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Abstract

Auction algorithms have been applied in various linear network problems, such

as assignment, transportation, max-flow and shortest path problem. The inherent

parallel characteristics of these algorithms are well suited for Field-Programmable

Gate Array (FPGA) hardware implementation. In this work, we focus on the accel-

eration of auction algorithms to solve the assignment problem.

The main contribution is to set up a flexible platform to generate efficient and

extensible application-based hardware acceleration platform. It aims at solving both

symmetric and asymmetric assignment problem. Our experimental results show

that a 10X speedup can be achieved using 128 Processing Elements for a problem

size of 500.
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Chapter 1

Introduction

1.1 Background

The assignment problem (AP) is one of the fundamental combinatorial optimization

problems, which tries to find the maximum weight matching in a weighted bipartite

graph. It has a wide range of applications in most fields. Naturally, it is useful

to solve such problems as assigning employees to tasks or machines to production

jobs. Furthermore, it is also a key building block in several applications of network

modeling real world. For example, in transportation system, it is a tremendous task

to allocate and route the traffic in a large city, like New York, where hundreds of

thousands of vehicles are running around. In integrated circuits, there are millions

of gates and wires needed to be routed to meet the needs of performance. Thus it

is essential to develop an efficient implementation of assignment problem to deal

with these ambitious tasks.

Due to its importance, the assignment problem has been studied extensively in

the literature [1] [2] [3] [4] [5]. Among various approaches, the auction [6] and

Hungarian [5] [1] algorithms are two efficient methods to solve the problem opti-

mally. Compared to the Hungarian algorithm (HA), the auction algorithm exhibits

a natural computational parallelism, which is well suited for hardware acceleration.

Although they have various forms, different auction-based algorithms share similar

working flow as [7] [8]. Therefore, although we focus on the method in [8] in this

thesis, the approach can be extended to other auction algorithms with little efforts.

1



Recently, along with the rapid technology development, FPGAs have found

their place in high-performance computation. Compared to the fixed structure of

Graphic Processing Unit (GPU), FPGAs are more flexible and have better data pro-

cessing granularity. They are essentially high-density arrays of uncommitted logic

so that developers can directly build up module-to-module hardware infrastructure

and then trade-off performance by partitioning applications differently [9].

In existing work of FPGA implementations to solve the assignment problem

[10] [11], Hung and Wang proposed a computing system based on a recurrent neural

network. It takes a few seconds to solve 100×100 assignment problem, which is not

efficient enough to meet the practical needs. In contrast, our proposed architecture

can deal with a 500× 500 problem in milliseconds. Other work related to hardware

implementations of the auction algorithm can be covered in Chapter 4. Recently,

Vasconcelos and Rosenhahn [12] used a GPU to accelerate the auction algorithm

and achieved 7X with problems of size 400 to 4000.

1.2 Problem Formulation

The assignment problem is important in many practical contexts, but it is also of

great theoretical importance. Despite its simplicity, it embodies a fundamental lin-

ear programming structure. One of the most important types of linear programming

problem, the minimum cost network flow problem, can be reduced to the assign-

ment problem by means of a simple reformulation. Thus, any method for solving

the assignment problem can be generalized to solve the minimum cost flow prob-

lem. For this reason, the assignment problem has served as a convenient starting

point for important algorithmic ideas in linear programming. Now we will begin by

defining assignment problem in a mathematical way.

In graph theoretic terms, the assignment problem aims at finding a maximum

weight matching of a weighted bipartite graph. In general, given n agents and m

objects (n ≤ m in general), and a benefit aij associated with the assignment of

object j to agent i, the assignment problem is to find an assignment of each agent to

exactly one object that maximizes the total benefit. Furthermore, since the number
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of objects may be larger than that of the agents, some objects are allowed to remain

unassigned. We are given a set µ of pairs (i, j) that can be matched. For each agent

i, we denote by A(i) the set of objects that can be matched with agent i,

A(i) = {j|(i, j) ∈ µ}

and for each object j, we denote by B(j) the set of persons that can be matched

with object j,

B(j) = {i|(i, j) ∈ µ}

By an assignment we mean a set Φ of agent-object pairs (i, j) such that each agent

is involved in at most one pair from Φ. If the number of pairs in Φ is n, we say

that Φ is feasible; otherwise Φ is infeasible. We seek a feasible assignment which

is optimal in the sense that it maximizes the total benefit
∑n

i=1 aiji .

AP can be described as a linear programming problem as:

Maximize
n−1∑
i=0

m−1∑
j=0

aij · xij (1.1)

Subject to
n−1∑
i=0

xij ≤ 1,∀j = 0, 1, . . . ,m− 1 (1.2)

m−1∑
j=0

xij = 1,∀i = 0, 1, . . . , n− 1 (1.3)

xij ∈ {0, 1},∀i = 0, 1, . . . , n− 1, j = 0, 1, . . . ,m− 1 (1.4)

where xij = 1 if and only if object j is assigned to agent i.

In this thesis, we propose to build a common platform for accelerating the auc-

tion algorithm using FPGAs. The assignment problem is used as a concrete ex-

ample to illustrate the effectiveness of the proposed method. Two implementation

architectures, Jacobi and Gauss-Seidel, are discussed, and the latter one is proved to

be more efficient for hardware acceleration. In addition, a computer-aided design

(CAD) flow is implemented to automatically map the problem of different sizes

into hardware. To the best of our knowledge, this is the first work to set up an

auction-based architecture based on FPGAs.
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1.3 Outline of thesis

The organization of this thesis is as follows. In Chapter 2, we introduce FPGA

devices by reviewing their architecture, resources and design flow, to appreciate

why more and more applications are implemented on FPGAs. Specifically, we will

have a look at the capacities of Xilinx Virtex-5 FPGAs in detail.

In Chapter 3, we will introduce the auction algorithm which was the focus of

our work. We will also discuss its two variations and then review their advantages.

In Chapter 4, two different kinds of hardware implementation architectures are

discussed and compared. Then we will illustrate our architecture design, module

by module.

In Chapter 5, we present our experimental results. The results show that our

architecture achieves good speedup compared to a modern CPU implementation.

In Chapter 6 we finally conclude this work by both summarizing our research

and discussing some future directions.
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Chapter 2

FPGA Design Background

Difficulties in scaling single-thread performance without undue power dissipation

have forced CPU vendors to integrate multiple cores onto a single die. On the

other hand, FPGA (field-programmable gate array) and GPGPU (general purpose

computing on graphics processing units)-based software/hardware co-design are

becoming increasingly popular methods to assist general purpose processors in per-

forming complex and intensive computations. Compared to fixed structure of GPU

which is easier to program, FPGAs provide the best expectation of performance,

flexibility and low overhead. They are essentially high-density arrays of uncommit-

ted logic so that users can directly build up module-to-module hardware infrastruc-

ture and trade-off performance by partitioning the implementation of applications

differently. In the following sections, we will talk about the architecture of FPGA

and the steps of the FPGA design flow.

2.1 The Field-Programmable Gate Array

An FPGA is an integrated circuit designed to be configured by a customer after

manufacturing, so it includes input/output (I/O) blocks and the core programmable

fabric. The I/O blocks are located around the periphery of the chip, providing pro-

grammable I/O connections and various I/O standards. The core programmable fab-

ric consists of logic blocks and routing channels. Fig 2.1 shows a high-level view

of an island-style FPGA, which represents a popular architecture framework and is

also a widely accepted model in the FPGA community. Logic blocks also called
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Figure 2.1: An island-style FPGA overview

configurable logic blocks (CLBs), are the main logic resources for implementing

sequential as well as combinatorial circuits, surrounded by routing channels con-

nected through switch blocks (SBs) and connection blocks (CBs), as illustrated in

Fig 2.2. A switch block connects wires in adjacent channels through programmable

switches such as pass-transistors or bi-directional buffers. A connection block con-

nects the wire segments around a logic block to its inputs and outputs, also through

programmable switches. Notice that all the switch blocks and connection blocks

are identical. In Fig 2.2 it illustrates the different connecting situations in each SB

and CB in certain electrical circuit configuration.

Routing architecture is defined by the parameters of channel width (W ), switch

block flexibility (Fs - the number of wires to which each incoming wire can connect

in a switch block), connection block flexibility (Fc - the number of wires in each

channel to which a logic block input or output pin can connect), and segmented

wire lengths (the number of logic blocks a wire segment spans) [13].
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Figure 2.2: A detailed island-style FPGA under certain configuration

Further down the logic hierarchy, each logic block contains a group of basic

logic elements (BLE), where each BLE contains a look-up table (LUT) and a reg-

ister. The LUT is used to achieve a logic function. Fig 2.3 shows the architecture

of a typical CLB.

In addition to regular logic fabric, clock distribution networks are another im-

portant issue in FPGA chips. Different distribution networks are used to make sure

the clock delays from clock source to each storage element is identical, such as H-

tree clock network. Besides this, global clock buffers and regional buffers are also

considered to be clock network resources.

Nowadays, with the development of technology, modern FPGAs not only pro-

vide a large capacity of configurable logic gates but also integrate embedded IP

cores, such as Block RAMs, DSP blocks, and specific processors, to facilitate the

implementation of SoC design.
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Figure 2.3: A typical CLB consist of a LUT and a register

2.1.1 The Xilinx Virtex-5 FPGA

There are two well-known FPGA companies, Xilinx and Altera, who are nowadays

battling for the top position in the FPGA market. They are among the best makers

of FPGAs, not only for universities, but also for big companies developing digital

technology. The development tool kits provided by these two companies are very

powerful to deal with the whole design flow of implementation on FPGAs. We

focus on Xilinx FPGAs since they are our supporter. We will introduce Xilinx’s

Virtex-5 FPGA briefly to get familiar with the resources in the chip.

Xilinx Virtex-5 family provdes powerful features in the FPGA market. In addi-

tion to the advanced, high-performance logic fabric, Virtex-5 FPGAs contain many

hard-IP system level blocks including powerful 36-Kbit block RAM/FIFOs, second

generation 25 × 18 DSP slices, SelectIO technology, clock management tiles with

integrated DCM (Digital Clock Managers) and phase-locked-loop clock genera-

tors [14]. Some FPGAs also feature PowerPC processors, Endpoint Blocks for PCI

Express and Ethernet MACs. With these resources, many applications on different

domains can be implemented on FPGAs efficiently and effectively. Table 2.1 shows

the resources different devices have from Virtex-5 family. We use Xilinx Virtex-5

XC5VLX110T FPGA which is shown in bold line. As we can see that different

FPGAs aim at different application fields. How to choose an FPGA to implement

an application is an important issue nowadays to reduce the cost and achieve high

usage rate. More details about the usage of Xilinx Virtex-5 FPGA can be found

in [15].
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Table 2.1: Resource table for members of the Virtex-5 FPGA Family. Selected
FPGAs are similar in chip size.

Device CLB
Slices

Max
Dis-
tributed
RAM
(Kb)

DSP48E
Slices

BRAM
36Kb

BRAM
Max
(Kb)

PowerPC
Pro-
cessor
Blocks

Ethernet
MACs

Max
User
I/O

XC5VLX110 17,280 1,120 64 128 4,608 N/A N/A 800

XC5VLX110T 17,280 1,120 64 148 5,328 N/A 4 680

XC5VSX95T 14,720 1,520 640 244 8,784 N/A 4 640

XC5VFX100T 16,000 1,240 256 228 8,208 2 4 680

Configurable Logic BLock

The configurable logic block is the basic logic element, which contains a pair of

slices. Every slice contains four logic-function generators (or LUTs), four storage

elements, wide-function multiplexers, and carry logic. These elements are used by

all slices to provide logic, arithmetic and ROM functions.

Block RAM

The Block RAM on Virtex-5 FPGAs can store up to 36K bits of data and can be

configured as either two independent 18Kb RAMs, or one 36Kb RAM. Each 36Kb

block RAM can be configured as a 64K × 1 (when cascaded with an adjacent

36Kb block RAM), 32K × 1, 16K × 2, 8K × 4, 4K × 8, 2K × 18, or 1K × 36

memory. The Read and Write are synchronous operations and the two ports are

totally independent, sharing only the stored data. Under this true dual-port mode,

it can double the throughput of original RAMs and can be used as FIFOs working

on two different clock domains. Block RAMs are useful and important resources in

FPGAs.
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2.2 FPGA Design Flow

As the FPGA architecture evolves and its complexity increases, CAD software has

become more mature as well. Today, most FPGA vendors provide a fairly complete

set of design tools that allow automatic synthesis and compilation from design spec-

ifications in hardware specification languages, such as Verilog HDL or VHDL, all

the way down to a bit-steam to program FPGA chips. A typical FPGA design flow

includes the steps shown in Figure 2.4.

We will briefly elaborate on these steps in the following:

• Specification. The specifications of a product includes a lot of aspects. For

instant, function specification of a product is most important. It describes

what the product will be. The more detailed specification, the better product

it will be. Besides, design constraints typically include the expected operating

frequencies of different clocks, the delay bounds of I/O delay, setup time and

clock-to-output delay. Design language can be specified to Verilog HDL or

VHDL at the register transfer level (RTL).

• Write RTL Source Code. From specifications we can write RTL HDL codes

to realize the product. The RTL codes specify the operations at each clock cy-

cle. It is most commonly used description language to describe the behavior

of hardware. There is a general tread (though very slow) toward moving to

specification at a higher level of abstraction, using general-purpose behavior

description languages like C or System C.

• Functional RTL Simulations. This step is to verify the correctness of the

written RTL codes. It plays an important role in the design flow because an

error detected in this step costs less than in the following steps. Often self-test

test files are used to avoid the errors made by humans. Several CAD softwares

are provided for functional simulation like ModelSim and ISE Simulator.

• Synthesis. It is to break down the high-level language description to low-level

implementations.

10



• Place-and-Route to Target Device Family. In this step, all the functional log-

ics are mapped to the target FPGAs and are routed to realize the functions.

Integrated embedded IP cores in modern FPGAs can be used for fast imple-

mentation. Modern CAD tools provides some options in this step such as

size-based or performance-based options.

• Gate-Level Simulations. After placement and routing, the design can be im-

plemented in FPGAs. But there is still no guarantee the design will work

correctly. Gate-level simulations provide gate level information to produce a

reliable design.

• Static Timing Analysis. It is a method of computing the expected timing of a

digital circuit without requiring simulation.

• ECO. If the design has some flaws, then it needs to be modified and returned

to previous steps to improve.

• Prototype. The design is completed. It is now ready for testing on devices.

• Device Level Testing. The final design are tested on the real FPGA devices

to make sure that it works.

• System Level Test. The final design are tested at the system level.

11



Figure 2.4: A typical FPGA design flow starting from specifications
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Chapter 3

Auction Algorithms Background

In Chapter 2, we examined FPGA architecture which is suitable for parallel com-

puting. In particular, we introduced the Xilinx Virtex-5 FPGA with CLBs and

BRAMs. However, not all the existing algorithms are suitable in a FPGA’s parallel

computation environment.

In this chapter, we explore in details of the Auction Algorithm for solving as-

signment problems. The key of this algorithm is to use an iterative approach to

reduce the complexity of control and increase the parallelism. In Chapter 4, we will

utilize this parallel nature to develop a novel FPGA architecture for implementation.

3.1 Details of the Auction

The Auction algorithm is one of the classical methods to optimally solve the as-

signment problem [6] [8] [7]. It is different from primal-dual algorithms such as

Hungarian method or primal algorithms. It departs from the cost improvement idea

but it may deteriorate the cost at every iteration although it find an optimal primal

solution in the end. The auction algorithm is also highly intuitive and easy to un-

derstand. It can be explained in terms of economic competition concepts like real

auction in our daily life. In this section, we review the auction concept in economic

terms and introduce three variations of auction algorithm for assignment problem.
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3.1.1 The Forward Auction Algorithm

Recall from Chapter 1 Section 1.2 that there are n agents and m objects that we

have to match them on a one-to-one basis. There is a benefit aij for matching agent

i to object j and we want to assign agents to objects in order to maximize the total

benefit. In order to develop an intuitive understanding of the auction algorithm, it is

helpful to introduce an economic equilibrium problem that turns out to be equivalent

to the assignment problem.

Consider a real auction where n agents are going to bid for m objects according

to their own best interest. Suppose that object j has price pj and that the agent who

receives the object must pay the price pj . Then the net value of object j for agent i

is aij−pj , and each agent i would logically want to be assigned to an object ji with

maximal net value, that is, with

aiji − pj = max
j∈A(i)

{aij − pj} (3.1)

where A(i) is the set of objects that agent i can be assigned to. In reality agent i

may not get the best object j due to others’ competition. When other agents bid for

the object j, the price pj may increase to such an certain extent that agent i loses

the interest of object j. In other words, agent i will bid for other objects for its best

interests.

Equilibrium assignments and prices are of great interest to economists, but there

is also a fundamental relation with the assignment problem. It turns out that an

equilibrium assignment offers maximum total benefit, while the corresponding set

of prices solves an associated dual problem.

As we have already had an overview the auction concept, now we will introduce

the algorithm in details. Basically, the auction algorithm is composed of two phases

in each iteration, a bidding phase and an assignment phase. Then it proceeds in

iterations and generates a sequence of price vectors and assignments.

Typical Iteration of Auction Algorithm

Two phases are depicted as followings:

14



Bidding Phase: Each agent i ∈ I , where I is the set of unassigned agents, finds

an object ji with the best net value Viji , that is,

Viji = aiji − pji = max
j∈A(i)

{aij − pj} (3.2)

and also the second best net value Wiji where

Wiji = max
j∈A(i),j 6=ji

{aij − pj} (3.3)

and then gives its reasonable bid biji , that is,

biji = pji + Viji −Wiji + ε (3.4)

and the bidding increment γi is

γi = Viji −Wiji + ε (3.5)

where ε is a parameter.

Assignment Phase: Each object j that is selected as best bid by the agents in

I , determines the highest bidder ij , raises its price to bijj , and gets assigned to the

highest bidder ij; The agent that is assigned to j at the beginning of the iteration (if

any) get unassigned.

The algorithm continues with a sequence of iterations until all agents are as-

signed to an object.

ε-Complementary Slackness and ε-Scaling

The main method of the auction algorithm, like Hunagrian Algorithm, is to intro-

duce another set of variables, prices in this case, so as to get the optimal assignment.

During the computation, each agent has to raise the price of his interested object to

defeat others in the competition. Unfortunately, without ε, the bidding increment

γi is zero when more than one object offers maximum value for the bidder i. As a

result, a situation may be created where several agents contest a smaller number of

equally desirable objects without raising their prices, thereby creaing a never end-

ing cycles. To break such cycles, ε works like a real auction where each bid for an
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object must raise the object’s price by a minimum positive increment, and bidders

must on occasion take risk to win their preferred objects. In order to derive an op-

timal solution, the parameter ε must be set ε < 1
n

, which is proven in [6] and [7].

However, it is not necessary to fix the ε during the overall computation, which is

called ε-scaling. At first, we can run the auction algorithm where ε can be set as

a much bigger constant to make the price vector close to the ultimate one. Then

we derease the ε value and run the algorithm again until ε is smaller than 1
n

. It can

achieve the optimal solution more promptly in major cases but it doesn’t affect the

FPGA architecture design while it introduces more control.

For greater clarity, we write the algorithm in the pseudo code shown in Ta-

ble 3.1. The input of the algorithm is the number of agents and objects, and associ-

ated benefit matrix as well. The output is the assignment which yields the maximal

benefit in the end. The algorithm runs in iteration, switching from bidding phase to

assignment phase.

The algorithm has several characteristics as follows:

• Comparably fast. Compared to the Hungarian algorithm (HA), in which a

maximal alternating forest is constructed in each iteration that has compu-

tational complexity O(n3), auction algorithm is still comparably fast with

complexity O(nm log(nC)), where C = max{aij}. In some cases, the auc-

tion algorithm is even faster than HA. An interesting analysis in paper [16]

reveals that the real running time for dense random instances of the linear

sum assignment problem is only O(m log (n)). The author adopted the as-

sumption of randomness to estimate the real computation load of the auction

algorithm. He derived the above computation complexity based on the possi-

bility theory.

• Nature of parallelism and simplicity. The computational operations are sim-

ple with much fewer controls than HA. Parallelism is easy to understand be-

cause all the unassigned agents in set I can bid simultaneously and each unas-

signed agent does the same operation to compute the best bid for ideal object.
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Table 3.1: Pseudo-code of the auction algorithm

Input: agents n, objects m; benefit matrix A
Output: assignment Φ
1 BEGIN
2 INIT pj=0, Φj=-1 for all objects j;

put all unassigned agents in a list I;
set the number of assigned agents, nAssi=0

3 WHILE nAssi != n
/* Bidding Phase */

4 Get some unassigned agents from I
5 FOR all the objects j
6 Compute the net benefit, aij − pj
7 GET Viji ,Wiji and ji

/* Assignment Phase */
8 COMPUTE the bid of agent i for object ji
9 IF Φji != -1
10 ADD Φji to the list I
11 ELSE
12 nAssi++
13 Φji=i;
14 pji=bid
15 RETURN Φ
16 END

This algorithm was first proposed by Bertsekas in [6]. It was named by For-

ward Auction Algorithm (FAA) since it acts like a real auction. Later on, the algo-

rithm was further developed in the literature [8] [17] leading to the Reverse Auction

Algorithm (RAA) and the Forward/Reverse Auction Algorithm (FRAA). We will

introduce them in the next section and discuss about their characteristics.

3.1.2 Reverse Auction Algorithm

In the previous section, we know that each object has its own price to attract certain

agents while it is possible to exchange the roles of agents and objects. This leads

to the idea of reverse auction where the objects compete for agents by essentially

offering discounts (lowering their prices). Roughly, given a price vector p, we can
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view the net value of the best object for agent i

max
(i,j)∈A(i)

{aij − pj} (3.6)

as a profit πj for agent i. When objects lower their prices they tend to increase

the profits of the agents. Therefore, profits play for agents a role analogous to

the role prices play for objects. Forward and reverse auctions can be seen to be

mathematically equivalent.

Typical Iteration of Reverse Auction

The reverse auction is mathematically equivalent to the forward auction. Two

phases are depicted as followings:

Bidding Phase: Each object j ∈ J , where J is the set of unassigned objects,

finds an agent ij with the best net value βjij , that is,

βjij = aiji − πij = max
i∈B(j)

{aij − πi} (3.7)

and also the second best net value ωji where

ωjij = max
i∈B(j),i 6=ij

{aij − πi} (3.8)

and then gives its reasonable bid rjij , that is,

rjij = πji + βjij − ωjij + ε (3.9)

where ε is a parameter.

Assignment Phase: Each agent i that is selected as best by the objects in J ,

determines the highest bidder ji, raises its profit πj to rjij , and gets assigned to the

highest bidder ji; The object that is assigned to i at the beginning of iteration (if

any) get unassigned.

The algorithm continues with a sequence of iterations until all agents are as-

signed to an object.

Since the reverse auction algorithm is mathematically equivalent to the forward

auction algorithm, there is no improvement on performance. However, to combine
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forward and reverse auction algorithm, we can construct a new algorithm, that is

FRAA, which switches from forward to reverse auction and back. It simultaneously

maintains a price vector p and a profit vector π. More details of FRAA are described

in paper [17]. In this section we describe one easily implementable possibility of

FRAA.

3.1.3 Forward/Reverse Auction Algorithm

FRAA is a combined algorithm which implements FAA and RAA within steps until

all the agents or objects are assigned. There are a lot of choices one can choose to

determine when a switch from FAA to RAA will occur. One easily implementable

strategy is depicted as follows:

Step 1: (Run FAA) Run forward auction algorithm serveral iterations. At the

end of each iteration, at least one agent-object pair is added into the assignment.

Then set

πj = aiji − pji (3.10)

for every agent-object pair that entered the assignment during the iteration. Go to

Step 2.

Step 2: (Run RAA) Run the reverse auction algorithm for several iterations. At

the end of each iteration, at least one agent-object pair is added into the assignment,

then set

pj = aijj − πij (3.11)

for every agent-object pair that entered the assignemtn during the iteration. Go to

Step 1.

The algorithm terminates when all the agents or objects are assigned.

3.2 Comparison of Auction Algorithms

With the introduction of the profit vector used in RAA, the combined algorithm

FRAA outperforms the FAA in some cases where fierce competition occurs. In

other words, if several agents have the similar interests on a few objects, FAA leads
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to a large number of iterations so that the price vector converges to the optimal

one slowly, because it only increase the price vector bid by bid. FRAA use the

profit vector, which can increase promptly after each switch to reach the optimal

one. However, FAA still outperforms FRAA in other cases, and moreover, FRAA

often requires additional overhead over FAA or RAA. Last but not least, FAA is

also the core of auction-based variations to solve other network problems, such as

shortest path problems. So we focus on the forward auction algorithm in this thesis.

We will explore the architecture design of FAA in Chapter 4. Before that we will

review some existing work on hardware implementations of the auction algorithm

in the literature.
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Chapter 4

FPGA Architecture Exploration

The key point of using an FPGA for acceleration lies in extracting and exploiting the

parallelism in a target problem. Consider the forward auction algorithm: there are

two potential hardware architectures, namely, Jacobi and Gauss-Seidel, to expose

the parallel computing flow. In this chapter, we compare these two architectures

and argue that the latter one is better for acceleration. Then we describe the details

of the FPGA design to solve any assignment problem.

4.1 Jacobi Parallelism and Gauss-Seidel Parallelism

In existing work, these two parallelism strategies were both implemented on differ-

ent hardware. In this section, we analyze the implementation on FPGAs.

4.1.1 Jacobi Parallelization Architecture

Jacobi parallelization regards each agent as an individual processing element and

allows several unassigned agents to bid for objects simultaneously. The problem

can be understood in an easier way, shown in the left part of Figure 4.1. For the

n-to-m assignment in a benefit matrix A, each row represents an agent and each

column represents an object is introduced. The element of the benefit matrix aij

represents the benefit value that agent i has for object j. The prices of all the

objects are stored in a separate vector. At the beginning of each iteration, the PE

array (1-D array of PEs) computes the net values for the first object (first column).

The corresponding price is provided for all the PEs. Then it goes through all the
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Figure 4.1: Jacobi implementation (left) and Gauss-Seidel implementation (right)
of auction algorithm

columns to compute the best net values, second best net values, and the bids of the

unassigned rows.

4.1.2 Gauss-Seidel Parallelization Architecture

In contrast with the Jacobi method, the Gauss-Seidel method regards each object as

an individual PE, shown in the right part of Figure 4.1. Each PE is responsible for

computing the net value of one object. At first, the PE array computes the net values

for the first several columns at the same time. After finishing the computation of

the first block, it moves forward a block to calculate the next set of net values. By

several steps of computation, it will go through all the columns, to find the best

object of the computed agent. Different from the Jacobi method, it computes one

bid per iteration.

4.1.3 Jacobi method vs. Gauss-Seidel method

The Jacobi and Gauss-Seidel architectures result in a performance difference and

we find that Gauss-Seidel leads to better performance when implemented on FP-

GAs.

The major reason for the difference is due to the fact that during the auction

process, the number of assigned agents increases quickly with the problem size.
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Table 4.1: Statistics on the number of unassigned agents

Number of unassigned agents Fraction of iterations
1 89.64%

1-10 99.50%
1-20 99.81%
1-50 99.97%

In other words, the number of unassigned agents decreases quickly. Table 4.1 il-

lustrates the iteration distribution with respect to the number of unassigned agents,

using randomly generated test benches. When the number of unassigned agents is

less than fifty, the number of iterations takes up to 99.97%. When only one agent

is not assigned, it takes 89.64% of the total iteration to derive the optimal solution.

Figure 4.2 illustrates the utilization of 16 PEs implemented by Jacobi method. As

is clearly shown, the utilization of 16 PEs decreases quickly to below 10%. In this

case, the Jacobi architecture, whose processing granularity is the agent, leads to a

large number of idle PEs as there are few unassigned agents left.

Different from the Jacobi architecture, the Gauss-Seidel architecture handles

one agent at a time, and the bids for different objects are computed in parallel. As

each agent will always need to compare all objects, the hardware usage does not

drop. Therefore it achieves better acceleration using the Gauss-Seidel architecture.

Another important factor to consider is that Gauss-Seidel architecture can in-

troduce pipeline technology to increase the throughput. The bidding phase and the

assignment phase can be divided into three steps, so there is no need to separate

these two in the Gauss-Seidel architecture. However, the Jacobi implementation

derives the bid at the end of iteration simultaneously, it has to take additional time

for assignment in this case. More implementation details are shown in the next

section.

To sum up, the Gauss-Seidel parallelization is more suitable for FPGA imple-

mentation. Experiments show that the Gauss-Seidel architecture achieves a 6X

speedup on average compared to the Jacobi architecture.
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Figure 4.2: The utilization of 16 PEs in Jacobi implementation, using uniform ran-
dom class with problem size 500.

4.2 Related Work of FAA Implementation on Hard-
ware

There are several proposed hardware implementation of auction algorithms in the

literature.

In paper [18], Wein implemented the forward auction algorithm on a connection

machine CM2, which is a computer with up to 65536 single-bit processors in SIMD

mode. A mapping of virtual processors in a grid to the physical processors of the

CM is used. Processor (i, j) stores the corresponding aij of the benefit matrix,

and local variables applicable to agent i such as the most profitable object to that

agent, and local variables applicable to object j, such as price. He implemented the

Jacobi, Gauss-Seidel and a hybrid version (where a switch from Jacobi to Gauss-

Seidel when the number of unassigned agents is below a threshold), and the hybrid
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implementation achieved good speedups varying from 3X to 5X.

Bertsekas discussed the parallel implementation in parallel synchronous and

asynchronous mode in [19]. Whether in synchronous Jocobi or Gauss-Seidel imple-

mentation, there are several barriers within four steps such as selecting unassigned

agents, computing their bids, merging the bids and doing the assignment, which is

one iteration. Each step has to wait for the completion of its previous step, and then

it starts its task. So the asynchronous version is only to introduce the pipeline but

the computation has to across iteration which can be wasteful computation.

In paper [20] Bagherzadeh implemented the synchronous and asynchronous

computation models on an hypercube multiprocessor. Each processing node was

an i860 microprocessor and 16 Mbytes of RAM. It was a MIMD message imple-

mentation. While it focused on the convergence problem of auction algorithm. It

scarified the optimal results to achieve the fast computation.

In paper [21] Naiem implemented the Gauss-Seidel auction algorithm using the

message passing interface on a computer cluster, aiming at solving the scalability.

Through this system, low speedup ratio was achieved.

More recently, Vasconcelos and Rosenhahn [12] used a GPU to accelerate auc-

tion algorithm. They implemented Jacobi version and streamed data into the GPU

and achieved 7X with problems ranging in size 400 to 4000.

Since FPGAs are more flexible and have better data processing granularity.

They are essentially high density arrays of uncommitted logic so that developers

can directly build up module-to-module hardware infrastructure and trade-off per-

formance by partitioning implementation of applications differently. FPGAs are

more flexible to implement auction algorithms. In the next section, we will focus

on the implementation of Gauss-Seidel version, which we call the Gauss-Seidel

architecture.

4.3 Platform Implementation

In this section, we discuss in detail the implementation of Gauss-Seidel architec-

ture. We develop a flexible hardware platform which can automatically generate
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Figure 4.3: Gauss-Seidel Architecture with p PEs for parallel computation.

the architecture of user-specified size to solve assignment problems of arbitrary

size efficiently. It ensures that no PE will be idle during the bidding phase through-

out the whole computation progress. We leverage the Block RAMs (BRAMs) in

modern FPGAs to keep the instances data so as to save the energy dealing with the

interface to the external memory or host machine. Figure 4.3 illustrates the detailed

architecture implemented in FPGA.

4.3.1 Gauss-Seidel Architecture

The architecture is composed of five modules: I/O FIFOs, PE Array, Search Task,

Assignment Engine, and Control Unit. Among them, PE Array and Search Task

modules are two data-intensive computing units. The basic units to compose these

two modules have regularity in structure, which brings the benefit of highly exten-

sible architecture. I/O FIFOs offers an effective method to reduce the overhead of
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data transmission through interface. Other two modules are independent of archi-

tecture size.

I/O FIFOs

I/O FIFOs send requests of data and receive benefit matrix to and from memory. In

order to minimize the communication cost, two input FIFOs work alternatively to

receive data from memory. As long as the unused input FIFO is not full and there

is a queue of unassigned agents, the data will always be received from memory to

fill the FIFO.

PE Array

The PE array is composed of a number of identical PEs in one dimension. Each

PE aims at computing a net value in the bidding phase (corresponding to line 6 in

Table 3.1), shown in Figure 4.4. Inside a PE, one distributed RAM is used as a cache

to store a group of prices in a specific order when the problem size is larger than the

number of PEs. Since the number of prices grows linearly with problem size, it is

costless to keep the prices in an FPGA. All the PEs are identical in data-processing

behavior so that they can share the same control signal.

To update a specified price, we use a decoder to select the target PE and provide

the address of the local RAM at the same time, so that we can access any price in

the PE array.

More details are described in the appendix.

Search Task

After an array of net values are calculated, search task computes the best net value,

the second best net value, and the best value’s location in the PE array in this block.

To realize the search function, two stages are employed to get the final results,

shown in Figure 4.5. The first stage is to compute the best net value and its location

in the PE array by a comparison tree. In the second stage, the known best value is

eliminated from the input data so that the second best net value can be derived.
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Figure 4.4: The structure of a PE module.

The comparison tree consists of many regular two-input comparators, bringing

the benefit of extensibility. And it is pipelined to prevent clock frequency from

dropping dramatically when architecture size increases. Furthermore, it is pipelined

partially instead of fully because a highly-pipelined search introduces high latency

which influences the overall performance.

Assignment Engine

The goal of the Assignment Engine is to derive all the required values to compute

the bid and to complete the functions in the assignment phase (corresponding to

lines 7-14 in Table 3.1).We map those lines into three steps and each step takes one

clock cycle. In the first step, the best net value Viji , its location in the PE array ji,

and the second best bid Wiji , are computed (line 7). Based on the derived data, the

bid bij can be computed at this time (line 8). Meanwhile, the assignment status of

object ji is checked (line 9). Finally, it completes the three functions in assignment

phase (line 10, 13, 14 in Table 3.1).
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Figure 4.5: Details of the Search Task module. The total latency of the 8-input
architecture is 4, introduced by registers (solid line) in two stages. The dotted-line
register is eliminated to realize a partial pipeline.

Control Unit

Control Unit module is to control all the other modules to work together. There

are six main states in the module, and they are idle, loading, computing, updating,

output and completion, and the relationship between them are shown in Figure 4.6.

In each main state, there is one or more sub-states to deliver the detailed control

signals, which is called factored state machine. Using factored state machine is

much easier to design a complex system-level finite state machine. Now, we will

explain the main functions that are realized in each main state.

• idle: the system is idle when reset button is pushed.

• loading: in the loading state, we load the necessary parameters into registers,

and initialize the price vector and assignment vector as well in this period.

• computing: in this state, all the data processing modules are waiting for valid

data arriving, including PEs, Search Task and Assignment Engine. Control
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Table 4.2: Different architecture size (the number of PEs) introduces different la-
tency.

Number of PEs 16 64 128 256
Latency (cycles) 4 6 8 8

Unit sends read signals to retrieve data from memories.

• updating: in this state, assignment is being implemented.

• output: when all the computation of the algorithm is complete, the assign-

ment results are output onto the PC-FPGA interface, such as JTAG. Using

Xilinx’s ChipScope tools, we can monitor the experimental results and do the

verification on board.

• completion: the algorithm is complete, waiting for another reset signal for

new computation.

It is worth mentioning that the termination of the algorithm can be easily re-

alized. Through careful observation, we figure out that once an unassigned object

is assigned to an unassigned agent, the number of assigned pairs will increase by

one and won’t decrease until the end of the assignment progress. In other words,

the termination can be simply implemented by a counter. When the value of the

counter is the same as the value of problem size (i.e. the number of agents needed

to be assigned), the termination is met and the whole progress ends.

4.3.2 Influence of comparison tree on performance

There is no doubt that better performance can be achieved by a parallel architecture

with more processing elements. However, the latency introduced by the search task

has some negative impact on the overall performance. In each assignment phase the

price of the bid object requires updating; it has to wait until search task finishes the

latest computation.
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Figure 4.6: Details of the main Finite State Machine (FSM). There are six main
states in the FSM.

Since a full pipeline in the search task module introduces high latency, which

heavily affects the performance, we shorten the pipeline by half. The reduced reg-

isters is depicted by dotted line in comparison tree in Figure 4.5. We make sure that

search task module does not become the longest path in the whole design. The la-

tency introduced in search task is 4, 6 and 8 cycles when the number of PEs is 16, 64

and 128, respectively, as Table 4.2. The influence on performance based on differ-

ent architecture size is depicted in Figure 4.7. From the figure, we can see that given

a certain architecture size, the percentage of latency decreases and more cycles will

be spent on effective computation when the problem size increases. Moreover, for

the problems of small size, it is wise to implement a relatively small architecture,

to avoid the influence of high latency.
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Figure 4.7: The percentage of cycles consumed by the latency within iteration.

The implementation can be further improved by adjusting the schedule of as-

signment phase from one after each bidding phase to one after several bidding

phases, so as to save the latency cycles within iteration. The validation of this im-

plementation is shown in [22]. It can efficiently mitigate the influence of the latency.

However, when problems involve several unassigned agents (often 1-2 agents), the

latency influence is unavoidable.
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Chapter 5

Experiments and Results

In this chapter, we analyze the experiments that we performed on our FPGA. The

experiments were conducted using the most commonly used class as our bench-

marks. The analysis shows that an FPGA implementation of the auction algorithm

can perform better than a comparable CPU.

5.1 Experiment Prerequisite

The proposed Gauss-Seidel architecture for the assignment problem is implemented

on Xilinx Virtex-5 LX110T FPGA with a speed grade of -1. A CAD flow is em-

ployed to generate the architecture of user-specified size in Verilog HDL. We use

ModelSim SE 10.0a for simulation, and Xilinx ISE 13.1 to synthesize and place-

and-route our design.

To test the performance of the proposed architecture, we have used the most

common classes of instances used in the literature [23] to test AP algorithms, which

is called uniform random class. This class includes that the entries of the benefit

matrix are integers uniformly randomly generated in [0, K], with K = 1000. Al-

though we used symmetric problems as examples to test, asymmetric problems also

can be computed.
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Table 5.1: Resource Utilization based the on the architecture of four selected sizes
and their clock frequency

Resources
Size

16 32 64 128
Used Uti. Used Uti. Used Uti. Used Uti.

Registers 1229 1% 2532 3% 5139 7% 11369 13%
LUT as logic 2163 3% 3975 5% 7721 11% 15046 21%
LUT as mem. 540 3% 1053 5% 2078 11% 4127 23%
BRAMs 124 83% 130 87% 130 87% 130 87%
Freq. (MHz) 220 193 163 139

5.2 FPGA Implementation Analysis

5.2.1 Complexity and Cost of Different Architecture Size

The architectures of several sizes have been mapped into hardware. For a sin-

gle Virtex-5 LX110T FPGA, we can implement more than 400 PEs for parallel

computation. However, we did not implement the architecture of 400 PEs in our

experiments. The reason is that we leverage the on-chip BRAMs to store the test

instances. Because of the limited amount of BRAMs, 500 × 500 elements can be

stored. In this situation, the architecture with large size only introduces more la-

tency within each iteration, so we implement 16 PEs, 32PEs, 64PEs and 128 PEs

in our experiments. Table 5.1 shows the resource utilization for the four selected

architectures. From the table we can see that LUTs are heavily consumed when

the architecture size is 128. This is because the search task module consumes a

large amount of resources, nearly 95% of the total consumed resources. Overall,

the cost of hardware resources increases linearly with the architecture size. How-

ever, the consumption of BRAMs is constant high, around 87% of the total number

of BRAMs. It is because we also use BRAMs to store our test instance data.

The timing report shows that the clock frequency decreases with the increasing

architecture size. This is no surprise since the large usage of FPGA routing resource

results in the difficulty in routing task, which increases the time consumed by routes.

However, the clock frequency can be further improved by manual floor planning.
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5.2.2 Speedup Analysis

For comparison, we implement a C program based on the public FORTRAN codes

originally written by the author of [7]. The program was run on a PC with a Intel

Dual Core CPU running at 2.7GHz with 4.00GB RAM. Both the CPU and FPGA

implementations eliminate the epsilon-scaling phase and set the epsilon as a con-

stant, to eliminate the implementation complexity. Symmetric assignment problems

of size from 200 to 500 were tested due to the limited number of BRAM resources.

We use 5 instances of uniform random class per problem size to test. All the as-

signment results are optimal verified by public codes of Hungarian algorithm.

The speedup is computed as follows:

Speedup =
Computation time by CPU

Computation time by FPGA

The computation time is core calculation time to execute the algorithm without

instance preparation.The speedup of 16-PEs and 128-PEs architectures on four sets

of assignment problems is shown in Figure 5.1. There is an increasing trend of

speedup when the problem size grows. It is because the latency influence degrades

and more cycles are spent on effective computation, so the proposed architecture

can achieve a higher speedup ratio for large problems. Currently, the speedup is

more than 10X when the problem size reaches 500.

5.2.3 System Bottleneck

As we compared previously, the core computation time is the main part for parallel

computation. Table 5.2 shows the core computation time used by CPU and FPGAs.

Table 5.2: The core calculation time by the CPU and the FPGA and the data-
transferring time from PCs to FPGAs through on-board PCIe x1.

Problem Size 200 300 400 500
Core Computation time by CPU (msec) 1.67 3.20 8.00 11.25
Core Computation time by FPGA (msec) 0.27 0.57 1.16 1.48
Transfer time (msec) 0.32 0.72 1.28 2.00
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Figure 5.1: The speedup is averaged based on 5 random generated instances. The
architecture contains 16 PEs and 128 PEs for parallel computing respectively. The
problem size ranges from 200 to 500.

However, except the core computation time, we still want to estimate the over-

all time consumption by the system, including data generation and data transfer

between CPUs and FPGAs through interfaces. The developing board we used is

equipped with PCIe x1 slot, thus providing the opportunity of fast-transferring data.

In the current experiment, since we use on-chip BRAMs to store all the test data,

downloading data from PCs to FPGAs only require once. The standard bandwidth

for PCIe x1 is 2.5Gb/s. The effective bandwidth per direction due to the overhead

of the 8B/10B encoding and decoding used by the protocol is 2Gb/s. Therefore

the data-transferring time would be what is shown in Table 5.2. As we can see that

data-transferring time counts for as much as the core computation time by FPGAs.

Therefore, we should pay attention to the data transfer between CPUs and FPGAs,

and should reduce the frequency of this kind of transfer.
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Chapter 6

Conclusions and Future Work

In this chapter we review the accomplishments of this work and briefly discuss

future directions of our research.

6.1 Conclusions

In Chapter 2, we briefly talked about the FPGA chip architecture with plenty of

CLBs, BRAMs, integrated IPs and other resources for different-domain applica-

tions. With the development of high-density FPGAs, and entire SoC design can

be built on a single FPGA. FPGA design has the early time-to-market advantages

compared to ASIC design, which is supported by plenty of sophisticated CAD tools.

Then we discussed the details of auction algorithms: Forward Auction Al-

gorithm, Reverse Auction Algorithm and Forward/Reverse Auction Algorithm in

Chapter 3. The FAA acts like a real auction in an economic market. It has the

nature of parallelism. Even in serial computing environment, it is fast enough to

solve the assignment problem with time complexity O(n2 log (nC)). RAA is math-

ematically equivalent to FAA. FRAA, combined with FAA and RAA, overcomes

the situation where fierce competitions occurs while it introduces some overhead in

switches between FAA and RAA. FAA has the simplicity and extensibility to solve

other network problems so that we focus on FAA implementation on FPGAs.

In Chapter 4 we explored two classes of auction-based parallel architecture

for solving the assignment problem and figured out that Gauss-Seidel method is

more suitable for parallel implementation. It ensures that no PE is going to be
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idle throughout the bidding phase, even when the number of unassigned agents

converges to one. Then we set up a general platform which generates extensible

and application-specific hardware architecture. It can efficiently deal with assign-

ment problem of any size. The proposed architecture can achieve more than 10X

speedup with 128 PEs on the problem at size 500. As the problem size grows, a

higher speedup ratio can be achieved.

6.2 Future Work

Although our implementations of Auction Algorithms on an FPGA outperform a

conventional CPU implementation, there are many directions to be considered for

future research. In this section, we describe some of these possible directions.

6.2.1 Interface with FPGAs

The efficient interface with FPGAs is very important in the near future when FPGAs

are used as co-processors to compute large amounts of data. The PCIe interface

between FPGA and CPU or on-board memory can be utilized for data transmission.

Modern FPGA platforms are available that integrate these features.

6.2.2 Improvement on Data Reuse

Recall that in the bidding phase of FAA, we have to compute the best net value

Vij and the second best net value Wij so as to compute the bid for each unassigned

agent. It is computation-intensive and time-consuming process. The first approach

to reusing bids was described in [7]. The author mentioned to use the third highest

net value as well. It is quite useful to compute the bids only by several objects

with highest net values in last iteration, instead of by the whole object set. A set of

BRAMs can be used as Cache to store a list of objects to speedup the computation.

6.2.3 Architecture Design for Other Problems

Currently, we concentrate on one of the auction algorithms application solving the

linear network problems. In the future research, we plan to extend our hardware
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architecture to other problems in linear network field as well. For instant, shortest

path problem can be converted to assignment problem so that our architecture of

FAA with minor changes can be deployed to solve the problem efficiently. Besides

network problems, we will also deploy our module as a building block for data

mining in large datasets.
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Appendix A

Details and codes for the Processing
Element module

The processing elements play an important role as common CPUs in the design. It

is to compute the net value, aij − pj . All the PEs have identical computation task in

the bidding phase, so they share the same control signals. Since the regularity of a

PE, we can duplicate it into one dimension array to parallel process data.

The following codes describe the functions it implements and its structure:

module PEunit(dout, clk, reset, sel, addr, din, dinp);

parameter data width=16, addr width=6; // Each PEunit has 26̂=64 memory size to

store price

output [data width-1:0] dout;

input [data width-1:0] din, dinp;

input clk, // clock

reset, // reset LUT memory to zero when assignment is complete, ’1’ is effective

sel; // selected PEunit is to update price[addr]

input [addr width-1:0] addr; // used to read or write price[addr]

wire [data width-1:0] lut dout; // lut dout = price[j]

wire [data width-1:0] lut din; // update price[] or reset price[] to zero

wire lut we; // lut we: update or reset

wire [data width-1:0] bid val; // bid val=pj+vij-wij+epsilon
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reg [data width-1:0] lut dout reg;

assign bid val = dinp + lut dout reg;

assign lut din = reset ? dinp : bid val; // When PEunit is selected, update price[]

assign lut we = sel — reset;

ram64x16s

ram64x16s(.dout(lut dout),

.clk(clk),

.we(lut we),

.din(lut din),

.addr(addr)

);

reg [data width-1:0] bid;

always @(posedge clk)

begin

bid ¡= din - lut dout ; // bid = aij - pj

lut dout reg ¡= lut dout;

end

assign dout=bid;

endmodule
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Appendix B

Details and codes for the Search Task
module

Search Task module is a two-stage module. Each stage uses the same comparison

tree except different inputs. So to build a comparison tree is important and also

tricky. We do not want that the comparison tree is not pipelined or fully pipeline,

which leads to decreasing clock frequency or high latency. Instead, we design the

comparison tree that is half pipelined with scalability.

The following codes describe the functions it implements and its structure:

module comparisontreepipeline(best bid,block inner j,clk,data in);

parameter data width=16, bits num PEs=16’d4, num PEs=2**bits num PEs;

parameter levels delay=bits num PEs/2+bits num PEs%2; // If comparison tree is

fully pipelined, then the levels of delays are bits num PEs. If halfly pipelined, then

it is.

output [data width-1:0] best bid; // compute the best bid in parallel

output [data width-1:0] block inner j; // the index of PEunit

input [data width*num PEs-1:0] data in; // num PEs input

input clk;

// comparison tree register declaration
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wire [data width*(2*num PEs-1)-1:0] cmp out;

reg [data width*(2*num PEs-1)-1:0] cmp out reg;

wire [data width*(2*num PEs-1)-1:0] index out;

reg [data width*(2*num PEs-1)-1:0] index out reg;

genvar j,i;

generate

begin

for(j=0;j¡bits num PEs;j=j+1)

begin: outer loop

if(j%2==1&&j!=bits num PEs-1)

begin

for(i=0;i<2**j;i=i+1)

begin: inner loop odd

comparator2 #(

.data width(data width)

)

cmp(

.dout(cmp out[data width*((2**j)+i)-1:data width*((2**j)-1+i)]),

.index out(index out[data width*((2**j)+i)-1:data width*((2**j)-1+i)]),

.din1(cmp out reg[data width*((2**j)*2+i*2)-1:data width*((2**j)*2+i*2-1)]),

.din2(cmp out reg[data width*((2**j)*2+i*2+1)-1:data width*((2**j)*2+i*2)]),

.indexin1(index out reg[data width*((2**j)*2+i*2)-1:data width*((2**j)*2+i*2-1)]),

.indexin2(index out reg[data width*((2**j)*2+i*2+1)-1:data width*((2**j)*2+i*2)])

);

end

end

else

begin

for(i=0;i<2**j;i=i+1)
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begin: inner loop even

comparator2 #(

.data width(data width)

)

cmp(

.dout(cmp out[data width*((2**j)+i)-1:data width*((2**j)-1+i)]),

.index out(index out[data width*((2**j)+i)-1:data width*((2**j)-1+i)]),

.din1(cmp out[data width*((2**j)*2+i*2)-1:data width*((2**j)*2+i*2-1)]),

.din2(cmp out[data width*((2**j)*2+i*2+1)-1:data width*((2**j)*2+i*2)]),

.indexin1(index out[data width*((2**j)*2+i*2)-1:data width*((2**j)*2+i*2-1)]),

.indexin2(index out[data width*((2**j)*2+i*2+1)-1:data width*((2**j)*2+i*2)])

);

end

end

end

end

endgenerate

// The outputs of comparator2 is stored in regiesters

always @(posedge clk)

begin

cmp out reg <= cmp out;

index out reg <= index out;

end assign cmp out[data width*(2*num PEs-1)-1:data width*(num PEs-1)] = data in;

generate

begin

for(j=0;j<16’h0001<<(bits num PEs);j=j+1)

begin: assign index

assign index out[data width*(num PEs+j)-1:data width*(num PEs-1+j)] = j;
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end

end

endgenerate

assign best bid = cmp out reg[data width-1:0];

assign block inner j = index out reg[data width-1:0];

endmodule

// comparator module

module comparator2(dout,index out,din1,din2,indexin1,indexin2);

parameter data width=16;

output [data width-1:0] dout;

output [data width-1:0] index out;

input signed [data width-1:0] din1,din2;

input [data width-1:0] indexin1, indexin2;

wire sel out=din1>=din2;

reg [data width-1:0] dout;

always @(din1 or din2 or sel out)

begin

if(sel out)

dout = din1;

else

dout = din2;

end

assign index out = sel out ? indexin1 : indexin2;
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endmodule
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