anbused in evaluating these
terms.. The various terms in the mobility tensor are written so that

they will be applicable to ions or electrons by the appropriate

substitutions for ¢, m, T, and Q.

Maxx = £52 [ <Fo(1) + Fo(—i))

2Kz | 2KT
Maxg = 2‘%} !Iéﬂ?T (Focay - Rotn)
A
Mixz = '5’_\%5_\)’;%—_‘_ ( Fun - Fien) = Mzxg
[ g
Mayy = Myxx
M+yz = 2:‘:(% Iﬁ_‘,[ 2F o) - Fun ‘Fu-n]
z
Mizx = Mazxz
M = &/ m e 2F, + AF
32Z % PRT 2 (0) 2(-1)
z
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where MBij is the tensor component relating the velocity component in
the i'th direction to the electric field component in the j'th
direction. By the use of equations (2.97) and (2,99), the total

second order current may be written as follows:

2 !
-T3 = _ui& _MSO_E.'S "'2__3..3& -on(‘2|101)
42 qm

where M, . g\; - M3

2.4 Correction to Mobility Temsor for Ion-electron Collisional Effects

The mobility tensor will now be corrected for ion-electron
collisional effects, When a resonance in the second order current
is obtained by allowing the difference frequency w to approach the ion
cyclotron frequency, collisional effects will be relatively un:i.mport:ant.z6
if Vig <% ":TT' Kz (where Vie = m_/m+ \)ei). This may be seen by

considering the mobility tensor component M+ « For a collisionless

3xx
plasma,
Mo ; - 2] o
3xx (collisionless) = &[ 1+ 4 -7 [, sm (D exp (] or et
ZLweSr 0 Ky 2kt F

= f&. 1 —-I'_J:ﬂ_' My - (w-Q)Ln_t £ ol <4
= [w+ﬂ+ Kz\) 2KT* kE kTt or I

«0.(2.102)
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The expression that is obtained for Mggx from a cold plasma analysis,

with collisional effects included, is

Mzxx (Cold) = &[ (W+$.) + (-9 ] (2.103)
2 L) (w-92) +iwk (WD-2) (WS +iwk

where v = vei(l + m_/m+). As w approaches the ion cyclotron frequency,

a resonance in both the collisionless and cold plasma expressions

for M;%x is obtained. However, the magnitude of this resonance.wili

be bounded by cyclotron damping effects for (w - Q+) < (2KT/m.+)l/2Kz

in the case of a collisionless plasma (equation (2.102), or by

collisional effects for (w - Q+) N Vie (equation (2.103)) in the case

of a plasma where collisional effects are dominant. Therefore, if

Vie <% (2KT+/m+)l/2, cyclotron damping will be the dominant mechanism

for ion energy absorption from the difference frequency wave.

For the case that Vig > (2KT+/m+)1/2Kz, the absorption of energy
by the ions from the second order fields will be determined exclusively
by collisions. This will occur for very dense, low temperature plasmas.
However, for this case there is no need for a kinetic analysis, since
a cold plasma analysis will suffice26, This case will not be considered
in this thesis, since the use of cyclotron damping presehts a much
more powerful technique for the heating of high temperature plasmas,

Outside the "inner resonance region! that is for (w=-92) >
(2KT+/m+)l/2Kz, collisional effects will be included in the mobility
tensor by the use of the cold plasma theory as described by Stix10
(section (10.8)). That is, for the case that Vie << (2KT+/m+)1/2Kz=

collisional effects will only serve to broaden the frequency range for
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resonant ion energy absorption.

In the cold plasma analysis of the nonlinear mixing of HF waves
by James and Thompsogjy, collisional effects introduce terms of.the
order N vie/(w - Q+) into the expressions for the second order.
driving currents. The net effect of these terms in the expression for
the ion power absorption from the second order fields is of the order
(vie/(w - Q+))2. For the case of whistler heating, a cold plasma
analysis will give similar results, namely that collisional effects
introduce terms of the order N (vie/(w - Q+)) into the second order
driving currents. To check if similar results are applicable to
whistler heating, the cold plasma equations were programmed on thé
IBM 360 computer. An error of one percent in the ion power absorption
was introduced when collisional effects were neglected in the driving
terms for a plasma with a density of 1016/cm3, a temperature of 106 °K,
and with (0 - 9+) = 10 Vie® This is what the results for the nonlinear
mixing of HF waves predict.

The method used by Stix10 for including collisional effects in
the mobility tensor is outlined below. The analysis begins with the

conservation of momentum equation for species je

hymy dvi = mjed; (s+ij3)+n Z Tk (Y= ) eee (2.104)

J T—d
T

where the last term on the RHS of the above equation represents the
effect of collisions with species k. The effect of collisions will be
accounted for by introducing an additional velocity component Azj. By

the use of the mobility tensor notation given by equation (2.99), the
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introduction of Agj into equation (2.104) yields
J J)
(1j+Ay3)= (M5 + aM; - Eq
from which Agg may easily be shown to be
i J K
Aty = L 7 My S (g -M3)
69 <

where v =v

=ik

the various species, the following relation must hold.

jk-l . If the conservation of momentum is to hold for

nym; “(:ik = My MK‘QKj «e0(2.105)

For the case under consideration, namely for a plasma composed of

two species (ions and electrons)

+ + - +
aMy - Se M3 L (5 -3)

- «ee(2.106
AM, My -I-(My -M3) ( )

- Lo
2

where the mobility tensors on the RHS of equation (2.106) are those
obtained by neglecting collisions. The technique used above may be
shown to be equivalent to a cold plasma analysis in which just. the

first two terms in the asymptotic expansions of 1

(1 + w8 (44 m_ /)
(W-524) (W+5L2)

and i are included.
L+ wlei(4rm-tmy)
' (W+524) (- Q)
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2.5 Solution for the Second Order Field and Ion Energy Absorption

Equation (2.15) for the second order fields is

[(%\2-«2] - -tar[ (@) 3y - (39 K] .+ (2.107)

Through the use of equations (2.99), (2.100), (2.106), and (2.107),
the relationship between the second order electric field and the

relevant currents may be expressed in matrix form as follows:

r ps - _ — g -
Vi Yio Vi3 Eax Re
Yaq Yaz Ya3 Eay | = |Ra
v0e(2.108)
Yy Yaz Y33 L EszJ R-_;_
where
.2
Yoo = (=) 4 102 ((CemE M <t 1)
wSs2-

Vi = i wet (1-M8) Mayy = MMz M3zy) -

S (G5 s )

.2 \
Yiz = '5_%—_ ( (1- MEY Mgz - Ay g "4312)
R ] & .

4 = = ((1’ ’ﬂx) I3dx —’ﬂxmz J-3d2)
0s0(2,109)

Vaq = iwpZ Magyy

w$2-
Yoz = (1-0f) + iﬁi@ M3gy

WS-
. .2

Yaz = 1Wp Mgy,
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L
-
R
L .2
Yap = iWp- ( Li-'ﬂf) M3zy —’"x’”zM3xg)
WS-

Vag = (1-m7) + ‘u_% ((1""5)M3zz—”7x”"="’73xz)
wil.

/
Rs = i (L-m2) To4, + (Mg Trdx

n = cfoK

refractive index of plasma for the difference frequency

wave.

The various field components are then given by

3
J+K
Es; = Z, R G D / det L] .. (2.110)

where j =1, 2, 3 aﬁd denotes components in the x, y, and z directions

respectively. The ij terms are the cofactors for the matrix

[Y] given by equation (2.108).
3

j+i
det LV] = 21(-0“ Yiea Crt
K=

The various cofactors are:

Cyq = Yoz Y33 - Va3 Y32 Ciz =Va1¥zz -YazYsy Ci3= YeaYzz-YeaVza

Cps =VipYaz - YizYiz  Cap =Vig Y35 —VYigVas Ca3 = Y94 Van - YiaV3g

Cxs1 = YazYoz ~VasVee  Caz=VYiaVes- Yis¥ay  Cs3 = YaaVaa -Yia Yae

eea(2.111)
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From equation (2.99), the induced second order ion current is

Iy = We MY L.Eg v oo (2.112)
A4Sl '

The energy absorbed by the ions from the second order electric field,

§_3, is given by
i_ +%
W3 = Real (g3 . 13_3)

%
where _._I_; is the complex conjugate of _._I_-;, By substituting the results
from equations (2.100) and (2.112) into this expression, it may be
shown that

2 2 R
Wy = ‘f)_':_t }‘?e- (M;xx) ( |E3X| + 'E33| =i Im( M;xg) (Estsg‘ Exx E'sg)
P S

— 2 o
+Re (Myz) [Eqgl + iTm(Miy,) (Eazaj - Egp £3,)
+ 2Re (M3, ;) Re ( Egy Eqyp) } vee(2.113)

M+

where IxY = RQ(M;XBB + iIM(M‘;xE‘B

Similarly, the electron energy absorption from the mixed wave may

be shown to be

=
|

—%
= Real (13 o _E_B)

- ‘vipj: 3\ Re (M5, ( leal™ + IEzglh)'iIm(M;x:O( E3xE3§‘E;‘Es§
2q92-

- — 2 - - % ”®
+Re (M-sz,z) |t3z| + "Im (M331) (E-sz tzg - Ezz E35)

+ 2Re (M75,,) Re (Ezx E{‘z)} 0o (2.114)
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Equation (2.113) gives the total ion energy absorption, that is,
contributions from both collisionless and collisional damping. By the

use of equation (2.100), the contributions from cyclotron damping to

Wg may be shown to be

+\2
| , 2 ~(a) _ _ e "
WS (collisiomless) = ::_)p!K ESQK:T* e {lt3x+lt35| + A::_: RG[E31<E‘3X
4% Kg

+ iEsa)] + (%i)’-’ [E-,,z[E} eee(2.115)

(w-99) M
Ke VaT"

[}

where (otly)

(1+A)Q+

)
i



CHAPTER 3 CALCULATIONS FOR THE PROPOSED EXPERIMENT

In this chapter, experimental considerations such as the selection
of -the D-C magnetic field (Bo), the choice for the incident frequencies
oy and Wy and the resulting sensitivities to frequency, density,

and angular disturbances will be discussed. Magnetized plasmas with

15
densities in the range 1012/cm; to 10 /cm3 will be considered.

3.1 Selection of the D-C Magnetic Field

The incident waves in the plasma will be only slightly Landau
damped by the electrons if the phase velocities of the incident waves
in the direction of the static magnetic field are much greater than
the electron thermal velocity. .The role of the collisionless- damping
effects on the incident waves may be examined more closely by writing

equation (2,78) for the incident waves.

3+ x & .
FO = \rﬁ' \<"7_ exP _(dll"n) + 1 ( i + 1__ +easn 001(301)
Kial Giend Bl o) )
where d;(m) = (W; + m(L‘) ms
— || BxT*
Kiz

i = 1,2 and denotes the first and second incident waves
respectively.
In the evaluation of the dispersion relatioms for the incident

waves, mobility tensors similar to that given by equation (2.99) for
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the difference frequency wave, may be &efined_° The varioﬁa cqmppnents

of this tensor will be expressed in terms of Fa, Fi’ ono (Fl, ono

may -be expressed in terms of Fo by the use of equation (2.69) ahd (2:70)) .
The first term on the RHS of equation (3.1) gives.the collisionless
damping effects, while the first component in the second term gives the.
normal cold'plasma_contributiono‘ Only the latter term was used in.
evaluating the mobility tensor for the incident waves in Section (2.2,1) .
(see equation (2.12)), It may be shown from equation (3.1), that the
effects of collisionless damping on the incident waves will be small

ifla | >> 1. The -effects of electron Landau damping are represented.

+
i(n)
by n =.0, where az(o) is just the ratio of the phase velocity of the-
incident wave in the plasma to the electron thermal velocity, The
case where n # 0 represents the contribution of the n'th harmonic of
cyclotron damping.
'Ianito) is of the order of 3, then only about one particle in

- 2400 will have a velecity greater than or equal.tc the phase velocity of
the incident Wave270- By choosing‘ai(n)\i 5, the effects of collisiqnw,
less damping on the incident waves can be regarded as negligible. There-
fore the static magnetic field must be selected jsuch that the.dispersion
relations for the incident waves in the plasma satisfy the condition
that Fi(n)|z 5. . This would then insure that the Landau.and cyclo-
tron damping of the incident waves is negligiblen

In order that the static magnetic field (Bo) may be selected -
such thgt‘a;(nﬂ 2 5, an estimate for the maximum electron temperature

that can be realized in an experiment is required., This will now be

calculated.
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If ion effect are neglected, the ratio of the collisionless
to the collisional damping of the incident waves may be shown to be

equal to

- - 2
(W +mQ) o () T exp - (“i(m)) e00(302)

For the case in which lai(n)l >5

collisionless damping < 2.9 x 10_12 (W; + M%) T3'2
collisional damping io

The above ratio does not exceed one for plasmas with densitites greater

12/cm3

than 10 » an electron temperature less than 5 x 107 °K, and where

the frequencies of the incident waves are below the infrared region.

By choosing Ia;(n)l to be at least 5, the electrons will accept energy
from the incident fields essentially through collisional damping. The
collisional heating of electrons by the second order fields will be
neglected since these fields are much smaller than the electric fields

associated with the incident waves in the cases considered. The maximum
electron temperature that can be realized in an experiment is boﬁnded by
one of two factors. These are:

(1) Since the dependence of the electron-ion collision frequency

upon temperature is proportional to T—3/2, the rate at which elec-

trons are heated by the incident fields will decrease with
increasing temperature. The maximum electron temperature that can
be realized in an experiment will be that for which the energy
radiated by the electrons through Bremsstrahlung and cyclotron
radiation equals the energy absorbed by the electrons through the

collisional damping of the incident waves.
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(ii) The maximum electron temperature that can be realized in

an experiment will also be bounded by the finite time that a
plasma may be confined. That is, if the plasma is confined for
only one milli-second, the electron temperature may not reach the
limit given by condition (i) above, where the rate of energy
absorption by the electrons through the collisional damping of
the incident waves equals the energy radiated through bremsstrah-
lung and cyclotron radiation.

By performing a cold plasma analysis on the incident waves, the

power absorbed by the electrons from the incident waves may be shown

to be
e 2 2
WE = 0y L0y }" (Wy-9.) B +7 €4y
4 (W44 IZ(Wq- 25+ WLAR
. s es+(3.3)
W+ S24) |Egx - iEgy| + L5 Iy f evgs Jem® /sec.
(W1- DB (W1+ )2+ W) &7 !

£ = Sei (1+ mto)

= electon-ion collision frequency "~ 31.7n, (see Clavierzs)
3/2

vei

T

Since only a RH elliptically polarized wave is transmitted into the

plasma, the expression for Wi given by equation (3.3) may be approkimated

as follows, if terms of the order (Q+/w1) are neglected:

e a

W ~ b)p_E IS. |E1

1 - eY‘gS/sz /Scco 000 (304)
T (Wg-9)°

ul

If for the moment, the effects of bremsstrahlung and cyclotron
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radiation are neglected, the resulting ordinary differential equation
governing the electron temperature during the heating cycle is given by
la

a
d ( 3 nk-ﬁ = 40-3 wP_ No lELX 00‘0(3.5)

dt V& (Dr-9232 (7-)%2
where the energy gained from each of the two incident waves is taken
to be approximately equal. In writing the above equatiom, it is

assumed that the heating that occurs in the time, 2n/ui(2), is small

Therefore, the time average of the electron heating by the incident
waves appears on the RHS of equation (3.5). If the initial plasma

temperature is approximated as zero,

-5/ 7 Y-
(T:c) = 4.87 % 'O. LJE? 2 lt“‘ b3 hee\:"ma PCYIDd ( SCC.) s (30 6)
(Wy- S2. .
where T; = electron temperature at the end of the heating period.

An estimate for the value of wzp_/(w1 - Q_)z is required if. equation
(3.6) is to be used for finding the maximum electron temperature.
This information may be obtained from the conditions that Pi(o)landla;(-lﬂ
must be greater than or equal to five if the electron Landau and.
cyclotron damping of the incident wawes in the plasma is to be

negligible. The ratio of the two parameters is given by

|°<1—< °3| C.t

la(l"')l - €y - 42.8|

7 i '?OV' Ci> 21,4 00‘0(307)

< 4 for Cd. < 24.4



-85~

where wl = C1 H = Cld Q+Q_

If the condition that both bi(o)l and |a1(_1)|be greater than five is to
be satisfied, the static magnetic field (Bo) must be chosen such that

the following conditions are satisfied.

|az

v

oy § v L cwg <

0e0(3.8)
I‘*fZlOXI

v

5) Cor S < Wy 5%

1(0) > 5, then by equation (3.7)

For instance, for Q< Wy < Q_ /2, if «

ai(o) / ai(—l) < 1, so that ai(l) is also greater than or equal to 5.
The use of the dispersion relation for the first incident wave

in equation (3.8) yields

1 9, <w, 20./2

2
Wp. « (G + 1/42.8) (1 - 1.19x108>
(L«)g-Q.)E (C',_ - 42.&) T max

.o (3.9)
(11) %-; 2w, < Q.

2 a )
Wp. e (G + 1/42.8) <1 - (G -42.8) 1.19x0

(wi-Q-)z (Cﬂ_ —42-6) Cia

T max

The bound on maximum electron temperature, resulting from the finite
time a plasma may be confined, is obtained by using the results of
equation (3.9) in equation (3.6).

If terms of the order (T;ax/l.z x 108) are neglected, the

following estimates for the maximum electron temperature may be

made.
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(1) N <y ¢ /2

- 26 v |2 2/7
Tax % [ 3-6;”0 (¢4 +0.023) |Emcl x heating peviod (Sec)] ®Kelui
(42.8 - C4)
o0 (3.10)
(11) R2-/2 2w, <«
- 26 v 2 2h
Toax [ 3.64 %10 (Cg+ 0.023)(42.8—01) lE mcI x hud-mﬂ Period (Sec\] ® Keluin

25 o2
1

where E = maximum value of the incident electric field in stat-

v
inc
volts/cm, (Note that the incident fields are assumed
to be RH circularly polarized).

The bound on the maximum electron temperature resulting from a
balance between the energy absorbed by the electrons from the incident
waves and the energy radiated through bremsstrahlung and cyclotron
radiation at the maximum electron temperature will now be developed.

The relations for. the energy radiated through bremsstrahlung and cyclo-

tron radiation are taken from Rose and Clark3°

W, = bremsstrahlung radiation = 1l.41 x 10-27 ZF??+n_(T-)1/2 ergs/¢m3/sec
s00(3.11)
W, = cyclotren.radiation = 5,35 x 1072 Bi n T (Q+1 +oa0)
2.4 x 10%°

ergs/cm3/sec°
where Bo = magnetic field in gauss

n_ = ion density/cm3

n_= electron.density/cm3

T = electron temperature in degrees Kelvin.
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For the large values of static magnetic field being considered,
electron cyclotron radiation will dominate over bremsstrahluﬁg
radiation. A balance is obtained by equating Wc to Wi. With the
help of equation (3.9), this gives the following limits on the

maximum electron temperature:

(1) Q4 <w, 2£Q-/2

- ~ s 2 (v 217
TMAx & [0,5‘9 x [0 & (Elnc) ] °Kelvin
. V‘o
-oo(3c‘12)
(ii) QE— £ Wy < N.
- 44 2, v \21°/9 .
TMR% £ [1.59 x 10 (01-42.5) (Eino) ] °Kelvin

Ci No

In deriving the expressions for T;ax in equations (3.10) and
(3.12), the reflection of the incident waves at the plasma-vacuum
interface has been neglected. This would imply, that in an experiment,
the actual value of T;ax will be slightly less than that given by
these equations. This will result in the value for the D-C magnetic
field (Bo) being slightly larger than is required for satisfying
the conditions given by equation (3.8).

Equations (3.9), (3.10) and (3.12) may now be used to give the
required value for Bo’ so that the collisionless damping of the

incident waves in the plasma is negligible.
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(1) 24 ¢wy < Q-/2

2 -2
B, 2 LeBxio no
1 9
(Ca+ gtp)(cs- 420) (1 - BITXD
mAx ° se(3c13)
(A1) N-/2 € vy <82
2
B° 2 l.aexlo-e Nno

(Co+ i) (cs-428)|1 - (Cy-42.8)" 2-"7xw"]
= [ of 25 Tmax

The value for T;ax that is to be substituted into the expressions

for Bg in equation (3.13) is the minimum of the values obtained for
T;ax in equations (3.10) and (3.12). It should be noted that the
equation for Bi when Q_/Z 2w < Q_, places an upper bound on Wy
namely that (¢, - 42.8)% 2,97.x 10° > 1. That is, for w sufficiently

—_— -
e | 25 Tmax

close to ©_, it will not be possible to satisfy the condition that

Pi(_l)\z_S by increasing Bo’ since the phase velocities for the incident

waves in the plasma are less than or equal to the speed of light.

3.2 Techniques for Optimizing Ion energy Absorption

Three techniques are available for optimizing the energy
absorbed by the ions from the second order fields. These are

(i) By allowing the difference frequency, w, to approach the

jon cyclotron frequency, a resonance in the second order ion

current is obtained. The peak in this resonance is bounded by
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either collisional or cyclotron damping effects, depending upon
which process is dominant. This technique places restrictions on
the allowable frequency and D-C magnetic field fluctuations. The
. effect of density fluctuations is small.
(i1) Another technique for optimizing the ion energy absorption
from the second order fields is to obtain a resonance in the
magnitude.of the.second order.fields, by allowing the mixed wave
to approach a natural mode in the plasma. If w is suffic;ently'
removed from the ion cyclotron frequency, the resonance will be
limited by collisional effects. This method however imposes
stringent restrictions on the allowable density fluctuations and
the allowable perturbations in the angle. of incidence for the
sources . (see Figure (2.2)), in éddition,to restrictions on
frequency and static magnetic field disturbances.
(1i1) A third possible scheme is the combination of the above two
techniques. However, because a field resonance effect is utilized,
this ﬁethod of ion heating will be very sensitive to densify,
frequency, static magnetic field, and_angular disturbances.
Examples of the first and third schemes will be given in section
(3.4). Examples of the second scheme have been given by James and

Thompson17, and Jayasimha18° These will be discussed in Chapter 4.

3.3 Anisotropic Pressure Effects

When the first and third schemes in Section (3.2) are used,
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the energy from the mixed wave is selectively coupled to the ions

in a direction perpendicular to the static magnetic field. Rapid
randomization of the ordered motion perpendicular to the magnetic
field will then occur through fine scale mixing as described by .
Berger et al1 and Stixag, increasing the temperature of the trans-
verse motion of the ions. That is, the thermal motion of the ioms in
the z-direction will cause ions which are in one region of the wave to
move.into another region where the phase of the wave is different.

A large number of such transitions will tend to increase the temper-
ature of the transverse ion motion. Once the phase mixing has
occured, collisional effects will tend to return the plasma to
Maxwellian. However, the maximum perpendicular ion temperature (Tt)
that may be realized is bounded by the ion temperature parallel to

the magnetic field (T:) by the onset of an ion cyclotron overstability.,

The limit on Ti is approximately given by

+ -i/3
-T+ < @Il - oa-(3ol4)
Ty
where (ﬂ| = Brn KT, . = ion kinetic pressure parallel to Bo
Be magnetic pressure

For the examples to be considered in the next section, the ratio of

TT/T: cannot exceed twenty. This is however a pessimistic estimate
for the maximum ion temperéﬁure because the ion temperature parallel
to the magnetic field will increase during the heating cycle through
collisional effects. To extend the upper limit on the ion temperature

as given by equation (3.14), the plasma may be heated by a sequence

of pulses. The period between the pulses could then be arranged to be
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of sufficient length so that the ions reach equilibrium before each
heating pulse.
The power absorbed by the ions through the collisionless damping

of the second order fields for the case where If # T: may be shown

to be
W; (colhisionless) = “)Pf Wy <M+ +)3/£[ (U-)-Qi-)T_L +-ﬂ,+T“] exp-(o(ji)a
ee0(3.15)
e 2 =] » .
{lE-sx * ;E33| + (- 5) (ﬁ) |Exz| + 2(02-2) Ky Re ('r-:u (Eqy +iEq ))}
2 4
2 ‘K + Kz

Equation (2.115) may be obtained by setting Ti = TK in equation (3.15).

If T: is taken to be constant, and if  is sufficiently close to
Q+, it may be seen from equation (3.15) that the power absorbed by the
ions through the cyclotron damping of the difference frequency wave will
remain essentially constant with increasing Tt. From the above equation
it may also be seen that the ions will absorb energy from the driven

second order fields only if

(W- QD T, + 24T, ] > © .e0(3.16)
wT_,_
This requires that A > - ‘r“*/—r:' where W = (1+A) 2%

By using the limit established by the condition of a cyclotron
overstability for Tj/Ti (equation (3.14), the restriction on

4 in equation (3.16) becomes

1/3
A > -G, veo(3.17)
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3.4 Examples

In this section, the theory developed in Chapter 2 and in

Sections (3.1) and (3.2) of this chapter, will be applied to plasmas
12, 3 15, 3

with densities in the range 10" “/cm” to 10/cm”. For the cases
considered, the square of the ratio of the ion Larmor radius to the
perpendicular wavelength will have a value less than 0.5 for a
maximum ion temperature of 108 degrees Kelvin. This ratio will be
represented by A+. In the examples considered, the incident wave

outside the plasma will be taken to be RH circularly polarized, with

v

inc® This paricular wave is

an electric field of magnitude of E
chosen for better matching at the plasma-vacuum interface, since the
transmitted wave is almost RH circularly poiarized. The numerical
calculations were performed on an IBM 360 computer,

In Figure (3.1), the static magnetic field (BO) and the value
for Wg maximized with respect to the angle of incidence Oi (see
Figure (2.2)) for each C1 without the use of field resonance effects,
have been plotted as a function of Cl’ where W, = cl\fﬁlﬁ; = ClQH.

It is evident from this Figure that a good choice for the frequency
of the incident waves is in the neighborhood of the hybrid frequency.
If the static magnetic fieid is at a premium, a higher incident
frequency may be used. However, unless a field resonance effect is
utilized, this will result in a reduction in the rate of ion energy
absorption.

Figure (3.2) shows the dependence of W; on the angle of incidence
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for the first source (see Figure (2.2)), with wy being eqﬁal to

1.1 times the hybrid frequency. The sharp peak in W% for Gi

n 35° is the result of a field resonance effect. This resonance is
strongly dependent upon density, angular, frequency and magnetic
field fluctuations as is shown by Figures (3.3), (3.4), and (3.5).
If the sensitivities are defined using the one-quarter power points
as in James and Thompsonl7, then the following sensiti#ities may be

defined for the above field resonance.

-5
Gwl/wl v 67 x 10

én /n_ v 7 x 10-4
(o] [o]

6B /B~ 3.1 x 1074 ... (3.18)

JCHIRY 1074 radians

for T = 10° °K

The dependence of Wg on the detuning of the difference frequency
from the ion cyclotron frequency and the effects of density and static
magnetic field perturbations is given in Figures (3.6) and (3.7) for
Gi = 64.1°. 1If the ions are to gain energy through cyclotron damping,
the above choice for an operating point represents the worst case for

sensitivity to frequency and static magnetic field fluctuations.

The value for Kz in this case is just large enough so that cyclotron

5
(w - Q+) FEt i vl
Kz ZKT+
5

for (w - Q_I_)/Q+ n 1072, If w is detuned any further from Q, the

damping occurs for (w - 2,/ ~ 10 °. That is I“fll =

difference frequency wave will not be cyclotron damped. This is the

reason for the high sensitivity to frequency and static magnetic field
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fluctuations at this operating point.
A much better choice for an operating point is given by

9; = 50.2°, The results for this case are given by Figures (3.8)

and (3.9). In this case, the absolute value of Kz is much larger

than that obtained when Gi = 64.1°, This may be seen by examining

the values for Ia;| (a; = w/K, ’m ) in Figure (3.10) for the case
2KT”

where the slope of the plasma-vacuum interface is zero, and Gi has

the values 50.2° and 64.1°. This would imply that for the operating

s
1

and static magnetic field fluctuations will not be as critical as

point given by 67 = 50.2°, the resulting sensitivities to frequency

in the case where Gi = 64,1°; The sensitivities obtained from the

quarter power points are as follows for the case where 9; = 50.2°,

-5
Swllwl N~ 1.2 x 10

%’no/no > .2

_4 ooo(3a19)
SBO/Bo v 5.6 x 10

G(Gi) < 30° radians

for T 106 °K

By using the results in Figure (3.10), it may be shown that plus and
minus five degree fluctuations in the slope of the plasma vacuum
interface may be tolerated without leading to excessive electron Landau
damping of the mixed wave. From Figure (3.6) and (3.8), it is evident
that with increasing temperature, the rate at which energy is absorbed

by the ions will drop slightly, however an improvement will be obtained
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in the frequency bandwidth over which the mixed wave 18 cyclotron.
damped.

The field resonance. for w, = lOQH-13'investigated‘in'Figures
(3.12) to (3.14). If the sensitivities are defined by the one-
quarter power points as in equation‘(3,11),lthen for the above

resonance

' -7
Gwllml v 9.1 x 10

sn /o~ 7.4 x 107

o o
6B /B, v 3.9 x 1074 ve(3.20)
5(63) < 1.6 x 107 radians |

for T = 106 °K

The field resonance for w = 109H is considerably "sharper" than

that for W, = 1,19H, resulting in tighter restrictions for the

allowable frequency and angular disturbances' on the incident waves.

The results for a plasma with a density of 1015/cm3'is given

in Figures (3.15) to (3.21).
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CHAPTER 4 SUMMARY AND DISCUSSION OF HEATING TECHNIQUES USING THE

NONLINEAR MIXING OF TWO WAVES

In this chapter, a summary of the results pertaining to ion
heating through the non-linear mixing of two waves will be given.
The merits  of the techniques that may be used to optimize the energy

absorbed by the ions from the second order fields will be discussed.

4.1 HF Heating of Ions by Maximizing the Second Order Fields

Two schemes have been suggested recently (James and Thompson 17,
and Jayas'ii:xha]fs) where the collisional heating of ions is optimized by
maximizing the second order fields. A resonance in the magnitude of
the second order fields is obtained by allowing the mixed wave to
approach a natural mode in the plasma, which in the above case is an
extra-ordinary Alfven wave propagating perpendicularly to the static

magnetic field.

4.1.1 HF Heating of Ions ( Analysis by James and Thompsonl7)

The field vector diagram for the ion heating scheme suggested by

James and ThOIﬂpSOHl7 is given in Figure (4.1).
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X
}
Plasma K1 = {fl), K2 = {23)
K c c
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Vacuum : <) > - > 7
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FIGURE 4.1. Field Vector Diagram for HF Ion Heating. This is essentially
Figure (1) in James and Thompson:IZ however the exponential dep-
endence.of the field quantities is written as to agree with the
notation used in equation (2.3). The plasma is aszumed to occupy

the half space z >0.

The authors used a cold plasma model to describe the nonlinear
generation of the second order fields and the resulting ion heating.
An investigation into the sensitivity of the heating process to
fluctuations in frequency, density, and d-c magnetic field was
carried out. These results will be compared with those obtained by
the use of Whistlers in Table (4.1). The sensitivity of the heating
scheme suggested by James and Thompson:17 to fluctuations in the angle
of incidence for the first wave (8 in Figure (4.1)) will now be.
calculated. The propagation constant for an extra-ordinary Alfven

wave propagating perpendicularly to the static magnetic field is
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= (@ ® (W +20,9)

0. L B(,_QF
(4 ¢ S5 )o0 - (1-25)

2 2
where w-  Q1+nm/m
P p- _/m,)

W= 1,)1 W, = difference frequency

In the limit that wz << Q +9_ and Sz_‘_<<wp 17l

2 __ 2 2
K= (&) (%”f) cee(4.1)

Equation (4.1) and the requirement that the mixed wave propagate
perpendicularly to the static magnetic field may be used to give

the required value for the difference frequency asl?

w o~ 2(0L0) W, eee(4.2)
We?

2
in the limit that (W << Q0. , W, <« J—:_T Wp & W < u)Pi

If 6, is the required angle of incidence for the first wave so that K
is perpendicular to the static magnetic field, the use of the free
space values for the propagation vectors El and 52 in Figure (4.1)

yields

sinael = wlwg+ wa)/wf eos(4.3)
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If the error in setting the required value of 6 is Q,E, then for
small values of 9_8, the x-component of the propagation vector for

the mixed wave is

K« = Wi/c sin (8, + Bg)

= Wile sy ( cos Op + €08 Ou s B¢ [/ am 9_..)
but (wllc) sin 8, = KAlfvén = required value for K for a field resonance.

For 98 small,
Ki ~ Kagyet, (L + 6c/tan 8,) vee(424)
No resonance effects will be observed when

eg/'l'an e, ~ 0(1)

Equations (4.2) and (4.3) may be used to show that the above condition

is equivalent to

es ~ EJQ-‘-Q- /lA)P_ .99(4o5)

If the sensitivity of the heating process to angular fluctuations is
defined by the quarter-power points, the analysis given by James and

’.l'hompson]'7 may be extended to give

& < w(Nwp) = 22uwis oo (4.6)
Wps

where £ = Lei (4 + m-/m,)
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Condition (4.6) is much more severe than is (4.5). For the example

considered in [17], (4.6) gives
-8
Op << 107 vadians ceo(4.7)

For the same case, if any resonance effect is to be observed at all,

equation (4.5) gives the requirement that

B¢ <« .05 vadians ( ~ 3 degvecs) ove(4.8)

4.1.2 HF Heating of Ions (Analysis by JayasimhalS)

In this analysis, two incident waves with frequencies approxim-
ately equal to the electron plasma frequency are sent into the plasma
at right angles to the static magnetic field. The geometry of the plasma

and the sources is given in Figure (4.2)

Y
<DBO
v Kt K
_ISZ B -
» » X
t
v K

51 =2

Figure 4.2, TField Vector Diagram for HF ion Heating used by Jayasimhals;
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The results obtained for this case are closely related to those.
obtained by James and Thompson;7o‘ By the use of lower frequency
incident waves, a gain of approximately four hundred is claimed in
the power absorbed by the ions from the mixed wave. An improvement in
the allowable fluctuations in the angular position of the sources is
also realized through the use of lower frequency waves. However, this
gain in the rate of energy absorption by the ions may not be realized
in practice because of the tighter restrictions on frequency, demsity,
and d-c magnetic field fluctuations. The sensitivity of the heating
process to frequency, density and d-c magnetic field fluctuations are
summarized below for a.plasma with a density of 1012/ cm3 and a temp-

erature of 106 degrees Kelvin.

2 -1o0
§wa ~ m- N Lot~ 3.4x10

Wz, My we-
s,_lflo ~ 2N lg_e; ~~ 'D-b 000(409)
No s
-6
§Bo ~ N Jdei ~ 10
Bo S_z+

where N = w/Q+.v The above results are an order of magnitude more
sensitive to frequency, density, and d-c magnetic field fluctuations
than those obtained by James and Thompsonl7,'

The finite Larmor radius effects would appear to play a role more
important than is suggested because the dominant electron driving terms
cancel, leaving terms of order (m_/m+), and this is of the same order

as the dominant ion driving terms.
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4.2. Comparison Between HF and Whistler Heating

The use of high frequency waves (qul,m2 > Q_,mp_) as suggested
by James and Thompson17 is compared to the. use of Whistler waves
(9+ <uy < Q_) as suggested in this thesis, in Table (4.1). A
comparison is made between the results obtained for heating plasmas
with a density of 1012/cm3 and a temperature of 106 °Kelvin. - Two
possible modes of operation for Whistler heating are presented. One:
is the use of the resonance obtained in the second order ion
current by allowing the difference frequency to approach the ion
cyclotron frequency. The physical parameters (no,BO,wl, Gi,ooo)
are chosen to be those given in Figures (3.6) and (3.8). The second
method uses an ion current resonance coupled with the field resonance
that i1s obtained by having the difference frequency wave approach a.
ngtural mode in the plasmao The physical parameters are chosen to
be those given in Figure (3.12). The claims suggested by Jayasimha18
have already been compared to the results given by James and Thompson 7
in Section (4.1.2) and will not be repeated here.

The results obtained for the cases where a second order current
and field resonance are used to optimize the power absorbed by the ions
(eg. see Figure (3.11)) will be valid for incident electric field
amplitudes less than 3 KV/cm. The field resonance effect will cause
the second order fields to approach the same orde; of magnitude as.
the incident fields for larger values of IEIncl’ gilving rise to
secular terms. This may be resolved by considering the mixed fields

to be of the same order as the incident fields in the perturbation
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theory30’31. The perturbation theory used in this thesis is valid

for field intensities to 70 KV/cm in the cases where the energy
absorbed by the ions is optimized only through an ion current

resonance,

4,3 Conclusions

From Table (4.1) it is evident that the sensitivity of a heating
process'employing the nonlinear mixing of whistlers to frequency,
density, d-c magnetic field and angular fluctuations is considerably
less than that in which HF waves are used. If only an ion current
resonance effect is utilized, the significant gain is in the relax-
ation of the stringent restrictions on density and angular fluctue
ations. Through the use of whistlers, the sensitivity to density
fluctuations is reduced by four orders of magnitude while the
sensitivity to angular fluctuations is reduced by about seven orders
of magnitude. An order of magnitude is gained in the rate of ion
energy absorption. The sensitivities to frequency and d-c magnetic
field fluctuations are reduced by two and one order of magnitude
respectively. Since the use of an ion current resonance effect
only requires that the difference frequency be sufficiently close to
the ion cyclotron frequency, the only critical adjustments in an
experiment will be that of the difference frequency and the d-c

magnetic field.
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If a field resonance effect is utilized, in addition to an ion
current resonance the mixed wave must approach a natural mode in the
plasma, which in the cases considéred, is an extraordinary Alfven wave.
This results in much tighter restrictions on frequency, density, d-c
magnetic field, and angular fluctuations than is required in the case
where only an ion current resonance effect is utilized.,

| Two advantages of the use of HF waves, rather than whistlers in
the mixing.process are:

() No power is reflected at the plasma-vacuum interface wﬁenA

HF waves are used.

(ii) The transmission of HF waves into a plasma will be indepen-

dent of the plasma-vacuum interface.geometry.

In the analysis performed by James and Thompsonlj; it was found
that'E3y = iﬂ+/w Eg e For the case considered in [ 17], 9+/m ~ 1/8.
That is, the second order electric field was right hand elliptically
polarized. If w were allowed to approach Q+, this would suggest that

the second order electric field would become almost RH circularly

- polarized.. . This is just what is found in the case of whistler heating

- .. near field resonance with w near Q+ (See Figure (3.2). For both. the

ion cyclotron and collisional damping of the difference frequency wave,
the ions resonate only with the electric field component rotating in
the direction of ion gyration in the static magnetic field. This
would then suggest that a possible modification of the heating

scheme presented in this thesis would be to have the ions absorb
energy from the difference frequency wave near the second harmonic of

the ion cyclotron frequency so as to increase the amount of LH



-127-

polarization. This aspect would certainly warrant further investigation.
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APPENDIX A. METHOD OF ORBIT INTEGRATIONS APPLIED TO SECOND ORDER

The Vlasov equation is

X vy, 4+ Zieg (5+1x_a).lf_ =0 oo (A1)
2 xS e’

' SV,
Equation (A.1) will be solved assuming the following ordering of

variables;
¢ A 2 e
i(Kq ¥-w,t) i (Kz x - 0at)
E = (o) + |Ei] e + _Ea e
B Bo Bi @2
&
(KoY - we)
+ E3 e + C)omralcx f’onju.ﬂafe + H,shev
53 Ovder Tevmg

The perturbed distribution functions will be solved for in a Lagrangian
system of coordinated. The change of a distribution function expressed

along some trajectory defined by r(t) is

£=l¢+>_¢.d_r+g£.g_ Where vy = dy

dt 2t 2 dt Y dt dt

In this particular case, the zero'th order trajectory of a particle

in a magnetic field will be chosen, that is

dr = v dy
d dt

= Zje& vx B e = sign of species
t
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Substituting (A.2) into (A.1)

i(KeoX- wyt) ; i (Kp ox - O2t) (K- x-we)
2

_.D_ (& t -f',_ e + e + 1ze + Complex ijs,)

i (Ky x-uO8) (K ox - at 14 &)
+ ;;e‘ a'x 2) F\.s i Kx -t +€°m'°'cx &“sﬁ )

i(Kqox -W1t) _ ik -r-l)zt) |(K YY)
{[ E, e ) + Ex e ¢ + 53 e - 4+ Cowmplex ans]

-l (Keer-at) i (5.¥- )
.y x [B°+ Biel( 4 1 + Bae 2 + Bge + Complex ijg.]}
“c

P(KY-018) o dat (K0 x -0t
¢ 2 {? + $qe 1fze gl 2)+ sel i )+ Complex (’wh}

=0
The equations for the various perturbations are now obtained by
using harmonic balance. For instance, by equating terms with

exponential dependence i(K.r - wt).

}(’- )Y' mJ c T c v
Z egy (l:1+ VX Bi) 3(\2 ~ Jez,’_‘ (t:.?_ + YXBu) _b_ﬁ_
—;ﬂ— 2V "U < 2V

ooo(A'3)

The left hand side of equation (A.3) is just the change of the distri-
bution function f3 along the zero'th order trajectory of a particle
in a magnetic field. The solution of equation (A.3) and its velocity
moments will give the second order current. This may then be used.
with Maxwells equations to give the second order fields and the

resulting dissipation can then be found.



APPENDIX B METHOD OF SOLUTION FOR f32

The asymptotic form of the assumed solutions for the incident
waves is such that as t + - @, the value of the electric and magnetic
field components tend to zero. From equation (2.3), this implies that
Im(wl) > 0. The imaginary component of wy will be denoted as wyge

A similar argument applies to the second incident wave, so that the

imaginary component of the mixed frequency may be written as-

w, = Inm (ml) + Im(wz) «ee(B.1)
- From equation (2.10)
¢ g
£L1E) = lim f " () gy M vee(B.2)
11-&00 T

where all constants, terms linearly dependent upon t'' and periodic
terms as exp(-i wlrt") have been incorporated into the term denoted
by ( ). The results given in equations (2.4) and (2.5) may be
ugsed to express the variables at time t'' in terms of their values at

time t'. If t' is defined as follows:
' = g - g
equation (B.2) may be rewritten as

4Ty Wy - ")
'Fi ("-‘) = II'M Y d't" ( ) E—ix e e e (B.3)
Tﬁ. - [
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If the above expression is substituted into equation (2.49), then

£ th+T,
b)i'e' 4 —Q‘T'
faz = '_:_Mao d+'[ ]E“Ee:e. ( de ¢ de " eos(Bub)
-2
Ti-vao—-r °

where constant and periodic.terms have been incorporated into the term
denoted by [ ]. The condition that t'' < t', as given by the
integration limits in equation (B.2) requires that T1 > T in equation
(B.4). The ambiguity in the definition of the upper limit in the
second integral in equation (B.4) as T » » will be resolved by writing
this equation as a sum of two terms, the second of which will be

. shown to be zero.

¢ w;t! e Wai !
* . e
-F'__,,z = lim Sﬁ de' Eaanx[ ]e ' f ' (Ve
T ol
Ti —» ca =T(i-£) [/]
~T(4-2) ) EHTy /
. Wyt W
+ lim d,t/ E_g_xE-a:[ ]e il f dT, ( )e ¢y
T .
Ty =0 1T °
oco(an)
For ¢ small, but non-zero, and with the condition that T, > T, the

1

. second integration in the first term in equation (B.5) may be written-

as

As T » «», the upper limit tends to € » in the worst case, which may
be replaced.by « if g¢is small but non-zero. Consequently the first
integration in the first term on.the RHS in equatiqn (B.5) defines an

integration on the interval ( -=,t]. The second integration in the

first term may be taken over the closed interval [ 0, «]. The first
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term on.the RHS of equation (B.5) with € » 0 is that given by equation

(2.50).

The absolute value of the second term in (B.5) will be shown to

be smaller than any positive number and.therefore zero as € + 0. Let

Ttaee) T o o
. / x ' ] - W
a im X % e e PRPSPS .
Afqip = | j de' €, E,_.[ ] Yd't () , (B.6)
T e0 :
T&#“ -7 °

Since w,, > 0, the absolute value of the second integral is bounded.

1i
This value will be denoted by M. The maximum value of the term,

*
By Eox [ ] will be taken to be less than some finite value M,.
Then
T Wi {e-T) “OIT, CiT
A-“za i ‘I‘M S‘ dfM"”ge ! = II‘M M1M2 e (e f"i) 000(B07)
T2 /, T Wi

By. choosing £ sufficiently small, the RHS of equation (B.7) may be

made less than any positive number., Therefore Af32 = 0.



