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Abstract 

For trajectory-based travel time prediction model, map matching shows its 

excellence in terms of GPS data processing by providing an efficient technique to 

generate the vehicle trajectory on the digital map. The transit vehicle trajectory 

contains essential information about arrival time at bus stops and delay at major 

intersections. An understanding of reliable map-matching method is necessary for 

the development of the real-time prediction result accuracy. This thesis provides 

an enhanced map-matching method, which has better performance in terms of 

accuracy of path inference and link identification, compared with Spatial-

temporal matching method, a well-recognized map-matching method used in 

previous literature. Compared with the existing map-matching method, a 

reference point file is added to original digital map, converting the point-to-curve 

match to point-to-point match. The map is also divided into equal digital grids by 

latitude and longitude to narrow down the matching scale. The feasibility and the 

accuracy of the method are evaluated in different traffic environment using real 

field geometric information and GPS data. The last part of the thesis is the 

comparison analysis between single transit trajectory prediction results derived 

from from both map-matching methods. The field test is conducted on 23rd 

Avenue corridor from Legar transit center to Century Park transit center in 

Edmonton.  
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CHAPTER 1 INTRODUCTION 

This chapter presents the background of map-matching method and its 

application in trajectory prediction model. In this part, the author also describe the 

research motivation, objectives and structure of the thesis. 

1.1 Background 

The increasing ownership of private vehicles over the last 30 years simulates 

the transformation from public transit to private trips, causing severe traffic 

problems. To increase the attraction of the public transit, travel time is 

increasingly critical for Advanced Traveler Information Systems (ATISs). Such 

trajectory-based travel time prediction models regularly require the map-matching 

results as the fundamental data input. With the development of the GPS collection 

techniques, transit agencies equip the transit vehicles and taxis with GPS 

transmitters and receivers to collect the real-time location for better management 

and services. However, the GPS trajectories cannot be directly matched to the 

digital road network due to the different link width and misreported misreported 

data. The accuracy of the map-matching results directly affects the prediction 

results. 

The philosophy of map-matching is to identify the location and the trajectory 

that matches the digital map. The decision of link identification can be made 

based on the distance, speed, direction of GPS data, or other effective methods 

that can infer the precise location of the GPS on the digital map. Most of existing 
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map-matching methods are developed with the GPS data with insufficient quality 

and the sampling intervals of collection is higher than 60 seconds. The methods 

can generate the results that which road the GPS points belong to, but there are 

still limitations to the precise locations. The limitations also include the 

implementation problems. Either the method is cost-inefficient or the method is 

not modifiable according to different traffic environment.  

1.2 Problem Statement and Research Motivation 

This thesis focuses on a developed reference point-based map-matching 

method. The key point is the link identification and distance calculation to 

determine the precise locations of the GPS points on the digital network. Fig. 1.1 

shows the main idea of the map-matching problem. Fig. 1.1(a) shows the real road 

network with the GPS record. However, the GPS point does not belong to any 

links in the citywide because the width of the real links cannot be reflected on the 

digital map, therefore, no available information of the traffic status can be 

acquired through the GPS data. 

 

Figure 1.1 (a) Set of Actual Road Condition; (b) Set of Estimated Arcs and Matched Results 



3 

 

Although, there are plenty of map-matching methods nowadays, the 

application is still limited by the data format and traffic conditions. Some 

software can only recognize certain format of the input data. Each method has its 

preferable road network to generate the accurate results.  

A travel time prediction model is proposed to test the application of the 

proposed map-matching method. The model is established based on transit data 

(GTFS data) within different time intervals to the current state. The development 

is that the proposed model combines the varying impacts of historical data on the 

current data to obtain the predicted results more close to the real traffic status.  

1.3 Research Objectives 

This thesis looks into developing map-matching method with three angles. 

There are three specific objectives of this thesis: 

a. Establish the dataset including reference point file in the digital map and 

integrate the GPS data input; 

b. Develop the map-matching algorithm and compare its accuracy with 

spatial-temporal matching method. The case study is conducted in 

different road conditions 

c. Analysis of the performance of the transit travel time prediction model 

using the matching results from both methods. 
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1.4 Structure of thesis 

The structure of this thesis is as follows: 

Chapter 1 presents the introduction of the map-matching methods and travel 

time prediction background and the main problem discussed in this thesis.  

Chapter 2 shows the literature review about the existing map-matching 

methods and travel time prediction models. The limitations of existing methods 

are also discussed.  

Chapter 3 describes the data format used in this thesis, which is the input of 

the map-matching algorithm, including digital map information and GTFS data.  

Chapter 4 presents a RP-based map matching with a reference point file in 

the digital map. The accuracy of the map-matching results is compared with ST-

matching method. The comparison shows that RP-based map-matching method 

outperforms the ST-matching method in terms of link identification accuracy and 

path inference. 

Chapter 5 introduces the processing improvement for single trajectory 

prediction model based on transit GPS data of different sampling intervals.  

Chapter 6 is the conclusion and contribution summary reached in this thesis 

and the proposed future work.  
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CHAPTER 2 LITERATURE REVIEW 

This chapter reviews the previous literature about existing map-matching 

methods and travel time prediction model that are widely used. 

2.1 Review on Map Matching Method 

Map-matching process identifies the proper link sequence based on the 

collected positioning data and roadway centerlines in the digital map (Mohammed 

A. Quddus, 2007). Most existing researches about map matching have focused on 

both the user's location and the map that is known for a high degree of accuracy 

(Christopher E. White, 2000) and can be categorized into four groups listed 

below. 

The map matching is considered as the search problem and simply integrates 

the geometric information and features of the digital map. Certain amount of 

researches match the GPS locations to the “nearest” given point, also referred as 

range query (Maurer, 1980). The method is easily implemented and efficient to 

operate. However, the connection between the digital links is not considered and 

the matching results highly rely on the layout of the digital nodes. Normally, 

intersections and major turning points are treated as the nodes. Links with more 

digital nodes are more likely to be matched to (Christopher E. White, 2000).  

The map-matching problem can be considered as statistical model. The 

analysis requires the definition of an elliptical or rectangular confidence region 

around a fixed position obtained from a navigation sensor (Mohammed A. 
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Quddus, 2007). Each link within this range is given a probability of matching. 

The path with the highest probability will be chosen as the matched results. 

Honey et al. first introduced this model to match the positions for a position 

sensor and a map (Honey, 1989). Ochieng et al. (2004) develops an optimal 

estimation algorithm to determine the matched locations of users on a link and 

evaluates the impacting factors of GPS data on the accuracy of matching process 

(Ochieng, 2004).  

Connectivity and contiguity of the links are helpful to find the link sequence, 

therefore, the topological analysis is developed. Greenfeld et. al. proposes a 

weighted topological method based on analysis of the digital map and position 

information of users (Greenfeld, 2002). First is to find the possible path and use 

the probability analysis to find the most likely path. 

Other map matching methods include those which use sophisticated concepts. 

Syed et. al. develops a map-matching method based on the fuzzy logic theory. 

The results show that fuzzy logic can be effectively used for map matching in 

urban canyons because of its ability to generate precise output from noisy (error 

prone) navigation input obtained from GPS (Syed, 2004).  

Obradovic et. al proposes a two-step map-matching approach to integrate the 

sensor-collected data, GPS data and digital map information. The first step is to 

update the user-movement model using installed odometer and GPS signal based 

on the Kalman filter.Second step is to compare the candidate trajectories with 

improved user-movement (from step 1) and find the best match (Obradovic, 

2006).  
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The limitations of existing map-matching methods include following. The 

usefulness of map-matching method highly depends on the accuracy of GPS point 

and digital map like the following situations in Fig. 2.1. 

 

Figure 2.1 Hypothetical road network 

In scenario 1, there are three lanes in eastbound of the arterial and one lane 

for each direction of the collector road. Obviously, the GPS point probably has 

shorter distance to the collector road in the digital map. In this case, GPS point 

will be matched to the collector road. In this case, speed information of the GPS 

point can distinguish the interference. In scenario 2, it is hard to determine if the 

probe vehicle has passed point A or not. Direction of the GPS can help determine 

the right match. When the vehicle is stopping before the signal line, the GPS will 

have slight off the current road even if it is not actually moving like shown in 

scenario 3. In this case, it is hard to match all the points to the same location. The 

reference point file can help collect these points to the same point. Besides the 

scenario mentioned in Fig. 2.1, other situations like overpass, underpass, turning 

restriction should be taken into consideration to increase the accuracy of map-

matching method.  
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The low accuracy of the GPS data is another problem with path inference. 

For the road network like Fig. 2.2(a), the GPS receiver is operating on two 

parallel roads with distance of 23.4 meters in between. The accuracy of the GPS 

points is within the rough range of 12 meters, which results in the confusion about 

what the route of the vehicle is like.  

 

Figure 2.2 (a) False Identification Example; (b) False Identification Results. 

The map-matching is usually conducted for the further research on the trip 

information on the entire path or corridor. The matching results are the basic 

evidence to show the operation condition of the vehicles on the researched links, 

paths or corridors. Existing map-matching methods are mostly rely on the 

matching consistency of the direction and the shortest distance between the GPS 

points and the links in the digital map. Normally, the connectivity between 

adjacent links and adjacent GPS points is not taken into consideration, therefore, 

each matching result is independent from the others. The results for the single trip 

may not be able to maintain the consistency. Fig. 2.2(b) shows the transit is 

arriving at the transit center. Dark purples are the GPS records, while the blues are 

correct matched results. There are two mismatched results marked as the red 

spots. If considering the consistency of the links and GPS points, this kind of 

mistake can be avoided.  
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Traditional map-matching method focuses on finding the links with shortest 

distance and smallest direction difference from the GPS points. However, the 

digital network contains a large amount of the links, it would take long processing 

time to compare the GPS point with every links in the network. Therefore, the 

digital map is simplified to save the processing time in the traditional methods, 

which may result in the inaccurate matched results.  

2.2 Review on Travel Time Prediction Model 

Advanced Public Transportation Systems (APTS) related technologies are 

widely expanding, for instance global positioning systems (GPS), automatic 

vehicle location (AVL) systems (AVL), and automatic passenger counters 

systems (APC), advanced traveler information system (ATIS). Accurate transit 

arrival and departure information should be provided to passengers for arranging 

their trip plan and to transit operators to properly arrange the transfers and 

schedule plan (Kalaputapu & Demetsky, 1995; Khan & Abdelfattah, 1998; Chien, 

Ding, & Wei, 2002). Therefore, it is vital to conduct the accurate prediction of 

transit travel time. A variety of prediction models mentioned in previous 

researches are reviewed. 

2.2.1 Historical data model 

Historical data models assume that travel time of predicted trip is related to 

the previous trips and the traffic condition of the links remain consistent. It is 

assumed by Chen et. al. that the traffic condition within the citywide changed 

cyclically and the ratio of current and previous travel time remained stable (Furth, 
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Brendon, Theo, & Strathman, 2003). The prediction model can be calibrated 

based on the real-time transit data. However, the model is based on massive 

historical data and exclusive to certain area. The hybrid model is presented to 

combine the historical data and recent data by Gong et. al. (Gong, Liu, & Zhang, 

2013). The higher weight is given to the more recent is data. This model is closer 

to the real traffic condition, but the distribution of the weight has linear 

relationship with the time series instead of the traffic condition.  

2.2.2 Regression model 

The regression model takes multiple variables (i.e. passenger number, stop 

number, link length, delay, etc.) related with the traffic condition build the 

regression function. The passenger number and delay at the stops are obtained 

based on the APC (Automatic Passenger Counters) and built the regression model 

with variables of distance, control delay, stops number and trip starting time 

(Patnaik, Chien, & Bladikas, 2004). Fuzzy regression is used to build the travel 

time prediction model and evaluated the model using the transit data from 

Shenzhen, China (Yang, Bao, & Zhu, 2004). 

Regression model can minimize the effects of varying traffic condition on the 

predicted results. However, the variables in the model are supposed to be 

independent from the others (or the relevance is lower than the preset threshold), 

which cannot be guaranteed in the real-time situation.  
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2.2.3 Time series model 

Time series model is an extension of historical data model based on the 

pattern of changing traffic flow. The cyclical characteristics of the traffic flow are 

captured to establish the nonlinear regression model to predict the travel time 

(Sherif & Al-Deek, 2002). The delay at the bus stops and control delay at the 

intersections can be considered into travel time prediction as well (Zhu, Ma, Ma, 

& Li, 2011). 

The accuracy of time series model is highly related to the similarity between 

current traffic situation and historical situation. If the traffic condition experiences 

significant changes (e.x. traffic flow, signal control plan, priority plan), the model 

will more likely create errors in prediction. 

2.2.4 Kalman-filter model 

Kalman filter model is to solve linear filter problem of discrete data based on 

recursion method. Shalaby and Farhan collected the AVL and APC data from 

transit vehicles in Toronto, and applied Kalman filter to build the prediction 

model. Data from the first four days was used as the model training, and data 

from the following day was used as the test (Shalaby & Farhan, 2003). Wang et al 

improved the adaptability of the Kalman filter model by adding a “forgotten 

factor” to the procedure to restrain the influence of the old data on the model 

(Wang, Wang, Yang, & Gao, 2012). Kalman filter model requires less historical 

data than other methods and more reliable in short-term prediction. However, the 

model needs meeting higher standard of the equipment of data collecting and 

more calculation. The results are not reliable in long-term prediction. 
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2.2.5 Artificial neural network model (ANN Model) 

ANN model emulates the learning process of human brain, which is good at 

pattern recognition, prediction, classification, etc. ANN models are calibrated 

using two steps, including training and testing . Gurmu et al. input the GPS data 

as the only data resource to the dynamic travel time prediction ANN model and 

then to predict the arrival time. Predicted results indicated that the prediction 

accuracy and robustness of this model outperformed the historical data-based 

models in terms of predicting the travel time between current location and certain 

downstream bus stop (Gurmu & Fan, 2014). 

2.2.6 Support vector machine model 

Traditionally, many studies focus on the application of SVM to document 

classification and pattern recognition (Jeong & Rilett, 1999). Recently, with the 

application of SVM to time-series forecasting, called support vector regression 

(SVR) shown many breakthroughs and plausible performance, Chun-Hsin Wu et 

al. used SVR to predict travel time for highway users, which demonstrated that 

SVR was applicable to travel-time prediction and outperformed many previous 

methods (Wu, Ho, & Lee, 2004). 

2.3 Summary of literature review 

Map-matching methods can be categorized in to four groups based on the 

research angle. Geography-based methods are easy and efficient to be 

implemented. When the road network becomes complicated and diversified, the 

method is more likely to lose the accuracy. The accuracy of probability-based 
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model is highly depended on the decision of confidential region, which is hard to 

determine, especially when navigation sensor is influenced by external factors. 

Topological method considers the connection within the road network. And some 

other novel technology for map-matching process. The problems with the existing 

map-matching methods are discussed in this chapter, and the solutions to these 

problems are the focus of the proposed method in this thesis.  

Travel time prediction models are also reviewed in this chapter. Historical 

data model, regression model, and Kalman filter model are empirical methods the 

shortcomings of which is highly influenced by data quality and external factors. 

For instance, the accuracy of the regression model requires the independence of 

each variables, however, most variables are related to others in real traffic 

environment. The historical data model requires the stable traffic status, which is 

difficult to maintain in the real traffic environment. With the development of the 

data-collecting systems and ITS systems, numerous real-time travel time data is 

accessible, especially for the transit vehicles. Edmonton transit system (ETS) 

equips the transit vehicles with GPS transmitters and receivers, which makes the 

real-time locations of transit are available to both fleet managers and passengers.  
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CHAPTER 3 TRANSIT PROBE DATA 

DESCRIPTION 

The data input used in following chapters contains the digital road network 

information and the transit GPS information. The GIS information from the 

digital map are processed in ArcGIS, including distance, direction, coordination, 

alignment, etc. Transit data is collected from GTFS public data resource.  

Digital map information for map-matching mainly contains the information 

of the distance and direction of the road segments. Under special circumstances, 

like overpass, underpass and local minor roads, the recognition can be 

mismatched. In this thesis, the concept of reference points is introduced and 

generated using software to be considered as the main measurement of the GPS 

data to diminish the error that may happen during the matching process. The 

example data used in the following chapters and the relevant explanations can be 

found in the Fig.3.1-3.9.  

The data used in this thesis was collected from the test site of Edmonton, 

capital city of Canadian province Alberta. Fig. 3.1 shows the digital road network 

within the whole city scale. GPS data contains all the routes of transit vehicles 

equipped with GPS transmitters and receivers, covering the arterials in the urban 

municipality scale.  
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3.1 GTFS Data 

GTFS is short for General Transit Feed Specification, which is the definition 

of a common format for public transportation schedules and associated 

geographic information (Google, Static Transit, 2015). The sharing information 

contained in GTFS is in format of a series of text files with different fields 

separated by comma (Google, General Transit Feed Specification Reference, 

2012). GTFS data obtained from Edmonton open data is used as GPS input in this 

chapter. The available data contains two datasets in terms of trip update and 

vehicle position.  

 

Figure 3.1 Digital Road Network_City of Edmonton (2016) 
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Each trip is made of a set of GPS points, which is the basic unit for map-

matching. The trip update information contains the following fields like shown in 

Fig. 3.2. Following terminology and notification of fields are explained for further 

use.  

 

Figure 3.2 Trip Update Information City of Edmonton, 2016 

 Field 1: Trip ID: A trip identification, which is a sequence of two of 

more stops occurring during the specific time period.  

 Field 2: Route ID: The number of the bus route. Note: the route ID 

may not exist in current bus operation schedule. 

 Field 3: Vehicle ID: A user-visible and unique identification of the 

vehicle, which corresponds to system-internal vehicle ID. 

 Field 4: Vehicle Label: A unique identifier for transit vehicles in 

internal system. 

 Field 5: Start Date: The scheduled start date of the trip instance. This 

field must be provided to disambiguate trips that are so late as to 

collide with a scheduled trip on a next day. 

 Field 6: Start Time: The scheduled start time of the trip instance. 

 Field 7: Stop Sequence: The sequence number of the stop for the trip. 
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 Field 8: Stop ID: A unique internal system of identification for the 

stop. 

 Field 9: Departure Time: The time when the bus leaves the stop, 

formatted in POSIX time (i.e. number of seconds since January 1st 

1970 00:00:00 UTC). This departure time can be either a predicted or 

historical one. 

 Field 10: Delay: Departure time, measure by minute (60 seconds). 

The vehicle position information contains the following fields like shown in 

Fig. 3.3. Each position stands for one GPS point containing information mainly 

including longitude, latitude and timestamp. Following terminology and 

notification of fields are explained for further use.  

 

Figure 3.3 Vehicle Position Information City of Edmonton, 2016 

 Field 1: Trip ID: In GTFS, a trip is a sequence of two of more stops 

occurring at a specific time. The trip ID is the unique identity of a 

trip. 
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 Field 2: Vehicle Label: A user-visible identification of the vehicle, 

which corresponds to system-internal vehicle ID. It is unique to the 

vehicle. 

 Field 3: Time Stamp: Moment at which the vehicle's position was 

measured, formatted in POSIX time (i.e. number of seconds since 

January 1st 1970 00:00:00 UTC). 

 Field 4: Longitude: Degrees East, in the WGS-84 coordinate system. 

 Field 5: Latitude: Degrees East, in the WGS-84 coordinate system. 

Transit agencies schedule the departure frequency for their transit vehicles to 

achieve the most usage efficiency of operation. The distinct trip counts of each 

weekday from May 8 to May 12 are collected to show the trend of the transit 

departure pattern, which indicates the demand of the passengers for the transit 

system. Fig. 3.4 shows the general trend of the trip counts of weekdays during one 

week. There are most trip information collected during 7:00 AM-8:00 AM and 

3:00 PM-4:00 PM, which are rush hours in morning and evening respectively. 

The scheduled departure frequency is higher than usual according to the higher 

demand. Fig. 3.5 shows the total trip counts on 8-12 in May.  
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Figure 3.4 Hourly Distinct Trip_ID Counts 

 

Figure 3.5 Weekday Daily Total Trip_ID Counts 

3.2 Digital Road Network Data Description 

The map-matching algorithm proposed in this thesis requires certain standard 

format for the data. GPS data used is based on General Transit Feed Specification 

(GTFS). This chapter will provide the description of the input data and briefly 

introduce the meanings and functions of the data. The network data used in this 

paper is based on the digital map provided by City of Edmonton (Fig. 3.1), 

including the information of links, reference points and grid arrangement.  
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3.2.1 Link Information 

In the digital map, the roads are divided into virtual links at certain inflection 

point and traffic nodes, like intersections and roundabouts. Every link has a set of 

information acquired from the pre-processing of the digital map using ArcGIS 

(shown in Fig. 3.6). Following terminology and notification of fields are gathered 

to complete the information of links.  

 

Figure 3.6 Link Information (Partially) 

 Field 1: ID: A unique identifier for every link. 

 Field 2: FROM_N: The unique identifier for the starting node of the 

link, the information of which can be found in reference point 

information.  

 Field 3: TO_N: The unique identifier for the ending node of the link. 

 Field 4: LENG: The length of the link in NAD_1983 coordinate 

system. 

 Field 5: TrafficS: Numbers of traffic signal along the link.  

 Field 6: R_NAME: The road name to which the link belongs. 
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 Field 7: DIR: The direction of the link calculated with assumption of 

each link is considered as a straight line, and the direction is 0-360 

degree. 

 Field 8: R_TYPE: The type of the road to which the link belongs. 

 Field 9: ROAD_ID: A unique identifier of the road to which the link 

belongs. 

The link length is one of the critical parameters for the following map-

matching process and travel time prediction model. The proper distance will 

lower the error for the matching and prediction results, since links with too long 

or too short length may contain the curves or other special alignment situations 

affecting the distribution of the reference points and the travel speed consistency 

in the sample data, which is the basic assumption for the prediction model. 

Fig. 3.7 shows the distribution of the link length. 92.5% of the recorded links 

fall in the category of [60,130] meters. When generating the reference points in 

the digital network, the link will be further divided into smaller segments. 

Besides the basic information, there is also connectivity information between 

links like shown in Fig. 3.8. The connectivity between the adjacent links can 

indicate the most possible routes of the vehicles, which is path inference. 

Following terminology and notification of fields are gathered to complete the 

connectivity. For example, for the link #4038, there are three connected links, and 

the IDs of these three links are: #4039, #31672, #31671, with the sequence 

number 0, 1, and 2 respectively.  
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Figure 3.7 Probability Distribution of the Virtual Link Length 

 

Figure 3.8 Information of Connected Links (Partially) 

 Field 1: Link_ID: A unique identifier of every link connecting to 

others. 

 Field 2: SEQ_Link: The sequence number of the connected link.  

 Field 3: Connected Link_ID: The unique identifier of the link 

connected to the link in Field 1. 
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3.2.2 Reference Point Information 

There are two types of reference points. One type is the starting and ending 

nodes of the links and the other type is added manually to the map. The added 

reference points separate the oversize links to the small segments with similar 

distance. In this paper, 20-meter is chosen as the distance between two adjacent 

reference points. However, due to the actual length and road alignment, the length 

of the segments may have slight differences. 

Fig. 3.9 shows the general idea of the reference points in the digital map. The 

entire road network can be divided into segments with the similar length. The 

reference points only exist on the links covered by the transit routes while there is 

not reference points on the links (like collectors, local driveways) without transit 

route covered. 

 

Figure 3.9 Illustration of Reference Points in Digital Map 

The reference point information contains the following fields like shown in 

Fig. 3.10. Following terminology and notification of fields are gathered to 

complete the information. 
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Figure 3.10 Reference Point Information (Partially) 

 Field 1: REP_ID: A unique identifier for every reference point. 

 Field 2: Link_ID: The identifier of the link to which the reference 

point belongs. 

 Field 3: SEQ_REP: The sequence number of the reference point on 

the link. 

 Field 4: FROM_Dist: The distance between the starting nodes of the 

links to which the reference point belongs, and the reference point.  

 Field 5: TO_Dist: The distance from the reference point to the ending 

point of the link. 

 Field 6, 7: COR_ X, Y: The coordinates of the reference point on X 

and Y-axis in plain coordinate system respectively.  

 Field 8: DIR: The direction of the reference point range from 0-360 

degree, calculated based on the tangent of the short straight line 

between two adjacent reference points. 



25 

 

 Field 9, 10: Long, Lat: The coordinates of the reference point in 

WGS_1984 coordinate system (degrees East/North, in the WGS-84 

coordinate system). 

3.2.3 Grid Arrangement 

The digital map contains a large amount of information. When the GPS logs 

in, there will be huge amount of calculation to do to search for the matching. But 

map-matching process is expected to provide the matching results within short 

time to do the further research. To improve the efficiency of the method, the 

large-scale digital map is divided into small grids to downsize the database that 

the GPS point is programmed to match.  

The  map is divided into 197 × 159 grids like shown in Fig. 3.11. Following 

terminology and notification of fields are gathered to complete the information. 

 

Figure 3.11 Grid Arrangement Information 

 Field 1: X0: The x coordination of the first range point in plain 

coordination system. 

 Field 2: Y0: The y coordination of the first range point in plain 

coordination system. 

 Field 3: X1: The x coordination of the second range point in plain 

coordination system. 

 Field 4: Y1: The y coordination of the second range point in plain 

coordination system. 
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 Field 5: COL: The number of the columns. 

 Field 6: ROW: The number of rows. 

The grid arrangement of the Edmonton urban area is shown in Fig. 3.12. The 

digital map is divided into grid-based units and labeled in the geometry order. Fig. 

3.13 shows the general grid arrangement in the digital map. The coordination of 

first and second range points is used to determine the map range.  

 

Figure 3.12 Grid Arrangement of Edmonton Urban Area 
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The grids are generated to narrow down the matching scale to improve the 

processing efficiency. The reference points that are included in each grid are 

formatted as the grid dataset. Fig. 3.14 shows the reference point ID contained in 

each grid.  

 

Figure 3.13 A Schema of Grid Arrangement 

 

Figure 3.14 Reference Point Information in Grids (Partially) 

 Field 1: GRID_ID: A unique identifier for each grid. Only grids 

containing reference points are included in the table.  
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 Field 2: REP_COUNT: The numbers of reference points which 

belong to the grid. Those 20 meters outside the grid edges are 

considered as “belong” as well.  

 Field 3: REP_ID: The identifiers of reference points which belong to 

the grid with identifier shown in Field 1.  

After the preparation of the map, the information of reference points within 

each grid is essential for the map matching. The database partially shown in Fig. 

3.14 categorizes all the references by the grids. The GPS points sometimes are 

located very close to the edge of the grid, and the matching process will generate 

the error results if the correct reference point is not included in the grid. In the 

case shown in Fig. 3.15, GPS point belongs to grid 1414, and is expected to match 

to the reference point #62239, which is not within the grid 1414. Therefore, the 

database shown in the Fig. 3.14 contains not only the reference points within the 

grid, but also those around 20 meters outside the grid. The relationship between 

points, grids can be found in Fig. 3.16. For example, the grid #1405 contains 6 

reference points, including No. 26618, 26619, 26620, 27641, 27642, and 27643.  

 

Figure 3.15 A Schema of Grid_RP 
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Figure 3.16 Relationship between Grids and Reference Points (RP) 

The precise matching scale for each GPS point is shown like dotting line 

square in Fig. 3.15. The number of the reference points in every grid follow the 

probability distribution in the Fig. 3.17. 89.6% grids contain the even number 

reference points. 1470 grids contains 28 reference points in each of them and 

there is higher probability to have integer multiple of hundred reference points in 

the grid.  

 

Figure 3.17 Histogram of Number of RP in Grids 



30 

 

3.3 Summary of Data Description 

This section introduces the data that will be used in this thesis, including the 

road network data and GTFS data. The digital road network is a simplification of 

the actual streets, only keeping the main characteristics of the road condition, 

including centerline, direction, starting and ending point locations. Reference 

point file and grid file are added to the original map provided by City of 

Edmonton. 

GTFS data is used as the GPS input in map-matching method in this thesis. 

Given the fact that GTFS data has low collecting sampling interval, which is 

around 30 seconds. The direction of the GPS points is not included in the GTFS 

dataset and the calculation of the angle may not be precise especially when the 

distance between two adjacent GPS point covers more than one link. The 

reference points are used as the standard to do the matching, converting point-to-

curve comparison to point-to-point comparison. In this case, the calculation of the 

direction is no longer needed. The performance of the map-matching will be more 

reliable. The reliability will be evaluated in next chapters. 
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CHAPTER 4 REFERENCE POINT-BASED 

MAP MATCHING METHOD USING LOW-

FREQUENCY TRANSIT DATA 

Conducting the map-matching method is the first step in the prediction of the 

transit travel time in this thesis. In this section, the map-matching method contains 

two part: (1) link identification procedure, which is the projection process to 

match the GPS point to the digital network; (2) path inference, which is to 

confirm link sequence that the vehicle uses to complete the trip between two 

adjacent GPS points. The major contribution of this method is: (1) create the 

reference point file in the digital map. It makes it more efficient and direct for the 

matching process of the low-frequency data; (2) perform the field tests based on 

the large amount dataset collected from the real traffic situation, providing the 

reliable evaluation of the method. The case study shows the matching results of 

the method and the comparison results with the Spatial-temporal matching 

method presented in previous literature. The proposed method is evaluated in 

terms of accuracy of path inference and the link identification. The conclusion 

comes to that the proposed method outperforms the ST-matching algorithm.  

4.1 Link Identification Procedure 

The link identification procedure is conducted to match the GPS points to the 

digital segments to obtain the trajectory information. The method proposed in this 

thesis can be divided into three parts, including database design, data extraction 

and projection analysis like shown in Fig. 4.1. Given the complicated road 
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network in the real traffic situation, there would be a huge amount of calculation 

if we match the GPS point to every single segment. Therefore, it is important to 

minimize the matching scale before the projection. The algorithm is required to 

extract the grid information matched to the given GPS data. 

 

Figure 4.1 Data Flow for Link Identification Procedure 

The method proposed in the thesis combines the consideration for both 

distance and angle matching results like shown in projection analysis in Fig. 4.1. 

Angle analysis helps calibrate the direction possibility and define the most likely 

candidate for the best match (Eq. 4.1).  

ℒ(𝑑𝑖, �⃗�) = 𝛼(min{𝑑𝑖}) + 𝛽(min|𝜃𝑖
⃗⃗⃗ ⃗ − 𝜃𝐺𝑃𝑆

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗|)               (𝐸𝑞. 4.1) 

The weights of distance and direction are expressed as 𝛼 and 𝛽 respectively. 

The goal of the theoretical function is to find the minimum distance between the 

reference points and the GPS point and the minimum angle differential between 
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reference points and the GPS point. Fig. 4.1 shows the data flow in link 

identification. The following terminology and notification are used.  

Definition 1: Gridded set: The database containing all the reference points 

categorized based on which grid they belong to.  

Definition 2: Candidate set: Output of the data extraction that shows all the 

reference points belonging to the grid in which the GPS point is. The set 𝑆 of 

reference points 𝑛(𝑙𝑜𝑛,𝑙𝑎𝑡)within the pre-defined grid 𝑁 to which the GPS point 

𝑡(𝐿𝑜𝑛,𝑙𝑎𝑡) belongs.  

S = {n: {
𝑛𝑙𝑜𝑛 − 𝐿𝑜𝑛𝑁 ≤ 𝜖𝑙𝑜𝑛

𝑛𝑙𝑎𝑡 − 𝐿𝑎𝑡𝑁 ≤ 𝜖𝑙𝑎𝑡
 }                                 (Eq. 4.2) 

𝐿𝑜𝑛𝑁 , 𝐿𝑎𝑡𝑁 refer to the longitude and latitude of the left and down edge of 

the grid to determine the locations of reference points. ϵ refers to the threshold 

that indicates if the reference point is within the range of the grid. 

Definition 3: Target reference point: The reference point closest to the GPS 

point with the smallest direction differential as well. The most likely reference 

point, 𝑛∗ is selected from the set 𝑆 as the one with the smallest distance. 𝑑𝑗 refers 

to the distance between the GPS point and the target reference point. 

𝑛∗ = {𝑛: 𝑑𝑗 = 𝑚𝑖𝑛 𝑑𝑛 , 𝑛 ∈ 𝑆}                           (Eq. 4.3) 

Definition 4: Target link: The link to which the target reference point 𝑖∗ 

belongs. 
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Figure 4.2 Map-Matching Result Schematic 

When the GPS signal logs in, the coordination and direction of the GPS point 

are entered in the database to decide to which grid the GPS point belongs. The 

information of reference points in each grid is picked out to create the candidate 

set, which is called potential matching scale. Projection analysis firstly compares 

the point-to-point distance between the GPS point and every reference point in the 

grid, and then picks out three reference points closest to the GPS point.  

Projection analysis secondly compares the direction of GPS point and three 

chosen reference points. The connection line of adjacent two high-frequency GPS 

data is assumed as the straight line. The direction can be calculate based on the 

latitude and longitude. The reference point with the smallest angle differential 

from the GPS point is considered as the target reference point. The target link, to 

which the target reference point belongs can be identified based on the candidate 
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link set. Projection analysis finally calculates the distance between the projected 

point and the start point of the link like shown in Fig. 4.2. 

4.1.1 Database Design 

The database contains two parts of information, including the basic grid 

arrangement and reference point identifier within each grid.  

The range of the network is in plain coordinate system, and offline divided 

into 193 columns and 159 rows based on the standard format of map-matching 

inputs. Each grid has a unique identifier (Grid_ID) and the reference points 

existing within and closely around the grid are picked out and organized in the 

database.  

4.1.2 Data Extraction 

When GPS logs in, the database will automatically search for the grid ID to 

which the GPS point belongs, and extract all the reference points within the grid 

to create the candidate link set, which is the potential match scale. The process is 

shown in Fig. 4.3. 

4.1.3 Projection Analysis 

The purpose of projection analysis is to match the GPS point to the digital 

link within the selected grid by the former steps based on the comparison of 

distances and directions.  
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Figure 4.3 Dataflow of the Data Extraction Process 

Fig. 4.4 shows the data flow of the projection analysis. Given the GPS 

information and the candidate link set, the first step of 

 the projection is comparing the distance between the GPS point and the 

potential reference points (PRPs), which are the reference points within the 

potential matching scale. The procedure will pick out three reference points with 

the shortest distances to the GPS point, which are defined as potential matches 

(PMs). Next step is to compare the angle of the GPS point and the PMs. The PM 

with the smallest angle differential will be the target reference point. The target 

reference point can be retrieved from the database to obtain the information of the 

target link to which the target reference point belongs, including link ID, from 

node ID & coordination and length. Then the procedure will calculate the distance 

from the starting point of the target link to the GPS projected point.  
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Figure 4.4 Map-Matching Projection Analysis 

 

4.2 Path Inference 

Path inference is defined as the determination of the most likely trajectory of 

the trip given the sequence of matched GPS points (Rahmani, 2013). After 

matching the GPS points to the digital road network, the trajectory that is 

connected by all the projections in certain sequence needs to be inferred. Fig. 4.5 

shows the description of the path inference problem.  

 

Figure 4.5 A schema of Path Inference Problem 
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4.2.1 Methodology 

The main idea is to find the most likely trajectory the trip was made by the 

vehicle, which is the sequence of the links that the GPS points have been matched 

to, and then compare the trajectory with the ground truth recorded by other 

methods, like handheld GPS recorder. The method for path inference used in this 

paper mainly includes three steps.  

1. Build the possible path. 

This step is based on the projection of the GPS points and the topological 

information of the digital network, which is already known from link 

identification. The link to which the projected points (𝑛𝑥) belong. The projected 

point 𝑛𝑥(𝑡) of GPS point 𝑡(𝐿𝑜𝑛,𝐿𝑎𝑡) on link x and the starting and ending points of 

link x (𝑥𝑜 , 𝑥𝐷 respectively) are both known. The possible paths include all the 

accessible link combinations that connect every two adjacent projected points, 

like shown in Fig. 4.6(a). The paths with the consistent direction are considered as 

the possible paths. The paths which require the behaviors of detour and restricted 

accessibility are not considered. Let T be the possible path set, and 𝑡𝑝 be the travel 

time of path alternative 𝑝. 𝑡𝑚𝑖𝑛 is denoted as the minimal travel time, which is the 

ratio of Euclidean distance of the OD pair on the minimal free flow speed of the 

links belonging to the whole path. 𝜀 denotes the parameter related to the 

acceptance level of trip-makers to the travel cost. If the cost is higher, 𝜀 will be 

higher to contain more qualified possible paths to make sure all the choices will 

be considered. For example, if the congestion is severe on path #1 and #2, trip-
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makers may take detour path to avoid the hot spots. In this case, 𝜀 should be 

higher to include the detour path in the possible path set.  

T = {𝑝: 𝑡𝑝 − 𝑡𝑚𝑖𝑛 ≤ 𝜀}                                   (Eq. 4.4) 

The restricted path (Fig. 4.6 a) contains the restricted left turn at the 

intersection north, therefore, the path cannot be accessed. The detour path 

containing the inconsistent direction should be included in the possible path set if 

the travel time of the path satisfy the Eq. 4.4.  

Connectivity file is the main evidence to filter the possible paths. Each link 

can only be connected with the links within the connectivity vectors. Assume link 

𝐴𝑖
𝑛 is connected with i links 𝐵𝑥

1 to 𝐵𝑥
𝑖  (𝑨𝒊

𝒏 = {𝐵𝑥
1, … 𝐵𝑗

𝑛, … 𝐵𝑥
𝑖 |𝑥 ∈ 𝑄}) and link 𝐵𝑗

𝑛 

is connected with j links 𝐶𝑥
1 to 𝐶𝑥

𝑖  (𝑩𝒊
𝒏 = {𝐶𝑥

1, … 𝐶𝑘
𝑛, … 𝐶𝑥

𝑗
|𝑥 ∈ 𝑄}) etc. If GPS 

𝑡0(𝐿𝑜𝑛𝑖 , 𝐿𝑎𝑡𝑖) is matched to target link 𝐴𝑖
𝑛 and 𝑡1(𝐿𝑜𝑛𝑖+1, 𝐿𝑎𝑡𝑖+1) is matched 

to 𝐶𝑘
𝑛, the path inference should generate the target sequence of Θ =

{𝑨𝒊
𝒏, 𝑩𝒋

𝒏, 𝑪𝒌
𝒏, … }.  
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Figure 4.6 Possible trajectories of the Projected Points Sequence 

Two matched results show the GPS points have been matched to link 𝑥𝑖 and 

𝑥𝑗+1 respectively. Given the connectivity of the road network, all possible paths 

between the origin and the destination of the trip are built: 𝑛𝑥1
(𝑡1) → 𝑥𝑖+1 →

𝑥𝑗 → 𝑛𝑥𝑗+1
(𝑡2), or 𝑛𝑥1

(𝑡1) → 𝑥𝑖+2 → 𝑥𝑗+3 → 𝑛𝑥𝑗+1
(𝑡2) (i.e. possible path #1 and 

#2).  

2. Using shortest path algorithm to calculate the costs of possible paths. 

In the preliminary literature review, there are several shortest path algorithms 

(SPA) merging in the past ten years. The SPA used in this paper is Dijkstra’ 

algorithm (Dijkstra, 1959). The inferred path is mainly decided by the cost of 
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each link. The shortest path is the “cheapest” path. The cost of the shortest path 

from origin projected point to destination projected point is denoted as 𝐶(𝑜,𝑑). 

𝐶(𝑂,𝐷) = 𝑐(𝑂,𝑡1) + 𝑐(𝑡1,𝑡2) + ⋯ + 𝑐(𝑡𝑋,𝐷)                       (Eq. 4.5) 

𝑡𝑥 is denoted as the projected point at sequence of x. There are totally X 

projected points in the trip t. 𝑐(𝑡1,𝑡2) is denoted as the cost of the first link from 

projected point 𝑡1 to 𝑡2.  

The cost of each link can be decomposed to three parts based on the road 

condition and traffic situation, including average travel time, delay related to the 

signalized intersections and delay due to turns (conflicting time with opposing 

traffic or merging traffic). The cost on the link x (from 𝑡𝑥 to 𝑡𝑥+1) can be 

expressed as: 𝑐(𝑡𝑥,𝑡𝑥+1) =
∑ 𝑡𝑡𝑥

𝐾
+ 𝑘1 ∙ ∑ 𝑆𝑖𝑔𝑛𝑎𝑙𝑥

𝑥
𝑖=1 + 𝑘2 ∙ ∑ 𝑡𝑢𝑟𝑛𝑠𝑥

𝑥
𝑖=1 , which is 

the function of the travel time of the trips from 𝑡𝑥 to 𝑡𝑥+1. K is the number of 

observed trips. The first item is the average travel time on the link x. The second 

item is the delay at the signalized intersections. 𝑘1 depicts the delay penalties for 

each signalized intersection on the link x. 𝑆𝑖𝑔𝑛𝑎𝑙𝑥 denotes the average control 

delay of the ith signalized intersection. Similarly to the third item, 𝑘2 is the delay 

penalties for each conflicting turn. 𝑡𝑢𝑟𝑛𝑠𝑥 depicts the average delay for ith 

conflicting turn. The delay penalties can be calibrated based on the history data or 

traffic field survey.  

3. Find the most likely trajectory. 
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To identify the most likely trajectory among the possible paths, first step is to 

settle the criteria based on the travel time on each link, travel cost (e.g. congestion 

time, fuel price, extra charging) and distance. The model used in this paper mainly 

uses the criteria of travel time and travel distance respectively based on the 

assumption that the trip-makers normally follow the path with the least travel time 

and travel distance, which is called “generalized cost” in the previous literature 

(Rahmani, 2013). The most likely trajectory is selected from the possible path set 

based on the shortest path model. Let 𝑝∗ be the most likely path. 𝑑𝑝 is the distance 

of the path 𝑝, which belongs to the set 𝑇.  

𝑝∗ = {𝑗: 𝑑𝑗 = min(𝑑𝑝) , 𝑝 ∈ 𝑇}                         (Eq. 4.6) 

4.2.2 Special Considerations 

The existing GPS capturing technologies intend to record low frequency GPS 

data given the limited storage space, therefore, the distance between two adjacent 

GPS points normally covers several links, which makes it difficult to determine 

which path the vehicle was on. There are three special considerations discussed in 

this thesis about the possible errors that may happen during the map-matching and 

path inference. 

1. Equal distance choice 

Based on the path inference model mentioned previously, there would be a 

chance that the model provides double or triple results, which shows that there are 

several results with the same travel distance. In this case, the trip-makers are 
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reasonably assumed to make choices based on their own preferences. Driver’s 

route choice model is used to conduct the path inference.  

Miwa et. al. developed a driver’s route choice concept (Tomio Miwa, 2012) 

using the developed logit model. The utility of one path is considered related with 

four factors including the number of signalized intersections, the number of stop 

signs and pedestrian walkway, road surface condition and the connectivity. The 

number of the traffic facilities on the path mostly affect the travel time, which is 

proven to be within the range (Eq. 4.3). It is assumed that the utility function 

shows the attraction level of each path to the trip-makers. The utility function of 

path p is 𝑈𝑝 = 𝛼0𝑇𝑇̅̅̅̅ + 𝛼1𝑆𝑖𝑔𝑛𝑎𝑙𝑝 + 𝛼2𝑆𝑡𝑜𝑝𝑥 + 𝛼𝑅𝐶 + 𝛼3 ∑ 𝛽𝑖𝑥𝑖
𝑝−1
𝑖=𝑖−3 + 𝜖𝑝. The 

parameters α can be calibrated by regression experiments based on historical data. 

𝛼𝑅𝐶 denotes the road condition based on the classification of the road, arterial (4), 

minor (3), collector (2) and local road (1). The connectivity is indicated by the 

effects of 3 previous links on the path choice like shown as the 5th term in the 

utility functions. 

The probability of the trip-makers taking one of the model-generated path p 

is shown as 𝑃𝑝 =
exp(𝜃𝑈𝑝)

∑ exp(𝜃𝑈′)
⁄ . 𝑈′ is denoted as the utility function of 

every path resulting from model Eq. 4.5. θ is the scale parameter in the Gumbel 

distribution which the random error term ϵ follows. 

2. Overpass / Underpass 

Overpass and underpass are common transportation facilities in urban 

environment. Such facilities are unlikely shown very clear on the digital map, 
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therefore, the map-matching may not be able to identify the proper candidate links 

and target link without three-dimensional map. The GPS signal may be blocked 

when going through the tunnel or other underpass conditions.  

3. High Density Local Road Network 

The high density local road network is common in the residential 

neighborhoods. Most of the links in such road network are narrow, single lane in 

each direction or shared direction and sometimes one-way, therefore, the 

connectivity and restriction rules become very useful when it comes to the map-

matching and path inference. 

4. Transit Path Inference 

This thesis is focused on the transit travel time prediction. The transit data 

remains the main source for the research. Given the fixed route of the transit 

vehicles, the path inference of the transit is easier to conduct. However, errors 

may occur in the map-matching process. If the target link is not identified 

properly, the path inference may show the route is different from the schedule, 

which can be used to evaluate the accuracy of the transit map-matching method.  

4.3 Evaluation of Factors Affecting Performance of the Map-

Matching Method 

There are several factors affecting the performance of the map-matching 

method, including the map-matching process and path inference. The main source 
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of the error comes from the model calibration, data source and accuracy 

evaluation process, and other error like mechanical failure, weather impact. 

4.3.1 Indices of accuracy 

The identification of the correct links to which the GPS points belong can be 

evaluated by comparing correctly identified link with the manually recorded trip 

route. The correctly identified percentage (CI %) can be computed by Eq. 4.7. 

CI(%) =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑 𝑝𝑜𝑖𝑛𝑡𝑠

𝑆𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒
× 100%    (Eq. 4.7) 

Given that the method can accurately identify which link the GPS belongs to, 

there still is error for the precise location, therefore, the average distance error 

(ADE) is defined, like shown in Eq. 4.8.  

Average distance error =
|𝑑𝑚𝑝 − 𝑑𝑣𝑝𝑝|

𝑆𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒
                      (Eq. 4.8) 

In this thesis, vertical projection point is used as the precise location of the 

GPS point on the digital road network compared with the matched results to 

evaluate the performance of the method. 𝑑𝑚𝑝 denotes the distance between the 

starting point of the target link and the target reference point. Since the GPS point 

has already been matched to the target link, the location of vertical projection 

point is available for each GPS point. 𝑑𝑣𝑝𝑝 denotes the distance between the 

starting point of the target link and the vertical projection point.  

The accuracy of the path inference means the ratio that the plots correctly 

matched to the digital road network. ARR index (accuracy ratio of matched) is the 
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most commonly used (Tomio Miwa, 2012). The evaluation of the path inference 

is based on the following criteria.  

ARR =
𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑚𝑎𝑡𝑐ℎ𝑒𝑑 𝑝𝑎𝑡ℎ

𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑎𝑐𝑡𝑢𝑎𝑙 𝑝𝑎𝑡ℎ
                 (Eq. 4.9) 

However, ARR cannot express all the error it may have in the method. Like 

shown in Fig. 4.7, when the length of AB become small enough, the ARR will 

become closer to 1, which indicates the method becomes more and more 

acceptable. ARR is adjusted to PFI (proportion of false identification) and IAR 

(inaccurate length of matched) is defined to ensure the evaluation is valid.  

PFI =
𝐹𝑎𝑙𝑠𝑒 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑 𝑙𝑖𝑛𝑘 𝑛𝑢𝑚𝑏𝑒𝑟

𝑇𝑜𝑡𝑎𝑙 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑 𝑙𝑖𝑛𝑘 𝑛𝑢𝑚𝑏𝑒𝑟
× 100%         (Eq. 4.10) 

IAR =
𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑤𝑟𝑜𝑛𝑔 𝑚𝑎𝑡𝑐ℎ𝑒𝑑 𝑝𝑎𝑡ℎ

𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑚𝑎𝑡𝑐ℎ𝑒𝑑 𝑝𝑎𝑡ℎ
                (Eq. 4.11) 

The accuracy of map-matching process is measured by correct link 

identification, which indicates how many GPS points have been correctly 

matched to the target links, compared with the high-frequency data as the ground 

truth. For the transit data, the route of transit vehicles has been predetermined, 

therefore, the route can be considered as the ground truth to conduct the accuracy 

evaluation. 
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Figure 4.7 Schema of ARR Error 

4.3.2 GPS signal and movement criterion 

The accuracy of the prediction results highly depends on the accuracy of GPS 

signal. Fig. 4.8 shows that if two adjacent GPS points have distance of 25 meters, 

there will be probability of 95% that the transit vehicle is on movement. The 

results are based on the existing GPS data of transit vehicles and field test. 

 

Figure 4.8 GPS Error Distribution 

Normally, the GPS signal is accurate from 60 to 300 feet (Bajaj, Ranaweera, 

& Agrawal, 2002). One of the major factors that affecting the accuracy is the 
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propagation delay caused by the radio signal speed changing in different 

atmospheric particles. When the signal bounces among the objects on the ground, 

there will be fading of the signal strength. Other factors can also affect the 

accuracy of the GPS signal, like receiver noise, unreliable distance measurements 

between satellites the GPS receiver is connected with.  

4.3.3 External factors 

Other external factors may affect the accuracy of the map-matching method. 

Weather condition will have impact on road condition and may lead to the change 

of the drivers’ behaviors. Trip-makers are more likely to take a longer distance 

detour to avoid the congested path resulting from the weather. The choice model 

of the trip-makers may vary by changing the utility functions. Moreover, extreme 

weather may also affect the GPS signal, the error distribution of the GPS data 

may change and result in the errors.  

Road condition also has the impact on the choice model by changing the 

utility functions. The temporary road construction may increase the access 

restriction. Sometimes, not all the information in the digital map will be updated 

in time when conducting the map-matching method. 

Many trips are completed by multi transportation modes, like park & ride, 

cycle & transit, walk & transit, etc. When the transportation modes are changed, 

the GPS data will lose the consistency at the transfer point. Error may happen due 

to this reason. 
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4.4 Case Study 

To validate the map-matching method and path inference model, a case study 

based on the GPS data of real trips and digital network data is conducted.  

4.4.1 Test Site Description 

23 Ave. is an essential arterial located in the south of Edmonton. The corridor 

from Terwillegar Drive (in the west) to the Calgary Trail (in the east). The vehicle 

position and trip update of 169 trips are available for the thesis. There are 85 trips 

are in eastbound and 84 trips are in westbound. Since there are data missing and 

device error in the GPS transmission and storage, this thesis only uses 68 trips in 

eastbound. 

4.4.2 Results and Discussion 

The data was collected from transit vehicles operating on 23rd Avenue 

equipped with GPS receivers by City of Edmonton to evaluate the performance of 

the map-matching method proposed in this thesis. For the accurate link 

identification, the field test using mobile device was conducted to collect GPS 

acting with sampling interval of 1 second as the ground truth. The transit route 

map was retrieved from the city website as the ground truth for path inference. To 

test the relationship between the method accuracy and the data collection 

frequency, three more datasets were generated from the high-sampling interval 

data, which includes 15-second data and 60-second data. Partial trips from Legar 

Transit Center to Century Park Transit Center are used for map-matching process 

evaluation shown in Table 4.1. 
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Table 4.1 Field Trips Used in Case Study 

 

The snapshot of the matching results can be found in Fig. 4.9. The case 

shows the matching result in Century Park transit center in South Edmonton. The 

trip 11414156 starts from Century Park Station at 16:06:48 pm on July 28, 2016. 

The route is known from the trip update data. The road network in such transit 

center includes minor roads and one-way roads of high-density. GPS points are 

more likely to be matched incorrectly under such circumstances. 
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Figure 4.9 Match Results w/ Different Sampling Intervals 

The accuracy results are shown in Table 4.2. There are totally 4620 GPS 

points collected from the field tests. Based on the map-matching method proposed 

in this thesis, the correctly matched points are 4609 out of 4620, 99.8% correct 

identification. Reducing the data sampling interval to 15 seconds and 30 seconds, 

the matching results still provides over 99.1% correct identification. Since the 

reference points have the fixed location, the high sampling interval GPS points 

within the small range will be clustered to one reference point. In this case, there 

is distance error between the matched reference point position and the vertical 

projected position like shown in Fig. 4.10.  

 

Figure 4.10 Average Distance Error 

Table 4.2 shows that higher-sampling interval dataset provides more average 

distance error. This is because the reference points have the fixed locations and all 

the GPS points are projected to these reference points no matter if it is the vertical 

projection point. If one trip contains more GPS points, it is more likely to create 

larger distance error, like the occasion shown in Fig. 4.10.  
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Table 4.2 Performance of Map-Matching Method with Different Frequency GPS Data 

 

Fig. 4.11 shows the snapshot of partial path inference results. The sequence 

of the segments to which the GPS point set belongs (trip 11414156 with sampling 

interval of approximately 30 seconds) is obtained from the map-matching process. 

Fig. 4.11 (b) shows that there are two matching errors with the possible path 

compared with the ground truth (Fig. 4.11 (a)). The connectivity relationship 

between adjacent two target links is interfered at two marked sites. Due to the 

mismatched results, the path inference will provide the different match results 

from the ground truth (Fig. 4.11(c)).  

If the adjacent target links are connected, the false identified links will be 

excluded from the path inference (Fig. 4.12). The right out way is included in the 

map-matching results. However, link 22181 and 70414 are the continuous route, 

therefore, the link 22188 is excluded from the path inference results. The datasets 

of 14 trips (July 28, 2016), including trips in Table 4.1 with different sampling 

intervals are conducted for the performance evaluation and comparison of the 

path inference process. The accuracy of the results is evaluated in terms of IARR 

and PFI value based on the datasets of different sampling intervals (Fig. 4.13). 
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Figure 4.11 Path Inference (a) Ground truth; (b) Map-matching results (Identified link 

sequence); (c) Path inference results 

 

Figure 4.12 A Scheme of Path Inference Results 

Fig. 4.13 shows the average IARR and false identification percentage of the 

datasets of different sampling intervals. The comparison shows the ascending 

trend of both measurements, indicating that if the sampling interval is smaller, the 

accuracy of the path inference is higher. Since the GTFS data consists 0.3% 

missing and invalid data, the false identification is slightly higher than 60-second 
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dataset by 0.4%. Besides the inaccuracies, all the trips found in the dataset can 

identify the correct route by 83.5%.  

 

Figure 4.13 Performance of Path Inference Method 

4.4.3 Comparison with ST-Matching Method 

The benchmark for comparison is ST-Matching method, which was first 

proposed by Lou et. al. in 2009 (Lou Y. , et al., 2009). The algorithm in the 

method targets the map-matching for the large sampling interval GPS data. The 

matching procedure consists of: (1) spatial analysis uses both geometric and 

topological information to pick out the most likely candidate points; (2) temporal 

analysis employs the average speed between two consecutive GPS points to 

exclude the interference candidate options. ST-matching requires the average 

speed, which is calculated as the ratio of the distance between two consecutive 

GPS points over the time interval. It should be noted that ST-matching method is 

based on the probability model to find the most likely path that matches the GPS 

sequence. The candidate points are picked out from pre-determined area with 

radius of 30 meters. It assumes the probability of each candidate point of one GPS 
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point follows normal distribution, and the distance parameter and speed parameter 

are used to calibrate the probability to find the most likely candidate sequence.  

Fig. 4.14 shows the performance of the datasets with different sampling 

intervals. Both methods can maintain the high accuracy (over 98% correctly 

identified link percentage) with small sampling interval GPS data. With the 

sampling interval becomes higher, the accuracy of ST-matching method declines. 

According to previous literature, the performance of ST-matching method will 

become stable when the sampling interval increases to 120 seconds or higher (Lou 

Y. , et al., 2009). For the reference points-based method, the accuracy is not 

affected significantly by the sampling interval. 

 

Figure 4.14 Performance Comparison w.r.t. sampling interval 

To evaluate the performance of the proposed method in different traffic 

conditions, five locations are chosen, including transit centers, CBDs in 

downtown area, residential communities, highway and urban arterials. Fig. 

4.15(a) shows the types of test sites and valid GPS data at each location. The 

matching accuracy is shown in Fig. 4.15(b). 
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Figure 4.15 (a) Description of Test Sites; (b) Performance of Map-Matching Method with 

Different Link Sets  

 Fig. 4.15 shows that the performance of the proposed method works better 

for the complicated high-density road network like local communities and transit 

centers. According to the field tests, there are entries to the underground parking 

within the city center area and overpass/underpass on the urban arterial and 

highway ramp, which impact the accuracy of the method. However, Rep-based 

method still outperforms St-matching method in most cases by 5.4% on average. 

ST-matching method has better performance in terms of average distance error in 
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City center, highway ramp, and urban arterial. Because the matching process 

starts with the identification of the vertical projected candidate points on the links 

which are within its match scale. Rep-based method works better in residential 

communities and transit centers by 3.83 meters.  

The evaluation shows the rep-based method is more suitable for the areas 

with high-density road network like residential communities and transit centers, 

because the high-density reference point files can help exclude the interference of 

the near links. ST-matching method is more suitable for the complicated road 

network like overpass, underpass and roundabouts. The temporal analysis can 

help find the most suitable link in the partially overlapped digital map. 

The path inference is compared with ST-matching method as well in terms of 

IARR and PFI. The comparison results are shown in Fig. 4.16.  

 

Figure 4.16 Accuracy of Path Inference Comparison w.r.t. Sampling Interval 

IARR of ST-matching has the descending trend with the higher interval of 

the sample, while the rep-based method is increasing. The trends of IARR intends 

to be stable for both methods when the sampling interval becomes higher than 60 
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seconds, which indicates both methods perform well with high sampling interval 

data. The PFI shows the stable trend of ST-matching method. When the sampling 

interval turns to 30-second, PFI value of rep-based method is higher than other 

sampling intervals, which is because GTFS dataset has more missing or low-

qualified data than the dataset recorded by handheld-devices. In general, the rep-

based method generates more accurate results than ST-matching method for the 

same sampling interval. According to the previous literatures, the performance of 

ST-matching is better with frequency of 120 second or lower, however, with the 

development of the collection and storage technique, data with sampling interval 

of 60 seconds or lower is more popular for the future research.  

4.5 Summary 

In this chapter, a developed reference point-based map-matching method is 

introduced, including map-matching process and path inference. The development 

is that the reference point files is created and included in the digital network 

artificially. The reference points make it quite effective and accurate to match the 

GPS points to the correct target links, especially when the sampling interval of 

GPS records is high and the quality of the data source is limited.  The case study 

uses the GTFS dataset provided by City of Edmonton. The matching results show 

the method provides over 99.1% of correct link identification and the average 

distance error is lower than 5 meters, which indicates the accuracy is acceptable 

compared with traditional ST-matching method, which is well-recognized in the 

previous literature (Rahmani, 2013). It is possible to reduce the distance error if 
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increasing the density of the reference points in the digital network in the future 

research. For the path inference, the rep-based method is more suitable for the 

data with sampling interval of 30-second or lower. 
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CHAPTER 5 INDIVIDUAL BUS 

TRAJECTORY PREDICTION MODEL 

Map- matching results can construct the GPS sequence on the digital 

network, therefore, the vehicle trajectory can be matched to the road network in 

ArcGIS, which is the foundation for most trajectory-based transportation 

applications. An application of the map-matching results in single trajectory 

prediction model is introduced in this chapter.  

Transit trajectory prediction is the useful information for both transit users to 

plan the trip and for the transit agencies to make the most efficient schedule. With 

the provision of the accurate travel time prediction, the transit users can take 

advantage of the transit system in the most efficient way and reduce their waiting 

time at the stops or stations. Transit trajectory prediction model used in this thesis 

is based on known trajectory of transit vehicles that is the results of map-matching 

method. The algorithm based on the timestamps and locations of GPS points can 

generate the arrival time of the transit vehicles at stops and major intersections.  

Data of 1-second sampling interval is collected from field tests used as the ground 

truth to evaluate the accuracy of the prediction. 

5.1 Transit Vehicle Trajectory Reconstruction 

The GPS points illustrate the route of the transit operation. The timestamp 

and distance information are available. However, the key point to the travel time 

prediction is the delay at the specific traffic nodes, which mainly include 
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intersections and stops. Signalized intersections and uncontrolled intersection (i.e. 

stop-sign control, yield control, non-control, etc.) will create the control delay and 

stop delay. Delay at the stops will be related to the time for the passengers 

alighting and boarding. This section focuses on modeling the arrival time at 

specific traffic nodes along the transit trajectories. The time-space diagram is 

shown like Fig. 5.1.  

 

Figure 5.1 Vehicle Trajectory Reconstruction 

5.2 Sample Data Integration 

Sample data is defined as the dataset connecting the road network with the 

traffic condition in this thesis. Given the geometric network structure, it is 

assumed that the traffic parameters (travel speed, density) on single link are 

constant. The sample data in this thesis is used to describe the traffic condition on 

each link, including the arrival time at stops and intersections, travel time on each 
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segment and estimated travel speed. The sample data is the key component of 

travel time prediction, which is also the focus of the trajectory reconstruction. 

The speeds at the intersections and stops are estimated based on the linear 

trajectory algorithm. The reconstructed trajectory is truncated to pieces at 

intersections, stops and GPS points.  

Given that the transit vehicles are more likely to remain the fixed route and 

speed when there is no disturb during the operation, it is reasonable to assume that 

the speed between adjacent GPS point and traffic node is constant.  

The timestamps of two adjacent, 𝑖th and (𝑖 + 1)th, GPS points are expressed 

as 𝑡∆
𝑖  and 𝑡∆

𝑖+1, ∆ is denoted as the time interval between two adjacent GPS points. 

The distances between the GPS points and the starting point of the trajectory are 

denoted as 𝑥𝑖 and 𝑥𝑖+1 respectively. 𝑥𝑗(𝑡) denotes as the distance between the 

traffic node 𝑗 and the starting point of the corridor at time 𝑡. If there is a traffic 

node in between these two GPS points like shown in Fig. 5.2, the arrival time at 

intersection #1 𝑡𝑗(𝑥)  can be described as Eq. 5.1.  

𝑡𝑗(𝑥) = 𝑡∆
𝑖 +

𝑥𝑗(𝑡) − 𝑥𝑖

𝑥𝑖+1 − 𝑥𝑖
∙ (𝑡∆

𝑖+1 − 𝑡∆
𝑖 )                        (𝐸𝑞. 5.1) 

𝑥𝑗(𝑡) denotes as the distance between the traffic node 𝑗 and the starting point 

of the trajectory. The portion of the vehicle traveled is the same as the travel time 

portion on the piecewise trajectory. Therefore, the travel time on segments 𝑖_𝑗 and 

𝑗_(𝑖 + 1) can be expressed like Eq. 5.2-5.3 respectively. 

𝑇𝑇𝑖_𝑗 = 𝑡𝑗(𝑥) − 𝑡∆
𝑖                                      (𝐸𝑞. 5.2) 
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𝑇𝑇𝑗_(𝑖+1) = 𝑡∆
𝑖+1 − 𝑡𝑗(𝑥)                                (𝐸𝑞. 5.3) 

 

Figure 5.2 Piecewise Trajectory Reconstruction (Map-Matching Results) 

If there are more than one traffic nodes between two adjacent GPS points, the 

first traffic node will be treated as the first estimator for the second traffic node, 

like shown in Fig. 5.3.  

 

Figure 5.3 Piecewise Trajectory Reconstruction - Multi-nodes with Low Frequency Data 

In Fig. 5.3, there is one stop 𝑘 and one intersection (𝑗 + 1) between GPS 

(𝑖 + 1) and (𝑖 + 2). The arrival time at the stop 𝑘 can be described using Eq. 5.4.  

𝑡𝑘(𝑥) = 𝑡∆
𝑖+1 +

𝑥𝑘(𝑡) − 𝑥𝑖+1

𝑥𝑖+2 − 𝑥𝑖+1
∙ (𝑡∆

𝑖+2 − 𝑡∆
𝑖+1)             (Eq. 5.4) 
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For intersection No. (𝑗 + 1), the estimation of the arrival time will be based 

on the arrival time at stop 𝑘 and GPS No. (𝑖 + 2). 

𝑡𝑗+1(𝑥) = 𝑡𝑘(𝑥) +
𝑥𝑗+1(𝑡) − 𝑥𝑘(𝑡)

𝑥𝑖+2 − 𝑥𝑘(𝑡)
∙ (𝑡∆

𝑖+2 − 𝑡𝑘(𝑥))  (Eq. 5.5) 

The travel time on these three segments can be expressed as equation set 5.6. 

{

𝑇𝑇(𝑖+1)𝑘
= 𝑡𝑘(𝑥) − 𝑡∆

𝑖+1

𝑇𝑇𝑘𝑗+1
= 𝑡𝑗+1(𝑥) − 𝑡𝑘(𝑥)

𝑇𝑇(𝑗+1)𝑖+2
= 𝑡∆

𝑖+2 − 𝑡𝑗+1(𝑥)

                            (Eq. 5.6) 

5.3 Individual Trajectory Prediction Model 

Multi-interval prediction concept was first proposed by Chang et. al. in 2010. 

(Chang, Park, Lee, Lee, & Baek, 2010). The predicted results contain series of 

travel time of the future trips. The multi-interval travel time prediction model is 

applied for single trajectory prediction in this thesis. The trips happen in five 

weekdays are used to conduct the multi-interval prediction model. The departure 

frequency of the transit vehicles can be retrieved from the schedule on city 

website. The travel time of the about-to-departure bus at present on the first link 

can be predicted based on the historical data of previous buses scheduled at the 

same departure time in previous days. According to the basic principle of the 

model, the weight of the more recent day is supposed to have more positive 

impact on the accurate prediction. Since the traffic condition is similar during the 

short term, the travel time of the previous trips in the same day is considered as 

the current data. And the historical data is used to calibrate the current data. The 
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historical travel time can provide the general pattern of the travel time during 

multi time interval. It is reasonable to assume that the road condition and traffic 

situation on the same link are similar during the continuously time period. The 

main data resource is historical transit data during weekdays and the high-

frequency field data collected by the handheld GPS device. Fig. 5.4 shows the 

concept of the prediction model. The current trip is about to leave at present, and 

completed trips happen in the previous time with different time interval from the 

current trip. The future trip is to be predicted based on both current trips and 

completed trips.  

   

Figure 5.4 Temporal-Spatial Diagram of 23 Ave. on May 12. 

There are three elements in the model, including current data, historical data, 

and weight measurement. The current data is the travel time information of the 
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previous trips happen at the same day. Historical data is the completed trips of the 

vehicles departure at the same time in the previous days, in which the traffic 

situation is considered similar. The historical data is used to calibrate the current 

data. Weight measurement is used to identify the impact of historical data within 

multi time interval on the current data.  

The departure time of the transit vehicles is fixed during the time period T 

with interval of f. The number of vehicles departure during T in one day is 𝑇 𝑓⁄ . 

To predict the travel time of the future trip on link p happen in day n, the 

historical data in day [1,2, … , (𝑛 − 1)] on link p is shown in Table. 5.1.  

Table 5.1 Historical Data Integration 

 

The travel time data of current trips on link p on day n has the similar format 

to the historical data like the vector shown in Eq. 5.7.  



67 

 

[𝑡𝑛
1, 𝑡𝑛

2, … , 𝑡𝑛
𝑇 𝑓⁄

]                                     (𝐸𝑞. 5.7) 

The matched departure time can be shown like in Eq. 5.8. 

[𝑓𝑛
1, 𝑓𝑛

2, … , 𝑓𝑛
𝑇 𝑓⁄

]                                   (𝐸𝑞. 5.8) 

The historical and current travel time data can be obtained from sample data 

integration process mentioned in last section.  

The weight measurement is based on the Euclidean distance, which is a 

virtual distance between the current status and the historical status of different 

days respectively, representing the relevance between two statuses. It is 

reasonable to assume that if the historical status is closer to the current status, 

more weight should be given to this historical status. The distance is computed as 

Eq. 5.9. 

𝐷𝑖
𝑝 = √(𝑡𝑛

1 − 𝑡𝑖
1)2 + ⋯ + (𝑡𝑛

𝑇 𝑓⁄
− 𝑡𝑖

𝑇 𝑓⁄
)

2

             (𝐸𝑞. 5.9) 

Average value of the historical data is used as the prediction base, which is 

calibrated by three elements mentioned above. A parameter 𝜔𝑡 stands for the time 

series is used to calibrate the impacts of historical data on current status.  

𝑡𝑖
𝑝̅̅̅ =

∑ (𝜔𝑡 ∙ 𝑡𝑖
𝑗
)

𝑇 𝑓⁄
𝑗=1

𝑇 𝑓⁄
                                  (𝐸𝑞. 5.10) 

The inverse of the distance input is used in the forecast function as the weight 

measurements, which has been evident to outperform the direct average of the 
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dependent variables (Smith, Williams, & Oswald, 2002). The predicted travel 

time of vehicle (𝑇 𝑓⁄ + 1) in day n on link p can be expressed by Eq. 5.11. 

𝑡𝑛
𝑇 𝑓⁄ +1

=

∑ (
𝑡𝑖

𝑝̅̅̅

𝐷𝑖
𝑝⁄ )𝑛−1

𝑖=1

∑ (1
𝐷𝑖

𝑝⁄ )𝑛−1
𝑖=1

                        (𝐸𝑞. 5.11) 

5.4 Case Study 

A case study is conducted to evaluate the validation and accuracy of the 

travel time prediction method. The tested site is 23rd Avenue in South Edmonton. 

The corridor from Terwillegar Drive (in the west) to the Gateway Boulevard (in 

the east) is an essential arterial covered by several major transit route.  

5.4.1 Tested Corridor Description 

According to the GIS data, there are 15 signalized intersections and 16 stops 

along the eastbound 23rd Avenue. Among the stops, there are two transit centers 

including Century Park transit center which is located off the 23 avenue, and 

Legar transit center. The specific locations of stops and intersections in WGS-84 

coordinate system and the distances in between are shown in Table 5.2-5.5.  

In TABLE 5.2, the field of INT_ID is the sequence number of the 

intersection along the corridor. Intersection_name shows the intersecting roads. 

IF_SIG shows if the intersection is signalized. Flag 1 means the intersection is 

signalized, and flag 0 means the intersection is not signalized.  
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Table 5.2 Intersection Location 

 

Table 5.3 Distance between Adjacent Intersections 
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Table 5.3 shows the distance between two adjacent intersections. The field of 

Link_ID is the sequence number of the connection between two adjacent 

intersections. From_INT and To_INT are the sequence number of the starting and 

ending intersections respectively. The summary amount of the length is the total 

length of the tested corridor. 

 

Figure 5.5 Illustration of Intersection Locations 

Table 5.4 Stop Location 
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In the Table 5.4, Stop_ID is the sequence number of the stop along the tested 

corridor. IF_TC shows if the stop is the transit center. Flag 1 shows the stop is the 

transit center, while flag 0 shows it is not the transit center.  

In TABLE 5.5, Link_Seq is the sequence number of the connection between 

two adjacent stops. From_Stop and To_Stop are the sequence number of the 

starting and ending stops respectively.  

 

Figure 5.6 Illustration of Bus-Stop Locations 

Table 5.5 Distance between Adjacent Stops 
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5.4.2 Test Results and Evaluation 

Data used in this case was retrieved from May 9 (Mon.) to May 13 (Fri.), 

2016 in GTFS dataset. No. 23 is the route from West Edmonton Mall to Mill 

Wood Transit Center, via 23rd Avenue (corridor: Legar Transit center - Century 

park Transit center). The eastbound trips are selected and the corridor contains 8 

links. Trips on Monday to Thursday are considered as the historical data, while 

the trips on Friday are considered as the current data.  

Three trips scheduled to departure from the original stop between 10.10 am 

and 11.10 every day from Monday to Thursday are used as the historical data, 

while the three trips happened between 9.10 am and 10.10 am on Friday are 

considered as the current data. To predict the travel time between each two 

adjacent bus-stops, first is to estimate the travel time of the historical trips on the 

path using the method in section 5.2. The estimated results of travel time on each 

link are stored in the travel time vector {𝑡𝑡1, 𝑡𝑡2, … , 𝑡𝑡8}. 

Table 5.6 Introduction to Travel Time Vector 
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Table 5.7 Travel Time Information of GTFS data 

 

 

Figure 5.7 Estimation Results of Travel Time on Links 

The travel time vectors shown in Table 5.7 is the estimated travel time on 

each link of the entire corridor. The travel time on each link with average standard 

variance of 16.17 seconds, which is resulted from the signal control strategy, 

variable traffic situation and other traffic accidents. The model input are 

concluded in the Table 5.8, including Euclidean distance and historical weighted 

travel time. 



74 

 

Table 5.8 Prediction Model Input Calculation 

 

The predicted results of the trips happen in Fri. May 12 starting at 10.40 am 

is shown in Fig. 5.8, along with the model inputs of all trips on each link. The 

predicted results remain the consistency with the trend of weighted historical 

travel time. The weighted travel times of all trips happen on link 1 are lower than 

140 seconds, but the distance and weighted travel time have been proven to be 

closer and higher with the time proceeding respectively, which means the travel 

time should be increasing during this week. The predicted result on link 1 is 145 

seconds. The trend is proven to be true according to the ground truth, which is 

167 seconds, higher than all the historical records.  

The prediction results shown in Fig. 5.8 is based on fourth-interval model 

(𝑛 = 5). To evaluate different interval prediction model, other 𝑛 values are 

introduced to test the similarity to the ground truth. The predicted results based on 

RP map-matching method are compared with the results generated by ST-

matching method in Fig. 5.9, and the results show that the RP method is closer to 

the ground truth, especially for the long-distance links like link 1 and link 5.  
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Figure 5.8 Prediction Results of the Trip (at 10.40 AM. May 12, 2016) 

 

Figure 5.9 Predicted Result Comparison between Both Map-Matching Methods 

Fig. 5.10 shows the 4-interval prediction result has the closest distance to the 

zero line, which means the prediction is closest to the ground truth. Because 4-

interval model takes more historical data into consideration, avoiding the extreme 

situations. 3-interval prediction results are next closest to the zero line. 2-interval 

and single-interval prediction results are highly impacted by the extreme data and 

cannot combine the historical results in different days. The error is due to the 

unpredictable traffic accidents. (Chang, Park, Lee, Lee, & Baek, 2010). 
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Figure 5.10 Link Prediction Accuracy (%) w.r.t. Multi-intervals 

Based on travel time predicted results on each link, the trajectory of the 

predicted trip can be sketched in temporal-spatial diagram (Fig. 5.11). T-test is 

conducted to evaluate the relevance between the ground truth and predicted 

results. The returned value indicates that t-test does not reject the null hypothesis 

at the 5% significance level (Fig. 5.12). 

 

Figure 5.11 Trajectory Predicted Results (May 13, scheduled at 10.10 AM) 
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Figure 5.12 T-Test w/ Error Bar 

5.5 Summary 

This chapter presents a multi-interval travel time prediction model to test the 

impact of map-matching results on accuracy of the model performance. The 

model inputs integrate the different impacts of multi interval historical data. The 

raw data is processed using the map-matching method proposed and evaluated in 

chapter 4. The prediction is based on the estimation of the historical travel time 

using the RP-based map-matching method proposed in Chapter 4. The predicted 

results indicate the better performance than using ST-matching method. The 

prediction results are compared with the ground truth which is the high frequency 

and high-quality GPS data collected by handheld GPS device. The T-test shows 

that the results of the model are acceptable for the research. The evaluation results 

also contain the comparison in terms of different time-intervals. Multi-interval 

model generates more accuracy predicted results than single interval model.  



78 

 

CHAPTER 6 CONCLUSION AND 

RECOMMENDATION FOR FUTURE WORK 

6.1 Conclusion 

Map-matching methods are receiving increasing attention because they are 

the foundation data input for the trajectory-based transportation applications; i.e. 

the reliability of the matching results directly affect the accuracy of the applied 

models, like prediction models, estimation models. This thesis focuses on an 

improved reference point-based map-matching method. Compared with 

traditional methods, the improved method coverts the point-to-curve match to the 

point-to-point match. The conversion excludes the interference of the curved road 

alignment on the match results. The distance calculation and projection is more 

accurate and easier for point-to-point than point-to-curve since the direction 

information can not directly obtained from raw GPS data. The major contributions 

of this thesis include the follows. 

 A method is created to generate the reference point file in the original 

digital map using ArcGIS. The file includes the geometric 

information of each reference point and the matching relationship 

between the reference point file and original link file.  

 This thesis uses a new way to narrow down the matching scale by 

dividing the digital map into square grids. Traditional methods search 

the candidate links in an ellipse or circle with predefined axis length 

or radius. It cannot be sure if the target link is in this range. The grids 
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defined in this thesis include all the reference points that may matched 

to the GPS points. The matching process is conducted after the 

identifying to which grid the GPS belongs. 

 An algorithm is developed to realize the improved map-matching 

method including locating the GPS points in the grids, distance and 

direction comparison between reference points and GPS points. The 

algorithm is executed using real field GPS data collected from five 

traffic environment. The matching results show the algorithm is 

compatible with different types of road networks. The proposed 

method is proven to be outperforming a traditional spatial-temporal 

matching method by a case study conducted on 23rd Avenue corridor, 

Edmonton. A travel time prediction model is used to prove the 

prediction improvement. 

6.2 Recommendations for Future Work 

The proposed map-matching method depends highly on the digital map 

information, including the original road network and the newly added files. There 

are still some opportunities for future research including the follows. 

 This thesis generates the reference points using 20 meters as the 

distance in between to limit the amount of reference points in each 

grid. In the future work, it is possible to evaluate the impact of the 

distance between reference points on the matching results. 
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 This thesis uses the GPS data from two sources, including GTFS 

dataset and handheld GPS collection devices. The quality of GPS data 

is not testified. The future work can be related to the impact of the 

GPS quality on the matching results. 

 Spatial-temporal matching method is used as the benchmark in this 

thesis. In the future work, more traditional map-matching method can 

be compared with the proposed method. 

 One travel time prediction model is the only example to evaluate the 

improvement of the proposed map-matching method. In the future 

work, more applications can be conducted based on the matching 

results from proposed method to see if the accuracy is better.  
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