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Abstract

Software Product Line Engineering (SPLE) creates configurable platforms that

can be used to efficiently produce similar, and yet different, product vari-

ants. To implement SPLs, multiple variability implementation mechanisms

have been suggested, including polymorphism. In this thesis, we talk about

the trade-offs of using static versus dynamic polymorphism through a case

study of IBM’s open-source Eclipse OMR project.

Eclipse OMR is an open-source C++ framework for building robust lan-

guage runtimes. To support the diverse languages and architectures targeted

by the framework, OMR’s variability implementation uses a combination of

build-system variability and static polymorphism. OMR developers now real-

ize that their current static polymorphism implementation has its drawbacks

and are considering using dynamic polymorphism instead.

In order to study the trade-offs of using different kinds of polymorphism

in OMR, it is crucial to collect function information and overload/override

statistics about the current code base. Hence, we create OMRStatistics, a

static analysis tool that collects such information about OMR’s source code.

Using the information provided by OMRStatistics, OMR developers can

make better design decisions on which variability extension points should be

switched from static polymorphism to dynamic polymorphism.

In addition, we report on our first hand experience of changing the poly-

morphism used in OMR’s variability implementation mechanism from static to

dynamic, the challenges we faced in the process, and how we overcame them.
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Chapter 1

Introduction

As automation becomes more pervasive, our dependency on software is rapidly

increasing which is causing an abundance of customers for software compa-

nies. Customers have a diverse spectrum of problems and expect companies

to provide software solutions. To accommodate various requirements, soft-

ware developers started leveraging the similarity in solutions between different

problems to rapidly develop corresponding software products. Since they are

created to solve similar problems, these products would act and behave very

similarly; their behavior would only differ in a few circumstances to accom-

modate the slight difference between the problems being solved. For example,

device drivers nowadays are made to support multiple operating systems and

multiple architectures. Hence, a device driver would behave slightly differently

to accommodate the difference imposed by the operating system application

user interface (API) or the hardware architecture instructions. In that sense, a

unique product is installed on each combination of operating system and hard-

ware architecture. However, these products are very similar and categorized

under the same software family name. When a software is developed to be

configured and act differently, it is called a software product line. A Software

Product Line (SPL) is a set of software products, developed from a common

source base, that share multiple features but also differ in some aiming to

satisfy a market segment [4]. An SPL is built while prioritizing flexibility and

the source code is developed to be reused when building different products. A

software feature in an SPL is defined as a particular functionality in a software

1



system [61].

The advantage of SPLs is that developers can use one code base for multiple

features. Hence, multiple customers only have to download one code base

(or installation executable) to build (or install) different products that solve

different problems. For example, when installing TeamViewer [94], the user

is asked to select the features to be installed; features such as remote print

to TeamViewer VPN. Based on the selected features, the same executable

resource is used to install a different product of the TeamViewer software

family. However, this advantage to customers and a company as a whole

can be a disadvantage for developers. When adding features to a product

line, testing the product line becomes harder. Having n features in a product

line implies that there are 2n possible combinations of features, or product

outcomes; hence adding features to the product line means an exponential

increase in the job of the testing and other analysis teams.

These difficulties inspired researchers to invent various tools that support

variability [18]. Some focused on modeling the features [7], [84], others focused

on supporting development in a multi-feature environment [11], [28]. Some

tools helped to fix the problem mentioned above by aiming to analyze SPLs

in a more efficient way. An example of such a tool is Typechef [55]. Typechef

aims to analyze all variants of a configurable software implemented using C

and the C preprocessor, which implies that Typechef only works on a specific

variability implementation mechanism. This brings up a broader question:

how is variability implemented? And how does the implementation affect the

way it’s analyzed.

1.1 Variability Implementation Mechanisms

Developers implement variability in various ways. Arguably, the most popular

variability implementation is using the C preprocessors’s #ifdef directive [63],

which is, for example, used extensively in the Linux kernel [75]. Another ap-

proach is parametrization, where parameters control built features; MADAM

project is a practical example of a parametrization variability implementa-
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tion [39]. Mozilla Firefox uses frameworks to implement variability; that im-

plementation is used in Firefox to support plugins, where users can create a

plugin software independently without having to understand the firefox code

base [45]. We elaborate and discuss more implementation mechanisms in the

Related Works chapter (Chapter 9). While there are many variability imple-

mentations, most of the literature that studied variability in practice focused

on the approach that uses preprocessors for conditional compilation and tools

that support that approach (#ifdef) [52], [53], [66], [74], [81], [88], [92], [95],

[104]. Exploring other variability implementation mechanisms that are used in

practice and understanding the challenges they impose on family-based analy-

ses is important to drive SPL research forward and ensure technology transfer.

1.2 Theses Focus

One interesting variability implementation that we study throughout this the-

sis is polymorphism. Polymorphism means creating many forms of something;

which matches the idea of variability in itself [25]. Hence, it makes sense for

polymorphism to be commonly utilized when implementing variability in soft-

ware. The implementation has been discussed in the literature under different

categories, such as template method polymorphism [8] and object-oriented

frameworks [54]. However, in practice, developers may be using polymor-

phism in variability implementations in ways that do not perfectly align with

the mechanisms discussed in the literature. In C++, polymorphism can be

implemented through two types: static polymorphism, where function calls

are resolved at compile time by the compiler or (2) at runtime where calls are

resolved at runtime with the help of a data structure called virtual method

table(vtable). We discuss both types of polymorphism more later in our thesis

(Section 2.3). In this thesis, we study the trade-offs of using different types of

polymorphism in variability by looking at a case study: Eclipse OMR.
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1.3 Eclipse OMR and its Variability Implemen-
tation

Eclipse OMR is an industrial case study of an SPL that uses an uncommon

combination of variability implementation mechanisms which rely heavily on

static polymorphism. OMR is an open-source framework for building lan-

guage runtimes [33]. It provides the building blocks for just-in-time compilers,

garbage collectors and more, each of which can be customized to a target lan-

guage. The cross-platform components also support multiple operating sys-

tems and target architectures: X86 (AMD64 and I386 ), Power, Z, and ARM

(under development). OMR has already been used in language runtimes for

Java (in production), as well as with Ruby, Python, and Lua experimentally.

As a result, all consumers of the framework can be described as products or

variants of the OMR software product line. Product variability can be the

result of changing the target language for which OMR components are used,

changing the target architecture of the resulting language runtime, or both. It

is important to note that we refer to OMR as a library of language runtime

components however some of its components can be used outside the scope

of a product runtime. OMR’s compiler component, for example, can be used

as a just-in-time compiler, which is considered part of the language runtime.

However, it can also be used to compile code before running it, which is outside

the scope of runtime.

The OMR framework’s extension model is based on build system variability

and static polymorphism. The OMR compiler, a core component of OMR and

the main focuses in this thesis, is built in an object-oriented manner where

variability is injected through the class hierarchy. A high-level component

may have specializations both for the target architecture and language, and

the specializations are contained in named directories. OMR creates a class

hierarchy for each high-level component and uses static polymorphism where

all type resolution for the objects that vary according to language or archi-

tecture happens at compile time. The resolution is guided by the selection of

directories in the build system to compose a given variant of the product line.
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1.4 Objective

The objective of our research is to answer the following questions: What are the

practical implications of using static polymorphism versus dynamic polymor-

phism? Are there any consequences for changing the variability implementa-

tion mechanism that use static polymorphism to use dynamic polymorphism?

In order to answer that, we consider changing a relatively large C++

project’s (OMR) variability implementation mechanism from using static poly-

morphism to dynamic polymorphism, in three milestones:

1. Explore and understand OMR’s variability implementation mechanism.

2. Study the trade-offs of using static vs dynamic polymorphism in OMR’s

variability implementation mechanism and judge which is a better fit for

the project.

3. If dynamic polymorphism was deemed fit, upgrade OMR’s source code to

use dynamic polymorphism in its variability implementation mechanism

and document our first-hand experience on that.

The above milestones will be referred to in the rest of the thesis to help

the reader understand how they were accomplished.

1.5 Contributions

While conducting our research to achieve the stated objective

1.5.1 Contribution 1: Documenting OMR’s Variability
Implementation Mechanism

In order to achieve our first milestone, we dug into the OMR source code to

understand its variability implementation mechanism. Since reading and un-

derstanding the source code was challenging, we documented our first-hand

experience in understanding OMR’s variability implementation mechanisim in

a paper publication [69]. OMR is intended to be used by foreign developers
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to complement their language development which makes readability and sim-

plicity of the source base a priority. As the project has a shortage in that

area, our documentation would be helpful for (1) OMR developers to have a

big picture of the variability implementation mechanism in their project, (2)

new developers who plan to contribute to the OMR source base, and (3) re-

searchers who would like to conduct case studies on C++ projects that use

related variability implementation mechanisms.

1.5.2 Contribution 2: Comparing Static vs Dynamic Poly-
morphism

When considering the second milestone, we first have to define the meaning

of "better fit for the project". As discussed in Section 1.5.1, readability of

the code is a priority. However, when looking at the project in the context of

being a language runtime library, the runtime performance is also a priority.

Hence, our meaning of "better fit for the project" is the solution that provides

the best trade-off between readability (or simplicity of the code) and runtime

performance.

In order to decide on the variability implementation mechanism that better

fits the project, we create a static analysis tool, OMRStatistics, that is

tailored to work on the variability implementation mechanism in OMR. It

collects statistics about the code (such as class names, functions in each class,

overridden functions...) and stores the information in a database. After that,

we used the outputted database to identify overridden functions and gather

relevant statistics for developers.

OMRStatistics has two main implications on OMR developers and con-

tributors:

1. It identifies the overridden functions that should be virtualized when

switching to dynamic polymorphism

2. It helps developers understand the OMR architecture better and identify

strengths and weaknesses
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It is important to note that although OMRStatistics is tailored to an-

alyze OMR’s variability implementation mechanism, it can be used on any

other C++ project that uses a similar variability implementation mechanism

to collect information about the code and store them in a database.

1.5.3 Contribution 3: Changing OMR’s Variability Im-
plementation to Dynamic Polymorphism

After collecting information and judging that it is better fit for the project

to change its variability implementation mechanism to use dynamic polymor-

phism, we virtualized the overridden functions to use dynamic polymorphism

(adding the virtual keyword to the function declaration) and benchmarked

the project to make sure there was minimal degradation in performance. While

virtualizing the functions, we ran into multiple problems that revealed prac-

tical pros and cons of using static polymorphism. We communicated such

challenges to OMR developers and elaborate on them in this thesis.

1.5.4 Recap

To recap, the contributions of this thesis:

• Documented OMR’s variability implementation mechanism

• Created a tool that analyzes variability in OMR and projects that have

similar variability implementation mechanisms (use static polymorphism).

• Partially changed a project with a large code base (Eclipse OMR) from

using static polymorphism to dynamic polymorphism, submitted pull

requests for the suggested changes, and benchmarked the project with

the new changes to measure the impact on runtime performance.

• Documented the benefits and costs of changing OMR’s variability im-

plementation mechanism to use dynamic polymorphism instead of static

polymorphism

The above contributions will be referred to in the rest of the thesis to help

the reader understand how they were achieved.
7
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Chapter 2

Background

In this chapter, we present multiple concepts and ideas that are necessary

to understand the rest of this thesis. More specifically, we talk about (1)

the different feature binding times of different variability implementations, (2)

how different types of polymorphism are implemented under the hood, (3) the

clang front-end compiler modularity in order to implement OMRStatistics,

and (4) the background and history from where the Eclipse OMR project is

coming from to provide the reader with more context. We now summarize

what we believe are the fundamental concepts on which our research is built.

2.1 Basic Definitions

While describing the research in this thesis, we use multiple scientific terms

related to software engineering in general and software variability in specific.

In the following, we explicitly define all terms that we use in this thesis:

1. Software variability : According to Bosch, software variability is the ca-

pability of a software system to change its behavior in a particular con-

text [19]. In that sense, a software system is considered to be variable if

it can alter its behavior when having different configurations or put in

different environments.

2. Software product line (SPL): An abstract product that is used to pro-

duce multiple other products depending on the customer needs [79]. It

is important to note here that all SPLs are variable software but not all
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variable software are SPLs. Variability can appear in any software that

changes its behavior in different contexts. For instance, a variable soft-

ware can consist of multiple products that are not related in definition or

functionality, but they share part of their codebase. On the other hand,

SPL products must be related in terms of functionality

3. Variability implementation mechanism: For a software to be variable, it

must have some mechanism or framework that specifies how the differ-

ent products share the code base and its resources. Such mechanisms

are called variability implementation mechanisms. Examples of variabil-

ity implementation mechanisms have been discussed in the introduction

(C preprocessors’s #ifdef, parametrization...). We provide a literature

review of the most common variability implementation mechanisms in

Chapter 9.

4. Feature: describes a particular behavior of a system. A feature can be

functional or non-functional [17]. For example, requiring a system to

display the number of empty classrooms on a campus is a functional

feature. Whereas requiring a system to display that number quickly is a

non-functional requirement. In our research, however, we mainly focus

on functional features in Eclipse OMR.

5. Abstract Syntax Tree (AST): it is the output of the semantic analysis

phase during compilation. An AST can be considered a way of commu-

nication between the front-end compiler and the optimizer and backend

compiler [26]. The three phases are discussed more later in this chapter

(Section 2.4).

6. Application Programming Interface (API): An API is a way for software

to communicate with its clients. As described by Brail et al. [103], it is

a contract between a software and its client developers; client developers

rely on such contracts to guarantee ways to access the services of the

provider software. When taken into Eclipse OMR’s context, since OMR

uses static polymorphism, the API is the polymorphic functions that

10



client developers need to use or extend to connect their language to the

runtime library.

2.2 Variability Binding Time

Determining which features are included in a product variant can be imple-

mented at different stages of the program life cycle. According to Apel et al.,

feature selection can happen when the program is built (build-time variability),

at the time when the program starts and is loaded to the memory (load-time

variability), or while the program is being executed (run-time variability) [8].

As pointed out by Apel et al., some researches distinguish even more binding

times [86]. However, for our discussion, the above binding times suffice. An

example of build-time variability is using the conditional C preprocessor di-

rectives (ifdef) to include different features based on parameters passed to

the compiler [31]. The Linux kernel mainly uses build-time variability, and

currently has more than 14,000 configuration options implemented as macros

[38]. With load-time variability, a software system is composed of different

parts that are compiled and ready to be loaded to memory; based on the de-

fined configurations, the right binaries would be loaded to memory and the

program executes [8]. NanoMail is an email client SPL that uses load-time

variability. The client integrates different email functionalities. When the

program starts, depending on the functionalities specified in the configuration

by the user, the right binaries are loaded to memory and the software exe-

cutes accordingly [87]. Run-time variability is when the software can instantly

change its behavior at runtime as a reaction to a change in its configuration or

surrounding environment. An example of such variability is Mozilla Firefox’s

Add-ons. It is possible to install an add-on to the browser and the functionality

will be added instantaneously (no restart needed). Variability implementation

mechanisms bind the components of the software at different times, and each

binding time has its pros and cons. More details about the trade-offs of differ-

ent binding times are described in Coplien’s book [24]. When implementing

variability using static polymorphism in C++, the right functionality or im-
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Figure 2.1: Comparison between dynamic polymorphism and CRTP. Figure
(a) shows a UML example of static polymorphism. Figure (b) shows a UML
example of dynamic polymorphism. Figures (c) and (d) show the a UML and
its implementation respectively of a CRTP example

plementation of a function is linked to the definition of a function at compile

time. On the other hand, C++’s implementation of dynamic polymorphism

links the implementation of a function to the call at run-time. Hence, deciding

on using static or dynamic polymorphism in OMR’s variability implementation

mechanism affects the binding time of features in the project.

2.3 Static Polymorphism vs Dynamic Polymor-
phism in C++

Polymorphism is commonly used in object-oriented languages to enable access

to multiple related behaviors, and can be used to implement variability [8].

Polymorphism can be viewed as a variability implementation mechanism and

is therefore useful to use in the context of SPLs [8].

In C++, polymorphism is by default implemented statically where function

calls are resolved and bounded to their implementation at compile time. This is

referred to as Static Polymorphism. Static polymorphism is usually associated

with the Curious Recurring Template Pattern (CRTP) [16]. CRTP exploits

template classes and static casting to implement inheritance.

12



On the other hand, it is also possible to bind functions to their implemen-

tation dynamically using the virtual keyword in C++; this is called dynamic

polymorphism. Since dynamic polymorphism one of the main features used by

object-oriented language programmers, its use is increasing and expected to

increase over time [10]. Dynamic polymorphism is achieved by having pointers

to lead the function call to the right function implementation at run-time [16].

While this is more flexible than static polymorphism, it adds a run-time over-

head involved with resolving virtual calls [32]. This downside may drive some

projects, including Eclipse OMR, to use static polymorphism instead.

In order to explain the difference between static and dynamic polymor-

phism, we provide an example of using virtual functions, and compare it to the

alternate implementation using CRTP. Consider Figure 2.1(a), class B inherits

from class A and overloads its function a(). In a dynamic implementation,

a() in A is declared as virtual, and B extends A as shown in Figure 2.1(b).

Whereas in CRTP, B extends A such that A has a template class parameter,

which is B itself, as shown in Figure 2.1(c). In the implementation of a(), A

casts itself into the template class (which is its child) and calls the appropriate

function as shown in Figure 2.1(d) (adapted from Bendersky’s article [16]).

Both implementations would end up with the program behaving the same

however each has its advantages and drawbacks. Using virtual (or dynamic

polymorphism) implies that the program would take more time to run every

time. In addition, the syntax is more readable than having to cast every time

a member function is called. On the other hand, using CRTP implies that the

program would take more time to compile but run faster.

2.4 LLVM and Clang’s Relation to OMRStatis-
tics

Since creating a static analysis tool from scratch is time-consuming, we de-

cided to take the same path taken by OMR developers and build our static

analysis tool, OMRStatistics, as a plugin for the clang front-end compiler.

OMRStatistics is explained in details in Chapter 5. We now discuss some
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background about compilers and where are clang and OMRStatistics trig-

gered in the compilation process.

Generally, compilers have three components or phases [59]:

1. A front-end that parses the source code to create an Abstract Syntax

Tree (AST)

2. An optimizer that makes optimizations on the AST; usually that AST

is translated to an intermediate language which would be optimized by

the optimizer

3. A backend that translates the AST or intermediate language to machine

language

LLVM [93] is a generic compiler that uses a modular design and an intermedi-

ate representation (IR) to separate concerns between front-end and back-end

developers [59], [60]. The IR is language independent which allows front-end

developers to write front-end compilers for any language, which translates any

language into the IR. On the other hand, optimization and back-end develop-

ers can write their algorithms and tools to deal with the IR. Clang [1] is a C

language front-end for LLVM. Clang also allows writing plugins to use its re-

sources and statically analyze the code. Our clang plugin, OMRStatistics,

uses clang’s resources to collect information about the code.

2.5 Eclipse OMR

Java runtime technology has benefited from hundreds of person-years of de-

velopment investment over the last two decades, resulting in a highly capable

and scalable dynamic language that delivers powerful performance and has a

vibrant developer ecosystem. The Eclipse OMR project aims to expand access

to high-quality runtime technologies for other dynamic languages through an

ongoing effort to restructure the core components of IBM’s J9 Java Virtual

Machine (JVM).

Eclipse OMR [33] is an open-source C++ library that consists of multi-

ple components for building language run-times, such as a compiler, garbage
14



collector, and a diagnostic engine, that are equipped for multiple architec-

tures. These components are not created for a specific language. Instead,

programming-language developers can leverage the designed software variabil-

ity to add functionality to OMR to support their specific language.

2.5.1 Project History

OMR traces back to the IBM Java Virtual Machine, J9, as well as its Just

in Time (JIT) compiler, Testarossa [90]. Testarossa is a multi-target com-

piler technology that translates Java bytecode to machine code, in order to

accelerate program execution.

After successfully implementing Testarossa for Java, IBM adapted the

compiler to other languages, including COBOL and other proprietary lan-

guages and runtime systems. This created the Testarossa SPL, which used

dynamic polymorphism and build-time selection to achieve software variabil-

ity. A changing industry suggested that it may be time for an entire language-

runtime SPL. This hypothesis was the genesis of the OMR project, which

refactored both the compiler component and the rest of the J9 JVM system to

extract the core into a set of code called OMR. As a result, OMR was created

to unlock the inner workings of the JVM without imposing Java semantics to

create a common platform for building language runtimes [34]. Later, in 2016,

it was open-sourced. Today, OMR supports X86, Power, Z, and ARM (under

development) platforms.

The integral idea of OMR was that many SPLs can be built from the core

components of OMR, which is intended to be itself largely language indepen-

dent. While SPL concepts lend themselves well to compiler design, Eclipse

OMR introduces SPLs for other run-time components as a bet that SPLs can

be applied to language run-times.

Subsequently, the compiler component was refactored to use static poly-

morphism to express variability, moving language-specific code into subclasses.

The garbage collector also used subclasses; however, it has so far used dynamic

dispatch to reflect polymorphism. In one of our IBM collaborator’s previous

work [40], the refactoring process of the compiler component is described, as
15



well as the lessons learned from it, but without focusing on the SPL and vari-

ability perspective.

2.5.2 Project Structure and Size

OMR has 735,733 lines of code (LOC) according SLOCCount [2] on October

2018, and 111 contributors according to GitHub’s statistics [33]. Most of the

source files (85% [33]) are cpp files, and the source code is divided into individ-

ual component directories: Compiler in compiler, Garbage Collector in gc, etc.

This allows the flexibility of having different variability implementation mecha-

nisms in different components. For example, the garbage collector heavily uses

#ifdef directives whereas the Compiler mostly uses static polymorphism. Our

research focuses on the variability implementation in the Compiler component.
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Chapter 3

Eclipse OMR Variability
Implementation Mechanism

In this chapter, we explain how variability in Eclipse OMR is implemented

based on our first-hand experience in diving into the source code. This chapter

is based on our published paper [69]. We hereby present our first contribution

and describe the path of how we achieved the first objective of this thesis (see

Sections 1.4, 1.5).

Eclipse OMR supports three dimensions for product variability: (1) lan-

guage variability, (2) platform variability, and (3) feature variability in some

components. Given n features, the total number of unique OMR products

is |languages| ∗ |platforms| ∗ 2n. OMR currently supports five architectures:

X86/i386, X86/AMD64, Power, ARM, and Z, and is used to develop run-time

components for Java, Ruby, and Python. The number of supported program-

ming languages is currently small, but is expected to increase since OMR’s

goal is to enable the quick development of language runtimes.

As previously stated, we focus on the compiler component in this thesis.

In general, the variability implementation mechanism used in the compiler

component is static polymorphism. However, it is different from the CRTP de-

sign we discussed earlier (in Section 2.3). In terms of implementation, OMR

developers initially wanted to use the typical CRTP used to implement static

polymorphism. However, due to the concern of introducing large amounts of

template code that may bloat the system, a customized notion of static poly-

morphism was created based on the idea of extensible classes [67]. Extensible
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Figure 3.1: Directory structure of the compiler component

classes are simply a hierarchy of normal C++ classes that are organized in a

special way to allow the compiler to find the most extended implementation

of a member function, i.e., the member function in the most derived class, no

matter where this function is called from. Such classes are tagged with a key-

word, OMR_EXTENSIBLE, when they are declared and are meant to be extended

by users. Note that OMR consists of more than 1, 000 classes that build up

its various functionality across multiple architectures. However, only certain

classes are extensible. This special organization in extensible classes depends

on several building blocks that we now discuss.

3.1 Directory Structure

Common source code across all architectures is placed in the main direc-

tory of the compiler component, and the architecture-specific code for each

platform is in a nested directory named after each platform. For example

CodeGenerator is part of the compiler’s implementation, responsible for gen-

erating intermediate-language code. Figure 3.1 shows the directory structure

of the compiler component and how the header files of the CodeGenerator fit

in. CodeGenerator is declared in OMRCodeGenerator.hpp; it is one of the
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Figure 3.2: The CodeGenerator hierarchy. Classes in italic represent abstract
classes.

classes that have different implementations according to the target program-

ming language and architecture. Since CodeGenerator is part of the compiler

component, its source files are under the compiler directory. The common

header file and implementation code across all products are placed in a di-

rectory directly under compiler, whereas the specific header information and

implementation code that customize the CodeGenerator for Z architecture, for

example, are inside the z directory. Notice that different header files all share

the same name; this is a critical fact that allows the include path variability

(explained in Section 3.4) to function correctly.
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3.2 Inheritance

To support architecture-specific functionality, OMR has an extensible class

hierarchy that mimics the directory structure. To elaborate, we take

the CodeGenerator extensible class hierarchy as an example. There is a

CodeGenerator class in each architecture-specific directory as shown in Fig-

ure 3.1. Each CodeGenerator class extends its less specific counterpart in the

parent directory as shown in Figure 3.2. For example, CodeGenerator inside

ARM extends the main CodeGenerator. The CodeGenerator inside i386 ex-

tends the x86 one, which in turn extends the main CodeGenerator. Since

C++ does not allow multiple declarations with the same class name, OMR

developers created a unique namespace for each architecture, which mostly cor-

responds to the directory structure. The base class in any extensible hierarchy,

which would be in the file compiler/codegen/OMRCodeGenerator.hpp in Fig-

ure 3.1, is declared in the OMR namespace, while the rest of the classes have

nested namespaces according to the corresponding architecture. Figure 3.2

shows the full extensible class hierarchy for CodeGenerator.

3.3 Connector Classes

3.3.1 Motivation for Creating Connector Classes

Note how all classes in Figure 3.2 apart from TR::CodeConnector are abstract

classes. This is because developers who use OMR to implement a language

runtime for a new programming language need to add concrete classes to the

bottom of the class hierarchy. The intuitive way to extend the class hierarchy

for all the supported architectures is to create a concrete class that extends the

most specific class in that hierarchy for every supported architecture. For ex-

ample, to extend CodeGenerator to work for a new language, lang, one would

create a lang::CodeGenerator class that extends X86::CodeGenerator if

targeting x86, P::CodeGenerator if targeting power, and so on. Although

C++ supports multiple inheritance, it is not possible to make use of it when

the parent class is still uncertain due to architecture variability. For exam-
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1 #i f nde f OMR_CODEGENERATOR_CONNECTOR
2 #d e f i n e OMR_CODEGENERATOR_CONNECTOR
3 #e l s e
4 #er r o r mu l t i p l e d e f i n i t i o n o f OMR: : X86 : : i 386 : : CodeGenerator
5 #end i f
6 namespace OMR { typedef
7 OMR: : X86 : : i 386 : : CodeGenerator CodeGeneratorConnector ; }
8 namespace OMR {
9 namespace X86 {

10 namespace i 3 86 {
11 c l a s s OMR\_EXTENSIBLE CodeGenerator :
12 p u b l i c OMR: : X86 : : CodeGenerator {
13 . . .
14 }
15 }}}

Listing 3.1: Using typdef to connect OMR::X86::i386::CodeGenerator to
OMR::CodeGeneratorConnector

ple, assume a function f() is implemented in the CodeGenerator classes in

all architecture namespaces. If the language-specific CodeGenerator class

(lang::CodeGenerator) tries to call f(), the compiler would complain that

f() is ambiguous since it is implemented in more than one parent class.

3.3.2 Connectors Classes Description

With static polymorphism, all variability in the inheritance hierarchy must

be resolved at compile time to gain efficiency over dynamic polymorphism.

This means that at compile time, a single linear hierarchy for a particular

architecture must be present. Hence, OMR developers had to provide a way

for the language-runtime developer to extend from a single class, which is the

most specific class of the target architecture. They created a new connector

class for each existing extensible class hierarchy. For example, CodeGenerator

hierarchy has a corresponding CodeGeneratorConnector class residing in the

OMR namespace; another extensible class hierarchy, Machine, has a Machine-

Connector class in the OMR namespace, and so on. The connector acts as a

liaison between the class hierarchy it is representing in OMR namespace and

external classes that aim to extend this hierarchy from outside the OMR names-

pace. For example, lang::Machine would extend OMR::MachineConnector to

use its functionality.
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3.3.3 Connector Classes Implementation

We use the CodeGenerator hierarchy to explain how connectors bridge the

gap between the correct most-derived class of the extensible class hierar-

chy and other OMR classes in C++. Every time a CodeGenerator class

along the extensible class hierarchy is declared, a typedef from that class

to CodeGeneratorConnector is created as shown in Listing 3.1. Note

how the typedef has an #ifdef guard similar to traditional #include

guards. Since all classes along the same extensible class hierarchy will

have the typedef statement, the guard ensures that only one typedef is

defined at a time. The general goal is to ensure that when we compile

for X86/i386, the only compiled typedef statement is the one that con-

nects OMR::X86::i386::CodeGenerator to OMR::CodeGeneratorConnector,

whereas if we compile for ARM architecture, the compiled typedef is the

one connecting the OMR::ARM::CodeGenerator to the OMR::CodeGenerator-

Connector. Looking at the big picture, OMRCodeGeneratorConnector is con-

nected by a typedef to each class along the extensible class hierarchy in each

architecture as shown in Figure 3.2. Hence, as long as there is a way to guide

the compiler to detect the typedef in the most derived class first, Code-

GeneratorConnector will represent the correct most-specialized class in that

architecture. The order in which files get compiled can be controlled via the

include paths passed to the compiler; more on this in the next section.

Now that the right class to extend from is identified, language developers

can create their own customizations by extending the connector class as shown

in Figure 3.2. To provide a generic way to always use architecture and lan-

guage extensions that are only determined at compile time, OMR developers

created a namespace TR, short for Testarossa, that contains the final imple-

mentation of the current combination of language and architecture extensions,

and which will be used by the runtime-environment components. For exam-

ple, assume we use OMR for language lang on an ARM host, and we need

to use CodeGenerator, we would then directly use TR::CodeGenerator since

it is guaranteed to have all the necessary extensions: OMR::CodeGenerator,
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OMR::ARM::CodeGenerator, and lang::CodeGenerator (the language’s adap-

tation of the CodeGenerator).

3.4 Include Paths

One last problem when using connectors is how to connect the right class to the

connector class. Going back to the CodeGenerator class hierarchy, when we

compile for the Power architecture, we actually compile two CodeGenerator

classes, OMR::CodeGenerator and OMR::P::CodeGenerator, and each of them

has a typedef for OMR::CodeGeneratorConnector. Hence, the challenge is

how to connect the connector to the most specific CodeGenerator. This is

solved by exploiting the compiler’s prioritization of include paths.

When compiling a class that implements the compiler component on the

i386 architecture, the following includes are passed to the preprocessor: -Icompiler-

/x/i386

- -Icompiler/x -Icompiler. Since the preprocessor searches for files in the

order of the passed includes, it will search for the class in i386 -specific classes

first, then in x86 -specific classes, and lastly in the base classes common for

all architectures. For example, CodeGenerator is found in the i386 directory

since a specialized implementation is present. On the other hand, a class that

has a single common implementation for all architectures will be found in

the compiler main directory. Based on the first file found and processed, the

CodeGeneratorConnector will be associated with a different class.

3.5 #ifdef Directives

OMR also uses #ifdef directives to implement variability, especially in the

Garbage Collector component. #ifdef directives can be used to include or

omit blocks of code by passing -D arguments to the preprocessor. Some of the

present macros control architecture-specific functionality, such as TR_TARGET-

_X86, while others are used for debugging, such as -DDEBUG_ARM_LINKAGE.

Finally, there are macros used to select specific features or functionality in

the code. For example, OMR_GC_MODRON_SCAVENGER is an optional feature
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of the garbage collection component. In general, there are many ways the

#ifdef directives are exploited in OMR, from being able to enable certain

optimizations to being able to specify the endianness of the build. However,

since the focus of our research was on the Compiler component, we do not

discuss #ifdef directives any further in this thesis.
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Chapter 4

Static Vs Dynamic Polymorphism

OMR’s variability implementation described in Chapter 3 guarantees to pro-

vide an optimal runtime performance due to the elimination of indirections

that would be introduced in function calls by dynamic polymorphism. How-

ever, static polymorphism comes at multiple costs. We now discuss these costs

which are the main motivation behind revisiting the variability implementation

mechanism in OMR and considering dynamic polymorphism as a replacement

for static polymorphism. We first explain the self() function, then discuss its

pros and cons. Lastly, we describe the developers’ opinions about the current

implementation. This chapter describes part of our work towards the second

objective of this thesis (see Section 1.4).

4.1 The self() Function

One of the main characteristics of OMR’s variability implementation is that the

most derived class in a given extensible class hierarchy is always the one that

is used for all functionality. Consider the scenario in Figure 4.1, where class A

is the base of the class hierarchy (similar to OMR::CodeGenerator) and class

C is the class with the most-specific implementation in the hierarchy (similar

to OMR::X86::AMD64::CodeGenerator when building OMR for X86/AMD64

architecture). Note that function a() in class A calls function b(). Based

on the desired inheritance behavior in OMR, it is expected that whenever

function b() is called, even when the call is from inside class A, the most

specific implementation of b(), which is in class B in this case, is executed.
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Figure 4.1: Example explaining the need for the self() function
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Hence, the following is the desired output from the code in Figure 4.1:

function a from class A

function b from class B

However, running the example in Figure 4.1 prints:

function a from class A

function b from class A

This means that A::b() is executed instead of B::b(). This is due to the value

of the self-pointer (accessed by this keyword) after resolving the call for a()

statically. When a() is called from an instance of C on line 28, the compiler

resolves the call to the implementation of A::a() on line 4 in Figure 4.1 since

class C does not have the function and class A is the nearest parent class of

C that has function a() defined. Calling b() from inside A::a() in line 9 is

implicitly calling this->b(). Since the self-pointer here is a class A pointer,

the call resolves to A::a().

However, OMR developers want to force the program to start searching for

b() from the bottom of the class hierarchy again, which is a functionality that

is not supported by static polymorphism. To solve this, OMR developers cre-

ated a function self() that always returns a fresh pointer of the most concrete

class in an extensible hierarchy by downcasting the self pointer (this). Hence,

instead of calling b() from function a(), developers have to call self()->b().

self() will return a pointer to class C, which forces the program to look from

the bottom of the hierarchy again and get the most specific implementation

available. Given that the TR namespace contains most of the concrete classes

of the different extensible hierarchies, self() is implemented to always return

a pointer of the concrete class in TR.

It is important to note here that this problem occurs because the function

call to b() is being resolved statically at compile time (static polymorphism).

If the call on line 28 was resolved at runtime, as in dynamic polymorphism,

the implementation of A::a() will be called at runtime. Hence, this pointer

in line 6 would be a pointer to class C and the call on that line would be a

call on a pointer to class C. So line 6 would trigger the program to use the

implementation of function b() pointed to in the virtual method table of the

27



Figure 4.2: Example of an irregular case that becomes legal when using self

instance object (which is of type C) and hence the implementation B::b()

would be executed.

4.2 Implications of self()

The self() function can be considered a hack for static polymorphism design

to force the compiler to get the most specific function implementation when

resolving the calls. This hack has multiple implications. We now discuss one

advantage and three consequences of the self() function.

4.2.1 Advantage: Less Runtime Cost

Developers use self() to trigger static polymorphism in C++, which allows

the compiler to resolve the function calls at compile time. Hence, when using

self(), there is no added runtime cost of calling polymorphic functions when

compared to running non-polymorphic functions. On the other hand, using

dynamic polymorphism delegates part of the task of resolving function calls

to the program at runtime, which is an added cost.
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4.2.2 Consequence: Irregularities

The introduction of self() function allows usage of C++ in a way that is not

allowed in the language by default. Figure 4.2 demonstrates that way, where

the self() function allows developers to call a function that is defined in a

derived classes (y()) without defining it in the base class. Allowing such a case

adds to the complexity of reading and understanding the OMR code base.

4.2.3 Consequence: OMRChecker

Given that the use of self() is a convention created by OMR developers,

silent failures due to missing downcasts when using this instead of self()

can occur. In order to ensure the conventions are respected, OMR developers

created OMRChecker, a static linter implemented as a Clang [1] plugin that

checks for the use of self() instead of this. To signify for the linter that

a specific class hierarchy is using static polymorphism and should be using

self(), OMR developers tag all the class declarations in such a hierarchy with

OMR_EXTENSIBLE tag. For example, all class declaration of the CodeGenerator

hierarchy would look like this: class OMR_EXTENSIBLE CodeGenerator{....

In more details, the linter checks: (1) that concrete classes in class hierar-

chies are in the correct namespace (usually the TR namespace), (2) that self()

replaces this in the appropriate places [67], and (3) if one class declaration

contains the OMR_EXTENSIBLE tag, all classes that belong to the same

hierarchy are declared with that tag.

4.2.4 Consequence: No Clear API

In order to add a feature to an SPL, developers have to find the extension

points of the project use them to extend the project’s support for the new fea-

ture. In OMR, client developers have to extend the right classes and override

the right polymorphic functions to connect their language to the library. Since

there are multiple reasons for extending and overriding classes and functions

respectively in OMR, not all extended and overridden classes and functions

respectively are meant to be extension points for the project. In other words,
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some classes are extended but client developers are not expected to use them

to connect their language to the library. Similarly, some functions are overrid-

den but are not expected to be further overridden by client developers. This

causes confusion for new client developers as to which functions and classes

should be considered as extension points and which ones to keep intact. In

other words, new client developers cannot identify Eclipse OMR’s API clearly.

Part of this research’s future work is to initiate a new code convention to

mark API functions and classes. Although created for a different reason, the

OMR_EXTENSIBLE tag already marks API classes. However, marking API

functions also is necessary.

4.3 Recap of the Consequences of OMR’s Cur-
rent Variability Implementation Mechanism

To recap, static polymorphism, is adding conventions that the community

contributors are obliged to follow, making the code less approachable and

harder to read. In spite of that, OMR developers decided to go with static

polymorphism since it is expected to have better runtime performance which is

worth the consequences. Hence, we decided to study the trade-offs between the

two types of polymorphism implementations and raise the question whether

it is worth switching to dynamic polymorphism or not. For example, if the

extension points are switched to dynamic polymorphism, that is having virtual

in the definition of functions that are expected to be overridden later, language

developers who are extending the language do not have to deal with the self()

convention.

4.4 Moving to Dynamic Polymorphism

Given the above downsides, some of the OMR developers were advocating the

change to dynamic polymorphism. The hypothesis was that the vast majority

of specialization exists in a small number of methods that are not sufficient

to substantially impact the run-time speed and that furthermore, switching

to dynamic polymorphism may, in fact, improve the compilation performance
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by allowing the compiler to do a better job building the source code. This

improvement would be due to the ability to declare functions in header files,

allowing the build compiler to inline more functions. In order to test this

hypothesis and collect more information to help OMR developers reach a deci-

sion about the implementation that better fits their project, we created a tool,

OMRStatistics, that analyzes the methods and classes of OMR’s source

code.
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Chapter 5

OMRStatistics

In this chapter, we introduce OMRStatistics, our open-source static analy-

sis tool, which we built as a Clang plugin [78]. It records the parent-child class

relationships in the source code and collects information about the methods

in these classes. This information includes their source location, where they

have been overridden, and whether they are virtual or implicit. OMRStatis-

tics records all this information in a MySQL database to make it easier for

developers to query. Additionally, it provides visualizations of the information

in the form of diagrams and HTML pages.

In this chapter, we continue describing our work towards the second objec-

tive of this thesis (see Section 1.4). We also present our second contribution:

OMRStatistics (see Section 1.5). We describe in details the process of de-

veloping OMRStatistics, including algorithms of how it works and what

test case we created to ensure its correctness. After that, we show how we uti-

lized OMRStatistics to get useful information for assessing which variability

implementation decision better fits the project.

5.1 Features

As an overview, OMRStatistics has the following features:

• Prints class hierarchy information in a CSV file

• Prints class and function information in a CSV file
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• Creates a MySQL database from the CSV files that are easily queried

for useful information

• Visualizes the class hierarchies in a PDF file

• Visualizes the function override information in an HTML file

• Has a Makefile system that connects all the components together so that

one make command can run the tool over OMR

5.2 Setup

Since we implement OMRStatistics as a Clang plugin, it runs its analysis

while compiling a given source file with Clang. In order to run OMRStatis-

tics on the whole OMR source code, the whole source code has to be compiled

by Clang. For a given compilation, OMR would need to already be configured

with the combination of architecture and programming language to build for.

This means that only a subset of the source files would be analyzed in any

given build. Analyzing all variants of the source code means compiling OMR

multiple times with all possible combinations of architectures and languages.

At the moment, OMR has a relatively small number of variants due to the

handful number of languages that use OMR. However, we expect that the

number of variants to rapidly increase as more languages start using the OMR

technology. For now, we individually run OMRStatistics on all variants and

then aggregate the results; it is part of our future work to edit Clang such that

we can leverage the similarities between variants and avoid redundant runs on

the same file [69].

In order to setup OMRStatistics in an OMR project, make produce-

Visualizations should be run. After that, the instructions inside tools/com-

piler/OMRStatistics/database/all.sql need to be executed on a MySQL server

to build the database.

We ran OMRStatistics on OMR and OpenJ9 [35], IBM’s Java Virtual

Machine (JVM) implementation. OpenJ9 is the biggest consumer of the OMR

33



1 // Data S t r u c t u r e d e c l a r a t i o n s
2 Dec l a r e C l a s s MethodTracker // keeps t r a c k o f method i n f o rma t i o n .
3 Dec l a r e Data S t r u c t u r e Node hav ing
4 name // Name o f c l a s s r e p r e s e n t e d
5 pa r en t // Po i n t e r to node r e p r e s e n t i n g the pa r en t o f the r e p r e s e n t e d c l a s s
6 Dec l a r e a Data s t r u c t u r e Hierarchy hav ing
7 base // Node r e p r e s e n t i n g the base c l a s s o f the h i e r a r c h y
8 methodName2MethodTracker // Maps a f u n c t i o n name to a s e t o f MethodTracker o b j e c t s
9

10 // Phase 1 : C o l l e c t i n g i n f o rma t i o n
11 c l a s sH i e r a r chy = { c l a s s −−> [ ] } // maps r e l a t i o n s h i p between each c l a s s and i t s a r r a y o f p a r e n t s
12 class2Methods = { c l a s s name −−> method s i g n a t u r e } // maps each c l a s s to i t s member methods
13
14 de f r e c o r dPa r en t ( C l a s sDec l d e c l ) :
15 f o r e a c h ( pa r en t i n d e c l . p a r e n t s ) do
16 i f ( d e c l i n c l a s sH i e r a r chy . k ey s ( ) and pa r en t i n c l a s sH i e r a r chy [ d e c l ] ) then cont inue
17 c l a s sH i e r a r chy [ d e c l ] . add ( d e c l . p a r en t )
18 r e c o r dPa r en t ( pa r en t )
19
20 f o r e a c h ( C l a s sDe c l d e c l i n the s ou r c e code ) do
21 r e c o r dPa r en t ( d e c l )
22 f o r e a c h ( MethodSignature s i g i n d e c l ) do
23 class2Methods . add ( dec l , s i g )

Listing 5.1: Pseudocode for definitions and phase 1 of the algorithm used in
OMRStatistics to collect class hierarchy and method information

technology today. Analyzing it gives us an insight into how language develop-

ers already use OMR and how future language developers are likely to use the

OMR library.

5.3 OMRStatistics Implementation Mechanism

5.3.1 Mechanism Overview - The Algorithm

As a Clang plugin, the tool is limited by the API provided by Clang, which

is to traverse the Abstract Syntax Tree (AST) after Clang has already parsed

the source code and created the AST. We hereby present our algorithm in

pseudocode in Listings 5.1, 5.2, and 5.3 that uses Clang’s RecursiveAST-

Visitor class which calls its member function VisitCXXRecordDecl(const

CXXRecordDecl *decl) to traverse C++ class declarations. After that we use

the ASTConsumer class’s HandleTranslationUnit(ASTContext & Context)

function to process the collected data. HandleTranslationUnit(ASTContext

& Context) runs after all calls to VisitCXXRecordDecl(const CXXRecord-

Decl *decl) are done, hence when executing the code of that function, Clang

guarantees that all classes are visited and all our data is collected.
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Our algorithm is divided into three phases. First, we collect the information

from the source code and store them in data structures. Then, we create the

class hierarchies. After that, we process the function information to get links

between each class and its functions in addition to override information. We

now explain, in more details, each phase of the algorithm, while referring to

Listings 5.1, 5.2, and 5.3.

5.3.2 Phase 1: Collecting Information

In this phase, described in Listing 5.1, we first define a function that recursively

visits every parent of a class declaration C (i.e., a class from which C inherits),

and records the relationships between every class and its parent, then we

collect the method information about the original class declaration visited.

More specifically, OMRStatistics does the following:

1. Visit every class declaration in the source code (line 20)

2. Recursively iterate through all the parents of that declaration (lines 15

and 18).

3. When a parent that has not been processed earlier is found, record the

relationship between this class and its parent in a binary map (called

classHierarchy) (line 16-17).

4. After processing all parents of the initial class declaration (where Visit-

CXXRecordDecl was called), go back to the initial declaration and record

all its methods in a map (called class2Methods) (lines 22-23).

5.3.3 Phase 2: Creation of Class Hierarchies

For this part of the algorithm, we need to define two data structures: Node

(line 3 in Listing 5.1) and Hierarchy (line 6 in Listing 5.1). A Node basically

represents a C++ class. Each node has a string name and a pointer to its par-

ent. On the other hand, Hierarchy represents a class hierarchy; i.e., represents

a collection of Nodes. Each hierarchy has a base representing its base class

and a methodName2MethodTracker which is used to collect information about
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1 // Phase 2 : C r e a t i o n o f the C l a s s H i e r a r c h i e s
2 c lass2Address = { c l a s s name −−> add r e s s } // L i nk s each c l a s s to the add r e s s
3 // i n memory o f the node r e p r e s e n t i n g i t
4 h i e r a r c h i e s = [ ] // Array o f H i e r a r c h y s t r u c t u r e s
5 f o r ( c h i l d , pa r en t ) i n c l a s sH i e r a r chy do
6 i f ( c h i l d i n c lass2Address && par en t not i n c lass2Address ) do
7 Def i n e Node newNode
8 newNode . name = pa r en t
9 c lass2Address . add ( newNode , &newNode )

10 c h i l d = node found i n c lass2Address // r e p r e s e n t i n g the c h i l d c l a s s
11 c h i l d . pa r en t = newNode
12 e l s e i f ( pa r en t i n c lass2Address && c h i l d not i n c lass2Address ) do
13 Def i n e Node newNode
14 newNode . name = c h i l d
15 c lass2Address . add ( newNode , add r e s s o f newNode )
16 pa r en t = node found i n c lass2Address // r e p r e s e n t i n g the pa r en t c l a s s
17 newNode . pa r en t = pa r en t
18 i f ( Hierarchy h | h . base == pa r en t ) do
19 h−>base = newNode
20 e l s e i f ( c h i l d not i n c lass2Address && par en t not i n c lass2Address ) do
21 Def i n e Nodes newNode1 and newNode2
22 newNode1 . name = c h i l d
23 newNode2 . name = pa r en t
24 c lass2Address . add ( newNode1 , add r e s s o f newNode1 )
25 c lass2Address . add ( newNode2 , add r e s s o f newNode2 )
26 newNode1 . pa r en t = newNode2
27 Def i n e Hierarchy h
28 h . base = newNode1
29 h i e r a r c h i e s . add ( h )
30 e l s e
31 // i f c h i l d and pa r en t a r e found i n c l a s s 2Add r e s s
32 c h i l d = node found when s e a r c h i n g c lass2Address f o r c h i l d c l a s s
33 pa r en t = node found when s e a r c h i n g c lass2Address f o r pa r en t c l a s s
34 c h i l d . pa r en t = pa r en t
35 i f ( Hierarchy h | h . base == pa r en t ) do
36 d e l e t e h

Listing 5.2: Pseudocode for phase 2 of the algorithm used in OMRStatistics
to collect class hierarchy and method information
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functions in that hierarchy; we explain and use this map in the third phase of

the algorithm. An array to store all hierarchy structures, hierarchies, is also

used. A map, class2Address, that maps every class name to its created Node

address is also used. In this phase, described in Listing 5.2, OMRStatistics

does the following:

1. Iterate through every record in classHierarchy. The key represents the

child class name and the value represents the parent class name (line 5).

2. Search for the class name in the class2Address map, finding the class

means that there already exists a node with this class’s name.

3. If only the child class was found in the map (line 6):

• Create new node for the parent class (lines 7-8)

• Store the new node in class2Address (line 9)

• Link the child’s parent pointer to the new node (lines 10-11)

4. If only the parent class was found in the map (line 12):

• Create new node for the child class (lines 13-14).

• Store the new node in class2Address (line 15).

• Link the new node’s parent pointer to the parent (lines 16-17).

• Search all hierarchies (in the hierarchies array) for the hierarchy

whose base is the parent. Change the base of that hierarchy to the

new node (lines 18-19).

5. If neither child nor parent class were found in the map (line 20):

• Create new node for both the child and parent classes (lines 21-22).

• Store the both new nodes in class2Address (lines 24-25).

• Link the new child node’s parent pointer to the new parent node

(line 26).

• Create a new Hierarchy that has these two nodes (lines 27-28).
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1
2 // Phase 3 : C o l l e c t Method I n f o rma t i o n
3 s u bH i e r a r c h i e s = [ ]
4
5 de f g e t L i n e a rH i e r a r c h y (Node n , Node [ ] a r r a y ) :
6 a r r a y . add ( n )
7 i f ( n . p a r e n t s . l e n g t h == 0) do // Top o f h i e r a r c h y reached
8 s u bH i e r a r h c i e s . add ( a r r a y )
9 e l s e do

10 f o r e a c h ( pa r en t i n n . p a r e n t s ) do
11 g e t L i n e a rH i e r a r c h y ( parent , a r r a y )
12
13 f o r ( Hierarchy h i n h i e r a r c h i e s ) do
14 g e t L i n e a rH i e r a r c h y ( h . base , [ ] )
15 f o r e a c h (Node [ ] s ubH i e r a r ch y : s u bH i e r a r c h i e s )
16 Def i n e Map methodName2MethodTracker // L i nk s e v e r y f u n c t i o n name to the s e t o f
17 // t r a c k e r s t ha t r e p r e s e n t f u n c t i o n s w i th tha t name
18 f o r e a c h (Node n : s ubH i e r a r ch y ) // Trave r s e from l a s t node to f i r s t node
19 f o r ( f u n c t i o n f i n class2Methods [ n . name ] ) do
20 i f ( f . name i n methodName2MethodTracker ) do
21 m = MethodTracker found i n methodName2MethodTracker
22 m. addOccur rence ( d e c l )
23 e l s e do
24 m = Crea te MethodTracker f o r f
25 methodName2MethodTracker . add (m)

Listing 5.3: Pseudocode for phase 3 of the algorithm used in OMRStatistics
to collect class hierarchy and method information

• Add the new Hierarchy to the hierarchies array (line 29).

6. If both child and parent class were found in the map (line 30):

• Link the child node’s parent pointer to the parent node (lines 31-

33).

• If a hierarchy exists such that the hierarchy’s base is the parent

node, delete that hierarchy (lines 34-35).

5.3.4 Phase 3: Method Information Collection

In order to collect method information about each class in a class hierarchy,

we create a data structure, called MethodTracker for every function signa-

ture that contains information about the function. Then, we create a map

(methodName2MethodTracker) for every hierarchy that connects every method

name in a class in that hierarchy to an array of all the trackers that repre-

sent functions with that name. Multiple trackers might be found for the same

name in cases of overloads. Since in these cases, the function name is the

same but different signatures are defined which means different trackers are
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Figure 5.1: Example UML explaining getLinearHierarchy function

instantiated. The only reason for this map is to make searching for trackers

faster. When searching for a function signature, we extract its name first and

search for it in the methodName2MethodTracker map. From that search, we

get all the trackers that represent functions with that name. Then, we search

each of these trackers for the right signature of the function being searched

for.

We also define a function getLinearHierarchy that transforms the Hierar-

chy structures we have into Linear ones whose nodes are stored in arrays, each

of them called a subHierarchy. For example, calling getLinearHierarchy

on a hierarchy similar to the one in figure 5.1 produces two subhierarchies:

the first would be [B,A] symbolizing B–>A and the second would be [C,A]

symbolizing C–>A.

In phase 3, described in Listing 5.3, OMRStatistics does the following:

1. For each hierarchy, load the list of subHierarchies in the subHierarchies

array. This happens as follows:

(a) Call the getLinearHierarchy function passing to it the base of a

hierarchy and an empty array of Node structures (line 14)

(b) Add the current node to the current array passed in the parameters

(line 6).
39



(c) If the current node has parents, then this is not the top of the

hierarchy. In this case, recursively call the function on each of

the node’s parents, giving it the same array to allow incrementally

adding all the nodes of a linear hierarchy in the same array (lines

9-11).

(d) If the current node has no more parents, then we reached the top

of the hierarchy. At this point, the passed array would have all the

nodes representing a full subhierarchy. Hence, add this array to the

list of completed subhierarchies (lines 7-8).

2. After that, we traverse the subhierarchies inversely, from the last node

to the first node. This is because, initially, nodes are stored from the

most derived class to the most base class. In other words, the more

derived class nodes come before their parents. However, to derive method

overrides we need to search the hierarchies from top to bottom (line 18).

3. Use class2Methods map to get all functions for the class represented by

the current node. For each of function check if the name of that function

is already in methodName2MethodTracker (lines 19-20).

4. If it is, then this is an override, record the occurrence of the method in

that class inside the MethodTracker (lines 21-22).

5. If it does not exist in the map, then this is a unique function. Create a

new tracker and add it to the map (lines 23-25).

5.4 OMRStatistics System Implementation

In this section, we describe how OMRStatistics works in the project to get

the results it needs. As mentioned in the features section (Section 5.1), we have

a Makefile system in place that runs the tool automatically. Hence, we now

describe this Makefile’s execution when running make produceVisualization

while elaborating on every step of the process.
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5.4.1 Step 1: Find the Source Files

Since OMR supports multiple architectures and relies on build path variability,

OMR already has a system in place to get the list of files that must be built

given a specific architecture. That system is a Makefile that takes four envi-

ronment variables as parameters and returns the source files in two different

environmental variables. More specifically, the Makefile takes the architec-

ture information in the following variable name: HOST_ARCH, HOST_SUBARCH,

TARGET_ARCH, and TARGET_SUBARCH and loads all the source file names and

paths that should be compiled in variables named: JIT_PRODUCT_BACKEND-

_SOURCES and JIT_PRODUCT_SOURCE_FILES. This Makefile is located in om-

r/fvtest/compilertest/build/files/ and it is called common.mk.

In order to run our tool, we: (1) set the four input environmental variables

in our own makefile, (2) include the Makefile mentioned above, (3) concatenate

the two output variables into a variable called LIST, and (4) lastly call clang

to compile every file in LIST.

Since our tool runs on all architectures, we basically reproduce the steps

described above four times (for each architecture: X86/I386, X86/AMD64,

Power, and Z ) where in each instance we define the input variables differently

to represent the right architecture.

5.4.2 Step 2: Run OMRStatistics on the Source Files
and Produce Visualizations

When OMRStatistics is run on the OMR source code, it creates five CSV

output files as follows:

1. allClasses.csv : contains a record for each class. The record includes

the class name, the namespace it resides in, and whether this class is

extensible or not.

2. allFunctions.csv : contains a record for every function. The record in-

cludes the function name, signature, class which this function belongs

to, and whether this function is implicitly declared and/or virtual.
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3. functionLocation.csv : contains the information that links every function

to the source file location where it was declared.

4. hierarchy.csv : contains two fields in each record. The first one indicates

whether this hierarchy is extensible or not. The second field is a tex-

tual serialization of that hierarchy. The hierarchy is represented in the

following form: class –> parent 1 –> ... –> parent n.

5. overrides.csv : contains function override information. Specifically, it

holds the qualified class name of the base class, the qualified class name

of the derived class where the function was overridden, and the function

signature that was overridden.

Since we run the tool four times on different architectures, we get the

above outputs four times. Hence, as part of our build system, we have a

combination of batch and python commands that does the following: (1) copy

all the original files to a directory as a backup, (2) concatenate all outputs

together, and (3) remove duplicate records. After doing that, we end up having

all the information we need in all four architectures in the project stored in

five CSV files in total.

Recall that classes in one hierarchy should have the same name but they

would be located in different namespaces (see Chapter 3). Since the OMR

library is always under development, we found some hierarchies that defy this

rule and are expected to be fixed at a later stage in the OMR development

phase. Such hierarchies would have classes of different names but are located

in the same namespace. We called such hierarchies Internamespace Hierarchies

and put them in a separate outfile called: interNamespaceHierarchies

After that, we use Python and JavaScript tools (omr/tools/compiler/-

OMRStatistics/visualization/Hierarchy/getDatabaseSQL.py and omr/tools/com-

piler/OMRStatistics/visualization/Overrides/processOverrides.js) to create a

PDF file and populate an HTML file (overrides.html) respectively from the

data in hierarchy.csv and overrides.csv. The PDF file (hierarchy.pdf ) is a PDF

file that visualizes the class hierarchies. A screen shot of the visualization is in
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Figure 5.2: Hierarchy visualization file

Figure 5.3: Part of the overrides visualizations web page. Originally, all nodes
had the same font-size and underlined. Green nodes represent virtual functions
and red nodes represent implicit functions. However, in order to make this fig-
ure compatible with black-and-white printing, we made only virtual functions
underlined, and implicit functions are italicized and have larger fonts. Pressing
the button on top hides the implicit functions.
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Figure 5.4: OMRStatistics relational database schema

Figure 5.2. The overrides.html is a web page that visualizations the overrides

present in OMR. Figure 5.3 shows an excerpt of this visualization.

5.4.3 Step 3: Creating Database

After the visualization, the system triggers another Python tool (omr/tools/-

compiler/OMRStatistics/database/getDatabaseSQL.py) to use the CSV out-

puts to create MySQL instructions to create the database. The database can

be queried to find different information about how the functions are used.

Figure 5.4 shows the relational database schema.

The Function and Class tables contain all the functions and classes found

in the project. The Function table defines each function by an ID. The record

contains the name and signature for each function, whether this function is

virtual or implicit, the header file where this function is declared, and to which

class this method belongs. The Class table contains a record for each class,

mentioning its name, namespace, and whether it is extensible. Similarly, the

File table contains information about the source locations of declarations. For

now, we keep track of the file location only; however, it is kept in a separate

table in case more information is needed about the source locations. The class

relationships are also saved in the Polymorphism and HierarchyBase tables.

Finally, the override relationships are found in the Override table. Note that

in the schema, there is a table called FunctionCalls; this contains information
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about function calls in the source code. However, the information in this table

is currently not complete; we later realized that there are corner cases that

we did not correctly handle and hence did not use this table in our analysis.

We only add it here for the completion of the actual database schema in our

project.

5.4.4 Recap and Implications

In summary, OMRStatistics and the system around it run in three phases:

(1) get source files from the OMR build system, (2) run OMRStatistics on

each of these source files and get the outputs, and (3) concatenate and trim

those outputs then produce visualizations and a MySQL database.

OMRStatistics can be helpful in multiple ways: first, the information

provided helps to check whether the amount of overridden functions in exten-

sible classes is enough to significantly impact performance if virtualized. In

addition, OMRStatistics helps OMR developers document the API bound-

aries and reason about the extension points of OMR on a per-method basis.

In summary, OMRStatistics helps developers reason about the variability

in their source code.

Although we currently only ran OMRStatistics on OMR and OpenJ9,

it is important to note that the nature of the tool as a Clang plugin allows

it to run on any source code that can be compiled by Clang, hence it does

theoretically work on other C++ projects.

5.5 Use Cases

In order to show how our tool can be used, we demonstrate here a few use

cases that show only a subset of what our tool can do. First, OMRStatistics

should be set up as described in Section 5.2. We now describe some use cases,

alongside with the instructions and results specific for each use case.
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1 SELECT DISTINCT bc . Namespace , bc . Classname , o f . S i gna tu r e , oc . Namespace , oc . Classname
2 FROM Ove r r i d e as o
3 INNER JOIN Funct i on as b f on b f . i d = o . BaseFunct ion ID
4 INNER JOIN Funct i on as o f on o f . i d = o . o v e r r i d i n gFun c t i o n ID
5 INNER JOIN C l a s s as bc on bc . i d = bf . c l a s s I D
6 INNER JOIN C l a s s as oc on oc . i d = o f . c l a s s ID
7 WHERE bc . c lassName= ’ CodeGenerator ’ ;

Listing 5.4: The query used to find all overridden functions

Figure 5.5: The results from the database when running the query in 5.4 to
find all overridden functions

5.5.1 Use Case 1: Find All Overridden Functions

In order to find all overridden functions in a class CodeGenerator in OMR, the

query in Listing 5.4 needs to be executed in the database. The query would

result in a table similar to the one in Figure 5.5.

5.5.2 Use Case 2: Find All Functions in a Class

1 SELECT Namespace , Classname , S i gna tu r e , F i l e I D
2 FROM Funct i on as f
3 INNER JOIN C l a s s as c on c . i d = f . c l a s s
4 IDWHERE className=’ CodeGenerator ’ ;

Listing 5.5: The query used to find all functions in a class

In order to find all functions in a class CodeGenerator in OMR, the query

in Listing 5.5 needs to be executed in the database. The query would result

in a table similar to the one in Figure 5.6.
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Figure 5.6: The results from the database when running the query in 5.5 to
find all functions in a class

5.5.3 Use Case 3: Find a Location of the Definition of a
Function Signature

1 SELECT Namespace , Classname , S i gna tu r e , Loca t i on
2 FROM Funct i on as f
3 INNER JOIN C l a s s as c on c . i d = f . c l a s s ID
4 INNER JOIN F i l e as l on l . i d = f . f i l e I D
5 WHERE namespace=’OMR’ and c la s sname=’ CodeGenerator

Listing 5.6: The query used to find a location of the definition of a function
signature

Figure 5.7: The results from the database when running the query in 5.6 to
find a location of the definition of a function signature

In order to find the location of function OMR::CodeGenerator::afterRA()

in OMR, the query in Listing 5.6 needs to be executed in the database. The

query would result in a table similar to the one in Figure 5.7.
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Figure 5.8: Part of the graph.pdf when viewing the hierarchy visualization in
the fourth use case

5.5.4 Use Case 4: View the Class Hierarchy

The class Hierarchy of the Machine class is visualized in tools/compiler/OMRStatis-

tics/visualization/Hierarchy/graph.pdf. To demonstrate that, the Machine hi-

erarchy visualization in that PDF is shown in Figure 5.8.
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Chapter 6

Assessing Dynamic Polymorphism

As mentioned in the use cases in the previous chapter, lots of information can

be queried from the database to help OMR developers answer their questions.

In order to decide which kind of polymorphism is best for this project, we

query the database to answer the following questions that OMR developers

were interested in:

• Q1: How many classes are in OMR altogether and how many of them

are made into extensible classes?

• Q2: How many methods are there in all OMR extensible classes and how

many of them are overridden in client/extension code?

• Q3: Is most functionality added through static polymorphism or through

the addition of new functions in derived classes?

The aim of the first question is to understand the number of classes that

have to be searched by client developers when extending OMR to find the ex-

tension points of the project. If that number is large, dynamic polymorphism

can help (with its virtual keyword) highlight overridden functions and make

it easier for developers to find functions that they would need to override.

The second question aims to show us the percentage of overridden functions

in OMR. This helps us determine the likelihood of performance degradation.

If the number of overridden functions is low then it is less likely that consider-

able performance degradation will happen if functions are virtualized and vice
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versa. Note that this is not a factor that can strictly determine the perfor-

mance impact but it does help to make a more educated decision about the

change. Additionally, this gives us an insight into the amount of work needed

to virtualize all the functions in OMR. The third question is designed to give

us insight about how OMR is expected to be used by client developers. We

use OpenJ9, as the biggest consumer of OMR today, to determine how OMR

is likely to be used by client developers.

We now discuss each of these questions more thoroughly, how we used

OMRStatistics to answer it, and how answering that question helped OMR

developers move one step closer to the best variability implementation decision

for the project.

6.1 The Queries

We hereby present the queries used in our collection and processing of results.

We refer to these in later sections of this chapter to show how we got our results.

Some of the following queries were run on the database generated when running

OMRStatistics on all architecture variants of OMR and others were run on

the database generated when running OMRStatistics on all architecture

variants of OpenJ9 and OMR together. We will elaborate on which database

each query ran on later in this section. The databases were created in May

2018.

1 SELECT count (∗ )
2 FROM c l a s s

Listing 6.1: Query used to get the total number of classes in the source code.

1 SELECT count (∗ )
2 FROM c l a s s
3 WHERE i s E x t e n s i b l e =1;

Listing 6.2: Query used to get the total number of extensible classes in the
source code.
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1 SELECT COUNT(DISTINCT oc . Namespace , oc . Classname )
2 FROM Ove r r i d e as o
3 INNER JOIN Funct i on as b f on b f . i d = o . BaseFunct ion ID
4 INNER JOIN Funct i on as o f on o f . i d = o . o v e r r i d i n gFun c t i o n ID
5 INNER JOIN C l a s s as bc on bc . i d = bf . c l a s s I D
6 INNER JOIN C l a s s as oc on oc . i d = o f . c l a s s ID
7 WHERE bc . i s E x t e n s i b l e = 1 and oc . i s E x t e n s i b l e = 1 ;

Listing 6.3: Query used to get the number of extensible classes that contain
overridden functions

1 SELECT Namespace , Classname , S i g n a t u r e
2 FROM f u n c t i o n as f
3 INNER JOIN c l a s s as c on c . i d = f . c l a s s I D
4 WHERE c . i s E x t e n s i b l e = 1 ;

Listing 6.4: Query used to get the function signatures of all the functions
inside extensible classes. It returns records where each record contains the
function signature and the class name where this function belongs

1 SELECT DISTINCT bc . Namespace , bc . Classname , b f . S i g n a t u r e
2 FROM Ove r r i d e as o
3 INNER JOIN Funct i on as b f on b f . i d = o . BaseFunct ion ID
4 INNER JOIN Funct i on as o f on o f . i d = o . o v e r r i d i n gFun c t i o n ID
5 INNER JOIN C l a s s as bc on bc . i d = bf . c l a s s I D
6 INNER JOIN C l a s s as oc on oc . i d = o f . c l a s s ID
7 WHERE bc . i s E x t e n s i b l e = 1 and oc . i s E x t e n s i b l e = 1 ;

Listing 6.5: Query used to get the number of extensible classes that contain
overridden functions
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6.2 Data About Extensible Classes

Question 1: How many classes are in OMR altogether and how many

of them are made into extensible classes? Running the queries in List-

ings 6.1 and Listings 6.2 on the database generated by running OMRStatis-

tics on OMR show that 149 of the 1365 classes in OMR (~10.91%) are marked

as extensible. Considering only the extensible classes, we ran the query in List-

ing 6.3 which showed that the functions which OMR downstream projects are

expected to extend are spread in 104 classes (~7.62% of total classes). This

means that OMR downstream language developers have to look through all of

these classes and decide which functions they need to override to provide the

desired behavior for their project while leveraging the rest of the OMR code.

Searching through such a large number of classes for extension points is not

ideal. With the switch to dynamic polymorphism, only the functions that are

overridden will be made into virtual functions. This will make all possible

extension points easier to find for OMR downstream project developers.
Finding 1

149 of the 1365 classes in OMR (~7.75%) are marked as extensible.
Considering only the extensible classes, the functions which OMR down-
stream projects are expected to extend are spread in 161 classes (~8.37%
of total classes).

6.3 Data About Overridden Functions

Question 2: How many methods are there in all OMR extensible

classes and how many of them are overridden in client/extension

code?

Running the query in Listing 6.4 on the database generated when running

OMRStatistics on OMR results in a table with functions and what class

each function belongs to. However, some functions might be overridden and

hence would have multiple records in our results. Hence, we ran a python

script that processes the results to get the total number of unique functions
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in extensible classes, 8450. Similarly to the query in Listing 6.4, the one in

Listing 6.5 produces a table with unique overridden functions and what class

each function belongs to. Note that this is different from the previous query

since it focuses on overridden functions and not the total number of functions.

The python script also processes the results due to duplicate records for the

same function to get the number of unique overridden functions in extensible

classes, 855. The python script full path is: omr/compiler/OMRStatistics/-

sourceCodeProcessrs/statistics.py ; this script will be referred to till the end of

this chapter since it is responsible for parsing all results discussed here.

Executing the above queries and processing the results with the python

file reveals that OMR has 8,450 methods in extensible classes and only 855 of

these methods, roughly 10.11%, are overridden. After presenting our results

to OMR developers, they were encouraged by the small percentage of methods

that would need to be virtualized, but further run-time profiling is needed to

determine the possible run-time overhead since it depends on how often these

function will be called.
Finding 2

OMR has 8,450 methods in extensible classes and only 855 of these
methods, roughly 10.11%, are overridden.

6.4 Data About Extensible Class Hierarchies

Question 3: Is most functionality added through static polymor-

phism or through the addition of new functions in derived classes?

New functionality in OMR can be added either by adding new methods in

derived classes or by overriding existing methods and altering their behavior.

One of the tasks our python script that we referred to earlier does is get the

number of extensible hierarchies and their average depth. The script basically

counts the number of hierarchies from OMRStatistics hierarchy.csv output.

It also uses the same output to get the average length of a hierarchy. Running

the script on the hierarchy.csv showed that the OMR and OpenJ9 source codes
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combined have 80 extensible hierarchies with average class hierarchy depth of

3.25 classes/hierarchy.

We also ran the queries in Listings 6.4 and 6.5 on the database obtained

by running OMRStatistics on OMR and OpenJ9. After that, we processed

the results with the python script to find the average percentage of overridden

functions in an extensible hierarchy. More specifically, for every hierarchy, we

get the number of unique overridden functions from 6.4 and the total number

of unique functions from 6.5 and divide the first by the second to get the

percentage of overridden function in that hierarchy. After that, we average

out all the percentages to get our result. We found that on average, only

19.89% of an extensible hierarchy’s functions are overridden. This implies

that the majority of the variability points in OMR are not in the form of

method overrides, but are instead in the form of adding new functionality in

the derived classes. In other words, the low percentage of overridden functions

suggests that existing client developers extended OMR mostly by adding new

functionality in derived classes instead of overriding existing functions. The

last also implies that new language developers are more likely to extend OMR

by adding new functions. Hence, moving from static polymorphism to dynamic

polymorphism will only affect a low percentage of functions and variability

points in OMR and its current client (OpenJ9) and is likely to affect a low

percentage of functions and variability points in new client languages. Hence,

the change is likely to have a minimal impact on the performance of OMR.
Finding 3

We find 80 extensible hierarchies and calculated the average class hierar-
chy depth to be 3.25 classes. We also find that on average, only 19.89%
of an extensible hierarchy’s functions are overridden.

Note that while we only answer these three questions here, the data gath-

ered by OMRStatistics in the database allows OMR developers to query

for additional information about the class hierarchies and function overload-

ing/overriding in OMR and OpenJ9.

The facts and data in this chapter suggest that there are no data that
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strongly discourages the decision to change from static to dynamic polymor-

phism.
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Chapter 7

The Road to Virtualization in
OMR

Altering a big project’s variability implementation mechanism is not a straight-

forward task; it includes lots of unexpected challenges which require straying

from or even changing the plan to solve them. In this chapter, we discuss our

work towards the third objective of this thesis (see Section 1.4). This chapter

also presents the process used to achieve the third contribution of this thesis

(see Section 1.5).

More specifically, we first describe the discussions we had with the people

that would be affected by that change and how these discussions changed the

plans we had at the time. We later formalize the process used to virtualize

the functions and describe it here. Then, we talk about a Python tool that

we created to help us virtualize the functions faster. After that we discuss the

challenges that we faced when virtualizing and pushing the code to the OMR

code base and how are we overcoming them. Finally, we show the results that

we got after virtualizing a significant part of the project.

7.1 Convincing the OMR Team

In our research, we worked directly with part of the IBM compiler’s team, pre-

cisely, two people from that team. However, our research aimed to change the

variability implementation mechanism of the whole OMR project. Hence, the

change would affect the whole IBM compiler’s team and the rest of the OMR
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community. Therefore, before changing OMR’s variability implementation, we

needed to discuss our change with the stakeholders and get their approval. We

here talk about how discussing our proposal with them changed the track of

our research.

As a first step, we participated in the OMR Compiler Architecture Meet-

ing [77] (we participated in the meeting on June 6 [3]). The meeting result

changed our research track. Our initial plan for virtualization was to only

virtualize overridden functions that are intended to be used by client code.

For example, if a function was overridden in the CodeGenerator hierarchy

but was not intended to be used by lang::CodeGenerator, then such func-

tion will keep using static polymorphism. The idea behind this was to have

Hybrid polymorphism implementation in OMR (the use of both static and dy-

namic polymorphism) and to use the virtual keyword (also known as dynamic

polymorphism) to highlight what functions are supposed to be overridden for

language developers. However, after discussing the idea in the OMR Com-

piler Architecture Meeting, the plan changed to virtualizing all the overridden

functions in OMR to keep the consistency in the project. After that, the plan

would be to benchmark OMR by the IBM compilers team. Stakeholders can

then evaluate whether any runtime performance degradation is an acceptable

trade-off for the convenience that is obtained from dynamic polymorphism.

Hence, the approval of the change to dynamic polymorphism would depend

on how much degradation in performance would happen.

To put it in concrete steps, the plan was as follows: (1) virtualize the func-

tions that are supposed to be overridden by client developers in the CodeGenerator

hierarchy, (2) submit a pull request(PR) with the change, (3) the team bench-

marks OMR with our changes, (4) if no significant change in runtime perfor-

mance happens, the change is accepted, (5) part of the future work is to do

the same for other classes. We picked CodeGenerator hierarchy here as the

class hierarchy with the most amount of overridden functions in OMR.

Whereas the OMR Compiler Architecture Meeting changed the plan to

become as follows: (1) virtualize all overridden functions in the first twenty

hierarchies with the most amount of overridden functions, (2) submit PRs
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with the change for each hierarchy, (3) the team benchmarks OMR with our

changes, (4) if no significant change in runtime performance happens, our

changes are accepted. However, due to challenges that we discuss later in this

chapter, we virtualize almost all of the CodeGenerator class in our work, in

addition to a simpler class called ELFRelocationResolver, and leave virtual-

izing the last two functions of the CodeGenerator class and other hierarchies

for future work.

7.2 The Process of Virtualization

The CodeGenerator hierarchy has more than 180 overridden functions that

were candidates of virtualizations. In order to virtualize all functions sys-

tematically and minimize errors, we formalized a process that we follow; the

process is described below:

1. Go to the headers of all the classes in the target hierarchy and remove the

OMR_EXTENSIBLE tag. The reason behind this is that when virtualizing

the functions, we remove the self() keyword. Hence, the linter, OM-

RChecker, would complain when running on that code. Therefore, we

remove OMR_EXTENSIBLE from all the classes in the hierarchy to signify

to the linter not to check this hierarchy for self() calls.

2. Add the virtual keyword to the first declaration of every overridden

function. We say the first declaration since overridden functions are

declared many times through the hierarchy. In C++, we only need to

virtualize the first occurrence of that function when traversing the hier-

archy from the base class to the most derived class in that hierarchy.

3. Remove the self() from all calls to virtualized member functions. The

reason behind this is that calls for virtualized functions are resolved at

runtime, which eliminates the problem that was being solved by the

self() keyword. Hence, we can safely remove the keyword from all

member function calls.
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1 namespace OMR {
2 c l a s s OMR_EXTENSIBLE ELFRe l o ca t i o nRe so l v e r {
3 pub l i c :
4 u int32_t r e s o l v eR e l o c a t i o nTyp e ( const TR : : S t a t i c R e l o c a t i o n &r e l o c a t i o n ) ;
5 } ;
6 }

Listing 7.1: OMR::ElfRelocationResolver’s original header file.

1 namespace OMR {
2 c l a s s OMR_EXTENSIBLE ELFRe l o c a t i o nRe so l v e r {
3 p u b l i c :
4 v i r t u a l u int32_t r e s o l v eR e l o c a t i o nTyp e ( const TR : : S t a t i c R e l o c a t i o n &r e l o c a t i o n ) ;
5 } ;
6 }

Listing 7.2: OMR::ElfRelocationResolver’s header with our changes.

4. Rebuild the project with the changes and make sure that our changes

did not break the build.

5. Run the resultant Java binary using the command: java -version to

make sure that the executable runs without crashing.

6. Submit a PR with the changes.

In order to test the process, we virtualized a simple class hierarchy in OMR

called ELFRelocationResolved and submitted a PR [102] with our changes.

The class header before and after our virtualization is shown in Listings 7.1

and 7.2 respectively. We basically just add the virtual keyword in front of

the only function in the class since this function is overridden in classes derived

from OMR::ElfRelocationResolver and there were no calls for that function

that use self().

7.3 Manual Virtualization Helper (MVH)

To virtualize classes easily and more efficiently, we created a Python tool that

helps virtualizing the classes and removing the self() calls. The tool resides

in omr/tools/compilers/OMRStatistics/sourceCodeProcessors/ManualVirtualization-

Helper directory. This tool is surrounded by helper Python scripts, all con-

nected by a Makefile system; we call the whole system Manual Virtualization

Helper (MVH).
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1 FROM Ove r r i d e as o
2 SELECT DISTINCT bc . namespace , bc . c lassname , o f . s i g n a t u r e , oc . namespace , oc . c l a s sname
3 INNER JOIN Funct i on as b f on b f . i d = o . BaseFunct ion ID
4 INNER JOIN Func t i on as o f on o f . i d = o . o v e r r i d i n gFun c t i o n ID
5 INNER JOIN C l a s s as bc on bc . i d = bf . c l a s s I D
6 INNER JOIN C l a s s as oc on oc . i d = o f . c l a s s I D
7 WHERE bc . i s E x t e n s i b l e = 1 and oc . i s E x t e n s i b l e = 1 and b f . i s V i r t u a l = 0
8 and o f . i s V i r t u a l = 0 and b f . i s I m p l i c i t = 0 and o f . i s I m p l i c i t = 0
9 and bc . c lassName=CodeGenerator ;

Listing 7.3: SQL Query used for MVH.

7.3.1 Overview

The system aims to automate the virtualization of classes in OMR. The system

does the following:

• Virtualizes function definitions (adds virtual to the beginning of func-

tion definitions)

• Removes self()-> from all calls for the target functions

• Detects functions that are defined in the header file of a class but never

implemented in that class and warns the user about them.

7.3.2 Process

More specifically, MVH follows the process below to achieve its objectives.

• Extract the list of functions that need to be virtualized from the output

of the database query in Listing 7.3.

• Search the header files of class hierarchies from base to the most derived

class and virtualize the first occurrence of the function definition. If

multiple definitions are found in the same header (i.e., overloads), the

function is ignored and a warning for manual virtualization is issued.

• Before the tool runs, a Makefile greps for the function calls in the source

code. MVH uses the results to remove any self() call of these functions.

• Before the tool runs, a Makefile greps for the function implementations

in the source code. MVH uses the results, in addition to searching the
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header files for function implementations, to find declared but unimple-

mented functions in a class. Then it warns the user about unimplemented

functions. Declared but unimplemented functions are dangerous when

virtualizing overridden functions; they are the reason behind a challenge

we faced and we discuss in Section 7.4.3.

7.3.3 Configuration

The system needs to be configured as follows to work correctly:

• In the Makefile, the following configuration should be set:

– OMR_PATH and OPENJ9_PATH: Location of OMR and OpenJ9 direc-

tories to read and virtualize functions.

– PATH_TO_DB_QUERY: Location of file containing the query mentioned

in 7.3 when run in the database.

– TARGET_CLASS: Class to be virtualized.

• In processSearchResults.py, the following verbosity configuration should

be set:

– PRINT_OVERLOADS: Triggers MVH to print the cases where an over-

load is detected.

– PRINT_NO_IMPLEMENTATION: Triggers MVH to print the cases where

no implementation for the function is detected.

Assumptions, supported cases, and unsupported case for MVH are docu-

mented in our corresponding Github repository [68].

7.4 Challenges

While virtualizing the functions in CodeGenerator we ran into multiple prob-

lems. Some issues were handled manually; other issues motivated us to go back

and upgrade MVH to handle those issues; other issues were outside our control

such as cases were the OMR design have to be changed. In cases where the
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solution was outside our control, we started a discussion in the Eclipse OMR

community to find a solution for these problems. We now discuss the different

challenges we ran into and how we resolved each of them.

7.4.1 Picking the Right Commit

One problem we had when submitting the PRs is picking the right commit

to build our changes upon. The OMR repository and OpenJ9 (discussed in

Section 5.2) repository are developed independently and sometimes commits

in OMR temporarily break the ones in OpenJ9. Hence, when picking the

commit on which we rebase or apply our work on in the OMR and OpenJ9

Github repositories, we had to first clone the projects with the picked commits

and try building them without introducing our changes. Only after making

sure they compiled and ran some tests successfully, could we safely reapply

our work over those commits.

7.4.2 Finding the problematic functions

After finding the right commits to build upon, we tried virtualizing all of

the 180+ overridden functions in the CodeGenerator class hierarchy and re-

building the project; the build failed. More specifically, the build included a

Java binary executable which was giving a segmentation fault [99]. Debugging

the segmentation fault was challenging since building the project depended

on OMR’s build system, which had no straightforward option for generat-

ing debugging metadata. Hence, we could not use debuggers like gdb [42] to

find the error. We had to ask the IBM team how to generate such debug-

ging data. They redirected us to a blog post [27] of an IBM developer who

had similar problems before and needed to debug his code. The blog post

describes how the IBM developer hacked his way through the running envi-

ronment and build system to generate debugging information and running gdb

in that environment. In addition, we had no information or documentation

about that crashing Java binary; understanding its functionality would require

an intermediate understanding of OMR’s build system. Hence, after getting

the debugging information, we had to collaborate with the IBM team through
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Figure 7.1: Visualization of buildRegisterMapForInstruction function that
is declared but has no implementation in OMR::CodeGenerator

joint debugging sessions to understand what was breaking the build process.

Collaborating with the IBM team was also time-consuming due to their busy

schedules during the period of our research.

Hence, we had to introduce our changes in phases and build them locally

in order to find the error. We introduced the changes in batches of around 20

functions each. If building the project with that change resulted in a working

Java binary, we would virtualize another 20 functions. If not, we would try

building the project with only the first 10 of these functions virtualized and

so on. We keep narrowing the changes down to get to the point where we

virtualize only one function. When such a build results with a successful Java

binary, it implies that the changed function was not the problematic one. If

that build resulted with a Java binary that makes a segmentation fault, it

verifies that the changed function was a problematic function. We did this

with all the functions and discovered all problematic functions which we later

further inspect and describe the source of the problem in the following.

7.4.3 Problem 1: Functions with no Implementations

Some functions such as void buildRegisterMapForInstruction(TR_GCStackMap*)

are declared in a base class (OMR::CodeGenerator) but have no implementa-

tion in that class. Their implementation comes in all the derived classes instead

(OMR::X86::CodeGenerator, OMR::P::CodeGenerator, OMR::Z::CodeGenerator)

as visualized in Figure 7.1. These functions were legal when static polymor-
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phism was used however when virtualized, the compiler complained about such

functions. We had to declare them as pure virtual [100] instead. Declaring a

function as pure virtual is promising the compiler that the function declared

to be pure virtual will be defined in a derived class.

We also encountered a function, TR::Instruction * generateSwitchTo-

InterpreterPrePrologue(TR::Instruction *prev, uint8_t alignment,-

uint8_t alignmentMargin), that was declared in OMR::X86::CodeGenerator

but implemented in J9::X86::CodeGenerator, which means it is only defined

in the OpenJ9 project. Such cases cannot be declared as pure virtual since

when declared pure virtual, building the OMR project independently from

OpenJ9 would fail. This is because the OMR project would have no imple-

mentation for a pure virtual function. In such cases, we had to create an empty

implementation for the function (returning a null pointer in this case).

7.4.4 Problem 2: Functions called in constructors

Virtualizing functions that are called in a constructor form a challenge since

virtual calls in constructors are not resolved as expected. Consider the example

in Figure 7.2. The problem arises when an object of type J9::X86::AMD64::-

CodeGenerator is constructed; the current class’ contructor calls its parent

classes’ constructors, including the OMR::X86::AMD64::CodeGenerator con-

structor. As shown in the implementation of that constructor in Listing 7.4,

the initialize function is called, which resolves to the implementation in

OMR::X86::CodeGenerator since it is the function’s most specific implementa-

tion in the CodeGenerator class hierarchy. In OMR::X86::CodeGenerator::-

initialize, initializeLinkage function is called, which is only implemented

in OMR::CodeGenerator as per the UML in Figure 7.2. That implementation

contains a call to the createLinkage function, which is overridden as shown in

the UML in Figure 7.2. Hence, createLinkage is a candidate of virtualization.

With static polymorphism, calling self()->createLinkage() would re-

solve to the function’s implementation in J9::X86::AMD64CodeGenerator which

is the most specific implementation in the hierarchy. However, when virtual-

ized and self() is removed, C++ would not call the implementation in a
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Figure 7.2: UML of an example of a call of a virtual function in a
CodeGenerator class constructor

65



1 OMR: : X86 : : AMD64 : : CodeGenerator ( ) {
2 . . .
3 s e l f ()−> i n i t i a l i z e ( . . . )
4 . . .
5 }
6 OMR: : X86 : : CodeGenerator : : i n i t i a l i z e (TR : : Comp i l a t i on ∗comp) {
7 . . .
8 s e l f ()−> i n i t i a l i z e L i n k a g e ( )
9 . . .

10 }
11 OMR: : CodeGenerator : : i n i t i a l i z e L i n k a g e ( ) {
12 . . .
13 s e l f ()−>c r e a t e L i n k a g e ( )
14 . . .
15 }

Listing 7.4: Code of the example of a call of a virtual function in a
CodeGenerator class constructor

class that is not fully constructed [101]. In other words, the implementation

of J9::X86::AMD64::CodeGenerator::createLinkage would not be called

since the object is not fully constructed yet. Instead, the implementation in the

next class up the hierarchy that has the implementation of that function (i.e.,

OMR::X86::CodeGenerator::createLinkage) would be called. This would

lead createLinkage function to not behave as expected since its most specific

implementation for the J9 project is not triggered.

We found two functions with this case which we did not virtualize yet:

createLinkageForCompilation() and createLinkage(TR_LinkageConventions).

In order to solve this problem, we suggest the following solution. The two

problematic functions both have implementations that are not dependent on

the state or member functions of the object being constructed. Hence, it is

safe to export them to a different class. Therefore, we suggest creating a class,

LinkagePolicy that only has those two functions. The class would be declared

in all the namespaces of OMR, like other extensible classes in the project,

which allows the flexibility of having different implementations of the func-

tions for different architectures. We then instantiate a LinkagePolicy object

before every call for a problematic function and call the problematic function

as a member of that LinkagePolicy instance. For example, instead of calling

createLinkage(), we first create an instance of the LinkagePolicy class, let’s

call it policyInstance, and then we call policyInstance.createLinkage().
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Although this is a plausible solution, we cannot be taking design decisions

for the OMR community. The issue is raised in Github [89] for the OMR

community to discuss it. However, we have no consensus on a solution yet.

We need to wait for the community’s decision and act accordingly

7.4.5 Problem 3: Submitting PRs

Submitting PRs with our changes was tricky due to the online tests that run

on our changes. Our changes were targetting both OMR and OpenJ9 source

codes which were two different repositories. Every time we update the PR on

one repository, the project is built with our changes and tested on their Travis

CI build server.

Travis CI has different settings in each repository and hence works dif-

ferently. For OMR, the project would be built independantly from OpenJ9

which raised challenges similar to the one described above (in Section 7.4.3 for

function TR::Instruction * generateSwitchToInterpreterPrePrologue-

(TR::Instruction *prev, uint8_t alignment, uint8_t alignmentMargin)).

For OpenJ9, the project would be built in without taking our changes in the

OMR PR into consideration. So for example, it would assume the CodeGenerator

classes are tagged with OMR_EXTENSIBLE and hence need the self() function

in every member function call, which would cause the PR to have errors. To

solve this, we indicate in the OpenJ9 PR description that it depends on a PR

in the OMR repository. This allows the OMR team to change the settings and

base the OpenJ9 PR on its corresponding one in the OMR repository.

7.4.6 Problem 6: Infrastructure Issues

To verify that our changes did not break any functionality in the project, the

binaries built from our PR are tested on IBM proprietary test suits. These

tests can only be accessed by the IBM team. Hence, we had to pass our changes

to them to be tested. Based on the feedback of such tests, we sometimes had

to schedule more debugging sessions to fix the errors. Scheduling sessions that

fit in all the participants’ schedules resulted in some delays in our research

which we tried to use for writing papers and other artifacts.
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7.5 Benchmarking

7.5.1 Setup

In order to benchmark Eclipse OMR and check if there was any significant

degradation of runtime performance, we ran two benchmarking software: the

first is a Java web application that runs on WebSphere Liberty [62]. The

second is a rule engine benchmarked by a set of rules. In both benchmarks,

we ran the setup using two versions of Eclipse OMR: the altered Eclipse OMR

that uses dynamic polymorphism in its variability implementation mechanism

and the original Eclipse OMR before we did our changes. Eclipse OMR that

was used as our experimental control group is built on the commit of has: 31d-

44e18ee711b11a750755e81d6f9bc7f2a9806. It is the last commit before we did

our changes. On the other hand, the Eclipse OMR that contained our changes

is built on the commit of hash: a9a70c316b452bc61afae7530e3147f273546ee9

which marks the last of our changes. It is worthy to note that some of the OMR

components are not utilized by these tests. Those components include OMR’s

language-independant testing framework, fvtest, and the OMR-specific tools

contained under the tools component and directory. However, our changes

were mostly in the compiler component and we verified that this part is being

tested by both benchmarks. It is also worthy to note that both benchmarking

software are IBM proprietary products, hence we did not have access to them;

instead, part of the compiler’s team who was working with us on this project

ran the tests and sent us the results.

The first benchmark test is called DayTader3 and is based on WebSphere

Liberty, a Java application server that uses OpenJ9 [105] (which uses the

Eclipse OMR compiler component) to compile the Java web applications run-

ning on it. The machine on which that benchmark ran is an IBM machine

called PoisonIvy. It has an Intel ’E5-2650 v2 Ivybridge’ AMD64 (64-bit) cen-

tral processing unit, 144 Gigabytes of random-access memory, running on a

Linux - RedHat Enterprise Linux 7 GA x86-64 operating system. The web

application is an online trading system [51]. The test basically gives the web

application a large number of transactions, and the throughput is measured as
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the number of transactions that were completed by the server. The throughput

tracking happens after the warmup is done. For this benchmark, the warmup

was running transactions on the server for 540 seconds before the throughput

tracking started. A transaction in our case is an act done by the user; such

as buying, selling, viewing portfolio, looking up stock prices... Two configura-

tions were used in the test, LargeThreadPool and LargeThreadPoolWarm. The

latter optimizes the performance of Eclipse OMR in general. Both configu-

rations have been traditionally used by IBM developers when benchmarking,

hence we followed their steps and got results for both benchmarks. Since Web-

Sphere Liberty uses OpenJ9 and Eclipse OMR to compile and run the web

application that ran on it, measuring the throughput, the number of transac-

tions that were completed, gives us insight about the runtime performance of

Eclipse OMR.

The second benchmark test, called ODM, is a business rule management

system [50] which contains a rule engine. The rule engine is configured with

a set of rules and makes decisions based on these rules. The engine is con-

figured to use OpenJ9 and Eclipse OMR to compile and run its Java code.

After warming up the Java Virtual Machine (OpenJ9) for 240 seconds, the

benchmark here is to test the engine with two sets of rules, Segmentation300-

RulesFastpathRVEJB and Segmentation5FastpathRVEJB, then measuring the

throughput. The throughput, in this case, is the number of decisions com-

pleted. Since Eclipse OMR is used in running the rule engine, the throughput

is an indicator of the runtime performance of OMR. The algorithm used by

the engine is called Fastpath [37].

7.5.2 Results

After running the benchmarks 10 times, we were provided with the average

throughput (mean), standard deviation, minimum throughput, and maximum

throughput. We used these values to plot Figures 7.3, 7.4, 7.5, and 7.6. The

throughput changes are negligible and can be associated to other variables in

the experiment. In Figures 7.3 and 7.5 (DayTrader3-LargeThreadPool and

ODM-Seg300 respectively), we observe a minor increase in throughput; when
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Figure 7.3: The Effects of Changing the Variability Implementation Mech-
anism on the Throughput in the DayTader3 Benchmark - LargeThreadPool
Configuration
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Figure 7.4: The Effects of Changing the Variability Implementation Mecha-
nism on the Throughput in the DayTader3 Benchmark - LargeThreadPool-
Warm Configuration
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Figure 7.5: The Effects of Changing the Variability Implementation Mecha-
nism on the Throughput in the ODM Benchmark - Seg300 Ruleset
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Figure 7.6: The Effects of Changing the Variability Implementation Mecha-
nism on the Throughput in the ODM Benchmark - Seg5 Ruleset
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comparing the means, the increase is 0.5% and 1.2% respectively which

is considered negligible. On the other, in Figures 7.4 and 7.6 (DayTrader3-

LargeThreadPoolWarm and OMD-Seg5 respectively), we observe a minor de-

crease in the throughput (the means decrease 0.8% and 0.1% respectively)

which is also considered negligible.
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Chapter 8

Discussion

So far in the thesis, we described how we collected information in order to en-

courage or discourage OMR developers to consider moving from using static to

using dynamic polymorphism in their variability implementation mechanism.

We created OMRStatistics, which was our main resource to collect infor-

mation, and found out that: (1) ~10.61% of the classes are expected to be

extended by developers. (2) The functions that are overridden and expected

to be overridden by client developers are spread in only ~8.37% of the classes.

(3) When taking that in terms of the total number of functions, only ~10.11%

of all functions are overridden and expected to be overridden by client de-

velopers. (4) When taking that in terms of extensible class hierarchies, less

than ~20% of a class hierarchy’s functions are expected to be extended. Those

results encouraged OMR developers to consider changing the variability im-

plementation mechanism from using static polymorphism to using dynamic

polymorphism.

After that, we helped OMR developers change the variability implementa-

tion mechanism by creating MVH, a Python tool that helps with virtualizing

the functions. While virtualizing, multiple problems arose. Some of them

raised open questions that we did not expect earlier. For example, there were

overridden member functions that are called in constructors; virtualizing such

functions caused errors. The solution we came up with, after discussions with

our IBM collaborators in this research, is to export those functions into an-

other class so that when they are called in a constructor, those functions would
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not be member functions of the object being constructed anymore and hence

would not cause any issue. However, the solution for this problem is a de-

sign decision that needs to be taken by all the OMR developer team (what

we referred to earlier as the Bigger Team). Hence, we did not implement our

suggested solution as part of our changes yet; we are awaiting the decision of

the OMR developers team.

8.1 Answering the Research Questions

In the introduction, we proposed the following research questions: What are

the practical implications of using static polymorphism versus dynamic poly-

morphism? Are there any consequences for changing the variability imple-

mentation mechanism that use static polymorphism to use dynamic polymor-

phism?

After working on this project, we realized an important implication of

static polymorphism in C++. When a polymorphic function is called, C++

is designed to look at the declaration of the callee class declaration and all

the parent class declarations of that callee, it is not designed to look at chil-

dren class declarations. This, when mixed with static polymorphism’s static

function call resolution, ends up in a roadblock for developers using such an

implementation. The problem described in Section 4.1 is an example of a

general problem any developer would face when using static polymorphism in

C++. When calling instance.a() in Figure 4.1, expecting functions A::a()

and B::b() to run is not an expectation specific for the OMR implementa-

tion; it is the intuitive behavior that is the case in dynamic polymorphism.

However, it is not the case in static polymorphism due to the static function

call resolution.

There are multiple ways to get around that problem, including static cast-

ing to the derived class before calling member functions. This idea is com-

monly used in CRTP (see Section 2.3). Building on that idea, OMR developers

decided to cast directly to the most derived class of a hierarchy, instead of cast-

ing to the directly derived class, as done in CRTP. Although this solves the
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problem described in Section 4.1, adding a static cast every time a member

function is called makes the code more complicated and harder to understand

for outside developers.

On another hand, due to the dynamic polymorphism implementation in

C++ a class that has an unimplemented virtual function is considered an

abstract class and is not allowed to be instantiated. This formed a challenge

for us when changing OMR’s variability implementation mechanism to use

dynamic polymorphism; since some functions were declared in a class that

has multiple children classes but only defined in one of these children classes.

In static polymorphism, instantiating any of the children classes with that

function unimplemented would not cause an error as long as the function is

not called. However, in dynamic polymorphism, children classes with the

function unimplemented are considered abstract and hence instantiating such

children throws a compilation error. This is practically a downside of static

polymorphism; since static polymorphism allows cases of instantiating classes

with unimplemented functions to pass without the compiler complaining.

Coming to dynamic polymorphism, the practical downside we faced, when

comparing it to static polymorphism, was the additional level of indirection

introduced which slightly degrades the runtime performance. As shown in

Section 7.5, virtualizing the class hierarchy with the most number of overrid-

den functions in OMR did negligible degradation to the runtime performance.

Although negligible now, degradation might increase in the future if calls to

polymorphic functions increased heavily in OMR or client code. Hence, mov-

ing to dynamic polymorphism comes with the constant concern of future per-

formance degradation if virtual calls are abused. In other words, moving to

dynamic polymorphism limits the development of OMR and client source code

to calling polymorphic functions a minimal amount of times.

When discussing static and dynamic polymorphism, it is interesting to see

OMR’s implementation mechanism in terms of the two kinds of polymorphism.

Eclipse OMR’s implementation uses static polymorphism in a similar way to

how CRTP uses static polymorphism since static casting to derived classes

is used. However, Eclipse OMR’s implementation uses protocols used in dy-
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namic polymorphism but not in static polymorphism such as abstract classes;

since OMR’s implementation does not allow the instantiation of any extensi-

ble classes other than the ones in the TR namespace, it is implicitly declaring

them as abstract. Here we can see how OMR’s implementation used static

polymorphism for its optimized runtime performance but also used concepts

that are used in dynamic polymorphism but not in static polymorphism (ab-

stract classes) to hide the consequences of static polymorphism. Since static

polymorphism allowed classes with unimplemented functions to be instanti-

ated, OMR developers tried to forbid instantiating most of these classes by

abstracting all classes in non-TR namespaces.

8.2 Implementation that Best Fits Eclipse OMR

In our research, we take a specific variability implementation mechanism that

is used in the industry but not discussed in literature and we try to alter

it to make it better. We do realize however that our altered implementation

mechanism might not be the best fit for the project since the best fit depends on

multiple components that we cannot necessarily consider in this research. To

decide on the best implementation for OMR we need to consider the following:

• Maintainability : A variability implementation mechanism can be judged

based on how maintainable it is. Here come components such as whether

a project has code style guidelines that successfully foster readability;

how enforced are such guidelines and how consistent the source code of a

project is in that sense; how much is the separation of concerns principle

applied in a project. Although this is an important component of an

implementation that might affect how good is it for projects in general

and OMR in specific, more longitudinal studies are needed to determine

this.

• Long Term Analysis: One factor that needs to be considered when decid-

ing whether the OMR’s altered variability implementation mechanism is

a better alternative of the older one is to measure the number of inter-
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actions that happen with the project and compare them to the number

of interactions that happened before. Part of the future work of this

research is to measure the change in frequency of asked questions about

OMR in forums and emails and the number of PRs and contributions

to study if these numbers are increasing or decreasing. Although the

change of the variability implementation is not the only cause for these

changes (after all, the project is getting more exposure over time due

to marketing and other outreach methods), however the change in these

numbers, combined with other factors, can be an indicator of the success

of the implementation mechanism in improving OMR’s outreach to the

community.

• Developer Opinions : A successful implementation mechanism in the soft-

ware industry, when viewed from a business perspective, is the one that is

least costly to implement and maintain. Maintaining a software project

with minimal costs is highly correlated with minimal person-hours of

work. When working on a project, developers need to be comfortable

with a variability implementation mechanism to be able to develop it

quicker. Hence, one component to take into consideration when dis-

cussing the success of an implementation is how familiar and compatible

developers are with it. Part of the future work of this research is to

survey OMR developers and get their opinions on the altered variability

implementation mechanism in OMR.

Another important factor here is the readability of the code since when a

code is more readable it is more understandable by developers and easier

to maintain. This is one of the main motivations for the implementation

change we are leading in Eclipse OMR.

• Performance: Last but not least, performance is one of the main factors

of measuring the success of an implementation. When looking at Eclipse

OMR as a library of runtime components, performance is a priority when

measuring an implementation’s success. In order to respect that while

changing the variability implementation mechanism, in our research we
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benchmark Eclipse OMR after our changes to ensure that a minimal

degradation of runtime performance.

8.3 Open Questions

One open question was raised in the previous section, that is: what variability

implementation best fits Eclipse OMR? We discussed above the factors that

may be necessarily considered when judging the best implementation for a

project. Hence, we do not necessarily consider an implementation that uses

dynamic polymorphism as the best. After all, there are many variability im-

plementation mechanisms out there and some of them might do better on the

criteria we suggested above than implementations that use polymorphism in

general. However, we did come up with this decision by taking developers’

opinions into consideration (see Section 7.1) and benchmarking performance

(see Section 7.5). Therefore, we believe that using dynamic polymorphism

in OMR’s variability implementation mechanism would better fit the project

than using static polymorphism.

Another open question here is how much good does the removal of self()

do to the project. Although based on our discussions with the team, the com-

mon opinion is that removing the self() function does increase the readability

of the code, we have no concrete proof of that. In order to get concrete proof,

long-term analysis and surveying the developers are needed, which are part of

the future work of this research as indicated in the previous section.

When virtualizing the CodeGenerator hierarchy, we ran into multiple prob-

lems which challenged us and triggered us to change fundamental parts of the

code to fix them. For example, virtual functions called in the constructor

(see Section 7.4.4) might cause us to change all calls to the constructor of

OMR::X86::CodeGenerator classes. It is worthy to note that we did not know

about this problem when we started virtualizing the functions; we only dis-

covered this problem by virtualizing the functions and then running the func-

tionality tests of OMR. Although we are now aware of all the problems that

happen when virtualizing the overridden functions in the CodeGenerator class
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hierarchy, we are still not sure about problems that would arise when virtualiz-

ing overridden functions in other class hierarchies. Hypothetically, there might

be problems that need more critical changes than the virtual function calls in

constructor problem and Eclipse OMR developers might not be okay with the

change needed to fix such a (hypothetical) problem. This will keep being an

open question till all functions in the project are virtualized successfully.

8.4 Threats to Validity

In addition to the open questions that impose some threats to the validity

of our research, we discuss more issues here that may threaten our research’s

validity.

8.4.1 Threats to External Validity

In this section, we discuss a threat that hinders our observations, that are

collected from OMR and OpenJ9 source codes, from being generalized to all

languages that might extend OMR in the future. Here, the specific experiment

we are referring to is: collecting information about the OMR and OpenJ9

source codes (using OMRStatistics) to test the hypothesis mentioned in

Section 4.4.

• OpenJ9 Does not Represent All Future Client Codes: When assessing

both variability implementations and deciding which kind of polymor-

phism is better fit for the project in Chapter 6, we ran OMRStatistics

on OMR and OpenJ9 and argued that collecting information of OpenJ9

gives us insight of how OMR is expected to be used by language develop-

ers. We wanted to acknowledge here that although we think OpenJ9 sets

how language source base and client codes are likely or expected to use

OMR, other languages might actually use OMR differently than we ex-

pected. For example, when saying that according to OpenJ9 around 20%

of functions are overridden, which is a low number and hence the project

is not likely to have a performance degradation when its functions are

virtualized, we say that assuming that OpenJ9 is how most projects will
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be using OMR. We acknowledge here that some hypothetical projects

might override all functions in OMR and raise the percentage of over-

ridden functions to a critical number where our argument is not valid

anymore. However, since OpenJ9 is a fairly big project (1,279,809 lines

of code according SLOCCount [2] on October 2018) that is using OMR,

we believe that it shows a typical usage of OMR; using it in a different

way might not be the intended way of using it.

8.4.2 Threats to Construct Validity

In this section, we discuss obstacles that didn’t allow us to collect all the

information we planned to collect at the beginning of the chapter and how

those obstacles form threats to the construct validity of our experiment. Here,

the experiment we are referring is the same as the one referred to earlier in

this chapter: collecting information about the OMR and OpenJ9 source codes

(using OMRStatistics) to test the hypothesis mentioned in Section 4.4.

• Not Considering Template Classes: While analyzing OMR’s source code,

we had the option to collect function and class information of template

classes however we ignored such classes since our main objective is to help

OMR developers with their extensible class implementation design and

we confirmed with OMR developers that none of the extensible classes

are template classes. Hence, it was not part of our direct objectives to

tackle this. So we kept as an open issue in our Github repository [97]

for future developers who would want to use our tool for their projects

to implement. However, this is considered a threat to the validity of our

research since we mention that the tool collects information about C++

code in general.

• Ignoring Some Source Codes in OpenJ9 : In order to get all function and

class information from the OpenJ9 project, we had to run OMRStatis-

tics on the source code of OpenJ9 for all architectures. To do that,

we had to successfully compile the source code of OpenJ9 for all archi-

tectures with clang. Hence, cross-compilation was needed to compile
82



OpenJ9 for Power architecture, for instance, using a host (our server)

that has an X86 architecture. This was a tedious task. OMR al-

ready has cross-compilation happening since the project already runs

OMR_Checker on all architectures. We had to understand OMR’s build

system and identify all environment variables that are defined when

cross-compilation happens and set these variables in our environment

when cross compiling the project with clang. This cloned build system

almost worked for all cross-compilation, except for 19 files that caused

compilation errors. Hence, these files were not considered when collect-

ing information in OMRStatistics. We are not entirely sure if that

error was due to an erroneous cloning of the OMR build system used in

cross-compilation or if the OMR build system was not behaving correctly.

OMR does have different machines with all the architectures supported

by the OMR library, hence the OMR_Checker test can happen from dif-

ferent machines and no cross-compilation would be needed. This means

that if there was an error in the cross-compilation functionality in the

OMR build system, it might not be known for developers since the cross-

compilation functionality might not be used in their testing. In any case,

those 19 files were not checked which forms a threat to the validity of

our research.

• Not having Function Call Information: Although our intention was to

get function call information before proceeding with the project, we later

realized that we were not considering all the cases in our algorithm. The

way we extract function calls is by visiting every class and processing the

body of each function in the classes. If the body contains any member

call statement, the statement is processed and function call information

is extracted from it. Other statements are ignored. However, other state-

ments (such as assignment statements) might include nested function call

statements which we did not check for. Fixing this is one of the issues on

our Github repository [98]. However, for now, this is not an accurate way

to get function calls and hence we did not consider them when deciding
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whether to change OMR’s variability implementation mechanism to use

dynamic polymorphism or not. Before resorting to that, we tried to use

Clang’s API to get the call graph information. Clang’s CallGraph class

has a function, called addToCallGraph, that populates the CallGraph

object with all the calls for a specific declaration. We used that to get

the function calls however we found out that there was a bug Clang’s

function that duplicated some of the calls. In other words, some func-

tions that are only called once are reported by Clang’s API to be called

twice. We later found out that this is a known bug reported on Clang’s

bug tracking system [30]. Hence, although we find that a low percentage

of functions are overridden in the code (see Section 6.3), the functions

might be called frequently enough to degrade runtime performance sig-

nificantly. Our benchmark results show that this, however, is not the

case so far.

On the other hand, we also discuss a threat to the construct validity of our

other experiment: virtualizing functions in OMR and measuring the impact

on runtime performance.

• Not Virtualizing all Functions in CodeGenerator: Almost all functions

in CodeGenerator were virtualized successfully. However, there are two

functions that were not; these are the ones that were called in the

CodeGenerator constructor (see Section 7.4.4). The worst case scenario

would be that those two functions are called frequently enough to signif-

icantly degrade the runtime performance. We cannot prove that this is

not the case without function call information.
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Chapter 9

Related Works

The objective of our research is to explore the effect of using different kinds

of polymorphism in OMR’s variability implementation mechanism and help

developers make better design decisions related to OMR’s variability imple-

mentation. Hence, we discuss related literature in the following directions:

(1) we review classical and previous variability implementation mechanisms

adopted by others (2) we explore tools that support variability, (3) we present

how others defined variability evaluation metrics of variability implementa-

tions mechanisms in configurable products, and (4) we discuss SPL manage-

ment and look at other software’s variability evolution methods. Given the

industrial context of our research, we give practical applications of related

work, when applicable.

9.1 Variability Implementation Mechanisms Dis-
cussed in the Literature

There are different binding times for software variability such as build-time,

load-time, and run-time. There are various variability implementation mech-

anisms that can be used for the different binding times [8], [91], ranging from

simple mechanisms such as using the build system to compile particular mod-

ules depending on the feature selection to more sophisticated development

paradigms such as feature-oriented programming [11]. FOP is a composition-

based approach for building software by dividing an SPL into feature mod-

ules [8]. Several programming languages were proposed to support feature-
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oriented programming, including FeatureC++ [9]. While FOP specifically ad-

dresses software variability by introducing the idea of refinements as opposed

to inheritance, it has not yet been widely adopted in practice, and to the best

of our knowledge, there are no large industrial or open-source systems that use

FOP. Other variability implementation mechanisms discussed in the literature

include object-orientation and design patterns [8]. Examples of design patterns

that can be used in variability implementation mechanisms include the broker

pattern [21], [83], the observer pattern [46] and the template pattern [71]. To

the best of our knowledge, there has been little work that discusses how large

industrial or open-source projects use these variability implementation mech-

anisms in practice. Specifically, we found no work discussing the impact and

challenges of using static polymorphism to implement variability.

For a complete list of possible variability implementation strategies, we

refer the reader to the work by Apel et al. [8].

9.2 Variability Implementation Mechanisms in
Practice

The most studied variability implementation mechanism in the literature is

using the C preprocessor’s #ifdef directives, which was discussed in the intro-

duction. Other mechanisms used in practice include parametrization, plugins

or framework programming, and inheritance.

Parametrization is using parameters to change a general program’s behav-

ior [44]. In this case, the software contains the implementation for all its

variants, and the parameters would control which variant is executed. Ex-

amples of parametrization include systems with run-time variability using if

conditions (e.g., Mozilla Firefox [15]), systems using feature toggles (Google

Chrome) [85], and systems with load-time configuration options (e.g., Android

apps [64]).

Plugin based systems implement a component framework. A component

framework is one that allows the addition of independently built plugins at

specified locations called variation points [80]. Such plugins would change
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the behavior of the system. Examples of plugin based system include Word-

Press [76], OpenRAVE [29], and VET [72].

However, in practice, it is common for software to simultaneously use mul-

tiple variability implementation mechanisms. For instance, Mozilla Firefox’s

variability implementation mechanism includes using the black-box component

and the broker pattern [45].

9.3 Tools Supporting Variability

In this section, we discuss various techniques and tools that were designed to

help developers reason about the variability in their system.

9.3.1 Variability Aware Analysis

Understanding the code of a software system and properly testing it is essential

for software quality and maintenance. This becomes more complicated in the

context of an SPL with n optional features since instead of having one product

to analyze and test, there are 2n products. Analyzing all these products in

separation is not feasible. Thus, many analysis strategies have been proposed

in the literature ranging from sampling configurations to analyzing all configu-

rations in a more efficient way. Thum et al. [95]’s recent survey summarizes all

these analysis techniques. Since sampling strategies are not complete, much

research effort has focused on variability-aware analyses that simultaneously

analyze all products. To avoid a brute-force mechanism, they analyze shared

code only once and analyze multiple variants of the code only when necessary.

Again, creating variability-aware analyses has been most popular in the con-

text of C code with #ifdef directives. TypeChef [53] and SuperC [41] are two

such efforts. While TypeChef has been used for analyzing many preprocessor-

based systems, including some in Java, it does not currently support C++. Hu

et al. [48] provided a related effort, based on symbolic execution, to analyze

the conditional compilation of C++ header files. However, symbolic execution

is typically expensive and does not always scale to large systems [6]. Similar

variability-aware analysis efforts have been proposed for systems using load-
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time or run-time variability [76], [95]. Other tools include FeatureIDE [96], a

variability aware IDE that analyzes projects and maps their code artifacts to

features, and RequiLine [70], a tool that supports requirements engineering

in SPLs. While previous efforts can guide the design of a variability-aware

analysis tool for C++, there does not currently exist a robust tool for this

purpose, especially when additional variability is created through the notion

of static polymorphism. Part of the future work of this research is to adjust

the source code of Clang to add support for variability aware compilation of

the Eclipse OMR project.

9.3.2 Other Tools Supporting Variability

Other than analysis tools, there are various research and industrial tools de-

veloped to support reasoning about software variability.

GEARS is a code analysis tool developed by BigLever Software that focuses

on software mass customization in software product lines [58]. Mass customiza-

tion was also tackled by Ronny et al. [56]. In their research, Ronny et al. use

the PuLSE approach [14] to convert a product into a reusable core component

of a product line. It is worthy to note that Eclipse OMR also started as a

single product which was then transformed to the core of a product line, as

described in our position paper [69].

Various other techniques are used to support variability. Eisenbarth et

al. [36] use concept analysis, alongside with static and dynamic analysis, to

correlate source code blocks to sets of features. Concept analysis is also used

by Krone et al. [57] to extract configuration dependencies for projects whose

variability is implemented with C preprocessors (CPP) [49], and by Loesh et

al.[65] to visualize product features and configurations. Another tool that sup-

ports projects that use the C preprocessor in their variability implementations

is created by Baxter et al. [12]. Their tool uses DMS, a transformation system

used to gradually alter and orient a software’s design for more efficient main-

tenance [13] by neatly removing preprocessor configurations of unsupported

features.

Different from above, OMRStatistics works by statically analyzing the
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Eclipse OMR code, to support variability design decisions by collecting in-

formation about the project’s variability points. Developers can then use this

information to decide about any needed changes to their variability implemen-

tation.

9.4 Variability Metrics

As mentioned before, using the preprocessor directives as a variability imple-

mentation mechanism is very popular. However, it is not always the best fit

for a project. Liebeg et al. [63] analyze more than forty projects that use the C

preprocessor as part of their variability implementation mechanism according

to metrics introduced by the authors, suggesting alternative variability imple-

mentations. The main two metrics they used are program comprehension and

feasibility of refactoring in a project. Hunsen et al. [49] study twenty-seven

projects that use the C preprocessor in their variability implementation in

order to study the similarity between such implementations in open-source

and industrial projects. In their paper, the authors define the similarity be-

tween implementations by a set of variability metrics. Metrics used to define

similarity include scattering, tangling, and nesting of #ifdef blocks.

Such metrics contribute to answering the open question imposed in Sec-

tion 8.2 about how to decide on the best variability implementation mechanism

for a project.

9.5 Software Product Line Management

Eclipse OMR evolved over history. It started from a single product, the Tes-

tarossa compiler, and slowly evolve to reach the SPL it is today. A Big part

of our research deals with changing OMR’s variability implementation mech-

anism and understanding the implication of that change. We now look at

how different SPLs have been launched from single products and how their

variability has been managed.

Metzger et al.[73] review 600 papers published in the last seven years that

discuss SPLs and summarize the trends and anticipated challenges in software
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engineering. This gives us insight into the challenges that might be faced

when managing SPLs. According to Metzger et al., variability can be applied

to form an SPL in three ways [73]: (1) proactively, when the variability design

and implementation is planned before the implementation of a software, (2)

reactively, when the main artifact is developed and then that artifact is reused,

based on customer needs, to form an SPL, and (3) reengineering-driven, when

a single product is developed and then it is migrated to an SPL. Creating a

business case for using a proactive SPL approach is not easy, hence software

systems often stay away from a proactive SPL approach [73].

A popular approach used in the software industry is the reactive approach.

Alves et al. [5] describe a reactive extractive approach to manage and evolve

product lines. The authors derive their suggested approach from Aspect Ori-

ented Programming laws [22]. Buhrdorf et al. [20] describe Salion’s (a software

company) experience with reactive transition approach. The authors prove

the approach’s efficiency by studying its usage to launch seven new products

Ghanam et a. [43] suggest a reactive transition framework to implement and

manage variability in agile software. Agile is getting a rising popularity in

the software industry and its integration with SPL engineering is getting more

popular in literature. Hansenn et al. [47] investigate the integration between

software product line approaches and agile software development through a

case study of a Norwegian software company. In addition, The Journal of

Systems and Software had a full issue discussing SPL engineering integration

with agile methods [23].

More SPLs can be found on the Product Line Hall of Fame on the Systems

and Software Product Line Conference website [82] which also contains papers

related to the formation and evolution of those SPLs.

9.5.1 Recap

We reviewed the literature about variability implementation mechanisms and

looked at examples of how variability is implemented practically. We also

reviewed tools that are created to support variability in different ways, in-

cluding variability aware analysis, concept analysis, and mass customization.
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We then discussed literature about variability evaluation and looked at what

metrics others considered when evaluating variability implementation mecha-

nisms. Finally, we looked at practical examples of how variability was applied

to products to launch software products lines and how variability is managed

in SPLs.
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Chapter 10

Conclusion

In this thesis, we discussed how variability can be implemented using static

polymorphism. Specifically, we presented a practical case study of Eclipse

OMR’s variability implementation using a combination of extensible classes

and include path variation. We discussed how OMR achieves the intended

variability and supports new language extensions. Given the complicated and

unique nature of how variability is implemented in OMR, OMR developers

faced some challenges while implementing variability and had to make some

design decisions to overpass the faced challenges. One decision was to use

static polymorphism instead of dynamic polymorphism in order to protect

the runtime performance from being impacted. However, after progressing

in the development of the project as a product line, OMR developers have

been realizing some problems with the static polymorphism implementation:

the obscurity of extension points and the complexity added by the resulting

code conventions. Hence, OMR’s variability implementation design is being

revisited.

The some OMR developers speculated that virtualizing the functions that

act as extension points of the project will not have a significant impact on

the runtime performance but will have a positive impact on newcomers under-

standing of the code. To help developers decide if it makes sense to switch to

dynamic polymorphism, we created a tool, OMRStatistics, that statically

analyzes the code and extracts the information needed to help OMR devel-

opers assess how changing OMR’s variability implementation mechanism to
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dynamic polymorphism will impact the overall performance and complexity of

the project.

Based on the information we collected, switching the extension points will

theoretically not have a significant impact on the runtime performance of the

tool. However, the actual impact can only be measured by progressively chang-

ing extension points to dynamic polymorphism and observing the impact on

performance. We hence went ahead and virtualized over 180 functions in the

source code, solving multiple obstacles and challenges that we faced while vir-

tualizing. After that, we benchmarked the project with our changes which

revealed that our changes had no significant degradation in the runtime per-

formance of the project.

Following the initiative we started in this research, future work includes

continuing the virtualization process of the functions in Eclipse OMR. In light

of the new data obtained by benchmarking the project with the altered vari-

ability implementation mechanism fully in place, the implementation mech-

anism will either be accepted or rejected by the stakeholders. If accepted,

future work would also include surveying current and new OMR developers to

understand the challenges and difficulties they are facing and to understand

the effect of changing the variability implementation mechanism has on these

challenges; whether the new variability implementation mechanism did prac-

tically facilitate working with the source code or not. As described earlier,

this would happen through surveys aimed at current and new developers con-

tributing to the OMR project, tracking the change in the number of questions

asked on forums and emails, and tracking the change in the number of PRs

and contributions to the project.

While Eclipse OMR is our inspiration for this work, our contributions are

also intended to the rest of the community to understand the practical im-

plications of using static polymorphism in an industrial big project and the

difficulties faced when trying shift from static to dynamic polymorphism in

the implementation of such a project. In addition, OMRStatistics can the-

oretically work on any C++ project to collect class and method information.

Hence, it has the potential to benefit a wide range of developers, helping them
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reason about variability in C++ code.
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