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Abstract

For trajectory-based travel time prediction model, map matching shows its
excellence in terms of GPS data processing by providing an efficient technique to
generate the vehicle trajectory on the digital map. The transit vehicle trajectory
contains essential information about arrival time at bus stops and delay at major
intersections. An understanding of reliable map-matching method is necessary for
the development of the real-time prediction result accuracy. This thesis provides
an enhanced map-matching method, which has better performance in terms of
accuracy of path inference and link identification, compared with Spatial-
temporal matching method, a well-recognized map-matching method used in
previous literature. Compared with the existing map-matching method, a
reference point file is added to original digital map, converting the point-to-curve
match to point-to-point match. The map is also divided into equal digital grids by
latitude and longitude to narrow down the matching scale. The feasibility and the
accuracy of the method are evaluated in different traffic environment using real
field geometric information and GPS data. The last part of the thesis is the
comparison analysis between single transit trajectory prediction results derived
from from both map-matching methods. The field test is conducted on 23
Avenue corridor from Legar transit center to Century Park transit center in

Edmonton.
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CHAPTER 1 INTRODUCTION

This chapter presents the background of map-matching method and its
application in trajectory prediction model. In this part, the author also describe the

research motivation, objectives and structure of the thesis.

1.1 Background

The increasing ownership of private vehicles over the last 30 years simulates
the transformation from public transit to private trips, causing severe traffic
problems. To increase the attraction of the public transit, travel time is
increasingly critical for Advanced Traveler Information Systems (ATISs). Such
trajectory-based travel time prediction models regularly require the map-matching
results as the fundamental data input. With the development of the GPS collection
techniques, transit agencies equip the transit vehicles and taxis with GPS
transmitters and receivers to collect the real-time location for better management
and services. However, the GPS trajectories cannot be directly matched to the
digital road network due to the different link width and misreported misreported
data. The accuracy of the map-matching results directly affects the prediction

results.

The philosophy of map-matching is to identify the location and the trajectory
that matches the digital map. The decision of link identification can be made
based on the distance, speed, direction of GPS data, or other effective methods

that can infer the precise location of the GPS on the digital map. Most of existing



map-matching methods are developed with the GPS data with insufficient quality
and the sampling intervals of collection is higher than 60 seconds. The methods
can generate the results that which road the GPS points belong to, but there are
still limitations to the precise locations. The limitations also include the
implementation problems. Either the method is cost-inefficient or the method is

not modifiable according to different traffic environment.

1.2 Problem Statement and Research Motivation

This thesis focuses on a developed reference point-based map-matching
method. The key point is the link identification and distance calculation to
determine the precise locations of the GPS points on the digital network. Fig. 1.1
shows the main idea of the map-matching problem. Fig. 1.1(a) shows the real road
network with the GPS record. However, the GPS point does not belong to any
links in the citywide because the width of the real links cannot be reflected on the
digital map, therefore, no available information of the traffic status can be

acquired through the GPS data.

A Actual location
® Matched location

Figure 1.1 (a) Set of Actual Road Condition; (b) Set of Estimated Arcs and Matched Results



Although, there are plenty of map-matching methods nowadays, the
application is still limited by the data format and traffic conditions. Some
software can only recognize certain format of the input data. Each method has its

preferable road network to generate the accurate results.

A travel time prediction model is proposed to test the application of the
proposed map-matching method. The model is established based on transit data
(GTEFS data) within different time intervals to the current state. The development
is that the proposed model combines the varying impacts of historical data on the

current data to obtain the predicted results more close to the real traffic status.

1.3 Research Objectives

This thesis looks into developing map-matching method with three angles.

There are three specific objectives of this thesis:

a. Establish the dataset including reference point file in the digital map and
integrate the GPS data input;

b. Develop the map-matching algorithm and compare its accuracy with
spatial-temporal matching method. The case study is conducted in
different road conditions

c. Analysis of the performance of the transit travel time prediction model

using the matching results from both methods.



1.4 Structure of thesis

The structure of this thesis is as follows:

Chapter 1 presents the introduction of the map-matching methods and travel

time prediction background and the main problem discussed in this thesis.

Chapter 2 shows the literature review about the existing map-matching
methods and travel time prediction models. The limitations of existing methods

are also discussed.

Chapter 3 describes the data format used in this thesis, which is the input of

the map-matching algorithm, including digital map information and GTFS data.

Chapter 4 presents a RP-based map matching with a reference point file in
the digital map. The accuracy of the map-matching results is compared with ST-
matching method. The comparison shows that RP-based map-matching method
outperforms the ST-matching method in terms of link identification accuracy and

path inference.

Chapter 5 introduces the processing improvement for single trajectory

prediction model based on transit GPS data of different sampling intervals.

Chapter 6 is the conclusion and contribution summary reached in this thesis

and the proposed future work.



CHAPTER 2 LITERATURE REVIEW

This chapter reviews the previous literature about existing map-matching

methods and travel time prediction model that are widely used.

2.1 Review on Map Matching Method

Map-matching process identifies the proper link sequence based on the
collected positioning data and roadway centerlines in the digital map (Mohammed
A. Quddus, 2007). Most existing researches about map matching have focused on
both the user's location and the map that is known for a high degree of accuracy
(Christopher E. White, 2000) and can be categorized into four groups listed

below.

The map matching is considered as the search problem and simply integrates
the geometric information and features of the digital map. Certain amount of
researches match the GPS locations to the “nearest” given point, also referred as
range query (Maurer, 1980). The method is easily implemented and efficient to
operate. However, the connection between the digital links is not considered and
the matching results highly rely on the layout of the digital nodes. Normally,
intersections and major turning points are treated as the nodes. Links with more

digital nodes are more likely to be matched to (Christopher E. White, 2000).

The map-matching problem can be considered as statistical model. The
analysis requires the definition of an elliptical or rectangular confidence region

around a fixed position obtained from a navigation sensor (Mohammed A.



Quddus, 2007). Each link within this range is given a probability of matching.
The path with the highest probability will be chosen as the matched results.
Honey et al. first introduced this model to match the positions for a position
sensor and a map (Honey, 1989). Ochieng et al. (2004) develops an optimal
estimation algorithm to determine the matched locations of users on a link and
evaluates the impacting factors of GPS data on the accuracy of matching process

(Ochieng, 2004).

Connectivity and contiguity of the links are helpful to find the link sequence,
therefore, the topological analysis is developed. Greenfeld et. al. proposes a
weighted topological method based on analysis of the digital map and position
information of users (Greenfeld, 2002). First is to find the possible path and use

the probability analysis to find the most likely path.

Other map matching methods include those which use sophisticated concepts.
Syed et. al. develops a map-matching method based on the fuzzy logic theory.
The results show that fuzzy logic can be effectively used for map matching in
urban canyons because of its ability to generate precise output from noisy (error

prone) navigation input obtained from GPS (Syed, 2004).

Obradovic et. al proposes a two-step map-matching approach to integrate the
sensor-collected data, GPS data and digital map information. The first step is to
update the user-movement model using installed odometer and GPS signal based
on the Kalman filter.Second step is to compare the candidate trajectories with
improved user-movement (from step /) and find the best match (Obradovic,

2006).



The limitations of existing map-matching methods include following. The
usefulness of map-matching method highly depends on the accuracy of GPS point

and digital map like the following situations in Fig. 2.1.

] Arterial c

/ GPS

e i

& GP3 N & GPS Y
F Y

Collector B

Local Road ¥ Junction Intersection

Figure 2.1 Hypothetical road network

In scenario 1, there are three lanes in eastbound of the arterial and one lane
for each direction of the collector road. Obviously, the GPS point probably has
shorter distance to the collector road in the digital map. In this case, GPS point
will be matched to the collector road. In this case, speed information of the GPS
point can distinguish the interference. In scenario 2, it is hard to determine if the
probe vehicle has passed point A or not. Direction of the GPS can help determine
the right match. When the vehicle is stopping before the signal line, the GPS will
have slight off the current road even if it is not actually moving like shown in
scenario 3. In this case, it is hard to match all the points to the same location. The
reference point file can help collect these points to the same point. Besides the
scenario mentioned in Fig. 2.1, other situations like overpass, underpass, turning
restriction should be taken into consideration to increase the accuracy of map-

matching method.



The low accuracy of the GPS data is another problem with path inference.
For the road network like Fig. 2.2(a), the GPS receiver is operating on two
parallel roads with distance of 23.4 meters in between. The accuracy of the GPS
points is within the rough range of 12 meters, which results in the confusion about

what the route of the vehicle is like.

Figure 2.2 (a) False Identification Example; (b) False Identification Results.

The map-matching is usually conducted for the further research on the trip
information on the entire path or corridor. The matching results are the basic
evidence to show the operation condition of the vehicles on the researched links,
paths or corridors. Existing map-matching methods are mostly rely on the
matching consistency of the direction and the shortest distance between the GPS
points and the links in the digital map. Normally, the connectivity between
adjacent links and adjacent GPS points is not taken into consideration, therefore,
each matching result is independent from the others. The results for the single trip
may not be able to maintain the consistency. Fig. 2.2(b) shows the transit is
arriving at the transit center. Dark purples are the GPS records, while the blues are
correct matched results. There are two mismatched results marked as the red
spots. If considering the consistency of the links and GPS points, this kind of

mistake can be avoided.



Traditional map-matching method focuses on finding the links with shortest
distance and smallest direction difference from the GPS points. However, the
digital network contains a large amount of the links, it would take long processing
time to compare the GPS point with every links in the network. Therefore, the
digital map is simplified to save the processing time in the traditional methods,

which may result in the inaccurate matched results.

2.2 Review on Travel Time Prediction Model

Advanced Public Transportation Systems (APTS) related technologies are
widely expanding, for instance global positioning systems (GPS), automatic
vehicle location (AVL) systems (AVL), and automatic passenger counters
systems (APC), advanced traveler information system (ATIS). Accurate transit
arrival and departure information should be provided to passengers for arranging
their trip plan and to transit operators to properly arrange the transfers and
schedule plan (Kalaputapu & Demetsky, 1995; Khan & Abdelfattah, 1998; Chien,
Ding, & Wei, 2002). Therefore, it is vital to conduct the accurate prediction of
transit travel time. A variety of prediction models mentioned in previous

researches are reviewed.

2.2.1 Historical data model

Historical data models assume that travel time of predicted trip is related to
the previous trips and the traffic condition of the links remain consistent. It is
assumed by Chen et. al. that the traffic condition within the citywide changed

cyclically and the ratio of current and previous travel time remained stable (Furth,



Brendon, Theo, & Strathman, 2003). The prediction model can be calibrated
based on the real-time transit data. However, the model is based on massive
historical data and exclusive to certain area. The hybrid model is presented to
combine the historical data and recent data by Gong et. al. (Gong, Liu, & Zhang,
2013). The higher weight is given to the more recent is data. This model is closer
to the real traffic condition, but the distribution of the weight has linear

relationship with the time series instead of the traffic condition.

2.2.2 Regression model

The regression model takes multiple variables (i.e. passenger number, stop
number, link length, delay, etc.) related with the traffic condition build the
regression function. The passenger number and delay at the stops are obtained
based on the APC (Automatic Passenger Counters) and built the regression model
with variables of distance, control delay, stops number and trip starting time
(Patnaik, Chien, & Bladikas, 2004). Fuzzy regression is used to build the travel
time prediction model and evaluated the model using the transit data from

Shenzhen, China (Yang, Bao, & Zhu, 2004).

Regression model can minimize the effects of varying traffic condition on the
predicted results. However, the variables in the model are supposed to be
independent from the others (or the relevance is lower than the preset threshold),

which cannot be guaranteed in the real-time situation.
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2.2.3 Time series model

Time series model is an extension of historical data model based on the
pattern of changing traffic flow. The cyclical characteristics of the traffic flow are
captured to establish the nonlinear regression model to predict the travel time
(Sherif & Al-Deek, 2002). The delay at the bus stops and control delay at the
intersections can be considered into travel time prediction as well (Zhu, Ma, Ma,

& Li, 2011).

The accuracy of time series model is highly related to the similarity between
current traffic situation and historical situation. If the traffic condition experiences
significant changes (e.x. traffic flow, signal control plan, priority plan), the model

will more likely create errors in prediction.

2.2.4 Kalman-filter model

Kalman filter model is to solve linear filter problem of discrete data based on
recursion method. Shalaby and Farhan collected the AVL and APC data from
transit vehicles in Toronto, and applied Kalman filter to build the prediction
model. Data from the first four days was used as the model training, and data
from the following day was used as the test (Shalaby & Farhan, 2003). Wang et al
improved the adaptability of the Kalman filter model by adding a “forgotten
factor” to the procedure to restrain the influence of the old data on the model
(Wang, Wang, Yang, & Gao, 2012). Kalman filter model requires less historical
data than other methods and more reliable in short-term prediction. However, the
model needs meeting higher standard of the equipment of data collecting and

more calculation. The results are not reliable in long-term prediction.

11



2.2.5 Artificial neural network model (ANN Model)

ANN model emulates the learning process of human brain, which is good at
pattern recognition, prediction, classification, etc. ANN models are calibrated
using two steps, including training and testing . Gurmu et al. input the GPS data
as the only data resource to the dynamic travel time prediction ANN model and
then to predict the arrival time. Predicted results indicated that the prediction
accuracy and robustness of this model outperformed the historical data-based
models in terms of predicting the travel time between current location and certain

downstream bus stop (Gurmu & Fan, 2014).

2.2.6 Support vector machine model

Traditionally, many studies focus on the application of SVM to document
classification and pattern recognition (Jeong & Rilett, 1999). Recently, with the
application of SVM to time-series forecasting, called support vector regression
(SVR) shown many breakthroughs and plausible performance, Chun-Hsin Wu et
al. used SVR to predict travel time for highway users, which demonstrated that
SVR was applicable to travel-time prediction and outperformed many previous

methods (Wu, Ho, & Lee, 2004).

2.3 Summary of literature review

Map-matching methods can be categorized in to four groups based on the
research angle. Geography-based methods are easy and efficient to be
implemented. When the road network becomes complicated and diversified, the

method is more likely to lose the accuracy. The accuracy of probability-based
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model is highly depended on the decision of confidential region, which is hard to
determine, especially when navigation sensor is influenced by external factors.
Topological method considers the connection within the road network. And some
other novel technology for map-matching process. The problems with the existing
map-matching methods are discussed in this chapter, and the solutions to these

problems are the focus of the proposed method in this thesis.

Travel time prediction models are also reviewed in this chapter. Historical
data model, regression model, and Kalman filter model are empirical methods the
shortcomings of which is highly influenced by data quality and external factors.
For instance, the accuracy of the regression model requires the independence of
each variables, however, most variables are related to others in real traffic
environment. The historical data model requires the stable traffic status, which is
difficult to maintain in the real traffic environment. With the development of the
data-collecting systems and ITS systems, numerous real-time travel time data is
accessible, especially for the transit vehicles. Edmonton transit system (ETS)
equips the transit vehicles with GPS transmitters and receivers, which makes the

real-time locations of transit are available to both fleet managers and passengers.
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CHAPTER 3 TRANSIT PROBE DATA
DESCRIPTION

The data input used in following chapters contains the digital road network
information and the transit GPS information. The GIS information from the
digital map are processed in ArcGIS, including distance, direction, coordination,

alignment, etc. Transit data is collected from GTFS public data resource.

Digital map information for map-matching mainly contains the information
of the distance and direction of the road segments. Under special circumstances,
like overpass, underpass and local minor roads, the recognition can be
mismatched. In this thesis, the concept of reference points is introduced and
generated using software to be considered as the main measurement of the GPS
data to diminish the error that may happen during the matching process. The
example data used in the following chapters and the relevant explanations can be

found in the Fig.3.1-3.9.

The data used in this thesis was collected from the test site of Edmonton,
capital city of Canadian province Alberta. Fig. 3.1 shows the digital road network
within the whole city scale. GPS data contains all the routes of transit vehicles
equipped with GPS transmitters and receivers, covering the arterials in the urban

municipality scale.
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3.1 GTFS Data

GTFS is short for General Transit Feed Specification, which is the definition
of a common format for public transportation schedules and associated
geographic information (Google, Static Transit, 2015). The sharing information
contained in GTFS is in format of a series of text files with different fields
separated by comma (Google, General Transit Feed Specification Reference,
2012). GTFS data obtained from Edmonton open data is used as GPS input in this
chapter. The available data contains two datasets in terms of trip update and

vehicle position.

Figure 3.1 Digital Road Network City of Edmonton (2016)
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Each trip is made of a set of GPS points, which is the basic unit for map-

matching. The trip update information contains the following fields like shown in

Fig. 3.2. Following terminology and notification of fields are explained for further

use.

TriplD RoutelD VehiclelID  VehicleLabel  StartDate StartTime StopSequence  StoplD  DepartureTime
11234897 5 2098 4160 20160509 12:54:00 28 1035 1462821240
11234897 5 2098 4160 20160509 12:54:00 29 1271 1462821360
11234897 5 2098 4160 20160509 12:54:00 30 1322 1462821480
11234897 5 2098 4160 20160509 12:54:00 31 1336 1462821720
11234897 5 2098 4160 20160509 12:54:00 32 1429 1462821720
11234897 5 2098 4160 20160509 12:54:00 33 1256 1462821720
11234897 5 2098 4160 20160509 12:54:00 34 1196 1462821780
11234897 5 2098 4160 20160509 12:54:00 35 1393 1462821840
11234897 5 2098 4160 20160509 12:54:00 36 1188 1462821900
11234901 5 2098 4160 20160509 13:32:00 1 1328 1462822320

Delay

-120
-120
-120

oo oo o oo

Figure 3.2 Trip Update Information City of Edmonton, 2016

Field 1: Trip ID: A trip identification, which is a sequence of two of
more stops occurring during the specific time period.

Field 2: Route ID: The number of the bus route. Note: the route ID
may not exist in current bus operation schedule.

Field 3: Vehicle ID: A user-visible and unique identification of the
vehicle, which corresponds to system-internal vehicle ID.

Field 4: Vehicle Label: A unique identifier for transit vehicles in
internal system.

Field 5: Start Date: The scheduled start date of the trip instance. This
field must be provided to disambiguate trips that are so late as to
collide with a scheduled trip on a next day.

Field 6: Start Time: The scheduled start time of the trip instance.

Field 7: Stop Sequence: The sequence number of the stop for the trip.

16



e Field 8: Stop ID: A unique internal system of identification for the
stop.

e Field 9: Departure Time: The time when the bus leaves the stop,
formatted in POSIX time (i.e. number of seconds since January 1st
1970 00:00:00 UTC). This departure time can be either a predicted or
historical one.

e Field 10: Delay: Departure time, measure by minute (60 seconds).

The vehicle position information contains the following fields like shown in
Fig. 3.3. Each position stands for one GPS point containing information mainly
including longitude, latitude and timestamp. Following terminology and

notification of fields are explained for further use.

TriplD VehicleLabel Timestamp Longitude Latitude
11234897 4160 1462821524 -113.439813 53.540924
11236250 4193 1462821534 -113.413124 53.604353
11236156 4198 1462821530 -113.43219 53.59003
11235667 4204 1462821527 -113.63037 53.51766
11236939 4207 1462821524 -113.4539 53.57024
11231212 4210 1462821529 -113.62628 53.52913
11233074 4212 1462821535 -113.56993 53.542244
11235665 4252 1462821536 -113.57814 53.5386

Figure 3.3 Vehicle Position Information City of Edmonton, 2016

e Field 1: Trip ID: In GTEFS, a trip is a sequence of two of more stops
occurring at a specific time. The trip ID is the unique identity of a

trip.
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e Field 2: Vehicle Label: A user-visible identification of the vehicle,
which corresponds to system-internal vehicle ID. It is unique to the
vehicle.

e Field 3: Time Stamp: Moment at which the vehicle's position was
measured, formatted in POSIX time (i.e. number of seconds since
January Ist 1970 00:00:00 UTC).

e Field 4: Longitude: Degrees East, in the WGS-84 coordinate system.

e Field 5: Latitude: Degrees East, in the WGS-84 coordinate system.

Transit agencies schedule the departure frequency for their transit vehicles to
achieve the most usage efficiency of operation. The distinct trip counts of each
weekday from May 8 to May 12 are collected to show the trend of the transit
departure pattern, which indicates the demand of the passengers for the transit
system. Fig. 3.4 shows the general trend of the trip counts of weekdays during one
week. There are most trip information collected during 7:00 AM-8:00 AM and
3:00 PM-4:00 PM, which are rush hours in morning and evening respectively.
The scheduled departure frequency is higher than usual according to the higher

demand. Fig. 3.5 shows the total trip counts on 8-12 in May.

18



1400

1200 / :\
\
\

1000 / !
E 800 N \
2 &0 :
= # T
400 \
200 / =
P — —
B S S S S N S S AN N
PSSR S
ES LS S S S S S s S S S S S s s
S T T T O B W T S S B S S S e
FEF T T R F v.. v@v@v@v@q § @Q AN

’ [ S S
SFFFTFFFF L LSS F 87

‘o,

—B-IEy 9-May =——i10-May ee—]1-May 12-May

Figure 3.4 Hourly Distinct Trip ID Counts
15420
15400

15380

15380
15340
15320
15300
15280

B-May S-May 10-May 11-May 12-May

Figure 3.5 Weekday Daily Total Trip_ID Counts

3.2 Digital Road Network Data Description

The map-matching algorithm proposed in this thesis requires certain standard
format for the data. GPS data used is based on General Transit Feed Specification
(GTFS). This chapter will provide the description of the input data and briefly
introduce the meanings and functions of the data. The network data used in this
paper is based on the digital map provided by City of Edmonton (Fig. 3.1),

including the information of links, reference points and grid arrangement.

19



3.2.1 Link Information

In the digital map, the roads are divided into virtual links at certain inflection

point and traffic nodes, like intersections and roundabouts. Every link has a set of

information acquired from the pre-processing of the digital map using ArcGIS

(shown in Fig. 3.6). Following terminology and notification of fields are gathered

to complete the information of links.

1D FROM_N TO N LENG Traffics R_NAME DIR R_TYPE ROAD _ID
4038 2924 2925 47315537 0 ST ALBERT TRAIL NW NB Service Road 15927
4039 2925 2924 47315537 0 ST ALBERT TRAIL NW SB Service Road 15927
4042 2928 2929 25042011 0 21 STREET NE NB Roadway (Standard) 15930
4043 2929 2928 25042011 0 21 STREET NE 5B Roadway (Standard) 15930
4000 2896 2897 457.30143 0 33 STREET NB Roadway (Standard) 15951
4001 2897 2896 457.30143 0 33 STREET 5B Roadway (Standard) 15951
4002 2897 1234 949.88265 0 33 STREET NB Roadway (Standard) 15952
4003 1234 2897 594988265 0 33 STREET 5B Roadway (Standard) 15952
3990 2889 2890 21777735 0 74 AVENUE NW WB Roadway (Standard) 15946
3991 2890 2889 217.97735 0 74 AVENUE NW EB Roadway (Standard) 15946
3992 2891 2889 201.06875 0 48 STREET NW NB Roadway (Sta ndard) 15947
3993 2889 2891 201.06875 0 438 STREET NW 5B Roadway (Standard) 15947
4101 2973 2976 18457439 0 99 STREET NW 5B Roadway (Standard) 20893
4106 2981 2982 1287.3775 0 101 STREET SW 5B Roadway (Standard) 20897
4107 2982 2981 1287.3775 0 101 STREET SW NB Roadway (Standard) 20897
4096 2973 2974 258.94671 0 101 STREET NW NBE Roadway (Standard) 20889
4097 2974 2973 25834671 0 101 STREET NW EB Roadway (Sta ndard) 20889
4098 2973 2975 21977752 0 99 STREET NW NEB Roadway (Sta ndard) 20830
4099 2975 2973 21977752 0 99 STREET NW 5B Roadway (Standard) 20890
4100 2976 2973 18457433 0 99 STREET NW NB Roadway (Standard) 20893

Figure 3.6 Link Information (Partially)

® Field 1: ID: A unique identifier for every link.

® Field 2: FROM_N: The unique identifier for the starting node of the
link, the information of which can be found in reference point
information.

® Field 3: TO_N: The unique identifier for the ending node of the link.

® Field 4: LENG: The length of the link in NAD 1983 coordinate
system.

® Field 5: TrafficS: Numbers of traffic signal along the link.

® Field 6: R NAME: The road name to which the link belongs.
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® Field 7: DIR: The direction of the link calculated with assumption of
each link is considered as a straight line, and the direction is 0-360
degree.

® Field 8: R TYPE: The type of the road to which the link belongs.

® Field 9: ROAD ID: A unique identifier of the road to which the link

belongs.

The link length is one of the critical parameters for the following map-
matching process and travel time prediction model. The proper distance will
lower the error for the matching and prediction results, since links with too long
or too short length may contain the curves or other special alignment situations
affecting the distribution of the reference points and the travel speed consistency

in the sample data, which is the basic assumption for the prediction model.

Fig. 3.7 shows the distribution of the link length. 92.5% of the recorded links
fall in the category of [60,130] meters. When generating the reference points in

the digital network, the link will be further divided into smaller segments.

Besides the basic information, there is also connectivity information between
links like shown in Fig. 3.8. The connectivity between the adjacent links can
indicate the most possible routes of the vehicles, which is path inference.
Following terminology and notification of fields are gathered to complete the
connectivity. For example, for the link #4038, there are three connected links, and
the IDs of these three links are: #4039, #31672, #31671, with the sequence

number 0, 1, and 2 respectively.
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Figure 3.7 Probability Distribution of the Virtual Link Length

LINK_ID SEQ_Link  Connected Link_ID
4038 0 4039
4038 1 31672
4038 2 31671
4039 0 4038
4039 1 25450
4039 2 25200
4042 0 4043
4042 1 30079
4042 2 30212
4043 0 4042
4043 1 28541
4000 0 4001
4000 1 4002
4001 0 4000
4001 1 40779
4001 2 31524

Figure 3.8 Information of Connected Links (Partially)

® Field 1: Link ID: A unique identifier of every link connecting to
others.

® Field 2: SEQ_Link: The sequence number of the connected link.
® Field 3: Connected Link ID: The unique identifier of the link

connected to the link in Field 1.
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3.2.2 Reference Point Information

There are two types of reference points. One type is the starting and ending

nodes of the links and the other type is added manually to the map. The added

reference points separate the oversize links to the small segments with similar

distance. In this paper, 20-meter is chosen as the distance between two adjacent

reference points. However, due to the actual length and road alignment, the length

of the segments may have slight differences.

Fig. 3.9 shows the general idea of the reference points in the digital map. The

entire road network can be divided into segments with the similar length. The

reference points only exist on the links covered by the transit routes while there is

not reference points on the links (like collectors, local driveways) without transit

route covered.
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Figure 3.9 Illustration of Reference Points in Digital Map

The reference point information contains the following fields like shown in

Fig. 3.10. Following terminology and notification of fields are gathered to

complete the information.
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Rep ID Link ID SEQ REP  FROM Dist TO Dist COR X  CORY DIR Long Lat
37936 23654 1 18.41 128.93 326241 5937034 75 -113.6206066 53.53115699
37937 23654 2 36.83 110.51 326258 5937040 69 -113.6203517 53.53122326
37938 23654 3 55.25 92.09 326275 5937047 71 -113.6200958 53.53128571
37939 23654 4 73.67 73.67 326293 5937052 74 -113.6198387 53.53134317
37940 23654 5 92.09 55.25 326310 5937057 76 -113.6195793 53.53138885
37941 23654 6 110.51 36.83 326327 5937061 77 -113.6193197 53.53143339
37942 23654 7 128.93 18.41 326345 5937065 67 -112.6190596 53.53147487
37943 23654 8 147.35 o 326361 5937076 57 -113.618825 53.5315739
37945 23655 1 18.37 183.76 326068 5936932 67 -113.6231503 53.530191938
37946 23635 2 36.75 165.39 326084 5936943 56 -113.6229228 53.53029192
37947 23655 3 55.13 147.01 326099 5936954 56 -113.6226954 53.53039186
37948 23655 4 73.5 128.63 326115 5936964 57 -113.622468 53.5304918
37949 23655 5 91.88 110.26 326130 5936974 57 -113.6222384 53.5305866
37950 23655 ] 110.26 91.88 326146 5936954 58 -113.6220086 53.53068106
37951 23655 7 1238.63 73.5 326162 5936993 60 -113.6217769 53.53077046
37952 23635 8 147.01 55.13 326178 3937002 62 -113.6215432 53.53085459
37953 23655 9 165.39 36.75 326193 5937011 62 -113.6213082 53.53093506
37954 23655 10 183.76 18.37 326209 5937019 56 -113.621073 53.53101511
37955 23655 11 202.14 0 326224 5937032 49 -113.6208613 53.531132325
Figure 3.10 Reference Point Information (Partially)
® Field 1: REP_ID: A unique identifier for every reference point.
® Field 2: Link ID: The identifier of the link to which the reference
point belongs.
® Field 3: SEQ_REP: The sequence number of the reference point on
the link.
® Field 4: FROM Dist: The distance between the starting nodes of the
links to which the reference point belongs, and the reference point.
® Field 5: TO Dist: The distance from the reference point to the ending
point of the link.
® Field 6, 7: COR X, Y: The coordinates of the reference point on X
and Y-axis in plain coordinate system respectively.
® Field 8: DIR: The direction of the reference point range from 0-360

degree, calculated based on the tangent of the short straight line

between two adjacent reference points.
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® Field 9, 10: Long, Lat: The coordinates of the reference point in
WGS 1984 coordinate system (degrees East/North, in the WGS-84

coordinate system).

3.2.3 Grid Arrangement

The digital map contains a large amount of information. When the GPS logs
in, there will be huge amount of calculation to do to search for the matching. But
map-matching process is expected to provide the matching results within short
time to do the further research. To improve the efficiency of the method, the
large-scale digital map is divided into small grids to downsize the database that

the GPS point is programmed to match.

The map is divided into 197 X 159 grids like shown in Fig. 3.11. Following

terminology and notification of fields are gathered to complete the information.

Xo Yo X1 Y1 CoL ROW
318472 5538854 350272 5515454 157 155

Figure 3.11 Grid Arrangement Information

® Field 1: X0: The x coordination of the first range point in plain
coordination system.

® Field 2: YO: The y coordination of the first range point in plain
coordination system.

® Field 3: X1: The x coordination of the second range point in plain
coordination system.

® Field 4: Y1: The y coordination of the second range point in plain

coordination system.
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® Field 5: COL: The number of the columns.

® Field 6: ROW: The number of rows.

The grid arrangement of the Edmonton urban area is shown in Fig. 3.12. The

based units and labeled in the geometry order. Fig.

digital map is divided into grid-

3.13 shows the general grid arrangement in the digital map. The coordination of

first and second range points is used to determine the map range.
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Figure 3.12 Grid Arrangement of Edmonton Urban Area
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The grids are generated to narrow down the matching scale to improve the
processing efficiency. The reference points that are included in each grid are
formatted as the grid dataset. Fig. 3.14 shows the reference point ID contained in

each grid.

(xq. ¥a) Column_count

UNOY . MOY

(x1.y1)

Figure 3.13 A Schema of Grid Arrangement

GRID_ID REP_COUNT REP_ID

1378 20 23336 23337 23338 23339 23340 23341 23342 23343 23344
1379 28 23342 23343 23344 23345 23346 23347 23348 23349 23350
1380 28 23352 23353 23354 23355 23356 23357 23358 23359 23360
1381 30 23362 23383 23364 23365 23366 23367 23368 23369 23370
1382 46 23372 23373 23374 23375 23376 23377 23378 23379 23536
1383 28 24217 24218 24219 24220 24221 24222 24223 24224 24225
1384 28 24207 24208 24209 24210 24211 24212 24213 24214 24215
1385 28 24197 241598 24199 24200 24201 24202 24203 24204 24205
1386 28 24187 24188 24189 24130 24191 24192 24193 24154 24195
1387 28 24177 24178 24179 24180 24181 24182 24183 24134 24185
1388 28 24167 24168 24169 24170 24171 24172 24173 24174 24175
1389 28 24157 24158 24159 24160 24161 24162 24163 24164 24165
1350 40 24152 24153 24154 24155 24156 24157 24158 24159 24160 ..
1391 28 168646 168647 168648 168649 168650 168651 168652 168653 168654 ..
13592 28 168636 168637 168638 168639 168640 168641 168642 168643 168644 ..

Figure 3.14 Reference Point Information in Grids (Partially)

® Field 1: GRID_ID: A unique identifier for each grid. Only grids

containing reference points are included in the table.
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® Field 2: REP_ COUNT: The numbers of reference points which
belong to the grid. Those 20 meters outside the grid edges are
considered as “belong” as well.

® Field 3: REP _ID: The identifiers of reference points which belong to

the grid with identifier shown in Field 1.

After the preparation of the map, the information of reference points within
each grid is essential for the map matching. The database partially shown in Fig.
3.14 categorizes all the references by the grids. The GPS points sometimes are
located very close to the edge of the grid, and the matching process will generate
the error results if the correct reference point is not included in the grid. In the
case shown in Fig. 3.15, GPS point belongs to grid 1414, and is expected to match
to the reference point #62239, which is not within the grid 1414. Therefore, the
database shown in the Fig. 3.14 contains not only the reference points within the
grid, but also those around 20 meters outside the grid. The relationship between
points, grids can be found in Fig. 3.16. For example, the grid #1405 contains 6

reference points, including No. 26618, 26619, 26620, 27641, 27642, and 27643.

1D:1409 1D:1410 ID:1411 1D:1412

1 bl
i
D:1413 | | A&
I.
I
1o o @

1D:1415 1D:1416

1D:1417 1D:1418 1D:1419 1D:1420

Figure 3.15 A Schema of Grid RP
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Reference Points Grids Grid Dataset™
RP, Grid, —- {RP,,RP, ..}
RP, E — i Grid, - {RP,,RP, .. }
RB, & Grid,, —- {RP,,RP; ...RE,}

*Grid Dataset: The IDs of reference points contained in the matching Grid.

Figure 3.16 Relationship between Grids and Reference Points (RP)

The precise matching scale for each GPS point is shown like dotting line
square in Fig. 3.15. The number of the reference points in every grid follow the
probability distribution in the Fig. 3.17. 89.6% grids contain the even number
reference points. 1470 grids contains 28 reference points in each of them and
there is higher probability to have integer multiple of hundred reference points in

the grid.
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Figure 3.17 Histogram of Number of RP in Grids
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3.3 Summary of Data Description

This section introduces the data that will be used in this thesis, including the
road network data and GTFS data. The digital road network is a simplification of
the actual streets, only keeping the main characteristics of the road condition,
including centerline, direction, starting and ending point locations. Reference
point file and grid file are added to the original map provided by City of

Edmonton.

GTFS data is used as the GPS input in map-matching method in this thesis.
Given the fact that GTFS data has low collecting sampling interval, which is
around 30 seconds. The direction of the GPS points is not included in the GTFS
dataset and the calculation of the angle may not be precise especially when the
distance between two adjacent GPS point covers more than one link. The
reference points are used as the standard to do the matching, converting point-to-
curve comparison to point-to-point comparison. In this case, the calculation of the
direction is no longer needed. The performance of the map-matching will be more

reliable. The reliability will be evaluated in next chapters.
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CHAPTER 4 REFERENCE POINT-BASED
MAP MATCHING METHOD USING LOW-
FREQUENCY TRANSIT DATA

Conducting the map-matching method is the first step in the prediction of the
transit travel time in this thesis. In this section, the map-matching method contains
two part: (1) link identification procedure, which is the projection process to
match the GPS point to the digital network; (2) path inference, which is to
confirm link sequence that the vehicle uses to complete the trip between two
adjacent GPS points. The major contribution of this method is: (1) create the
reference point file in the digital map. It makes it more efficient and direct for the
matching process of the low-frequency data; (2) perform the field tests based on
the large amount dataset collected from the real traffic situation, providing the
reliable evaluation of the method. The case study shows the matching results of
the method and the comparison results with the Spatial-temporal matching
method presented in previous literature. The proposed method is evaluated in
terms of accuracy of path inference and the link identification. The conclusion

comes to that the proposed method outperforms the ST-matching algorithm.
4.1 Link Identification Procedure

The link identification procedure is conducted to match the GPS points to the
digital segments to obtain the trajectory information. The method proposed in this
thesis can be divided into three parts, including database design, data extraction

and projection analysis like shown in Fig. 4.1. Given the complicated road
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network in the real traffic situation, there would be a huge amount of calculation

if we match the GPS point to every single segment. Therefore, it is important to

minimize the matching scale before the projection. The algorithm is required to

extract the grid information matched to the given GPS data.
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Figure 4.1 Data Flow for Link Identification Procedure

The method proposed in the thesis combines the consideration for both

distance and angle matching results like shown in projection analysis in Fig. 4.1.

Angle analysis helps calibrate the direction possibility and define the most likely

candidate for the best match (Eq. 4.1).

£(d;, 6) = a(min{d;}) + B(min|; — Bps|) (Eq.4.1)

The weights of distance and direction are expressed as a and f respectively.

The goal of the theoretical function is to find the minimum distance between the

reference points and the GPS point and the minimum angle differential between
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reference points and the GPS point. Fig. 4.1 shows the data flow in link

identification. The following terminology and notification are used.

Definition 1: Gridded set: The database containing all the reference points

categorized based on which grid they belong to.

Definition 2: Candidate set: Output of the data extraction that shows all the
reference points belonging to the grid in which the GPS point is. The set S of

reference points n(;op 141y Within the pre-defined grid N to which the GPS point

t(Lon,lat) Delongs.

Nion — Lony < €0

S= n:{ Eq.4.2
¢ Nige — Laty < €q¢ (Eq )
Lony, Laty refer to the longitude and latitude of the left and down edge of

the grid to determine the locations of reference points. € refers to the threshold

that indicates if the reference point is within the range of the grid.

Definition 3: Target reference point: The reference point closest to the GPS
point with the smallest direction differential as well. The most likely reference

point, n* is selected from the set S as the one with the smallest distance. d; refers

to the distance between the GPS point and the target reference point.
n* ={n:d; = mind,,n € S} (Eq. 4.3)

Definition 4. Target link: The link to which the target reference point i*

belongs.
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Figure 4.2 Map-Matching Result Schematic

When the GPS signal logs in, the coordination and direction of the GPS point
are entered in the database to decide to which grid the GPS point belongs. The
information of reference points in each grid is picked out to create the candidate
set, which is called potential matching scale. Projection analysis firstly compares
the point-to-point distance between the GPS point and every reference point in the

grid, and then picks out three reference points closest to the GPS point.

Projection analysis secondly compares the direction of GPS point and three
chosen reference points. The connection line of adjacent two high-frequency GPS
data is assumed as the straight line. The direction can be calculate based on the
latitude and longitude. The reference point with the smallest angle differential
from the GPS point is considered as the target reference point. The target link, to

which the target reference point belongs can be identified based on the candidate
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link set. Projection analysis finally calculates the distance between the projected

point and the start point of the link like shown in Fig. 4.2.

4.1.1 Database Design

The database contains two parts of information, including the basic grid

arrangement and reference point identifier within each grid.

The range of the network is in plain coordinate system, and offline divided
into 193 columns and 159 rows based on the standard format of map-matching
inputs. Each grid has a unique identifier (Grid_ID) and the reference points
existing within and closely around the grid are picked out and organized in the

database.

4.1.2 Data Extraction

When GPS logs in, the database will automatically search for the grid ID to
which the GPS point belongs, and extract all the reference points within the grid
to create the candidate link set, which is the potential match scale. The process is

shown in Fig. 4.3.

4.1.3 Projection Analysis
The purpose of projection analysis is to match the GPS point to the digital
link within the selected grid by the former steps based on the comparison of

distances and directions.

35



| ePs(omlan) |

Lony < Lom; < Lony,,
Laty = Lat; < Latys,

GPS belongs to
Grid #N

Reference point mformation

Figure 4.3 Dataflow of the Data Extraction Process

Fig. 4.4 shows the data flow of the projection analysis. Given the GPS

information and the candidate link set, the first step of

the projection is comparing the distance between the GPS point and the
potential reference points (PRPs), which are the reference points within the
potential matching scale. The procedure will pick out three reference points with
the shortest distances to the GPS point, which are defined as potential matches
(PMs). Next step is to compare the angle of the GPS point and the PMs. The PM
with the smallest angle differential will be the target reference point. The target
reference point can be retrieved from the database to obtain the information of the
target link to which the target reference point belongs, including link ID, from
node ID & coordination and length. Then the procedure will calculate the distance

from the starting point of the target link to the GPS projected point.
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Figure 4.4 Map-Matching Projection Analysis

4.2 Path Inference

Path inference is defined as the determination of the most likely trajectory of
the trip given the sequence of matched GPS points (Rahmani, 2013). After
matching the GPS points to the digital road network, the trajectory that is
connected by all the projections in certain sequence needs to be inferred. Fig. 4.5

shows the description of the path inference problem.

GPS projected points
Path inference ,
— Find the trajectory Int irajectory
Digital road network
¥
Actual path R Accuracy
(Ground truth) "|  evaluation

Figure 4.5 A schema of Path Inference Problem
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4.2.1 Methodology

The main idea is to find the most likely trajectory the trip was made by the
vehicle, which is the sequence of the links that the GPS points have been matched
to, and then compare the trajectory with the ground truth recorded by other
methods, like handheld GPS recorder. The method for path inference used in this

paper mainly includes three steps.

1. Build the possible path.

This step is based on the projection of the GPS points and the topological
information of the digital network, which is already known from link
identification. The link to which the projected points (n,) belong. The projected
point 1, (t) of GPS point £ on,1qr) On link x and the starting and ending points of
link x (x,, xp respectively) are both known. The possible paths include all the
accessible link combinations that connect every two adjacent projected points,
like shown in Fig. 4.6(a). The paths with the consistent direction are considered as
the possible paths. The paths which require the behaviors of detour and restricted
accessibility are not considered. Let T be the possible path set, and t,, be the travel
time of path alternative p. t,,;, 1s denoted as the minimal travel time, which is the
ratio of Euclidean distance of the OD pair on the minimal free flow speed of the
links belonging to the whole path. € denotes the parameter related to the
acceptance level of trip-makers to the travel cost. If the cost is higher, € will be
higher to contain more qualified possible paths to make sure all the choices will

be considered. For example, if the congestion is severe on path #1 and #2, trip-
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makers may take detour path to avoid the hot spots. In this case, € should be

higher to include the detour path in the possible path set.

T = {p: t, — tmin < &} (Eq. 4.4)

The restricted path (Fig. 4.6 a) contains the restricted left turn at the
intersection north, therefore, the path cannot be accessed. The detour path
containing the inconsistent direction should be included in the possible path set if

the travel time of the path satisfy the Eq. 4.4.

Connectivity file is the main evidence to filter the possible paths. Each link
can only be connected with the links within the connectivity vectors. Assume link
A} is connected with i links By to B: (A} = {By, ... B, ... B{|x € Q}) and link B}"
is connected with j links C} to CL (BY = {C},...C}, ... Clix e Q}) etc. If GPS
to(Lon;, Lat;) is matched to target link A} and t;(Lon;,, Lat;,,) is matched
to C7}, the path inference should generate the target sequence of @ =

{4}, B}, cy, .. ).
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Figure 4.6 Possible trajectories of the Projected Points Sequence

Two matched results show the GPS points have been matched to link x; and

Xj+1 respectively. Given the connectivity of the road network, all possible paths
between the origin and the destination of the trip are built: n, (1) = x4 —
xj - nxj+1(t2), or Ny, (t1) = Xiyz = Xji3 = Ny, (t,) (i.e. possible path #1 and

#2).
2. Using shortest path algorithm to calculate the costs of possible paths.

In the preliminary literature review, there are several shortest path algorithms
(SPA) merging in the past ten years. The SPA used in this paper is Dijkstra’

algorithm (Dijkstra, 1959). The inferred path is mainly decided by the cost of
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each link. The shortest path is the “cheapest” path. The cost of the shortest path

from origin projected point to destination projected point is denoted as C(, 4.

Cop) = Co,t) T Citpt) T F Cexd) (Eq. 4.5)

t, is denoted as the projected point at sequence of X. There are totally X

projected points in the trip t. ¢, ¢, is denoted as the cost of the first link from

projected point t; to t,.

The cost of each link can be decomposed to three parts based on the road
condition and traffic situation, including average travel time, delay related to the
signalized intersections and delay due to turns (conflicting time with opposing

traffic or merging traffic). The cost on the link x (from ¢, to t,,;) can be

_ Dttty
tx+1) — g

expressed as: ¢ + ky - Y7, Signal, + k, - Y7, turns,, which is
the function of the travel time of the trips from ¢, to t,,,. K is the number of
observed trips. The first item is the average travel time on the link x. The second
item is the delay at the signalized intersections. k; depicts the delay penalties for
each signalized intersection on the link x. Signal, denotes the average control
delay of the ith signalized intersection. Similarly to the third item, k, is the delay
penalties for each conflicting turn. turns, depicts the average delay for ith

conflicting turn. The delay penalties can be calibrated based on the history data or

traffic field survey.

3. Find the most likely trajectory.
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To identify the most likely trajectory among the possible paths, first step is to
settle the criteria based on the travel time on each link, travel cost (e.g. congestion
time, fuel price, extra charging) and distance. The model used in this paper mainly
uses the criteria of travel time and travel distance respectively based on the
assumption that the trip-makers normally follow the path with the least travel time
and travel distance, which is called “generalized cost” in the previous literature
(Rahmani, 2013). The most likely trajectory is selected from the possible path set

based on the shortest path model. Let p* be the most likely path. d,, is the distance

of the path p, which belongs to the set T'.
p* ={j:d; = min(d,),p € T} (Eq. 4.6)

4.2.2 Special Considerations

The existing GPS capturing technologies intend to record low frequency GPS
data given the limited storage space, therefore, the distance between two adjacent
GPS points normally covers several links, which makes it difficult to determine
which path the vehicle was on. There are three special considerations discussed in
this thesis about the possible errors that may happen during the map-matching and

path inference.
1. Equal distance choice

Based on the path inference model mentioned previously, there would be a
chance that the model provides double or triple results, which shows that there are

several results with the same travel distance. In this case, the trip-makers are
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reasonably assumed to make choices based on their own preferences. Driver’s

route choice model is used to conduct the path inference.

Miwa et. al. developed a driver’s route choice concept (Tomio Miwa, 2012)
using the developed logit model. The utility of one path is considered related with
four factors including the number of signalized intersections, the number of stop
signs and pedestrian walkway, road surface condition and the connectivity. The
number of the traffic facilities on the path mostly affect the travel time, which is
proven to be within the range (Eq. 4.3). It is assumed that the utility function
shows the attraction level of each path to the trip-makers. The utility function of
pathpis U, = aoTT + aiSignal, + a;Stopy + age + a3 Zf;-l_3 iX; + €,. The
parameters a can be calibrated by regression experiments based on historical data.
agc denotes the road condition based on the classification of the road, arterial (4),
minor (3), collector (2) and local road (1). The connectivity is indicated by the
effects of 3 previous links on the path choice like shown as the 5th term in the

utility functions.
The probability of the trip-makers taking one of the model-generated path p

6U
is shown as B, = exp( p)/ Y exp(0U")" U’ is denoted as the utility function of

every path resulting from model Eq. 4.5. 0 is the scale parameter in the Gumbel

distribution which the random error term € follows.

2. Overpass / Underpass

Overpass and underpass are common transportation facilities in urban

environment. Such facilities are unlikely shown very clear on the digital map,
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therefore, the map-matching may not be able to identify the proper candidate links
and target link without three-dimensional map. The GPS signal may be blocked

when going through the tunnel or other underpass conditions.

3. High Density Local Road Network

The high density local road network is common in the residential
neighborhoods. Most of the links in such road network are narrow, single lane in
each direction or shared direction and sometimes one-way, therefore, the
connectivity and restriction rules become very useful when it comes to the map-

matching and path inference.
4. Transit Path Inference

This thesis is focused on the transit travel time prediction. The transit data
remains the main source for the research. Given the fixed route of the transit
vehicles, the path inference of the transit is easier to conduct. However, errors
may occur in the map-matching process. If the target link is not identified
properly, the path inference may show the route is different from the schedule,

which can be used to evaluate the accuracy of the transit map-matching method.

4.3 Evaluation of Factors Affecting Performance of the Map-

Matching Method

There are several factors affecting the performance of the map-matching

method, including the map-matching process and path inference. The main source
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of the error comes from the model calibration, data source and accuracy

evaluation process, and other error like mechanical failure, weather impact.

4.3.1 Indices of accuracy
The identification of the correct links to which the GPS points belong can be
evaluated by comparing correctly identified link with the manually recorded trip

route. The correctly identified percentage (CI %) can be computed by Eq. 4.7.

Number of Correctly identified points
Cl(%) = Sample size X 100% (Eq.4.7)

Given that the method can accurately identify which link the GPS belongs to,
there still is error for the precise location, therefore, the average distance error
(ADE) is defined, like shown in Eq. 4.8.

|dmp B dvppl

Average distance error = .
Sample size

(Eq.4.8)

In this thesis, vertical projection point is used as the precise location of the
GPS point on the digital road network compared with the matched results to
evaluate the performance of the method. d,,,, denotes the distance between the
starting point of the target link and the target reference point. Since the GPS point
has already been matched to the target link, the location of vertical projection

point is available for each GPS point. d,,,,,, denotes the distance between the

vpp

starting point of the target link and the vertical projection point.

The accuracy of the path inference means the ratio that the plots correctly

matched to the digital road network. ARR index (accuracy ratio of matched) is the
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most commonly used (Tomio Miwa, 2012). The evaluation of the path inference

is based on the following criteria.

length of correctly matched path
ARR = [engthof y p

length of actual path (Eq.4.9)

However, ARR cannot express all the error it may have in the method. Like
shown in Fig. 4.7, when the length of AB become small enough, the ARR will
become closer to 1, which indicates the method becomes more and more
acceptable. ARR is adjusted to PFI (proportion of false identification) and IAR

(inaccurate length of matched) is defined to ensure the evaluation is valid.

- False identified link number

= 0
Total identified link number x100%  (Eq.4.10)

length of wrong matched path
[AR — Length of wrong p

length of matched path (Eq.4.11)

The accuracy of map-matching process is measured by correct link
identification, which indicates how many GPS points have been correctly
matched to the target links, compared with the high-frequency data as the ground
truth. For the transit data, the route of transit vehicles has been predetermined,
therefore, the route can be considered as the ground truth to conduct the accuracy

evaluation.
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Figure 4.7 Schema of ARR Error

4.3.2 GPS signal and movement criterion

The accuracy of the prediction results highly depends on the accuracy of GPS
signal. Fig. 4.8 shows that if two adjacent GPS points have distance of 25 meters,
there will be probability of 95% that the transit vehicle is on movement. The

results are based on the existing GPS data of transit vehicles and field test.
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Figure 4.8 GPS Error Distribution

Normally, the GPS signal is accurate from 60 to 300 feet (Bajaj, Ranaweera,

& Agrawal, 2002). One of the major factors that affecting the accuracy is the
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propagation delay caused by the radio signal speed changing in different
atmospheric particles. When the signal bounces among the objects on the ground,
there will be fading of the signal strength. Other factors can also affect the
accuracy of the GPS signal, like receiver noise, unreliable distance measurements

between satellites the GPS receiver is connected with.

4.3.3 External factors

Other external factors may affect the accuracy of the map-matching method.
Weather condition will have impact on road condition and may lead to the change
of the drivers’ behaviors. Trip-makers are more likely to take a longer distance
detour to avoid the congested path resulting from the weather. The choice model
of the trip-makers may vary by changing the utility functions. Moreover, extreme
weather may also affect the GPS signal, the error distribution of the GPS data

may change and result in the errors.

Road condition also has the impact on the choice model by changing the
utility functions. The temporary road construction may increase the access
restriction. Sometimes, not all the information in the digital map will be updated

in time when conducting the map-matching method.

Many trips are completed by multi transportation modes, like park & ride,
cycle & transit, walk & transit, etc. When the transportation modes are changed,
the GPS data will lose the consistency at the transfer point. Error may happen due

to this reason.
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4.4 Case Study

To validate the map-matching method and path inference model, a case study

based on the GPS data of real trips and digital network data is conducted.

4.4.1 Test Site Description

23 Ave. is an essential arterial located in the south of Edmonton. The corridor
from Terwillegar Drive (in the west) to the Calgary Trail (in the east). The vehicle
position and trip update of 169 trips are available for the thesis. There are 85 trips
are in eastbound and 84 trips are in westbound. Since there are data missing and
device error in the GPS transmission and storage, this thesis only uses 68 trips in

eastbound.

4.4.2 Results and Discussion

The data was collected from transit vehicles operating on 23™ Avenue
equipped with GPS receivers by City of Edmonton to evaluate the performance of
the map-matching method proposed in this thesis. For the accurate link
identification, the field test using mobile device was conducted to collect GPS
acting with sampling interval of 1 second as the ground truth. The transit route
map was retrieved from the city website as the ground truth for path inference. To
test the relationship between the method accuracy and the data collection
frequency, three more datasets were generated from the high-sampling interval
data, which includes 15-second data and 60-second data. Partial trips from Legar
Transit Center to Century Park Transit Center are used for map-matching process

evaluation shown in Table 4.1.
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Table 4.1 Field Trips Used in Case Study

Trip ID From Time From Station Vehicle ID Route ID Sample Size
11414576 13:43:28 Jul 28 CPTC 4673 36 666
11414614 14:05:46 Jul 28 LTC 4362 36 358
11414153 14:31:36 Jul 28 CPTC 4840 23 628
11414616 15:01:10 Jul 28 LTC 4344 36 702
11414580 15:15:04 Jul 28 CPTC 4346 36 686
11414172 15:46:13 Jul 28 LTC 4626 23 720
11414156 16:06:48 Jul 28 CPTC 6003 23 660

CPTC: Century Park transit center; LTC: Legar transit center

The snapshot of the matching results can be found in Fig. 4.9. The case
shows the matching result in Century Park transit center in South Edmonton. The
trip 11414156 starts from Century Park Station at 16:06:48 pm on July 28, 2016.
The route is known from the trip update data. The road network in such transit

center includes minor roads and one-way roads of high-density. GPS points are

more likely to be matched incorrectly under such circumstances.
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Figure 4.9 Match Results w/ Different Sampling Intervals

The accuracy results are shown in Table 4.2. There are totally 4620 GPS
points collected from the field tests. Based on the map-matching method proposed
in this thesis, the correctly matched points are 4609 out of 4620, 99.8% correct
identification. Reducing the data sampling interval to 15 seconds and 30 seconds,
the matching results still provides over 99.1% correct identification. Since the
reference points have the fixed location, the high sampling interval GPS points
within the small range will be clustered to one reference point. In this case, there
is distance error between the matched reference point position and the vertical

projected position like shown in Fig. 4.10.
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Figure 4.10 Average Distance Error

Table 4.2 shows that higher-sampling interval dataset provides more average
distance error. This is because the reference points have the fixed locations and all
the GPS points are projected to these reference points no matter if it is the vertical
projection point. If one trip contains more GPS points, it is more likely to create

larger distance error, like the occasion shown in Fig. 4.10.
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Table 4.2 Performance of Map-Matching Method with Different Frequency GPS Data

Variables Frequency of GPS data

l= 13s 30s (GTES data) 60s
Sample size 4620 315 161 34
Correct link identification 4609 312 160 24
Average distance error 4.67m 4.02m 397m 332m
Processing time <23z <208 <13s <153s

Fig. 4.11 shows the snapshot of partial path inference results. The sequence
of the segments to which the GPS point set belongs (trip 11414156 with sampling
interval of approximately 30 seconds) is obtained from the map-matching process.
Fig. 4.11 (b) shows that there are two matching errors with the possible path
compared with the ground truth (Fig. 4.11 (a)). The connectivity relationship
between adjacent two target links is interfered at two marked sites. Due to the
mismatched results, the path inference will provide the different match results

from the ground truth (Fig. 4.11(c)).

If the adjacent target links are connected, the false identified links will be
excluded from the path inference (Fig. 4.12). The right out way is included in the
map-matching results. However, link 22181 and 70414 are the continuous route,
therefore, the link 22188 is excluded from the path inference results. The datasets
of 14 trips (July 28, 2016), including trips in Table 4.1 with different sampling
intervals are conducted for the performance evaluation and comparison of the
path inference process. The accuracy of the results is evaluated in terms of IARR

and PFI value based on the datasets of different sampling intervals (Fig. 4.13).
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Figure 4.11 Path Inference (a) Ground truth; (b) Map-matching results (Identified link
sequence); (c¢) Path inference results

70414

Figure 4.12 A Scheme of Path Inference Results

Fig. 4.13 shows the average IARR and false identification percentage of the

datasets of different sampling intervals. The comparison shows the ascending
trend of both measurements, indicating that if the sampling interval is smaller, the
accuracy of the path inference is higher. Since the GTFS data consists 0.3%

missing and invalid data, the false identification is slightly higher than 60-second
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dataset by 0.4%. Besides the inaccuracies, all the trips found in the dataset can

identify the correct route by 83.5%.
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Figure 4.13 Performance of Path Inference Method

4.4.3 Comparison with ST-Matching Method

The benchmark for comparison is ST-Matching method, which was first
proposed by Lou et. al. in 2009 (Lou Y., et al., 2009). The algorithm in the
method targets the map-matching for the large sampling interval GPS data. The
matching procedure consists of: (1) spatial analysis uses both geometric and
topological information to pick out the most likely candidate points; (2) temporal
analysis employs the average speed between two consecutive GPS points to
exclude the interference candidate options. ST-matching requires the average
speed, which is calculated as the ratio of the distance between two consecutive
GPS points over the time interval. It should be noted that ST-matching method is
based on the probability model to find the most likely path that matches the GPS
sequence. The candidate points are picked out from pre-determined area with

radius of 30 meters. It assumes the probability of each candidate point of one GPS
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point follows normal distribution, and the distance parameter and speed parameter

are used to calibrate the probability to find the most likely candidate sequence.

Fig. 4.14 shows the performance of the datasets with different sampling
intervals. Both methods can maintain the high accuracy (over 98% correctly
identified link percentage) with small sampling interval GPS data. With the
sampling interval becomes higher, the accuracy of ST-matching method declines.
According to previous literature, the performance of ST-matching method will
become stable when the sampling interval increases to 120 seconds or higher (Lou
Y., etal., 2009). For the reference points-based method, the accuracy is not

affected significantly by the sampling interval.
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Figure 4.14 Performance Comparison w.r.t. sampling interval

To evaluate the performance of the proposed method in different traffic
conditions, five locations are chosen, including transit centers, CBDs in
downtown area, residential communities, highway and urban arterials. Fig.
4.15(a) shows the types of test sites and valid GPS data at each location. The

matching accuracy is shown in Fig. 4.15(b).
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Location Description Valid GPS

counts

1. Century park  Transit center 4620
transit center

2. City center Downtown CBD 4237

3. Calgarytrail Highway ramp 3906
& 41 Ave.

4. Calgary trail Urban arterial 4492
& Whitemud

5. Blue Quill Residential 4023
community community
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Figure 4.15 (a) Description of Test Sites; (b) Performance of Map-Matching Method with
Different Link Sets

Fig. 4.15 shows that the performance of the proposed method works better
for the complicated high-density road network like local communities and transit
centers. According to the field tests, there are entries to the underground parking
within the city center area and overpass/underpass on the urban arterial and
highway ramp, which impact the accuracy of the method. However, Rep-based
method still outperforms St-matching method in most cases by 5.4% on average.

ST-matching method has better performance in terms of average distance error in

56



City center, highway ramp, and urban arterial. Because the matching process
starts with the identification of the vertical projected candidate points on the links
which are within its match scale. Rep-based method works better in residential

communities and transit centers by 3.83 meters.

The evaluation shows the rep-based method is more suitable for the areas
with high-density road network like residential communities and transit centers,
because the high-density reference point files can help exclude the interference of
the near links. ST-matching method is more suitable for the complicated road
network like overpass, underpass and roundabouts. The temporal analysis can

help find the most suitable link in the partially overlapped digital map.

The path inference is compared with ST-matching method as well in terms of

IARR and PFI. The comparison results are shown in Fig. 4.16.
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Figure 4.16 Accuracy of Path Inference Comparison w.r.t. Sampling Interval

IARR of ST-matching has the descending trend with the higher interval of
the sample, while the rep-based method is increasing. The trends of IARR intends

to be stable for both methods when the sampling interval becomes higher than 60
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seconds, which indicates both methods perform well with high sampling interval
data. The PFI shows the stable trend of ST-matching method. When the sampling
interval turns to 30-second, PFI value of rep-based method is higher than other
sampling intervals, which is because GTFS dataset has more missing or low-
qualified data than the dataset recorded by handheld-devices. In general, the rep-
based method generates more accurate results than ST-matching method for the
same sampling interval. According to the previous literatures, the performance of
ST-matching is better with frequency of 120 second or lower, however, with the
development of the collection and storage technique, data with sampling interval

of 60 seconds or lower is more popular for the future research.

4.5 Summary

In this chapter, a developed reference point-based map-matching method is
introduced, including map-matching process and path inference. The development
is that the reference point files is created and included in the digital network
artificially. The reference points make it quite effective and accurate to match the
GPS points to the correct target links, especially when the sampling interval of
GPS records is high and the quality of the data source is limited. The case study
uses the GTFS dataset provided by City of Edmonton. The matching results show
the method provides over 99.1% of correct link identification and the average
distance error is lower than 5 meters, which indicates the accuracy is acceptable
compared with traditional ST-matching method, which is well-recognized in the

previous literature (Rahmani, 2013). It is possible to reduce the distance error if
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increasing the density of the reference points in the digital network in the future
research. For the path inference, the rep-based method is more suitable for the

data with sampling interval of 30-second or lower.
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CHAPTER 5 INDIVIDUAL BUS
TRAJECTORY PREDICTION MODEL

Map- matching results can construct the GPS sequence on the digital
network, therefore, the vehicle trajectory can be matched to the road network in
ArcGIS, which is the foundation for most trajectory-based transportation
applications. An application of the map-matching results in single trajectory

prediction model is introduced in this chapter.

Transit trajectory prediction is the useful information for both transit users to
plan the trip and for the transit agencies to make the most efficient schedule. With
the provision of the accurate travel time prediction, the transit users can take
advantage of the transit system in the most efficient way and reduce their waiting
time at the stops or stations. Transit trajectory prediction model used in this thesis
is based on known trajectory of transit vehicles that is the results of map-matching
method. The algorithm based on the timestamps and locations of GPS points can
generate the arrival time of the transit vehicles at stops and major intersections.
Data of 1-second sampling interval is collected from field tests used as the ground

truth to evaluate the accuracy of the prediction.

5.1 Transit Vehicle Trajectory Reconstruction

The GPS points illustrate the route of the transit operation. The timestamp
and distance information are available. However, the key point to the travel time

prediction is the delay at the specific traffic nodes, which mainly include
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intersections and stops. Signalized intersections and uncontrolled intersection (i.e.
stop-sign control, yield control, non-control, etc.) will create the control delay and
stop delay. Delay at the stops will be related to the time for the passengers
alighting and boarding. This section focuses on modeling the arrival time at
specific traffic nodes along the transit trajectories. The time-space diagram is

shown like Fig. 5.1.

Vehicle trajectory

GPS#i +1-

xi+.1

Intersection

T

GPS#
x['

v

£ £+

Figure 5.1 Vehicle Trajectory Reconstruction

5.2 Sample Data Integration

Sample data is defined as the dataset connecting the road network with the
traffic condition in this thesis. Given the geometric network structure, it is
assumed that the traffic parameters (travel speed, density) on single link are
constant. The sample data in this thesis is used to describe the traffic condition on

each link, including the arrival time at stops and intersections, travel time on each
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segment and estimated travel speed. The sample data is the key component of

travel time prediction, which is also the focus of the trajectory reconstruction.

The speeds at the intersections and stops are estimated based on the linear
trajectory algorithm. The reconstructed trajectory is truncated to pieces at

intersections, stops and GPS points.

Given that the transit vehicles are more likely to remain the fixed route and
speed when there is no disturb during the operation, it is reasonable to assume that

the speed between adjacent GPS point and traffic node is constant.

The timestamps of two adjacent, ith and (i + 1)th, GPS points are expressed
as t} and t5*1, A is denoted as the time interval between two adjacent GPS points.
The distances between the GPS points and the starting point of the trajectory are
denoted as x* and x*! respectively. x/(t) denotes as the distance between the
traffic node j and the starting point of the corridor at time t. If there is a traffic
node in between these two GPS points like shown in Fig. 5.2, the arrival time at

intersection #1 t/(x) can be described as Eq. 5.1.

. X)) —xt .
t’ (X) = té + m ' (t£+1 - ti) (Eq 51)

x/ (t) denotes as the distance between the traffic node j and the starting point
of the trajectory. The portion of the vehicle traveled is the same as the travel time
portion on the piecewise trajectory. Therefore, the travel time on segments i_j and

Jj_(i + 1) can be expressed like Eq. 5.2-5.3 respectively.

TT, j = t/(x) — t} (Eq.5.2)

62



TTj 41y = ta" " — t/ (x) (Eq.5.3)
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Figure 5.2 Piecewise Trajectory Reconstruction (Map-Matching Results)

If there are more than one traffic nodes between two adjacent GPS points, the

first traffic node will be treated as the first estimator for the second traffic node,

like shown in Fig. 5.3.

15 pv® ”“'-

T = t*1(x)
A GPS#i+1 Stop. #k X =xti(y) CGPS#i+2
' ! 4 ._—"*‘W -
T = titt T=tk(x) Int#+1 =t
X = it X = 2%(t) X = !t

SKYRATTLER Ke

Figure 5.3 Piecewise Trajectory Reconstruction - Multi-nodes with Low Frequency Data

In Fig. 5.3, there is one stop k and one intersection (j + 1) between GPS

(i + 1) and (i + 2). The arrival time at the stop k can be described using Eq. 5.4.

xk(t) _ xi+1

tk(x) = t£+1 + W (tki-z - t£+1) (Eq.5.4)
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For intersection No. (j + 1), the estimation of the arrival time will be based

on the arrival time at stop k and GPS No. (i + 2).

X0 = x50
xit2 — xk(t)

H*1(x) = t*(x) + (2 - t5()) (Eq.5.5)

The travel time on these three segments can be expressed as equation set 5.6.

TT(41y, = tF(x) = t5*!
TT,,, = /*1(x) — t*(x) (Eq.5.6)

TTGr0i, = B = 71(%)
5.3 Individual Trajectory Prediction Model

Multi-interval prediction concept was first proposed by Chang et. al. in 2010.
(Chang, Park, Lee, Lee, & Baek, 2010). The predicted results contain series of
travel time of the future trips. The multi-interval travel time prediction model is
applied for single trajectory prediction in this thesis. The trips happen in five
weekdays are used to conduct the multi-interval prediction model. The departure
frequency of the transit vehicles can be retrieved from the schedule on city
website. The travel time of the about-to-departure bus at present on the first link
can be predicted based on the historical data of previous buses scheduled at the
same departure time in previous days. According to the basic principle of the
model, the weight of the more recent day is supposed to have more positive
impact on the accurate prediction. Since the traffic condition is similar during the
short term, the travel time of the previous trips in the same day is considered as

the current data. And the historical data is used to calibrate the current data. The
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historical travel time can provide the general pattern of the travel time during
multi time interval. It is reasonable to assume that the road condition and traffic
situation on the same link are similar during the continuously time period. The
main data resource is historical transit data during weekdays and the high-
frequency field data collected by the handheld GPS device. Fig. 5.4 shows the
concept of the prediction model. The current trip is about to leave at present, and
completed trips happen in the previous time with different time interval from the
current trip. The future trip is to be predicted based on both current trips and

completed trips.

Time(s}
-
=
g
5
L=

I_,_/_l_ e Current trip (trip ongoing)
Completed trips (sample trips)

_—//__—j

Riverbend Road & Heath Road Calgary Trail & 23 Avenue
Bus Slop

Figure 5.4 Temporal-Spatial Diagram of 23 Ave. on May 12.

There are three elements in the model, including current data, historical data,

and weight measurement. The current data is the travel time information of the
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previous trips happen at the same day. Historical data is the completed trips of the
vehicles departure at the same time in the previous days, in which the traffic
situation is considered similar. The historical data is used to calibrate the current
data. Weight measurement is used to identify the impact of historical data within

multi time interval on the current data.
The departure time of the transit vehicles is fixed during the time period 7
with interval of /. The number of vehicles departure during 7 in one day is T/ f-

To predict the travel time of the future trip on link p happen in day #, the

historical data in day [1,2, ..., (n — 1)] on link p is shown in Table. 5.1.

Table 5.1 Historical Data Integration

Day (i) Time period Departure time TripID Travel time

P 1 1 1
1 ‘I"l fl Vi ty
2 2 2
fi V:I. ty
T/f T/f T/f
f v t]
¥ 1 1 1
2 T; % Vi iz
2 2 2
’ V3 ty
;,:’f T/F T/f
f v, t;
1
n—1 T, , L, Va-1 tn-1
z 2
fftz-l Vn—l t:z—l
T/f Tir Tif
fn—i Vft-l L1

The travel time data of current trips on link p on day » has the similar format

to the historical data like the vector shown in Eq. 5.7.
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[t}l, t2, .., t,Tl/f] (Eq.5.7)
The matched departure time can be shown like in Eq. 5.8.

£ £ £ (Eq.5.8)

The historical and current travel time data can be obtained from sample data

integration process mentioned in last section.

The weight measurement is based on the Euclidean distance, which is a
virtual distance between the current status and the historical status of different
days respectively, representing the relevance between two statuses. It is
reasonable to assume that if the historical status is closer to the current status,
more weight should be given to this historical status. The distance is computed as

Eq. 5.9.

2
DP = \/(t}l —t2 4 (t,f/f — t.T/f) (Eq.5.9)

l

Average value of the historical data is used as the prediction base, which is
calibrated by three elements mentioned above. A parameter w; stands for the time
series is used to calibrate the impacts of historical data on current status.

. .
— X (e t)

tP = T/F (Eq.5.10)

The inverse of the distance input is used in the forecast function as the weight

measurements, which has been evident to outperform the direct average of the
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dependent variables (Smith, Williams, & Oswald, 2002). The predicted travel
time of vehicle (T/f + 1) in day n on link p can be expressed by Eq. 5.11.

i=1 Dp

T/f+1 _ i
t =—" (Eq.5.11)
" i C o)
L

5.4 Case Study

A case study is conducted to evaluate the validation and accuracy of the
travel time prediction method. The tested site is 23" Avenue in South Edmonton.
The corridor from Terwillegar Drive (in the west) to the Gateway Boulevard (in

the east) is an essential arterial covered by several major transit route.

5.4.1 Tested Corridor Description

According to the GIS data, there are 15 signalized intersections and 16 stops
along the eastbound 23 Avenue. Among the stops, there are two transit centers
including Century Park transit center which is located off the 23 avenue, and
Legar transit center. The specific locations of stops and intersections in WGS-84

coordinate system and the distances in between are shown in Table 5.2-5.5.

In TABLE 5.2, the field of INT _ID is the sequence number of the
intersection along the corridor. Intersection name shows the intersecting roads.
IF_SIG shows if the intersection is signalized. Flag 1 means the intersection is

signalized, and flag 0 means the intersection is not signalized.
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Table 5.2 Intersection Location

Intersection Location

INT Seq Intersection_name IF_SIG Int_lat Int_lon
0 Starting point 0 53.460794 -113.593996
1 23Ave.&Terwillegar Dr. 1 53.457709 -113.58999
2 23Ave.&Terwillegar Dr. 1 53.457228 -113.5883638
3 23Ave.& legar Rd. 1 53.455474 -113.582431
Legar transit center
1 23Ave.& legar gate 1 53.454009 -113.573713
5 23Ave.& Rabit Hill Rd. 1 53.453965 -113.565747
6 23Ave.& Hodgson Way 1 53.453567 -113.555254
7 23Ave.& 11395t. 1 53.453834 -113.53425
3 234ve.& 1135t. 1 53.453831 -113.530553
9 23Ave.& Saddleback Rd. 1 53.453814 -113.525647
Century Park transit center
10 23Ave. & 1115t. 1 53.453821 -113.516607
11 23Ave.& 110st. 1 53.4533826 -113.51322
12 23Ave.& 1055t. 1 53.45382 -113.505183
13 23Ave.& 1055t. 1 53.4533838 -113.501593
14 23Ave.& Calgary Trail 1 53.453556 -113.493545

Table 5.3 Distance between Adjacent Intersections

Link_Seq Length (M)

From_INT

To INT
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Table 5.3 shows the distance between two adjacent intersections. The field of

Link ID is the sequence number of the connection between two adjacent

intersections. From INT and To INT are the sequence number of the starting and

ending intersections respectively. The summary amount of the length is the total

length of the tested corridor.
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Figure 5.5 Illustration of Intersection Locations
Table 5.4 Stop Location
Stop Location
Stop_Seq stop_name IF_TC stop_lat stop_lon
0 Starting Point 0 53.460794 -113.593996
1 Riverbend Road & Heath Road 5 0 53.46048304 -113.5938232
2 Haddow Drive & Riverbend Road 0 53.45867657  -113.539191%5
3 Legar Transit Centre 1 53.4545475 -113.5804514
4 Tegler Gate & 23 Avenue 0 53.433598468 -113.5730102
5 Rabbit Hill Road & 23 Avenue 0 53.45396844 -113.5649155
6 Magrath Road & 23 Avenue 0 5345356699  -113.3600423
7 Magrath Road & 23 Avenue 0 53.45396715 -113.5587047
8 115 Street & 23 Avenue 0 53.45383275 -113.5333987
9 118 Street & 23 Avenue 0 33.45382538 -113.5298698
10 Saddleback Road & 23 Avenue 0 53.45382982 -113.5248035
11 Century Park Transit center 1 53.45779333 -113.5157402
12 111 Street & 23 Avenue 0 53.43382054 -113.5151387
13 110 Street & 23 Avenue 0 53.45381877 -113.5124478
14 105 Street & 23 Avenue 0 53.45382751 -113.5085557
15 105 Street & 23 Avenue 0 53.45382648 -113.5008778
16 Calgary Trail & 23 Avenue 0 53.45355775 -113.4536281
1] Ending point (Int. #14) 0 53.453556 -113.493545
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In the Table 5.4, Stop ID is the sequence number of the stop along the tested
corridor. IF_TC shows if the stop is the transit center. Flag 1 shows the stop is the

transit center, while flag O shows it is not the transit center.

In TABLE 5.5, Link Seq is the sequence number of the connection between
two adjacent stops. From_Stop and To_Stop are the sequence number of the

starting and ending stops respectively.
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3
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3

Figure 5.6 Illustration of Bus-Stop Locations

Table 5.5 Distance between Adjacent Stops

Link_Seq Length (M) From_Stop To Stop
0 176.20 o 1
1 239.37 1 2
2 870.11 2 3
3 510.92 3 4
a4 537.77 4 5
5 323.70 5 6
[ 88.85 5] 7
7 1808.52 7 g
8 234.40 8 9
9 3360.64 ] 10
10 1022.05 10 11
11 701.43 11 12
12 17897 12 13
13 258.55 13 14
14 510.05 14 15
15 483.41 15 16
16 5.78 16 o]
sumM 8286.56 - -
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5.4.2 Test Results and Evaluation

Data used in this case was retrieved from May 9 (Mon.) to May 13 (Fri.),
2016 in GTEFS dataset. No. 23 is the route from West Edmonton Mall to Mill
Wood Transit Center, via 23™ Avenue (corridor: Legar Transit center - Century
park Transit center). The eastbound trips are selected and the corridor contains 8
links. Trips on Monday to Thursday are considered as the historical data, while

the trips on Friday are considered as the current data.

Three trips scheduled to departure from the original stop between 10.10 am

and 11.10 every day from Monday to Thursday are used as the historical data,

while the three trips happened between 9.10 am and 10.10 am on Friday are

considered as the current data. To predict the travel time between each two

adjacent bus-stops, first is to estimate the travel time of the historical trips on the

path using the method in section 5.2. The estimated results of travel time on each

link are stored in the travel time vector {tt,, tt,, ..., ttg}.

Table 5.6 Introduction to Travel Time Vector

Travel time From_Stop To_Stop Distance (m)
tt; Legar Transit Centre Tegler Gate & 23 Avenue >10.52
tty Tegler Gate & 23 Avenue Rabbit Hill Road & 23 Avenue 37.77

Magrath Road & 23 Avenue, 323.70
Lty Rabbit Hill Road & 23 Avenue &
Woest
- Magrath Road & 23 Avenue, Magrath Road & 23 Avenue, 82.85
4 West East
M th Road & 23 A N .
ttg agrath o2 VENUS 119 street & 23 Avenue 1808.52
East
ttg 119 Street & 23 Avenue 118 Street & 23 Avenue 234.40
Saddleback Road & 23
ti7 118 Street & 23 Avenue 336.64
Avenue
Saddleback Road & 23
ttg addieback roa Century Park Transit center 1022.03

Avenue
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Table 5.7 Travel Time Information of GTFS data

Time Sch. departure

Day (i) period time Trip ID Travel time vector (Sec.)
Mon. May 9, 10-10- 10:10 11229247 {139,99,40,22,160,23,38,89}
2016 11.10 am 10: 40 11229248 {167,68,33,12,117,18,46,96}
11:10 11229249 {101,52,32,62,159,23,72,123}
| B 10: 10 11230345 {136.?7.42,20.151.23.30.86}
]i'ae'zill? 11101'30' {10:40 11230346 {169,72,29,15,120,19,37,84}
: -~ am 11:10 11230347 {94,47,39,56,159,26,54,107}
- 10: 10 11231433 {116,110,52,19,140,16,4—0,95}
‘Wed. May 10:10-
1; 201? 1110 amm {10:40 11231434 {162,70,35,17,134,22,48,103}
’ ) 11:10 11231435 {99,5?.42.41,164,28,49,92}
] i 10: 10 11232529 {120,97,45,20,157,26,40,87}
T?;ri[?ll;} 11101-;2:(1 {10:40 11232530 {173,68,33,9,114,18,46,96)
’ : 11:10 11232531 {98,42,35,58,167,15,75,116)}
(current) 9.10-10.10 09: 10 11233247 {156,69,33,21,142,12,30,91}
Fri. May 13, i am : {09; 40 11233248 {104.56.24,21.165.3 ?.35,81}
2016 10:10 11233249 {100,122,56,17,138,15,50,97}
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Figure 5.7 Estimation Results of Travel Time on Links

The travel time vectors shown in Table 5.7 is the estimated travel time on
each link of the entire corridor. The travel time on each link with average standard
variance of 16.17 seconds, which is resulted from the signal control strategy,
variable traffic situation and other traffic accidents. The model input are
concluded in the Table 5.8, including Euclidean distance and historical weighted

travel time.
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Table 5.8 Prediction Model Input Calculation

Link_Seq 1 2 3 4 5 6 7 8
M"%M‘"‘y 6526 7710 2657 4590 5540 2337 2587 3008

Tue. May 5 . -
Fuclidean 10 6827 7710 1987 3947 5047 2648 447 1158

Distance (Df) Wed. May

1 7046 7812 2604 2441 4051 2025 1643 2291

Th“‘l',MaY 7785 8560 2581 4273 6056 2360 2909 2454

M"%M‘"‘y 13567 73.00 3500 3200 14533 2133 5200 10267

Weighted T““*i é‘da}' 133.00 6533 3667 3033 14333 2433 4033 9233
Historical

Travel Time () Wedl'lM‘“ 12567 7900 4300 2567 14600 2200 4567 9667

Th“‘l',MaY 13033 6900 3767 2900 14600 1967 5367 9967

The predicted results of the trips happen in Fri. May 12 starting at 10.40 am
is shown in Fig. 5.8, along with the model inputs of all trips on each link. The
predicted results remain the consistency with the trend of weighted historical
travel time. The weighted travel times of all trips happen on link 1 are lower than
140 seconds, but the distance and weighted travel time have been proven to be
closer and higher with the time proceeding respectively, which means the travel
time should be increasing during this week. The predicted result on link 1 is 145
seconds. The trend is proven to be true according to the ground truth, which is

167 seconds, higher than all the historical records.

The prediction results shown in Fig. 5.8 is based on fourth-interval model
(n = 5). To evaluate different interval prediction model, other n values are
introduced to test the similarity to the ground truth. The predicted results based on
RP map-matching method are compared with the results generated by ST-
matching method in Fig. 5.9, and the results show that the RP method is closer to

the ground truth, especially for the long-distance links like link 1 and link 5.
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Figure 5.8 Prediction Results of the Trip (at 10.40 AM. May 12, 2016)
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Figure 5.9 Predicted Result Comparison between Both Map-Matching Methods

Fig. 5.10 shows the 4-interval prediction result has the closest distance to the
zero line, which means the prediction is closest to the ground truth. Because 4-
interval model takes more historical data into consideration, avoiding the extreme
situations. 3-interval prediction results are next closest to the zero line. 2-interval
and single-interval prediction results are highly impacted by the extreme data and
cannot combine the historical results in different days. The error is due to the

unpredictable traffic accidents. (Chang, Park, Lee, Lee, & Baek, 2010).
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Figure 5.10 Link Prediction Accuracy (%) w.r.t. Multi-intervals

Based on travel time predicted results on each link, the trajectory of the
predicted trip can be sketched in temporal-spatial diagram (Fig. 5.11). T-test is
conducted to evaluate the relevance between the ground truth and predicted
results. The returned value indicates that t-test does not reject the null hypothesis
at the 5% significance level (Fig. 5.12).
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Figure 5.11 Trajectory Predicted Results (May 13, scheduled at 10.10 AM)
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5.5 Summary

This chapter presents a multi-interval travel time prediction model to test the
impact of map-matching results on accuracy of the model performance. The
model inputs integrate the different impacts of multi interval historical data. The
raw data is processed using the map-matching method proposed and evaluated in
chapter 4. The prediction is based on the estimation of the historical travel time
using the RP-based map-matching method proposed in Chapter 4. The predicted
results indicate the better performance than using ST-matching method. The
prediction results are compared with the ground truth which is the high frequency
and high-quality GPS data collected by handheld GPS device. The T-test shows
that the results of the model are acceptable for the research. The evaluation results
also contain the comparison in terms of different time-intervals. Multi-interval

model generates more accuracy predicted results than single interval model.

77



CHAPTER 6 CONCLUSION AND
RECOMMENDATION FOR FUTURE WORK

6.1 Conclusion

Map-matching methods are receiving increasing attention because they are
the foundation data input for the trajectory-based transportation applications; i.e.
the reliability of the matching results directly affect the accuracy of the applied
models, like prediction models, estimation models. This thesis focuses on an
improved reference point-based map-matching method. Compared with
traditional methods, the improved method coverts the point-to-curve match to the
point-to-point match. The conversion excludes the interference of the curved road
alignment on the match results. The distance calculation and projection is more
accurate and easier for point-to-point than point-to-curve since the direction
information can not directly obtained from raw GPS data. The major contributions

of this thesis include the follows.

e A method is created to generate the reference point file in the original
digital map using ArcGIS. The file includes the geometric
information of each reference point and the matching relationship
between the reference point file and original link file.

e This thesis uses a new way to narrow down the matching scale by
dividing the digital map into square grids. Traditional methods search
the candidate links in an ellipse or circle with predefined axis length

or radius. It cannot be sure if the target link is in this range. The grids
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defined in this thesis include all the reference points that may matched
to the GPS points. The matching process is conducted after the
identifying to which grid the GPS belongs.

e An algorithm is developed to realize the improved map-matching
method including locating the GPS points in the grids, distance and
direction comparison between reference points and GPS points. The
algorithm is executed using real field GPS data collected from five
traffic environment. The matching results show the algorithm is
compatible with different types of road networks. The proposed
method is proven to be outperforming a traditional spatial-temporal
matching method by a case study conducted on 23" Avenue corridor,
Edmonton. A travel time prediction model is used to prove the

prediction improvement.

6.2 Recommendations for Future Work

The proposed map-matching method depends highly on the digital map
information, including the original road network and the newly added files. There

are still some opportunities for future research including the follows.

e This thesis generates the reference points using 20 meters as the
distance in between to limit the amount of reference points in each
grid. In the future work, it is possible to evaluate the impact of the

distance between reference points on the matching results.
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This thesis uses the GPS data from two sources, including GTFS
dataset and handheld GPS collection devices. The quality of GPS data
is not testified. The future work can be related to the impact of the
GPS quality on the matching results.

Spatial-temporal matching method is used as the benchmark in this
thesis. In the future work, more traditional map-matching method can
be compared with the proposed method.

One travel time prediction model is the only example to evaluate the
improvement of the proposed map-matching method. In the future
work, more applications can be conducted based on the matching

results from proposed method to see if the accuracy is better.
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