+

National Library of Canada

Bibliothèque nationale du Canada

Canadian Theses Service

Service des thèses canadiennes

Ottawa, Canada K1A 0N4

NOTICE

The quality of this microform is heavily dependent upon the quality of the original thesis submitted for microfilming.

Every effort has been made to ensure the highest quality of reproduction possible.

If pages are missing, contact the university which granted the degree

Some pages may have indistinct print especially if the original pages were typed with a poor typewriter ribbon or if the university sent us an inferior photocopy.

Previously copyrighted materials (journal articles, published tests, etc.) are not filmed.

Reproduction in full or in part of this microform is governed by the Canadian Copyright Act, R.S.C. 1970, c. C-30.

AVIS

La qualité de cette microforme dépend grandement de la qualité de la thèse soumise au microfilmage. Nous avons tout fait pour assurer une qualité supérieure de reproduction.

S'il manque des pages, veuillez communiquer avec l'université qui a conféré le grade.

La qualité d'impression de certaines pages quat laisser à désirer, surtout si les pages originales ont été dactylographiées à l'aide d'un ruban usé ou si l'université nous a lait parvenir une photocopie de qualité inférieure.

Les documents qui font déjà l'objet d'un droit d'auteur (articles de revue, tests publiés, etc.) ne sont pas microfilmés.

La reproduction, même partielle, de cette microforme est soumise à la Loi canadienne sur le droit d'auteur, SRC-1970, c. C-30.

THE UNIVERSITY OF ALBERTA

ISOKINETIC EVALUATION OF KNEE FLEXOR AND KNEE EXTENSOR MUSCLE ENDURANCE IN RUNNERS AND UNTRAINED MALES

by

Svandis Sigurdardottir

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES AND RESEARCH
IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE

OF Master of Science

Department of Physical Therapy

EDMONTON, ALBERTA
Fall 1988

Permission has been granted to the National Library of Canada to microfilm this thesis and to lend or sell copies of the film.

The author (copyright owner) has reserved other publication rights, and neither the thesis nor extensive extracts from it may be printed or otherwise reproduced without his/her written permission.

L'autorisation a été accordée à la Bibliothèque nationale du Canada de microfilmer cette thèse et de prêter ou de vendre des exemplaires du film.

L'auteur (titulaire du droit d'auteur) se réserve les autres droits de publication; ni la thèse ni de longs extraits de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation écrite.

THE UNIVERSITY OF ALBERTA

RELEASE FORM

NAME OF AUTHOR

Svandis Sigurdardottir

ISOKINETIC EVALUATION OF KNEE FLEXOR

AND KNEE EXTENSOR MUSCLE ENDURANCE

IN RUNNERS AND UNTRAINED MALES

DEGREE FOR WHICH THESIS WAS PRESENTED Master of Science YEAR THIS DEGREE GRANTED Fall 1988

Permission is hereby granted to THE UNIVERSITY OF ALBERTA LIBRARY to reproduce single copies of this thesis and to lend or sell such copies for private, scholarly or scientific research purposes only.

The author reserves other publication rights, and neither the thesis nor extensive extracts from it may be printed or otherwise reproduced without the author's written permission.

(SIGNED) Sweets. Sigurbardottu.

PERMANENT ADDRESS:

Longholtsvegi 156

104 Reykjavík

Iceland

DATED May 20 1988

THE UNIVERSITY OF ALBERTA FACULTY OF GRADUATE STUDIES AND RESEARCH

The undersigned certify that they have read, and recommend to the Faculty of Graduate Studies and Research, for acceptance, a thesis entitled ISOKINETIC EVALUATION OF KNEE FLEXOR AND KNEE EXTENSOR MUSCLE ENDURANCE IN RUNNERS AND UNTRAINED MALES submitted by Svandis Sigurdardottir in partial fulfilment of the requirements for the degree of Master of Science.

Supervisor

Mantilan.

Date MAY 20, 1988

DEDICATION

This thesis is dedicated to my mother,

Gudrun Audunsdottir,

and my late father,

Sigurdur Betuelsson.

Ritgerdin er tileinkud foreldrum minum, Gudrunu Audunsdottur og

Sigurdi Betuelssyni

ó

ABSTRACT

The purpose of this study was to analyse the isokinetic muscle endurance of the knee flexors and knee extensors in three groups of male subjects: sprinters, middle-distance runners and untrained men.

The CYBEX II+ isokinetic dynamometer was used to measure the muscle endurance. The endurance test consisted of a 45 second trial of high speed reciprocal extension and flexion of the knee at the velocity settings of 180 degrees per second and 240 degrees per second. A fatigue index (per cent decline in peak torque) was calculated for the endurance test.

The data showed that there was no difference in thigh muscle endurance between left and right lower limbs of the subjects. Only middle-distance runners showed a significant difference in endurance patterns between the knee flexors and knee extensors. The test showed no difference in muscle thigh muscles between sprinters, the endurance of. middle-distance runners and untrained subjects. There was a significant difference in thigh muscle endurance between the two velocity settings among middle-distance runners untrained subjects. There was no difference in hamstrings to quadriceps (H/Q) endurance ratio between middle-distance runners at the faster and sprinters

velocity, nor was there a significant difference in this ratio between the three groups of subjects. Thigh muscle fatigue was highly correlated with initial strength level but not strongly correlated with body weight.

ACKNOWLEDGEMENTS

I wish to express my gratitude to:

My advisor, Dr. D.J.Magee, for his patience and constant encouragement and guidance throughout this project;

My other scommittee members, Dr. D.C.Reid and Dr. Y.Bhambhani for their encouragement, enthusiasm and advice;

Dr. A.N.Belcastro, who served dutifully on the committee in the early stages, for his much appreciated input;

Dr. J.W. Vargo and Dr. S. Kumar for looking after the financial part and for their concern and understanding;

Dr. T. Taerum and other staff at Computing Services for excellent help with statistics;

My brothers and sisters: Andres, Marta, Svavar, Anna Maria, Esther, Elisa and Elias, for their support and encouragement when it was most needed;

My aunt, Palina Betuelsdottir, for her special support;

Friends and colleagues in Iceland and Canada for their help and encouragement;

My fellow graduate students for stimulating discussions and support;

All the subjects who volunteered for the study and their coaches.

This project was supported in part by a grant from the Health and Research Council of the Icelandic Sport Federation (ISI).

	Table of Contents	Page		
Chapter		raye		
I.	INTRODUCTION	1		
	A. STATEMENT OF THE PROBLEM	1		
	B. OBJECTIVES OF THE STUDY	3		
	C. RESEARCH HYPOTHESES	4		
	D. SIGNIFICANCE OF THE STUDY	.,5		
	E. OPERATION SEFINITIONS	5		
	F. DELIMITATIONS	7		
	G. LIMITATIONS	8		
II.	REVIEW OF THE LITERATURE	9		
	A. MUSCLE FATIGUE	9		
	B. GENERAL PRINCIPLES OF ISOKINETIC EXERCISE			
	C. ISOKINETIC MUSCLE ENDURANCE	13		
· III.	METHODS AND PROCEDURES	19		
	A. SUBJECTS	19		
	B. APPARATUS	19		
	C. INITIAL FAMILIARIZATION	23		
	D. TESTING PROCEDURE	24		
	E. EXPERIMENTAL DESIGN AND STATISTICAL ANALYSIS	27		
	RESULTS	29		
v.	DISCUSSION	45		
VI.	CONCLUSIONS	57		
REFERE	NCES	60		
APPENDIX A				

'APPENDIX C

APPENDIX B

APPENDIX D	 			84
APPENDIX E	 • :			89
APPENDIX F			•	
WEERINDIA L	 • • • • • • •	• • • • • • • • •	• • • • • • • • • • • •	,

:

List of Tables

Table		Page
1	Mean, Range and Standard Deviation of Age and Some Physical Characteristics of Subject Groups	31
H	Comparison Between the Per Cent Decline of Peak Torque of the Left and Right Lower Limbs on a 45 Second Endurance Test	32
III	Comparison Between the Per Cent Decline of Peak Torque in the Hamstring and Quadriceps Muscle Groups on a 45 Second Endurance Test	33
IV	Comparison Between the Per Cent Decline of Peak Torque in Sprinters, Middle-Distance Runners and Untrained Males on a 45 Second Endurance Test	35
V	Comparison Between the Per Cent Decline of Peak Torque at 180 Degrees/Second and 240 Degrees/Second	37
VI	Comparison Between the Hamstrings/Quadriceps (H/Q) Endurance Ratio in Sprinters and Middle-Distance Runners	41
VII	Comparison Between the Hamstrings/Quadriceps (H/Q) Endurance Ratio in Sprinters, Middle-Distance Runners and Untrained Males at 180 Degrees/Second and 240 Degrees/Second	42
VIII	Pearson Correlation Coefficient (r) for Per Cent Decline in Peak Torque (Fatigue. Index) and Body Weight	43
IX .,	Pearson Correlation Coefficient (r) for Per Cent Decline in Peak Torque (Fatigue Index) and Initial Strength	44

List of Figures

Figure		Page
.1	Cybex II+ Isokinetic Dynamometer	14
2	Cybex II+ Dual-Channel Recorder	16
3	Cybex II+ Dynamometer, Speed Selector and Dual Channel Recorder	20
4	Cybex II+ Speed Selector with Remote Digital Control	22
5	Time Sequence Flow Chart for the Testing Procedure	26
6	Comparison Between the Per cent Decline of Peak Torque in the Hamstring and Quadriceps Muscle Groups on a 45 Second Endurance Test	34
7	Comparison Batween the Per cent Decline of Peak Torque in Sprinters, Middle-Distance Runners and Untrained Males on a 45 Second Endurance Test	36
8	Comparison Between the Per cent Decline of Peak Torque at 180 Degrees/Second and 240 Degrees/Second on a 45 Second Endurance Test	38

I. INTRODUCTION

A. STATEMENT OF THE PROBLEM

Clinicians dealing with the care and treatment of athletes often encounter problems concerned with muscle strength and endurance, both in rehabilitation and injury prevention programs (1,2). In fact, rehabilitation of muscle function is considered a major problem in sports medicine (2).

Muscle endurance is of great importance in many sports. For example, knee stability depends, to a large degree, on the strength and endurance of the quadriceps and hamstring muscles. Traditionally, however, rehabilitative training has been limited to strength development of the muscles supporting the knee, with little emphasis on endurance (3,4,5). Consequently, athletes who have regained their muscle strength after knee injury may not necessarily be able to exercise for prolonged periods and may even reinjure the knee when, the muscles fatigue and fail to provide the adequate support (3,6). In the last ten years the endurance component has achieved more emphasis (7,8,9,10,11,12).

with the development of objective measurement instruments, such as the CYBEX II isokinetic dynamometer (Cybex, Division of Lumex, Inc., 2100 Smithtown Ave.,

Ronkonkoma, NY 11779), sports medicine professionals have been giving more attention to the assessment of specific characteristics of skeletal muscle performance in athletes. In the healthy athlete, muscular performance in terms of strength, speed, or endurance is indirectly known by the athlete's level of achievement in his or her sport. In the case of the injured or deconditioned athlete, however, more specific information about affected muscle groups may be needed (8).

importance of musculoskeletal profiling orthopedic sportsmedicine has been emphasized (13,14,15,16). When testing athletes, the results must be compared to values to be properly interpreted. If healthy normal baseline data on an individual athlete are not available, the next most specific set of data would be a profile derived from athletes of the same sport, competitive level, playing position and anthropometric characteristics. Therefore, normal values for sport-specific parameters, such as muscle strength, endurance and power, must be determined for well-defined groups of athletes. When such norms are available, they can be used for both screening and rehabilitation purposes and as return to play criteria after injury. Computed parameters, such as the ratio of strength, endurance or power between agonist-antagonist muscle groups about a joint, or between right and left extremities for a

given muscle group, have been found to be more sensitive indicators of musculoskeletal abnormalities than the raw data parameters (13,17).

Although many studies are now available concerning muscle performance in athletes, this research has largely been confined to studies of muscular strength and strength ratios (1,18,19,20,21). The few studies examining muscle endurance or fatigue of the thigh muscles have normally only reported the endurance of the same extensors (9,10,11,22,23,24,25). It was considered to be of particular interest, however, to investigate the endurance of both the extensors and flexors by analysing the fatigability of these muscle groups separately under isokinetic conditions.

B. OBJECTIVES OF THE STUDY

The purpose of the study was to analyse the muscle endurance of the knee flexors and extensors. More specifically, the isokinetic endurance of the knee flexors and extensors was studied separately, and left and right limbs were compared with regards to muscle endurance.

C. RESEARCH HYPOTHESES

It was hypothesized that for each of the two speeds examined:

- there would be no significant difference in muscle endurance between right and left lower limbs of the subjects in each group for the knee flexors and extensors.
- 2. there would be a significant difference in endurance patterns between the knee flexors and knee extensors in all three groups of subjects.
- 3. the middle-distance runners would show greater endurance of both knee flexors and knee extensors than the other two groups studied.

In order to compare the two different speeds (180 degrees/second and 240 degrees/second), it was hypothesized that:

- 4. there would be a significant difference in muscle endurance of the quadriceps and hamstring muscles at the faster velocity as compared to the slower velocity in all three groups of subjects.
- 5. there would be a significant difference in the hamstrings to quadriceps (H/Q) endurance ratio of middle-distance runners as compared to sprinters at the faster velocity.

6. there would be a significant difference in the hamstrings to quadriceps (H/Q) endurance ratio at the faster velocity as compared to the slower velocity in all three groups.

D. SIGNIFICANCE OF THE STUDY

With expanded profile data about the muscle performance characteristics of various categories of athletes, training and rehabilitation programs may be adapted to meet the strength, speed, and endurance requirements of a given sport. These improved programs may, in turn, enhance the quality of participation and prevent the occurrence of injury or reinjury (8,13,15).

The only parameter analysed in this study was muscle endurance, in order to shed some light on the endurance patterns of the three groups studied. The results are offered as examples of normal values for these particular groups.

E. OPERATIONAL DEFINITIONS

<u>Isokinetic exercise</u>: Dynamic muscular activity performed at a constant angular velocity controlled by an external dynamometer (26,27,28).

Angular velocity: The rate of change with respect to time of angular displacement, given in units of radians per second or degrees per second (29).

Torque: A measure of a force that rotates an object about an axis of rotation. Torque is equal to the length of the lever arm, measured from the axis of rotation to the point of application of the force, multiplied by the component of force that is perpendicular to the lever arm (29).

Peak torque: The highest torque value of each contraction.

Work: A force moving a resistance through a distance. The amount of work done by a force is the product of the amount of force in the direction of the displacement times the distance the resistance is moved (29,30). Work can be determined by the formula:

WORK = $T \times 2 \pi \times d$

where T is the torque in foot pounds, d is the portion of the arc travelled and π (pi) is a mathematical constant, 3.14. \angle

Power: The rate that work is done with respect to time. In isokinetic terms, it is torque times angular velocity (29,30). It is determined by the formula:

7

POWER = torque x 2 m x revol. per min.

Endurance: Average power output of a muscle group during 45 seconds of activity (8,31,32,33).

Fatigue Index: Per cent decline in peak torque, calculated on the basis of the mean peak torque of the three highest peaks out of the first five repetitions and the last three repetitions of a 45 second trial of isokinetic exercise (8).

Hamstrings/Quadriceps Endurance Ratio: Per cent decline of peak torque in hamstrings divided by per cent decline of peak torque in quadriceps on a 45 second endurance test.

<u>Initial strength:</u> The single highest torque value obtained during the first five repetitions at each of the two speed settings.

F. DELIMITATIONS

The study was delimited to the following:

Two speed settings, 180 and 240 degrees per second, on the Cybex II+ isokinetic exercise unit manufactured by the Lumex Corporation of New York (18,20,31,34).

2. Examination of ten male sprinters (100 m, 200 m or 400 m), ten male middle-distance runners (800 m up to 5000 m) and ten normal, healthy men who were not engaged in a formal athletic program. All subjects were between eighteen and thirty two years of age and without a history of knee or thigh pathology (13,35,36,37).

G. LIMITATIONS

- 1. The precision of torque records was limited to the recording accuracy of the Cybex II+ isokinetic apparatus.
- 2. The ability of each subject to exert a maximum effort during each test session and the individual subject's perception of maximum effort were beyond the control of the investigator.

FI. REVIEW OF THE LITERATURE

The review of literature is organized into three main areas: muscle fatigue, general principles of isokinetic exercise, and isokinetic muscle endurance.

A. MUSCLE FATIGUE

Muscle generates force, and failure to maintain force (or work output) during sustained or repeated contractions is termed 'fatigue'. The mechanisms underlying fatigue of human skeletal muscle have been extensively investigated (38,39,40).

The first to objectively study muscle fatigue in humans was Mosso(41). He made it possible to study the fatigue phenomena by constructing a simple apparatus which he called an ergograph. Mosso's experiments demonstrated that under 'physiological conditions', that is, with the muscles in situ stimulated voluntarily through the intact nervous system, there may be two basic mechanisms of fatigue, namely, central and peripheral (42). 'Central' means proximal to the motor neurons, mainly in the brain. 'Peripheral' means within the motor units, that is the motor neurons, the peripheral nerves, the motor end plates, and the muscle fibers themselves.

In peripheral muscle fatigue, there are at least two different sites where repeated contractions may cause impairment: the 'transmission mechanism' (neuromuscular junction, muscle membrane, and endoplasmic reticulum), and the 'contractile mechanism' (myofilaments). Their separate levels of susceptibility to fatigue are well known (42,43). Peripheral muscle fatigue, whether it is located in the transmission or in the contractile mechanism, seems to be due to local changes in the internal environment of the muscles. These changes may be biochemical, consisting of the depletion of such substrates as glycogen, high energy phosphate compounds in the muscle fibers, and acetylcholine in the terminal motor nerve branches; or, they may be due to accumulation of metabolites, such as hydrogen ions as a result of lactate production, or of other substances (e.g. electrolytes) liberated from the muscles activity(38,42).

Central fatigue was demonstrated by Mosso in his fatigue tests (41). The theoretical mechanism for central fatigue involves afferent impulses arising from receptors within the fatigued muscle, which inhibit the motor pathway at sites anywhere from the voluntary motor centers in the brain to the spinal motoneurons (42,44). It has been demonstrated that better motivation to endure can appreciably prolong time to exhaustion (42), and in well

motivated, normal subjects, there is little evidence of central fatigue (43).

'Peripheral and 'central' fatigue may appear separately or combined, depending on the specific situation (42,43,44). Any one link in the long chain from the voluntary motor centers in the brain to the contractile filaments in the single muscle fibers, may be the weaker and thus the most direct cause of muscle fatigue. Thus, it appears that there are probably many different types of fatigue, and that each may occur with a particular form of muscular activity (43,45).

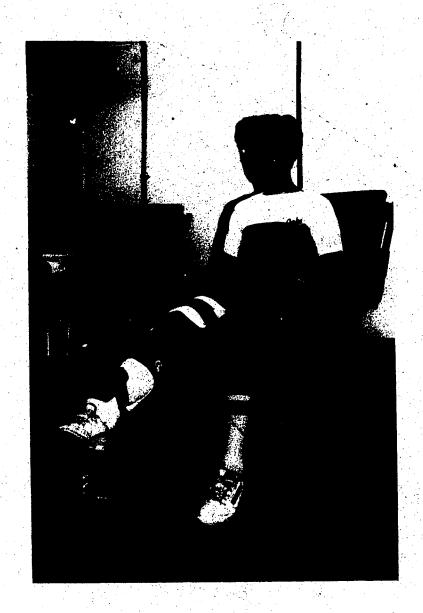
In order to elucidate the fatigue phenomenon, Tesch (12) designed a study by combining established histochemical, biochemical and electrophysiological methods when examining high intensity exercise of short duration, more specifically, isokinetic knee extensions. He suggested lactate accumulation and associated metabolic changes interfering with the contractile mechanism to be responsible for muscle fatigue in this situation. A more recent study by Horita and Ishiko (46) found that electromyographic changes and changes in the contractile property of the vastus lateralis muscle during isokinetic knee extensions also correlated with lactate accumulation in the same muscle. They concluded that the decrease in efficiency of the electrical activity in the muscle suggested peripheral

fatigue.

B. GENERAL PRINCIPLES OF ISOKINETIC EXERCISE

The speed of muscle shortening is known to be inversely related to the load against which it shortens. This basic finding in muscle mechanics was first made by Fenn and Marsh (47) in 1935 and formulated in mathematical terms by Hill (48) in 1938. This force-velocity relationship applies both to smooth and striated muscle. In studies that established this relationship, either resistance or velocity was kept constant (49,50,51,52). In 1967, a new method based on the was designed by Perrine and principle force-velocity associates (26,27,28), in which different constant velocity levels (i.e. isokinetic) could be achieved. The force output of different muscle groups during maximal contractions could then be studied at different muscle shortening velocities. Thus, isokinetic contraction, or exercise, is defined as dynamic muscular activity performed at a constant angular velocity (28).

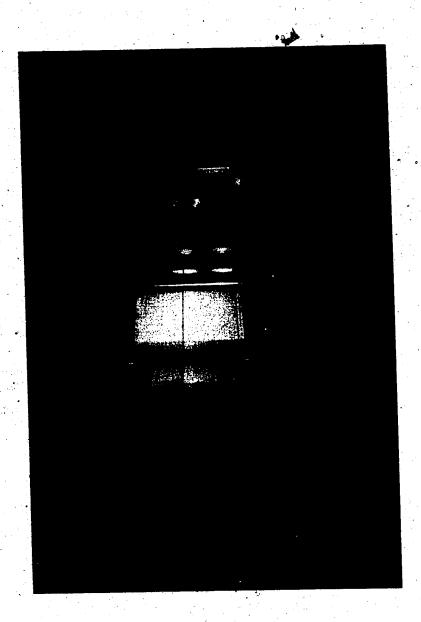
The Cybex II+ isokinetic apparatus consists of a lever arm which can be attached to a part of the body and carried through a range of motion (Figure 1). This isokinetic dynamometer is designed to create resistance in the internal mechanism when the exercising limb attempts to exceed the pre-selected speed setting (28,30,53). With the isokinetic


system, a muscle or muscle group can work maximally throughout the full arc of motion, as speed control, rather than a fixed external weight, is applied (28).

The muscular force exerted by a subject against the lever arm of the device is transmitted by a recording device as a torque curve (Figure 2). Work is force times distance or the area under the torque curve (53). Thus, the work of one repetition or the work of many repetitions can be measured from the torque tracings. The rate of doing work is power. It is traditionally the measure of work per unit of time. Average power output during a stated duration constitutes an operational definition of endurance in isokinetic terms (31,32,33).

C. ISOKINETIC MUSCLE ENDURANCE

Measures of fatigability or indicators of endurance using the Cybex instrumentation have been defined in several ways(8). All definitions, however, are based on the decline in torque occurring over some prolonged series of repeated contractions, commonly performed at a relatively high speed (180 degrees per second)(8,9,12,22,34). Only a limited number of studies have investigated fatigue effects produced by repeated isokinetic contractions. The few studies examining muscle endurance or fatigue of the thigh muscles have normally reported the endurance of the knee extensors


Figure 1. Cybex II+ Isokinetic Dynamometer.

alone (e.g. 9, 10,11,22,23,24,25) or a common fatigue index for knee extensors and flexors (54). Some of these studies have considered the relationship between muscle fibre type and local, muscle fatigue. For example, Tesch et al. (23,24) and Thorstensson and Karlsson (22) found that an increasing proportion of slow twitch (ST) fibres in the quadriceps muscles corresponded to better sustained muscle force during repeated isokinetic knee extensions. Clarkson et al. (10), on the other hand, did not find a significant relationship between muscle fibre type and knee extensor isokinetic endurance. In their study, the endurance had a significant negative correlation with initial strength; the stronger subjects fatigued faster. Similarly, Ivy et al.(11) that the respiratory capacity of the knee extensors appears to be more influential than fibre type in determining the rate of fatigue development during a 45 second test of extension-flexion repeated maximum isokinetic leg contractions.

If a reciprocal alternating contraction test mode, is used, whereby antagonistic pairs of muscles are studied simultaneously, the fatigue rates of the two muscles may be different because of differences in metabolic demands, histologic make-up, or training effects (8,22,49,55). A method of testing fatigability, which avoids undue stress on the more easily fatigued muscle, is to measure the per cent

Figure 2. Cybex II+ Dual-Channel Recorder

decline in torque within a time limit (fatigue index)(8). In a preliminary pilot study on thirteen normal male subjects , nine non-competitive long-distance runners and seventeen professional hockey players, Watkins and Harris calculated a fatigue index for both 15 and 30 seconds (8). In this study, the differences in endurance between the hamstrings and quadriceps muscles were clearer at the end of the 30-second run. In general, the hamstring muscles seemed to show endurance than the quadriceps muscles in all three groups. The group of runners showed a relatively low per decline in torque values of the hamstring muscles, and the authors suggested this finding may indicate specificity of training. In another study, Harris (56) showed that an intense long distance running program alters isokinetic hamstring performance in females. Hamstrings peak torque (at angular velocity of 180 degrees per second), the hamstrings to quadriceps ratio, and the total amount of work generated over 15 seconds for the hamstring muscles increased after training. No significant differences were noted in the runners' quadriceps performance.

In a study of professional ballerinas, muscle endurance was estimated by calculating the time between onset of testing and the point at which peak torque was reduced to 50 per cent of the initial value with an angular velocity of degrees per second (57). The hamstring muscles showed

significantly more endurance than the quadriceps muscles, and this difference was consistent in each dancer. The authors explained this difference as reflecting the demands placed upon the hamstring muscles to decelerate the rapid movements of the lower extremity in dance.

A more recent study on non-athletic males and females also showed the relative endurance of the hamstring muscle group to be greater than the endurance of the quadriceps muscle group (58). The authors suggest this difference may be due, in part, to the interaction between gravity and the test position. In the sitting position, the quadriceps muscle group performs work against gravity and therefore, appears to be more fatigable than the hamstring muscle group which is assisted by gravity.

None of the authors of these studies (8,57,58) reported that a gravitational correction had been included in the calculations.

As muscle endurance of the knee flexors and knee extensors remains largely uninvestigated, it was hoped that the findings of this study would shed some light on the endurance patterns of these muscles.

III. METHODS AND PROCEDURES

A. SUBJECTS

Ten male sprinters, ten male middle-distance runners and a group of ten normal, untrained male subjects were studied. It was expected that the two groups of runners would show differences in thigh muscle endurance due to their differences in histologic make-up of their muscles and training effects (59,60). Subjects were recruited on a volunteer basis from various track clubs in Edmonton and from students at the University of Alberta. The subjects were between 18 and 32 years of age with no history of any major knee or thigh pathology. Individuals who had sustained an injury to the thigh or knee that kept them from sports participation for more than one week, were excluded from the study (13). The subjects were asked to give their informed consent (Appendix A) prior to participating in the study.

B. APPARATUS

The Cybex II+ apparatus used in the study is shown in Figure 3.

The apparatus consists of three components:

1. A dynamometer (Figure 1) which measures torque inputs up to 360 foot-pounds. When force is applied by a subject

Figure 3. Cybex II+ Dynamometer, Speed Selector, and Dual-Channel Recorder

to the lever arm, a series of reducing gears absorbs the force and thus gives a resistance which accommodates the subject's input force (53). The muscular force exerted against the lever arm is transmitted by a recorder as a torque curve (in foot-pound units).

- 2. A speed selector with remote digital control (Figure 4) which pre-sets the speed of rotation of the dynamometer from 0 to 300 degrees per second. The set speed is non-acceleratable, no matter how much force is applied to the lever arm of the dynamometer. As more force is applied, more resistance is encountered by the subject's limb.
- 3. A dual-channel recorder (Figure 2) with two heated styli which records and displays a permanent record of the applied torque and its position angle. The speed of the graph paper can be set at 5 millimeters per second or 25 millimeters per second. In this study, the graph paper speed was set at 5 mm per second, except for the weighing of the limb, where the paper speed was 25 mm per second.

A damping knob on the torque channel controls the speed of response of the torque stylus. When testing the knee, a damping factor of 2 is used (34).

Figure 4. Cybex II+ Speed Selector with Remote Digital Control

The Cybex II+ isokinetic dynamometer was calibrated daily throughout the study according to the procedures suggested by the Cybex manufacturer (34,61,62) (see Appendix B). The reliability and validity of the dynamometer has been reported to be high (30,49,63). The torque calculations are reported with and without a gravitational correction factor (19,34,64,65,66,67,68).

C. INITIAL FAMILIARIZATION

All subjects that volunteered for the study came to the Cybex laboratory in the Faculty of Rehabilitation Medicine for a practice session. At the beginning of this session, the subjects were asked to read the information in the Informed Consent Form (Appendix A). They were then placed in the isokinetic apparatus as shown in Figure 1, and the investigator explained the general principles of isokinetic exercise to the subjects. The experimental procedure was then fully explained to the subjects and they were given the opportunity to practise using the dynamometer with both legs at the two different speeds selected for the study. Finally, the subjects were asked to sign the Informed Consent Form.

D. TESTING PROCEDURE

8

There were two separate testing sessions for each subject, one for each speed setting selected for the study (180 and 240 degrees per second). Testing took place during the outdoor track season (June and July). Subjects were asked to refrain from any strenuous physical activity for at least forty eight hours prior to each testing session (69). The second testing session took place at the same time of the day as the first session, as certain physiological processes (such as body temperature, blood pressure and oxygen consumpt (1) have circadian rhythms (70,71,72). At some basic session, first beginning of the the anthropometric measurements were made (see Appendix C). At the beginning of the second session, the torque resulting from the weight of the leg and the input accessories (including lever arm) was determined by the method of Nelson and Duncam (64) for the purpose of calculating the gravitational correction factor. Subjects wore similar identical footwear during the clothing and sessions.

The subjects were seated on a padded hinged table with a firm padded board under the thigh to be tested (Figure 1). Stabilizing straps were secured around that thigh and across the pelvis and chest, and subjects were instructed to hold on to the sides of the table or the handgrips with both

hands (8,34,73). The input shaft of the dynamometer was aligned with the knee joint axis and the shin pad on the distal end of the lever arm was secured with a velcro strap to the subject's lower leg, so that the bottom edge of the pad was level with the superior border of the medial malleolus (34). The starting position was with the knee positioned at 90 degrees and the hip at 110 degrees, measured by a standard goniometer (34,74,75,76,77). Extra back support was used when necessary to reach this test position (34). No flexion stop was used to limit range of motion, thus flexion was only limited by the performing leg of the subject meeting the seating apparatus.

As a warm-up procedure, the subjects performed five to the consecutive submaximal repetitions of reciprocal knee extension and flexion at the preset speed for that session, followed by 3-5 identical maximal repetitions (34,78). A three minute rest period was given before the actual testing started. The endurance test consisted of a 45 second trial of high speed reciprocal extension and flexion of the knee with the speed selector set at 180 degrees per second for one session and at 240 degrees for the other session (randomly assigned). Both lower limbs were tested each time, and the subjects randomly chose by draw which limb was tested first in each session. (For time sequence flow chart, see Figure 5). The subjects were instructed to push and pull

Figure 5. Time Sequence Flow Chart for the Testing Procedure

MEASUREMENTS

- height, weight, thigh circumference

PREPARATION

- randomly choose test speed and limb to be tested first
- positioning, stabilization

WARM-UP AND FAMILIARIZATION

- 5-10 consecutive, submaximal repetitions of reciprocal knee extension and flexion at the pre-set speed
- followed by 3-5 identical maximal repetitions

3 - MINUTE REST

- sitting relaxed in the chair

45 - SECOND ENDURANCE TEST

 45 second trial of reciprocal extension and flexion of the knee at the pre-set test speed

5 - MINUTE REST

change chairs, positioning, stabilization

REPEAT WARM-UP AND TESTING SEQUENCE FOR THE OTHER LIMB against the lever arm through the full available range of motion as fast and as hard as possible until notified to stop. They were verbally encouraged by the investigator and periodically given the time remaining of the test (at twenty, ten and five seconds remaining).

A fatigue index (per cent decline in peak torque) was calculated on the basis of the mean peak torque of the three highest peaks out of the first five repetitions and the last three repetitions of the 45 second trial (8). The single highest torque value obtained during the first five repetitions was defined as initial strength at each of the two speed settings examined in the study.

E. EXPERIMENTAL DESIGN AND STATISTICAL ANALYSIS

The design of this study was four factorial (79,80) in which:

Factor A was the three groups of subjects, namely, sprinters, middle-distance runners and untrained males,

Factor B was the two muscle groups, namely, the hamstrings and quadriceps,

Factor C was the velocity at which the limbs were tested, namely, 180 degrees per second and 240 degrees per second, and

Factor D was the limbs tested, namely, the right and left limbs.

The data for the per cent decline in peak torque were analysed using a four-way analysis of variance with repeated measures on Factors B,C and D above (79,80). For the endurance ratios of the muscle groups, a three-way analysis of variance with repeated measures on velocity and limbs was used. A Tukey test was used (a priori) to compare selected pairs of means. Selected correlational calculations were performed as well (79). Values were considered to be significant at the .05 level of confidence.

IV. RESULTS

The purpose of the study was to analyse the isokinetic muscle endurance of knee flexors and knee extensors in runners and untrained men. Ten male sprinters, ten male middle-distance runners and a group of ten normal, untrained male subjects, at the age of 18 - 32 years, were studied. The Cybex II+ isokinetic apparatus was used in the study, and two different velocity settings were compared (180 and 240 degrees per second). The endurance test consisted of a 45 second trial of reciprocal knee flexion and extension for each limb.

Anthropometric data of the subjects are shown in Appendix C. The mean, standard deviation; and range of the subjects' age, height, weight, thigh girth and initial strength are shown in Table I. The raw data, corrected for gravity and uncorrected, are shown in Appendix D.

The results of the study are presented in terms of the six hypotheses previously stated, followed by a section on various correlations between variables. The summary of the analysis of variance for the per cent decline in peak torque is provided in Appendix E. The results indicated no significant four way interaction, which suggested that there were no significant differences between the three groups of subjects for the per cent decline in peak torque of the

right and left limbs.

It was expected that there would be no significant difference in muscle endurance between left and right lower limbs of the subjects in each group for the knee flexors and extensors. The results of the Tukey test showed this hypothesis to be true (p>.05) (Table IT).

As no significant difference was observed between the left and right sides, the data for both limbs were combined in the analysis of the remaining hypotheses.

It was hypothesized that there would be a significant difference in endurance patterns between the knee flexors and knee extensors in all three groups of subjects. As seen in Table III and Figure 6, this hypothesis was true only for middle-distance runners at the velocity setting of 180 degrees per second. The knee flexors showed significantly greater endurance than the knee extensors in this case.

It was hypothesized that the middle-distance runners would show greater endurance of both knee flexors and knee extensors than the other two groups studied. None of these comparisons were significantly different, however, as seen in Table IV (Figure 7).

Table I

Mean, Range and Standard Deviation of Age and Some Physical Characteristics of Subject Groups

intexa 179.2 68.9 51.6 51.4 87.9 108.2 88.1 111.5 73.4 19.24 169-191.5 61-81.1 46.5-55.5 46.5-55 73-108 80-132 75-102 85-142 7.3 7.5 2.5 2.4 11.9 17.3 10.3 18.3 18.3 18.3 19.4 17.1 66.8 49.7 49.7 80.4 99.5 76.5 100	Group	Age.	Height (cm)	Weight (kg)	Thigh Girth (cm)	th (cm)	Hams 180	Quads 180	Hams 180	Quads 180	Hams 240	Quads 240	Hams 240	Vuads 240
21 179.2 68.9 51.6 51.4 87.9 108.2 88.1 111.5 19-24 169-191.5 61-81.1 46.5-55.5 46.5-55 73-108 80-132 75-102 85-142 1.6 7.3 7.5 2.5 2.4 11.9 17.3 10.3 18.3 20 177.1 66.8 49.7 49.7 80.4 99.5 76.5 100 4.0 6.8 7.6 31.5-80 45.4-56.5 45.5-55.5 64-89 73-114 61-91 67-115 4.0 6.8 7.6 3.5-80 49.1 49.5 80.2 102.7 80.5 103.2 20-31 170-192 63.8-85 47-52 46.5-53 61-102 87-144 60-104 89-158 20-31 170-192 63.8-85 1.4 1.9 11.6 17.4 13.7 21.9							4	•						
20 177.1 66.8 49.7 49.7 80.4 99.5 76.5 100 18-32 162.5-186 53.5-80 45.4-56.5 45.5-55.5 64-89 73-114 61-91 67-115 4.0 6.8 7.6 3.5 3.5 6.7 10.9 10.4 12.9 25 181.8 69.9 49.1 49.5 80.2 102.7 80.5 103.2 9e 20-31 170-192 63.8-85 47-52 46.5-53 61-102 87-144 60-104 80-158 20 5.0 6.4 5.9 1.4 1.9 11.6 17.4 13.7 21.9	**************************************	21 9-24 1.6	179.2 169-191.5 7.3	68.9 61-81.1 7.5	51.6 46.5-55.5	51.4	87.9 73-108 11.9	108.2 80-132 17.3	88.1 75-102 10.3	111.5 85-142 18.3	79.4 59-96° 10.9	93 68-124 18.1	82.8 56-102 15.0	96.9 72-121 17.4
103.2 25 181.8 69.9 49.1 49.5 80.2 102.7 80.5 103.2 26.31 170-192 63.8-85 47-52 46.5-53 61-102 87-144 60-104 80-158 20-31 170-192 63.8-85 1.4 1.9 11.6 17.4 13.7 21.9	<u>.</u> <u></u>	20, 8-32 4.0	177.1 162.5-186 6.8	66.8 53.5-80 7.6	49.7 .4-56.5 3.5	49.7 45.5-55.5 3.5	80.4 64-89 6.7	99.5 73-114 10.9	76.5 61-91 10.4	100 67-115 12.9	73.6 54-88 8.3	84.3 64-96 9.3	74.8 52-88	86.4 61-107 11.9
	ined	25 20-31 3.0	181.8 170-192 6.5	69.9 63.8-85 5.9	49.1 47-52 1.4	49.5 46.5-53	80.2 61-102 11.6	102.7 87-144 17.4	80.5 60-104 13.7	103.2 go-158 21.9	75 54-105 13.7	86.9 68-132 17.3	78.3 58-115 15.1	89 72-140 18.7

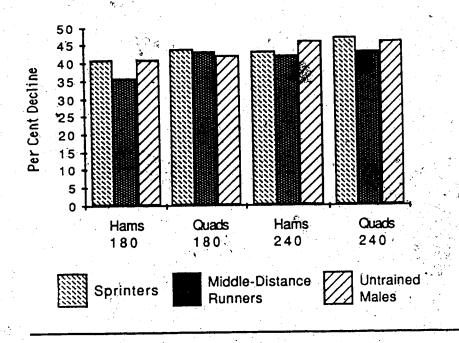
Table II

Comparison Between the Per Cent Decline of Peak Torque of the Le€t and Right Lower Limbs on a 45 Second Endurance Test

(Values are means with S.D.'s in parenthesis)

Group	Speed	Muscle	Rig	Lii jht	mb Le	ft
		Hamstrings	40.6%	(7.6)	41.3%	(9.5)
	180 deg/sec	Quadriceps	44.9%	رر (10.4)	42.98	(8.9)
Sprinters		Hamstrings '	44.6%	(8.6)	41.2%	(9.8)
	240 deg/sec	Quadriceps	49.0%	(11.6)	44.7	(11.6)
		Hamstrings	33.4%	(7.1)	38.8%	(8.5)
	180 deg/sec	Quadriceps	43.6%	(7.8)	41.5%	(6.5)
Middle-Distance Runners		Hamstrings	41.9%	(9.5)	41.3%	(9.0)
	240 deg/sec	Quadriceps	43.8%	(6.8)	42.1%	(7.3)
		Hamstrings >	43.3%	(9.8)	37.8%	(9.6
	180 deg/sec	Quadriceps	42.1%	(7.1)	42.5%	(6.3
Untrained		Hamstrings	46.3%	(10.0)	45.2%	(9.7
	240 deg/sec	Quadriceps	45.9%	(7.0)	45.2%	(5.2

Table III


Comparison Between the Per Cent Decline of Peak Torque in the Hamstring and Quadriceps Muscle Groups on a 45 Second Endurance Test

(Values are means with S.D.'s in parenthesis)

Group	Speed	Hams	Musc	le Quadriceps
	180 deg/sec	418	(8.4)	44% (9.5)
Sprinters	240 deg sec	438	(9.2)	47% (11.5)
	180 deg/sec	36*	(8.1)	43% (7.0)*
Middle-Distance Runners	240 deg sec	428	(9.0)	43% (6.9)
	180 deg/sec	41%	(9.9)	42% (6.5)
Untrained	240 deg sec	46%	(9.6)	46% (6.0)

^{*} statistically significant (p = 0.05)

Figure 6. Comparison Between the Per Cent Decline of Peak Torque in the Hamstring and Quadriceps Muscle Groups on a 45 Second Endurance Test.

Hams = Hamsfrings

180 = 180 degrees/second

Quads = Quadriceps

240 = 240 degrees/second

Table IV

Comparison Between the Per Cent Decline of Peak Torque in Sprinters, Middle-Distance Runners and Untrained Males on a 45 Second Endurance Test

(Values are means with S.D.'s in parenthesis)

Muscle	Spe	ed				G	roup		
110020		•		Spr		MDR		Unt	
	180	deg/sec		41%	(8.4)	36%	(8.1)	41%	(9.9)
Hamstrings	240	deg sec		43%	(9.2)	42%	(9.0)	46%	(9.6)
0	180	deg/sec		44%	(9.5)	43%	(7.0)	42%	(6.5)
Quadriceps	240	deg sec	•	47%	(11.5)	43%	(6.9)	46%	(6.0)

(p = 0.05)

Spr = Sprinters

MDR = Middle-Distance Runners

Unt = Untrained Males

Figure 7. Comparison Between the Per Cent Decline of Peak Torque in Sprinters, Middle-Distance Runners and Untrained Males on a 45 Second Endurance Test.

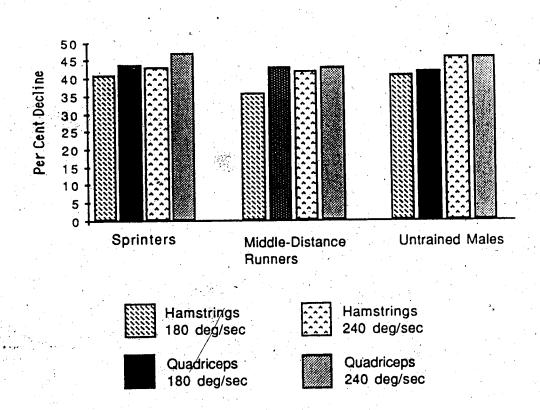
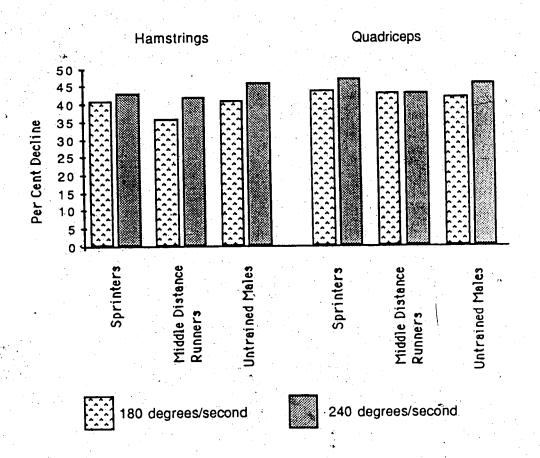


Table V


Comparison Between the Per Cent Decline of Peak Torque at 180 Degrees/Second and 240 Degrees/Second

(Values are means with S.D.'s in parenthesis)

Group	Muscle	Speed 180 deg/sec 240 deg/sec
	Hamstrings	41% (8.4) 43% (9.2)
Sprinters	Quadriceps	44% (9.5) .47% (11.5)
	Hamstrings /	36% (8.1) 42% (9.0)*
Middle-Distance Runners	Quadriceps	43% (7.0) 43% (6.9)
	Hamstrings	41% (9.9) 46% (9.6)*
Untrained	Quadriceps	42% (6.5) 46% (6.0)*

^{*} statistically significant (p = 0.05)

Figure 8. Comparison Between the Per Cent Decline of Peak Torque at 180 Degrees/Second and 240 Degrees/Second on a 45 Second Endurance Test.

It was hypothesized that there would be a significant difference in muscle endurance of the quadriceps and hamstring muscles at the faster velocity as compared to the slower velocity in all three groups of subjects. Table V shows this hypothesis to be true for the hamstring muscles of middle-distance runners and for both hamstring and quadriceps muscles of the untrained group (p=0.05) (Figure 8). The per cent decline was greater at the faster velocity.

The summary of the three-way analysis of variance for the endurance ratios is given in Appendix E. The results indicated that the three way interaction was not significant.

It was expected that there would be a significant difference in the hamstrings to quadriceps (H/Q) endurance ratio of middle-distance runners as compared to sprinters at the faster velocity. This difference, on analysis, was found to be non-significant (p>.05) (Table VI).

Finally, it was expected that there would be a significant difference in the hamstrings to quadriceps (H/Q) endurance ratio at the faster velocity as compared to the slower velocity in all three groups. Again, the results showed that the difference was non-significant (p>.05)

The correlation between thigh muscle fatigue and body weight is shown in Table VIII. These variables were not strongly correlated and the hamstring fatigue had a considerably lower correlation with body weight than the quadriceps fatigue did.

Table IX shows the correlation between thigh muscle fatigue and initial strength. The quadriceps fatigue was highly correlated with initial strength, whereas hamstring fatigue had a somewhat lower correlation with initial strength.

Table VI

Comparison Between the Hamstrings/Quadriceps (H/Q) Endurance Ratio* in Sprinters and Middle-Distance Runners

(Values are means with S.D.'s in parenthesis)

	Speed		Grou <u>r</u> Spr) MDR
			,	
	180 deg/sec	•	0.95 (.20)	0.86 (.19)
*	240 deg/sec		0.95 (.24)	0.97 (.16)
				en de la companya de La companya de la co

(p = 0.12)

#H/Q Endurance Ratio = Per cent decline of peak torque in hamstrings divided by per cent decline of peak torque in quadriceps on a 45 second endurance test

Spr = Sprinters

MDR = Middle-Distance Runners

Table VII

Comparison Between the Hamstrings/Quadriceps (H/Q) Endurance Ratio# in Sprinters, Middle-Distance Runners and Untrained Males at 180 Degrees/Second and 240 Degrees/Second

(Values are means with S.D.'s in parenthesis)

Group		180 d	Speed eg/sec		eg/sec
Sprinters	*	0.95	(.20)	0.95	(.24)
Middle-Distance Runners		0.86	(.19)	0.97	(.16)
Untrained		0.98	(.27)	1.03	(.28)

(p = 0.12)

#H/Q Endurance Ratio =

Per cent decline of peak torque in hamstrings divided by per cent decline of peak torque in quadriceps of a 45 second endurance test

Table VIII

Pearson Correlation Coefficients (r) for Per Cent Decline in Peak Torque (Fatigue Index) and Body Weight

	•	· .	2							
		• 17		· · · · · · · · · · · · · · · · · · ·				r	Í	
		ds 180 ds 180						.35 * .33 *		
		ds 240 ds 240						.33 * .19		
	Ham Ham	s 180 s 180						.20 .06		
•	- Ham Ham	s 240 s 240			•	**)	.12 .09		
	è		·.		*		/			

Statistically significant (p = 0.05)

Quads = Quadriceps

Hams = Hamstrings

180 = 180 degrees/second

240 = 240 degrees/second

L = left

R = right

Table IX

Pearson Correlation Coefficients (r) for Per Cent Decline in Peak Torque (Fatigue Index) and Initial Strength

								r	
	Quads	180 I						.80 *	
•	Quads							.69 *	
	Quads						į,	.76 *	
	Quads							.62 *	
		(•			- '.	46.4	
	Hams	180 /1		*		•		.46 *	
	Hams	180	R					.52 *	
	Hams	240	L 🤝	•	•		•	.40 *	•
	Hams	240						.25	
	i					•			

* Statistically significant (p = 0.05)

Quads = Quadriceps
Hams = Hamstrings
180 = 180 degrees/second
240 = 240 degrees/second
L = left

L = left R = right

V. DISCUSSION

The purpose of this study was to analyse the isokinetic muscle endurance of knee flexors and knee extensors in runners and untrained men. Left and right lower limbs were compared as well as performance at two different velocity settings on the Cybex II+ isokinetic apparatus.

The discussion is organized into sections based on the six hypotheses stated in the Introduction, followed by sections on various correlations between variables, and clinical implications.

Hypothesis 1 - Comparison of Muscle Endurance Between Left and Right Lower Limbs

It was hypothesized that there would be no significant difference in muscle endurance between left and right lower limbs of the subjects in each group for the knee flexors and extensors (for each of the two speeds examined).

As expected, there was no difference in endurance between the left and right lower limbs (Table II). Running is basically a symmetrical sport, so the training effects should be the same for both sides. Of the thirty-subjects, twenty eight had a right dominant lower limb, as determined by kicking a ball (20,58,65). Thus, limb dominance had no effect on isokinetic muscle endurance of the subjects in

this study. This finding is consistent with results from studies on fencers (54), high school football players (81) and female basketball players (82) where no significant differences in tiscle endurance between dominant and nondominant lower libbs were found.

These results suggest that when rehabilitating sprinters, middle-distance runners or untrained men, both lower limbs should be equally endurant by the end of the training program.

Hypothesis 2 - <u>Difference in Muscle</u>* <u>Endurance Between the</u> Hamstrings and Quadriceps Muscles

It was hypothesized that there would be a significant difference in endurance patterns between the knee flexors and knee extensors in all three groups of subjects (for each of the two speeds examined).

In the present study, a significant difference between the endurance of the hamstring muscles and the quadriceps muscles was found only in the group of middle-distance runners at the velocity setting of 180 degrees per second and not in the group of sprinters or the untrained subjects (Table III). Except for the finding for the group of middle-distance runners, these results are in contrast with other recent studies on the endurance of the thigh muscles,

all of which have shown the hamstring muscles to have more endurance than the quadriceps muscles (8,57,58). The authors of these studies do not report that a gravitational correction had been sincluded in the calculations. It has pointed , out, however, many authors by (19,64,65,66,67,68,83) that correcting for gravity necessary in this test position (sitting), especially at high velocities with many repetitions. In the sitting position, the quadriceps muscle group performs work against gravity and therefore, appears to be more fatigable than the hamstring muscle group which is assisted by gravity. During both endurance and high velocity testing, the relative contribution of gravity to recorded torque values becomes increasingly large as active torque generation decreases (34,64,66). Therefore, a gravitational correction factor was used in this study. The torque due to gravity was added to the torque produced during extension movements and subtracted from torque produced during flexion movements (64). The apparent neglect of other studies to account for the influence of gravity on the recorded torques could be, in part, the source of the discrepancies found between the results of those studies and the present one.

Training effects are the most likely explanation for the difference in endurance between the hamstring and quadriceps muscles in the middle-distance runners in this study. Watkins and Harris (8) found that in a group of long-distance runners, there was a relatively low per cent decline in torque values of the hamstring muscles compared to professional hockey players. Harris (56) also shown that an intense long distance running program increased the endurance of the hamstring muscles in females. Similarly, specificity of training has been suggested as a reason for greater endurance in the hamstrings than quadriceps in professional ballerinas (57). Sprinters, on the other hand, showed no difference in muscle endurance between these muscle groups in the present study. No comparative data on sprinters are available but training effects of sprinting may possibly result in this kind of endurance pattern. Thus, the results of the present study as as studies of other sport groups (8,57) indicate that performance demands specific to each sport may require different patterns of muscular endurance. These differences need further investigation.

Initial strength level of the hamstring muscles and the quadriceps muscles may be another reason for a difference in their endurance among middle-distance runners. As seen in Table I, the quadriceps muscles are stronger than the hamstring muscles, and thus they perform more work at the beginning of the endurance test, since work is the area under the torque curve and higher torque values give larger

area (31,53). However, this is true also for the other two groups studied, the sprinters and the untrained, but neither group showed a significant difference in endurance between the hamstring and quadriceps muscles. In both groups, the hamstring muscles show slightly more endurance than the quadriceps muscles but not enough to be statistically significant.

Despite the contradictary findings resulting from the analysis of hypothesis 2, the data of Table III should be useful to physical therapists in a clinical setting. They could use the data as examples of normal values for comparison when evaluating, rehabilitating and defining treatment goals for the injured runner, for example.

Hypothesis 3 - <u>Difference in Muscle Endurance Between</u> Sprinters, Middle-Distance Runners and Untrained Subjects

It was hypothesized that the middle-distance runners would show greater endurance of both knee flexors and knee extensors than the other two groups studied (for each of the two speeds examined). This hypothesis was rejected in the present study.

The main reasons the middle-distance runners were expected to have greater endurance of both the hamstring and quadriceps muscles than the other two groups, are the

histologic make-up of their muscles and training effects (59,60,84,85,86,87). Two basic types of fibres in human skeletal muscle have been identified: slow twitch fibres (ST; Type I) and fast twitch fibres (FT; Type II). The ST fibres have relatively slow contractile properties as indicated by the time to peak tension and are well-endowed with enzymes in the metabolic pathways for the terminal oxidation of fuels to carbon dioxide and water (aerobic). Consequently, they fatigue slowly (60). Conversely, FT fibres have fast-twitch properties and low biochemical potentials for terminal oxidative metabolism, but have highly effective systems for adenosine triphosphate (ATP) production from the Embden-Meyerhof pathway (anaero). Such fibres produce tension for short periods of time and fatigue easily (60).

In general, distance runners tend to have more ST fibres than sprinters, although considerable variation exists in the fibre composition of the skeletal muscle within the letic groups (59,60). Interindividual differences in fibre pe distribution and maximal anaerobic power, have been claimed to be almost entirely determined by heredity (88,89,90). Endurance performance responses to training have also been found to be hereditary (91). As ST fibres are well stitled for endurance work, and in their training programs, middle-distance runners emphasize aerobic work, this group

was expected to show less decline in torque in the 45 second endurance test than the other two groups studied. However, this 45 second high intensity endurance test may have been too intense (maximal effort) and too short to execut a difference in endurance between the three groups. A personal capacity for high-intensity, short-term exercise, where the force generated by repeated muscular contractions approaches that of a maximal voluntary contraction, is primarily dependent upon anaerobic processes for energy release (92,93).

factors could contribute to other Several similarity in thigh muscle endurance of all three groups. Some of the middle-distance runners were young athletes (18 - 19 years) and thus had a shorter training background than the sprinters. Novice middle-distance runners have been shown to have a thirty to fifty percent lower oxidative enzyme activity than experienced sportsmen (87). Some of the sprinters were borderline middle-distance runners, as they would occasionally compete in 800 m races in addition to their 200 m and 400 m events. Furthermore, training programs sprinters and middle-distance runners are somewhat similar as middle-distance runners emphasize anaerobic work as well as aerobic work (94). The so-called "Untrained" subjects were a group of physically active students who had done recreational sports for a long time, and therefore

would have developed some training effects.

Hypothesis 4 - Difference in Muscle Endurance Between the Two Velocity Settings (180 and 240 Degrees Per Second)

It was hypothesized that there would be a significant difference in muscle endurance of the quadraceps and hamstring muscles at the faster velocity as compared to the slower velocity in all three groups of subjects.

This difference was expected because of different fibre type recruitment at each velocity. The FT fibres were expected to be more involved at the faster velocity and therefore more fatigue would be evident. Such may be the case in the group of untrained subjects for both the quadriceps and hamstring muscles and for the hamstrings in middle-distance runners who showed significantly more fatigue at the faster velocity (Table V). In the group of sprinters, who generally have a predominance of FT fibres (59,60,84), there was no difference in muscle endurance between the two velocity settings.

These findings indicate that results from isokinetic endurance tests at different velocities are not necessarily comparable. Therefore, clinicians dealing with runners as well as untrained subjects should only compare their results with available norms at the same velocity setting.

Hypothesis 5 - <u>Difference in the Hamstrings/Quadriceps</u>

Endurance Ratio Between Sprinters and Middle-Distance

Runners

It was hypothesized that there would be a significant difference in the hamstrings to quadriceps (H/Q) endurance ratio of middle-distance runners as compared to sprinters at the faster velocity.

In this study, this hypothesis was rejected as was no significant difference (Table VI). Sapega et al. (13,17) have stated that computed parameters, such as the endurance strength, òr power ratio joint, are more agonist-antagonist muscle groups about a sensitive indicators of musculoskeletal abnormalities than parameters. Several investigators the raw data (18, 19, 21, 67, 81) have studied the strength ratio between the hamstring and the quadriceps muscles. On the other hand, no comparative data have been reported on the endurance ratio be muscle groups. Thus, only further prospective studies will tel if this parameter is of any actual value in evaluating athle es. Through further research, it needs be determined if there is a critical hamstrings to quadriceps (H/Q) endurance ratio that might be indicative of injury or predictive of injury or pathology.

Hypothesis 6 Difference in the Hamstrings/Quadriceps

Endurance Ratio Between the Two Velocity Settings (180 and 240 Degrees Per Second)

It was hypothesized that there would be a significant difference in the hamstrings to quadriceps (H/Q) endurance ratio at the faster velocity as compared to the slower velocity in three groups.

This hypothesis was rejected as this study showed no such significant difference (Table VII).

As there are no comparative data available, additional research is needed to replicate the findings of this study and to investigate the potential predictive use of endurance ratios of the hamstring and quadriceps muscles.

Correlations

The correlation tables (VIII and IX) showed that thigh muscle fatigue was strongly correlated with initial strength, whereas the correlation with body weight was low.

The former relationship is in agreement with previous observations. Clarkson et al. (10) found a significant correlation between muscle fatigue and initial strength level of the quadriceps muscles at the velocity setting of 180 degrees per second. Similarly, Tesch et al. (95) reported that muscle fatigue elicited in the quadriceps at

the velocity setting of 180 degrees per second correlated significantly with maximum strength at the velocity setting of 300 degrees per second. No comparative data are available on the relationship of thigh muscle fatigue and body weight.

These findings suggest that physical the apists should consider the relationship between thigh muscle endurance and initial strength when using normal values in the clinical setting.

Clinical Implications

The accurate assessment of muscular strength, endurance, power, and flexibility through quantitative testing methods has become increasingly important in the evaluation and rehabilitation of athletes with orthopedic problems. To be properly interpreted, the test results should be compared to the normal range of values for these parameters.

The only parameter examined in this study was muscular endurance. There are minimal data available on muscle endurance of the knee musculature in runners. The 45 second isokinetic endurance test used in the study should be a convenient test in the clinical setting. Therefore, the isokinetic data resulting from the study are offered as examples of normal values for thigh muscle endurance in

sprinters, middle-distance runners and untrained men.

These data could be of particular value to physical therapists and other sports medicine professionals who are able to obtain isokinetic measures on their runners for injury prevention and rehabilitation purposes and to use as return to play criteria after injury. For example, when rehabilitating a runner following a thigh or knee injury, these data may be used to establish treatment goals where endurance training is included in the rehabilitation program.

VI. CONCLUSIONS

within the limitations of this study, the following conclusions were drawn:

- between left and right lower limbs of sprinters, middle-distance runners and untrained subjects.
- 2. There was no difference in endurance patterns between the knee flexors and knee extensors except in middle-distance runners at the velocity setting of 180 degrees per second, where the knee flexors showed greater endurance than the knee extensors.
- 3. There was no difference in muscle endurance of knee flexors and knee extensors between sprinters, middle-distance runners and untrained subjects.
- There was a difference in muscle endurance of the quadriceps and hamstring muscles between the two velocity settings (180 and 240 degrees per second) in the group of untrained subjects. This difference was also seen only in the hamstring muscles of middle-distance runners. The per cent decline was greater at the faster velocity. No such difference was

seen in the group of sprinters?

- 5. There was no difference in the hamstrings to quadriceps (H/Q) endurance ratio between sprinters and middle-distance runners at the faster velocity (240 degrees per second).
- 6. There was no difference in the hamstrings to quadriceps (H/Q) endurance ratio between the two velocity settings in any of the three groups studied (sprinters, middle-distance runners and untrained subjects).
- 7. Thigh muscle fatigue and body weight were not strongly correlated.
- 8. Thigh muscle fatigue and initial strength were highly correlated.

Recommendations

It is recommended that the isokinetic muscle endurance of knee flexors and knee extensors be studied more extensively. For example:

1. Larger samples of various sport groups should be

investigated.

Normal values for these groups should be established for clinical use.

- 3. The potential predictive use of the muscle endurance parameter should be investigated through prospective studies for injury prevention purposes.
 - 4. The findings of the present study should be replicated through research on larger samples of subjects.

REFERENCES

- Oberg B, Moller M, Gillquist J and Ekstrand J: Isokinetic torque levels for knee extensors and knee flexors in soccer players. <u>Int J Sports Med</u> 7: 50-53, 1986
- Eriksson E: Rehabilitation of muscle function after sport injury - major problem in sports medicine. <u>Int</u> J Sports Med 2: 1-6, 1981
- 3. Costill DL, Fink WJ and Habanski AJ: Muscle rehabilitation after knee surgery. Phys Sportsmed 5(9): 71-74, 1977
- 4. Eriksson E: Sport injuries of the knee ligaments: their diagnosis, treatment, rehabilitation, and prevention. Med Sci Sports 8: 133-144, 1976
- 5. Campbell DE and Glenn W: Rehabilitation of knee flexor and knee extensor muscle strength in patients with meniscectomies, ligamentous repairs, and chondromalacia. Phys Ther 62: 10-15, 1982
- 6. Radin EL: Role of muscles in protecting athletes from injury. Acta Med Scand Suppl 711: 143-147, 1986
- 7. Reid DC: Personal communication, University of Alberta Hospitals, Edmonton, Alberta, Dec. 1987
- 4 8. Watkins MP and Harris BA: Evaluation of isokinetic muscle performance. Clinics in Sports Med 2: 37-53, 1983
 - Imwold CH, Rider RA, Haymes EM and Green KD: Isokinetic torque differences between college female varsity basketball and track athletes. J Sports Med and Phys. Fitness 23: 67-73, 1983

- 10. Clarkson PM, Johnson J, Dextradeur D et al.: The relationships among isokinetic endurance, initial strength level, and fiber type. Res Q for Ex and Sport 53: 15-19, 1982
- 11. Ivy JL, Sherman WM, Miller JM et al.: Relationship between muscle QO2 and fatigue during repeated isokinetic contractions. J Appl Physiol 53: 470-474, 1982
- 12. Tesch PA: Muscle fatigue in many with special reference to lactate accumulation darking short term intense exercise. Acta Physiol Scand. Suppl. 480, 1980
- 13. Sapega AA and Nicholas JA: The clinical use of musculoskeletal profiling in orthopedic sportsmedicine. Phys Sportsmed 9(4): 80-88, 1981
- 14. Hershman E: The profile for prevention of musculoskeletal injury. Clinics in Sports Med 3: 65-84, 1984
- 15. Nicholas JA: The value of sports profiling. Clinics in Sports Med 3: 3-10, 1984
- 16. Smith DJ, Quinney HA, Wenger HA et al.: Isokinetic torque outputs of professional and elite amateur ice hockey players. Jortho Sports Phys Ther 3: 42-47, 1981
- 17. Sapega AA, Minkoff J, Nicholas JA et al.: Sportspecific performance factor profiling: fencing as a prototype. Am J Sports Med 6: 232-235, 1978
- 18. Stafford MG and Grana WA: Hamstring/quadriceps ratios in college football players: a high velocity evaluation. Am J Sports Med 12: 209-211, 1984
- 19. Appen L and Duncan PW: Strength relationship of the knee musculature: effects of gravity and sport. J Ortho Sports Phys Ther 7: 232-235, 1986

- 20. Wyatt MP and Edwards AM: Comparison of quadriceps and hamstring torque values during isokinetic exercise.

 J Ortho Sports Phys Ther 3:48-56, 1981
- 21. Morris A, Lussier L, Bell G and Dooley J: Hamstring/ quadriceps strength ratios in collegiate middle-distance and distance runners. Phys Sportsmed 11(10): 71-77, 1983
- 22. Thorstensson A and Karlsson J: Fatiguability and fibre composition of human skeletal muscle. Acta Physiol Scand 98: 318-322, 1976
- 23. Tesch PA, Sjodin B, Thorstensson A and Karlsson J:

 Muscle fatigue and its relation to lactate accumulation and LDH activity in man. Acta Physiol Scand 103: 413-420, 1978
- 24. Tesch PA: Fatigue pattern in subtypes of human skeletal muscle fibers. Int J Sports Med 1: 79-81, 1980
- 25. Barnes WS: Isokinetic fatigue curves at different contractile velocities. Arch Phys Med Rehab 62: 66-69, 1981
- 26. Perrine JJ: Isokinetic exercise and the mechanical energy potentials of muscle. JOHPER 40: 40-44, 1968
- 27. Hislop HJ and Perrine JJ: The isokinetic concept of exercise. Phys Ther 47: 114-117, 1967
- 28. Thistle HG, Hislop HJ, Moffroid MT and Lowman EW:
 Isokinetic contraction: a new concept of resistive
 exercise. Arch Phys Med Rehab 48: 279-282, 1967
- 29. Laird CE and Rozier CK: Toward understanding the terminology of exercise mechanics. Phys Ther 59: 287-292, 1979
- 30. Moffroid MT, Whipple R, Hofkosh J et al.: A study of isokinetic exercise. Phys Ther 49: 735-747, 1969

- 31. Moffroid MT et al.: <u>Guidelines for Clinical Use of</u>

 <u>Isokinetic Exercise</u>. Rehabilitation Monograph XV,

 N.Y. University Medical Center, Institute of

 Rehabilitation Medicine, New York City, 1969
 - 32. Moffroid MT and Whipple R: Specificity of speed of exercise. Phys Ther 50: 1692-1699, 1970
 - 33. Moffroid MT and Kusiak ET: The power struggle definition and evaluation of power of muscular performance. Phys Ther 55: 1098-1104, 1975
 - 34. Cybex: <u>Isolated Joint Testing and Exercise</u>. A Handbook for <u>Using Cybex II</u> and the U.B.X.T. Cybex (Lumex Inc.), Ronkonkoma, New York 1983
 - 35. Larsson L and Karlsson J: Isometric and dynamic endurance as a function of age and skeletal muscle characteristics. Acta Physiol Scand 104: 129-136, 1978
 - 36. Johnson T: Age-related differences in isometric and dynamic strength and endurance. Phys Ther 62: 985-989, 1982
 - 37. Vandervoort AA, Hayes KC and Belanger AY: Strength and endurance of skeletal muscle in the elderly.

 Physiother Can 38: 167-173, 1986
 - 38. Simonson E: Physiology of Work Capacity and Fatigue.
 Springfield, Charles C Thomas Publ., 1971
 - 39. CIBA Foundation Symposium No 82. <u>Human Muscle Fatigue:</u>

 <u>Physiological Mechanisms</u>. Porter R and Whelan J,

 eds. Pitman Medical, London, 1981
 - 40. Knuttgen HG, Vogel JA and Poortmans J (eds.):

 Biochemistry of Exercise. Intl. Series on Sport
 Sciences, Vol 13. Human Kinetics Publ., Champaign,
 1983

- 41 Mosso, A: <u>Fatique</u>. English translation of La <u>Fatique</u> Intellectuelle et Physique. New York, G.P.Putnam's Sons, 1903 (cited in Asmussen 1979).
- 42. Asmussen E: Muscle fatigue. Med Sci Sports 11: 313-321, 1979
- 43. Gibson H and Edwards RHT: Muscular exercise and fatigue.

 Sports Med 2: 120-132, 1985
- 44. Belcastro AN, Maclean I and Gilchrist J: Biochemical basis of muscular fatigue associated with repetitious contractions of skeletal muscle (a minireview). Int J Biochem 17: 447-453, 1985
- 45. Gollnick PD: Fatigue in retrospect and prospect:
 heritage, present status and future. In <u>Biochemistry</u>
 of <u>Exercise</u>, Knuttgen et al. (eds.), Champaign,
 Human Kinetics Publ., 1983
- 46. Horita T and Ishiko T: Relationships between muscle lactate accumulation and surface EMG activities during isokinetic contractions in man. Eur J Appl Physiol 56: 18-23, 1987
- 47. Fenn WO and Marsh BS: Muscular force at different speeds of shortening. J Physiol 85: 277-297, 1935
- 48. Hill AV: The heat of shortening and the dynamic constants of muscle. Proc Royal Soc B 126: 136-195, 1938
- 49. Thorstensson A: Muscle strength, fibre types and enzyme activities in man. Acta Physiol Scand Suppl. 443, 1976
- 50. Wilkie DR: The relation between force and velocity in human muscle. J Physiol (London) 110: 249-280, 1950
- 51. Asmussen E, Hansen O and Lammert O: The relation between isometric and dynamic muscle strength in man. Comm

Dan Nat Ass Infant Par 20: 3-11, 1965

- 52. Komi PV: Measurement of the force-velocity relationship in human muscle under concentric and eccentric contractions. In: Medicine and Sport Vol 8.

 Biomechanics III: 224-229, 1973
- 53. Nelson AJ, Moffroid M and Whipple R: The relationship of integrated eloctromyographic discharge to isokinetic contractions. In New Developments in Electromyography and Clinical Neurophysiology (Desmedt JE ed.) 1: 584-595, 1973
- 54. Sapega AA, Minkoff J, Valsamis M and Nicholas JA:
 Musculoskeletal performance testing and profiling of
 elite competitive fencers. Clinics in Sports Med 3:
 231-244, 1984
- 55. Garret WE, Califf JC and Basset FH: Histochemical correlates of hamstring injuries. Am J Sports Med 12: 98-103, 1984
- 56. Harris BA: Effect of running on isokinetic quadriceps and hamstring performance. Abstr. Phys Ther 63: 767, 1983
- 57. Micheli LJ, Gillespie WJ and Walaszek A: Physiologic profiles of female professional ballerinas. Clinics in Sports Med 3: 199-209, 1984
- 58. Hald RD and Bottjen EJ: Effect of visual feedback on maximal and submaximal isokinetic test measurements of normal quadriceps and hamstrings. J Ortho Sports Phys Ther 9: 86-93, 1987
- 59. Saltin B and Gollnick PD: Skeletal muscle adaptability:
 , significance for metabolism and performance. In Peachey et al.(eds): Handbook of Physiology Section 10: Skeletal Muscle. Williams and Wilkins, Baltimore, 1983, chap 19
- 60. Gollnick PD and Matoba H: The muscle fiber composition

- of skeletal muscle as a predictor of athletic success. Am J Sports Med 12 212-217, 1984
- 61. MacDougall JD, Wenger HA and Gran HJ: Physiological Testing of the Elite Athless Ottawa, Mutual Press Ltd, 1982
- 62. Cybex: Service and Parts Manual. Cyber Divison of Lumex Inc., 2100 Smithtown Ave, Ronkonkoma, NY, 1985
- 63. Olds K, Godfrey CM and Rosenrot P: Computer assisted isokinetic dynamometry. A calibration study. Fourth Annual Conference on Rehabilitation Engineering, Washington, D.C., 1981, pp.247-249
- 64. Nelson SG and Duncan PW: Correction of isokinetic and isometric torque recordings for the effects of gravity. Phys Ther 63: 674-676, 1983
- 65. Richards CL: Dynamic strength characteristics during isokinetic knee movements in healthy women.

 Physiother Can 33: 141-150, 1981
- 66. Winter DA, Wells RP and Orr GW: Errors in the use of isokinetic dynamometers. Eur J Appl Physiol 46: 397-408, 1981
- 67. Sanderson DJ, Musgrove TP and Ward DA: Muscle balance between hamstrings and quadriceps during isokinetic exercise. Austr J Physiother 30: 107-110,1984
- 68. Fillyaw M, Bevins T and Fernandez L: Importance of correcting isokinetic peak torque for the effect of gravity when calculating knee flexor to extensor muscle ratio. Phys Ther 66: 23-31, 1986
- 69. Armstrong RB: Mechanisms of exercise-induced delayed onset muscular soreness: a brief review. Med Sci Sports Ex 16: 529-538, 1984
- 70. Shepard RJ: Sleep, biorhythms and human performance.

0

Sports Med 1: 11-37, 1984

- 71. LaDou J: Circadian rhythms and athletic performance.

 Phys Sportsmed 7(7): 87-93, 1979
- 72. Winget CM, DeRoshia CW and Holley DC: Circadian rhythms and athletic performance. Med Sci Sports Ex 17: 498-516, 1985
- 73. Hart DL, Stobbe TJ, Till CH and Plummer RW: Effect of trunk stabilization on quadriceps femoris muscle torque. Phys Ther 64: 1375-1380, 1984
- 74. Currier DP: Positioning for knee strengthening exercises. Phys Ther 57: 148-152, 1977
- 75. Felder CR:, Effect of hip position on quadriceps and hamstring force. Abstr. Med Sci Sports 10: 64, 1978
- 76. Lunnen JD, ack J and LeVeau BF: Relationship between muscle length, muscle activity, and torque of the hamstring muscles. Phys Ther 61: 190-195, 1981
- 77. Bohannon RW, ijdosik RL and LeVeau BF: Isokinetic knee flexion and extension torque in the upright sitting and semireclined sitting positions. Phys Ther 66: 1083-1086, 1986
- 78. Mawdsley RH and Croft BJ: Effects of submaximal contractions before isokinetic testing. Athl Training 17: 257-259, 1982
- 79. Ferguson GA: Statistical Analysis in Psychology and Education 5th ed. Montreal, McGraw-Hill Book Company, 1981
- 80. Keppel G: Design and Analysis: A Researcher's Handbook.
 Prentice-Hall Inc., Englewood Cliffs, N.J., 1973

3

81. Grace TG, Sweetser ER, Nelson MA et al.; Isokinetic

U

- muscle imbalance and knee joint injuries. <u>J Bone and</u> Joint Surg 66-A: 734-740, 1984
- 82. Berg K, Blanke D and Miller M: Muscular fitness profile of female college basketball players. J Ortho Sports Phys Ther 7: 59-64, 1985
- 83. Mayhew TP and Rothstein JM: Measurement of muscle performance with instruments. In Rothstein JM (ed):

 Measurement in Physical Therapy. Churchill Livingstone Inc, New York, 1985, chap 3
- 84. Costill DL, Daniels J, Evans W et al.: Skeletal muscle enzymes and fiber composition in male and female track athletes. J Appl Physiol 40: 149-154, 1976
- 85. Gollnick PD, Armstrong RB, Saubert CW et al.: Enzymes activity and fiber composition in skeletal muscle of untrained and trained men. J Appl Physiol 33: 312-319, 1972
- 86. Gollnick PD, Armstrong RB, Saltin B et al.: Effect of training on enzyme activity and fiber composition of human skeletal muscle. J Appl Physiol 34: 107-111, 1973
- 87. Boros-Hatfaludy S, Fekete G and Apor P: Metabolic enzyme activity patterns in muscle biopsy samples in different athletes. Eur J Appl Physiol 55:334-338, 1986
- 88. Komi PV, Viitasalo JHT, Havu M et al.: Skeletal muscle fibres and muscle enzyme activities in monozygous and dizygous twins of both sexes. Acta Physiol Scand 100: 385-392, 1977
- 89. Komi PV and Karlsson J: Physical performance, skeletal muscle enzyme activities, and fiber types in monozygous and dizygous twins of both sexes. Acta Physiol Scand suppl 462: 1-28, 1979
- 90. Simoneau JA, Lortie G, Boulay MR et al.: Inheritance of

- human skeletal muscle and anaerobic apacity adaptation to high-intensity intermittent training. Int J Sports Med 7: 167-171, 1986
- 91. Hamel P, Simoneau JA, Lortie G et al.: Heredity and muscle adaptation to endurance training. Med Sci Sports Ex 18: 690-696, 1986
- 92. Fox EL: Sports Physiology, Saunders, Philadelphia, 1979
- 93. Patton JF and Duggan A: An evaluation of tests of anaerobic power. Aviat Space Environ Med 58: 237-242, 1987
- 94. MacDougall D and Sale D: Continuous vs. interval training: a review for the athlete and the coach.

 Can J Appl Spt Sci 6: 93-97, 1981
- 95. Tesch PA, Wright JE, Vogel JA et al.: The influence of muscle metabolic characteristics on physical performance. Eur J Appl Physiol 54: 237-243, 1985

APPENDIX A

INFORMED CONSENT FORMS

Faculty of Rehabilitation Medicine Department of Physical Therapy University of Alberta Edmonton, Alberta

Informed Consent Form for Research Study:

"Isokinetic Evaluation of Knee Flexor and Knee Extensor Muscle Endurance"

Although many studies are now available concerning muscle performance in athletes, this research has largely been confined to studies of muscular strength and strength ratios. The few studies examining imuscle endurance or fatigue of the thigh muscles have normally only reported the endurance of the knee extensors.

The purpose of this study is to analyse the muscle endurance of both the knee flexors and extensors. More specifically, the isokinetic endurance of the knee flexors and extensors will be analysed separately, and left and right limbs will be compared with regards to muscle endurance.

The study will involve one practice session (20-30 min.) and two testing sessions (approximately 30-40 minutes each) performed on separate days and will be arranged at your convenience. If you agree to participate in the study you will be asked not to perform any strenuous physical activity for at least 48 hours prior to each testing session. During each of the two testing sessions you will be asked to carry out a 45 second endurance test for each lower limb on the Cybex II isokinetic apparatus.

When you arrive in the laboratory, your height, Weight and thigh circumference will be measured. Then you will be asked to sit in the Cybex chair and you will have a strap placed around your ankle to connect you to the testing machine. You will be firmly secured in the chair by means of straps around your thigh and across the pelvis and chest.

As a warm-up and familiarization procedure you will aperform five to ten submaximal repetitions of reciprocal knee flexion and extension at the preset speed for that session, followed by three to five identical maximal repetitions. A three minute rest period will be given before the actual test starts.

The endurance test itself consists of a 45 second trial of high speed reciprocal flexion and extension of the knee with the speed selector set at 180 degrees per second for one session and at 240 degrees for the other session. Both lower limbs will be tested each time.

You will be asked to ensure that you are making a maximal effort with each contraction throughout the test and to work as fast and as hard as you can. You will be verbally encouraged by the investigator and periodically given the time remaining of the test.

The major risk associated with participation is that related to muscular soreness following the contraction efforts. This discomfort is expected to be minor and similar to that which you may have experienced previously after exercise to which you were unaccustomed. A secondary risk relates to the possible development of knee discomfort as a result of the high intensity contraction efforts. Such discomfort is uncommon and usually temporary when it occurs. If you develop knee joint pain at any time during the study your participation in the study will be immediately stopped.

The results of this study will be offered as examples of normal values of muscle endurance for sprinters and middle-distance runners as well as for untrained males. With expanded profile data about the muscle performance characteristics of various categories of athletes, training and rehabilitation programs may be adapted to meet the strength, speed and endurance requirements of a given sport.

Any questions you may have before, during or after the sessions will be gladly answered.

You have the right to withdraw from participation at any time for any reason.

All information and data collected during the study. will be property of the investigators. Access to these will be restricted to those conducting the study, except where written approval is given by the subject to provide specific individuals with their data...

Please retain this explanation for your own records.

Thank you.

In the event that questions concerning the study arise, please feel free to contact Svandis Sigurdardottir, at 432-2068 (work) or 439-7505 (home).

Department of Physical Therapy Faculty of Rehabilitation Medicine

University of Alberta 1987

INFORMED CONSENT FORM FOR RESEARCH STUDY

Isokinetic Evaluation of Knee Flexor and Knee Extensor
Muscle Endurance

Subject Consent (retained by investigators)

do hereby agree to

(PLEASE PRINT NAME)

participate as a subject in the research study entitled
"Isokinetic Evaluation of Knee Flexor and Knee Extensor

Muscle Endurance" 7 to be conducted by Svandis
Sigurdardottir, B.A., B.P.T. under the supervision of Dr.

D.J. Magee.

The nature of the study has been explained to me and I
understand that I may withdraw from participation in this
study at any time.

SUBJECT'S SIGNATURE

DATE

ADDRESS

PHONE NUMBER

I hereby certify that I have given to the above individual an explanation of the contemplated study, and, any possible side effects.

INVESTIGATOR'S SIGNATURE

DATE

Department of Physical Therapy Faculty of Rehabilitation Medicine University of Alberta 1987

INFORMED CONSENT FORM FOR RESEARCH STUDY

Isokinetic Evaluation of Knee Flexor and Knee Extensor Muscle Endurance

Subject Consent (retained by investigators)

I was witness to the signature of the subject.

WITNESS' SIGNATURE

חאתו

Torque Channel Calibration

Turn the RDSC (Remote Digital Speed Control) speed selector ON. Press 60, then ENTER on the RDSC. Control. Move the input adapter back and forth being sure to meet resistance in both directions. Press 30, then ENTER on the RDSC.

- A. Zero or null out recorder to resting signal of dynamometer, as follows:
- 1. Set DAMPING contact at zero, CHART SPEED at 5 MM/SEC with speed selector at 30 deg/sec. Make sure there is no load on the dynamometer. Do this by removing any adapters from the dynamometer.
- Set FT.LBS.SCALE on 180 and zero recorder sty of baseline using ZERO ADJ. knob for Torque Channel.
- 3. Switch FT.LBS.SCALE to 30.
- 4. If stylus deflects from baseline, adjust ZERO NULL potentiometer on side of recorder with calibration screwdriver to zero stylus on chart baseline.
- 5. Repeat steps 2 through 4 until stylus deflects less than 1/2 minor division when switching back and forth between 180 and 30 ft-lbs scales.
- Set CHART SPEED at STANDBY.
 - B. Calibrate each Torque Range Scale, as follows:
- 1. Set Torque Channel to ft-lbs scale to be calibrated (the 180 ft-lbs scale in this study). Set DAMPING control at 3.
- 2. Press 30, then ENTER on the RDSC. Make sure there is no load on the dynamometer. Adjust stylus to zero baseline

using Torque Channel ZERO ADJ. knob.

- 3. Insert T-bar calibration arm into long input adapter and set effective input arm length for ft-lbs scale being calibrated (arm length B is used for the 180 ft-lbs scale).
- 4. Add appropriate amount of disc weights for ft-lbs scale being calibrated (32.5 lbs for the 180 ft-lbs scale). Cybex certified calibration weights, used in this study, are accurate to 0.01%.
- 5. Set CHART SPEED at 5 MM/SEC.
- 6. Lift weighted T-bar calibration arm to vertical position above dynamometer. Pull or push weighted arm forward gently to engage isokinetic resistance before letting go so that arm falls smoothly until it contacts the floor.
- 7. Check the torque reading on the chart recording. The peak value for the 180 ft-lbs scale setting should be five major divisions above baseline.
- 8. If the chart recording does not agree with the above value, adjust the potentiometer for the 180 ft-lbs scale with the calibration screwdriver. Turning the potentiometer clockwise increases the torque reading, counterclockwise decreases it. The weight swing must be repeated each time an adjustment is made.
- 9. Once the torque value is correct, re-check twice to make sure reading is consistent.
- 10. Remove T-bar calibration arm from long input adapter.

Position Angle Channel Calibration

To calibrate CYBEX II+ Position Angle Channel, use the following procedure:

- 1. With recorder power ON set DEG. SCALE to 150.
- 2. Set CHART SPEED at 5 MM/SEC.
- 3. Set INPUT DIRECTION to CW (clockwise).
- 4. While depressing ZERO TEST button, use Position Angle ZERO ADJ. knob to adjust stylus to zero baseline. Release ZERO TEST button. Note that Position Angle ZERO ADJ. knob is for calibration only. It must be set so that the stylus returns to zero baseline whenever ZERO TEST button is depressed. Position Angle ZERO ADJ. knob is not to be used for zeroing stylus during testing.
- 5. Adjust Position Angle Channel stylus to zero baseline by turning goniometer dial on dynamometer clockwise. Note that stylus may jump off scale at one point in goniometer range this is normal.
- 6. Recheck steps 4 and 5 until the stylus does not deviate from zero baseline when zero test button is pressed or released.
- Using the white line under the goniometer dial as an index mark, rotate the dial clockwise precisely 150 degrees. If the stylus traces a line exactly on the top line of the Position Angle chart, no adjustment is necessary. If the stylus lies above or below the top line, repeat steps 4 through 7 to veryfy the reading. If adjustment is necessary, proceed with step 8.
- 8. Locate the DEG.CAL. screw on the recorder panel. Using a 7/16 inch wrench, slightly loosen the locking nut that secures the screw. With a standard screwdriver, turn the screw to move the stylus line precisely to the top line on the Position Angle chart. Using the screwdriver to hold the screw in the adjusted position, snug down the

79

locking nut. Recheck calibration by repeating steps 4-7.

APPENDIX C

SUBJECTS' ANTHROPOMETRIC DATA

DATA SHEET

DATE NAME AGE SPORT GROUP HEIGHT WEIGHT mid-thigh (i.e., midway between gr. trochanter and knee joint line) THIGH CIRCUMFERENCE with muscles relaxed 180°/sec INITIAL STRENGTH LEVEL · 240°/sec

DOMINANT LIMB

used to kick a ball

Anthropometric Measurement Techniques

Measurement of Height

The subject, dressed in shorts and tee shirt, stood comfortably with feet about 5 cm apart on a physician's scale. The axis of the subject's vision was horizontal, eyes looking straight ahead. A rule was applied directly to the top of the skull with minimal pressure. Results were read and entered to the nearest 0.1 cm.

Measurement of Weight

Dressed in shorts and tee shirt, the subject stood on the platform of the physician's scale with weight evenly distributed over both feet. The weight measurement was read to the nearest 0.1 kg.

Measurement of Thigh Girth

The subject, dressed in shorts and tee shirt, stood on the floor while measurement was made between the tip of the greater trochanter and knee joint line with an ordinary tape measure. Midway between these anatomical landmarks a penmark was made. With the subject lying supine with a pillow under his knees, a thigh circumference measurement was made below the penmark bilaterally. Results were read and entered to the nearest 0.1 cm.

	118	104	87	84	72	8	78	121	510	71.	8	82	80	66	. 61	97	97	. 8	101	98	140	79	94	96	.36	78	72	87	- 6	7.7	
HAM240L	95	83	<u>\$</u>	73	09	78	26	102	88	8.7	78	79	80	7 80	52	7.9	02	72	88	99	115	75	28	83	7.1	80	7.1	78	84	62	
QUAD240R	109	- 14	87	81	8	69	68	124	94	103	86	88	7.4	16	64	96	66	78	83	90	132	68	98	92	7.1	88	-8	06	06	. 71	
HAM240R	96	98	86	92	92	70	59	7 6	70	8 1	7.7	73	77	75	C)	79	72	67	88	7.4	105	62	574	85	68	74	70	86	. 79	67	
QUAD 18OL	142	124	92	88	85	102	109	133	112	125	66	96	9	112	67	107	105	102	115	106	158	80	115	108	98	92	87	97	118	91	
HAM 180L	102	83	102	7.7	77	98	75	102	84	66	84	78	16	88	61	7.4	98	64	91	63	101	. 19	09	1 × 294	75	84	73	83	97	99	
QUAD 180R	132	119	117	8.4	80	06	102	128	115	1.15	92	41.	06	106	73	108	102	105	66	103	144	87	108	66	88	86	06	102	123	8.8	
			- 14	*	3	<u>ب</u> ۱۰	.	درج	• ¥					.0, 3				3	0												
HAM 180R	108	82	103	75	73	77	78	97	97	86	8	8	82	88	64	78	82	84	89	75	.92	7.1	9	9	78	79	74	85	102	70	,
HIGHR HAM	0	S.	. 7	ິນ	S	'n	ស		ر. د	Ŋ	0	0	~	ín	0	0	0	7	ស	0	0	د	0	0	0	'n	0	Ś	0	ın.	
HIGHR HAM	5 \$ 52.0	5 51.5	0 54.7	0 49.5	5 46.5	5 50.5	5 49.5	0	0 52.3	0 52.5	0 47.0	0 21.0	2 47.2	5 45.5	0 76.0	5 52.0	0 51.0	5 47.2	5 . 55 . 5	5 55.0	0 52.0	.0 48.5	0 51.0	0 20 0	0.64	.0 46.5,	0 53.0	5 47.5	5 49.0	3 48.5	
THIGHR HAM	80.6 53.5 \$ 52.0	63.6 51.5 51.5	77.7 54.0 54.7	64.1 50.0 49.5	61.0 46.5 46.5	67.1 50.5 50.5	61.6 49.5 49.5	81.1 55.5 55.0	69.8 52.0 52.3	63.2 53.0 52.5	65.4 47.0 47.0	68.5 51.0 51.0	68.1 47.2 47.2	59.2 45.5 45.5	53.5 46.0 46.0	72,5 52.5 52.0	73.7 51.0 51.0	1 57.9 47.5 47.2	80.0 56.5 55.5	69.5 53.5 55.0	84.9 51.0 52.0	63.8 49.0 48.5	69.0 50.0 51.0	68.8 49.0 50.0	64.3 49.0 49.0	70.0 47.0 46.5	71.8 52.0 53.0	66.1 47.5 47.5	74.9 48.5 49.0	66.0 48.3 48.5	
THIGHL THIGHR HAM	191.5 80.6 53:5 \$ 52.0	187.5 63.6 51.5 51.5	177.5 77.7 54.0 54.7	175.5 64.1 50.0 49.5	175.0 61.0 46.5 46.5	173 5 67.1 50.5 50.5	175.5 61.6 49.5 49.5	190 0 81.1 55.5 55.0	177.0 69.8 52.0 52.3	169.0 63.2 53.0 52.5	181.0 65.4 47.0 47.0	179.0 68.5 51.0 51.0	179.0 68.1 47.2 47.2	175.0 59.2 45.5 45.5	162.5 53.5 46.0 46.0	185.0 72.5 52.5 52.0	186.0 73.7 51.0 51.0	175.0 1 57.9 47.5 47.2	179.5 80.0 56.5 55.5	169.0 69.5 53.5 55.0	192.0 84.9 51.0 52.0	170.0 63.8 49.0 48.5	177.0 69.0 50.0 51.0	184.0 68.8 49.0 50.0	175.0 64.3 49.0 49.0	185.5 70.0 47.0 46.5	177.0 71.8 52.0 53.0	188.5 66.1 47.5 47.5	185.5 74.9 48.5 49.0	184.0 66.0 48.3 48.5	
AGE HEIGHT WEIGHT THIGHL THIGHR HAM	191.5 80.6 53:5 \$ 52.0	187.5 63.6 51.5 51.5	177.5 77.7 54.0 54.7	175.5 64.1 50.0 49.5	175.0 61.0 46.5 46.5	173 5 67.1 50.5 50.5	175.5 61.6 49.5 49.5	0 81.1 55.5 55.0	177.0 69.8 52.0 52.3	169.0 63.2 53.0 52.5	181.0 65.4 47.0 47.0	179.0 68.5 51.0 51.0	179.0 68.1 47.2 47.2	175.0 59.2 45.5 45.5	162.5 53.5 46.0 46.0	185.0 72.5 52.5 52.0	186.0 73.7 51.0 51.0	175.0 1 57.9 47.5 47.2	179.5 80.0 56.5 55.5	169.0 69.5 53.5 55.0	192.0 84.9 51.0 52.0	170.0 63.8 49.0 48.5	177.0 69.0 50.0 51.0	184.0 68.8 49.0 50.0	175.0 64.3 49.0 49.0	185.5 70.0 47.0 46.5	177.0 71.8 52.0 53.0	188.5 66.1 47.5 47.5	185.5 74.9 48.5 49.0	184.0 66.0 48.3 48.5	
HEIGHT WEIGHT THIGHL THIGHR HAM	191.5 80.6 53:5 \$ 52.0	187.5 63.6 51.5 51.5	177.5 77.7 54.0 54.7	175.5 64.1 50.0 49.5	175.0 61.0 46.5 46.5	173 5 67.1 50.5 50.5	175.5 61.6 49.5 49.5	190 0 81.1 55.5 55.0	177.0 69.8 52.0 52.3	19 169.0 63.2 53.0 52.5	19 181.0 65.4 47.0 47.0	18 179.0 68.5 51.0 51.0	18 179.0 68.1 47.2 47.2	20 175.0 59.2 45.5 45.5	22 162.5 53.5 46.0 46.0	21 185.0 72.5 52.5 52.0	22 186 0 73.7 51.0 51.0	18 175.0 57.9 47.5 47.2	18 179.5 80.0 56.5 55.5	32 169.0 69.5 53.5 55.0	20 192.0 84.9 51.0 52.0	23 170.0 63.8 49.0 48.5	23 177.0 69.0 50.0 51.0	23 184.0 68.8 49.0 50.0	26 175.0 64.3 49.0 49.0	29 185.5 70.0 47.0 46.5	26 177.0 71.8 52.0 53.0	27 188.5 66.1 47.5 47.5	31 185.5 74.9 48.5 49.0	184.0 66.0 48.3 48.5	

	Q.
Crono 1 = sprinters	180 = 180 degrees per second
2 = middle-d	240 = 240 degrees per second
Group 3 = untrained males	The last 8 columns show initial strength in
Height in cm	ft. 1bs. (defined as the single highest torque
Weight in kg	value obtained during the first five repetitions
L = left	of the endurance test).
R = right	

k = right Thigh = thigh circumference Ham = Hamstrings Quad = Quadriceps

APPENDIX D

Mean peak torque (corrected for gravity) at the beginning of the endurance test

Fatigue index (per cent decline in peak torque) may be calculated for each subject on the basis of these torque values and the matching torque values at the end of the endurance test presented on the following page.

```
ID 1-10 = Sprinters
ID 11-20 = Middle-distance Runners
ID 21-30 = Untrained Males
```

BEG1 = Quadriceps 180 deg/sec left
BEG2 = Quadriceps 180 deg/sec right
BEG3 = Quadriceps 240 deg/sec left
BEG4 = Quadriceps 240 deg/sec right
BEG5 = Hamstrings 180 deg/sec left
BEG6 = Hamstrings 180 deg/sec right
BEG7 = Hamstrings 240 deg/sec left
BEG8 = Hamstrings 240 deg/sec right

```
END5
                                      END3
                                                END4
                                                                             42.1200
   1 67.6400 61.5500
                                 47.8100 59.4000
                                                      49.7100
                                                                  49.5500
    2 58.9000
3 69.6300
                      50.5500
                                  47.9200 39.6800
58.8800 59.3600
                                                       46.1400
                                                                  38.3700
45.0800
                                                                                        36 0400
                                                                             48.0800
   3 69.6300 76.0200

6 61.3300 56.3600

5 63.700 61.3600

6 54.8600 53.9900

7 64.6200 65.6200

8 73.0200 73.6500

9 60.9800 70.6000
                       76.0200
                                                       54. 1900
                                                                             44,4600
                                                                                        43.1100
                                  55.1600
                                             50.5800
                                                       44.3000
                                                                  42.8200
                                                                             41.5500
                                                                                        39.0500
                                  47.3700
                                             50.0900
                                                        43.0700
                                                                  45.7800
                                                                             30.4800
                                                                                        34.8900
                                                                  33.6900 - 29.5300
                                  43.7900
                                             45.0200
                                                        31.2100
                                                                                        31.1400
                                  59.8600
                                             57.1900
                                                        37.7500
                                                                  37.9600
                                                                             27.6300 28.3800
                                  60.1600
                                             62.7800
                                                        55.1600
                                                                  55.1100
                                                                             48.9300
                                                                                        53.2600
                                                                  53, 9000
                                  48.2400
                                            58.5500
                                                        40.5100
                                                                             32.8900 47.6600
                                                                                       34.0000
 10 54.8700
11 68.1600
12 60.1800
13 50.1400
14 57.8400
                                                                             38.3300
                      62.7300
                                  45,4600
                                             44 ,3300
                                                        45.3300
                                                                  40.6700
                                                        46.5400
                       68.6700
                                  59.4000
                                             65.8300
                                                                  44.9400
                                                                             47.0600
                                                                                        40.6100
                       69.6700 55.2100
                                             60.9100
                                                        41.5300
                                                                  41.5300
                                                                             36.4300
                                                                                        34.0700
                                                                             43.2300
29.5100
                       53.2600
                                 -50. 4000
                                             49,4600
                                                        40.3100
                                                                  42.6400
                                                                                        40.9900
                       56.3800
                                  48.2900
                                             45.6700
                                                        47.3800
                                                                  39.9800
                                                                                        30.2500
    15 53 0600
                       55.6100
                                 41.3500
                                             45.0300
                                                       39.4700
                                                                  42:9400
                                                                             29.9900
                                                                                        31.2300
15 53 0600

16 55 6900

17 64 5260

18 858 6500

19 67 5200

20 57 1000

21 72 7600
                       58.2500
                                  46.2000
                                             55.2100
                                                        53.4700
                                                                  39.9900 ,44.1800
                                                                                        41.3800
                                  54.9600
                       61.6500
                                             55.6000
                                                        37.9400
                                                                  37.6200 29.6000
                       60.8000
                                  51.3400
                                                                                        37.2600
                                             48.7400
                                                        34.5500
                                                                  38.3000
                                                                             24.. 9900
                       65.7100
55.1000
                                                        46 . 2500
                                  55.5000
                                             48.0900
                                                                  40.3000
                                                                             43.6500
                                                                                      38.8300
                                  51.9100
                                                                                        37.8900
                                             47.7800
                                                        39.5100
                                                                            √33 . 4 100
                                                                  47:4300
                       71.8900
                                 67.2900
                                            63.6400
                                                        47.2400
                                                                  56.3000
                                                                             52.8700
                                                                                        49.0600
       22 59.0800
                       52.8300
                                  48.2600
                                             44.0400
                                                        33.2200
                                                                  40.3400
                                                                             28,9700 535,5600
  23 70 7000
24 66 7600
                       65.7000
68.4200
                                            53.6900
58.4200
                                  47.2500
                                                        39.5400
                                                                  40.2200
                                                                             38.7000
                                                                                        33.8900
                                                                             35.9300 37.5100
                                  57.7000
                                                       42.4700.
                                                                 43.0100
      25 - 52.3700
                       49.1700
                                  40.1200
                                            38:6000
                                                       35.9900
                                                                  36.3000
                                                                             32 7100
                                                                                        30.5100
    26 57.1700
27 62.5600
                       63.6200
                                  44.6400
                                             47.2000
                                                        34.7000
                                                                  38.6500
                                                                             35.8300
                                                                                        30.8900
                      64.4600
                                  53.6400
                                            52.1800
                                                        37.2900
                                                                  39.8800
                                                                             30.4500
                                                                                        30.8800
                                 53.3700 53.9800
       28 66.7700
                      67.6100
                                                       38.6600
                                                                  36,8000 32.9100
                                                                                        37.4600 .
                                 52.7100 54.0900 39.7900 45.4700 27.9000 30.1800
54.9500 49.5700 23.1100 30.8900 24.3000 21.3300
       29 65.0200
                      64.2700
                                 52.7100
```

Mean peak torque (corrected for gravity) at the end of the endurance test \downarrow

These torque values may be used to calculate the fatigue index for each subject as explained on the preceding page.

```
ID 1-10 = Sprinters
ID 11-20 = Middle-distance runners
ID 21-30 = Untrained Males
```

```
END1 = Quadriceps 180 deg/sec left
END2 = Quadriceps 180 deg/sec right
END3 = Quadriceps 240 deg/sec left
END4 = Quadriceps 240 deg/sec right
END5 = Hamstrings 180 deg/sec left
END6 = Hamst ngs 180 deg/sec right
END7 = Hamstrings 240 deg/sec left
END8 = Hamstrings 240 deg/sec right
```

```
BEG4 BEG5
                                                                       BEG3
            1 138 0000 121 3300 117 3300 104 6700 99 3300 106 0000 94 0000 92 6700
            2,119,6700 116,3300 100,0000 107,3300 81,6700 84,6700 87,0000 85,0000
  2 113.5750 115.3300 300.5000 107.3300 81.6700 84.6700 97.0000 85.0000 4 86.6700 82.3300 83.6700 75.6700 75.0000 73.6700 72.0000 73.6700 5 83.6700 78.0000 69.6700 80.6700 76.0000 71.6700 58.0000 74.6700 6 98.3300 87.0000 78.6700 65.0000 85.0000 76.6700 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76.0000 76
9 110.6700 112.6700 108.0000 10 120.6700 112.0000 112.0000
                                                                                      90.6700
                                                                                                              83.0000
                                                                                                                                    95.6700
                                                                                                                                                          86.0000
                                                                                                                                                           85.0000
                                                                                                                                                                                 80.0000
                                                                                                              92.3300
                                                                                                                                     84.3300
                                                              112.0000 101.6700
                                                              83.3300 85.3300 84.0000
81.6700 86.0000 74.6700
79.6700 72.3300 75.0000
 11 97.6700 93.0000
12 93.0000 109.3300
13 90.0000 .89.0000
                                                                                                              84.0000 79.3300
                                                                                                                                                           77.0000
                                                                                                                                                                                 76.0000
                                                                                                              74.6700 - 79.3300
                                                                                                                                                          78.0000
                                                                                                                                                                                 68.6700
                                                                                                                                  79.6700
                                                                                                                                     85.6700
     14 109 3300 102 0000 94 0000 89 0000
                                                                                                              86.3300
                                                                                                                                                           83.0000
                                                                                                                                                                                 73.3300
                                                                                                                                                                                 53.0000
      15 65.0000 72.3300
16 105.0000 104.3300
                                                                                        62.6700
                                                                                                              59.6700
                                                                                                                                     62.6790
                                                                                                                                                           51.0000
                                                                 59.6700
                                           72.3300
                                                                                                                                                        78.0000
                                                                 96.0000 95.3300
                                                                                                              73.3300 77.0000
                                                                                                                                                                                  77.0000
                                                                81.0000 92.0000 82.3300 77.3300
                                                                                                                                                           68.0000
                                                                                                                                                                                  71.3300
           17 101 6700 100 6700
                                                                                                                                                                                  65.0000
                                                                  80.3300 77.9000
                                                                                                              64.0000
                                                                                                                                     82:3300
                                                                                                                                                           70:0000
    18 100,0000 101,6700
                                           96.3300 106.3300 82.3300 90.3300 87.6700
                                                                                                                                                           86.0000
                                                                                                                                                                                  87.0000
         19 112.6700
                                                                84,6700 88.6700
                                                                                                              62.3300
                                                                                                                                     71.6700 65.0000
90.6700 113.0000
                                                                                                                                                                                  72.0000
           20 104:6700 101.0000
           21 152.3300 140.0000 136,3300 129,6700 103.3300 22 79.0000 82.3300 75.3300 67.0000 65.0000
                                                                                                                                                                               104 . 0000
                                                                                                                                                          73.0000
                                                                                                                                     71.6700
                                                                                                                                                                                  61.3300
                                                                  90.6700 84.6700 58.6700
                                                                                                                                     59.0000 56.0000
                                                                                                                                                                                  54.0000
           23 112.6700 107.3300
                                                                  94,0000 91.0000 92.6700 87.3300
                                                                                                                                                          87.0000
           24 107.0000
                                            96.6700
                                                                  74.3300 71.0000 74.6700 74.6700
                                                                                                                                                           70.0000
                                                                                                                                                                                  67 6700
           25 84.3300
                                            86.6700
                                                                                                                                                                                 72.3300
                                            94.3300 77.0000 85.6700 81.3300
                                                                                                                                      77 10000 78 0000
           26 91.0000
       27 86 3300 90 0000 71 0000 79 6700 72 0000 69 0000 28 96 3300 101 0000 86 0000 87 3300 95 3300 100 0000 81 0000 29 116 6700 117 6700 90 0000 87 3300 95 3300 100 0000 81 0000
                                                                                                                                                                                  67.6700
           30 90.6700 85.3300 75.3300 70.0000 67.0000 67.6700 61.0000 66.6700
```

Mean peak torque (uncorrected for gravity) at the beginning of the endurance test

Fatigue index (per cent decline in peak torque) may be calculated for each subject on the basis of these torque values and the matching torque values at the end of the endurance test presented on the following page.

```
ID 1-10 = Sprinters
ID 11-20 = Middle-distance runners
ID 21-30 = Untrained Males
```

BEG1 = Quadriceps 180 deg/sec left
BEG2 = Quadriceps 180 deg/sec right
BEG3 = Quadriceps 240 deg/sec left
BEG4 = Quadriceps 240 deg/sec right
BEG5 = Hamstrings 180 deg/sec left
BEG6 = Hamstrings 180 deg/sec right
BEG7 = Hamstrings 240 deg/sec left
BEG8 = Hamstrings 240 deg/sec right

```
FND3
                    END<sub>2</sub>
    1 57.0000 52.3300 37.3300
2 49.6700 41.6700 39.3300
                                                       61.0000
                                                                          55.3300
                                                                 55.0000
                                    49.6700
                                             62.0000
                                                                           46.3300
                                                       51.6700
                                                                 56.0000
                                    33.0000
                                              56.6700
                                                                 53.0000
                                                                           53.0000
                          49.6700
                                    51.0000
                                              63.6700
                                                       54.3300
                 69,0000
       62.3300
   4 54 0000
5 52 6700
6 45 0000
                                                                 51.0000
                                                                          48,0000
                49.6700
51.3300
                                                       53.6700
                                              56.0000
                          48,0000
                                    44.6700
                                                                 42.0000
                                                                          45.6700
                                    43.0000
                                              56.6700
                                                       59.0000
                          40.3300
                          33,6700
                                    35.3300
                                              4476700
                                                       38.6700
                                                                 41.0000
                                                                           40.6700
                 45.0000
                                              45.0000
                                                       45.0000
                                                                 38.0000
                                                                          38.3300
                                    45.0000
    7 54.6700
                 55.6700
                          47,6700
                                                       68.0000
                                                                 64.0000
                                                                           67.3300
                                              68.0000
                 65.6700
                          53.0000
                                    53.6700
       62.6700
                                                                           56.0000
                 63.0000
                                                                 42.0000
   9 50.0000
10 47.3300
                          37.6700
                                    49.3300
                                              52.0000
                                    38.0000
                                              56.0000
                                                       51.3300
                                                                 49.0000
                                                                           44.6700
                          39.3300
                 53.6700
                                                                           55.3300
                                    57.3300
                                                       59.6700
                                                                 60.0000
       58.0000 59.0000
                                              58.3300
  .1 7
                          53,6700
                                                                           46.6700
                                                                 49,0000
                                                       53.6700
   12 50.6700
                 62.6700
                          45.0000
                                    52.3300
                                              53.6700
1. 13
                                                                           53.3300
                                    42.3300
                                              50.3300
                                                       52.3300
                                                                 54.0000
                 49.3300
                         .42.3300
       45.3300
14
15
                                                       50.6700
                                                                 41.0000
                                                                           40.3300
                 50.0000
                          37.6700
                                    37.6700
                                              58.0000
       50,3300
                                                       48.6700
                                                                 37.0000
                                                                           38.0000
                                    38.3300
                                              46.6700
                          35.0000
       47.3300
                 51.3300
                                                       49.6700
                                                                 50.0000
                                                                           50.0000
       50.6700 52.6700
                          41.6700
                                    49.0000
                                              58.6700
   16
17
                          44.0000
                                    47.3300
                                              53.3300
                                                       48.3300
                                                                 44.0000
                                                                           39.6700
       53.0000
                54.0000
                         38.3300
                                              45.0000
                                                                           44.3300
                                                       46.6700
                                                                 38.0000
                 52.6700
                                    41.6700
  MB 47.3300
19 56.0000 54.6700
                                              59.0000
                                                       54,3300
                                                                 54.0000
                                                                           50.6700
                                    45.0000
                          48.0000
20 50.3300 51.6700
21 58.0000 62.6700
                                                       53.3300
                                                                 42.0000
                                                                           46.0000
                                              47.3300
                 51.6700 , 42.3300
                                    40.6700
                                              66.0000 73.3300
                                    55.3300
                                                                 68.0000
                                                                           64.3300
                          55.6700
                 42.6700
                          38.6700
                                              44.6700
                                                       52.0000
                                                                 39.0000
                                                                           45.3300
                                    36.0000%
   22 46.6700
                                                                           41.6700
                                   45.3300
                                              47.3300
                                                       48.0000
                                                                 47.0000
                          41.0000
       64.3300
                 57,6700
   23
                                    45.6700
                                              57.0000
                                                       56.6700
                                                                 51.0000
                                                                           52.0000
                 58.0000
                          47.3300
   24 55,3300
 25 45.3300 41.0000
26 43.0000 51.3300
                                                                           43.6700
                          32.6700
                                    34.6700
                                              44.0000
                                                       44.3300
                                                                 42.0000
                                                       54.6700 50.0000
                                                                           46.0000
                          35.3300
                                    38.0000
                                              49.6700
   27 52.0000 52.3300
                         43.6700
                                    42.3300
                                              48.6700
                                                       52.0000
                                                                 42.0000
                                                                49.0000 53.0000
                                                       52.0000
                         44.6700
                                    42.6700
                                              54.3300
   28. 54.0000
                 54.6700
   29 53.3300
                                   40.3300
                                              52.0000 57.6700 43.0000 44.6700
                 53.6700 39.0000
   30
```

Mean peak torque (uncorrected for gravity) at the end of the endurance test

These torque values may be used to calculate the fatigue index for each subject as explained on the preceding page.

```
ID 1-10 = Sprinters
ID 11-20 = Middle-distance runners
ID 21-30 = Untrained Males
```

END1 = Quadriceps 180 deg/sec left
END2 = Quadriceps 180 deg/sec right
END3 = Quadriceps 240 deg/sec left
END4 = Quadriceps 240 deg/sec right
END5 = Hamstrings 180 deg/sec left
END6 = Hamstrings 180 deg/sec right
END7 = Hamstrings 240 deg/sec left
END8 = Hamstrings 240 deg/sec right

APPENDIX E

SUMMARIES OF ANALYSES OF VARIANCE

Summary of four-way annalysis of variance for per cent decline in peak torque
HIERARCHICAL SUMMARY TABLE OF F-RATIOS FOR: PERC!

TYPE PART OF MODEL , MIV GRAND MEAN MIV GROUP)	SSH	325	HSH		F-RATIO	DFH	OFE	8000
GRAND MEAN GROUP CASES(GROUP)				,				3
-	43.67	0.75	43.67	278240-1	1569 44	0 0	27 0	0 0
ERROR TERM: CASES(GROUP)	• 0.75	,445440-1	.278240-1	. 16497D-2	16.87	27.0	210	0
MIV MUSCLE	437600-1	0.43	437600-1	158920-1	2.75	0	27.0	0.1086
UNIV GROUP*MUSCLE	1.6070-1	0.43	.580390-2	158920-1	0.37	50	27.0	0.6974
~		-04540-1	158920-1	. 164970-2	9.63	27.0	27.0	0
SPEED	620790-1		620790-1	355090-2	17.48	0 1	27.0	0 0003
GROUP.SPEED SPEED.CASES(GROUP)	329370-2	958760-1	164680-2	355090-2	9 9	0	27.0	0 6338.
ERROR TERM: SPEED CASES (GROUP)			7-DEOCCC	7-076401	0	o ?	7.0	0.0256
	901490-2	0.13	901490-2	473590-2	- 8	0 -	27.0	.00
GROUP *L 148	₹-001617		356850-2	473590-2	0.75	7.0	27.0	0 4804
UNIV LIMB·CASES(GROUP)	. 0 13	. 445440-1	473590-2	164970-2	.2.87	27.0	27.0	0 0040
				e. C			: '	
UNIV MUSCLE SPEED	616890-2	374040-1	.616890-2	138530-2	4.45	0	27.0	0.0442
MISCH ENGREDANCE COOMB	942160-2	37404D-1	.47 108D-2	138530-2	3.40	7.0	27.0	0.0482
ERROR TERM: MUSCLE SPEED CASES (GROUP)	1-04045	445440-1	138330-2	164970-2	0.87	27.0	27.0	0.6734
			:					
AUSCLE - LIMB	138350-2	44475D-1	138350-2	164720-2	0.84	0	27.0	0.3675
MUSCLE *LIMB *CASES (GROUP)	* 44475D-1	445440-1	164720-2	164720-2	7.78	0 0	2,0	0.0240
ERROR TERM. MUSCLE LIMB CASES (GROUP))		•	?	2	• •	2000
SPEED-LIMB	311580-2		311580-2	396990-2	•) (
GROUP+SPEED+LIMB	72033D-2	-	.36016D-2	.396990-2	6.0	0 0	22.0	0.4156
UNIV SPEED.LIMB.CASES(GROUP)		.44544D-1	396990-2	164970-2	2.41	27.0	27.0	
							•	
CASES(GROUP)	. 0 75	44544D-1		16497D-2	16.87	27.0	27.0	0.0
SPEED CASES (COULD)	0.43°	CD. 43 - 44544D-1	158920-1	. 164970-2	6.0	27.0	27.0	0.0
LIMB CASES (GROUP)	61.0		473590-2	164970-2	2 2 2	27.0	2 2	0.0256
MUSCLE SPEED - LING	282490-3	445440-1	282490-3	164970-2			5 6	200
GROUP - MUSCLE - SPEED - LIMB	920140-2	445440-1	460070-2	164970-2	2 79	00	27.0	0.0793
MUSCLE SPEED CASES (GROUP)	*.37404D-1	445440-1	138530-2	164970-2	0.84	27.0	27.0	0.6734

N ASIERICK (*) INDICATES IF APPROPRIATE ERROR ERM CANNOT BE FOUND...IF SO, RESIDUAL IS USEO.

Surmary of three-way analysis of variance for endurance ratios

	•.	-								•				
	HIERA	HIERABCHICAL	SUMMARY	TABLE	9	SUMMARY TABLE OF FRATIOS FOR: RATIOS	RATIO!							
TYPE	PART O	PART OF MODEL				#S\$	SSE	MSH	MSE	F-RATIO	DFH	DFE	PROS	
CNIV	GRAND MEAN GROUP TERM: CASES(S(GROUP)				110.01	5 4.43	0.01	0.0	669.75	2.0	27.0	27.0 .135E-19 27.0 0.63379	
UNIV UNIV ERROR	SPEED GROUP-SPEED TERM:.SPEED	O O•CASES(GROUP	₩ ." G			0.08	8 0.39 7 0.39	0.00	0.0	2.34	2.0	27.0	27.0 0.02445 27.0 0.11528	
UNIV ERROR	CROUP. TERM:	LIMB LIMB+CASES(GROUP)	<u>a</u>	:	, W.,	0.3746E-2		0.47 0,3746E-2 0.47 0.07	0.02	4.32	2.0	27.0	27.0 0.64484 27.0 0.02351	
22222	SPEED*LINB GROUP*SPEED*LINB CASES(GROUP) SPEED*CASES(GROUP) LINB*CASES(GROUP)	LIMB SPEED-LIMB GROUP) CASES(GROUP) THRP-CASES(GROUP)	<u> </u>			0.8873£-3 0.07 0.07 0.03 0.43		0.50 0.8873E-3 0.50 0.04 0.50 0.16 0.50 0.01	00000	0.00	- 22222	.0000	27.0 0.82787 27.0 0.16864 27.0 0.105E-6 27.0 0.74124 27.0 0.56694	
000	٠.	TOWN TOREST TWO STATES COOKING	000000			1						•		

AN ASTERICK (*) INDICATES IF APPROPRIATE ERROR TERM CANNOT BE FOUND. IF SO, RESIDUAL IS USED.

APPENDIX F

CORRELATION OF RELIABILITY

Both intra-rater and inter-rater reliability of graph readings was calculated. Intraclass correlation coefficient (ICC) was used (from Bartko and Carpenter, 1976).1

Intra-Rater Relability	•	
Graph Reading of:	ICC	
PT Hams 180 deg/sec PT Quads 180 deg/sec	.97 :99	•
PT Hams 240 deg/sec PT Quads 240 deg/sec	.99	
PT Angle Hams 180 deg/sec PT Angle Quads 180 deg/sec	.83 .93	
PT Angle Hams 240 deg/sec PT Angle Quads 240 deg/sec	.94 .82	
Inter-Rater Relability		5
Graph Reading of:	ICC.	
PT Quads 180 deg/sec PT Quads 240 deg/sec	.99	
PT Angle Quads 180 deg/sec PT Angle Quads 240 deg/sec	.85 .83	

PT = Peak torque Hams = Hamstrings Quads = Quadriceps

Bartko, J.J. and Carpenter, W.T.: On the methods and theory of reliability. J. Nerv. and Ment. Dis. 163: 307-317, 1976.