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'ffundanental errors'i? the parturbed statidnary statea

’ \

F R " . _xn_d -
\0  ABSTRACT Hg“‘ | o

Thi- thesis pregenta a scheme fof cqrrecting certain

theory of sfﬁw atomic’ collisions. The corrections are

K4

aSsociated &Qﬁg electron translat on factors, of ‘which the ”

v

[.pss theory gives no account.. In thé\corrected theory,

! witching unctioag are used eo describe electron trans-

la fon in ‘molecular state. One can use a single function

v

for al} electronic states, or each state may have its own,.

‘aracter stic switching function. However, the'functions

a e~not ully"specified by the»theory, and the,chofce of

tahae ones is an imgbrtant ptractical problém This

~
,fact that the corrected ‘nonadiabatic couplings for ionising

'.transitions are very senSitive td -the chOice of switching

function. For each bound éelectronic state, it is»possible

" to choose,an "Optimum" switching function, such that the.

_*corrected couplings are very' much sm%ller, and of shorter 3

' .range,; an those predicted by pss theorx. Thgse results

th those obtain d using simpler choices._
. \\. - - ! -

. Tonisation matrix elemerts are presented for the

are compared wi

HeH ’ and the parameters SpeCLfy1ng the sw1tching runc-

‘tions for the lowest bound*states ‘are given. mhe &

\

. ﬁhe; B8 examines one method of chOOSing them, based on the ,

hsystem'of'one electron and'two'nuclei, notably for H2+ and

implications of these results for nonadiabatic couplings s

s
in general arevalso,discussed.a) ! '
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"CHAPTER I o
N ) | o g o

INTRODUCTION . _ e

A Aims and-Objectives

e

o

¢ N
— A

1 i

Thls‘thé51s presents a scheme for correcting certain
fundamental errors 1n the well known and w1de1y used

perturbed stationary states (pss) theory of slow atomic

c0111510ns. The corrections in question are assoc1ated

w1th electron translatlon factors, of which pss theory

gives'no ‘actount. The corrected theory has been developed‘

1,2 . 3-6" .

“by Thorsoh .and others and has recently been formal—‘

' (f'lsed by Thorson and Delos,7 who-use'switching functions to

;f descrlbe electrqn translation in a molecular state. These "

functxonsuare'not fully spec1f1ed by the theory, and,the~
choice of suitable ones presents an 1mportant practlcal

problem. ‘This the51s explores one method of ch0051ng them,’

LA N
g .

based on the fact that nonadlabatic conlings (corrected

“for electron translation effects) are extremely sen51t1ve

to the chdice -of switching function, especxally for

1,2

ionising transitions. Iashow«that it is possible too

choose an "optimum" switching function, characteristic of
- each bound electronlc state, such that the corrected’coup—

ling matrlx elements are very much smaller, and of shorter



e
range, than those: predlcted by pss theory. I also compare
these results with those obtalned uslng sxmpler choxces3 |
for the sw1tch1ng functlon.‘ For truly molecular statesf
‘the optlmum"osw1tch1ngﬁ£unctions lead to signlflcantly
better results, whlle for purely atomlc states, the
method selects the 51mpler functlons guite naturallyQ"

Detailed ionisation.matrix elements are presented
for the system of one electron and two nuclel, espec1ally
for H2 and HeH , and\the parameters spec1fy1ng the
sw1tch1ng functlons for the lowest electronlc bound states
are given. The lmpllcatlons of these results for nonadla--
batlc coupllngs in general are also dlscussed.‘ ‘

In the rest of the Introductlon, I shall explaln the“
meaning of the terms used above p rev1eWAthe hlstory of the/
*problemr and provide 51gnposts to guide the reader through:

.the detall which’ would otherWLse obscure the main 1deasv

of the dissertation. B S ' ‘ /

N - A

o

B. Background Material .- QV
o = /

1. Basics N S e ;

.

" The problem -of lnterest,to us occurs in all atomic:

and molecﬁlar c011151ons, but’ its, essentlal features can
;'. 2

be studied most easily in the model systems con51dered

here,AcomeSed of two’heavy'particles, maSSes'MA; MB' and
o ' B - .

charges ZAe, ZBe, and an electron, mass m0 After Separa-“
tlng out the centre of mass motion, we requlre, in prln-

‘cipde, the solutlon to the tlme 1ndependent Schrddlnger

& -



e . S
. , ‘ : : C e
- ‘ . . . N
- ~ ‘ . . “ ! . ! . 7
. . . . .« s
. ' | . w v P )
B s ()

equation, T . . o
>, , e . v
HE,R vER =E¥EH, . (I-1)

) ' . : . . -

. suj;ject to the appropr‘iate‘ che/rin‘gk asymptotic botndary
conditions. Molecular co-ord nites, ﬁ, ;; are'ueed' R is
the vector from A to B, and T is the 9051t10n vector of
\tMe electron from the centre®of mass of the nuclei. For
the ‘moment, we express r in terms of- reference axes fixed
in space, but, later.on,.;t w1ll_be more convenlent to use
a frame rotating with the'molecularvaxi§‘§. \The reader

'should pay careful attentlon to the subject of cor
ordlnates, because it is closely related to the central

problem of the the51s- in an atomic colllslon, the system

e .
separates asymptotrcally into two atomic subsystemsh,for

which atomic, rather than molecular, co*ordinates‘are more

approprlate, and the tran formatlon of wavefunctlons from

.

one‘co—ordinate system to the other_ls not qulte as

tr1v1al as it seems. °,
/

' . > >
In molecular co-ordinates, t Hamiltonian, H(r,R),

is

,i.,_v' 2 . 2. : > > " ;
HGER = - /20 Vg + hg(FiR), - (1-22)

W= MM/ (M) | .. (1-2b)



Vi )

> ' o .
}he(r:ﬁ) is tke molecular electronic Hamiltonian,

! h;(’—f;ﬁ) = - (h%/2m) | (Vrz)ﬁ + v‘(‘};ﬁ) , (1-3a)

m = mg (M, M) / (MM hme) | a3

N - . v /

S -> - '_ : . ! . . .
~‘and V(r;ﬁ) is the electrostatic potentlal energy,

|
L

VER) = (22507 /R) = (2,0 /xp) - (Zge 2eg). @07
v v
For a widg‘range'oﬁkggyéical conditions, the.

B classxcal trajectory approx1matlon,8'9’in which'only the

" electron motion is treated qguantum mechanlcally, provides
an alternative to solv1ng eguation (I-l) The nucle1 are
assumed to follow some -specified cla551cal trajectory R(t),

and the electronlc wavefunctlon ‘obeys the’ ‘time-dependent

L

chrbdlnger equatlon,
he{r;ﬁ"(\t)l} T(F,t) = ih {dT(T,t)/t}>. (I-5)
We shall make use of both descrlptlons of a slow c011151o7
“in thls the51s;,for nearly all problems of 1nterest to us,
the two approaches .give the same final results.
'In general, equatlons (I-1) or (I-5) are solved by

' expandlng the wavefunctlon in terms of some appropriate

set of electronlc states, In(R)> projecting out the j'th

i



. .k ‘ S

component with <j(§)[' and solving’the resulting‘coupleé
xecuations. In princxple, ‘any complete ‘set of functions -
will do, but, .in practlce, the set is alWays truncated,
,and the idea is to choose a set Wthh approXxmates the
‘true behaviour as closely as 90551b1e.

If the nuclear speed is much less Fhan the electron
speed, we may expect that the eleqtfon system w111 adjust
smoothly;tb changes in the‘nuclear positlon; this is the
fundamental assumptlon of the Born-Oppenhelmer app;ox—w
imatlon 1n:molecules, and the same 1dea can be used in

slow collision theory. At each'nuclear conflgu;atlon, the

.set of Born-Oppenheimer (fiiédinuclei), adiabatic'stetes
o , SRR ~ . ;
may be used as the expansion basfsﬁ These states are .

S

eigenfunctions of the electronic Hamiitcnian,

‘4++’V++;_ TS .
he(r;R) ¢, (L:R) = €n(R) ¢, (2:iR);

‘%they depend paiametrically on R, and couﬁling:between them

'~ occurs via this depengence. If the system evolves nearly

fadiebaticallz, coupling is unimportant, and elastic
scattering on the potentials e’(R)”dominates. tonditions
for the valldlty of adlabatlc approxlmatlons are usually

dlscussed u51ng the tlme-dependent Schrbdlnger equat10n~

it can be shown that the cQ\cltlon for adlabatlc evolutlon
10 :

et T

i
[k 4
{
{

is

et N



;o W.?j‘[ﬁgh‘.q»’l <c |e, (R(E) e {R(VHA,  (1-7)

[ Y . T

‘where Vo= dﬁ/dt is the nuclear velocity.

We can now define the term slow collision more wﬁ

AN

preCisely. ‘a collision is said to be slow if the adiabatic

% o

~criterion is- satisfied for principal quantum tranﬁitions
q—-transitions for which Ae > 1.0 eV. For MA My equal to

the proton mass, c01115i¢n energies below about one keV
. e

are slow.' However, note that, even AifV is«very small, g

s the adiabatic criterion w111 ‘be violated in the case of
hcoupled nearly degenerate states. Thisvmeans.that#some
states of an atomic COlllSlon system can never'behave
adiabatically, i. e., the continuum electronic states and
the closely\spaced Rydberg levels- even for the more

tightly bound states, strong nonadiabatic coupling can

l

‘occur if a 1ocal near-degeneracy ej(Ro) = eh(Rd) of two
. potential curves is encountered.
- Slow c011151on processes may thus be lelded 1nto

two broad categorles--l

a. Direct impact;processes, for which lcj;én| is larQe,..
Caenlp andbtbe nuclear-momentum change‘accompanying a trans-
1t10n 1s large, such tran51tions ‘are: 1mprobable, and
the system evolves nearly adiabatically (e.g., impact
1onisation of lowflying, bound-state electrons)

. b. Degeneracy mediatedAprOCésses,,in'which“the adiabatic

criterion is locally violated, due to near-degeneracy
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g

- One then obtains coupled equat%on

of two (or more) levels, and the tianiltion probabil- ‘

1ties are 1arge, even at low collisibn\'elocities Ce

An adequate theoryvof slow collisions should e able to _

b

descrxbe both categories. : o ) /

*

2. PSS Theory - ' . o

The perturbed stationary states (pss) methodl takes

a truncated set of Born-Oppenheimer electrdhlc wavé-

iunctlons as the exp
' - ."e )
&,

+"N -+ +,
Y(ER = § xR [n@®>, (1-8a) ©

In@®> = ¢ (F:R) .0 L (I-8b)
[ ’ w. »
s for'the functions X (R)

>

‘as components of an apstraeé
N ¢ .

vector (R) ¢
(1/2u) {-fh>VR;¥'g(§)}2 x® + e x®

-E x(®. (1-9).

o

fl'l‘he matrix, e(R), is diagonal, and its nn element is the

potenblal curve,. €, (R) ; coupling between states J and n

P(R).

arlses solely from. the nonadlabatlc coupllng matrix,.

Bi(®) = -ih ».<¢jl('V'B-»);I¢ (I-10)

L]

ansion basis, thuﬁ} for equation (I 1),,

‘7
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It can be shown that P(R) is Hermitian and that its diag—

onal elements vanish. To derive equation (I-9), I have .

used the relation

5

| " o   2"2~
-ih (Y .B(m) + §.§§én - <¢j|-h (Vpzle > (1-11)

? ' i s . g s Betng,.

. 2 \ '
: Note that -the grad{ent in (I 10) ls computed holding ;

-

fixed in they non—rotat&ng frame; Wthh accounts for the

n«rum

existence of angular, as well’ as radlal, components in the
'vector, §(R) In actual calculations, we use a frame
’rotatlng w1th the molecular exis to describe’the electron
system; in this frame, the Hamlltonlan h  and the basis’

~ states, ¢_, depend only on R = = |R|, and the angular parts'
| of ﬁj arise dlrectly from the transformatlon from T (nrf)
| to-r‘ (rf). Physxcally, these terms represent the

" Coriolis interactipn.

"In the alternative, classical trajectory description,

the analogdps.pss expansion isl? "\

T(r,t) =‘g an(t) ¢n{;;§(t)} exp{—iften(t')dtf/h};(I{lz)

the resulting coupred equations for the amplitudes, an(t),

are

ih aaj/dﬁ =z VB, an(e) expl-isf(e ~e )dt /b)Y, (1-13)
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where we have used the relation S ] : | ‘ )

o
\* v . a _ ’ .
-ih [3¢nfr;§(t)}/at]; = -ih 3.($R); ¢, (£:R) . - (1-14)
Notice that, Ln both this approach and that of ‘equation
(x- 9), transxtlons arlse from the same nonadlabatlc coup-

ling matrlx, 3(R) The connection between this matrix and

the adiabatic crlterion can be seen from the relation

ﬁjn(n) = -ih <o | (?ﬁ);l¢n>

. = -ih <ojl(VRhe);l¢n>/(en-ej). (I-15)
-
e Nonadlabatlc couplings arise from the changes in, or

perturbatlons of the adlabatlc states, as the nuclear :
‘conflguratlon alters (hence the name, perturbed station-
ary_statesf theory). The presumption, ofzcourse, is that

the matrix, E(R), really does represent the effects of

I

physical changes invthe wavefunctions. " However, this

presumption is not>correct, asbl‘shali now explain. d!
")3. Electron»franslation Factors

In order to- understand why pss theory does not

pro§1de an adequate descrlptlon of slow colllslon pro- -

cesses, we start by examining the asymptotic (R+w) beha-

viour of the systemQ Suppose that the electron is in a

bound atomic state on nucleus B, asymptotically, and that
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‘this 'B-atom is translating with respect to some origin.
Seen from this origin, the electron will undergo not only
) o
its internal "atomic orbital motion," but also a trans-xr‘
'lational motion due to the motion of the nucleus to which

it is bound. Hence, if the CMN is the origin of glgctro&—’—“"“—

co-ordinates (as in the molecular system, ﬁ, r), then the '

‘wavefunction must include a factor to describe the tranSf
lational motion of the electron witn respect to the CMN.{

However, pss:theorf gives no account of this factor
at all: the BorneOppenheimer electronic states contain no
informetion about the collision velocity, and tnehxn(ﬁ)'s
in eguation (I—Ba)lare."nuclear wavefunctions" and inde-
pendent of the électron co-ordinatesr _Effects of electron
'translation.must somehow. be buried in the matrix, $(R),
which we may therefore expect to show some unexpected (and
unde51rable) features. -

: If the electron is in. an atomic state,*n,”on'nucleus

B, its’'internal motion can be described by the atominf
orbital ¢ (r ), where rB is the vector from B to e .
Asymptotically, this orbital is totally unperturbed‘by the
distant nucleus, A, and, if E(R) is to represent EEél non-
adiabatic COuplings, we would therefore expect all the N
matrix elements of‘E(R) to tend to zero,'es R+eo,

In fact, §(R) does ngglbecome zero, as R+w; moreover,

~the non-zero elements, fjn(w), can be shown to arise fromr

. simply displacing the orbital, ¢nB(;B), with respect to
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/—‘

the ng,/wfth;utﬂdeforming &t at all.' These diaplacemeﬂt

//Qtér;; are wholly spurious. &Unfortunately, they are also \

T

e,

)

’often large; indeed, in some cases, they dominate even at

finite R-values. A good illustration of this is provided

by the matrix elements of E(R) connecting bgundfmblecular
states to the BornQOppenheimer electfonlc continuum (it |

can be shown1

that such ‘couplings are related to the
direct 1mpact ionisation cross sectlons) For these
transitions, all elements,,ﬁjn(R), go to rero asymptotic—
ally, but, in the 'interaction region they are physically
unrealistic:z typlcally, each bound state is coupled to 30
or 40 contlnuum partial waves, and the envelope of coup-
lings extends to at least 40 au. One of the ‘aims of this
thesis is to ,show that a careful choice of the "electron
translatlon factor" eliminates ‘most of these couplings
entirely. | | o

A further problem w1th pss theory appears if we

/
examine P(R) for a system in which M #‘MB' Because the

reference origin is the CMN, g(R) contains terms at all R- '

valueé, which depend directly on the nuclear mass asym-

metryi to zero'th order in (m/yu). But, in actual/fact{

“the electron "sees" only the electrostatic potential of

the nuclei in h (;;ﬁ), and the only«information about the

nuclear masses that can- appear is in ¥he electronlc

"reduced mass, as a correction of flrstJorder in’ (m/u)

This anomaly also occurs‘because of the neglect of .

11
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electron translation;'and has been discussed in great

detail for HD' by Davis and Thor-on.13

Clearly, the matrix, E(R), does. not represent simply

the effects of real change in the electronic wavefunctions,

and the theory needs to be corrected. To see how this can
be done, we examine the form of the "electron translation
factor" which appears in the wavefunction asymptotically.

I1f the electron is attached to B, and B is moving at a
. &
_constant velocity, GB' with respect to the CMN, then (in )

the time-dependent language of equa£ion‘(1-5)) the

electron translation factor (etf) is" just

B =‘e¥p{(im/ﬁ) (W

- 2 _‘- i p
B T - % wg~ t)}, (I-15a)

B

4 .

- .

and the asymptotié electronic wavefunction is not simply

¢," (£g), but
y. o . (1-15b)

The factor, F representé just the momentum and kinetic

B’
enefgy of ah\élegtron moving with velocity, QB,-with
. PN . .

respect to the CMN. Similarly, if the,electron is bound

to A, there is a corresponding,factor,_FA, and velocity,
Ya. I | A ,
However, in the interaction.regiqn, the form of the

etf is not so clear. In a slow collision, we want to

v
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describe the electron motion in terms of the Born-
Oppenheimer wavofugionl. Now, at finite R-values, these
utitin are "moleculdr,” rather than "atomic," in character,
and it is not possible to say that the alectron is
attached to a particular nucleus. Ritner,~whon the elac-
tron is near nucleus A, it is carried alon‘ by A; and;
when it is near B, it translaies:with B; hus, an elec-
tron in a molecul#r state requires a "‘molecular" etf, Aﬁd
the idea of a switching function was introduced6 to éiye

" .
“"the electron a local translational velocity, as a function

7

of its\bosition. Using this "idea, it can be shown' that a
‘ formaily correct theory of slow collisions can be con-
étrﬁcted,*which removes all the defects of pss theéry,
k whilé'retaining mdch of its simplicity. ‘ ,‘

4. Switching Functions and Translation Factors

‘The rigorous,.fully qﬁahtum mechanipal dérivation of
the correct coupied equations to replace (I-9) is very
subtle.7b » \
from ?nfiﬁadequate choice of co-ordinates, (;,ﬁ), in‘which
to separate thé internal, "eiectronic" motion and the
tr#nslational,‘?heaVy—particle” motion. If one carefully
‘selects a "scatfering co—ordinate,"'f, to replace ﬁ, the
(non—lineaf) transformation from (?,ﬁ) ﬁoj(;,f) intfoduces
important new terms inéo,the coupled equagions, terms
which}remo&e all the defects of pss theory. .

In this thesis, however, I préfef'to use an .

FOEN

-r

The defects of pss theory are sho to arise .

13
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. : -

alternative jderivation, based explicitly onﬂtho etf

7a

oconcept, hich brings out morcﬂcliarly td; main physical

I
ideas.

will show that the etf arises naturally from the
boundary conditions satisfied by Y (or T) at large R, and
that all the problems with pss theory can be solved by
attaching an appropriate etf to each Borg;Opponhcimot :
-gate. The simplest derivation of new oopplod equations

8,9 It .

assumes the classical trajectory approximation.
will turn out th@t a suitable expansion basis is given by

the set

In@)> = ¢ (18 expl(imh) (¥.3-r5 (12 v?ae 8},

(1-16)
where |
8(X;R) = % {£(X;R) 1} Ig A (I-17a)
"\\\\“/ﬂ t =T -%52\R | (I-17b)
and A }s the mégs asymmetry parameter, ol
A - (QA—MB{/(MA+MB). | | | (I-17c)

¥

Af(;;ﬁ) is called the molecular switching function, and it

 allows the translational motion of the electron to vary

- with its position in the molecule. To meet the boundary



"this thesis.

Ciem ] e ¥

/conﬁitions, as R+=, f must approach +1, if the electron is

'in a bound 'state of Bj-and ~1;*if it is bound to A; but it

is otherwise unconstrained. THe quéestion of how £ should

be chosen in the interaction region will be discussed at

length, and one scheme for dcing\so‘is-the‘main‘tOpic-of
Inclu51on of the etf leads to 1mportant modlflcatlons

in the coupled equatlons, (I—9) or (I-13), ‘the main one .

belng the replacement of the matrlx, P(R), by ‘the cor-

'rected nonadlabatlc coupllng matrlx, P(R)+A(R), where

an(R) = (im/h) <¢j{[?e,s(§;§)]|¢ﬁ>. (I-18)

-

‘The X—dependentﬁterhAin E(R) exactly cancels the spurious

effects-oﬁ ﬁass asymmetry in §(R); and trahsfers the origin

;of electron co-ordinates to the geometrlc centre (rg is

the correspondlng co—ordlnate) In the llmlt, R+, the

term contalnlngrf removes the spurious asymptotic coup-

' lings, and, in effect, refers the origin of co-ordinates

tQo the nucleus to which the electron istactuallyvbound;
5. Ionisinhg Transition$ﬁ 

In the earlier discussion of the adiabatic criterion,

4

I pointed out that electronic continuum_states cannot

evolve adiabatically. This means that ionisation éennot

" . o

L be. treated conveniently within the usual framéworkiof pss

‘theory, since one assumes implicitly that the basis

. : g T
o s B .

15
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umhgnd Levy™

R

functions’ behave nearly adiabatically. However, Thorson

1 have shown that a theory of ionisation from

.adiabatic. bound states to the e%ectronic continuum can»be

... developed as an extension of the pss method. ;Fithin a

first-order perturbation or distorted—waﬁﬁ" approximation,

—

‘they proved that the tran51t10n probabllltlesefor ion-

1sat10n can be calculated u51ng “the nonadlabatlc coupling

mahrgx eiements between the bound electronlc states, ¢h,

\J

and’ the Born-Oppenhelmer (flxed-nuclel) contlnuum states,

' ¢ (r;RL.‘ I shall give a-very bglef account of the theory

-

of Thorson and Levyl in section E of chapter II.
If electron translatlon factors are lgnored, the
matrix elements for lonlsatlonyare-just.the coupllngs,

P n('R) ’

Ben(R) = -ih <¢;’l<$R>;lf¢n>. - (I-19)

when etf's are included in,the bound state description,

;these ccuplings‘are replaced by E' +§en’ just as for:

€n -

'coupllngs between bound_ states.

j The etf correctlons are of crltlcal 1mportance, not
oniy‘to'the calculatlon of ionisation matrix elements, but
also in ﬁore generai.slow ccllision problems; in partic-
ular, one needs ‘a way of choosyhg the sw1tch1ng functlon
in the 1nteract10n region. Wlth thlS in mlnd, I want now

to describe briefly the history of the problem.

16
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‘ - ‘ : C. History -

1. Introduction
" In common with so many other problems in mblecular -
physiqs,'the origins of slow collision theory may be

traced to the'famQUQ paper by Born and.OPpenheimerld/on

-the quantumvmechanics of'molecules. Since the eleqtron to

'bation expanSion in powers of (m/u)k, and they were very -

LN

‘and Stewart™

set of fixed—nuclei, electronic states is complete.

‘using the adiabatic ba51s states, was given by Mott

* B N
nuclear mass ratio is much less than unity, Borh and

Oppenheimer pointed out that characteristic nuclear'speeds
in the bound states of a molecular system will be much

lower than those of electrons, therefore -an adiabatic

separation of electronic and nuclear motion should be a

good approximation. Their approach was based on a pertur—-

careful to limit their discussion to non- degenerate,
molecular»states, in which the nuclear motion is bound;

hence, the problem of asymptotic boundaryiconditionslnever_

arose. Nevertheless,,it is|very tempting to-extend their

1dea directly to scattering problems, espec1ally since the
15

A semicla551cal treatment of slow collision problems,
12

(essentially, equations (I-12) and (1713)); the correspon-

-.ding gquantum mechanical version was developed by Mott and

Masseylii(equations (I-8) and (I-9)) and named the per-

‘turbed stationary states theory. 1In 1953, Bates, Massey

16 published a detailed'dichSsion of pss
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theory,'applied to one~electron prohlems. ‘As far as I‘
know, this paper contains the first recoqnition that
attempts to use pss theory for solviné sloy collision .
problems_will run.intoufundamental difficulties. Howeyer,
it wasn't until 1958 that Bates and McCarroll® showed that
a’correct theory must include some account of electron.'
translation, at least asymptotically.

Since then;.many1differenttapproaches to‘the'problem‘
have been tried.. In 1976, Riera and salint’ wrote an
t‘excellent reView of the subject in which they analysed
bthe various approaches and their defects, and pOinted out -
~the need for further work Most of the proposed solutions,

and all.of'them which correctly meet the boundary con-

ditions, may be seen, in retrospect “as corresponding to

'different chOlceS for the sw1tching function. -In the»next»
 subsection, I will discuss the various~proposed solutions
from this viewpoint Of course, this is'not the way that
people actually thought about the problem,. but it is -
convenient for linking the development of the subject to
the present work. The final'subsection covers the recentl
WOrkfby Thorson and De’los,7 which goes a long Qayhtowards
presenting a unified view,ofrthe'theory of slow collisions.

2. Proposed Solutions to the.ETF ﬁroblem |

- Many techniques have been proposed to aind the
difficulties encountered in the application of pss theory

to practical problems. With one exception, these reduce

/

L

18



to: (1) techniqueslyhich take f = constant; these are
equivalent_to‘using ahsingle, figsg origin¥fér;electron”'
co-ordinates,,and (2) methods which corréspond to partic-
ular switching functions. In. the first category, f is not
a sw1tching function, as it ¢ noE meet the asymptotic
constraints, f++l (-1) on B (a), Eor all states; only the
methods in the second category are capable of meeting all
boundary conditions . |

a. Methods USLng a Fixed Reference Origin

.Y ?w i. £= - ). For completeness, we. start ‘with §:>
unmodified’pss theory, which is recovered if weﬂtake f =

- X (and drop the term in (1-A ). in equation (I 16), which
is just a phase) Thorson and Degos7' point out that pss
theory may give reasonably. good answers for certain types
of‘problems. In degeneracy mediated processes, for
‘example;'*J (R) may be very'large(in the,region of near;
degeneracy (cf. equation (I- 15)),wwhile AJ (R) 1s much
~smaller, and it may be -an adequate approx1mation to 1gnore
é(R) altogether..‘ : i |

ii. £

]

0. This has the effect of making the geo-
metric centre_(halfWay between A and B)‘the origin of
electron.co—ordinates, and Riley,? and Schmid18 have
pointed out that such a correctlon may often beée useful.

It removes the spurious effects of nuclear mass asymmetry

from pss theory,I but does not remove the remaining errors,»

due to electron translation with respect to the geometric

[

T
N

19
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centre.

iii. 'f = +1.. This choice makes nucleus
‘ence origln for electron co- The aﬁ;mptotic '
wavefunctions r1b1ng electronic states/ﬁound to B are’ |

téa&'eragt,’but those associated with A remain incorrect. f/
:‘Matrix.elements‘llnking'two states on B have the correct J

as§mptotic behaviour, but, as Riera and Salinl7 point ouo;“

there is no improvement for couplings involving states ou

A. This method‘oan be used to calculate total charge

exchange probabllltles, but not 1nd1v1dual tran51tlon

cross sectlons.' It has been used by Piacentini and
19 20

Salin, and, more recently, by Wlnter and Lane, toj
treat charge exchanQe*collisions_in HeH++ : Ca ;
- ' R . 2 ' |
~ Scheme of Mellus and Goddard. 1 These authors

~

attempt to correct for etf effects by taklng an or1g1n
which is effectlvely a welghted average over a molecular
uelectronxo state.dlstrlbut;ouf While g(R) wlll general1¥~5
vahishlasymptotically for electrioally asymmetric systems;
this method cannot yield a con81stently correct theory,
4and 1t will’ certalnly fall for symmetrlc systems, such as
‘§2+. 17 have given a'detalled crltlo;sm Of,

this scheme. R R

Rlera and Salin

-~ ~

b. Asymptotic A Apgrox1matlon

Chen et al,22 propose to correct the- nonadlabatlc

B

coupllngs, by subtractlng from P(R) its asymptotlc value,v

\

i.e., Q(R) = é(@) = - g(m). They state that thlS can be
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justified by a formalism similar to that of "renormali- e
sation" in quantum electrodynamics, it does not correspond
to any simple assumption about f. In some special cases,
‘this may be a useful approxlmation, but it is not general- )

ly adequate, as is pointed\out both by Thorson and Delos,7a
and by Rlera .and SalJ.n.17 pany pss matrix elements are

‘spurlously large at finite R-values, even though they

vanlsh asymptotlcally, and, in such cases, this method " ‘f
offers no 1mprovement-over pss theory. fhe ionising trags—
itions prOV1de a good example of the failure of this

method .

i

The'rest‘of this subsection deals with methods in

N

category (2) described above, those whlch satlsfy all

{
/
i

asymptotlc boundary ‘conditions.

c. Asymptotlc f Approxlmatlon

/_“This is the‘nethodiintroduced by BateS’and_Mc;
Carroli.a. Equivalent schemes, expressed in a variety of.
formalisms, have.been developed by‘seVeral other writers;
notably Hahn23'and Matveyenko.24, This method aSsigns=f =
+1 for any state which is;asymptotically‘associated'with
nucleus B,.and f = -1 for states associated withAA. For
asymmetric systems, a unique; one—toeone correlation |
exists between molecular states and asymptotlc atomlc
states~ in symmetrlc systems however, the correlatlon is

not onefto—one. Bates and McCarroll3 proposed avmodlflc-

~ation to handle this casep”but it leads to complicated
¥



nonforthogonalities in the basis states, and to spurious
couplihgs between states of g and u symmetry.

Even for asymmetric systems, at finite R, thls
approach does not give a very satisfactory descriptlon of
states whlch are genuxnely "molecular” in character. I'
will compare the results obtained using this approxlmation
_with-those from the more sophlstlcated swltching functions-
reported in this thesis. For HeH , the asymptotic f
approximation is very good in»some cases, but poor in
.others;_it has been widely used in actual calculations.

d. Molecular Switchlng,Functlon——slngle f

'In order to accomodate the molecular character of an
'electron in a slow c011151on, Schnelderman and Russek6
1ntroduced the 1dea of a sw1tch1ng functlon.' If the elec-

tron 1s near A, f = -l, and, if lt 1s near B, £ = +1. To

’dmalntaln orthogonallty, they used a SLngle switching
‘functlon for all electronlc states. This deyice takes
ﬁcare of the asymptotlc behav1our, and also produces.a
reallstlc correctlon in the 1nteract10n region. The ohly’
'problem is how to choose £, and dlfferent authors have
used different forms, with yarying success.

i. Schneiderman and Russek6

¢ = cos8/{1 + (a/R)Z}, o variable - - (1-20)




I.

ii. Mittleman and rai?d

23

£= (1-5%) {l-exp(-2an) }/{(1+4s%) [l+exp(-2an)]

- 4 S exp(-an)},
where
S = {1+ aR + (aR)2/3} exp(-aR),

a=27/117, n = (rA—rB)/R.

iii. Taulbjerg et a1.26 | g E

£f = (n/2) (3?n2)/{1 + (a/R)Z}; a variable

iv. Levy‘and Thorson1

£ = (5, 2r 0 /(%4 0)

(I-21a)

(I-21b) .

(I-21c)

~+

(1-22)

(I-23)

f. Molecular SWltChlng Funct1ons——state-dependent f's

it is associated.

If we are- prepared to push the phy51cal interpret-

etioP of the switching function a, little further, then we
may expect‘f‘to be dependent on the bound state with which'
As I 901nted out earlier, for ionising

tran51tlons, the pss matrlx elements are very large and-
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Very numerous; the corrected couplings are also very
sensitive to the choice of f and this was one of the
reasons for the studies of switching functions made by
Thorson -and coworkers.1 ’2

, For Hz + Thorson and Levylb introduced the form
f = tanh{B(R) R n}, ‘ . (1-24)

where B(R) is to be choeen‘for each initialfbound state,
Of course, if we use state-dependent f's, the‘electronic
basis is once again hon-orthogonal. In practice, this
idea was remarkably successfulzuthey found2 that it was

- possible to choose'B(R) such. that the number; size) and
range ©f couplings are all drastically reduced Coupllngs
to all but the flrst two or three ‘continuum partlal waves
are ellmlnated and the spurious long-range behaviour of
the remalnlng coupllngs is cancelled (the residual coup-
lings have a range of about 10 au.). The corrected matrlx-
elements to ~the hlgher partial waves are often as much as

four orders of magnitude smaller than the correspondlng

2

pss values.

: The‘calculations which form the core of this thesis

confirm these resﬁlts and extend them to other bound states .

of H2 + and to systems in which the nuclear charges are
unequal, 1nrpart1cular, to HeH"' '. .After~experimenting

with various f's, I found that the most suitable one ij
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f = tanh{R;(B/Z){(z +zB)n+(zA B)}

- a®

a ln(zB/ZA)]}.
' (1-25)

L]
k]

.w7ere @ and B are variable parametiers. The method used to

select the parameters, a’and B, is mare . systematlé than

2 but the same spectacuflar

that used by Thorson et al.,
reductions are observed.' The parameters which achieve
this are lndependgnt of the. continuum state propertles and

of the type,of coupllng lnvolved (radial or angular), but

do appear to be characteristic of the initial bound state. .

This behaviour is illustrated exhaustively in the theéis;
and establishes beyond'anijreasonabie doubt that the
switching function approach to the problem of electron

translation factors has a saund physical basis.

\\\\‘\\\\§1$ince the switéh;ng functions determined here are,

in- some sense, characteristic of their corresponding bound

states, iﬁvis reasonable to propdsevtheir'use, not only in

jonisation calculations, but also in more general, close-
coupling pfoblems: I shall discuss this proposal at some
length in the final chapter of the thesié.
3; Forﬁal Consfderatiuns

‘ One difficulty with the whole subjectvéf translatidn
factgr corrections has been the lack of a rlgorous and
fully quantum mgchanlcal formulatlon, most discussions
have used semiclassicaleor impact parameter treatments
only. ﬁecently, however, Thorson and Delos’ have pre-

sehted a formulation which runs parallel to pss theory,



'femedies all its defects, and establishes the correct form
for the ooupled equations to replaoe (I-9) . They obtained
thevsaﬁe results by two independent derivations}‘both of
which use a single, molecular switching function. The
first method7a'introduces an etf explicitiy, and uses a

‘ quantum mechanical ttanscrlptlon formula to eliminate the

heavy particle velocity. The second derlvatlon7b develops
an idea originelly proposed/by Mittleman:27%the switching.
function is used to define a non-linear co-ordinate trans-
formation from molecular oo—;rdinates, (;,ﬁ); to new co-
brdinates, (f,£), and the etf corrections‘afe generated in

| the transformed Hamiltonian. Inqeffect:\this approach
returns to the original idea of Born'ana Oppénheimeral?
the new "scattering co—ordlnate, E, is defined‘in Jjust
such a way that the 1nternal electronlc motion is properly
separated from the translatlonal motion of the electron
and nuclei, and a separate'etf is not needed.

| Some espects of the problem remain unresolved.
Other than the asymptotic constraints, the formulation of

Thorson and Deios7 gives no criteria for specifying the

switching function. Formally, this presentsg no difficulty;-

provided one qses'a complete set of electronic states, the
solution' to a scattering problem must be independent of
the choice of f. However, in practice, the choice of £

may have a 51gn1f1cant effect on the behaV1our of P(R) +

PN

A(R), as the results presented in thls thesis show. It;isf/
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not known whether or not it is possible to givg“x ﬁhiquo,
or "optimum," definition of either f or of tho matrix,
A(R), at finite R-values. Since a real calculation must

'
use a severely truncated basis, an effective scheme for’

choosing £ is of coﬁsiderabie practiE;IT\as we&} as
formal importance.

Using the classical trajectory approximation, Riley
and Green28 have used the Euler-Lagrange method to obtain
equations wh%ch should, in principle, determine the form
of electron translation factors, and, hence, f. However,
these equations are very complicated,}and, so !hr, they
have only been solved for cases where £ does not deped& on
the‘electron~posit%on. |

in this theeis, I have taken an empirical approach

‘torthe determination of f£f: we have found, ty calculation,
that 1t is p0551ble to choose an f for each bound statF
”Which makes a large number of coupllngs from that state to
the contlnuum very small. We thlnk that the exlstence of
these "optimum" ffs is ‘an ;nterest}ng result, and,
posgibly, also a significant one.//Since-these f's are
state-dependent, the results are not strictly oompatible
ﬁit@\the formu}ation giyen by Thorson and Delos.7‘ How~
ever, the derivation.cah be extended to include'tge case
of different f‘s for different states, at least in the
<'élass.icaltrajeotory ;?ﬁ%t; this will be covered in the

<

. i
Appendix. - : L;h
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D. Reader's Guide

In the next chapter, the basic theory of aloc;rGA
translation factors is described in detail. Afgpf ho has
read and digested this chapter, the reader i;/:AVLled to |
return to chapter I and re-read section B; it should make
a lot more sense the second time ;rougd. Chapter II is .
followed by twé(highly technical chaptgrs, dealing with
the computation of wabtfunctions‘({II), and matrix

" elements (IV). On a first reading of egapter“III, the
reader should probably look at sections A, B-1, and C-1
only, which will provide useful background, without too
much detail. » ‘

Chapter IV is;a different matter. Sections A, B,
and F summarise the first Lhree chap?érs and set thé scene
for the results.. I\am'very much afraid that sectioﬁs c, D,
‘and E“will defeat all but the mést dedicated reader, since

\,__\».

they deal in great detail with the computation of indiv-

idual matrix elements, and hence consist mostly of algebra. //('

e

e
They prov:zf/é recipe for anyone wishing to carry out -

, . 1 P /,/
similar c cula@ions, but sliould be read (if at allL/énly

when the reader feels he has understood the rg;t/gf the
thesis.‘ o . ' , ﬁ/z“//

" The results of mf work are presehted in chaptér V.-
Tﬁe way in whiéh the switching functions were chbsen is

described, and some pictures of these "optimum" f's are

given. These are followed by some two-ddzen pictures of



-

i
4

. _the resulting "optimised" matrix elements. It is ultim-

o : g “ / o
ately these pictures which prdyide the justification for

the etf appro;ch to slow ‘collision thebry} _The*systemati?

2 l . . ‘ /
’ cqncel}at%on‘of the pss matrix elements by several orderﬁ’ .
/ A I o0 .
of magnitude is not fortuitous. ' In the final section of

this chapter, some of the implications of’ these results

are discussed.

29



CHAPTER II

B “THEORY
9
A. Co-ordinates . . o=

N

Consider a system composed of three paiticles, with &
masses, m, , i=1, 2, 3 and co-ordinates,.ﬁ‘io, with g

L] ' R4
‘respect to an external origin, and ;i' with respect to the
centre of mass of the system. Some other co-ordinates
will also be useful/isee figure 1).
‘ {

i. Definition of Yhe centre of mass:
L, m, ¥, = O. ~ . (II-1)

P c t :‘,ﬁf 'ﬁo.
ii. Cen rglo ﬁpass, oM’

-+ >0 ] )
= B} ‘ g @
+ =0 + -0 _ ,’;': : _ i ,
r; = Ry Ray My —;Zi m .- - (11-3). (
> 0
iii. Centre of mass of A and B, RAB: A

>0 _ 2 0 + 0 Ly ' 4

RAB.T (ml-R1 + m2R2 )/(ml+@2), ‘ (I11-4)

30
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i

_.Figure 1. System Co-ordinates



iv. Relative éo—ordinates,,al, 32:’

(II-5a)

o]
=
|
HY
Y]
i
2]
L

: . > 0 | .
9, = ry - (mlrl + mzrz)/(ml+m2). o (I;—Sb)

It 1s well known thaF we can wrlte the total kinetic

energy of the system as . /
where o
’ TCM §’% mT<§C§;2; | ‘ |   _(;1-6b)'
T o=k ui(éi)z <y uz(;ag.iz ‘c ‘ ‘a.(ir—sc)
Pl = mlmz/(mifmz)f‘ | Uy = m3(ml+m2)/m;,. (IT-64)

We can therefore factor out the centre of mass motion and

write

i

‘ _ +> > \»,'—”FO-»Ov - :
Yo = W(ql,qZ) exP(lKCM'RCM)', , . (11-7)

The 1nterna1 motion is described by the co—ordinates, 51'

the vector joining two of the particles; and qz, the
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»

"p081tion vector of the th1rd partlcle, measured from the

heavy partlcles, masses M

“

centre of mass of ‘the other two.

Clearly, there are three ways in. whlch these co-

s

ordlnates can be chosen. For systems composed of two%

"~ MB’ and an electron, mass My

| they are called the "molecular," “A-atom," and "B-atom"

co-ordinates. These are illustrated in figure 2.

A

e

Molecular co-ordinates, §,°§ (figure 2a):

g =k Q=% (II-8a)

o= MM/ (M M), ‘m=m (MA+MB)/MT (II-8b) .

M, = MA_+'MB +mg, A (MA MB)/(MA+MB) (11-9)

-

o Py

S\ is called the mass asymmetry parameter. It is also use—»

-

el

ful to define rg, the p031t10n ‘vector of the electron,

measured from the geometric centre (halfway between A and

N

B)
T =r-% 1R | o (I1-10)

. : » T,
ii. A-atom co-ordinates, R

¢ T, (figure 2b):

™

: a, = R, = (M, MT/(M +MB)}R - {mo/(M +m0)}r, (11~ -1la)

-



o

(va)

A 4

G I

Y

Figqure 2 Jacobi Co-ordinates
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->

9 = ;A =‘;!- ¥ (A-1) ﬁ; , | mﬁ(II-lib)
MB(M +m0)/MT, ’QA = o/(M +m l(II-lZ{
iii;{B—atomﬂco-ordihates; §£, ;B Cfigure‘zc):

- ' '= §$ {MBMT/(M +MB)}§ + {mo/(MB+m )}r, (II -13a)

o : - s ‘;e S
qp=fg=t-% o+ R * (1o13n)

Mg = MA(MB*'“‘O)/,MNV my = Mgmg/ (My+mg) . (II‘“_);‘

| : / : | | i . ‘

I want now to introduce a functlon, fJ,.whcré-J is A
or B, defined such that f£; = +1, and £a = -1. With this
dev1ce, we can use a single form ‘to expresc both Sets of

atomic co-ordlnates, in terms of molecular co-ordlnates.

A .

St Ry = (wuy) (R *o(m/2u (£,40) ¥}, (II-15a)
Fy=F-% (g0 R0 © (11-15b)

OO wg/wm (e my2w (e 0) e/, (11-16a)
mg/my = 1+ (my/2w) (L+£0) .  (x1-16b)

,Equatibns.(II-lS) andQXII—IG) are needed for the next



o

sectijon, in which I examine the boundary conditighs on Y

and show why the pss theory gives a poor«description of

coll%?ion processes. Two'othér;equations will also be
3 . / |
useful: '

E

7MT/(MA+MB).= 1+ % (1-22) my/ M, ) = (II-17a)

.
2

= wMmm) /My = G - (11-170)

totic Boundary Conditions
amd—Translation Factors 5

7a

l. Origin of the Translation Factor
Suppose that astptbtically.the electron isbin the
i étomic state, ¢ng,.chvatom J, w;éh energy, EnJ' Then the
asymptotic solution to the time—independent Schrédingerf

o« ) . \
equation is

: 0.»> T A 3 ) ' . _
\ ¥ A ¢nJ(rJ) exp(lkJ.BJ)ﬂ | ' | (II 18)’

where

h2k 2

T R (11-19)

J

"“We now transform the‘plane wave factor to molecular co-- \

ordinates, using equation (II-15a). However, this must be

!

‘done carefully, since the appearance of the atomic reduced

‘mass, Hj, in equation’gII-IQ) means that the wave-vector,

36



EJ, is an intrinsic function of the atbmic'configuration.

(The extrinsic dependence on e is not important')‘ This
J
. conflguratlon dependence can be elxmlnated by defining a

molecular wave-vector, k, such that

A —————————

= (uy/m* kK | (11-20)

\
4
i

>
kJ
~and this implies that

-+ K o> 2> > - '
kK .R; = Wiy * K AR+ (m/20) (£5+2) T} (11-21)
{

But (m/u) << 1, so we expand (“/“J) in powers of (m/u),
and keep only thevlowést-terms. From equations (II-16a)

. and (II-17a), it can Eejseen that

' k " v . . 2 ’ .
(w/ug)® =1 - (mo/su)_<1ﬁ;fJx+x ) o - (r-22)
A //’f-/ |
and
o> <> -~ -> -> > ‘ - . . ) -
ks Ry —.k.{R + (m/u) s}, o : (11~23)
‘where
- - > '_ 2. > ’ . ) .
=% (£5+)) Ty (1-)7) R/8.. | (I1-24)

" The term, exp[(im/u)ﬁ.gl, which thus appears in

.37



equetion (II-18), is called the electroﬁ.t:anslation faer
tor; and, if we define a classical heavy-particle velocity,
v = hﬁ/u, it can be éiven a simple physical ineerpretation.
(fJ+A)$/2 is just the translational velocity'df the elec-
‘tron,'wifh resgget to the centfe of mass of the nuclei,
due to the motion of the nucleus to which it ie gound; and
‘the :emain}ng term represeets the electron trahsport
klnetlc energy, due to the ﬁuclear motion. ‘Noting that

2

fJ = l for a straight-line trajectory R=0 + vt (g is

called the impact parameter), we can re-write equation/

(11-23) as
Kq.ﬁJ = KR+ (m/h) @.F - wlt/2), | (II-25a)
| C
where |
> e
w = (f:+x)$/2. - | © (1I-25b)

Part of the kinetic energy is 1ndependent of the system
conflguratlon (i.e., of f ), and 1t is convenlent to

isol&té& this term,l

2 R s B Re(m/wat] - (M) (1-2%)vie/8,  (1I-26a)
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s' =% (£,40) I R (II-26b)

Alternatively, we could absorb the final term into

" the definition of the molecular wave-vector. If we take
‘ _ i

p . .
v

KJ = (uJ/TJ)ls k", | | - (I1-27a)

where i is defined in equation (II-17b), and notice that

~

my/u = m/ii, , | "(II-27b)

then it is easy to see that
| J

-

X

5°Ry = k'.[R + (m/Ti)s']. _ (I1-28)

2. Defects of PSS Theory

a. Introducfion

I want now to examine the pss theory in the light of

this stndy of the boundary conditions. As the reader will
recall, in the pss method, the_wavefunction is expanded in
terms of the Born-Oppenheimer, molecular eigenfunctions

(equation‘(I—B)):ll

RN

¥(r,R) = L x (R) ¢ (¥:R), o (11-29)

o

and the resulting equations, (1-9), are coupled by the
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matrix, E(R), whefe - , -
ﬁjn(R) = -ih <¢j|(VR);l¢n>. - (11-30)

In pss theory, individual terms in the ‘expansion,
(I1-29), are interpreted asymptotically as scattering
" wavefunctions for electronic states, ¢n°° [i.e., the states

¢n(;;§;n*m)], and thesq states are presumed to carresppnd_

in some simple way to the exact atomic states, ¢ os For

n
: _ J _
simplicity, let us first consider electrically asymmetric

systems, in which this correspondence is one-to-one. If
‘one can express the exact plane-wave state, (I1r-18), as a
single product, ¢nwxn(§), then, ‘and only then, one can

interpret this product as a scattering wavefunction for

the atomic state, ¢n0'
" J : :

However, it is immediately obvious tﬁat no electron

translation factor appears in the produyt_¢nmxﬁ(§). For

" our purposes; this is the important problem, but there is
_ another, minor error, relatedAtq the fact that ¢nw is not
s 0 can s '
exactly equal to ¢nJ; for completeness, we will dlspose of»
this latter defect first.

b. Asymptotichlectrdnic States

The exact atomic states are eigenfunctions of a

Hamiltonian, hai' which uses the atomic electron‘reduced

mass, my whereas the molecular reduced mass, m, appears

in the Hamiltonian, he' Thus, asymptotically,



3 SRR TR IS RS 2 ‘
h,g = hg = (h¥/2) | (my77 = m) (V) (11-31)-

.
and.the.final term can he‘treated'as a’ small perturbation,

_as it is of order (m/u) times the electron kinetic:energy;

It then follows that" th? atomic eigenvalue, €_ . is given,
J
~ correct to first order, by

\
\
-

Lim (o (r)/ - (hz/z)(m "Ll <o |7, 251 0,> )

o
3 R+eo f
/

where ¢ tends to the approxlmate atomic state, ¢hm.A

€
n

- . ‘ (11~32a)

Using equations (IE-15) and (16), we can rewrite the
second term, so that b

R

n R+

o lim:, - ‘ ‘.2 2 . .
n, * o ley (R) - (h//zu)<¢nl<vR Yl >l (11-32b)

As equatlon (1-11) showe, this correction does appear in
the pss coupled equatlons, (£-9), a fact which is well~-
knoﬁn,29 -31 as one mlght expect, 1t does not appear in the

classical trajecthry equatlons, (I-13). Unless one is

interested in lsotope spllttlng effects, these corrections

to the atomic blndlng energles are unlmportant, I-prbpose
to lgnore them and assdme that the molbcular states pro—

vide an adequate asymptotlc descrlptlon of the, llmltlng

. atomic states. In their rlgorous formulation, Thorson ‘and -

:_Delos7b treat this point much more carefully, and show

ks
|

. that the corrected theofyvalso recovers.the correct

Iatd
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binding oﬂergias,vto the required accuracy in (m/u).

In electrically symmetric systems, the Boin—
Oppenheimer wavefunctions occur in asymptotically degen-
erate, (g, u) pairs. )However, limiting atomic states can
be constructed as linear combinq;ions of the g and u mol-

ecular states,

o - Lim 3o (0,96 % + £, o0 NER), (I
) ?

on proceeds as before.

‘after which, the discusy
b ' -

c. Translaéitn Factor3~“leSS Theory 4

o

Let us now turn

“ ktention to the really impor-

tant defect of pss theory. Suppose that the electron is

; W ,
asymptotically in state L where
- J ‘

o, (F:R) ~ ¢nJ<FJ).‘a§,an. (1I-34)

3

An asyﬁétbtic solution to the . pss equations (I-9) may be

written
. N ' . . ‘
¥ v~ ¢ exp(ik.R), (II-35)
n 5 :
J )
&
where .
£2k% = 2u(E-e_(=)]; S (11-36)

’ o
)

'
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[ and, in pss theory, this is assumed to.be eqﬁivalent to

Hr

f’/- (II-18) However, from (II 26), or (II 28), it can be

‘ seen that ‘no translatlon factor appears, and hence, Y as
[ SN

deflned by (11~ 35) is not equlvalent,io (II-1B) Only by

u51ng a complete expan31on (1nc1ud1ng the electronlc j‘

w"contlnuum), can one- make the form, (II =29),. represent a

solutlon llke (II- 18), such an expan51on is clé%rly im~

*

practlcal Slnce 1nd1v1dual terms ln the pss expansrbn do

¢

’ not represent real phy;acal states, it 1s not surprlslng

that the coupllngs between them show unphy51cal behaviour.

To show how the spurlous asymptotlc coupllng arlses,

let us examlne the nonadlabatlc coupllng matrlx, ﬁ(R), in’

detall.\ ﬁ(R) 1s ‘the. matrlx of the operator, lh(V )+ in
the Space of the Born-Oppenhelmer functlons, and it 1s
\

evaluated holdlng the electron flxed w;th respect to the
vcentre of mass of the nuClel. )Hff“*{g 15b),‘1t can be

Seen that

!/

5

~ih (V)2 = -ih L“-?R’ e ] (£5+1) ‘(VrJ)-ﬁl'., (11-37)

!

Asymptotlcally, the contrlbutlon to P(R) arlslng from the -

flrst term 1n equatlon (II- =37) represents deformatlo%,of

the adiabatic wavefunctlons, as. R changes, and it must
'vﬁgﬁsh 151nce,‘accord1ng to equat;on (II- 34), the ¢ (r R)

become functlons only of rJ However, some sta%es asimp—

totically assoc1ated w1th the same centregggll be

a

- 4}{-’

[y

\
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o

P

connected'by the momentum operator, --ih(Vr )§,
. . : /
, J

such s?atesycﬁjn(R)'will,tend fo a‘constant, as R+, This

S/

and, for

a

- / ,
out deformation, and it is entirely spurious. The

. term represents the displacement of a wavefunction, with- :é
phyeicallY—appropfiaéé reference origin'is atom J, not the
CMNl At flnlte R-values, it is not p0551b1e ‘to’ decompose
3(R) uniquely into deformatlon terms plus dlsplacement
effectsL but-lt is clear nevertheless, that the latter are
oﬁten large, and that they have no place in ‘the theory.
N 3. Modlfled Electronlc Basis |

From the above dlscusslon,'lt is clear that we can
avoid the aefects of pes theoryvby,lncludlng an account of
electron translatlon ln the electronlc basis. In the
) cla551cal trajectory approx1matlon, we can do this 51mply
by replac1ng'the Born*Oppenhelmer ba31s with the modified

. e

states, -

e ke = o GR®Y B, " (11-38)

aq{ﬁ o | 4 o o
’where‘Fn is an electron translation factor, defined by

el

i !
i &
v

\E = exP{(im/Yl) z.gn}. . ; ‘ : (II—39) K ‘._‘,"

n . ; g _ ; i

The‘exponent,~+n, must tend to the correct asymptotlc‘

/

value, given by equatlon (II 24), but it should also re—,

- flect the ﬁact that the electron is molecular for muchgof
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the collision, with aporeciable density near both nuciei.t
"For this reason, we introduce a molecular switohéfg o ~
function, f(?;ﬁ)}sbdefined:such that

-

He

A ;ﬂ‘ £(r;R) = £;, ry finite; .~ - (1I-40a)
lim o N T | o .
Lo (r;R)_- 0, R finite; . ‘ (IIT40bL
(5B = - £(ER), If 7, = 25 (II-40c)

P .-

.

‘but £ is otherﬁfée unconstrained. We will thus obtain a

suitable etf by'definingbgh, such that T e :
v.2 = 3.3 - sFa-ad)viaess,. - (11-41a)

S= (£4) T . - ~ (II-41b)

&

Note that the S of equatlons (II 41). tends‘;’g asymptotlcally,

ovthe s' of equation (II-28). In equatlon (II- 38),.I
‘have allowéd'for differeht F 's forvdlfferent states;-this

¥ 1

flelelllty wbuld be prov1ded by ch0051ng distinct f 's in

the deflnltlon of s. However, for the monment, I shall
Py &

take the ffler ‘¢ase of a 51ngle, common f and genera-

“* llse th&’&asults obtalned 1ater.

> From the po;nt of v1ew of a fully quantum mechanlcal

 ' theory; the modlfled basis is still deﬁeotlveq.51nce‘the

. @ . . - -
A
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e

claSSical nuclear velocity appears in the translation fac-
tor. 1In their first formulation, Thorson and Delos7a‘
Alintroduce an ad hoc, quantum ‘mechanical transcription.to
eliminate:v, their second derivation,7b based on a co- 324
ordinate transformation, gives the same final resﬁit and

justlfies the transcription.» ‘Here, I shall use a‘cla551cal

_ : |
trajectory approach,{which is much simpler, but still
. [ s 4 - ]

retains all theé; af&ﬂ.features.

C. élassicalhfrajectory'Equations ' .
5 'in”this sectiou, I~will,éerive the apbropriatev
coﬁkled equations'to replace eduatious (I1-13), using a
basis of Born-Oppenheimer adiabatic states, modified by a
E%L' translati n factor. We assume}%hat the nuclei follow a ’ﬁgﬁ%'
f dfclas51cal path ﬁ(t), w1th veloclty v dR/dt,

[ 4 L

and write the. solUtion to the time-dependent Schrédinger-

.specifie

equation asdf ‘ ’ RO

=3 a0 e (FR) expl-isfe (¢h)at'/h), (1I-42)

»

where ¢ (r R) is defined by equations (I1- 38) to (II 41).

This 1mplies the system of doupled equations
ithb=1(h+v.81b, . C(11-43)

.where L e : - -
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b = a exp(-if sn(t{)dt /h}, o (II.44)
hjn = <oj|he[on>, } B (II-45) R
| ,Bjn = -ih <o ] Fprzle>. - | (11-46)
h\ N . S
wa
o R e i
-hjn-- En'djn *+ <¢j|F‘[§e’F]|¢n>' S (11-47)"
Bip(®) = -ifh <ol V)2l > C (II+48)
. : ‘ g ‘
and the remaining téfm‘ié‘thus-
z

If we

thqsé

or . .

ik A

'~ where

M
o . a
dlscard the terms in (II1-49) 1nvolv1ng av/at amﬁ
of order v2, we flnd that | -
ihb=lc+v.3+0)1 b = . (11=50a)
4.
=z V. (§JD+A ) a_(t) exp{—lf (e -e4) At /h},

(I1-50b)



A (R) = (in/h) <¢j|[he.s1|¢ﬁ>.

g

(IT-51)

ﬁEquations (II- 50) are the desired classical trajectcry

}equations. The only difference between (II- 50) and the

pss equatyons, (I-13), is that the nonadlabatic coupling

matrlx, 3(R), has been replaced by. 5(R)+K(R)

‘\

"D, Effect of Translation‘Factor :

Corrections

From equation (11351),~it‘can be seen tﬁat

!

Ryn (R

. [
P

”ahd,theefeade: will recali that -
8 =3 (f+\) T .

9

Therefore, as R+x,

LR) n X (f +A) <¢ l(-1ﬁ§ )|¢n >,
J

K

1

‘But, from equaticn'(IIf37);.we see that
flr 0 .

i

3jn(n) § - % ffq+k) <¢j3l(e;h§:J)I¢nJ>.

(im/ﬁ)‘(ej-en);<¢j|§|¢n>

_15 <¢j|($£§).$r + % (vr2§)|¢n>;

(II-52a)

- (1I-52b)

(1I-53)

(1I-54a)

(11-54b)’



¥ couplings contdined in B(R) :

,However,.nonadiabatlc coupllngs are supposed to represent

!

:Thus,‘éja) exactly cancels the spurious, infinite-range

.

Lm B + Ar)) = 8. (11-55)

. i

. . . . . '
Of course, that was the maln r son for introducing the
2 N7

etf 1n the flrst place!l
For systems with unequal nuclear masses, §(R) con-
tains a term proportlonal to k, since the origin of elec-

(tron co,ordlnates is the centre of mass of the nuclel.

A3

‘propertles of . the electronlc wavefunctlons and thus should
be 1ndependent of A. The addltlonal term is flctltlans,

~and it is exactly cancelled at all R by a corresponding

termrln é(R). This is easxly shown. .

’

(-;ﬁ?R); = (-ihVRy;g 5k8’x(-ih$;r§, 'l - (11-56a)

X
o

and

‘-(im/ﬁ)[hé;;] = (iﬁ/h)[h;?gé] +.¥X(-ihﬁr)§,‘(11-56b)

[

ﬁhere

S =% frl. » | (11-56¢)
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. The second term in (II-56b) exactly cancels the second

term in (II-56a), so we have'the result that

1}

B(R) + A(R) = B9(r) + R9(R), ~ (I1-57a)

where . ’ o : ‘ }/.
. ’

-;h <¢jleR);g|¢n>, . .“. | (II-57b)

. *g
Pjn(R)

and

+qg . iy - A _

A, (R) = (im/h) <4y l, [hg 8] lo,>. (II-57¢)
How is g(R) to be interpreted? At large R, we have

seén:that E(R) can be separated into a distortion terﬁ,

: ! 4"",.‘ ‘ o
which tends to zerqgf nd a displacement term.. The latter

is spurious, and it is exactly ‘cancelled by E(R)l We may
‘suppose that E(R)‘playsvmgch the same role at finite R-
- _Qalues: it identifies and remov;é\that.part of E(R& which

represents displacement without déformgtion. leaving only

the,distortign effects. However, since there is no.

obviows and unique way of isolating just.the translation

efgects, é(R) can only be defined uniqguely in the asymp-

totic limit. This ambiguity is reflected in the fact that

=) o4 '

the theory gives no way of determining f ¥n the inter-

action region. Formally, this does not matter: the set of
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Born-Oppenheimer states is complete, and any sensible R

which satisfies the boundary conditions will do.

' t

In practice, the choice of f is important, since one
must always work with a truncated basxs, and, in many
cases, the corrected matrix elements are very sen51tive to
the choice of f. In this work I examine the way in which
the corrected matrix elements for ioniSLng transitions
depend on the sw1tch1ng function., The behaviour of these ;
matrlx elements allows us to choose very clear-cut,

"sensible" f's,

Two tasks are required to complete'this chapter. 1In
section E, I give a brlef account of the: theory of direct-
1mpact lonisatlon 1n slow colliSLOns, to provide a back—
ground for the examlnation of 1onisat10n matrlx element®.
Finally, section F deals w1th the transformatlon of. elec—.
tron. co—ordlnates from a space—flxed reference frame, to a
frame rotating with the molecular axis,

\ )
E. Ionﬁsation in near-adiabatic *
Collisions

1. Introduction
As I’ p01nted out in chapter I, lonlslng transxtlons
cannot be handled within the olose ~coupled expan51on
scheme of pss theory (even lf electron translatlon effects
are included). The expansion uses a truncated basis of
adiabatic states, and assumes that (in a slow collision)

:electrons in those states behave nea%ly,adiabatically.



@«
.

But, because of their high degeneracy, the continuum and
Rydberg levels can never behave adiabatically, and to

- inctlude them in a straightforward pss expansion would mean
S
-using an, intractably large basis. {ﬁ

However, in direct impact processes, 1arge changes

i

‘1n the electronlc energy ‘occur upon tran sition, and hence
the probablllty of such transitlons is small, at least in
slow collisions. Thus, one may be able o treat ionis-
ation from tightly bound electronlc states by a pertur-
bative approach, in which_the pe:turbation capsing trans-
itions ie'the "deformation: of_the lnitial—state wave-
function, projected onto tne continuum states of the

‘'system. What is then needed is a description of these

states, and a definition of the probabilities of trans-

L

itions to them.
A flrst-order perturbatlon theory of. dlrect lmpact

ionisation in slow atomic colllslons has been given by

Thorson and Levy. 1a It leads to a "dlstorted—wave

approx1matlon for the lonlsatlon cross sectlons, and the

reader is referred' to thelr long paper for a detalled

"

discugsion; here,,I shall describe only the main p§y51cal

.ideas.

2. The "Fast Electron" APprdifmation_f o

8]

'An adiabatic electron is one whose (bound) orbital

speed is so much ‘greater than the nuclear speed that it
P

can adjust smoothly to changes in the nuclear position.
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By contrast, a continuum electron has a claasically
aperiodic orbit, so that 1t ¢annot be said to follow the
nuclear motjon adiabatlcally. Nevertheless, the ‘charac-
‘teristic speed of a eontinuum_electron willgstill,'in//
general, be mueh'greater than that of the nuclei.l This
means that an electron in an unbound orbit will @oée
thfough the system and out to infinit& in a time so shert,
that the nuclear configuratlon will hardly change at all,
and the orbit will essentlally be that of an electron in
the "fixed-nuclei" system. o -
| In the language of quantum‘hechanics; an electron
instantaneously excited to a'continuum state at time, t',
- will prbduee a signal at ajdetectorbat some'later time, t;

but the signal will reflect the nuclear confiéhration at

the excitation time, R(t'), and not that at the signal

tine, R(t). By”taking a'coherent sum of the instantaneous
amplitudes at each 901nt along a trajectory, R(t ), one
‘obtains the cumulatlve signal amplltude over an entlre

' collision. The instantaneous amplitudes” for the excita-
tion of an electron to a continuumrstate with energy, €,

v'is the projectionVOf the nonadiabatic pertutbation of the -
initial state onto the Botn—Oppenheimef continuum state;
and the matrix elemént for this is just ?en‘(inbpss
'theory); erlﬁen_+ Xen,(in the corrected theory). To glve
a correct descriptlon of the,lgnised electron, as it moves

out to the detector, one must also include a transfotmation

\
\
\
\

F
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from the rotating molecular frame back to the laboratory

, frame, but the basic physical idea of the Thorson andkLevy

ionisation theorylé is that described above. ' e

On either side of the ionisation threshold, there is

Ty

a band of states in which the electron is neither "fast" U

nor “adiabatlc. 2In these states,’ characteristic electron

4
speeds are of the same order as, or less than, the nuclear

speeds, and hence, for collisions involving theaewstetee,
the electron motion will be very complicated. Second
order processee, such as ionisation followed -by recabture,
will be common, d no simple theory exlsts to deal with
these "slow electron" levels. For slow collxsxons, the
bandlgf states 1is less than 0.5 eV wide, and transxtlons
to such states are unlikely to_contribute much to the
overall cross se_ction.la ;

3. Ionising Traneitions and Switching Functions

For the purposes of this thesis, the important con-
clusion to be dra;n from the work of Thorson and Levy1a is
that the matrix elements governlng 1onlsatlon are P€n+KEn

-

between ‘bound and continuum Born—Oppenhermer eigen-
_ functlons. | o N

In chapter I, I- described the phys1cally unreallstlc
behav10ur of the uncorrected pss matrix elements. I also
’dxscussed how Thorson and coworkerslb found, for H2 ' that

it is p0551b1e to. choose a sw1tch1ng function for each

bound state, such that the size, number, and range of the

.
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couplings from that state to the contlnuup are_all greatly
re?uced. In this thesis, I contlrm and consigderably ex-
tend these results, and also make them much more precise.

If the f's so obtained can be called "best“ choices. in

some sense, then they could be said tq,provide an "optimum”
way of isolating the (so far ungifined) “deformationf part
of ?(R) “

Our metbod for choosing switchlng functions will be
described at length in: chapter V. Both the studies | "
reported in this thesis and the earlibf work of Thorson et
al.lb indicate clearly that different f's are needed for
different bound states; in chapter V, I shall also consider g
how to modify the theo:y'to take account of this. /

~ | F. -kotating Fra@E_Co-ordinates ‘ ?ﬁhu T}f

» ‘f"&" N

Up to this point, I have assumed that the elecgfbnﬁggwg-“

|8

states, o (%; R), and Hamlltonlan, h ., are expxessedv

(V )*, is evaluated w1th T fixed in thls fﬂaﬁ? 'Hq

?"eﬁ?; :

"as is well-khown, the molecular 31e°“£22}c sgptea and
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-
but do not d-pdnd on the oriefitation of the vector, ﬁ, in

space. _ L b

The transformation linking the coméodants, (x',y',

I .
.2'), of ;', to the components, (x,y,z), of ?. 137“
x' [cos© cos®  cosd sin¢ -8ind) [x ‘
y'“'- . -sin¢® ° . cos¢ 0 y| (II-58)
z' 8in® cos® sin® sin¢® cos@)\z .

.A‘ - PO

where ﬁﬁi&s polar co-ordinates, (R,0,%). Note that the .

y'-axig.éoinéi&%svwith the line of noded and is therefore

pg%penaicular to the plane .containing the‘z- and z'—gxesQ

8 ' . . g
Using equation (II-58), we can express the com-

' - . o B : . ’

| ponents of the gradient, i

-ih (T ) (*-%) B "
=th (VR)z ¢, (s S
b > ‘ 32734 -
" in terms of operators in the rotating frame. Noting
that o S s N
N\ ) & ‘
— ’ \ . “ ' . .
¢ (5:R) = ¢_'(X'iR), | S (11-59)

‘a straightforward ‘application of vector caléulus'Yields

the result that

-ih (3¢ (Z;R)/3R)z = -ih (3¢ '(E';R)/3Rlz,, (II-60a)



z'where\§>., L,

! . . .
. ' . o ’ » .
A . : . . -, ‘ ‘ -
\ . . . , . ] .
. . ) : . . ’ e > .

_\/

~

p -1& (30, (% n)/ael -L, ¢ (R, [ (II-60b)

Y

‘-ih‘[?ﬁn(;;ﬁf/aél;'é (L sxne .vAz.cosG? ¢, '(r'-R),
| { ,»' Lo SRR - ‘ {II-GOc)

y" L _are the‘compenents of the electronlc

-orbital angular momentum in the rotatlng frame.i The

components of the vector, P(R), ‘are then given by7a’32

3. m) =p% z' +p% x4+ ¥ gy, o (1I-61)

i 3nTt in s IR jn , e A

- e

~n A s

" where x', y', z'>are the unit axis vectors in the rotating

- frame, and = LT T TR R 4

. : - - N
o : B . ; i \(_fs

v

7
/

-if <¢j1(a/sn);,|¢n>, - *"_. - (11-62a)

e
i

A

o
]

L] o . -1 ~ » » S ‘
- X - R <¢jLPY'l¢n?' o o ’/«(II—GZb)

ki
[

)
|

+ Rf; {<¢j|Lx,[¢n§ 7 cotO <¢ le'|¢h>} 2
R “ (r1- -62¢c)

For convenlence, I have dropped_the primes on ¢ '(r,R)
.The components of A(R) are 51mp1y deflned by the components

of the vector, s, in the rotatlng frame. o "v-

In the cla551ca1 trajectory descrlptlon, the,motlon

of,the‘nuclel is confined to a\plane,'and, without 1oss of

_generality, we can take‘this_as the (x',z') plane. More—'
over, to compute the matrix elements, P?n and,P?n, we } f
e o » L . . ’ 7

. /
i

s
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fu‘ single angular component, which wevf

require in both cases, only the matrix elements of the

-~

ladder operators, + . Therefore, the behaviour of the ‘fﬂ

‘ angular couplings will be fully. covere

A

-y_a-study of a

ThlB coupllng is Just tho quantum Jfapanzcal Coriolis

| coupling, seen by an electnon in ‘the rotating\frame

[cf. equatlon (II 55)]

R
PR, a2 - -ih»<¢ l(a/QR)+lI¢'”>, B '(ir-sja)
JERCI BREF R, it S

Lo

s
/

Hiedaw

R /
;
I : : . !

. i :
i : - I . .
i - . . - :

B - e . . .
o . : : )

S0, ax' -1 Tl A s PRI
p% 4+ A% = - rRTT <. L N6 >. . (II-63b)
| ~JJ, y'''ng " . - TS

B

Asymptotxcally, the components of ?(R)+K(R) are Just ‘




SR

o negatlve (dlscrete bound states)

‘where (seeeflgureAB) CT e o

. - . )
: e :
5 SRR 2 S -
. ’;H'..‘ 4
'i':l
w?
8 ’ : o
 CHAPTER III .

BORN-OPPENHEIMER &wavzruﬂcnons -

A. Introduction

)

In this chapter, I shall descrlbe the computatlon of

‘the eigenfunct ons for tWo-centre, flxed—nuclel, one-'

electron systems-—the Born—Oppenheimer wavefunctions.
'.These states are solutlons of the adlabatic Schrbdlnger \',
’eqpation, S ‘ |

f.sﬁ-z/zma? 7,2+ ¥ 2y mpag/eg) + €} YER) = 0, (IID) ]

o
-

AR Y

"g;wheré e = e (R) - zAzBe /R is the electronlc energy €

y be elther positive (theﬁ&lectronlc contlnuum) or

'

o

It is wéll known35

that théiS hrbdxnger equation (1) e

“is separable 1n prolate Spheroldal co-ordlnates, (E n ¢),

£ = (rA+fB)/3'\"n'= (rAerB)/R;:r:¢vg azimuthal,éngré
‘ R ) SRR | (I11-2)
1< “l<n <4l 0 <4< 2w
59 . -
i é f
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Er= (rAfrB)/R'»‘n

‘R

Figure 3.,fSpheroida1 Co—ordinates
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and rA and r aﬂe tﬁe distances of the elactron from the

' nuclei A an ‘B, respectively. The electron has maas, "0'

and we use/the Bohr radius,'ao, as the unit of length; the o

energy is in Rydbergs (1 Ry ) e /Za - 0 5 au). ? can be

.written- B
Y(£;R) ="X(E) S(n) ¢(¢), ~  (III-3)
:andfthe'separatedieQuationejfer the factots are -
d ¢ + m2 =0, o (111-4)
A c 2 2.2, 2 2 % - -
- d/an {(1-n“)as/dn} + {pntc'n"+A-m“/(1-n")}s =0, (III-5)
R T L 2.2 2,2 i PN ST
d/ag {(g°-1)ax/dg} + {q&zc g -A-m"/(£7-1)}X = 0; (III-6).
"wherehthe parameters,ap,»q,hand'cz;fareedefined'” : ;ﬁﬁ
. " PEREEZ)S €= R(EgHZ), (II-7a)
.7 P eaxwert R S (11I-Tb)
2

A and m are the separatxon constants, m is the modulus of’
the azimuthal quantum number. In equatlons (III 5) “to.
(I1I-7), where a ma appears, the upper sxgn glves the

bound state equatz.ons, wh:.le the lower glves those o



1

......... In ‘the united atom limit, equation (III-/) tends to
the equation for the assOciated Legendre function,, 'L (n) ,‘ .
with A w L(L+1); and equation (III-G) beComes the radial ;

equation for either the spherical COulomb function, ‘or the;
36 -

associated Laguerre function. The wavefunction for the i”

azimuthal co-ordinate is, of course, just

(9(¢) = (2m7¥ exp(#im¢), with m =0, 1... (III-8) ~
In sections B and c, I w111 discuss the solutions of .],
equations (III 5) and (III-6), for bound and continuum

electronic states, respectively.

] B.'Bouna:Statesf‘ s
. I . N H 1 . .

. - . i .
1 Background' ’ B '

THe soluticn of equation (11I- 1) has received con—f}'“”

.‘

siderable attention for negative energies. Subject to the

usual conditions that the wavefunctlon be square-integrable,

continuous, and have continuous first derivatives, the :
/'coupled equations, (III 5) ~and - (III—G), have simbltaneous"“‘;

solutions only for discrete pgirs of values of the par- |

: amehers,'_ d c. In the 11mits, R?O and R+~, 31mple . _
closed formuﬁae exist fcr the energies and wavefunctigsigfh
but, in general we must soLVe the equations numericallyt

Vanous authors have complied extensive tables of




’the eigenparameters, both for Hz ,37549 and for‘unequal

41,42

' nucleqr charges.‘ The formal properties of the sol-

'V.'utions ﬁf/Aébeen examined in great detail by Pcwer.‘3 To

“‘Jlutions, I used a method based on that given by

‘”liBatew anq‘Carson‘l

for HeH “ ,; .
For a given bound state, the calculation of the

‘eigenvalues of A and ¢ proceeds as follows.\'Aé each

vvcondécutive R-value, o )

_Qi. Guess approxlmate values for the”eigenvalue,;c;, ﬁ;d}-

T \separation constant Ag | | ,’
< id. Guess_avspread,‘é; such that the true eigenvalue'is
g

‘]expected:io'liefbetween cg-évand1c'+6 SRR
iii. For a Seriesfof values of'c; betueen cg-G*and cg+5

- ‘icompute the value of A which‘glves the. regular sol-
—
ution to equatlon (III 5), the angular equatlon
iv. iUse thls“set ofvpairs of values of A and c to
: determlne A as a suxtable polynomlal function of ¢
‘VVn  USing this- A(c), compute the q:lue of ¢ whlch glves R
_-the regular solution to equationeo(III-6), the radlal
equatlon, Thls is the desired elgenvalue,.c.f

. . v
S vis Now- go back to the angular equatlon. and compute the

bseparatlon constant correspondlng to thls value of c T

“

Once A gpd c have been found, the: correspondlng elgen-

i
functlons can be co




. /

\\
aqua(”é}ions "in more deta!.

2. Angular Equation

a/an {(1-n)as/an} + fen+c®nsn-m/(1-n2)} s = 0. (111-9)

1
AT

"1} We require solutions to (ITI-9) which are reqular in

: ! - . . . b '
the interval, -1 < < +1. Following Bates and Carson,41 )

-

we write

S(n) = exp(-cn) I dL PLm(T]) ’ - (III-lO)ﬁ"
Lem L | | ;

. . /-
_where'PLk(n) is the L'th associated Legendre function.:-

- Substituting (III-10) into (III-Q); and using the recursion

relations satisfied by the P m's, we obtain, after some

L
manipulation,

i

12 dL {PL 1 (p—2cL)(L+m)/(2L+l) + P [c +A-L(L+l)]

+ PLfl [p'+i’c.(L+l)’] (L-m+1)/(:2L4-1)} = 0. vi'(III-ll)

Slnce the P_. ''s form a complete, orthogonal set, equatlon

L

(III—ll) can only be satisfied 1f the coeff1c1ent of PL

~vanishes 1d¢nt1cally, for each L. This leads to a three-

term recursion fo:mula linking the dL'g:j

!
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a._, (p+ch)(L;$p/TzL:}j +a, [c2+A;L(L+1)j}
L 3

+dp,y [p-2c(L+1)](L+m+1)/(2L+3) = 0. (III-12)

4

For very large L, the coefficients satigfy either

dL+1 = -.(L/c) a, T , " ‘(1117138)
or -

a, =+ (c/L) 4 ;. . \A (111-13bi

Clearly, we.require:solutions which behave like (III—13b);
for a given .c, these only exlst for partlcular values of A
--the elgenvalues. To determine these, ¥ used Inoe s well

known method for flnding the elgenvalues of a trldlagonal
matrix,44éas‘desoribedlby'Stratton et al.%?

For computlng the function, S(n). it is not con-
venient to ‘use the expansion given 1n (III 10); con\arerc_:;encﬁ%gﬂa
of the series is often poor, even at moderate xnternuclear
separat;ons, and the evaluation of integrals over n is

awkward. I therefore chose to use the approach 1ntroduced

46

by Helfrlch and expressed the wavefunctlon a%?w

”ge;i},}‘
s(n) = £ d PL‘“(n). : # (II11-14)
: L=m _ 4 -

~



This gives|a five-term recursion formula for the dL's:

/

~

d_, Jz(n-my;p-m-l)/[(zn;s)(2t-1)1 +d,_; P(L-m)/(2L-1)

+ aL {32[210(10"'1) "2!!\2‘1]/[ (2L+3) ('2L-1) ] - L(L+1) +A}
+d,, P(Lim+l)/ (20+3) + ., <P (Lme2) (w1 /1 (2045)

“

(2L+3) ) = 0. (III-15) |
The technique for finding the coefficients, dp given the

eigenvalue, A, is described by Wilkinson47 and the series
) e

(III-14) is truncated when the d 's become sufficiently
small. Of course, thegdavefunction cannot be computed
until the eigenvalue, c, has been found

. ILet us now turn, then, to the solution of the radial
equation. We will assume that, in the vicinity of the
- 'desired eigenvalue, A is known as a function of c; in my
programme, I chose to fit the computed separation constants
‘to a cubic polyhomial 1n c, by the least squares method.

»
_3. Radial Equation

asdg '{(52-—1)'dX/d5} + .{qe-_czgz-A-mz,/(gz-l)} X = 0.(III-16)

]

At larée £, the two linearly-independent soiutions

to equation (IXI1-16) behave like exp(*cE). Clearly, we
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are interested in the exponentially damped'solugion, and,
once again following Bates and Carson,41 we\use the“trans-

formation due to Jaffé: : ‘- .

L O S -

x(€) = (£+1)342°71 ((-1)/ (£+1) ™/ exp(-ct)
D oa {(£-1)/(&+1) Y (TI1417)
n=0 A

/
[

\0 ‘~f’
If we substitute (III-17) into (III-16), colle#t terms in

powers of (E- 1)/(£+l), we obtalﬁ, after a lot/of algebra,

i

a three term recursion’ formula linking the an's, S

a1 (n+m~q/2c) (n-q/2c) + a, {(2n+m+1)(q)Zc;Zc-l)—Zn(n+m)
. . , ,

—~

+q-A-c?} # a_,; (n+l) (n+m+l) = 0, | (III-18)

w#th a__‘1 = Q, and a; = 1.

——T

Given A(c), Ince's method44 yiélds the desired
elgenvalue, c, and the coefflclents, a . in equatlon (IIXI-
17);' The &T enenergy is then glven simply by

rd

e = - (2¢/R)°. |  (III-19)

4. Normalisation
The wavefunction is normalised in the usual way,

i.e., we set

f

f

|
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<¥|y> = 1. |  (III-20)
/ v . - .

) N
. -
. 3
. .

The volume element in spheroidal co-ordinates is’

1

dr = (R/2)° (£2-n?) azands, ; (Irx-zi)
and hence, we have to evaluate

N2 = (r/2)3 {f+182(n)dn r3%? (s)s dE -

r*1s% (nyn2an flx (®rags. . ai-22)

-~

I chose to normalise the coefficients,/dL, such that

f+isz(n)dn =1 '- . (111-23)

£

The n-integrals can be evaluated analytically, using the
brthogonality relation Tatisfied by the Leéen@;e functidns,
o o
+1

f—l J

(n)P Mnyan = 2/(23+1) (j+m}l/(j7m)! . i (III-24)

in
gnd we find that

v = s tonlan = 1 20w 1/ (Lt {a.? (2n-1+2(1%-m?)
’ L-m . . . ‘
@ (I11-25)

~

+24d aL_l-[L(£+l)—m(m+l)]}/[(2L—l)(2L+l)(2i+3)].

L+1



Thus, aquation (111-22) reduces to

N? - (n/m3 ~2(6) (2vH) ag.  (113-26) N\,

a

This integral haa_io.be‘dohe humarically, and I chose to
evaluate it by Gaussian quadrature. Sinée integrals of

this general form appear several times, I will describe|

|

48'm?‘

the method used for evaluating‘them in some detaii.;

They can all be written -

’./{(u) = (R/2)§ leexp(-aﬁ) 9(5) dE-.f:\_7 n'(I;;-27)
- For example,>in equation (IIX-2¢), a = 2c, If.wejéhanée

the variable to x = a(g-1), we find that
t(a) = (R/2)3e™%/a f;“é“x g(l+k7a)‘dk;v (I11-28a)
-’ . / . | : ! _. 5 .

- this can be evaluated by Gauss-Laguerre quadrature, giving -

N [ : .
£ w, 9(e;)s - (II1-28b)
i-l} » : " ‘ '

I(a) = (R/2)%e™%/a
: ﬁﬁere
(3 =1+ xi/a. (III—28c)

The ihtegration p01nts, X and welghts, w., are given in
g S i!

s
|
y
;
I
|
|



ta

-

o ~ e S 3 ,'
_— : S Y " S
Abramowitz and Stoqun‘gffor various values of N, and I

used a 28-po&nt truncation of the 64-point !crmula,
althougs this Q%. probably ovet-cautious. Exploratory “

calculations showed that thls formula will praduce about

12+ (L) figure. accuracy for a wide variaty of function*.

e(x) whereas tho error in the wavefunctions 1- about ono

parq in 106 B | | ‘ A ) r

The programme computes the ‘value of N, and stores it

/" the contiﬁﬁum wavefunctions.

. g ;y_ﬂ;fﬂu»,w' c. Continuum;States‘ T
‘ 1. ﬁackground | . - ' ,’ﬂ -

,

§ e i,
Lo W ?he electronlc qohtinuum states for the two-centre,

¢

one-eigctron system have recegyed very little attentlon,>'

’JE ”bompared Vlth ;hat glven Lo tbe hound-state functxons.'

51

aatés, Oﬂak 5nd Poots’ dascribe the solution for Hz , in

x’
chnectLon wlth~photo—1onlaation cross sections for the

52

febule—lon.‘ Recently, Ponomarev and Somov ‘have

descrlbed the ‘solution for HeH , and an 1ncorreLt solutlon

flater cdrrected) for arbltrary charges has ‘been publlshed

53 I have used a method sxmllar to that

52

by Gteenland.

o

of Bonomarev and Somov. ™% Regular solutlons exlst for all

positlve energles, and for dlscrete values of the: separ-

} §
‘ at:Lon constant, A.

. for later use. Let us ‘now turn to the problem of computing

70

TN



// -_;:3:?2. Angular ’BQuation_.

v/‘/

-¥

CaT

P

AT

. : . it .
i : . - . [ - . a

it i O B —_—

-

d/dn {(1—n )dS/dnL + {pn-c2n2+A-m /(l-n )} 5 = 0 (III 29)

o o
4« R R e
. . ” - ’ <“‘ oo R - ,

71

We requlre sdlu{:ions to equation (I];Ir29) ewluch are " ,,_ o

regular in the int:erval, —1 <n < +1. aNow, (III-29) is

obtai.ned from the corresponding bound state equat:.on if we

replace a by de. This suggests that we can solve: (III 29)

in a manner analogous to that used for (III 9); we wr:.te S
S(n) - exp(-lcn)

A

;‘#gdfweﬂgptaih'asthreeatefmofedﬁrs{on;forﬁu1a £QI the d, 's:

,"
® .

LPI (p+21cL)(L—m)/(2L-1) + di {A-p —L(L+l)} +If

S fP-hc(wH(Mwl’(’ Qua =0, (-

kwii:h d 1 = O.d The eIgenvalues of A are real (as Ponomarev

'a:mi Somov gpir]t out, ,,they 41epend only on the absolute :,;e

v

':e‘; values of f.he t:ompiex coefficxents inm (III 31)) . @nd they

,\.'

(n) IS € ) 251 S
L L ’ -~ '1 o 3

1

Sy
Jo

’ .'an be‘- determined by Ince 's methodM for a gJ.ven contlnuum -



e

72

Stn) = I a p" m, (-3

L-=m

Sl

which yieldsea?fiQeLterm'recutsion_formula,for the di?eé"

~.

{L(L+1)—A+c [2L(L+l) Zm —1]/[(2L-1)(2L+3)]} -

o

— Qﬂa

R TR

i

-i'a~ . p(L+m+1)/(2L+3) + dL+é c (L+m+2)(L+m+1ﬁ¢1(2ﬁiﬂ?(2§+5)]

.

‘”Given an exgenvalue, A, the a 's can again be computed by |
;ethe method descrlbed in: W11kinson.47 'Notice that equatlons
}-(III-29) to (III 33) can all be obtalned from the .corres-
, ‘;pondz.ng. nbound state eQMatlons, (III-9 10 12 14 wis) “by y

k':reﬁlacingwc withhﬂaé;v ¥ ‘

.w'-

| 3. Radial Equatlon

- azae { 652',_5,1_}:535(/;;;.}?}: tat+re®e?-a-n?/( 21} x = 0_.‘,",,(;Iir'-_3«\:_:)i'.f

; . AN PSRN B Vo s e . : - )
R TR e Yol o . ) ) .;‘ o .

: e s
‘ We requ;re the solut;on of (III-3§) whlch is regular

. ' ‘ ._.‘ \
: at E = 1 At large &, this solutlon has the form SRR

e Y , IR TR B ¥ ;.;a' R

"',','-“{A,; : s 5 . . SR : ‘:Ej‘ w

xreg(s) m (B/r)\szn{kr+yln(kr)+6},

@

"o

3 "ai'-.i?. c? (L-m) (_‘;‘.'-i‘_i‘n—*l) /1(2L-3) (2;’;1) ] - _a_L_ i\ P (L-m) / (‘2L'-'v1?.)' +




Y:"Q/(Zc) = (z +ZB)/k '|'1,‘., . (I1I-35D) I}.f
B is ﬁhe normalisation conatant, and § 1s/the phase shift.-
' : Equation (III-34) 15 solved by starting the solutlon

-

' near the origin w1th a sexles expansion, and oont1

thls solution outward by numeriqal integration, it
‘can be matched w1th asymptotic solutlons to determlne the }
v phase shlit., The solutlon regular at £ = l h’g the form -

S S e »ﬁ:,~‘ .¢(@ ‘_,f, _',_ ft?¥ SR .
@ . {(e 1)/(5+1)}m/? PO, mrse

where F(E) satlsfles the equation

1‘"[ 5@

x"f; Near the orlgln, this can be wrltten aff'"m




e

"".""‘

2;,2 c2 + an 1 (2c2+q) + a, [n(n+l)+c iq:a] +
e 22,41 ~‘4*1)‘,.(‘n+ml*1) =0, (#1-39)

.:where a_, = a_ 1 ="Q; aud a u= l.A
The solutlon, r g(&;), ‘is continued numerlcally by

integration of (III-37) usxng a varlable-step, Adams-f'

54

Moulton-Bashforth, predlctor-corrector method, until a-

' 'value of g sultable for matchlng Freg(E) with asymptotlc

numerlcally, we have.seen ‘that the vaLue of the lntegrand

X

L - \

is requlred at. s ’;g values. E P whereas the A-M-B

_salgorlthm gives

L ‘the ArM-B integratlon passes one of the Ef' the proggamme
P : Y 7 |
g"pauses to use the fourth-order Runge—Kutta method54 to.

s

S §
calculate and store the Freg(g ).

. At large E, asymptotic solutlons to‘(III <37) are

e

‘ | 'Fi..('é) = (€+1> exr>+1{c£+vln(£+l)} u* (5), °(II_I-40),
.;il_dhd'if:wc ﬁtite R | L .
o ;~(£> I b, {2/{c(£+1)1r S N ¢ 5 ST I

-n=0

'solutions is reached However, for evaluatlng lntegrals 'd*



1‘”‘ . N \ ‘. S - .
- the coeffiéients satisfy a three-term recursion formula'

b i, clatnim—y? 1 iy(2nem} - b#t,{n(nfl)—yz+q+c2—n |

e iy[(2n+‘1) 72‘k'c_(‘2vn+m+:"1‘)‘]} 141 bx-:‘*lf‘:(n+l) =0, o (-VI’II--42)V 1
P L N .
with b 1 =0, bQ"t =1, Evidently, u (5) = {u (E)'}’ . »The

il

expression, (III—41), is an asymptotx.c expansion; if E is

large enough, it yields suffici‘ly accurate solutions ’ _
'.;",'1-‘ (E) .‘v "The phase shift is determined by matching Freg(E) -

‘ ".d c{Freq(E)/dEj to ,some suitable linear ’combination of the

asymptotlc solﬁ'ﬁoﬁs-' that J.s, we it ‘_ ’ &

L ‘eg(s) = §5{ei“ *(z)»+ e*‘a Fwy oo .,-;;{E' o

s -,~é. ’7*5". Y, (III-43aL T

iu -ia- B fuliil Loy

[erg(s)], =D (e [r (£>1' AL (a): b ,:g\-; B -
‘and determine a. We find that ~ | . . S

~ tana = ReFy/m*y (114-43b)

nt =t (8 (@) W(E) 7 ig(E) "1} exprig(d), T(1II-43c)




and N
g(ﬁ- ‘eE + Y,i;i ("E-F:i) . | o g (111-»441,)

" 'app'ropri ate

cenal

R‘*O

| a;;f Afgff(Lfléiyr}{:;'{

I-evy am!‘ Thorson %ave reported phase shifts for a

';.(Iixéngj

nmg - o / (/) + yIn@@), . . (11I-46a) -

the Hﬁ problem. but these contain an arithmetic errOr.},‘j-_

!?’
“?ﬁ“h’e %ﬁect phases are obtained by. subtracting c = lskR

frqm the:.r values ; o@er‘qumtities, such as the métrix -

Hé émgﬂtﬂ the¥wrepo:ted. aie~unaffected This error has
: 3130 been noted @ Gfsenland and Greiner.?? S R

o (x¥asn) |

e

‘ ; (III~46b) '




| , . : o <’ { :
L e'L’ m'r/em “‘:5(5'75)61.'1;6“‘:‘11'11\“ L s ATII-AD) Cf
» ] r ) ‘ .,"g' i B K ) ln”l‘ ' . »
If tM;:'coefficienhs .tn ‘the angular eigenfunctioa asre ‘-
&
nb\’.‘ﬁalised such that o R ‘ RN
e',,«,"‘ | Y
, V ¥y
*1 J’(n) an = 1,
SR % . " " A :
this requ:i.res51 52 W L o T T
C = 2/(2mcR) ? = 2/[R(mk) I"}e"’ N AIT3-49)

P e N .
. If one wishes to express the energir indatomic “units (2 Ry.

b

= l au) ¢ one has to be rather careful at this point. The,

w

density of atates, dn/de, in atonuc units is%i:e that in
gr

=,

e computes

i

_Rydbergs, and hence, ,Cau = ;-2"’ ‘(‘;Ry‘- The pro

'c (in Rydbergs) and stores it: gor later use.

<

5 Remarks‘ L .
'l'he represeﬁtatlon of ‘the- solutlons diffe‘ in some
'ways from that given by Ponomarev a.n‘i Somov.52 :i = |
,‘ I use an expans:.on J.n Legendre polynomals to compute
g the a.ngular solution, wheréa.s they employ a pOwer i

series near E = -l, _ followed by numencal Lntegration.
- b Us:.ng the extended asymptot:.c solut:.ons for ﬁxe rad:.al

o wavefunct:.qn (equations (III-40) to (III-42)) allows '-"i "‘r.

mre rapid/ calculation of both phase shxlfts and wave-

f 'ot,;ox_xs,.t 'I'he pomt, 5»‘,' at :which the numeri‘;éal °

/




4

t" ?

. solution is matched to the asymptotic solution, is

given by o ;j7\ : ot K o -

/ g . ) . ‘” : ) ~:,I' w;‘ o ”;I‘,
| | cE = 3y; S e (III1-50a)

~ Ponomarev a.ndﬂsoxwv?z%,state thatif%’h‘ey"found‘

T - = L 2.52, AR
R T T 0 eE = 50 |[A=cT+y"|. (III-50b)
e ffﬁ? L | | - R

* | xreg
c.. The representation of (E) near E = l_iswelso .
slightly dlfferegt but thls 1s not signiflcant.

L2

P T. Greenland 3"proposes a solutlon for the
continuum etates uhxchnle not correct. In partlcular: 
a.: Hekiméoees;constfeinggwyhioh'imply that the’statee,
S$(n), are pa;ity eigenstetee;*tegetdless of the charée
asymmetry; thls 18 clearly false. .‘ - .
b. He attempts to compute xe g(E) by fixlng the asymptotlc
- t behav1our of the solution, rather than the behaviour .
._?i_:l: ;‘ at E = 1 - . : ' ’ o .

Let us now look at some representatlve results.

, 6. Results ; ,\ ‘ - -
: -The notation we use labels the continuum states with
: the energy, €, the unlted—qtom-llmlt, angular momentum e

.

quantum number,

Table 1 gives SOme rep sentatiyemvalue9§£or the .

JUER



separation constants and phase shifts in HeH ; data shown

are for ¢ = 1. 0 RY. , and the states, so (&Pm-O), po (L=1,

m=0) , and pn (Lum:nll< for internuclear separations, 0<R<12

5au. In the united atom- limit the phase shifts all agree

with the appropriate Coulomb phasee ((III-{S) and (III-46))

modul ait Tables 2 to 4 illustrate the bohaviour of the
4 , ~ L3

, expansidh_coefﬁicients,13L[ of’thé'angular eigenfunctions

o P "E"

“m
for thqufme states, for 0<R<6 au. . R fk
p ‘

ﬁﬁqaﬁgtimghows the separation constants for the model

- system'uugh (ZA/Z ) = 1. 2, at energy € = 0.5 Ry., for the

" t

Sy

statesw 5§§ po, pw, do, dw, dd.‘ The results may be applied

.directlyggo a‘real bare-nutleus system with ZA" zB

integers (e. g., 12, 10), by scaling all distances as

1,'all energies ‘as (Z vy 2, ) ;~;

Figures 5 and 6 depict phase shifts for the model

‘ ‘system at'e % 0.5 Ry., and for HeH' at € = 1 0 Ry., for

the states,'pw, da, dn, fo, 4§, fr, go, £6, gm, ha. It is

1= .7/ —

interesting to note the systematic interleavrng and

; ordering of the phaseS'in the 1arge R region. wThoy,gppear

t

. to be grouped accordrng to .the value of (L+m), with phase

shifts decrea51ng as that index increases. ithin any group

of given (L+m), they are ordered by the’ value of L, with.

phase shifts decreasing as L increases. Members of a group"

never cross each other. Thrs behaviour seEms to be quite

" general for all charge ratios and ener@;es.

I
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| TABLE 1
/SEPARATION CONSTANTS AND PHASE SHIFTS FOR HQH‘H']

h

&= 1.0 Ry. and 6§ IS IN UNITS OF

4 8o HAVE PO WAVE o PT™ WAVE

s % TN SR R WY B A e
0.0  0.000000  0.32661'  2.000000 1.42903 ' 2.000000  1.42903.
0.5  ~0,019726  0.21542 z.osizlz 1.48671 2.000083  1.39992

1.0 -0,067583 0.08905  2.231426  1.54631 2.001287 1.33885
1.5 v-oﬁiisss7 -0.02076  2.480920 1;52845  2.006210 -1.26945 "
2.0  -0.154305 -0.11892 2.780038  1.47423 2.018430, 1.19966
2.5 -01157431 '-0.20910 3.106771 . 1.40952 | 2.041735 1.13187
3.0 -0.121627 -0.29334 3.438244 1.34357 Z;O79508 1.06667

305 ' -0.044246 -3.37280 3.800033  1.27934 2.134352  -1.00411
4.0 0.074055 - -0,44815 4.164259 1.21740 2.207954 - 0.94408
4.5 0.230295 -0.51974 4.547059 1.15752 _2;301ose,f’o;aas4i
5.0 0.419874 -0.58781 4.956207 1.09926 2.413727:  0.83100
5.5 0.637180 -0.65248  5.399372 V1.d42}s v%,5451sq 0.77770
6.0 0.876168 —0.71384 5.882991  0.98597  2.694259  0.72643
6.5  1.130917 -0.77200 .  6.411565 0.93045  2.859430  0.67709
7.0 1.396101 -0.82707 6.987263  0.87558 3.038956 0.62962
7.5 1.667318 -0.87921  7.609767 082142 3.231025  0.58394"
8.0 1.941226 . -0.92858 8.276389 lvdﬁvsals '3.433846  0.53999
8.5  2.215513 -0.97539 8.982417 - 0.71591 3.645729  0.49768
9.0  2.488734 -1.01984 9.721666 \0.65497 3\865132  0.45694
5.5 2.760112 -1.06213  10.487144 0.61352  4.090694  0.41771
10.0 3.029326 ‘41.10245 11.}71748 0.56773 ) 4.321242“\'b.3799o
10.5 :3.296346 -1.14098 12.66§871' 1 0.52174 4.555787_\.0.34345
11.0 3.561303 -1.17788 112,872869  0.47758 4.793513 0.30828
11.5 53]5244o7x -1{21;27' 13.679304 0.43529: 5.033756 v§.27}32

§,0858§s -1.24730  14.484988 « 0.39480 5275984 0.24149

SR

el

N
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Phase shifts for model system
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CHAPTER IV | -

RETE L N , : C Al

" COMPUTATION ‘OF MATRIX ELEMENTS

AL Introdhction'

In chapter II we saw how to formulate the theory of
slow atomlc coillslons 1n a way whlch takes account of
>
eieétron translatlon.“ I showed that the nonadlaHatlc

coupllngs whlch appear in pss theory must be modlfled by

4

L 1mportant correctlons.' These correctrons exactly ‘cancel

4

the spurlous asymptotlc pss coupllngs, and also produce

substantlal reductlons in the effectlve coupllng matrix

elements at flnlte 1nternuclear separatlons. " The deriv- j/‘

)

atlon 1s approxlmate, 51nce it assuhes that ‘the heavy

TN - g

partlcles behabe c%5551cally, but the main conc1u51ons are
/ N

‘the same as those ‘in the rlgorous, quantum mechanlcal

derlvatlon, glven by. Thorson and Delos.7
The formulatlon empIOys a sw1tch1ng function . ‘r;R),
to represent the translatlonal motign of the electr" as a

local functlon of its p051t10n/§_Apart from the aSympthlc
E:eqstralnts (£ texﬁs to +1 on B, and -l on A) &J.s un- .

deflned and the derlvatlon prov1des no crlterla for its

Spec1f1catlon.\ Th; problem of ch0051ng f remains unsolved

87
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: corrected matrlx elements are very sensxtlve to that T

_1nsight partlcularly 1f the

helements follows sbme obvxous pattern.

s of the nuclei. (

-~
L R

Lo

Lo " ".

'any reasonable choxce of f wh1ch meets ‘the asymptotic con- -

‘stralnts, but there are many tran51thns for which the

4

* impezs M

ch01ce.‘ Studles of the f-dep;;ﬂence can provlde useﬁul
o
hav1ou% of the matrlx

- I

The corrected coupllngs for tranSLtlong from 1ow-:-

-

‘lylng bound states to the e}ectronlc cohtlnu&m are known

to be hlghly sen51t1ve to varlatlons ln f.- In thls chap—
<

. ter, I w1ll descrlbe the gomputatlon of matrlx\elements -

L

for these tran51tlons. The motlvatlon for, and the results!

of, these calculatlons will be dlscussed in detallxln the
“ L - /> - p' . ) 5 - N c.
next chapter. = . [ . L I

/

. In pss theory, Fhe matrix elements for nonadlabatlc

i
'/

B Coqpllng Matrlx Elements

coupling are deflned/‘ o o S o . f v

3

-
P.
jn

rdlnate, measured from the centre of mass
; 4 -

MN) . fgjn has "angular as well¢AS lradlal"

the electron co-

s L

components, since the molecular states are- deflned in a

[T

L]



o ' i ;-
L T .« 0 o
. N i . ! s . o
! ) ’ . ; ¢ . . e : £
. : 1 . i .

[

one angular component

expre951ons used are jas follpws.

In chapter II, I shbwed that in the corrected

"ﬁ

« ‘, o R
< [ > \-{ Iv-2
“ ¢j|( V¥ |¢ , | g )
' \
- : . A‘»’ /
and , : =
N ‘ ~ t : . .
g . | Coe -
,an = (im/h) <¢j|[h ors°1le > C o (IV=3)
A ; S e I e ' ™ N
: 'I>\ ) .._‘ ‘ ‘ ‘ ’ * . = . °/>
with ‘ | RS
Y= £(5R) £ L av-a
. - *.' , »i'- _ . RN ' ! . -

hBO is the Born-OppenheLmer electronlc Hamlltonlan, ‘and r
is the

It is suff1c1ent o compute the radial component and

£ the above coupllngs. . The explicit

‘\\ - '- i . 0. .
, W ’ :
i. Radlal Couplings o '
IR e
2915,

-ih ‘<¢ |¢%v /3R);g[¢n>/(’(£“‘fej) a3 (,;'V_Sa). ’
in (m/zh) (e &) <b5 |z ofl0n> (IV-5b)°
_ o 2

v

w0

theory, 3(R) is simply replaced by 39(R) + Kg(R), where ‘ .\,

-g
lectron co-ordlnate, measured from the geometrlc
centre, rather than the

2



‘ the electronlc potential energy. To-obbai '

LR

(II 62&), I have used thg ﬁellmann-reynm_ relation.f"

'We need to express (8V /aa)»' in térms of. prolate

4

w.spheroidal co-ordlnates (see flgure 3). We,fiﬁd'that_'< 

7

" _ o ‘ : I ‘ N . ‘
‘_(6V§[83)59,= (e /?{j{zAQOSQA/rA f’zB¢°?GB/ﬁB~}‘L(Iv'§)*" 1

L3

| But o / ~ i Co

® rcoseJ %H(EUffJ)/(E—fJn),.'f. ‘7; ' -/7,~’.(1V-7)
- o . T E . 9
- -

'where J is A or B, and £, = -1, £ = 4. Thué,,wleipd-*

(R/2)3(52~n2)‘ave7an>;4'= (Re?/4) {2z, n(e%-Dre(1n)1/

&

e -kt eem . v-e

‘ H . ! ' R f
ii, Angular| Couplings o
o E o e
9% - - g1 ?¢a]£~gl¢ > | (1v-9a)
. \ ‘ ‘ | ‘ ‘Y‘ “ “ j
"g O‘ - -" - : . .,' —\ . .
(815, = Gm/2h) (ej-e) <oslx £lo,>, (xv 9§) -
. - ' ’ v ‘nﬂv
where Xg is the‘%omponent'of ;g perpendlcular ‘to the mol-" &

ecular axls, and Lyg is the y- component.pf the electronlc .

L4



4

fgsine = (R/2)(g -l)%(l-n )!s

‘/

N3

» b ._ /

=t eXP(+ @) {+[(£ 1)*(1— )*(na/aa—sa/sn)/kgz-ng)]

: / I |
+ i ?ﬁ/[(g 1)*(1 nz)*1/6/3¢) | /4/ (IV-11)

S ! : » o i o
A B

Computatlon of. matrlx elements reduces to separate -

quadratures over n, the "angle" varlable, and £, the
&
. “radial" varlable. -Ehe n-lntegrals'wereuperformed either
‘. v : oo .‘ - ’a'- \ | L
,“ analytically, er by 32-point ‘Gauss-Legendre qhadrature,/

whlchever wagfmore convenlent “and the E-integrals were

*done by a 28 p01nt trurnication of the 64-point Gauss-

!

..iﬁ



\Laguerre quadrature formula.

~states, this is sllghtly dif

" o
. v "3 [ . : o
: . M
\ . : .
3 B " ¥ . B
[ N .
. . .
N N
Y ' ‘ L A ,

a8
fégaardjexueptfo;mthose of;fsve/ak);., wne;e a logarith-
ﬁmip singulari§§ must be extracted analytipally. I will

ueaCribe the details of-thé matrix élamgnt computatiuns in

the next three sectiuné. Unless the calculation of integ-

rals hoAds a particular fascxnatlon for the’ reanr, I

N
-suggest th?t he ‘pass on quickly to the summary given in

£
%,

sectlon F. g

For those still with me, I will first establish the

notation. To avoid confu"‘ ’-al and final glecﬁronic

chapter III.

- .i. Bound States : o o B ‘

(40> = S Xopn(8) o0, | (IV-12)

where n and F are the unlted-atom-llmlt, pr1nc1pa1 and

angular momentum quantum numbers, respectlvely, and m is

‘the modulus of the azimuthal quantum number.

Spp(n) = Lzm dL?m PLmyé)' C Ly  (1v-13a)
. o
A(E) = expl-c 8) Fooo(8), _ (1v-130)

where c, is the eigenparameter, c

All integrals are straight-

92



. &, \ .
unprimed parameters,aand €' is8 the continuum electronic

LS

. R S . ﬁ
ii, Cdn;inpuszggtou ‘ ] . .

.

<oyl = spige(m) x0T, .08 o T (0). ¢ (TV=14)

¥
#*

' and m' have“ﬁhe same meaning as the correspopding

»

energy. o ' . ' - g

e

Spege(m = I & ™ e ™Mm, s av-asa)

~ L=m’
e ) ‘4 - ' } f ‘ m/2 . reg ' 4 _' .
X fome (87 = L=/ (6+1) 1V #7158, (6).  (xv-15b)

I will assume é!gt.both'the bound and continuum

states have been approbriately normalised.

'C. Computation of the Matrix
Elements' of L

L ¥4

d - B

1. Iﬁtroductipn~ »

The operators(.iig, link 2Fates with m' = mtl,' and /)
the integration over ¢ can be done by. inspection. Thus, .
in effect, the.opefatOr i8 B |

T 1,9 =t (£3/38 - m coth). T, (1v-16)
. . Q‘

Ail the intégrals over‘n éan be perfofﬁéd analyﬁically;gvﬁ
with the hélp‘Qf ;he recursion reiations satisfiedkby lhe_
?Lm(n)'s, and integ?ation by parts. . Whgh <¢j|‘is a

; /



[} '/' v‘ \

» !

" continuum state, the Eiintqudiu areq all of the form

\* ‘ ¢ ‘ \ - L ',
I(c,) = /) expﬁlcnz)quz) a (1v-17a)
> . : | ‘ .
“ = exp(-c,)/c, lgpw, 9(51’ ‘. (1v=17b)
\\ o o o : ¢ J Y
:-\\. g - L. xi/én) |
‘ ) . j

ﬁh&;e xi"and‘wi are the Gauss-Laguerre guadrature poihts

*and weights. ' ‘ L | o

v

I will nge the results for init1al ‘states with m =

0 (o states)‘ and m = 1 {w states). - - .

N .2311+‘ =‘<e'F'nlL+g|nPa> (m=0, m'=1l)

\hf*"
From equatiorr (IV-11),
v - &

L)

Uy =B ®/2° ] 'Z?? 1r(e:) (& —1)" {a<o+n/ d/ag ‘

f

¢

- B(o»mE} X [ (E) dE, (Iy-lea)

wheré o
|

S spagm @ nsp o an o (v-1es)

a(o+m)

]

(6/5) a, "ay’o + 1 2(L+l)/[(21a+l) (21+3) ]

° e . . : L=1
F‘n-‘Fo : N e .b ‘ Ty fc’.
idL, dL_ L/(?L—l){+ (L+2)/(2L}§< [(L+3) dL+2 dL .

R



N ?
, L e 4 T "dtle};)}
S v s
. . - {
o o =
and he
Blosm = ls () (1n?)¥ as; (n)/an an  (zv-180)
“ | . : N W ¥
re " ' | |
= [ . 4d o 2L(L+1)/(2L+1). N
L-l L‘ :I dL . . . . | . . .
Bqnce,‘ .
u
ESMER WV L 13 expi-c 6) Ko, (@ (&2-n*
{a dF_._(£) /A - (ac +BE) F . (E)} dE.  (IV-19)

¢ o A . :
. = = . .9 = =

3. I,o <e'r!o]L_ ]nrn>,(m 1, m'=0)
If we notice that ’

En(£2-n?) 70(e2-1)% (1-n2)¥) = £(£2-1) ¥n/ (10D 4

n(1-n?) e/ (%=1,

then, for m. 1, after integratiod over - ¢, '

N
A

(g2-n%) 1,9

bo(1x(e2-1%a/0g - £/(£2-1) FIna=n?) % -

[£(1-n ) %9/m + n/(1-n )*15(5 -1)7). (IV-20)



)

atY*ao :r(;’lri

SR | L C
where (cf. cqmtion (Iv=-18b)) et

[y

] m(n*q) - (875 agT'° 3’” + zx zc&w1>/ttﬁb+x)cza*a>l

r c I | Mo Pn£
jdL d.* L/(2L-1) + (MZ)/(ZMS) [ (L+3) d 442 -
. ™ N ‘ 0 S
L L dbfz°dLr“1}s (1v-2ib)
and
. $ . B . . o
Blmso) = I a,""% " 2n(141)/ (2141) . (IV-21¢)
bl . “‘ ‘ . ‘b"‘ . . .
Hence,
_ . - ’ } _ ' \
I,o=-1 (R/2)% /] exp(-c &) XS, () (BE-ac +od/ac)

(z 1)ls

Farq (6) d€. (IV222)

+

4. I,

= <e'P'6|L+g!nfn>{(m=l, m'=2)

From equation (IV-20)$ we see that



’ N s ‘(k A
te S ~s

.Wt’rn"i -‘,"sméf)f»é"45**n~-*1~ x.,m;m, (rv-ash
: . f; ‘ ;MWJ : P 2 ’ | m . : 4

. . ' Lo o g : :

.» ' - . “ e X * . ™ ;v ‘v'i? 5 ﬁ %

alrsd) = /1] 8104 ) 0;-n’)*" B (M) dn -
. (10/?) "a ‘dl"" + ,j,,"‘“‘”“ (m:)/lm»u (243 -

{3%13'8"1;?* (L-1)/(2L-1) # (L+3)/(2L+5) [ (L44) d,j;‘th” -

@b a"%al l): (Iv-23b) |

-

and | ‘ | L '

Br=6) = r*] spig(n) (11-n%)% azan + n/(2-n®H%) s (n) an

= 2+ a8 ™" 2(L42) (L+1)L(L-1)/(2L+1). (IV-23c)

—

There fore,

n

1t = b r/2)? ] expl-c ) x’?g 5(8) ((6%-1)"[adyak-ac -

81 - af/(62-1)7) B _(0) aE. (1v-24)

nl'n

B



. This completes the calculatlon of th%'matrlx elements

- of D;q; Thetangular,cdeonent of P(R) is then glven by
5970 _ . iy ot | o _
915, = ¢ (/2R Ipp.. o aves)
' We now turn to the matrix elements of (ave/aR); .
" . ) . . o~ (g /l'\

D. Matrix Elemehts of (a/an):
| o S - g
1. Introduction -

' We have to evaluate

\\

1, = gefr-m-l(ave/aa);g|nrm>,, . (zv=26)

‘ _ v o )
where (BV /aR)+ 'is ‘given by equation (IV~8) The integral

<

over ¢ is tr1V1a1 and ylelds the selectlon rule that the
matrlx elements are non-zero 1f and only 1f m' = m.

'Therefore,

L : 9L ‘; .ég g : -"‘ ST
I, = (Re“/4) 1) xz. (5) Xirm(E) (23 1,00 - 35 I_(D)} A,

§ o N (1v-27a)

* where T \

m

1,8 =+ Y et R /e spp ) sy () .

: (IV—27b)

If we factor S (n) and S (n) 1nto even and odd parts,

a

Cos(n) = se(n) +vs°(n)..

&

98



(£(1-n?) -n (%=1 )/ (6-m) 2 (s, (m) ;82

99

I,(8) (M}
. {s3 (n) SQm(”)} dn. (IV-28) S
Hénce, ;/
-A- f . | »
L | , i
= /I s -0y een)? RIS §m+sr Som) *
O a€ é . L
‘p(Sf mgfm T rm)} dn, | (IV—29a) »15;
'where ,/ N
q = ‘IR(ZB+ZA) S R(zB Z,) - o (IV-29b)
Thus, we héve to éompute / R
1, = %4 57 25T 0 x (s) I '<a) aE. (Tv-29¢)

The integrals, (Iv-29), are not trivial;'and‘it.is

instructive to examine their general behaviour, by looking’

at-simpler integrays which haveé similar properties.

° )



.‘l'}lm h . .'-' - ) - . .“. ‘ 100

- 2. Model Problem

Cohsidef the integral  ~ B

1(e) = /11 (o) -n(e?-n1/e-m 2 e () an., (Iv-30)

o

If we use the ‘:/that

RS | ~ e - o

‘Qn(x) = 5 f_l_?n(y)/(x y) dy, (Iv-31la)
where Qn(x)'i; the n'th Legendre function of the secohd

kind, it can be shown that- b

)

I(8) = 2/(2n+1) {(L+1) (L+2)" QL+2(1- L(L-1) Q_,(6)}

-.(2/3’48L,1.. | (inélb)
But f"
A; Qn(x) = 3LPn(X).ln{(X+lY/(x;l)} - wn-i(X)!
i.e_; Qﬁ(X) haé a logarithmic singhyarity‘at X = l.p iﬁ

- general, numerical integration schemes are inaccurate when
~such behaviour is present, and one has to extrabt the
singularity analytically; To illustrate the principle, -

_let us gonsider integrals of the type

' L,
P
\\,
7



i . ' 5“510}_

-

1= 57 e £(x) {ffi g(y) /(x-y) dy} dx, (Iv-32a)

‘where\f(x)-and‘g(y)‘are wéll—behaved functions, for which

Taylor expansions‘about unity are known:

LY

&

a

[}
n

F (x) |+ ay(x-1) + a3(x-&L2' £(x), . (IV-32b)

|

-

gly). - (Iv-32c)

R

o . | 2
G(y), bl + b2(l—y) +'b3(lfy)
: : f
Usihg functions, f4x) and g(y); fg; which I can be
evaluated aﬁalytically, em%%%sive calculations spéwed that

the‘following procedure works extremely weli; .

i. Evaluéte S .F;// - _ |
a1 1 | ’ |
I,(x) = /] {g(y)-G(y) }/(x-y) dy - (Iv-33a)
numerically, by 32-point Gauss-Legendre quadrature.
This yields
.16

I,(x) = e wi' ({glyy)-Glyy) M/ (x-y;) +

- {g(-y)=G(-y;) }/(x+y;) 1, (IV-33b

where wi' and yi are. the Gauss-Legendre quadrathre
A ;

weights and points. Near x = 1, I,(x) behaves like

A(x-l)3'ln{(x+i)/(x—lk}, and, at- largex, like l/k.



ii, Evaluate - ‘ ‘ . N -
L L

1,0 = e/ (x-y) ay (v-34)

b, In{(x+1)/(x-1)} - b, [(x=1) In{(xt1)/(x-1)} - 2]

+ by [(x-1)? In{(xr1) /(x=-1)} = 2{x=1) + 2]
=’2'-{le0 - bz(Qi—Qo) +_(2b3/3)(Q2’3Q1+200)}3

: !
'iii. We now have

¢ -
I= 7 é'x f(f) (I (0+I, (0} ax | (xv-35)
ST e (£ 00 + [EFG)] T;00) dx
RN ,
17 7 Flx) 1,(ardx. :
e 5\
iv. Evaluate | | 7o ) ~
' o ‘ { _ . _ :
1, = 7 ¥ (£ T (0 + [£60-F(x)] T,00) ax (1v-36)

by Gauss—ﬁagderre quadrature.48 Near x = 1, the
term in bpaces'behaves-like a polynomial plus
(x—l)3 In{(x+1)/(x-1)}, and the numerical integraﬁion"

= is very accurate. \\\‘



3]

V.

S 2
Finally, we need | ’)7
L Ig= ST R 1,00 ax.

VA ¢

The problem herg”is the logarithmic sinbularity~aﬁ X

- (IV=37),

= 1. Dlrect appllcatlon of the Gauss- Laguerre

lntegratlon formula glves very low accuracy. How-

-

,techn;que,vas follows, Consider

&

- weights. TIf n<N, the sum is exactly t

¥

X = - ln(t); - odt = - e-x'dx.

Equation (IV-38) then becomes

1
0.

I~z

{-1n(t)}" at =

Again, for n<N, the sum is exactly In,

gives us a method of evéluating IX' Write

LY

2

wj.{—ln(t)}n,

\'eVer, it is poss1ble to use a Varlatlon of thls
(1v-38)

~ where X and wj.are the quadrature ﬁoints anyy -

Now set -

(1v-39)

and this

F(x) I,(x) dx + /5 e X F(x) I,(x) dx (Iv-40a)

103
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_2}

‘ 31 _t - ijmﬁa', ,;
" where ';/;/?‘ A \
‘ ‘_", ~ | "..wf
t; =1+ exp(-x;), - z; =2+ x¥ ’ (IV-40Db)

A Y ‘ ."5.“ C .
fv ' " o ' - " - \gg 1
We now reﬁurn to the problem of comp tlng the matrlx
elements of (3V,/3R)3 . s in the model pkoﬁlem, the .

:ba51c 1dea is to isolate terms up to and including those

.which behave llke (E-l) 'ln{(ﬁtl)/(i l)}, bx.means of
s s
' Taylor expan51ons about E=n=1.

3. I = <e'T" ol(av /3R) 2 lnro> (mrm'—O)
o - . '9 L S . :
a. n-integrals * o . V?,'. y ‘ s
T : R
Near n = I, expand S (n) S (n) as a power series

in (1-n). Now ;‘a 'Nn"-“ s

2.0 2.0 = a (1-‘>e§‘é (1-m 2. §IVa41‘)
g (M) Ppom) = a, + Bo(1-n) +c (l-n)", =4la)

" where

a, = 1, by =-% (K¢L+L(I+D},  (IV-41b)

=j(l/l6)A{kK—l)K(Kfl)(§+2) + 4K(K+lfL(L+l) +

1

(L-1)L(L+1) (L+2)}. (Iv-41lc)
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Using.fhiie relations, it is a simgle, if
to write cf. equatibn (IV-29)V |

. : /

e e ..o o o e e .0 .
A(S1oSre*Sp1gSte) + P(SpaSro*SrigSrg)

=X )+ X0, {

5
s

L ” o2
= A+ Bo(l'n)‘+ co(lfn) .

o
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tedious, mattqﬁ{ -

?rpm'equitipns (Iv-30) and (iV-31), it can be shown that

anél(
o

I

£)

by "2
Co(l—n).}wdn

= 4 (80, + B (0,705 + (2C,/15)
o i
L g} + (273

Al - @-0 1/ (e=m? (a8 (1-n)+

(Iv-43)

(604—15Q3+1092-

5B0+2C0). .

<+

‘Therefore, Io'(ﬁ) iﬂ eqdatibn~(IV-292 is given by

1,0 (E)

]

11 e -n(e2-10376-m 2 om () +xo ()} an

. . . < . )
[ . 2
X0, (n)-A,=B, (17n) ~C  (1-n) } an. (xv-44)

op 4 Y
.

F

\ —

: Ring

s
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The leading logarithmic term in the éeéond'integral
o | IR : , '

behaves like (E—l)3ln{(5+1)/(g—l)}‘near E=1, and I used

Gauss—Legendréfnumerical integration to evalhaté‘thié

N

integral as a functlon of &; call the result Inum(E)

PLm(n) s can be calculated from their recursion relation.

b.~§5integrals

Equatlon (Iv-29¢c) now. becomes
ngflv‘"“""“'
, k™ < - | ,
= » reg anal num, :
I, = (e"/74) 1y xe'r'.o(g%; fnrp(g) Ax 7T +T TR ) g,
‘ - | | (IV-45)

Near =1,

reg _ 214a/2c_-1 N 3
exp( fng) (g+1) n " {a +B_(§-1)+

X ipiglE) X I.U(Ej) =
——
9.
-
where B o ‘ ‘ | )
. Qd =.a0b0, 80’ = albo'+ ;5 \aobl, (IV-46b) -
v, =% {Za,by + ajby + hag(b,-b))};  (IV-46c)

' ané“gi, bi are the |leading terms in the expansions, (III-

“38) (coﬁtigggf~states),_and (III—l?)‘(bound states), res-

pectively: ~Therefore,

'The
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,,,,,,,,,,,,

X007

~\

o 2 © o reg ‘ num
I, = (e“/4) [y exp(-c &) (X ip,(8) Forgl&) I (&) *
reg | L iipa/2c=1 ¢ Cvae (ro1y2
(T Trg (B Fpg(8) = (84113775077 La +B, (8 14y, (6171
I‘ . 1 ) »(_’///’,./ l
a 2 o q/2¢c_- -
. 1;‘8 (&)} ag + (e*/4) sy exp(‘-cn&;) (E+1) n~t {a+
. 2 anaiv » SR . :
B, (E-L)+y (E-1)7} T 777 (E) dE. . -~ (1Iv-47)
As in the‘model problem;fﬁﬂé”fiféé ihtééxalﬂ én be
pirfOrmed acéurately by Gauss-Laguerre quadrature; and the
second is evaluatgd in two parts}‘from 1l to 2, a'd from 2
to = (see equations (IV-35) to (IV-40)). The Q (£)'s are
-computed usiﬁg the explicit expressions near £=1, and the
‘pdwér series at larger 5—values.55
| 4.1, = <e'T'n] (ave/aR);glnrﬁ> (m'=m=1)
a. n-integrals ‘ o
We follow exactly the same procedure as in section 3
abeve. Near n =1,
P ’l(n)-‘P L) = (1-m) fa_+b_{(1-n)} (Iv-—4‘8a)'
- TK L : R ! ’ )
&here
a_ =% K(K+1)L(L+1), (IV-48b)
b, = - % a_ {K(K+1) + L(L+1) - 2}, (1v-48c)
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N

Usinq the above‘telationa,,we can expand the ‘product of

\
Atho angular eiqenfunetiona as a power séries in (l-n):

\
: : . \ ‘
e e (o] \ i .
q(SF'nSPv+SP'w Fn) + p(SP ‘n Fn+SF'nSFn), \. '
i . ’ \\\
. \
= XE_(n) + XO_(n) . A - (Iv-49)
\'\ .
= (1- -n)}. - o \
T (1 v) {A"+B"(l n)i. \

.

_ From equations (IV-30):and (IV-31),

1272l ) = 1 tga-n?)ong2-n 1em 2 e
2 . . '
B, (1-n) } an - > (IV-50)
= -0 2B /15) (607 ~1¢ o)
4 (A (Q,-03) + (2B /15) (6Q,~15Q3+10Q,-Q,)} 4
. A2/ (a+2B);
and ‘
A G {E(l-nz);n(ﬁz-%di/(ﬁ-n)z<{XEn(n)+XOn(n)—
B (mm-B_(1-m2) an . '
L oom o
.41 6 .- I |
- ?,f_l H(n) dh*?”iilwi {H(ni)+H(—ni?}, (1v-51)
& \'\\
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?whoro Nye wi' are the Gauss-Legendre quadrature points and
waights.
b. E-integrals

Ty (0%/) 17 exp(-c ) X10F. (8 By (8 (130 4

1P g) ) de. (IV-52)

Near £ = 1; o SRR

"
X253, (6 oo (6) = (6-1) (e+1) V2807240 +8_(£-1) ),
| .o (Iv-53a) \
where ‘ |
a 1= agbg,.e B = ayby + X agby’ ~ (Iv-53b)

. and a, s bi are the leading terms in the eéxpansions, (III-

o
. Al

T 38)'(contihuum states), and (III-17) (bound states), res-
pectively. Therefore,

T

f"'= (e®/4) 57 exp(-c 0) (xI5F, Tr(g) P, (8 Mg &+ -

(23, () F (8 - (-1 (0 Y2072 (arap (6-1)1)

1373l (£)} ag + (e?/4) ST exp(-c B) (£-1) (6+1)%/ 202 (q 1
| | |

B (e-1)) 1272 (g) ag.  (1v-54)

i
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'rhon integrals are oomputnd exactly as in f.hd I cnc.
This comp).otu the cnlculution of the mtrix elenents
of (3Vy/3R)2 . 'The radial component of E‘R’li' then given
. g ‘ * v 1
by ) . . i

d
' . N

R Ly - - J
. (P74 = -0 Ip/(ep—eg). (1v-55) L

(

We now turn to the matrix elements of ;9. - \

E. Matrix Elementa of [hscll )

1. Introduction | . . i

We have to compute (see equations (IV-5b) and (IV-

(o]

Sb)): | ‘ = . o %
i. ~ImR = <e'£3@[zgf|nrﬁ> oy | (IV-SGaQ x)
z o= fR/ZLFn - SR : '(IV-ﬁsb)

i;. mgm' = <e'F'm']ng[?Fm> o (IV-57a)
xy = (R/z) (£2-1)% (10" cosy  (Iv-sTy)

/ ’ »
For the switching function, I proposé to use the
&;

form (see flgure 7):

-

-

£ = tanh(An+B), - - ' . (IV-58)
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< '

)

-

Figure 7. Model switching function: f = tanh(2%’-—0.2) '



'+ 1,. for the angular component. -

nGausstegendre quadratufe.

. .
where the parameters, A and B, are to be determlned

e

This

w111 be dlscussed 1n detall in thé next chapter.

' The 1ntegrals over ¢ can be done by rnspectlon, and
yield the selectlonlrules for m: matrix elements are non-
" Zero only 1f m' = m, for the radlal component; and m' =‘m
Of course, these rules
are the same ' as those for the matrix elements of (BV /aR)+
and' L g’ respectlvely‘ ~Both the n- and E-lntegrals are ‘
evaluated-hﬁmerically, and they are quite straighrforward.

2. E&a}uation of‘ImR

R

It = w2t o] exp(-c, &) X’g??.mm- Farn(E) (£%1,-1,) ag,
' - /o (Iv- 59a)
| S ‘ |
_/where S
1y = I Spig(n) Spp(n) A tanh(an+B) dn,’  (19-59b)
‘I‘ —:f+l s | (n) S,_'(n) n3 tanh (An+B) dn (I\‘7‘-59c') '
2 -1 °I'm °T'm R ) )

T?he integrals;>ri and Iz} are evaluated‘by 32-point
To simplify the expressions;,

!
wr1te n S

(n) Sp ‘(n) as-the sum of .even and odd parts,

LN

ns m(M) Sp ¢IV-60)

I

_(n) = SE(n) + s0(n),

13 o g

o

which can be calculated:explicitly.fromkequations (Iv-13a)

112



e 113

“'"L'}

;“and (IV-15a). Therefore,

16 .
I, = jil w {[SE(nj)+so(nj)] tanh(Anj+B) - [SE(nj)-Sq(nj)]
.tanh(~Anj+B)}; ‘ . {1v-6la)
and S :
16 o ~ SR
I, = a : : : - ) - s
2 jil wy' {[SE(n;)+50(ny)] tanh (Ans+B) [SE(WJ) sanJ)L

tanh(—Aﬁj+B)} njz. '(IV—61b)
- o

g

The E—iﬁtegrals are now evaluated by Gauss—Laguerre

RGN

e

quadrature.
3. Evaluation of Im4M“

iIm+m' =k (R/2)4 fz exp(-éhﬁ) X:??,m'(g) Fnrm(g) (52_1)5_}

, . . N .
: (& I3-I4) dg(. (Iv-62a)

3= L1 Spape (1) Spp(n) (1-n®)* tanh (an+B) dn:
- ' (IV-62b)

and
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-—" +1
Te = /o

, | B | (IV-62c)
. 55

Spupe (M) S, (M) (1-n)% tanh (an+B) n? an.

.The féctor of ¥ comes from the integration over ¢. Now

m+1

‘m%l
(n)=p 117}, .

L+1

(1-n%)% 2. ™(n) = (2L+1)7L (o

and this relation caq)bé’used to Simplify the integrals,
so that tﬁey only‘involve one set of PLm(n)”s.  If m' = m

+ 1, use the relation to éxpress (l-nz)%.S (n) as a sum -

I'm

L
of P n (n)'"s; on the other hand, if m' = m - 1, use it to

L
express (l-nz);i Sr;m,(n)‘as a sum of PLm(n)'s. In either
5 .

case, write (l—nZL Spag (M) Sy (n) as a sum of even and

odd parts:
T

(lénz)}s Sr'm'(”) S;‘m(”) = .YE_("n) +YO(n):  (IV-63)

Thus, I, and’I4 reduce to exactly the same forms as I,

(equation (IV-59b)) and ‘I, ((IV-59c)), and the evaluation

!

, ‘ , . l
of I © , proceeds on exactly the same lines as that of I RJ
" m+m : . N . . ‘I‘ ) . R m .
The components of E(R) are -then given by
g'/ R i ok _ R _
,IA ]jn = (im/2h) (ej en) I S - (IV-64a)
V[Ag]Q = (im/2h) (e.-e ) I © (IV-64b)

jn j n mrmt



F. Summary

In this chapter, l have described the evaluation of
the matrix elements af E(R) + E(R) in great detallﬂ for
tfansitions from bound molecular states to.the electronic
continuum. For the next chapter, I would like‘the:reader
to imagine that welhave‘a "blackaOX" computer programme.
If we giVevthelprogramme: ’

i. the nuclear charges, e.g., Za = 2.0, z5 = 1.0

ii. Dbound state, united-atom-limit quantum'numberé, e.g.,

n=2,T= 1, m = 0 (2pc state)

iii;— contlnuum state energy (or energles), united-atom-
limit angular momentum,.and azimuthal quantum
numbers, e;gQ, g % 0.5 Ry.,.F'_t 1{(1)5, m' = 1
(p, 4, £, g, and h T-waves)

iv. the parameters, A’and B, in the switching function
v. the desired range of R—values, e.qg., 0.25(0.25)10.0
'then the computer will calculate for _us, at each R—value.
i." the bound state eigenenergy and separatlon constant‘
ii. -the continuum state segaration constant and phase
ehift~ | ” |

i

iii. [PIR 1y, and ~M['"Pg‘(R)+Aag(R) 15
In our example, it w1ll calculate the angular coupllngs
from the 2po state to the flve partlal ‘waves spec1f1ed
In theﬁnext chapter, I will dlscuss the varlatlon of,the
matrix‘eiements with the parameters, A and B. We will
assume that‘thenprogramme is debugged. ..

'R
o
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CHAPTER V
RESULTS

A. IntroduCtion56

9

In earlier chapters, I have pointéd out that non-

adiabatic couplings between low-lying»bound states and the

electroﬁic,éontinuu@_are extremely seﬁgzzivé to’the choice
of'ﬁhe\sﬁitching fugétidn. Studies of this f—depqﬁgﬁnce

may provide usgful'insiéht; and it maj”also Pebpossible to
choose an f which is in some sénse "optimum" for a partic-

ular problem.-

Such.studiés haye beeh carried éut by Thorséh and -
¢0workers,2 in éonnection wifh_the calculation of direct
_ iﬁpadt ionisgtibﬁ érqssyfections in H+—H(ls) collisions.
Fof each boﬁnd staté'thfy studied (lsog{ 2pg;,«2pnu; in
‘unifea atom notat;on), they.fbund that a'definite;cboicé
for the switching fundtion-may be made, which simulta4 C,
néoUsly and’SYStematically redﬁces the ;dupiings from that
" state to all continuum states, in most cases by several
‘6rdefs of magnitude. Whereas ;hé uﬁcorrected psértheory
predict; large c¢couplings toA36—40 continuum éa;tial-waves,
with the epyeiope of these coupliﬁgs having a range of

about 40,aﬁiithe'corrected couplings are significant only
! } o D :
R ST
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Ly

\
\

Ifor the first two or three partlal waves, ‘and their range
is less than 12 -au. It was shown that the switching
functlons which achleve these spectacular reductlons do

not depend on the energy, or other" quantum numbers, of the
continuum states, nor upon the type of coupllng cau51nq -
transltlons (radial or angular), however, the f's are
%f:ferent ’for each dlscrete state. From these results,

.one could infer that the switching functions so determined .

are characteristic of the discrete states themselves, and .

and might therefore be relevant to the4COmputation of
corrected‘cduplings fOrvtransitions other than ionisation\
. -=~for example, close coupllng between discrete states.
ThlS possibility was an 1mportant motivation for the work
‘reported in this chapter. I have extended the studles
de5cribed in'reference,Z to electrically asymmetric sys-
'tems, such aereH++, and to additional dlscrete states; I
~have also made the procedure for selectlng the sw1tch£ng
functlon parameters more systematlc. The corrected matrlx
elements reported here can also be used to. calculate 1on1—
sat;onvcross'sectlons, for these more general systems. .
The\formulation‘of‘slow collision theory using ™
iswitchinghfunctionS'can be extended so that each'diSCrete
electronic state,.|n>, has a translation factor with a
different chjaract’eristikc; Switching_ functio‘n‘», fn (T ,-ﬁ) .
This extension ‘is quite straightforward at the level of a

semiclassical approximation, and the main results are as



follows,(see.Appehdix).

i-

ii.

iii.

lation of a close-coupling slow collision problem, with a o

;

The resulting close-coupled,equetions have the same
férm as those-derived in chapter II, ahdtthe
expression for the eorrected nonadiabatio.coupling
matrix elements also has thehsame‘form'Ksee equetions
(V-2) -and "’ (V-3), below)

Since the’ sw1tch1ng\functlons, fn,;fj; are different,
the electronic states, [n>, |3>, are not orthogonal,

-and the corrected nonadlabatlc coupllngs are not

"Hermltlan, however, the non-Herm;tlan character, o

exactly compensates for the non—orthogonallty of ;he

basis kets, and guarantees that the coupled equatlohsr

St
|/

i

conserve probability
In the asymptotic.channel limits, the eleetronic
states ére rigorously orthogonal SO vector solutlons

to the coupled equatlons glVe dlrectly the 1tarz

§—matr1x for a qolllslon, in the limit, t.+ 4o

!

This establishes that alswitching funotiqh formu* '

different switching function for each molecular state, s_

3 : ’ - . . ' . ™

provides a formally valid theory (provided,” of course,

“that

the fnfs satisfy the asymptotic constraints).

As I pointed out in chapter I, most'earlier-treat-.

ments of the slow colllslon problem, whlch correctly take

account of boundary condltlons and translatlonrfactors,

can be recovered aS’speq1al cases of this general

118
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' formﬂlation. In electrléally asymmetrlc systems, the

molecular stataes asymptotlcally correlate ln a one-to-one
. /
ffashlon with atomlc states" of either nucleus A or B. If

\ /
we choose f = +l for the asymptotlc B states, and f = =]

for the A-states, the formulatlon of ‘Bates and McCarroll3

is obtained. . ThlS is also exactly equivalent to the

formalism (based oh'projectipn‘Operators)iprbposed,by

24

. . Matveyenko, and is essentially equavalent to the."disF

.E torted cluster states"umethod of Y. Hahn.z3 For symmetrlc
systems, the connéction. bétween a sw1tch1ng functlon
“,approach and these other methods 1s not so clear.

. "In this chapter, T w1ll descrlbe the selectlon of a
@ ) )

more elaborate set of SW1tch1ng functions for several

discrete states of two-centre, one-electron systems. The

Lo
s
lf\

states studied are the lsc, 2so, Zpo,.an, and 3doc states }
a(unlted aéom notatlon), for systems with nuclear charges,

ZB = +1.0, +1.0 ¢ zA < +2.0. The selectlon ‘criterion is-
based on the remarkable sen51t1v1ty, of contlnuum coup—
lrngs from these states, to the detailed form of the ”ﬁq >
switchingufunction,-as reported'ear'lier2 for ﬁ2+. We find

that there are very spec1f1c ch01ces for each sw1tch1ng -

¥

: functlon, f (r R), which are 1ndependent of continuum -
_state,propertles, or the typevof coupl;ng con51dered, but

[

e

are characteriSEic'of each discrete state,; |

earlier, this approach suggests that these switching

functions may. be appropriate for problems
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than‘the ionisation one.

These calculations are not based rigorously upon ahy
formal variational principle, nor is the set of switching
functione ;o ohtgined unique, or a "beet,“ choice in any
absolute sense, ﬁoweVer, this set may(have some advan-
‘tages for close- coupllng studles, and this point is dis-
cussed in section D, by some comparlsons w1th alt@rnatlve

t

-fOrmulatlons.'

[ . ‘

In the rest of the Introductlon, I Will summarise
the deflnltlons of the coupling matrlx elements. Seotion

B descrlbes the procedure used to select thq sw1tch1ng

functlon parameters, and section C presents the results of ¥
the calculations. / .
In uncorrected pss theory, the matrix elements for ,
nonadiabatic coupling are defined D
B (m = s ' <
jn(R) = _lﬁ <¢jl(”;R);l¢n>. : (V-l) o
" In the corrected theory, §(R) is Smely replaced by Pg(R)
+ Ag(R), where - , e
59‘(R)‘= -ih <¢'l($ )+l¢ > (v-2) 7
jn T 3 R'r!*n” " '
- ‘. ‘ ‘ R ' : ’
and , L _ ' o \f
- i s
*g e (im/h) g S
A (R = (im/h) <ol Mhgq,s, P1]e >, -3



o o121
with

g _ +. -+ ‘ _l '
s 9= % £ (T:R) T o Lo 4)
These equations are exactly equivalent to equations (IV-1)

to (1v-4), withjf(?;ﬁ) reclaced by'fn(r;ﬁ) (see Appendix).

B. "Optimisation" Procedure
For their calculations on the H2+ system; Lebeda,
Thorson,‘and._Levyza used a switching function of the form

'fn('{‘-;ii) = tanh{Bn(R) Rn}, C o (v=5)

.

‘where B (R) is a variable parameter. - For each dlscrete

state they studied, at a series of R-values, they plotted
the magnltudes of the corrected radlal coupling matrix
elements against B, for a series of partial waves. At
each R, they showed that‘there is a particular value, BA,
which produces spectacﬁlar reductions in the corrected
coupllngs to higher partial waves, relative to the pss

values. The same- value of B was obtained by 1ndependent‘

~ calculations atyseveral_dlfferentrcontlnuum energles.

Similar calculations by SethuRaman, Thorson, and Lebeda2b

for the angular‘couplihgs gave approximately the saﬁe
values of Sn'as were obtained for radial couplings.

I have repeated these calculations,_and extended
1 - .
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3N
i1

them to:additional discrete states, and to glectrically
-‘asymﬁétric systems; rather than determine Bn(R)Agraphié—
ally, I have madé the selection procedure automatic, and
numeridally more precise. However, the @ain idea, and the

behaviour dbserved, are the same as in reference 2. Using

“y . . . - LI
4

a'suitable ﬁérametric fo for the switching function; we
look for gpecific choxJE of the'déffning parameters which

achieve large, 51multaneous reductloXS in as many of the

«contlnuum coupllngs as p0551ble, and we define as “optlmum
the parameters which best achieve thls. Thlz idea is
jﬁstified by the remarkable results obtalned,~rather than
by any a priori arguments. |

For a system with nuclear charges, ZA' at each

ZB'
R, and for each discrete state, [n>, considered, the pro- 
cedure that I used is as_followé. |
i. Conside£ a set of continuum states, {<j[}, with the
same (arbitrafy) enerqgy, ej, and azimuthal quantum
number, m'; ahd linked to |n> by either radial
\(m'=m), or ahgular (m'Qmil),.coupling. The sét,.
{<3j]}, is thus a set of "partial waves" characterised
i by the‘"angular",eigenvalues, and I_havébindexed
| them.by the corresponding united—aﬁqm-limit orbital
. angular momentum quantum number,. L'. .
ii. For each state, {jl,bwe define théiresiduuﬁ

1~ . ! - |

p.. = |1 + (AJ Pjn) |, . , (v-6)

jn n
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iii.

fn =

+

iv.

where the matrix elements are the radial (equation
(IV-5)), or angular (equation (IV-9)%,'compon9nts of

B9 and AY (with f replaced by £). is just the

‘ ?in
magnitude of the corrected coupliﬁg, relative to the
‘uncorrected (geometric centre) pss matrix element.

The parametric form used for fn is
tanh{R(%8 [{2,+Z )n+(2, Z5)] + a 1ln(25/Z,)) H(V-7)

where an and Bn are variable parameters. This
reduces to the form (V€§2}'for ZB = ZA; it is equiv-
alent to the form, tanh{K(Enn+An)},(cf. equation (V-

58)), but it displa?s more explicitly the observed

charge dependence in the optimum switching functions.’

For each set of continuum states, we determine the

parameters, ay and Bn’ such that the\sum
> . -

/ l)

‘(ch)

- . ~

Sn(anlﬁn) = § P

is minimised. Most of the ratios, pjn’ are very
sensitive to changes in fn: the residua of the first

two or three partial wave coupiings are only changed

’ slightly by varying fn; but those,ﬁcr'all-highef

partiél waves vary by orders of mag i%ude, and the

_same choice of fn reduces all of‘thLm together. The

bjh are typically much more sensitive to B than .to «a.
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.- The sum in equation (V-8) may include all of the

*”pa}ﬁial waves cennfderad (up to L' = 10 or 12), or it may
include only some of them--as long as the higher ones are
- included. 1In searching for the minimum, I found‘it con-
veﬁient to omit the first two or three partial wave coup-
lings, because of their insensitivity to changes in§fn:
the‘minimum is much more sharply defined when they are
excluded. However, the "optimum" value: ebtained for
B,(R) (to three siénificant figures), and o, (R) (to two
sig. figs.) remain unchanged. |,
\\\-& This pchess is reée‘ted for other, arbitrarily
chosen, energies, and for all possible types of coupling
from the stete, [n>, at a series of R-values; and the

; valﬁes of the "optimum" parameters are compared. The

results are described in the next section.

C. Results of Calculations

1. Behaviqurlof Optimum Parameters

(a) The prec151on with wiich the optimum parameters
cen be determlned depends on three factors: (1) the Tharp—
ness of the minima in Sﬁ' (2) Epe agreement between deter-
minations using different continuum ehergies, end (3) the
agreement u51ng dlfferent types of coupling. Usually,
these factors are commensurable:)and we can determine Bn

to three significant figures and a, to two significant

figures.



(b) In avery case, the optimum parameters are

independent of continuum energy.

(c¢) In all cases (except for the 3du state; see
items (e) and (h), below), the optimum parameters are the
sama for radial couplings from |n§ as for angular coup- |
lings; in particular, this is true for the 2pn state,

. which is linked by angular couplings to both ¢ and ¢
j éontinuum states,

(d) I have redetermined the parameters, Bn(R), for

both radial agd‘angula} couplings from the lso_, 2po,, and

va‘_1 states of H2+, which were reﬁorted in reference 2.
The new values lie well within the (gﬁfphipally estimated)
ranges given in‘reference 2a, foi t?e radial parameters,
but do not always agree with the estimated‘anéular param-
eters of reference 2b. The presént numbar§ are the more
reliable.

(e) I have also determined Bn(R) for the 250g and
3dog'states of H2+. However; for the 3c1<7.,g state, the

angular couplings are not very sensitive to the choice of

B, and the resulting minimum is nearly flat for 0.02 < B8 <.

0.10. I have taken BnO = BnR herg< as is found for every

other case.

(f) I have studied the 1lso, 2so0, épo, 2pr, and 3do
states of the asymmetric HeH++ systeﬁ, and the 1so, 2po,,
and 2pnm states of the intermediate model systehs with 2Z_ =

B

1.0, and 2, = 1.2, 1.4, 1.6, and 1.8. If £ is described

A
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.

by equation (V-7), the effects of. charge asymmetry are
very Well acco\zged for, and we can take the optimum values

Of 8, (R) to be The same as those for H2 ‘Typically, the

-

,Bhfsurface has a deep, somewhat elongated depression in

/ . I
the- (a B8 plane, running almost parallel to the a-axis.

Wlthln ‘this entife region, the residua -for the higher

-3 to lO 4. "There-

,partial waves are all of the order-lO
Nfore, smgll changes in B (R) tay be‘offset by compensating
‘larger changes in- o (R) . Whll remaining'in the optimum |
‘region. In ‘mgsticases (but see item (g), below), the
rangegoffaCCeptahle B;Values does not Varyfromfthe'H’z+
values by more than i% to 4%. The important point'is that

no 51gnificant further reduction of coupling matrix

elements occurs elsewhere in the valley. -
The optimum o (R) vary slowly w1th charge asymmetry
“(g) At distances:fR 2 2 to 4 au, the optimum param-
eters forrthe lso ahd_Zso states of HeH+f cannot be so
D _ ‘ «
”precisely determined, Even at short distances, these
'mstates are dominantly atomic states of the He+ ion, and
the‘appropriate switching funCtion is -1. Thereuis a wide
prange of parameters, a and B, yielding that Simple result.
':At larger R—values (R 2 12 au), this becomes the charac-.
teristic situation for most of the molecular states of
HeH++; in effect, the deep, elongatedjyalley described
above becomes very long and very Broad. This is to be

expected,'BecauSe.the very simple "atomic" switching



127

. .
‘functions, f = fJ’
However, the lso and Zso states of HeH are the only

“a

-.cases where such very simple choices can %roduce eff1c1ent

are alway asymptotically correct.

reduction of the spurious pss coupllngs at the small to

v _ {
moderate distances where the physically real couplings
occur.

(h) As in the case of H +, I foun that*thevangulér

2
couFllng matrix elements for the 3d0 st ‘te of HeH are

not‘very sensitive to changes in o and B, and I have agaln

|- .
takén ae = aR, and B = BR-

!

Flgure 8 shows the values of“B (R) vs. R, determined

h

for H2 . PFPor the 3dog.state, the crosses represent,the

valhes determined’for the radial quplings alone. For the
‘remalnlng states, where an error bar appears, it lndlcates.’
the difference between "hest" values for B {R) obtalned
. ékom radlal and_from‘angular couplings; where only a cross:

- appears, this diffe;ence is too smell to be-ehown.' Figure

. ) + ; B :
9 deplcts’an(R) vs. R, for HeH * (Bn values are those for

+ . s
H, ).  Error bars and crosses have the same meaning as 1n

figure 8. The large uncertainties 1n a,;.. and a250 are , '

o

related to the siméle behaviour of the switching'funq;ions
for® these states. |

Figures 10 and 11 are plots ef the "eéﬁimum"‘
switching fuhctions for‘ﬁf+ and HeH " vs. n, at R‘= 8.0 au.
In figure 12, I have shown the behaviour of the sw1tch1ng

}

again at

function for the 1lso state, as a functlon of ZA'
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Figure 12. “Optimum"'fl

t 3 - ‘
og S as a function of Z.,
/.bwith z, = 1.0, and R = 8.0 au



R =°8.0 au. Thisvillustrates"GEry clearly the development
. / . ) .

1’ as 2, increases. °

Table 5 gives detalled results for the "0ptimum

of the atomic character of £

. parameter,_Bn. Tables 6 to 9 show ‘the "optlmum" values of

LS

s

O as a,function Qf Z

A.
. ) ]
2., Matrix Elements
To compute corrected nonadiabatic couplings to the

’rcontinuum, I have used the;straighteline approximations

- for both B (Rl and ap (Rlvvs. R, whlch are shown in flgures
8 and 9. ‘It would appear from the flgures that thlS mlght
introduce large errors in the matrix elements at’ small
values of R, but this»is not the case. For R < 4 au, the
uatrix~elements to higher partial waves are extremely
’small, while’the couplihgs to the lower partial waves are
not very sensitive to cheuges‘in the switchiné function
‘parameters. Whether such departures from the "optimum"
oarameters can be used in computingldiscrete to discrete
coupllngs is not so clear. |

‘I have calculated the; corrected matrix elements for

the five dlscrete states mentloned, for H and.HeH

2
~ The corrected matrix elements for all but the first few
partialrwaves are negllgible, and’these fewiare usually.’
siguificantly‘reduced’inﬂsize and renge; By contrast, the
pss couplings ere all large and.very long ranged. '
Notatlon in the flgures labels bound states (|an>),

S T
T

and continuum states (<e'L' m'fkﬁjf‘

133
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TABLE 5
"OPTIMUM" 8 's, DETERMINED FOR H2+
lso 2s0" 2po
R L- 3/3R L 3/ 3R L 3/3R
% /¢ Y /. % /3R
2 .399  .400 2231 L2239 ;212 .203
4 .385  .385 .2050  .2053 216 .217
6 .402  .403 .2033  ,2037 .220  .220
8 .424  .424 .2073  .2073 .224  .223
10 .439  .439 .2136  .2135 229 .227
.450  .451 .2200  .2201 237 .231
{ .
2pm 3do
R o Lo L, 3/3R /B/BR
2 - - .161 1042
4 .161 .160 .152 . .063
6 157 .15% 146 ©.063
153 ‘ 063
8 149 .154  .151 .058
10 .152 .154 .154 . 052
.159 .159 .159 .046 _

134



135

- - S'€E §°'t 06°C 79°C ZT
- - € ‘ € '8'T  §°T 8°Z 0°€ 62°C vZ°'T 0T
z 4 0’z €% o'z ez 62z 6€°C €ET°C 60°C 8
0'z ('T §°T LT . 86'T ¥0'Z  28°T WB.H. €L°T TL'P 9
¥8°T (8°1 v ¥1°Z v9°T 65°T Z2°T €Z°1 62°1 mmra v
6L°T LL'T €0°7 66°T 8%°T 9v°T ~TI0°T 00°T 69°0 89°0 z
¥e/e mm” ue/e »m_ ¥e/e >m ¥e/e »m we/e »m ¥
0°2 8°1 9°T vT | 2°T =
dIVLS om,H JHIL ¥0d ~m.a_o WWOWILJO.
— : ‘

9 dIdVYL

e

L



136

90°- Z0°'-
Zo°+ To0'+
S0°+ 90°+
LO"+ LO"+
T2+, T2°+
- ¥E+ 0E°+
ge/e »m
0°Z

yI'- ¥I°-  €2°- Zz'-  66°- 68°-  ¢°T- 0'T- 2T
S0°- TI'- . Tez'- 0Z°-  6S°- G&'-  OL'- 69°= 0T
T0°-= 00°+  80°= (0= . BE'- ZE'- 9= Sp'- 8
20°+ €0°+  pO'- (€0°- °  €T°- ZI'~  €€°= ze'- 9
8T+ 8T+  pT°+ €I'+  60°+ 60°+  TO'+ TO'+ ¥
€E°+ O0E°+  EE°+ 6T°+  6E'+ 9ET+ * LEH SE'+ T
ge/e 1 ge/e T % yge/e m. - dae/e 1 d

8°1 9°T bt T = 2

u

qIVLS odz FHL ¥0od ‘S, ® wAONILAO,

L TTEVL



137

. 6£°0 .ozvUo Sb°0 ‘ 6%°0 . S5'0
8E°0 I%°0 Zvt0 S A €5°0 _ Z1
€E¥°0 ¥v°0 9% 0 67°0 $S5°0
6°0 Zr o €9°0 9p°0 - - 8% °0
I¥°0 , Iv°0 €V 0 Sh°0 8v'0 . 0T
vp°0 © Sp°0 bb 0 9%° 0 890
1 220) “EV°0 “ rd £E7°0 £F°0
Zv o Tv°0 - Zv o Zv 0 : Zr o 8
b9 0 €v°0 Zv 0 2y 0 €EV'0
¥p°0 €¥°0 0%° 0 " 0¥ °0 Zy 0
Zv 0 | Zv o Iv°0 6£°0 €¥°0 9
- zvo Zr°o 17°0 . 6E°0 = €970
Py 0 Py 0- I%°0 Zv°0 1€°0 A
Py 0 _ Zvo _ 0v°0 ©LET0 LE"O ¥
S¥°0 €7°0 o 0v°0 £EV°0 I€°0
LE®O 190 0% 0 - -
LE"O 0v°0 0% °0 - - Z
8€°0 6€°0 S ) - -
1 B 1 , 1 T
de/e v de /e v ¥e/e v ¥e /e v qe/e v q
+o +q‘ +u o . +o
- . [ ] . ) . L] <
072 8°T. 9°1 bl 21 =

FIVLS udz FHI ¥OJ

u

‘s, 0 ,WAWILAO.,

8 dIdVY.L

S



"OPTIMUM" o 's, FOR Hen'*

TABLE 9

138

—————

(a) 280 state .
| "R =2 4ﬁ 6 8 10 12
ﬁy 0.88 1.43 1.05 0.95 1.2 1.2
/R - 1.6 "1.28 0.91 . '0.92 1.0 g.9
(b)‘3dc state ’

R =2 4 6 8 10 12
3/ 3R 0.55 0.23 0.17 0.17 0.19 ¢.24




{(IV-S) and (Iv-9) as follbwL:

.curves) are negligible. oOf course, at the large distances

139
..
atom principal quantum n&bber, £' is the continuum elec-
tronic energy (in Rydbcrggy; L, L' are united atom'orbitil .
ers; and m, m' are azimathal

, 18 gn au. The matrix

angular mamentum quantum nu

quantum numbers; distance,’

L]

elements shown are related o thoak defined in equafions

, ‘.

<e'L'm[H(RAD) [nLm> = (i/h) [P?—J\Ag]?n, | (V-9a)
. “‘ J}ﬂ

<e'L'm:1|H(ANG) | nLm> |

(i72uh) (p9+a%15 . - (v-3D)

For convenience, I have tak#n p\= 1836.-l"mO (proton rest
7

mass).b Table 10 provides a\ghide to the figures.

' Fi;;xf 13 shows' the diéastnbus long-range behaviour &

Bfected pss matrix elements, here sHown for

@responding corrected matrix elements (dashed .

shown, any simple switching function which has the value
+1, in the entire neig bgurhooq of nucleﬁs,B, and‘-l, near
A, will pfoduce similay results; the mqln point of this |
picture is to illustrate the uncorrected pss couplings.
figures 14 to 24 éompafe themuncortectéd psé cbﬁp— 1
lings (solid curves) and the corrected coupiings (aqshgd
curves), for the varjous initial states 5f‘“2+’ figures 25
to 35 show'the saﬁe thing for HeH't. For Her%, I have

also included for comparison the corrected matrix elements



TABLE 10
A GUIDE TO THE FIGURES

© . 180

14

... 25

250'

15

- 26

2po

18

29

19

.‘zo

31

21

32

22(L.)-

23(z,)
33(L_)
34(L,)

24-

b

’ 35

pss Valﬁé

corrected value with optlmum f

corrected value w1th Bates—McCarxoll f

%s O.SO Ry.

v the c0nt1nuum energy,
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N
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which are obtained using the simple, Bates-McCarroll3

switching‘functiong (fn = ¢l, for asymptotic“"p" states;
and fn = -1, for "A" states). As I noted aéove, this
simple choice givés excellent results'for the 1lso and 2so0
states (figures 25 and 26) at all distances. Fér the
other states, this choice gives results in agreef§ent with

those using "optimum" switching functions, at large

distances only. For intermediate distances, the resulting
.couplings are- often larger than the uﬁcorrected pss coup-
- lings. This is‘especially true for‘states,lik; %bo, which
have significant molecular character (figur§£27). These
comparisons show that,  in suéh cases, tﬂé méré elaborate
description of switchihg fﬁnctions givenIUQre is really
neces;;rf to describe contiruum gcouplings well. This will

probably also be true for couplings between discréte

states. . <

D. Discussion

-~

»1.‘Summary

:Using switching functions to describe the effects of
eiec;ron translation in discrete molecular staﬁes, I have
sthn‘empirically that (1) the corrected nonadiabatié
coupiings from these states fo thé continuum aréygenerally
very sensitive éo the detailed form of the switéhing
function; (2) with a suitable choice of f£, the corrected

r
couplings to all higher partial"waveS'are'a least three

164



orders of magnitude smaller than the corresponding uncor-
rected psé couplings, and the 'range and magnitude of the
remaining couplings are also reduced greatly; and (3) the

choice of the swit%hing function which produces this

cancellaéion is independent of continuum state character-
istics and of the type of coupling involved, but ggég
depend on the initial discrete state. The'resulég“provide
strong evidence that the switching function approaéh to
‘tfanslation\factor corrections has a sound physical b;sis:
systematic reductions by several orders of magnitude afé
not fortuitdus. This confirms earlier findings, and
exﬁends them to additionél discrete states and also to
asymmetric systems. The réSults are significant in two
different contexts. '

2. Ionisaﬁion

First, as was the intent in reference 2, the correc-
ted couﬁlingé to continuum states can be used to compute
physically sensibleliﬁpact ionisation drbss sections. Thé
rationale fbr ?hoosing switching fugctibns to minimise
continuum‘cgupli has been described previously by:

1lc,2a

Thorson et al. They argued that (1) ionisation cross

sections can be compdted by a first-order perturbation
approximation; (2) if the cross sections are small (i.e.,
if coupling is weak), one should choose a zero-ordér basis

set for which the first-order couplings are as small as

possible; and (3) one can look upon the "optimisation"

165
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gy o T oot e

" ..‘«‘v& vy : . .. =

| 0 ACCUANE 0
calculations as a kind of heué&?t?%mvgr, y 14 d.

§ R L
This argument is intuitive,’ and;&tfgﬁ'géﬁytyhy_"‘
Y, ; AR

formal variational principle,_there 1‘ﬁmg,

states that. the best zero—order pa51s is the Q ' dﬂ;ahﬁ
minimises the first-order T-matrix (although, i;‘gyéﬁggﬁﬁi““'mwwﬂﬁ

& S ! o
of weak coupllng, this is certalnly plauSLDQe) ~N§¥§ also
that min1m151ng the first-order couplings does“not neces-
o

sarlly minimise the flrst order tran51tion probabllltles

(the transition probablllty is essentlally If matrlx
element x exp{-istae at'/m} dat|?). of course, if one
reduces a matrix element by a factor of 103, it is hatd to
_ergﬁe that the‘cdrrespohding T—matrix'elemeﬁt ie'net
similarly reduced. Finally, one may ask whether,-in fact,
flrst order perturbatlon theory provxdes an adequgte desc- ’
rlptlon of 1mpact.1qnlsat;on. The whole questlon ef the

convergence of perturbation expansions is extremely com-

plicated}'but‘therejare peasonsmfor'believing that the

"off-shell"” COntributioné from the second-order terms may
well be impdrtent.§7 |

Although the impact ionisation theery-is based on
intuitive idees, the figures given here and in refetence 2
Shew that orders of magnitude differences will exiet
‘between'ionisation cross sectionsjcombutedvusing uncértec-
ted pss theory, ahd those cdmputed usin§ the corrected
matrix elements. These dlfferences are exaggerated by the

fact that the efficiency of 1onlsatlon depends very



pss theory, these contributions are’ very large, and almost

. ‘ 167

‘strongly on the,effecﬁive\ionisation'potantinl in the '

-

ragion of coupling.Zb'58 i‘?tho lsog state of H2+, for

exa%Ple, the ‘ionisation potential at short distances is

signﬁ%icantly lardlr than the asymptotic value, and the

°

ionisation cross section is dominated by the contribution

of any couplings at distances greater than 2 to 4 au. 1In

entirely spurious. i

\

Figures 25 to 29 suggest that'iénisation cross:

b

sections for HeH+ computed usxng the simple asymptotic
: ’
switching functions, fn = t]1, may agree more closely w1th

those computed using the "optimym" f s; indeed, the 1so
and 250 cross. sections should be essentially the same in
each case. On the other hand, substantial differences

should ekist‘for "molecular" states like 2po (ionisation
N o

of H(ls) by He++). Of course, I think that the more elab-

orate, "optimum" SWltChing functions are the ones approp-

riate for sucﬁ cases.
< _
g . L]

1 *{, 3. Close- coupling L _ , ’ -t

a.“éomparison w1th;pss type Theorie$

. , ;Since the examination of chtinuum couplings is .

glVlng information about the bound state £.'s, “the results

also have some 1mplications for the selection of sw1tch1ng

3functions for general close- coupling problems However;p

before discussing these, I should first emphasise the

distinction between qlose-coupling formulations which g&

- - - B R -



.iand practlcal reasons.'

=

correctly take account of electron translation (sw;tchlng

A%unctlon theorles), and: those Wthh do not do so (pss—type

1theor1es) Thls dlstlnctlon ls 1mportant for both formal

4

I p01nted out earller that any arbltrarily chosen

’,set of sw1tch1n§ functlons glves a formafly valld theory

”:,fof close—coupllng.‘ Moreover, by taklng partlcular cholces

i 4:'.1'&

7‘reference or1g1n for el

"'even though the results may converge numerlcally, as the

B

'»valldlty, the uncorrected theorles are computatlonally

for the £.'s, nearly all exlsﬁlng theones whlch take.

‘gaccouwf of electron translatlon can be accomodated as

spec1a1 cases of such a.: formulatlon. Prov1ded the ba51s _‘7

: used 19 large enough, ‘the resultlng detalled cross sectlons

/
4

‘,ﬁare g_aranteed to be correct and independent of the choxce

e

~of 8W1tchlng functlonsuﬂ No such guarantees can be glven

{
I

]fhfor pss theory, because the ba51s functlons do not satlsfy

= : *

vasymptotlc scatterlng b?undary condltlons.. Nelther can-

-:hthey be glven for modlf&catlons whlch take some - flxed - .fu'.g

-

ctron co-ordlnates. ThlS'iS truev'

. 55901nt (e g.;‘the targett or pro;ectlle, nucleus) ~as the_¢ 

number of close coupled states con81dered 1s 1ncreased

IS S, y

'@f

‘Vqtr Even lf we leave a51de the questlon'of formal

\

: ?1nconvenlent. As the flgures show for contlnuum couplanS:

* N

7,there are many large\ long-ranged matrlx elements, ‘and AR

Ay P

f.this is also the case for coupllngs between dlscrete vf

¥

'states., The corrected coupllngs caﬂ be greatly reduced 1n.7

Mol
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'size and range, even with a very simﬁhe*switching function,
Thls 1s an 1mportant practlcal advantage, sxnce computer
. tlme is often a limiting factor in close-coupllng stud;es.
. 0:_)‘ .
Recently, Wlnter and Lanezq have descrlbed‘a very

_thorough treatment of slow COllisions‘infthe Hen 't sYstem,

ffollowingfan earlier*study by Piacentini‘and Salin.;gg‘In'é_
both studles, the objectlve is the calculat;on of the !
total-charge-exchange cross sectlon for He't + H(ls) col-

ﬁlisions. Both note the problem qg;tfanslatlon factors and

their effects, but use the %dfgetj&ﬁ) nualeus as the flxed R

orlgln of electron co-ordlnates. Thls ensures that bound-

.ary- condltlons are satlsfled for all scatterlng states in
the target channel but not for those 1n the He channel
The totak\capture ‘cross’ sectlon can be found frbm probab-.3
111ty,conservatlon. Winter and Lane20 remark that they

. aid not calculateicross sections for indiViduai trans—

: & 1t10nsﬁ)because thelr”treatment doqi.notyfully take account
: ol
: of t;anslatlon factor correctlons. They lnclude up to 20

e

dJscrete states, and present plctures of many of the

matrlx elements obtalned ln this formulatlon.

\

LS ,5 Choos1ng the proton as a flxed reference orlgxn 1sm

v equmvalent to taklng f = +1, forjéll states, i. e., 1t is

[N B

not a. sw1tch1ng‘functlon. Matrmx elements coupllng states

: whlch ‘are asymptot1call¥ ln the He~>channel behave llke

PR

pss matrlx elements,‘those 1nvolv1ng states in thel?'*\y,
. \ Lo Sy S B \1 [
' channel are asymptotlcally well—behqud ' ‘

NP . . L oo : P
i . . . RN 7;
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S

large ‘at flnlte distances. Using a switching functfcn

form latlon, most of these coupllngs can be greatly

 redu ed¢1n size and range.

I
o

'b Comparlson ‘with other Sw1tch1ng Functlons

, Finally, we may consider. the respectlve merits of
uelaborate "molecular" sw1tch1ng functlons (like those g
determined here), and the 51mp7er cholces, fhge +1 (to
whlch ours reduce as R+w), for use in close coupllng
,calculatlons AlthoUgh the whole subject of switching v
functlons needs “more study before this questlon can be,

resolved ‘some relevant p01nts are suggested bh thls work

"L !

| (1) As I have pointed out, the behav1our of couplings
‘to the continuum "selects“ opégmum sw1tch1ng functlons
 which ‘are prec1sel§ deflned. Moreover,-they are functlons_,5 d
bonly of the initial dlscrete state, and they dlffer 51g— | /
nlflcantly from’the 51mple form;ionly when the correspon—
| dlng state, [n>, is genulnely:"molecular._» It seems very‘
'llkely that the varlatlon of the sw1tch1ng flnctlon lS. )
‘»,reflectlng that molecular character. |
(2) In a close coupllng calculatlon, the basis 1s-:

r

, of molecular electron1Cﬁstates,'

truncated to a flnlte

-

'and coupllngs to states out51de that- manlfold,are lgnored.

_In particular, coupllngs to the contlnuum are neglected,'
. A
because we know that the lonlsatlon cross sectlons ‘are

small : It 1s certalnly con51stent w1th that neglect to

,use a formulatlon 1n whlch the theoretlcal»coupllngs‘to

1



the continucm are‘maAe as small‘asvpossible. -
| (3) We should recognlse that it may be- p0551ble to
reduce the corrected matrlx elements Stlll further, with a
more sophlstlcated form for f Hsrever, with the possible
v egception of the 3do state, it is m§ belief that it will
be Hard.to improve much on tﬁe‘spectacular,‘tﬁ%ee to four
orders of macnitude reductions. | o | |

(4) It w1ll be 1nterest1ng toycompare the results

20

obtalned by Winter and Lane, from thelr close COupllng

s

study of. HeH+ ' w1th those obtalned from studies u51ng

. ;(a) the 51mple sw1tch1ng functlons, £, = 1, and (b) the

¥ g ir ‘

"optlmum" f 's reported here e the calculations using

chlng functlons, it will also be p0551ble to compute,

M

~,compare, the cross sectlons for 1nd1v1dual transitions.

1971
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APPENDIX

' STATE-DEPENDENT SWITCHING FUNCTION

)
1

FORMULATION

A. Ihntroduction

- - o : L
. W - , o
The derivation of the classical trajectory equations

in chabter II essumed that-the electi%n»tran81ation factor9$

cen be characterised by a 51ng1e switching functlon commors ¥

E

=to all electronlc states._ It is desirable, howeven, to "o

extend the theory so that each state has 1ts own, charac-

terlstlc sw1tch1ng functlon, £,- The derlvatlon is. q*lte'fv

\stralghtforward and follows that of chapter. II, section

By

C.. It W1ll be shown thnt the new coupled equatlons have

7

che same form as before, but that the definition of A(R)

is changed. Although the new correctlon matrlx is no

po

longer Hermitian, the equatlons.stlll conserve probabll}ty,

L

' tolfifst-order.in the nuclear velocity.

B.‘Defihition of Basis

A ' . ’
v b . . . .

¢, (riR) = ?n.¢n(;:R) = F_ [n>, ‘ _4A-1)

where

G176
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>

F_= expl(in/m) (V.3 - sFaaa?iviae/ell, (a-2a)

4

S . N
By = (£ Egs | - (A-2b)

&
'and‘¢n(?;§)'isxa Born-Oppenheimer electronic wavefunction.

In chapter II, the states, ¢n(;;§), arerorthogonal,.

s

kfkibnt when the switchfhg functions are allowed'to be state-

\

dependent, the overlap matrlx ‘is no longer dlagonal.' Let

us deflne S(v), the. overlap matrix, such that

' *
Sjn(v{' <J|Fj‘Fn[n>

<jlexp{tim/n) V. (5 ~8,) }[n>. (A-3)
9
To first order in v, we can write

\

S(v) =1+%.3  shw =1-7.3, (aRg -
. . o . ) 0“;‘
6 2
where ’
Sk :
-+ . . -+ -+ » A L . ’ - .
: an'f (im/h) <3[(sn sj)ln?. ‘ | Se 5)

C. Cla551cal Trajectory Equatlons

>

Assumlng that the nuc%pl follow a ciassxcal path,
the wavefunction, T, satlsfles the tlmeddependent‘

Scheringer equation, ) L. ]

<

(2
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-

h, T = ih aT/3t, (A-6)

and we can write (cf. equagion (II-42))

- M, Q
A o
T=23Ib F, |n>. ‘ (A-7)
n : : .
_ Proceeding exactly as in chapter II, we find that (cf.
equation,(;I-SOa)) |
ih §(v) b = {h(v) + V.(B(V)+A(V) 1919_, (A-8)
wire oy
. ‘__ \\«»\y N T\\\I (=] |
_hjn(V) = <3|Fj F. h |n>, : (A-9a)
. > i " ' - . . a‘ ; ' - ., - ‘ . l ‘ -
, Pjn(Y)3%=-le<Jle-Fn 4§R);|n>, " (a-9p)
\ : ‘ @ .
and \ Cow DT e
3. (v) = Gim/m) <3|FF (h_,s ]
Ajnﬁv) = (im/h) <3[Fj F. e,sn]ln>. “A-Qc)
. )
To first order in v, we can write .
T h(v) = e + V.R, . , (A-10)
Wheré‘
\1., ' ’
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* o ‘ . . o i‘. )
-+ im/h) < (-> _-»-) h ' . o : 11a) ""."-
i ' V L '
) . .
and
t-:jn = en(R) Gjn‘ (A-11b)
Thus, to first order in v, :
§:1(v) h(v) =‘£ + v.{n - g e} - (A-12)

= E.

Hence, if we multiply equation (A-8) on the left bx;ﬁfl{v),

and keep ¢nly terms which are first order in v, we find

ih B = {e + v.(B+R1} b,  (a-13)
where ““\ \
o ' N , h \ N )
By, = -ih <3| (V) zln>w . | (A-14a) ;
. ) . ‘Q-‘ . : . f . k
A, = (im/h)-<3|Ih_,%.1|n> . ~ (a-14b)
; jn o J (}el n . o o _

Equations (A-13)’—\3> the desired coupled equations.
, ‘ j ‘ : v :
| | . + o E

. They have the same form ‘as (I.iI,-SO),‘, but the matrix, A, is- — =
nv non—Herrﬁit;an,' and de\fi‘ ed by, (A-

b

»




o~

1

show that probability is conserved, to-first:ofdef in the -

nuclear velocity. ;i
ﬁ APOT
D. Conservation of Probabilitx " ’
For probabillty to, be conserved, we r-fﬁire* “ ?}. <§ i
d/dt <T|T> = 0.
% )
'«Using Green's method,l
ih a/dt <T|T> = ih a/dt {b' s(v) b}
= ih B s(v) b+ bt §(v b+ b s(y) B
If we define C e | o
Byp = Gy w513 >, | (a-17) -
ot : ' e ) / X ‘
then, to first order in iv, e -
s =1+ V.5 =1+ %300 . (a-18a)
" and’
R=eb<be.. (A-18b)
; P \




.
\
.

, e

]

Uling'equat;on‘(ﬁriB). W§ b§h eliminate § and éﬁ

fffoﬂz(Afxﬁ),;and~obt;ih - N

oy . .‘ ‘.‘.'v *ﬁ‘ ‘ ) .- ) " N A } I

' T : RET
) X ; . ‘ N . . ) . o . ’«

1h d/at <v|T> g b’ (Vo4 e S 3) +in B G5 +
k : AN . S
 @L, [T

- i

/
J

K "“

\ 3.(5 -«ET)}‘Eru‘qﬁwp(A-lgt

(v, A D

. E o ; e

since both g'andti are Hermitian matrices. 'But
0 ' & ‘ . .'l B

-
. =‘ o
. . " .
B .

A-R - e@hgh s

X B s g+ ghe ;
'é ) A
| s
=e3 -3¢ T (a-20) o

and hence - . ; :

ih a/at <7|T> = b' (ih 3;$R(§.J

{

?_)} ?_: . (A-{Zl) i

!

K
e / :
. ) . 2
— . ! . )

<

'~ .which is of order vi.

. S T
’ 1. T, A. Green, Proc. Phys.,&g:;"gg; 10%7(1%%5).,va, f
T - o [
R |-
¢ - / ! R
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