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Abstract

In modern industrial processes, the measurement and storage of thousands of corre-

lated process variables have become commonplace. Dimensionality reduction tech-

niques are often employed to extract underlying informative patterns called features

by discarding redundant information. Slow feature analysis is one such technique that

focuses on extracting slowly varying patterns. A probabilistic extension was proposed

to address data corruption caused by measurement noise. However, industrial process

data is fraught with additional complexities, including periodic patterns from plant-

wide oscillations, non-stationarity due to aging equipment, non-linearities, skewed

noise distribution etc. The estimated parameter error will be large when a conven-

tional probabilistic slow feature model is applied to complex industrial data. Hence,

this thesis focuses on enhancing the probabilistic slow feature model to accommodate

various industrial complexities.

Oscillatory behavior commonly arises in measured data as a result of poor con-

troller tuning, stiction, and external oscillatory disturbances. Identifying and ana-

lyzing these oscillatory patterns is vital for monitoring control loops and diagnosing

faults. Unfortunately, the presence of significant measurement noise prevents the

conventional slow feature analysis from effectively extracting these patterns due to

limitations in the model structure. Therefore, the primary contribution of this the-

sis is to develop an enhanced slow feature model that overcomes this limitation by

relaxing the diagonal structure of the state-transition matrix and incorporating a

block-diagonal matrix structure to accommodate complex poles. As a result, the

enhanced slow feature analysis is called complex slow feature analysis in this thesis.
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Further, the drift-type non-stationary characteristics in measured variables also pose

significant challenges for conventional slow feature extraction methods as the corre-

sponding slow features are assumed stationary. Consequently, the second contribution

of this thesis is to address this issue by introducing an additional latent variable that

compensates for the drift-type non-stationary behaviour, thereby ensuring the sta-

tionarity of the extracted slow features. Due to the inherent non-linearity observed

in complex industrial processes, we enhance the second contribution by incorporating

an extended gated recurrent neural network architecture.

Process data commonly suffer from measurement issues like outliers and asym-

metric noise distributions, impacting the quality and performance of extracted slow

features. Our fourth contribution proposes a robust complex slow feature model that

assumes a skewed t-distribution for measurement noise, rather than a Gaussian distri-

bution. Model parameters are jointly estimated using the expectation-maximization

algorithm. Additionally, high-dimensional datasets often stem from a low-dimensional

latent space, and not all latent features influence all measured variables. Hence, it

is crucial to ensure that only a subset of latent variables influences each measured

variable. To address this, our fifth contribution introduces a novel model that au-

tomatically determines the optimal latent space dimension by employing a Laplace

distribution to model the emission matrix, resulting in a sparse model. The conven-

tional black-box nature of the slow feature model and its numerous extensions may

lead to inconsistent or unacceptable results at the physical boundaries. Therefore,

the final contribution integrates process knowledge into the probabilistic slow feature

model to extract features that adhere to physical laws/limits.

The efficiency of all contributions is demonstrated through simulations and in-

dustrial/experimental case studies in which they are compared to state-of-the-art

methods. This comparison yields conclusive evidence of their effectiveness.
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Chapter 1

Introduction

In recent years, the study of data-driven modeling [2–4] has experienced a surge in

popularity, primarily driven by the abundance of historical data that has been made

accessible through the utilization of cutting-edge measurement techniques and ad-

vanced data storage technologies. Industrial operational tasks, such as predictive

modelling [5], fault diagnosis [6–8], quality monitoring, plant-wide oscillation detec-

tion [9–12], causality analysis [13–16], are greatly simplified. Within this vast sea of

data, there exist significant interconnections among the various measured variables.

Consequently, the resultant input-output models derived from such data often find

themselves afflicted with a common pitfall known as over-fitting [17–20].

To counteract this issue and enhance the quality of process modeling, it has be-

come commonplace to employ dimensionality reduction techniques [21–23] as a pre-

liminary step. This strategic approach aims to eliminate redundant information while

simultaneously extracting the most informative variables, aptly referred to as features,

embedded within the data. By effectively reducing the dimensionality, subsequent

modeling efforts between these extracted features and the desired outputs become

notably less computationally burdensome. This reduction in computational complex-

ity is primarily owed to the fact that the extracted features possess a comparatively

lower dimensionality.

Given the tangible benefits of dimensionality reduction through feature extraction,

it is no surprise that this methodology has garnered significant attention and intrigue

from many scientific disciplines. Notably, domains such as econometrics [24, 25],

health sciences [26–28], and process industry [29–33] have all recognized the poten-
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tial and utility of feature extraction in their respective fields of study. As a result,

researchers and practitioners alike have invested considerable effort into exploring

and exploiting the power of feature extraction techniques to comprehend, model, and

optimize complex systems across diverse domains. Some of the most popular linear

latent variable models are Principal Component Analysis (PCA) [34,35], Slow Feature

Analysis (SFA) [36], Partial Least Squares (PLS) [37–39], Independent Component

Analysis (ICA) [40].

1. PCA is a technique that identifies a linear combination of the original variables

that explains the maximum amount of variance. The resulting principal com-

ponents provide a lower-dimensional representation of the data while preserving

the most important information.

2. SFA, on the other hand, focuses on extracting the slowest varying feature from

the input data. By identifying features that change slowly over time, SFA aims

to capture the underlying dynamics and temporal relationships within the data.

3. PLS is a method that aims to identify a feature that exhibits maximum covari-

ance between the input and output variables. It seeks to establish a predictive

relationship between the two sets of variables by finding a latent variable that

maximizes the covariance between them.

4. ICA, in contrast, aims to find features that exhibit maximum statistical in-

dependence. It assumes that the observed data is a linear combination of

independent source signals and aims to estimate these sources by solving an

optimization problem.

These models all employ different optimization criteria to project the high-dimensional

data onto a lower-dimensional space. By extracting meaningful features from the

data, they provide insights into the underlying structure, relationships, dynamics,

and predictive capabilities of the variables under consideration. This thesis exam-

ines a specific latent variable model called slow feature analysis. In chemical process

industries, slow variations in measured industrial data offer valuable insights into

underlying patterns and relationships, aiding in the comprehension, control, and en-

hancement of chemical processes. SFA focuses on capturing these slower variations,
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which typically represent significant process information, while faster variations typi-

cally indicate transient events, disturbances, or noise. SFA’s relevance in the chemical

process industries is highlighted below.

1. Process Monitoring [41–46]: In process industries, it is crucial to monitor various

process variables to ensure optimal performance, safety, and quality. SFA can

be used to identify and extract slowly varying features from process data, which

may correspond to important underlying dynamics or trends. By monitoring

these features, process operators can detect deviations, anomalies, or gradual

changes in the process behavior, enabling them to take timely corrective actions

and prevent potential issues.

2. Process Understanding and Control [47]: SFA can provide valuable insights

into the underlying dynamics and behavior of chemical processes. This under-

standing can be utilized to develop advanced control strategies, improve process

design, or optimize control parameter settings.

3. Fault Diagnosis [48, 49]: When a process exhibits unexpected behavior or mal-

functions, it is essential to diagnose the root cause accurately and quickly. The

extracted slow features can reveal dependencies and interactions that may not

be apparent in the original dataset. This can support the identification of spe-

cific variables or combinations of variables that contribute to process faults or

deviations.

4. Applications to sustainable and recycling processes: SFA is applied successfully

to detect icing faults in wind turbine blades, which can be subtle and evolve over

time [50]. Further, an enhanced kernel slow feature approach is utilized to detect

and identify faults in a nonlinear Air Handling Unit system [51]. Recycling

facilities often deal with diverse materials, including different types of plastics,

metals, paper, and glass. SFA could be employed to extract slow features from

sensor data collected during the sorting process. These slow features could

represent distinctive patterns or characteristics, making it possible to classify

and sort recyclables more efficiently.
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5. Data Visualization and Interpretation [52, 53]: Visualizing high-dimensional

data is challenging, and interpreting complex patterns can be even more diffi-

cult. SFA can aid in data visualization by reducing the dimensionality while pre-

serving relevant slow variations. By mapping the data onto a lower-dimensional

space, SFA can provide visual representations that facilitate data interpretation,

exploration, and communication among stakeholders in the chemical process in-

dustries.

1.1 Deterministic Slow Feature Analysis (DSFA):

Given an input sequence X =
[
xxx1 xxx2 . . . xxxN

]
, xxxk ∈ Rp, the optimization problem

shown in (1.1)-(1.5) can be solved to obtain slow features in the order of increasing

velocities.

min
W

⟨ṡ(i)
2

k ⟩ (1.1)

s.t sssk = W Txxxk (1.2)

⟨s(i)k ⟩ = 0 (1.3)

⟨s(i)k

2
⟩ = 1 (1.4)

∀i ̸= j, ⟨s(i)k · s(j)k ⟩ = 0 (1.5)

where ⟨ṡ(i)
2

k ⟩ = 1
N−1

∑N
k=2(s

(i)
k − s

(i)
k−1)

2 denotes the squared average velocity, W ∈

Rp×m indicates the projection matrix and ⟨·⟩ stands for the average over data samples.

N , m, and p denote the number of sampling points, latent features and observed

variables, respectively. Equation (1.3) - (1.4) are applied to each slow feature to avoid

trivial solutions, whereas (1.5) ensures zero correlation among the extracted features.

The solution to the optimization problem can be readily obtained by performing

singular value decomposition (SVD) twice, as shown in the following steps.

• Whitening: It is a transformation that converts a group of random variables

into a new set of random variables, ensuring that their covariance becomes the

identity matrix.

zzzk = Qxxxk (1.6)
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where Q represents whitening matrix that is defined as follows.

Q = Λ− 1
2V T

Here Λ and V are obtained by performing SVD on the input data covariance

matrix, as shown below.

⟨xxxkxxxTk ⟩ = V ΛV T

Therefore, the slow feature equation (1.2) can be written as

sssk = W Txxxk = W TQ−1zzzk = P Tzzzk (1.7)

⟨sssksssTk ⟩ = P T ⟨zzzkzzzTk ⟩P = P TP (1.8)

• The objective of the slow feature analysis can be rewritten as

min
W

⟨ṡ(i)
2

k ⟩

s.t ⟨sssksssTk ⟩ = I
=⇒

min
P

P T ⟨żkżkżkżkżkżkT ⟩P

s.t P TP = I

The solution to this optimization problem can be obtained by performing SVD

on the covariance matrix ⟨żkżTk ⟩.

However, this two-step solution can be avoided by just solving the generalized eigen-

value problem, as shown in 1.9.

AW = BWΩ (1.9)

where A = ⟨ẋkẋkẋkẋkẋkẋkT ⟩, B = ⟨xxxkxxxTk ⟩, and Ω is a diagonal matrix whose diagonal entries

represent the optimal velocities of each slow feature. Both solutions are equivalent.

1.2 Does Dynamic PCA achieve the same result

as SFA?

Consider the following latent variable from dynamic PCA

tk = pTx

=
[
pTc pTp

] [ xk
xk−1

]
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tk = pTc xk︸︷︷︸
tc

+ pTp xk−1︸ ︷︷ ︸
tp

So the resultant latent variable has two components. One is the static component ”tc”

and the other is the dynamic component ”tp”. The objective of PCA is to maximize

the variance of the latent variable. So

max
p

tTk tk

s.t. pTp = 1
=⇒

max
p

(tc + tp)
T (tc + tp)

s.t. pTp = 1
=⇒

max
p

tTc tc + tTp tp + 2tTc tp

s.t. pTp = 1

max
pc,pp

pTc xkx
T
k pc + pTp xk−1x

T
k−1pp + 2pTc xkx

T
k−1pp

s.t. pTc pc + pTp pp = 1

Therefore, PCA finds the latent variable tk such that it maximizes the

• Variance of the static contribution tc.

• Variance of the dynamic contribution tp.

• Correlation between static and dynamic contributions.

However, SFA extracts latent variable sk = cTxk with a different objective as shown

below.

min
c

(sk − sk−1)
T (sk − sk−1)

s.t. sTk sk = 1
=⇒

min
c

2(1 − sTk sk−1)

s.t. sTk sk = 1
=⇒

max
c

cTxkx
T
k−1c

s.t. cTxkx
T
k c = 1

Note: The prediction of the DPCA latent variable tk is made utilizing xk and past

values xk−1 rather than its own previous values tk−1. Consequently, latent variable

dimension reduction in terms of dynamics may not be enforced by the DPCA model.

In general, the dynamics are diffused across all PCs. Conversely, SFA explicitly

maximizes the auto-correlation of the latent variable. Therefore, the dimensionality

reduction and feature ranking according to the dynamics are accomplished by SFA.

1.3 Probabilistic Slow Feature Analysis (PSFA):

DSFA is a method that aims to extract slowly varying features from a given dataset.

However, DSFA assumes that the underlying factors causing the data variations are

6



deterministic, which may not always hold true in real-world scenarios. The proba-

bilistic formulation [54,55] is presented in (1.10) - (1.11).

sssk = Asssk−1 +wwwk; wwwk ∼ N (0, Q) (1.10)

xxxk = Csssk + vvvk; vvvk ∼ N (0, R) (1.11)

where A ∈ Rm×m, C ∈ Rp×m, Q ∈ Rm×m, and R ∈ Rp×p are the state-transition

matrix, the emission matrix, the state-noise covariance matrix, and the measurement

noise covariance matrix, respectively. In the above framework, sssk is a weighted func-

tion of sssk−1 and an independent noise wwwk that is drawn from Gaussian distribution.

The probabilistic formulation achieves an enhanced temporal description for sequen-

tial process data since it imparts dynamics to the hidden features. Here m and p

refer to number of slow features and the number of input variables, respectively. Sev-

eral constraints are employed directly from deterministic slow feature analysis, as

discussed below.

• The problem of interest is to obtain the slow features which are uncorrelated,

and hence (A,Q) imbibe diagonal structures. Therefore, this formulation is

limited to system with only real poles.

• The slow features are assumed to be stationary, i.e., the state covariance matrix

is independent of the time k. Also, the covariance matrix of latent variables is

forced to be an identity in accordance with (1.4).

• Applying covariance on both sides of Eq. (1.10) to obtain a specific form of

discrete algebraic Lyapunov equation,

AAT +Q = Im (1.12)

where Im represents m dimensional Identity matrix. Since A and Q are diagonal,

Eq. (1.12) reduces to:

a2i + qi = 1 (1.13)

where ai and qi are the ith diagonal entries of A and Q respectively.
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• For the positive definite requirement of the process noise covariance matrix Q,

all the diagonal entries must be greater than zero (qi > 0). Using Eq. (1.13),

the bound constraint for ai can be defined as shown in (1.14).

ai ∈
(
−1 1

)
(1.14)

Eq. (1.14) can also be obtained by applying discrete state-space systems sta-

bility condition on the state-transition matrix. It is further restricted to
(
0 1

)
to avoid switching every sample.

• The measurement noise covariance matrix R is assumed to be diagonal.

The probabilistic graphical model is shown in Fig. 1.1. The advantages of PSFA are

summarized below.

sk−1 sk

k = 1, 2, ..., N xk

A

C

R

Figure 1.1: Probabilistic Graphical Model for Expectation Maximization based PSFA

• Handling uncertainty: PSFA accounts for uncertainty in the input data, as

shown in (1.11). In many real-world scenarios, observations or measurements

can be affected by noise or other factors, leading to uncertainties in the data.

PSFA models this uncertainty explicitly through probabilistic distributions, al-

lowing for more robust and reliable analysis.

• Capturing latent variables: PSFA provides an explicit dynamic equation

(1.10) that represents the evolution of latent variables that might be hidden

within the data. These latent variables can be viewed as the underlying factors
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or hidden causes that influence the observed data. By incorporating probabilis-

tic modeling, PSFA can capture the uncertainty associated with these latent

variables, leading to a more comprehensive understanding of the data.

• Flexibility in modeling complex relationships: PSFA provides a flexible

framework for modeling complex relationships between variables. The proba-

bilistic approach allows for capturing non-linear and higher-order dependencies

that might exist in the data. This flexibility enables more accurate modeling of

real-world phenomena.

• Robustness to outliers [56]: The probabilistic framework of PSFA allows a

comprehensive way to estimate models robust to outliers or anomalies in the

data. Outliers can significantly impact the performance of deterministic SFA,

as they strive to minimize a specific objective function. In contrast, PSFA can

effectively handle outliers by modeling them as low-probability events, thereby

reducing their influence on the overall analysis.

• Uncertainty quantification: PSFA provides a means to quantify and express

uncertainty in the derived features. This is particularly valuable in applications

where uncertainty estimation is crucial, such as decision-making under uncer-

tainty or in safety-critical systems. By explicitly modeling uncertainty, PSFA

offers a principled approach to assess the reliability and confidence in the ex-

tracted slow features.

1.4 Motivation example:

In this section, three latent variables are generated using cosine functions with varying

frequencies. Three observed variables are then obtained by combining the latent

variables linearly. Through the application of DSFA, we can uniquely determine

the underlying latent variables, each characterized by a distinct frequency, as shown

in Fig.1.2. However, even the slightest measurement noise (SNR= 50) significantly

impairs the efficiency of DSFA, as shown in Fig.1.3. To address this issue, PSFA can

be used to significantly decouple the noise and the extracted features, as illustrated

in the Fig. 1.4.
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Figure 1.2: DSFA results on the noise-free input data
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Figure 1.3: DSFA results on the noisy input data
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Figure 1.4: PSFA features extracted from noisy input data (SNR= 30)
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While PSFA provides better separation, its effectiveness diminishes with decreas-

ing SNR. The following (Fig. 1.5) features were extracted using PSFA from input

data corrupted with measurement noise (SNR= 10). Interestingly, PSFA fails to

extract the underlying cosine signals, which serves as a key motivation for the first

contribution in this thesis.
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Extracted probabilistic slow features

Figure 1.5: PSFA features extracted from noisy input data (SNR= 10)

1.5 Thesis Outline

The thesis begins by providing an introduction to latent variable models and proba-

bilistic approaches. Following this background, the subsequent chapters are organized

as follows.

Chapter 2 begins with an introduction to latent variable models and probabilistic

approaches. The first section focuses on probability distributions, which will be used

in subsequent chapters. We then present the maximum likelihood framework for pa-

rameter estimation. Furthermore, the solution methodology to approximate posterior

distributions is explored through the variational inference framework. Additionally,

we present the importance sampling methodology as an alternative for approximating

the expectations of random variables whose priors are non-conjugate. The chapter

concludes by presenting a state estimation algorithm called Kalman filter.

Chapter 3 focuses on addressing a significant limitation of the probabilistic slow

feature analysis that has been discussed in the previous section. Specifically, PSFA

encounters difficulties in extracting the underlying slow oscillating features when the
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signal-to-noise ratio is low. Given that oscillatory behavior is commonly observed in

process data due to factors like inadequate control loop tuning and external distur-

bances (e.g., diurnal temperature variation), the extraction of these slow oscillatory

patterns becomes crucial. Consequently, this chapter is dedicated to developing a

technique for an effective extraction of such oscillating patterns from noisy data.

In process industries, it is common for the measured variables to exhibit non-

stationary characteristics alongside oscillations. These non-stationary characteristics

arise from the changing operating conditions, as well as equipment degradation and

fouling. Dealing with such variations presents a significant challenge for conventional

slow feature methods. To address this challenge, we introduce a probabilistic drift-

type non-stationary oscillating slow feature model in Chapter 4. This model is capable

of separating the oscillating patterns and non-stationary variations present in the

measured data. Moreover, we recognize that not all observed variables have the

same level of uncertainty, and therefore, we independently model the measurement

noise for each variable. To incorporate prior information and obtain corresponding

posterior distributions, we estimate the proposed model using a variational Bayesian

framework. This framework allows us to account for uncertainties and leverage prior

knowledge effectively.

Chapter 5 focuses on two key challenges in the process industries. First, quality-

related variables are difficult to measure using sensors due to physical and financial

limitations. As a result, they are less frequently available compared to other variables,

often requiring time-consuming laboratory analysis. Second, process data displays

non-linearity due to factors such as complex reaction kinetics, phase transitions, and

mass/heat transfer limitations. To tackle these challenges, we propose a novel neural

network architecture with gated recurrent units under a variational inference frame-

work. The effectiveness of this approach is assessed on both simulated and industrial

datasets.

The previous contributions made in this thesis have been based on an assumption

that the measurement noise follows a Gaussian distribution, which allows for a closed-

form solution. However, when dealing with industrial process data, it is common to

encounter measurement problems like outliers and skewed noise. If these issues are not

explicitly addressed, they can significantly hinder the performance of the extracted

12



features. Chapter 6 addresses this by considering a Skewed t-distribution for the

measurement noise in the complex slow feature model. The parameters of the model

are jointly estimated using the expectation-maximization algorithm.

Chapter 7 introduces a novel approach to probabilistic latent variable models

that address two crucial factors: the choice of the number of latent variables and the

accuracy of the noise model for complex data. The model employs a Laplace distri-

bution to automatically determine the dimensionality of the latent space, resulting in

a sparse model. The hierarchical representation of these distributions enables feasible

solutions for the latent variables and model parameters. Unlike Chapter 6, the pa-

rameters are treated as latent variables and their posterior distributions are estimated

using variational Bayesian inference.

Chapter 8 of this thesis introduces the final contribution of this thesis, which

focuses on integrating physics principles into the probabilistic slow feature model.

Industrial processes have physical constraints, such as energy requirements, equip-

ment limitations, conservation laws, symmetry properties, specific functional forms

of relationships, and safety considerations. Previous enhancements proposed in the

thesis may result in physically inconsistent or unacceptable results due to the black-

box nature of the slow feature model. Although the Bayesian framework allows for the

incorporation of expert information through prior distributions, the resulting model

may still not align with known physics principles. In response, Chapter 8 proposes

a methodology that incorporates two types of physical constraints (linear algebraic

equality and inequality constraints) into the probabilistic slow feature model. The

model parameters are estimated using the expectation-maximization approach.

The thesis concludes with Chapter 9, which serves as the final chapter. In this

chapter, the conclusions derived from the different models and algorithms developed

throughout the thesis are summarized. Additionally, the potential areas for future

work are outlined.

13



Chapter 2

Mathematical Background

This chapter aims to provide a thorough analysis and exploration of the fundamental

concepts, ideas, and methodologies that will serve as the foundation for forthcoming

chapters. These aspects are aimed to equip readers with the necessary knowledge

and tools to effectively engage with the subsequent contributions in a meaningful and

insightful manner.

2.1 Probabilistic modelling with unknown param-

eters

Modeling a random variable using a probability distribution with a non-random un-

known parameter is a common approach in statistical analysis [57–59]. In this type of

modeling, the random variable is assumed to follow a specific probability distribution,

but one or more parameters of that distribution are treated as non-random or deter-

ministic unknowns. These parameters are fixed values that need to be estimated from

the available data. Throughout the thesis, various probability distributions have been

utilized for different purposes. These distributions have been chosen based on their

appropriateness for specific scenarios and the characteristics of the random variables

under investigation. Each chosen probability distribution provides a mathematical

representation of the random variable, where the non-random unknown parameter(s)

play a critical role. The following section provides descriptions of several probability

distributions that have been employed for diverse purposes in the different contribu-

tions of this thesis.
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2.1.1 Gaussian Distribution

The Gaussian distribution, also known as the normal distribution, is a fundamental

probability distribution commonly used in statistical analysis and modeling. It is

characterized by its bell-shaped curve, with the mean as its center and the standard

deviation determining its spread. In many real-world phenomena, such as measure-

ment errors or natural variations, the Gaussian distribution often provides a good

approximation. It is widely utilized due to its mathematical tractability and several

important properties. The Gaussian distribution is fully defined by two parameters:

the mean (µ) and the standard deviation (σ). The mean represents the central ten-

dency of the distribution, while the standard deviation measures the dispersion or

variability of the data points around the mean. The probability density function

(PDF) of a Gaussian distribution is given by (2.1):

f(x) = N (x;µ, σ) =
1√

2πσ2
e−

1
2(x−µ

σ )
2

(2.1)
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Figure 2.1: PDFs of a Gaussian distribution
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As shown in Fig. 2.1, a higher value of µ moves the distribution to the right,

while a lower value of µ shifts it to the left. Increasing the standard deviation σ

makes the distribution wider and flatter, resulting in a broader curve with a lower

peak. Conversely, decreasing σ makes the distribution narrower and taller, with a

higher peak. We now present the derivation to calculate the expected value and the

variance of a Gaussian distributed random variable.

• Expected value of x:

E(x) = ⟨x⟩ =

∫ ∞

−∞
xf(x)dx (2.2)

=
1√

2πσ2

∫ ∞

−∞
xe−

1
2(x−µ

σ )
2

dx

=
1√
2π

∫ ∞

−∞
(σz + µ)e−

z2

2 dz

(
where z =

x− µ

σ
=⇒ dx = σdz

)

=
σ√
2π���

���
��*0∫ ∞

−∞
ze−

z2

2 dz +
µ√
2π���

����*

√
2π∫ ∞

−∞
e−

z2

2 dz =⇒ µ

Since the integrand of the first integral is an odd function, its integral over a

symmetric interval is zero. The second term relies on the property that the

integral of the normal distribution evaluates to 1 i.e.,∫ ∞

−∞
f(x)dx =

1√
2πσ2

∫ ∞

−∞
e−

1
2(x−µ

σ )
2

dx = 1 (2.3)

• Variance of x:

Var(x) = E(x2) − E(x)2 (2.4)

=

∫ ∞

−∞
x2

1√
2πσ2

e−
1
2(x−µ

σ )
2

dx− µ2

=
1√
2π

∫ ∞

−∞
(σz + µ)2e−

z2

2 dz − µ2

(
where z =

x− µ

σ
=⇒ dx = σdz

)

=
σ2

√
2π

∫ ∞

−∞
z2e−

z2

2 dz +
µ2

√
2π���

����*

√
2π∫ ∞

−∞
e−

z2

2 dz +
2µσ√

2π���
���

��*0∫ ∞

−∞
ze−

z2

2 dz − µ2

To evaluate the integral, we substitute
1

2
with α

= σ2

√
α

π

∫ ∞

−∞
z2e−αz2dz = −σ2

√
α

π

∫ ∞

−∞

d

dα
e−αz2dz

= −σ2

√
α

π

d

dα
���

����*

√
π
α∫ ∞

−∞
e−αz2dz (Using (2.3)) =⇒ σ2
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2.1.2 Gamma Distribution

The Gamma distribution is a probability distribution that is used to model continu-

ous, positive-valued random variables. It is characterized by two parameters: shape

(α) and rate parameter (β). The PDF of the Gamma distribution is given by (2.5).

p(x;α, β) =
βα

Γ(α)
xα−1 e−βx (2.5)

where Γ represents the gamma function. Higher values of α result in a more peaked

and less-skewed distribution, while lower values lead to a right-skewed distribution.

Lower values of β lead to a faster decay of the distribution, and vice versa, as shown

in Fig. 2.2.
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Figure 2.2: PDFs of a Gamma distribution

The important moments of the Gamma distribution can be derived using (2.2) -

(2.4), but for brevity, the final equations are presented below.

⟨x⟩ =
α

β
(2.6)

Var(x) =
α

β2
(2.7)

⟨lnx⟩ = ψ(α) − ln(β) (2.8)

where ψ is the digamma function.
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2.1.3 Beta Distribution

The Beta distribution is a continuous probability distribution defined on the interval[
0 1

]
. It is characterized by two shape parameters, typically denoted as alpha (α)

and beta (β), which determine the shape and behavior of the distribution. The PDF

of the Beta distribution is given by (2.9).

p(x;α, β) =
xα−1(1 − x)β−1

B(α, β)
(2.9)

where B(α, β) = Γ(α)Γ(β)
Γ(α)+Γ(β)

. The combination of α and β determines the shape, skew-

ness, and location of the peak (mode) of the Beta distribution curve, as shown in Fig.

2.3. When α = β, the distribution is symmetric around its center. As the values of

α and β differ, the distribution becomes skewed. Further, larger values of α and β

result in a narrower and more concentrated distribution, indicating less variability.
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Figure 2.3: PDFs of a Beta distribution

The mean and variance of the Beta distribution are shown below.

⟨x⟩ =
α

α + β
(2.10)

Var(x) =
αβ

(α + β)2(α + β + 1)
(2.11)
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2.1.4 Laplace Distribution

The Laplace distribution, also known as the double-exponential distribution, is char-

acterized by its symmetric bell-shaped curve with heavy tails, similar to the normal

distribution. However, unlike the normal distribution, the Laplace distribution has

a sharper peak and a more rapid decay in the tails, making it suitable for modeling

data with abrupt changes or outliers. The PDF of the Laplace distribution is given

by (2.12)

p(x;µ, b) =
1

2b
exp

(
−|x− µ|

b

)
(2.12)

where µ is the location parameter (representing the center of the distribution), and b

is the scale parameter (controlling the spread or width of the distribution). Shifting

the location parameter horizontally moves the center of the distribution. The scale

parameter controls the spread of the distribution, as shown in Fig. 2.4. In the

context of this thesis, the Laplace distribution is used to encourage sparse solutions.

Sparsity refers to the property where a significant portion of the elements in a signal

or parameter vector are exactly zero or very close to zero.

-10 -8 -6 -4 -2 0 2 4 6 8 10

samples

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

p
, 

b
(x

)

 = 0,b = 1

 = 0,b = 3

 = 4,b = 3

Figure 2.4: PDFs of a Laplace distribution
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2.1.5 Truncated Gaussian Distribution

The truncated Gaussian distribution is a probability distribution that is derived from

the Gaussian (normal) distribution but with the restriction that values outside a

certain range are excluded or ”truncated.” This truncation is typically imposed to

reflect real-world constraints or limitations in the data or application. The PDF of

the truncated Gaussian distribution is given by (2.13).

p(x;µ, σ, a, b) =
1

σ

Φ
(
x−µ
σ

)
Ψ
(
b−µ
σ

)
− Ψ

(
a−µ
σ

) (2.13)

where Φ(ξ) = 1√
2π

exp
(
− ξ2

2

)
is the PDF of the standard normal distribution and

Ψ(z) = 1
2

(
1 + erf

(
z√
2

))
is its cumulative distribution function. Here µ and σ are

the mean and standard deviation of the underlying Gaussian distribution, a and b

are the lower and upper bounds. The behavior of the truncated distribution within[
0 1

]
for different values of the µ and σ is shown in Fig. 2.5.
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Figure 2.5: PDFs of a truncated Gaussian distribution

The mean and the variance of the truncated normal distribution can be calculated

as follows:

⟨x⟩ = µ− σ
Φ(β) − Φ(α)

Ψ(β) − Ψ(α)
(2.14)
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Var(x) = σ2

(
1 − βΦ(β) − αΦ(α)

Ψ(β) − Ψ(α)
−
(

Φ(β) − Φ(α)

Ψ(β) − Ψ(α)

)2
)

(2.15)

where α = a−µ
σ

and β = b−µ
σ

.

2.1.6 Skew Normal Distribution

The skew normal distribution is a probability distribution that extends the normal

distribution by introducing a skewness parameter. It is commonly used to model

asymmetric data in various fields. The PDF of the skew normal distribution is given

by (2.16).

p(x; ξ, ω, α) =
2

ω
ϕ

(
x− ξ

ω

)
ψ

(
λ

(
x− ξ

ω

))
(2.16)

where ξ, ω, and λ affect the location, scale and shape of the distribution. When λ = 0,

the distribution reduces to the normal distribution. Positive values of α correspond

to right-skewed distributions, while negative values indicate left-skewness, as shown

in Fig. 2.6.
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Figure 2.6: PDFs of a skew normal distribution
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2.1.7 Skewed t-distribution

The Skewed-t distribution is a statistical distribution that combines the properties of

the Student’s t-distribution with skewness. It is commonly used in statistical mod-

eling and data analysis to account for skewness and heavy tails in the data. The

probability density function of the Skewed-t distribution is defined by four param-

eters: degrees of freedom (ν), skewness (λ), location (µ), and scale (σ). Similar to

the t-distribution, the degrees of freedom parameter governs the tail behavior of the

distribution. Higher values of ν result in thinner tails, approaching a normal distri-

bution, while lower values lead to heavier tails, as shown in Fig.2.7. The remaining

parameters µ, σ, and λ serve the same purpose as discussed in the previous subsec-

tions. The PDF of the skewed t-distribution is not included due to its complexity

and will not be used in this thesis. However, we can utilize the established result that

a skewed t-distribution can be expressed as a Gaussian scale mixture, as explained in

Chapter 6.
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2.2 Maximum likelihood Estimation

The maximum likelihood estimation (MLE) [57,60] method is a widely used statisti-

cal technique for estimating the parameters of a probability distribution. It provides

a rigorous framework for making inferences about unknown parameters based on ob-

served data. The fundamental idea behind the MLE method is to find the set of

parameter values that maximize the likelihood function, which quantifies the prob-

ability of observing the given data under different parameter settings. Intuitively,

the MLE seeks to find the most likely values of the parameters that explain the ob-

served data in the best possible way. By maximizing the likelihood function, we are

effectively finding the parameter values that make the observed data most probable.

To formalize the MLE method, let’s consider a parametric probability distribu-

tion with unknown parameters. Let θ represent the vector of parameters, and let

X =
(
x1, x2, · · · xN

)
be a set of N independent and identically distributed (i.i.d.)

observations from this distribution. The likelihood function L(θ|X) represents the

probability of observing the data X under the parameter values θ. For a continuous

distribution, it is defined as the product of the probability density function evaluated

at each observation:

L(θ|X) =
N∏

n=1

f(xn; θ)

where p(xn; θ) is the PDF of the distribution. The maximum likelihood estimation

problem can be formulated as follows:

θ∗ = Arg max
θ

L(θ|X)

where θ∗ represents the estimated parameter values that maximize the likelihood.

To simplify the optimization problem, it is common to take the logarithm of the

likelihood function, resulting in the log-likelihood:

l(θ|X) = lnL(θ|X) =
N∑

n=1

ln p(xn; θ)

The log-likelihood function has the same maximum as the likelihood function, but it

simplifies the calculations and avoids numerical underflow issues when dealing with
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small probabilities. The estimation problem can be further enhanced by introducing

constraints on the parameter space. This is particularly relevant when dealing with

bounded parameters or when prior knowledge about the parameters is available. In

such cases, the maximum likelihood estimation problem becomes a constrained opti-

mization problem [61–63], and additional techniques, such as Lagrange multipliers or

numerical optimization algorithms, may be required.

2.3 Probabilistic modelling with a latent variable

Traditionally, probabilistic models have focused on estimating unknown parameters

to capture the underlying structure of the measured data. However, in numerous real-

world applications, the measured data is influenced by factors that are not directly

observable. These hidden factors, or latent variables, play a crucial role in shaping

the observed data distribution. The integration of latent variables [64] provides a

flexible framework, as discussed below.

• Capturing complex relationships: Probabilistic modeling with latent vari-

ables [65–67] enables us to capture intricate relationships between observed vari-

ables and hidden factors. These hidden variables act as abstract representations

that encode important but unobserved information. Latent variable modelling

provides a flexible framework to model various types of dependencies, including

nonlinear relationships, hierarchical structures, and context-specific patterns,

leading to a more accurate and comprehensive understanding of the underlying

processes.

• Dealing with uncertainties [68–70]: In many real-world scenarios, uncer-

tainties are inherent and unavoidable. Probabilistic modeling with latent vari-

ables allows us to explicitly model and quantify uncertainties in our data. By

incorporating uncertainty measures, such as probability distributions, we can

make robust predictions and perform reliable inferences. This ability to handle

uncertainties is particularly valuable in applications such as decision-making,

risk assessment, and anomaly detection.

• Enhanced interpretability [71]: Probabilistic modeling with latent variables
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can enhance the interpretability of our models. By explicitly representing hid-

den factors, we gain insights into the driving forces behind the observed data.

Latent variables can be interpreted as meaningful features or attributes that

contribute to the generation or organization of the observed data.

• Learning from incomplete data [72–75]: In many real-world scenarios,

data may be incomplete or have missing values. Probabilistic modeling with

latent variables offers a principled approach for handling such incomplete data.

The latent variables act as a bridge, connecting the observed variables with the

missing information. Through probabilistic inference, we can infer the values of

missing data points.

To formalize the problem, let’s consider a set of observed variables denoted by x and a

set of latent variables denoted by z. Given an observed value x∗ of a random variable

x, in a Bayesian approach [76], there are two goals, as discussed below.

• The first aim of a Bayesian approach is to evaluate the logarithm of the marginal

likelihood (also called log model evidence) of the observed data, denoted by

ln p(x). The model or hypothesis with a higher logarithm of the marginal prob-

ability is considered to be more likely or more supported by the data.

p(x) =

∫
p(x, z)dz (2.17)

• The subsequent crucial objective is to determine the conditional distribution

p(z|x) of a latent variable. This conditional distribution is known as the pos-

terior distribution. It combines our prior beliefs about z with the information

provided by x∗. The posterior distribution is derived using Bayes’ theorem, as

shown in (2.18).

p(z|x) =
p(x|z)p(z)

p(x)
(2.18)

Due to the presence of numerous unobserved variables in a model, the integration of

the right-hand side of (2.17) can be analytically challenging or even impossible. In

order to fulfill the dual objectives of a Bayesian approach, Variational Bayes (VB)

offers an alternative by substituting the integration problem with an optimization
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problem. The forthcoming section will elaborate on the intricacies and mechanics of

this substitution.

2.4 Mean-field variational Inference

Variational Bayesian inference [77–79] is a powerful computational technique used

to approximate the posterior distribution of latent variables and the log marginal

likelihood of observed data in Bayesian models. In essence, the primary objective

of variational Bayesian inference is to discover an approximate distribution q(z) that

closely resembles the true posterior distribution p(z|x). The extent of this closeness

is evaluated using the Kullback-Leibler (KL) divergence [80], as illustrated in the

following expression.

min
q(z)

KL (q(z)||p(z|x))

s.t.

∫
q(z)dz = 1

(2.19)

The KL-divergence term is defined as

KL (q(z)||p(z|x)) =

∫
q(z) ln

(
q(z)

p(z|x)

)
dz (2.20)

It can be understood as a non-symmetric measure of the difference between two

probability distributions. It is important to note that the KL-divergence is always

greater than or equal to zero. It equals zero only when q(z) and p(z|x) are identical,

indicating perfect similarity. The KL-divergence term can be simplified as shown

below.

KL (q(z)||p(z|x)) =

∫
q(z) ln

(
q(z)

p(z|x)

)
dz

=

∫
q(z) ln

(
p(x)q(z)

p(z, x)

)
dz

=

∫
q(z) ln p(x) dz −

∫
q(z) ln

(
p(z, x)

q(z)

)
dz

= ln p(x) − F(q(z)) (2.21)

where F (q(z)) is called the variational free energy. The non-negativity of KL-divergence

implies that the variational free energy is always less than or equal to the log model
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evidence. Hence, variational free energy is also referred to as evidence lower bound

(ELBO).

KL (q(z)||p(z|x)) ≥ 0 =⇒ F(q(z)) ≤ ln p(x) (2.22)

Since the log model evidence is a fixed quantity, solving the maximization problem

shown in (2.23) instead has two outcomes.

q∗(z) = Arg max
q(z)

F (q(z))

s.t.

∫
q(z)dz = 1

(2.23)

• First, the lower bound on the log model evidence becomes tighter, improving

the approximation of the variational free energy to the log model evidence.

• The KL-divergence between the true posterior and its variational approximation

decreases, enhancing the similarity between the q(z) and p(z|x).

Given the absence of a closed-form solution for the true posterior, as previously

elaborated in Sec. 2.3, a restricted family of distributions q(z) is considered instead.

The member of this family, for which the KL divergence is minimized, is sought. The

mean-field approximation is a popular choice to restrict the family of distributions.

It assumes that the approximate posteriors of each latent variable z(i) ∀1 ≤ i ≤ p are

independent. Therefore,

q(z) =

p∏
j=1

q(z(j)) = q(z(i))

p∏
j=1
j ̸=i

q(z(j)) = q(z(i))q(z(∼i)) (2.24)

where q(z(∼i)) refers to the joint distribution of hidden variables except z(i). Further,

the evidence lower bound can be decomposed as shown below.

F (q) =

∫
q(z) ln

(
p(x, z)

q(z)

)
dz (2.25)

=

∫
q(z(i))q(z(∼i)) ln p(x, z)dz(i) dz(∼i)

−
∫
q(z(i))q(z(∼i)) ln

(
q(z(i))q(z(∼i))

)
dz(i) dz(∼i)

=

∫
z(i)

q(z(i))

[∫
z(∼i)

q(z(∼i)) ln p(x, z)dz(∼i)

]
dz(i)
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−
[∫

z(i)
q(z(i)) ln q(z(i))dz(i)

]
������������:1[∫

z(∼i)

q(z(∼i))dz(∼i)

]

−
����������:1[∫

z(i)
q(z(i))dz(i)

]
�����������������:c[∫

z(∼i)

q(z(∼i)) ln q(z(∼i))dz(∼i)

]
=

∫
z(i)

q(z(i))

[∫
z(∼i)

q(z(∼i)) ln p(x, z)dz(∼i)dz(∼i) − ln q(z(i))

]
dz(i) + c

=

∫
z(i)

q(z(i))
(
⟨ln p(x, z)⟩q(z(∼i)) − ln q(z(i))

)
+ c (2.26)

where c is a constant independent of q(z(i)). The Lagrange function is constructed,

as shown in (2.27), to solve the constrained optimization in (2.23).

L(q) =

∫
z(i)

q(z(i))
(
⟨ln p(x, z)⟩q(z(∼i)) − ln q(z(i))

)
+ c+ λ

(∫
q(z(i))dz(i) − 1

)
(2.27)

=

∫
z(i)

q(z(i))
(
⟨ln p(x, z)⟩q(z(∼i)) − ln q(z(i)) + λ

)
dz(i) + c− λ

As L(q(z)) is functional, the maximum is obtained by finding functions for which the

functional derivative is equal to zero. Say L(q) =
∫
f(x, q(x), q′(x))dx, then L(q) has

a stationary value if the Euler-Lagrange differential equation is satisfied

∂f

∂q
− d

dx

{
∂f

∂q′

}
= 0

Hence

∂

∂q(z(∼i))

{
q(z(i))

(
⟨ln p(x, z)⟩q(z(∼i)) − ln q(z(i)) + λ

)}
= 0

⟨ln p(x, z)⟩q(z(∼i)) − 1 − ln q(z(i)) + λ = 0

ln q(z(i)) = ⟨ln p(x, z)⟩q(z(∼i)) + ln exp{λ− 1} (2.28)

q(z(i)) ∝ exp
(
⟨ln p(x|z(i), z(∼i))⟩q(z(∼i))

)
p(z(i)) (2.29)

The equation shown in (2.29) serves as a fundamental tool that is widely employed

in deriving numerous posterior distributions in subsequent academic contributions.

The variational inference algorithm is summarized in Fig. 2.8.

Note: Variational Bayesian inference can be closely related to the widely recognized

Expectation-Maximization (EM) algorithm [81, 82], particularly under specific con-

ditions, as elucidated in the following discussion. Assuming the model involves both
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Iteration 1

Iteration 2

Iteration j

 

   
  

 

   
  

Repeat till convergence

Figure 2.8: Variational Inference algorithm. The sum of F (q(zzz)) and
KL(q(zzz)||p(zzz|xxx)) is always a constant with respect to q(zzz). The variational free
energy F (q(j)(zzz)) increases with each iteration j until convergence is achieved
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latent variables and unknown parameters θ, the equation in (2.21) can be reformu-

lated as shown below:

ln p(x; θ) = KL (q(z)||p(z|x)) + F(q(z), θ) =⇒ F(q(z), θ) ≤ ln p(x; θ) (2.30)

Consequently, the optimization problem to be addressed can be expressed as (2.31).

max
q(z), θ

F (q(z), θ) (2.31)

However, solving this optimization problem analytically for both q(z) and θ simulta-

neously proves to be infeasible due to its complexity. Thus, the complex problem is

decomposed, and an iterative stepwise analytical solution is pursued until convergence

by fixing one entity while optimizing the other. The two steps of the expectation-

maximization algorithm are elaborated on in the subsequent discussion.

• E-step: Given θold, the first step involves maximizing the variational free energy

with respect to the approximate distribution q(z). The specific problem of

interest is expressed below.

Arg max
q(z)

F
(
q(z), θold

)
Assuming that the posterior is perfectly tractable, the free energy is maximized

when the approximate posterior is equal to the true posterior.

q∗(z) = p(z|x; θold) (2.32)

• M-step: Once q∗(z) is determined, the second objective is to maximize the

free energy with respect to the parameter θ. The corresponding mathematical

problem of interest is presented below.

Arg max
θ

F
(
q∗(z), θold

)
From (2.25),

F (q∗(z), θ) =

∫
q∗(z) ln

(
p(x, z; θ)

q∗(z)

)
dz

=

∫
q∗(z) ln p(x, z; θ)dz +

∫
q∗(z) ln q∗(z)dz
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= ⟨ln p(x, z; θ)⟩q∗(z) + c

where c represents a constant independent of θ. Consequently, the optimization

problem can be reformulated as follows:

θnew = Arg max
θ

⟨ln p(x, z; θ)⟩q∗(z) (2.33)

2.5 Importance Sampling

Conjugate priors possess the crucial property of yielding posterior distributions that

belong to the same parametric family as the prior distribution. This property facil-

itates analytical tractability and simplifies the variational inference process, as the

optimal variational approximation can be derived in closed form. However, a funda-

mental challenge arises when we encounter scenarios where the use of non-conjugate

priors is either desirable or inevitable. The explicit knowledge of the normalizing

constant is often intractable for non-conjugate priors. In many applications, the prin-

cipal reason for estimating the posterior distribution is to evaluate the expected value

of some function f(z) under the probability distribution p(z), as shown in (2.34).

⟨f(z)⟩ =

∫
f(z)p(z)dz (2.34)

We assume that evaluating such expectations exactly through analytical tech-

niques is intractable. To address this, sampling methods are employed to obtain a set

of independent samples, z(l)(where l = 1, ..., L), drawn from the distribution p(z).

This enables the approximation of the expectation (11.1) through a finite sum.”

f̂ =
1

L

L∑
l=1

f(z(l)) (2.35)

where L denotes the number of drawn samples and f̂ is the basic Monte Carlo es-

timator of ⟨f(z)⟩. Suppose we seek to sample from a challenging distribution p(z),

which is difficult to directly sample from, under the assumption that the knowledge

of p(z) is limited to p̃(z) with an unknown normalizing constant Zp.

p(z) =
1

Zp

p̃(z) (2.36)
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where p̃(z) can readily be evaluated. By leveraging an easy-to-sample/proposal distri-

bution q(z), which can be chosen independently, the importance sampling [78] frame-

work enables the estimation of the statistical quantities of interest. The expected

value of the function f(z) can be computed as shown below.

f̂ =
L∑
l=1

f(z(l))ŵl (2.37)

where

ŵl =
w̃l∑L
l=1 w̃l

and w̃l =
p̃(ν(l))

q̃(z(l))
(2.38)

Here q̃(z(l)) is defined similarly to (2.36). The samples z(l) ∀ l ∈ {1, 2, . . . L} are

now drawn from the easier distribution q(z), and the introduced bias from wrong

distribution sampling is corrected by ŵl. The support distribution q(z) is chosen in

such a way that it should not be negligible or zero in regions where p(z) may hold

significant values. The benefit of importance sampling is illustrated in the Fig. 2.9.

2.6 Kalman Filtering and Smoothing

Consider a general multivariate state-space model as shown below.

zzzk = Azzzk−1 +wwwk; wwwk ∼ N (0, Q) (2.39)

xxxk = Csssk + vvvk; vvvk ∼ N (0, R) (2.40)

where A ∈ Rm×m, C ∈ Rp×m, Q ∈ Rm×m, and R ∈ Rp×p are the state-transition

matrix, the emission matrix, the state-noise covariance matrix, and the measurement

noise covariance matrix, respectively. Here zzzk ∈ Rm×1 and xxxk ∈ Rp×1 represent

the state and the measurement, respectively. State estimation refers to the process

of inferring the hidden states of a dynamic system based on noisy and incomplete

measurements. The Kalman filter [83] and smoother [84–86] have demonstrated re-

markable success in addressing these challenges and have become essential tools in

various scientific and engineering domains. The motivation behind these techniques

stems from their unique ability to fuse incoming measurements with prior knowledge

of system dynamics, resulting in optimal state estimation. By recursively updating
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Figure 2.9: Importance sampling demonstration: Assuming the computation
and sampling of p(z) are challenging, the alternative distribution q(z) serves as a
surrogate for estimating the expected value of the function f(z). An effective q(z)
should have sample points concentrated in regions where p(z)f(z) exhibits high values.
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state estimates, these methods provide an efficient means to handle real-time and

online estimation problems.

The process disturbance wwwk ∈ Rm×1 and the measurement noise vvvk ∈ Rp×1 are

assumed to follow Gaussian distribution. Therefore, the state transition and the

emission probabilities are defined as shown in (2.41)-(2.42).

p(zzzk|zzzk−1) = N (zzzk;Azzzk−1.Q) (2.41)

p(xxxk|zzzk) = N (xxxk;Czzzk, R) (2.42)

The initial-state zzz1 is assumed to follow Gaussian distribution with user-chosen mean

µµµ0 and covariance Σ0 i.e.,

p(zzz1) = N (zzz1;µµµ0,Σ0) (2.43)

Lemma 1 [78,87]: Given a marginal Gaussian distribution for zzz and a conditional

Gaussian distribution for xxx given zzz in the form

p(zzz) = N (zzz;µµµ,Σ) (2.44)

p(xxx|zzz) = N (xxx;Czzz + bbb, R) (2.45)

The following equation holds

p(xxx) = N (xxx;Cµµµ+ bbb, CΣCT +R) (2.46)

p(zzz|xxx) = N (zzz;µµµ+K(xxx− (Cµµµ+ bbb)), (I −KC)Σ) (2.47)

where

K = ΣCT (CΣCT +R)−1 (2.48)

2.6.1 Kalman Filtering

The objective is to infer the probability distribution of the state zzzk given the values

of all observed variables upto xxxk, i.e., p(zzzk|xxx1:k) ∀k ∈
[
1 N

]
1. For k = 1, the goal is to find p(zzz1|xxx1).

p(zzz1|xxx1) ∝ p(xxx1|zzz1) p(zzz1) [Bayes’ theorem]
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∝N (xxx1;Czzz1, R) N (zzz1;µµµ0,Σ0)

∝N (zzz1;µµµzzz1|xxx1 ,Σzzz1|xxx1) [Using (2.47)]

where

K1 = Σ0C
T (CΣ0C

T +R)−1 (2.49)

µµµzzz1|xxx1 = µµµ0 +K1(xxx1 − Aµµµ0) (2.50)

Σzzz1|xxx1 = (I −K1C)Σ0 (2.51)

2. Prediction: For k ̸= 1, the goal for predictive step is to find p(zzzk|xxx1:k−1).

p(zzzk|xxx1:k−1) = N (zzzk;µµµzzzk|xxx1:k−1
,Σzzzk|xxx1:k−1

)

∝
∫
p(zzzk|zzzk−1,xxx1:k−1)p(zzzk−1|xxx1:k−1)dzzzk−1[Law of total probability]

∝
∫
p(zzzk|zzzk−1)p(zzzk−1|xxx1:k−1)dzzzk−1 [Markov assumption]

∝
∫

N (zzzk|Azzzk−1, Q)N (zzzk−1;µµµzzzk−1|xxx1:k−1
,Σzzzk−1|xxx1:k−1

))dzzzk−1

= N
(
zzzk;Aµµµzzzk−1|xxx1:k−1

, AΣzzzk−1|xxx1:k−1
AT +Q

)
(Using (2.46))

Therefore,

µµµzzzk|xxx1:k−1
= Aµµµzzzk−1|xxx1:k−1

(2.52)

Σzzzk|xxx1:k−1
= AΣzzzk−1|xxx1:k−1

AT +Q (2.53)

3. Correction: For k ̸= 1, the goal for predictive step is to find p(zzzk|xxx1:k)

p(zzzk|xxx1:k) ∝ p(xxxk|zzzk,xxx1:k−1) p(zzzk|xxx1:k−1) [Bayes’ theorem]

∝ p(xxxk|zzzk) p(zzzk|xxx1:k−1) [Markov assumption]

∝N (xxxk|Czzzk, R) N (zzzk;µµµzzzk|xxx1:k−1
,Σzzzk|xxx1:k−1

)

= N (zzzk;µµµzzzk|xxx1:k
,Σzzzk|xxx1:k

)

where

Kk = Σzzzk|xxx1:k−1
CT (CΣzzzk|xxx1:k−1

CT +R)−1 (2.54)

µµµzzzk|xxx1:k
= µµµzzzk|xxx1:k−1

+Kk(xxxk − Cµµµzzzk|xxx1:k−1
) (2.55)

Σzzzk|xxx1:k
= (I −KkC)Σzzzk|xxx1:k−1

(2.56)
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2.6.2 Kalman Smoothing

The objective is to infer the probability distribution of the state zzzk given the values

of all observed variables upto xxxN , i.e., p(zzzk|xxx1:N)

1. For k = N , the goal is to find p(zzzN |xxx1:N), which was previously computed during

the final stage of Kalman filtering.

p(zzzN |xxx1:N) = N (zzzN ;µµµzzzN |xxx1:N
,ΣzzzN |xxx1:N

) (2.57)

2. Smoothing: For k ̸= N , the goal for smoothing step is to find p(zzzk|xxx1:N).

p(zzzk|xxx1:N) = N (zzzk;µµµzzzk|xxx1:N
,Σzzzk|xxx1:N

)

∝
∫
p(zzzk|zzzk+1,xxx1:N)p(zzzk+1|xxx1:N)dzzzk+1

[Law of total probability]

∝
∫
p(zzzk|zzzk+1,xxx1:N)N (zzzk+1;µµµzzzk+1|xxx1:N

,Σzzzk+1|xxx1:N
)dzzzk+1 (2.58)

Now the first term is further simplified as follows

p(zzzk|zzzk+1,xxx1:N) ∝ p(zzzk+1|zzzk,xxx1:k−1) p(zzzk|xxx1:N) [Bayes’ theorem]

∝ p(zzzk+1|zzzk) p(zzzk|xxx1:k) [Markov assumption]

∝N (zzzk+1|Azzzk, Q) N (zzzk;µµµzzzk|xxx1:k
,Σzzzk|xxx1:k

)

= N (zzzk;µµµzzzk|xxx1:k
+ J(zzzk+1 − Aµµµzzzk|xxx1:k

), (I − JA)Σzzzk|xxx1:k
) (2.59)

[Using (2.47)]

where

Jk = Σzzzk|xxx1:k
AT (AΣzzzk|xxx1:k

AT +Q)−1 = Σzzzk|xxx1:k
ATΣ−1

zzzk+1|xxx1:k
(2.60)

Substituting (2.59) - (2.60) into (2.58) and using (2.46) yields

µµµzzzk|xxx1:N
= µµµzzzk|xxx1:k

+ Jk(µµµzzzk+1|xxx1:N
− Aµµµzzzk|xxx1:k

) (2.61)

Σzzzk|xxx1:N
= Σzzzk|xxx1:k

+ Jk(Σzzzk+1|xxx1:N
− Σzzzk+1|xxx1:k

)JT
k (2.62)

The Python code presented below [2.1] is provided for research purposes, enabling

the computation of the predicted, corrected, and smoothed state.

36



1 import pandas as pd

2 import numpy as np

3 from scipy.linalg import cholesky

4 from collections import OrderedDict

5 from numpy.linalg import inv

6

7

8 def kalman_filter_(x, A, Q, C, R, mu_0 , Sigma_0 , smoother=False):

9 ’’’Implements Kalman Filter:

10 Inputs:

11 1) Noisy measurements: x (p * N)

12 2) State -transition matrix: A (N(optional) * m * m)

13 3) State -noise covariance matrix: Q (N(optional) * m * m)

14 4) Emission matrix: C (N(optional) * p * m)

15 5) Measurement -noise covariance matrix: R (N(optional) *p*p)

16 6) Initial state mean: mu_0 (m * 1)

17 7) Initial state covariance: Sigma_0 (m * m)

18 8) Kalman Smoother: Optional

19 Outputs: A dictionary with

20 1) Predicted state

21 2) Corrected state

22 3) Smoothed state ’’’

23

24 p, N = x.shape

25 if A.shape [0] != N:

26 A = np.repeat(A[None , :, :], N, axis =0)

27 if Q.shape [0] != N:

28 Q = np.repeat(Q[None , :, :], N, axis =0)

29 if C.shape [0] != N:

30 C = np.repeat(C[None , :, :], N, axis =0)

31 if R.shape [0] != N:

32 R = np.repeat(R[None , :, :], N, axis =0)

33

34 m = A.shape [1]

35

36 # Initialization

37 K = np.zeros ((N, m, p))

38 zhat_pred , zhat_crt = np.zeros((m, N)), np.zeros((m, N))

39 P_pred , P_crt = np.zeros((N, m, m)), np.zeros((N, m, m))

40

41 #

42 K[0]= Sigma_0 @C[0].T @inv(C[0] @Sigma_0 @C[0].T +R[0])

43 zhat_crt[:, [0]] = mu_0 + K[0] @ (x[:, [0]] - C[0] @ mu_0)

44

45 P_crt [0] = (np.eye(m) - K[0] @ C[0]) @ Sigma_0

46 P_pred [0] = A[0] @ P_crt [0] @ A[0].T + Q[0]

47

48 for t in range(1, N):

49 # Prediction

50 zhat_pred [:, t] = A[t] @ zhat_crt[:, t-1]

51 P_pred[t] = A[t] @ P_crt[t-1] @ A[t].T + Q[t]

52

53 # Correction

54 K[t]= P_pred[t]@C[t].T@inv(C[t]@P_pred[t]@C[t].T+R[t])
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55 zhat_crt[:, t]= zhat_pred [:, t]+K[t]@(x[:, t]-C[t]@zhat_pred

56 [:, t])

57 P_crt[t] = (np.eye(m) - K[t] @ C[t]) @ P_pred[t]

58

59 kf = OrderedDict ()

60 kf[’predict_state ’], kf[’correct_state ’] = zhat_pred ,zhat_crt

61

62 if smoother:

63 zhat_smooth = np.copy(zhat_crt)

64 P_smooth = np.copy(P_crt)

65 Jhat = np.ones_like(P_crt)

66

67 for t in range(N - 2, -1, -1):

68 Jhat[t] = P_crt[t]@A[t+1].T @ inv(P_pred[t+1])

69

70 zhat_smooth [:, t] =zhat_crt[:, t]+Jhat[t]@(zhat_smooth

71 [:,t+1] - zhat_pred[:,t+1])

72 P_smooth[t] = P_crt[t] + Jhat[t] @ (P_smooth[t+1] -

73 P_pred[t+1]) @ Jhat[t].T

74

75 kf[’smooth_state ’] = zhat_smooth

76

77 return kf

Listing 2.1: Kalman filter and smoother Python code
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Chapter 3

Complex Probabilistic Slow
Feature Extraction with
Applications in Process Data
Analytics ∗

Today, in modern industrial processes, thousands of correlated process variables are

measured and stored. Dimension reduction techniques are often employed to con-

struct informative features by discarding redundant information. Slow feature anal-

ysis is one such technique that extracts the slowly varying patterns from measured

data. Oscillatory behavior is prevalent in process data due to inadequate control loop

tuning and external disturbances such as diurnal temperature variation. Extracting

these oscillatory patterns is vital in applications such as control loop monitoring, fault

diagnosis. Slow feature analysis may not extract oscillating patterns when the signal

to noise ratio is low in process data. This chapter proposes the complex probabilistic

formulation that extracts slow oscillatory features. We also present the Expectation-

Maximization algorithm to obtain the optimal parameter estimates. Finally, three

case studies are presented to illustrate the efficacy of the proposed formulation in soft

sensing and fault detection applications.

∗This chapter has been published as: V. K. Puli, R. Raveendran, and B. Huang, in ”Com-
plex probabilistic slow feature extraction with applications in process data analytics, Computers &
Chemical Engineering, 154, 107456.
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3.1 Introduction

Data-driven models have gained enormous momentum due to the availability of a

vast amount of historical data obtained with advanced measurement and data stor-

age technologies. Significant correlations exist among the measured variables, and

thus the resulting input-output model often suffers from over-fitting. Therefore, di-

mensionality reduction techniques are often used as a pre-processing step in process

modelling to remove redundant information and extract informative variables called

features present in the data. The subsequent modelling between the features and

outputs is less computationally expensive as the extracted features are comparatively

of a lower dimension. Hence, feature extraction or latent variable modelling [88, 89]

has attracted considerable attention from various scientific disciplines such as econo-

metrics, statistics, neuro-sciences, and industrial process modelling.

The most popular linear latent variable models include principal component anal-

ysis (PCA) [34, 35, 90], partial least squares (PLS) [37–39], independent component

analysis [40], slow feature analysis (SFA) [36] and canonical correlation analysis [91],

each projecting the higher dimensional data onto a lower-dimensional space based on

some optimization criteria. The probabilistic versions [54,55,92–94] have been devel-

oped to enhance the model interpretation and handle various complexities posed by

the real-world dataset. In addition, they work as generative models to obtain new

data samples from the given probability distribution and provide more insights into

the model characteristics.

Under healthy operating conditions, temporally related common variations govern

the process variables due to the dynamic nature of the plant. Those variations are

considered more important because of large process inertia, whereas quick changes

are attributed to noise or/and fault. SFA can derive such temporally related repre-

sentations; specifically, it extracts the slowly varying patterns from a set of correlated

variables. The probabilistic slow feature analysis (PSFA) [54] assumes a naive Gaus-

sian distribution for the observed variables, and hence, it fails to explain process data

with outliers adequately. Therefore, robust models [56,95] were proposed to deal with

data contaminated with outliers. Quality-relevant models [96–98] were proposed to

extract latent features from the information carried by both input and output vari-
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ables. Naturally, with probabilistic extensions, Bayesian versions can be obtained,

as shown in [77,99–101], by integrating prior process knowledge with historical data.

A non-stationary model [102,103] was presented to deal with the non-stationary dy-

namic data as probabilistic slow feature model can only extract stationary features.

Despite the advantages, the PSFA model has shortcomings that have not been

addressed previously in the literature. PSFA may extract slow oscillating features

only when the observed variables are error-free or with a high signal-to-noise ratio,

which is not the case in practice. Oscillations typically arise in process control loops

due to external periodical disturbances, inadequate controller tuning, and control

valve stiction. Faults in one process variable can propagate to various plant sections,

causing plant-wide oscillations. Plant-wide oscillations result in multiple problems,

such as higher energy consumption, low-quality product, and increased waste. The

identification of oscillations using data visualization is impractical due to the pres-

ence of various frequency segments coupled with measurement noise. Hence, the

issue of plant-wide oscillations diagnosis has been studied extensively using the non-

linearity tests [104], spectral envelope methods [10, 105], and process topology-based

methods [11, 13, 14, 106–109]. In this chapter, we propose the complex probabilistic

slow feature analysis (CPSFA) model to extract oscillating features in the presence of

noise. Further, we present a detailed methodology to identify the possible source(s) of

plant-wide oscillations. This chapter also demonstrates a simulation study that shows

the efficacy of extracted oscillating features in soft-sensor applications [110–113].

The remainder of this chapter is organized as follows. Section 3.2.1 presents an

overview of probabilistic SFA and discusses its advantages. In section 3.3.1, a novel

methodology to extract slow features with complex roots is introduced. Parameter

estimation procedure using the Expectation-Maximization algorithm and two effective

initialization strategies are presented in Section 3.3.2. In section 3.4, we illustrate

the applications of the proposed modelling algorithm using a simulational and two

industrial datasets obtained from the SACAC repository. In section 3.5, we present

the concluding remarks.
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3.2 Preliminaries

SFA, an unsupervised machine learning approach proposed by [36], extracts the slowly

varying lower-dimensional features from data. The linear feature extraction methods

available in the literature assume the model given in Eq. (3.1).

S = W TX; (3.1)

where S ∈ Rq×N and X ∈ Rm×N are q dimensional hidden features and m dimensional

observed variables with N data samples, respectively. W ∈ Rm×q is the weight matrix

that maps observed variables to the slow features. The feature extraction models

mainly differ in the optimization objective function. For example, PCA maximizes

the feature variability, whereas SFA minimizes the feature velocity. Section 1.1 details

its mathematical formulation, along with the associated optimization problem.

3.2.1 Probabilistic Slow Feature Analysis

In this section, we review the related studies of slow feature analysis using the prob-

abilistic approach [54, 55]. The probabilistic formulation is presented in Eqs. (3.2) -

(3.3).

s(k) = As(k − 1) + w(k); w(k) ∼ N (0, Q) (3.2)

x(k) = Cs(k) + v(k); v(k) ∼ N (0, R) (3.3)

Several constraints are employed directly from traditional slow feature analysis, as

discussed in Sec. 1.3. Given the observed data X = {x(k) ∈ Rm, 1 ≤ k ≤ N}, the

complete data joint distribution [78] is shown in Eq. (3.4).

p(X1:N , S1:N |A,C,R) =
N∏
k=1

p(xk|sk, C,R)
N∏
k=2

p(sk|sk−1, A)p(s1) (3.4)

where

p(sk|sk−1, A) = N (Ask−1, Iq − AAT ) ∀k ∈ (2, . . . , N) (3.5)

p(xk|sk, C,R) = N (Csk, R) ∀k ∈ (1, 2, 3, . . . , N) (3.6)

The initial states are considered to follow a standard Gaussian distribution and the

conditional distributions of latent and observed variables are shown in the Eq. (3.5)
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and Eq. (3.6), respectively. The maximum likelihood estimation can be employed to

obtain the optimal parameter estimates θ =∆ {A,C,R}, as shown in Eq. (3.7).

θ∗ = Arg max
θ

pθ(X); where pθ(X) =
∑
s

pθ(X,S) (3.7)

It is difficult to maximize Eq.(3.7) and obtain an analytical expression for the optimal

parameters because of the presence of hidden variables. Expectation-Maximization

(EM) algorithm addresses this by iteratively improving parameter estimates using

the observed data.

3.3 Complex Probabilistic Slow Feature Analysis

The main limitation of the current probabilistic slow feature analysis formulation lies

with the state transition matrix structure. For the slow features to be independent,

it is assumed to be diagonal, and hence, the current formulation is restricted to the

systems with only real poles. We propose a novel formulation to remove this limitation

and encode possible oscillating features naturally, as shown in the Eqs. (3.8) - (3.9).[
sc(k)
sr(k)

]
=

[
Ac 0
0 Ar

] [
sc(k − 1)
sr(k − 1)

]
+

[
wc(k)
wr(k)

]
; (3.8)

x(k) = Cs(k) + v(k); (3.9)

where

w(k) =

[
wc(k)
wr(k)

]
∼ N

(
0,

[
Qc 0
0 Qr

])
; v(k) ∼ N (0, R);

Unlike the diagonal state-transition matrix in classical formulation, we employ a

block diagonal matrix that accommodates complex eigenvalues along with the real

ones. Each block may either possess a single real pole or a pair of complex poles.

Further, we consider a specific (weak symmetric) structure for each 2 × 2 block in A

without loss of generality, as shown in Eq. (3.10).

Ac = blkdiag

{[
α1 β1
−β1 α1

]
, . . . ,

[
αqc βqc
−βqc αqc

]}
;

Ar = diag{λ1, . . . , λqr};

(3.10)
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where qr and qc refer to the number of real and conjugate pairs of complex poles,

respectively. The state-noise covariance matrix is defined as shown in Eqs. (3.11) -

(3.12) to conform an identity state covariance matrix.

Qc = blkdiag
{
Qc

1, . . . , Q
c
qc

}
; Qc

j =

[
1 − α2

j − β2
j 0

0 1 − α2
j − β2

j

]
; (3.11)

Qr = diag{1 − λ21, . . . , 1 − λ2qr}; R = diag{r1, r2, . . . , rm}; (3.12)

The slow features, at kth instant, produced using the complex pair of eigenvalues and

real eigenvalues are denoted using sc(k) and sr(k), respectively. The corresponding

state-noise sequences are indicated by wc(k) and wr(k), respectively.

sc(k) =



(
sc11 (k)
sc21 (k)

)
...(

sc1qc(k)
sc2qc(k)

)
 , wc(k) =



(
wc1

1 (k)
wc2

1 (k)

)
...(

wc1
qc (k)

wc2
qc (k)

)
 ;

sr(k) =

 s
r
1(k)
...

srqr(k)

 , wr(k) =

w
r
1(k)
...

wr
qr(k)

 ;

where sc1j (k) and sc2j (k) represent the two hidden slow oscillating features produced

by using the conjugate pair of complex eigenvalues αj + iβj and αj− iβj, respectively.

The two slow-feature sequences sc1j (k) and sc2j (k) differ in two ways. First, the actual

signal varies because of state-noise, and the state-noise variance determines the extent

to which they differ. The second difference is the temporal difference, meaning that

the two sequences share the same power spectral density but different phase angle.

Further, wc1
j (k) and wc2

j (k) represent the two state-noise variables drawn from the

Gaussian distribution with mean zero and variance 1 − α2
j − β2

j . The hidden slow

feature, denoted by srl (k), is generated with the help of real pole λl and the state-

noise variable wr
l (k). The slowness measure, velocity of the obtained complex features,

can be derived and calculated using Eq. (3.13).
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ν(sc1j ) = ⟨(sc1j (k) − sc1j (k − 1))2⟩k

= ⟨((αj − 1)sc1j (k − 1) + βjs
c2
j (k − 1) + wc1

j (k))2⟩k

= (αj − 1)2⟨sc1j (k − 1)2⟩k + β2
j ⟨s

c2
j (k − 1)2⟩k + ⟨wc1

j (k)2⟩k

= (αj − 1)2 + β2
j + (1 − α2

j − β2
j )

= 2(1 − αj)

(3.13)

From the Eq. (3.13), it can be seen that for any slow feature, whether derived from

either real or complex pole, the velocity depends on the eigenvalue’s real part. A large

αj implies strong correlation between sj(k) and sj(k−1) and the Eq. (3.13) confirms

that sj(k) will have slower variations with a lower velocity. Since the proposed slow

feature model is general in the sense that it can capture oscillatory dynamics and

is equivalent to a state-space model with specific constraints to accommodate the

slowness preference, it can be used for control design with an inclination towards

controlling slow dynamics. In summary, the unknown parameters to be estimated are

the state-transition matrix elements {(αj, βj); 1 ≤ j ≤ qc}, {λl; 1 ≤ l ≤ qr}, emission

matrix C ∈ Rm×q and the measurement noise variances {ri; 1 ≤ i ≤ m}.

3.3.1 Parameter estimation using the EM algorithm

In this section, we derive the EM solution using (2.32)- (2.33) to obtain the optimal

parameter values of the proposed model. We obtain the Eq. (3.14) by applying the

logarithm operator on both sides of the Eq. (3.4).

log p(X,S|A,C,R) = log p(s1) +
N∑
k=2

log p(sk|sk−1, A) +
N∑
k=1

log p(xk|sk, C,R)

(3.14)

where

log p(s1) = −q
2

log 2π − 1

2
sT1 s1;

N∑
k=2

log p(sk|sk−1, A) = −q(N − 1)

2
log 2π − (N − 1)

2
log |Iq − AAT |

−
N∑
k=2

(
1

2
(sk − Ask−1)

T (Iq − AAT )−1(sk − Ask−1)

)
;
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N∑
k=1

log p(xk|sk, C,R) = −mN
2

log 2π − N

2
log |R|

−
N∑
k=1

(
1

2
(xk − Csk)TR−1(xk − Csk)

)
;

Here | | and log denote the determinant of matrix and the logarithmic operator,

respectively. The expression Q(θ, θη−1) is obtained by taking the conditional expec-

tation with respect to the observed data on both sides of Eq. (3.14). Here θη−1

denote the parameter estimates in the previous (η− 1) iteration. Further, Q(θ, θη−1)

is differentiated with respect to θ and then equated to zero to obtain the update

expressions for each parameter. Taking the derivative of Q−function with respect to

λl and equating it to zero yields Eq. (3.15).

cl3λ
3
l + cl2λ

2
l + cl1λl + cl0 = 0 (3.15)

where

cl3 = −(N − 1);

cl2 =
N∑
k=2

EX,θη−1 {srl (k)srl (k − 1)} ;

cl1 = (N − 1) −
N∑
k=2

EX,θη−1 {srl (k)srl (k)} −
N∑
k=2

EX,θη−1 {srl (k − 1)srl (k − 1)} ;

cl0 =
N∑
k=2

EX,θη−1 {srl (k)srl (k − 1)}

Taking the derivative of Q−function with respect to αj and equating it to zero yields

Eq. (3.16).

aj3α
3
j + aj2α

2
j + aj1αj + aj0 = 0 (3.16)

where

aj3 = −2(N − 1);

aj2 =
N∑
k=2

EX,θη−1

{
sc1j (k)sc1j (k − 1) + sc2j (k)sc2j (k − 1)

}
;

aj1 = 2(N − 1)(1 − βη−1
j

2
) + 2βη−1

j

N∑
k=2

EX,θη−1

{
sc1j (k)sc2j (k − 1) − sc1j (k − 1)sc2j (k)

}
46



−
N∑
k=2

EX,θη−1

{
sc1j (k)sc1j (k) + sc2j (k)sc2j (k)

+sc1j (k − 1)sc1j (k − 1) + sc2j (k − 1)sc2j (k − 1)
}

;

aj0 = aj2(1 − βη−1
j

2
)

Taking the derivative of Q−function with respect to βj and equating it to zero yields

Eq. (3.17).

bj3β
3
j + bj2β

2
j + bj1βj + bj0 = 0 (3.17)

where

bj3 = −2(N − 1);

bj2 =
N∑
k=2

EX,θη−1

{
sc1j (k)sc2j (k − 1) − sc1j (k − 1)sc2j (k)

}
;

bj1 = 2(N − 1)(1 − αη
j
2) + 2αη

j

N∑
k=2

EX,θη−1

{
sc1j (k)sc1j (k − 1) + sc2j (k)sc2j (k − 1)

}
−

N∑
k=2

EX,θη−1

{
sc1j (k)sc1j (k) + sc2j (k)sc2j (k) + sc1j (k − 1)sc1j (k − 1)

+sc2j (k − 1)sc2j (k − 1)
}

;

bj0 = bj2(1 − αη
j
2)

Therefore, the estimates {ληl , α
η
j , β

η
j } at current iteration η can be calculated as the

real root of the cubic Eqs (3.15) - (3.17) such that the magnitude of the eigenvalues

lies within the (0 1) range. The extracted eigenvalues always satisfy this condition

due to the constraint presented by Eq. (1.12), given a stationary observed data.

Similarly, by setting the partial derivatives of Q−function to zero with respect to C

and {ri; 1 ≤ i ≤ m}, the update expressions can be obtained using Eqs. (3.18) -

(3.19) [78].

Cη =

[
N∑
k=1

EX,θη−1

{
xks

T
k

}][ N∑
k=1

EX,θη−1

{
sks

T
k

}]−1

(3.18)

rηi =
1

N

N∑
k=1

EX,θη−1

{
x2i (k)

}
− 2

N
Cη(i, :)

N∑
k=1

EX,θη−1 {skxi(k)}
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+
1

N
Cη(i, :)

N∑
k=1

EX,θη−1

{
sks

T
k

}
Cη(i, :)T (3.19)

The update equations derived earlier are functions of parameters of the posterior

distribution p(S|X, θη−1). The Kalman filter and Kalman smoother algorithms are

employed to infer the expectations of p(S|X, θη−1) and the same is summarized in

Algorithm 3.1 and 3.2, respectively. The expectations of the posterior distribution

p(S|X, θη−1) can be evaluated using Eq. (3.20) - (3.22) [78]. Eq. (3.23) can be used

for monitoring the convergence of EM algorithm.

EX,θη−1 {sk} = µ̂k (3.20)

EX,θη−1

{
sks

T
k−1

}
= V̂kJ

T
k−1 + µ̂kµ̂

T
k−1 (3.21)

EX,θη−1

{
sks

T
k

}
= V̂k + µ̂kµ̂

T
k (3.22)

log p(X|θη) =
N∑
k=1

log N (CAµk−1, CPk−1C
T +R) (3.23)

Algorithm 3.1 Kalman Filter

Input: X and {A,C,R} at iteration (η − 1)
µ1 = K1x1 V1 = Iq −K1C K1 = CT (CCT +R)−1 for k = 2, 3, . . . , N do

Pk−1 = A(Vk−1−Iq)AT +Iq µk = Aµk−1+Kk(xk−CAµk−1) Vk = (Iq−KkC)Pk−1

Kk = Pk−1C
T (CPk−1C

T +R)−1

end
Output: µk, Vk, Pk∀k ∈ {1, 2, . . . , N}

Algorithm 3.2 Kalman Smoother

Input: µk, Vk, Pk∀k ∈ {1, 2, . . . , N}, and A at iteration (η − 1)
µ̂N = µN V̂N = VN for k = N − 1, N − 2, . . . , 1 do

Jk = VkA
T (Pk)−1 µ̂k = µk + Jk(µ̂k+1 − Aµn) V̂k = Vk + Jk(V̂k+1 − Pk)JT

k

end

Output: µ̂k, V̂k∀k ∈ {1, 2, . . . , N}
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3.3.2 Initialization strategy

The EM algorithm is susceptible to locally optimal solutions without appropriate

initial parameter guesses. Further, it takes several iterations to reach the desired

tolerance of the parameters with each random initialization, and each iteration of

the algorithm is computationally expensive. Therefore, two different strategies are

devised to construct efficient initial guesses as discussed below.

3.3.2.1 Using Linear slow feature analysis

The first initial parameter guess construction is based on the deterministic solu-

tion. [54] have shown that the deterministic solution is equivalent to the maximum-

likelihood estimation solution in the limiting case. Hence, the deterministic solution

has been used to construct initial guesses for the EM algorithm in [55]. We establish a

similar relationship between the deterministic version and the proposed formulation.

Given m input variables, the deterministic formulation, shown in Eqs. (1.1) - (1.5),

can be solved to obtain a maximum of m slow features that satisfy Eq. (3.24).

X = W−TS (3.24)

where each row of S is a slow feature with increasing velocity. Eq. (3.24) can be

decomposed for any q (≤ m), as shown in Eq. (3.25).

X = W−T
1 S1:q +W−T

2 Sq+1:m (3.25)

where W−T
1 and W−T

2 denote the first q columns and the last (m − q) columns of

W−T , respectively, S1:q and Sq+1:m denote the first q rows and the last (m− q) rows

of S, respectively. Since Eq. (3.3) and Eq. (3.25) are equivalent in the limiting case,

the initial guesses for the emission matrix and measurement noise covariance matrix

can be established as follows,

C0 = W−T
1 ; R0 = diag(W−T

2 W−1
2 )

The averaged velocity of each of the slow features in S1:q can be computed using the

Eqn. (3.26).

v(Si) =
1

N − 1

N∑
k=2

(Si(k) − Si(k − 1))2 (3.26)
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Hence, the initial guess vector that represents the diagonal entries (or the real part

of eigenvalues) of the state transition matrix can be estimated using Eq. (3.13) as

follows,

α0 = 1 − v(S1:q)

2

From Eq. (3.13), we can also infer that the slow feature’s velocity depends only on

the eigenvalue’s real part. Hence, the velocity of the two slow features produced

by a conjugate pair of eigenvalues is equivalent as they share the same real part.

Conversely, we assume if the velocities of two slow features are equal, then their

corresponding eigenvalues may be a complex conjugate pair. Given two deterministic

slow features sj and sj+1 with corresponding real part guesses αj and αj+1 such that

(αj − αj+1) ≤ ϵ, the initial guess for the imaginary part βj can be estimated using

Eq. (3.17) with deterministic slow features replacing conditional expectations in the

coefficient expressions i.e.,

bj3 = −2(N − 1)

bj2 =
N∑
k=2

sj(k)sj+1(k − 1) − sj(k − 1)sj+1(k)

bj1 = 2(N − 1)(1 − α2
j ) −

N∑
k=2

(sj(k)sj(k) + sj+1(k)sj+1(k) − sj(k − 1)sj(k − 1)

− sj+1(k − 1)sj+1(k − 1)) + 2αj

N∑
k=2

sj(k)sj(k − 1) + 2αj

N∑
k=2

sj+1(k)sj+1(k − 1)

bj0 = bj2(1 − α2
j )

3.3.2.2 Using Subspace Identification

State-space identification methods like MOESP (Multivariable Output-Error State-

Space), N4SID (N4 System Identification), and CVA (Canonical Variate Analysis) are

classical techniques used in system identification to estimate linear dynamic models

from input-output data. They aim to estimate the state-space representation of the

system (as shown in Eqs. (3.27) - (3.28)), which includes state variables zzzk, input-

output relationships, and noise characteristics.

z(k) = Fz(k − 1) + d(k); d(k) ∼ N (0, P ) (3.27)
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x(k) = Hz(k) + v̄(k); v̄(k) ∼ N (0, R̄) (3.28)

The key differences between subspace identification and the identification of the

PSFA model using iterative algorithms like expectation-maximization or variational

Bayesian inference are outlined below:

• The estimated state-transition matrix F and process noise covariance matrix P

are non-diagonal. Additionally, F and P are treated as independent parameters,

causing the state covariance matrix not to be equal to the identity matrix,

thereby violating the basic requirements of slow features.

• While subspace identification methods possess an analytical solution, the han-

dling of complexities in industrial process data, such as outliers and skewed

noise, may not be facilitated.

• Additionally, the incorporation of process knowledge pertaining to the involved

parameters into subspace identification methods may not be easily accom-

plished.

Nevertheless, intelligent initial guess parameters can be constructed, potentially

leading to early convergence and/or higher likelihood. The procedure is summarized

below.

• CVA implemented to obtain the unconstrained model, as shown in Eqs. (3.27)

- (3.28).

• Since the state-transition matrix is block-diagonal in the proposed model, we

use similarity transformation matrix G to achieve the same. The G matrix is

constructed with the help of eigenvectors of F matrix.

G =
[
γ1g

re
1 ... γqcg

im
qc δ1g1 ... δlgqr

]
where gre

j and gim
j are the real and imaginary parts of the eigenvector corre-

sponding to jth complex conjugate eigenvalue pair of F and gl is the eigenvector

of lth real eigenvalue of F .
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• Since the latent states follow unit variance constraint in the proposed formula-

tion, the parameters γj, δl are optimized such that:

diag(A0A
T
0 +Q0) = 1⃗

• The mathematical procedure is summarized below.

Gẑ(k) = FGẑ(k − 1) + d(k);

x(k) = HGẑ(k) + v̄(k);

=⇒ ẑ(k) = G−1FG︸ ︷︷ ︸
A0

ẑ(k − 1) +G−1d(k)︸ ︷︷ ︸
w̄(k)

; w̄(k) ∼ N(0, Q0);

z(k) = HG︸︷︷︸
C0

ẑ(k) + v̄(k); v̄(k) ∼ N(0, R0);

where z(k) = Gẑ(k) and Q0 = G−1PG−T

• Now with {A0, C0, R0} as initial guesses for {A,C,R}, the iteration is performed

until convergence.

3.4 Simulation and Applications

In this section, three case studies are presented to showcase the performance of com-

plex probabilistic slow feature analysis formulation given noisy data.

3.4.1 Simulation

In this subsection, we present a simulation study to illustrate the efficacy of the

proposed formulation in soft sensing applications. A total of six hidden oscillating

sequences h∗(k) ∈ R6×1 were generated using a general state-space model with the

state-transition and the noise covariance matrices shown below,

A∗ =


0.8 0.16 0.14 0.2 0.6 0.3
−0.6 0.5 0.3 0.8 0.7 −0.9
−0.13 0.13 0.6 0.7 0.3 −0.4
−0.15 0.5 −0.7 0.46 0.1 0.5
−0.3 −0.5 0.4 −0.6 0.18 0.59
0.13 −0.4 0.8 −0.3 −0.59 0.18

 ;

Q∗ = D∗ ×D∗T
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where D∗
6×6 is a randomly drawn matrix from the standard uniform distribution. The

observation dataset is generated with the help of an emission matrix C∗
12×6 drawn from

the standard uniform distribution and Gaussian measurement noise, such that the the

ratio of true response variance to the noise variance is 0.1. Low signal-to-noise ratio

often results in poor prediction performance, thereby restricting the models’ end use.

A regression vector m∗ =
[
0.56 0.19 0.69 0.34 0.42 0.90

]T
was used to generate

a sequence of quality variable y∗ from the latent features using Eq. (3.29).

y∗(k) = h∗(k)Tm∗ + e∗(k) (3.29)

Therefore, the generated dataset consisted of 12 variables and one quality variable

with 5000 data samples. The observed variables with their corresponding velocities

(ν) and Pearson correlation coefficients (ρ) against the quality variable are shown in

the Fig. 3.1. It can be inferred that the observed variables have low correlations with

the quality variable since the measured variables are fast varying, whereas the quality

variable is relatively slow.

Figure 3.2 shows the extracted slow features using deterministic formulation along

with their corresponding power spectral densities (PSD). We infer that the overall

signal power is shared by multiple frequency components from the PSD plots. Hence,

the deterministic features lack the oscillatory nature required to explain the quality

variable. The extracted complex slow features along with their corresponding PSDs

and estimated eigenvalues (λ) are shown in the Fig. 3.3. The state transition matrix

order was assumed to be the number of measured variables. The proposed formula-

tion extracts some useful features that are highly correlated with the quality variable

without resort to output knowledge. Besides, oscillatory behaviour is perceived effec-

tively since fewer frequency components share the overall power in each of the first

six slow features. A linear regression model was built between the quality variable

and four highly correlated slow features as shown in Eq. (3.30). The order (d) was

chosen to be four since the additional slow feature did not result in lower root mean

square error (RMSE) on the test data.

y∗(k) = s1:d(k)Tb + e(k) (3.30)
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Figure 3.1: Normalized dataset with 12 variables (Only 300 data points are shown
for better visualization)
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Figure 3.2: Extracted deterministic slow features
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Figure 3.3: Extracted slow oscillating features

The performance of the proposed formulation was compared with the other linear

latent variable models, using lagged observations, that are widely used in the litera-

ture. We choose dynamic ordinary least squares (OLS), PSFA, dynamic PCA [114],

dynamic SFA, and dynamic PLS [115]. The stacking order of lagged measurements

is assumed to be one since the hidden variables in CPSFA evolves according to the

first-order autoregressive model. The latent features were chosen based on the cor-

relation criteria in each of the above models, and the number of latent features was

fixed to be four for comparison purposes. The performance parameters RMSE and ρ

between the measured and the predicted quality variable are shown in Fig. 3.4. The

significant difference in the two indices for CPSFA compared to other latent variable

methods demonstrates its improved predictive abilities.

3.4.2 Industrial Case Study-1

In this section, we use the hydrogen reformer unitwide oscillatory data obtained from

the South-East Asian refinery for the case study. A flow diagram of the process is

shown in Fig. 3.5. The light hydrocarbons react with high-temperature (7000C −
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Figure 3.5: SE Asia refinery plant summarized block diagram [1]
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10000C) steam in the presence of a nickel catalyst under (3 − 25) bar pressure in the

reformer to produce hydrogen and carbon oxides. Finally, the hydrogen is separated

from the mixture stream as product flow {11} using the Pressure Swing Adsorption

(PSA) unit. The residual H2 is fed back to the reformer as the off-gas flow {34} to

maximize H2 recovery.

The industrial dataset† [116,117] includes the data of 25 controller loops. In total,

67 variables that include twenty-five controller output variables (OP), twenty-five

process variables (PV), twelve indicator variables (IV), and 5 set-point (SP) variables

were used for the following study. Remaining set-point variables were neglected as

they were constant during the chosen time range. Further, the dataset is divided into

a training set with 1000 data samples and cross-validation set with 441 data samples

to compute the optimal model order.

The proposed formulation was applied to the training dataset with a pre-chosen

order varying from one to ten. The optimal model order was chosen based on the log-

likelihood value of the cross-validation data. Fig. 3.6 shows the cross-validation data

likelihood for various model orders. For the current case study, the optimal order

was chosen to be six as there was no significant improvement in the log-likelihood

value with an additional feature. Finally, the extracted slow features with their

corresponding PSDs are shown in Fig. 3.7.

The hidden features are interpreted as the causal variables that drive the observed

variables. Since there were oscillations in the observed data, and the CPSFA captures

the oscillating behaviour, the extracted feature(s) may contain the oscillatory root

cause(s). The oscillatory source(s) among the extracted slow features is chosen based

on the frequency band. The frequency band is defined as the set of frequency com-

ponents that contribute to the overall signal power. The oscillatory slow feature with

faster frequency components may be considered as a more critical oscillatory source.

Low-velocity oscillating features are relatively less-problematic since they comprise

low-frequency components. The larger imaginary part of the eigenvalue conforms

to the oscillatory behaviour, and a smaller real part corresponds to faster frequency

components. Therefore, a metric called oscillation index (ω) is defined as the loga-

rithm of ratio of absolute values of eigenvalue’s imaginary to the real part, as shown

†Available online at https://sacac.org.za/resources/
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Figure 3.6: Cross validation data log-likelihood value vs. model order

in Eq. (3.31). The oscillation index is computed for each slow feature, and the slow

feature with the highest ω is considered as the primary hidden source.

ωj = log

∣∣∣∣βjαj

∣∣∣∣ ∀ j ∈ {1, 2, ..., q} (3.31)

The fifth slow feature in Fig. 3.7, which offers a higher ω, was chosen to be the

primary hidden source of the plant-wide oscillations. Further, a frequency match

(𭟋xi,s) is defined in Eq. (3.32) as the correlation between the magnitude of the

variables in the frequency domain. It is a measure of the amount of common frequency

content between two variables. The normalized frequency match, as shown in the Eq.

(3.33), was computed between the chosen hidden oscillatory source and each measured

variable.

𭟋xi,s =

∫ 0.5

−0.5

|xi(f)||s(f)|df ∀ i ∈ {1, 2, ...,m}

≈
N∑

n=1

|xi(fn)||s(fn)|; fn = −0.5 +
n

N
;

(3.32)

|𭟋xi,s| =
𭟋xi,s√𭟋xi,xi

𭟋s,s

(3.33)
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Figure 3.7: Extracted oscillatory slow features
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where xi(f) and s(f) are the ith observed variable and the chosen hidden source,

respectively. The variable with the highest frequency match is the possible root cause

of oscillations among the observed variables. This method essentially provides a

priority order set of a possible sources of oscillations. The summary of the proposed

methodology to detect the root cause of the plant-wide oscillations using CPSFA is

shown in Table 3.1. The algorithm is primarily designed for offline data analysis.

If online application is desired, a moving window approach may be applied and the

steps shown in Table 3.1 can be applied to the data within the window.

Table 3.1: Plant-wide oscillations source detection algorithm

1. Import the plant-wide oscillations dataset.

2. Form a time-series matrix X with PV, SP, OP, and IV variables.

3. Perform data standardization.

4. Extract oscillating features using CPSFA.

5. Compute oscillation index ωj ∀ j ∈ {1, 2, ..., q}. The oscillatory feature
with highest ω is chosen to be the primary hidden source.

6. Calculate normalized frequency match |𭟋xi,s| ∀ i ∈ {1, 2, ...,m} be-
tween the primary hidden source and the observed variables.

7. Obtain the priority order checklist of observed variables for possible
root cause of plant-wide oscillations.

The normalized frequency match of various observed variables is shown in Fig. 3.8.

We observed that seven variables have a high normalized frequency match with the

selected oscillating slow feature. Further, five {2, 3, 10, 13, 24} of them were process

variables, and two {20, 34} were indicator variables. Tag 20 indicates the methane

composition in the reformer output, and Tag 34 represents the off-gas flow into the

reformer. It was observed that the normalized frequency match of the five process

variables was higher than their corresponding controller output variables. It means

that the corresponding controllers were successful to an extent in mitigating the oscil-

lations, and hence, the possibility of control valve stiction was ruled out. Therefore,

the source of oscillations in the five process variables were either the two indicator vari-
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Figure 3.8: Frequency match of 67 input variables with the chosen oscillating feature

ables or faulty hardware sensors that measured the corresponding process variables.

Hence, the priority order checklist for the current industrial case study is as follows.

The two indicator variables must be inspected first, followed by the corresponding

hardware sensors of the five process variables. The analysis in [118] conforms that

the off-gas flow was indeed the origin of plant-wide disturbances.

3.4.3 Industrial Case Study-2

In this section, we adopt the Australian refinery process data‡ provided by [119]

to illustrate the ability of the proposed method to detect the source of plant-wide

oscillations given noisy data where the oscillations are not apparent, unlike the first

industrial case study. Figure 3.9 shows the distillation process under consideration,

a separation unit that contains five control loops, namely temperature (TC1), steam

flow (FC1), an analyzer (AC1), upstream (PC1) and downstream pressure (PC2)

control loops.

The setpoints are constant during the chosen time range; hence, we used only the

process variable and controller output data of all control loops for the current analysis.

‡Available online at https://sacac.org.za/resources/
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Figure 3.9: Australian refinery separation unit [1]

A measurement noise with a signal-to-noise ratio of 0.2 was added to showcase the

ability of the proposed algorithm in the presence of noise. The observed data with

and without measurement noise is shown in the right and left column of Fig. 3.10.

Further, the dataset is divided into a training set with 700 data samples and cross-

validation set with 200 data samples to compute the optimal model order.

The same idea discussed earlier was applied to the two datasets (noise-less and

noisy) to obtain the optimal model order. The cross-validation noise-less and noisy

data log-likelihood values reached the maximum for the CPSFA model with ten and

six slow features, respectively. The normalized frequency match of various variables

against the primary hidden source given noiseless and noisy data is shown in the

left and right column of Fig. 3.11, respectively. We observed that the FC1 related

variables have the highest normalized frequency match in both the cases, and hence,

the flow controller loop was most likely to be the primary source of plant-wide oscil-

lations. The slow oscillating feature with the next highest ω was assumed to be the

second hidden source of the disturbance as there were more oscillating features, un-

like the first case study. The frequency match corresponding to the second oscillating

hidden source given noiseless and noisy data is shown in the left and right column of

Fig. 3.12, respectively. From Fig. 3.12, it is concluded that a secondary disturbance

was observed in PC1 and PC2 based on the metrics obtained using noise-less data

(as shown in the left subfigure). However, the same observation was not identified

using the noisy data (see the right subfigure). It was identified in [1] that the steam
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Figure 3.10: Ten observed variables
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Figure 3.11: Frequency match of ten observed variables with the chosen primary
oscillating feature given noiseless and noisy data

noise-less

AC1 FC1 PC1 PC2 TC1

Observed var.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
re

q
u

e
n

c
y
 m

a
tc

h

OP

PV

noisy

AC1 FC1 PC1 PC2 TC1

Observed var.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
re

q
u

e
n

c
y
 m

a
tc

h

OP

PV

Figure 3.12: Frequency match of ten observed variables with the chosen secondary
oscillating feature given noiseless and noisy data

65



flow loop contains a faulty orifice flow meter, which was the root cause of the primary

disturbance. Thus the proposed analysis can be performed effectively to detect and

diagnose the primary source of plant-wide oscillations.

3.5 Conclusion

This chapter discusses the primary shortcoming of the classical probabilistic slow fea-

ture analysis. The diagonality premise of the state-transition matrix is postulated

to obtain uncorrelated hidden features, and hence, in principle, it cannot be used

to extract slow oscillating features. We propose a novel data-driven model that can

extract slow features with oscillating patterns. The state-transition matrix is aug-

mented to include a pair of complex eigenvalues that provide the oscillating nature,

and hence, it can no longer be a diagonal matrix. The strength of the proposed al-

gorithm was shown using three case studies. The first one was the simulational case

study that depicts the efficiency of proposed formulation over other latent variable

models in soft sensing applications. Two industrial case studies were shown, one with

high-dimensional dataset and the other with increased noise dataset, which uses the

complex probabilistic slow feature analysis to detect and diagnose the oscillating fault.

The potential problems for further study include the possible extensions to handle

traditional industrial dataset complexities such as outliers, missing data, non-linear

characteristics.
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Chapter 4

Variational Bayesian Approach to
Nonstationary and Oscillatory
Slow Feature Analysis With
Applications in Soft Sensing and
Process Monitoring ∗

Extraction of underlying patterns from measured variables is central to various data-

driven control applications, such as soft-sensor modelling, statistical process monitor-

ing, fault detection and diagnosis. More often than not, the observed variables display

non-stationary characteristics and oscillations due to the changes in operating con-

ditions and problems in controller tuning. Such variations pose a great challenge to

conventional feature extraction methods. Hence, we present a probabilistic drift-type

non-stationary oscillating slow feature model that can separate oscillating patterns

and non-stationary variations from measured data. Further, the measurement noise

of each variable is independently modelled to account for the fact that not all the

observed variables have the same level of uncertainty. Finally, the feature extractor

parameters are estimated under a variational Bayesian framework to incorporate the

prior information and obtain corresponding posterior distributions. The proposed

methodology is applied to solve a fouling monitoring problem for an industrial oil

production process.

∗This chapter has been published as: V. K. Puli and B. Huang, ”Variational Bayesian
Approach to Nonstationary and Oscillatory Slow Feature Analysis With Applications in Soft
Sensing and Process Monitoring,” in IEEE Transactions on Control Systems Technology, doi:
10.1109/TCST.2023.3240980.
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4.1 Introduction

Although reliable, the first principle-based approaches for complex industrial pro-

cesses are seldom available and are time-consuming for domain experts to derive

even if they are available. Due to superior instrumentation and sensor technolo-

gies, a massive amount of process data are already available. Therefore, process

history-based data-driven strategies are favourably employed for diverse applications.

Operational tasks, such as predictive modelling [5], fault diagnosis [6–8], quality mon-

itoring, plant-wide oscillation detection [9–12], causality analysis [13–16], are greatly

simplified by utilizing machine learning and deep neural network techniques. Al-

though data-driven approaches do not require a pre-determined model, they suffer

from several other issues. Primarily, the presence of highly correlated variables may

result in an input-output model that often suffers from ill condition. Furthermore, the

temporal relationships, non-linearity, and the underlying patterns in the data reduce

the efficacy of the machine learning algorithms if not accounted for explicitly.

Latent variable models [88,89,120,121] are often employed in process modelling to

overcome some of the issues mentioned earlier. Essentially, these techniques extract

features from the raw data with statistical preferences. They are used for information

compression as the dimension of the extracted features is typically lower than that

of the original data. The most celebrated latent variable models include principal

component analysis (PCA) [34, 35, 90], partial least squares [38, 39, 122], indepen-

dent component analysis [40], slow feature analysis (SFA) [36], dynamic inner PCA

(DiPCA) [123], and dynamic inner canonical correlation analysis (DiCCA) [124,125].

Further, the probabilistic versions [54,55,92–94] have been developed to address mul-

tiple complexities posed by the real-world dataset, such as uncertainties, outliers, and

missing values.

Understanding the dynamic behaviour of the process is essential for equipment

design, quality control and shutdown-startup procedure. SFA [36] is an unsupervised

learning technique that can extract temporally related patterns. It has been success-

fully applied in statistical process monitoring [43, 45, 95], predictive modelling [126]

and unit-wide fault detection [127] applications. Chao et. al [55] presented the

probabilistic version of the slow feature model (PSFA) and provided the methodolog-
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ical details to estimate its parameters. The traditional PSFA was further extended

to handle the outliers [56] and output time-varying time delays [128]. A few other

works [96–98] were developed to incorporate the quality relevant information in slow

feature extraction. The complex slow feature probabilistic model [129] was recently

proposed to extract the slow oscillating patterns from noisy measured data where the

oscillations are not apparent.

Due to aging equipment and feedstock changes, the chemical process data often

exhibit non-stationary behaviour. A time series is said to have non-stationary be-

haviour if its statistical properties, more importantly, the mean and variance vary

with time. The non-stationary patterns in a time series may be manifested due to

the presence of unit roots, drifts, deterministic trends, and structural breaks [130].

Application of traditional PSFA, where the non-stationary behaviour is not mod-

elled explicitly, will result in parameters with huge variances. Therefore, Zhao et

al. [102] introduced a hybrid approach that combines deterministic SFA with cointe-

gration analysis to extract features from non-stationary data. Further, Scott et. al

(NSPSFA) [131] has developed a unit root-based slow feature framework to extract

non-stationary features in a probabilistic framework.

Most of the extensions discussed so far assume the unknowns are non-random with-

out any prior knowledge and hence employ the Expectation-Maximization algorithm

to obtain point estimates. On the other hand, the Bayesian framework facilitates

the incorporation of process knowledge and modelling preference in the form of prior

distributions. Therefore Bayesian model identification is popular in machine learn-

ing [77], signal processing [132] and the engineering domain lately. In the Bayesian

approach, the joint distribution over observed variables y and unobserved variables ν

can be written as follows

p(y, ν) = p(y|ν)p(ν)

Given an observed value y∗ of y, the Bayesian inference involves the computation

of posterior distribution p(ν|y = y∗). Unlike classical parameter learning, this is

the primary advantage where ν is a non-random quantity. A further advantage is the

computation of log model evidence log p(y) that serves as a metric to compare various

models. Variational Bayesian inference (VBI) [133–136] framework was introduced
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to avoid the integral intractability that is inevitable in the presence of unobserved

variables. VBI approaches were used to model causal relations [137], estimate time-

varying time delays [138, 139], monitor multi-modal processes [140], identify models

[141, 142] and develop soft sensors [143–145]. The variational Bayesian version of

PSFA (VBPSFA) [99] was developed to model the uncertainties in the parameters

of the slow feature model effectively. A transfer learning-based slow feature analysis

technique was recently proposed using variational Bayesian learning [146] to transport

information for performance enhancement.

However, the VBPSFA [99] model has several shortcomings that have not been

approached earlier in the literature. It may not extract slow oscillating features due

to the diagonal limitation on the state-transition matrix. The complex probabilistic

slow feature analysis (CPSFA) was recently proposed [129] to address the related issue

using the expectation-maximization (EM) framework, where the model parameters

are treated as non-random quantities. Further, the estimated variance of the unob-

served variables can be massive when VBPSFA is applied to non-stationary data since

the non-stationary behaviour is not represented explicitly. Finally, a single entity was

used to account for all the observed variables’ noise variance, but each observed vari-

able can have a different level of uncertainty. Therefore, we propose a novel technique

called variational Bayesian complex probabilistic slow feature analysis (VBCPSFA)

that can deal with the aforementioned issues. The contributions of the chapter are:

• A novel model is proposed to separate the drift-type non-stationary patterns

and oscillating features naturally from the observed data.

• Each observed variable’s noise is modelled independently to account for different

levels of uncertainty.

• A truncated Gaussian distribution is employed to model the state-transition

parameters to restrict the magnitude of the complex eigenvalue within the unit

circle.

• The analytical expressions for the posterior distributions of all the unobserved

variables are derived and presented using the variational Bayesian inference

framework.
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The remainder of this chapter proceeds as follows. Section 4.2 summarizes the

essential ideas from the literature. Specifically, Sections 4.2.1, 4.2.2 and 4.2.3 discuss

PSFA, CPSFA and VBPSFA, respectively. In Section 4.3, the proposed model is pre-

sented. It includes the mathematical formulation and prior distribution information,

followed by parameter learning using variational inference. Section 4.4 demonstrates

the efficiency of the proposed modelling algorithm using a numerical simulation and

an industrial application to the once-through steam generator industrial facility. This

chapter ends with closure remarks in Section 4.5. The list of notations and their cor-

responding descriptions are shown in Table 4.1.

4.2 Revisit

Wiskott and Sejnowski [36] coined the term ”slow feature analysis”, which can extract

the slowly varying features from observed data. The probabilistic versions [54, 55] of

slow feature analysis have been developed in recent years, and they are more flexible

in dealing with real-world data.

4.2.1 Probabilistic Slow Feature Analysis

PSFA is an extension of SFA using a probabilistic framework [147]. It constitutes

a linear Gaussian state-space model to describe the feature dynamics in the latent

space explicitly. The PSFA formulation [55] can be presented using (4.1) - (4.2).

sssk = Asssk−1 +www1
k; www1

k ∼ N (0, Q) (4.1)

yyysk = Csssk + vvvk; vvvk ∼ N (0,Γ−1) (4.2)

where A ∈ Rm×m, C ∈ Rp×m, Q ∈ Rm×m, and Γ ∈ Rp×p denote the state-transition

matrix, the emission matrix, the state-noise covariance matrix, and the measurement

noise precision matrix, respectively. A and Q are assumed to be diagonal to obtain

uncorrelated slow features. The state variance is considered to be unity to obtain

stationary slow features and avoid a trivial solution. This leads to (4.3), where ai and

qi are the ith diagonal entries of A and Q respectively.

a2i + qi = 1 (4.3)
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Equation (4.4) restricts the diagonal entries of matrix A to ensure stability.

ai ∈
(
0 1

)
(4.4)

Table 4.1: List of Notations

Symbol Description Symbol Description Symbol Description
k Time instant. R Set of real numbers. Ip Identity matrix of size p.
sssk Slow feature vector at kth instant. www1

k Slow feature noise vector at kth instant. m Number of features.
yyyk Measured vector at kth instant. vvvk Measurement-noise vector at kth instant. p Number of measured variables.
A Slow feature transition matrix. Q Slow feature noise covariance matrix. C Matrix mapping from sssk to yyysk.
ννν Unobserved random variables set. νννs Subset of ννν. ννν\s Complimentary set i.e., ννν - νννs.
qi ith diagonal entry of matrix Q. aaa A’s eigenvalues real part vector. bbb A’s eigenvalues imaginary part vector.
hhhk Non-stationary feature vector. www2

k Non-stationary feature noise vector yyysk Stationary observed vector.
yyynsk Non-stationary observed vector. Θ Diagonal drift matrix. θθθ Diagonal vector of Θ.
D Matrix mapping from sssk to yyynsk . E Matrix mapping from hhhk to yyynsk . m1 No. of oscillating slow features
p1 No. of stationary measured variables p2 No. of non-stationary measured variables m2 No. of non-stationary features

∆
Non-stationary feature
noise precision matrix.

Γ
Stationary measurement
noise precision matrix.

Λ
Non-stationary measurement

noise precision matrix.
δδδ Diagonal vector of ∆. γγγ Diagonal vector of Γ. λλλ Diagonal vector of Λ.
ma Mean of ai’s prior distribution. mb Mean of bi’s prior distribution. θθθ0 Mean of θθθ’s prior distribution.
va Variance of ai’s prior distribution. vb Variance of bi’s prior distribution. V0 Covariance of θθθ’s prior distribution.
ccci ith column vector of CT . dddi ith column vector of DT . eeei ith column vector of ET .
mmmci Mean of ccci’s prior distribution. mmmdi Mean of dddi’s prior distribution. mmmei Mean of eeei’s prior distribution.
Vci Covariance of ccci’s prior distribution. Vdi Covariance of dddi’s prior distribution. Vei Covariance of eeei’s prior distribution.
αδ δi’s prior distribution shape parameter. αλ λi’s prior distribution shape parameter. αγ γi’s prior distribution shape parameter.
βδ δi’s prior distribution rate parameter. βλ λi’s prior distribution rate parameter. βγ γi’s prior distribution rate parameter.
xxxk Slow features with eigenvalues a+ ib zzzk Slow features with eigenvalues a− ib eee1:N = [sss1:N ;hhh1:N ]
π Set of hyper-parameters. E Expected value N No. of data points

4.2.2 Complex Probabilistic Slow Feature Analysis

The probabilistic slow feature analysis formulation assumes that the state-transition

matrix is diagonal; hence, the PSFA cannot extract the oscillating patterns. Hence,

Puli et. al [129] proposed the complex probabilistic slow feature analysis to accom-

modate complex poles and encode oscillating features naturally. The CPSFA can

be formulated using (4.1) - (4.2), but A is assumed to be block diagonal matrix to

accommodate complex eigenvalues, as shown in (4.5).

A = blkdiag

{[
a1 b1
−b1 a1

]
, . . . ,

[
am

2
bm

2

−bm
2

am
2

]}
; (4.5)

The state-noise covariance matrix adjusts to the structure, as shown in (4.6), due to

the constraint given by (4.3).

Q = blkdiag{Q1, Q2, . . . , Qm
2
}; Qj = (1 − a2j − b2j)I2 (4.6)

The slow feature sssk exhibits oscillating characteristics due to the presence of com-

plex eigenvalues in the state-transition matrix. Finally, the optimal point parameter

estimates were obtained readily using the EM algorithm in an iterative manner.
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4.2.3 VBI for parameter learning

EM framework can only provide point parameter estimates and cannot incorporate

prior process knowledge as it is a purely data-driven approach. On the other hand,

Bayesian methods can integrate process information using prior distributions and

compute posterior distributions. The calculation of posterior distributions and log

model evidence is computationally expensive and often intractable due to unobserved

random variables. Therefore, a statistical framework called Variational Bayesian In-

ference [77, 79, 148] was proposed to overcome such issues. The log model evidence

can be decomposed as the sum of variational free energy and KL divergence using

(4.7).

log p(yyy) = F (q(ννν)) + KL(q(ννν)||p(ννν|yyy)) (4.7)

=

∫
q(ν) log

(
p(y, ννν)

q(ννν)

)
dννν +

∫
q(ννν) log

(
q(ννν)

p(ννν|yyy)

)
dννν

where q(ννν), p(ννν|yyy) and p(ννν,yyy) denote the variational distribution over unobserved ran-

dom vector ννν, true posterior distribution and the generative model, respectively. The

variational free energy, also called the lower bound, is maximized with respect to pro-

posal distributions, iteratively. Further, the mean-field approximation is introduced

to reduce the complexity of the solution, as shown in (4.8).

q(ννν) ∝ q(νννs)q(ννν\s) (4.8)

where νννs denotes a subset of unobserved variables and ννν\s indicates its complimentary

set. Finally, the optimal variational distribution can be obtained using variational

calculus as shown in (4.9).

log q(νννs) ∝ ⟨log p(y, νy, νy, ν)⟩q(ννν\s) (4.9)

Readers are referred to Section 2.4 for a detailed explanation. The Bayesian versions

of PSFA models can be obtained, as shown in [99,100]. The preference for slowness has

been implemented by assuming Beta prior distribution for A. The prior distributions

of the emission matrix and the noise precision variable are assumed to be Gaussian

and Gamma, respectively.

A = diag(a1, a2, . . . , am); p(ai) = Beta(αa, βa)
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C =
[
ccc1 ccc2 . . . cccp

]T
; p(ccci) = N (000,∆0

−1)

Γ = γIp; p(γ) = Gamma(αγ, βγ) (4.10)

4.3 VBCPSFA for non-stationary process

Although CPSFA may be used to extract slow oscillating features, the EM-based

approach has its limitations, as mentioned in subsection 4.2.3. Further, the CPSFA

formulation forces the variance of hidden features to unity, and hence, it may only

extract stationary features. Therefore, we propose a novel approach called variational

Bayesian complex probabilistic slow feature analysis to address these shortcomings.

More specifically, it can derive both non-stationary features and slow oscillating fea-

tures from the data with independent noise modelling.

4.3.1 Mathematical Formulation

The non-stationary behaviour is modelled using the random-walk with drift type

hidden feature. In contrast to the pure random walk model [131], a random walk with

a drift [149] contains a deterministic trend, resulting from the variable Θ. Therefore,

a constant mean and constant variance is not maintained in the data. Since the

eigenvalues of the non-stationary feature state-transition matrix do not lie strictly

within the unit circle, this segment can be used to model slow and indefinitely growing

signals. The VBCPSFA can be formulated using (4.11) - (4.12).[
sssk
hhhk

]
=

[
A 0
0 Im2

] [
sssk−1

hhhk−1

]
+

[
0
Θ

] [
1
]

+

[
www1

k

www2
k

]
; (4.11)[

yyysk
yyynsk

]
=

[
C 0
D E

] [
sssk
hhhk

]
+ vvvk; (4.12)

where [
www1

k

www2
k

]
∼ N

(
0,

[
Im1 − AAT 0

0 ∆−1

])
;

vvvk ∼ N
(

0,

[
Γ−1 0
0 Λ−1

])
;

Let

aaa =
[
a1 a2 . . . am1

2

]T
; bbb =

[
b1 b2 . . . bm1

2

]T
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Θ = diag(θθθ); θθθ =
[
θ1 θ2 . . . θm2

]T
;

∆ = diag(δδδ); δδδ =
[
δ1 δ2 . . . δm2

]T
;

Λ = diag(λλλ); λλλ =
[
λ1 λ2 . . . λp1

]T
;

Γ = diag(γγγ); γγγ =
[
γ1 γ2 . . . γp2

]T
;

where sssk ∈ Rm1×1, yyysk ∈ Rp1×1 and yyynsk ∈ Rp2×1 denote the oscillating slow feature,

stationary, and non-stationary observed variable, respectively. The drift-type non-

stationary behaviour is captured by hhhk ∈ Rm2×1. Further, A ∈ Rm1×m1 , Θ ∈ Rm2×m2 ,

{C ∈ Rp1×m1 , D ∈ Rp2×m1 , and E ∈ Rp2×m2} represent block diagonal state-transition

matrix, diagonal drift matrix and block-wise emission matrices, respectively. The

precision matrices of non-stationary state variable noise, observed stationary variable

noise, and observed non-stationary variable noise are denoted by ∆ ∈ Rm2×m2 , Λ ∈

Rp1×p1 and Γ ∈ Rp2×p2 , respectively. Unlike a single random variable in (4.10), the

precision matrices are proposed to be diagonal to accommodate different uncertainty

levels for different variables.

4.3.2 Prior distribution information

Now we introduce prior distributions of various random variables using either mod-

elling preference or conjugate distribution properties, as shown below.

1. A truncated Gaussian prior distribution between 0 and 1 is utilized similar

to [146] for the real part of eigenvalue, as shown in (4.13).

p(aaa) =

m1
2∏

i=1

p(ai|0 < ai < 1) (4.13)

where

p(ai|0 < ai < 1) = T N (ma, va, 0, 1)

=
1

√
va

Φ
(

ai−ma√
va

)
Ψ
(

1−ma√
va

)
− Ψ

(
−ma√

va

)
Φ(ξ) =

1√
2π

exp

(
−ξ

2

2

)
Ψ(z) =

1

2

(
1 + erf

(
z√
2

))
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where ma and va denote the mean and variance parameters of the prior distri-

bution, respectively.

2. A truncated Gaussian prior distribution is proposed for the imaginary part of

the eigenvalue between 0 and
√

1 − aaa2 to ensure the norm of the eigenvalue is

smaller than one, as shown in (4.14).

p(bbb) =

m1
2∏

i=1

p(bi|0 < bi <
√

1 − a2i ) (4.14)

where

p(bi|0 < bi <
√

1 − a2i )

= T N (mb, vb, 0,
√

1 − a2i )

=
1

√
vb

Φ
(

bi−mb√
vb

)
Ψ

(√
1−a2i−mb√

vb

)
− Ψ

(
−mb√

vb

)
where mb and vb denote the mean and variance parameters of the prior distri-

bution, respectively.

3. A Gaussian prior distribution is assumed for the drift random variable θθθ to

facilitate the learning process as shown in (4.15).

p(θθθ) = N (θθθ0, V0)

=
|V0|−

1
2

(2π)
m2
2

exp

(
−1

2
(θθθ − θθθ0)

TV0
−1(θθθ − θθθ0)

)
(4.15)

where θθθ0 ∈ Rm2×1 and V0 ∈ Rm2×m2 denote the mean and variance of the prior

distribution, respectively.

4. We assume Gamma distribution for the precision variable δδδ as shown in (4.16)

since δδδ is always greater than zero.

p(δδδ) =

m2∏
i=1

p(δi) (4.16)

where

p(δi) = Gamma(αδ, βδ) =
βδ

αδ

Γ(αδ)
δαδ−1
i exp(−δiβδ)
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where αδ and βδ indicate the shape and rate parameters of the prior distribution,

respectively.

5. We assume Gaussian distribution owing to conjugate distributional properties

for the emission matrix C that relates the stationary observed variables and

slow oscillating features as shown in (4.17).

p(C) =

p1∏
i=1

p(ccci) (4.17)

where

C =
[
ccc1 ccc2 · · · cccp1

]T
;

p(ccci) = N (mmmci , Vci)

=
|Vci |−

1
2

(2π)
m1
2

exp

(
−1

2
(ccci −mmmci)

TVci
−1(ccci −mmmci)

)
and ccci ∈ Rm1×1, mmmci ∈ Rm1×1 and Vci ∈ Rm1×m1 denote the ith row vector of C,

mean and covariance parameters of the prior distribution, respectively.

6. We consider a normal distribution for the emission matrix D that relates the

non-stationary observed variables and slow oscillating features as shown in

(4.18).

p(D) =

p2∏
i=1

p(dddi) (4.18)

where

D =
[
ddd1 ddd2 · · · dddp2

]T
;

p(dddi) = N (mmmdi , Vdi)

=
|Vdi |−

1
2

(2π)
m1
2

exp

(
−1

2
(dddi −mmmdi)

TVdi
−1(dddi −mmmdi)

)
where dddi ∈ Rm1×1, mmmdi ∈ Rm1×1 and Vdi ∈ Rm1×m1 denote the ith row vector of

D, mean and covariance parameters of the prior distribution, respectively.

7. A Gaussian distribution is considered due to modelling preference for the emis-

sion matrix E that associates the non-stationary observed variables with the
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random-walk drift features as shown in (4.19).

p(E) =

p2∏
i=1

p(eeei) (4.19)

where

E =
[
eee1 eee2 · · · eeep2

]T
;

p(eeei) = N (mmmei , Vei)

=
|Vei |−

1
2

(2π)
m2
2

exp

(
−1

2
(eeei −mmmei)

TVei
−1(eeei −mmmei)

)
where eeei ∈ Rm2×1, mmmei ∈ Rm2×1 and Vei ∈ Rm2×m2 denote the ith row vector of

E, mean and covariance parameters of the prior distribution, respectively.

8. We assume Gamma distribution for the precision matrices λ, γλ, γλ, γ to facilitate the

parameter learning, as shown in (4.20).

p(λλλ) =

p1∏
i=1

p(λi); p(γγγ) =

p2∏
i=1

p(γi) (4.20)

where

p(λi) = Gamma(αλ, βλ) =
βλ

αλ

Γ(αλ)
λαλ−1
i exp(−λiβλ)

p(γi) = Gamma(αγ, βγ) =
βγ

αγ

Γ(αγ)
γ
αγ−1
i exp(−γiβγ)

where αλ, αγ and βλ, βγ indicate the shape and rate parameters of the prior

distribution, respectively.

9. The conditional distributions of the hidden and observed variables are shown

in (4.21) considering Gaussian distribution properties.

p(sssk|sssk−1, aaa, bbb) = N (Asssk−1, Im1 − AAT )

p(hhhk|hhhk−1, θθθ, δ) = N (hhhk−1 + θθθ,∆−1) (4.21)

p(yyysk|sssk, C,λλλ) = N (Csssk,Λ
−1)

p(yyynsk |sssk,hhhk, D,E,γγγ) = N (Dsssk + Ehhhk,Γ
−1)
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Figure 4.1: Probabilistic graphical model of VBCPSFA

The graphical depiction of VBCPSFA is shown in Fig. 4.1. Finally, the set of user-

chosen prior parameters, unobserved random variables and observed variables are in-

dicated by π ∈ {mmma, vvva,mmmb, vvvb, θθθ0, V0, αδ, βδ,mmmci , Vci ,mmmdi , Vdi ,mmmei , Vei , αλ, βλ, αγ, βγ},

ν ∈ {sss1:N ,hhh1:N , aaa, bbb, θθθ, δδδ, C,D,E,λλλ,γγγ}, and Y ∈ {yyys1:N , yyyns1:N}, respectively. The ob-

served variables, unobserved random variables and variational prior parameters are

denoted by shaded circle, white circle and text without circle, respectively. Here xk

and zk represent the slow oscillating features corresponding to complex eigenvalues

a+ ib and a− ib, respectively. The joint distribution over the observable and the un-

observable variables is formulated to derive the update expressions for the parameters

governing the variational distributions, as shown in (4.22).

log p(Y, S,H,aaa, bbb, θθθ, δδδ, C,D,E,λλλ,γγγ)

= log p(y1:N , h1:N , s1:N |aaa, bbb, θθθ, δδδ, C,D,E,λλλ,γγγ) + log p(aaa, bbb, θθθ, δδδ, C,D,E,λλλ,γγγ);

= log p(sss1) + log p(hhh1) +
N∑
k=2

log p(sssk|sssk−1, aaa, bbb) +
N∑
k=2

log p(hhhk|hhhk−1, θθθ, δδδ)

+
N∑
k=1

log p(yyysk|sssk, C,λλλ) +
N∑
k=1

log p(yyynsk |sssk,hhhk, D,E,γγγ) +

m1
2∑

i=1

log p(ai|mai , vai)
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+

m1
2∑

i=1

log p(bi|ai,mbi , vbi) +

m2∑
i=1

log p(δi|αδ, βδ) + log p(θθθ|θθθ0, V0) +

p1∑
i=1

log p(ccci|mmmci , Vci)

+

p2∑
i=1

log p(dddi|mmmdi , Vdi)+

p2∑
i=1

log p(eeei|mmmei , Vei)+

p1∑
i=1

log p(λi|αλ, βλ)+

p2∑
i=1

log p(γi|αγ, βγ);

(4.22)

4.3.3 Proposal distributions

Equation (4.9) is applied for each unobserved variable ν, and the variational parame-

ter update equations are presented below. Further, the functional expectations of an

unobserved variable are computed and subsequently used in updating other variable

parameters. Here ⟨·⟩k stands for the statistical expectation of a random variable and

N denotes the number of data samples. Note:Note:Note: The iteration number η is omitted for

all the random variables in this subsection for ease of notation.

1. The proposal distribution of the latent variables eee1:N = [sss1:N ;hhh1:N ] can be writ-

ten as shown in (4.23).

log q(eee1:N) ∝⟨log p(yyy1:N , ν)⟩q(ν\eee1:N )

∝⟨log p(eee1:N |yyy1:N , ν\eee1:N )⟩q(ν\e1:N ) (4.23)

However, the expected value of the function log p(eee1:N |yyy1:N , ν\eee1:N ) over the vari-

ational distribution q(ν\eee1:N ) is generally not equal to the function with averaged

parameters as shown below.

⟨log p(eee1:N |yyy1:N , ν\eee1:N )⟩q(ν\eee1:N ) ̸= log p(eee1:N |yyy1:N , ⟨ν\eee1:N ⟩q(ν\eee1:N ))

We implement the mean and fluctuation decomposition theorem discussed by

David Barber [150] to infer the variational distribution q(e1:N) using the classi-

cal Kalman-Rauch-Tung-Striebel smoothing algorithm. Specifically, the expec-

tations viz. ⟨eeeηk⟩, ⟨eeeηkeee
η
k
T ⟩, and ⟨eeeηk−1eee

η
k
T ⟩ are computed. Readers are referred

to [99,146,150] for more details.

2. The proposal distribution of θθθ is Gaussian whose hyper-parameters are derived

as

V η
θ =

{
V0

−1 + ⟨∆⟩(N − 1)
}−1
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mmmη
θ = V η

θ

(
⟨∆⟩

N∑
k=2

⟨hhhk⟩ − ⟨∆⟩
N∑
k=2

⟨hhhk−1⟩ + V0
−1θ0

)

3. The derived proposal distribution of δi is Gamma:

αη
δi

= αδ +
(N − 1)

2

βη
δi

=
1

2

N∑
k=2

(
⟨hik

2⟩ + ⟨hik−1

2⟩
)

+
N − 1

2
⟨θ2i ⟩

−
N∑
k=2

⟨hikhik−1⟩ −
N∑
k=2

⟨hik − hik−1⟩⟨θi⟩ + βδ

4. The derived proposal distribution of ccci is Gaussian:

V η
ci

=

{
Vci

−1 + ⟨λi⟩
N∑
k=1

⟨sssksssTk ⟩

}−1

mmmη
ci

= V η
ci
T

(
⟨λi⟩

N∑
k=1

⟨sssk⟩ ys
i

k + Vci
−1mmmci

)

5. The derived proposal distribution of dddi is Gaussian:

V η
di

=

{
Vdi

−1 + ⟨γi⟩
N∑
k=1

⟨sssksssTk ⟩

}−1

mmmη
di

= V η
di

T

(
⟨γi⟩

N∑
k=1

⟨sssTk ⟩ yns
i

k +mmmT
di
Vdi

−T − ⟨γi⟩
2

N∑
k=1

⟨eeeTi ⟩⟨hhhksssTk ⟩

)T

6. The derived proposal distribution of eeei is Gaussian:

V η
ei

=

{
Vei

−1 + ⟨γi⟩
N∑
k=1

⟨hhhkhhhTk ⟩

}−1

mmmη
ei

= V η
ei
T

(
⟨γi⟩

N∑
k=1

⟨hhhk⟩ yns
i

k + Vei
−1mmmei −

⟨γi⟩
2

N∑
k=1

⟨hhhksssTk ⟩⟨dddi⟩

)

7. The derived proposal distribution of λi is Gamma:

αη
λi

=αλ +
N

2

βη
λi

=βλ +
1

2

N∑
k=1

(ys
i

k )2 −
N∑
k=1

ys
i

k ⟨ccci⟩
T ⟨sssk⟩ +

1

2

N∑
k=1

tr
(
⟨cccicccTi ⟩⟨sssksssTk ⟩

)
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8. The derived proposal distribution of γi is Gamma:

αη
γi

= αγ +
N

2

βη
γi

= βγ +
1

2

N∑
k=1

(yns
i

k )2 −
N∑
k=1

yns
i

k ⟨dddi⟩T ⟨sssk⟩ −
N∑
k=1

yns
i

k ⟨eeei⟩T ⟨hhhk⟩

+
1

2

N∑
k=1

tr
(
⟨dddidddTi ⟩⟨sssksssTk ⟩

)
+

1

2

N∑
k=1

tr
(
⟨eeeieeeTi ⟩⟨hhhkhhhTk ⟩

)
+

N∑
k=1

tr
(
⟨dddi⟩⟨eeeTi ⟩⟨hhhkssskT ⟩

)
9. The proposal distribution of ai, bi up to a proportionality constant is shown in

(4.24). Since the priors are chosen on the constraint that the resultant eigen-

value is within the unit circle, it is not conjugate to the Gaussian likelihood.

Hence, the posterior distribution does not belong to any known families, and

therefore, the update expressions of the posterior distribution parameters can-

not be derived analytically.

q(ai, bi) ∝ q̃(ai, bi)

where

log q̃(ai, bi) = −1

2

a2i − 2maai
va

− 1

2

b2i − 2mbbi
vb

− log

{
erf

(√
1 − a2i −mb√

2vb

)

−erf

(
−mb√

2vb

)}
− (N − 1) log |1 − a2i − b2i | −

1

2

N∑
k=2

⟨(xik)2 + (zik)2⟩
1 − a2i − b2i

− 1

2

N∑
k=2

(a2i + b2i ) ⟨(xik−1)
2 + (zik−1)

2⟩
1 − a2i − b2i

+ ai

N∑
k=2

⟨xikxik−1 + zikz
i
k−1⟩

1 − a2i − b2i

+ bi

N∑
k=2

⟨xikzik−1 − zikx
i
k−1⟩

1 − a2i − b2i
(4.24)

The principal reason for writing the posterior distribution is to compute the dis-

tributional parameters and thus evaluate the functional expectations of the random

variables. Hence, we employ the numerical sampling technique to obtain samples

ν1, ν2, . . . , νL independently from the target distribution q(ν) and approximate the

expectation of some function f(ν) asymptotically as shown in (4.25)

Eq(ν){f(ν)} =

∫
f(ν) q(ν) dν ≈ f̂ =

1

L

L∑
l=1

f(νl) (4.25)
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where L denotes the number of drawn samples and f̂ is the basic Monte Carlo esti-

mator of Eq(ν){f(ν)}. Since the target distribution given by (4.24) is complex, it is

impractical to sample directly from it. Therefore, biased importance sampling [99]

can be applied to approximate the functional expectations directly using (4.26).

f̂ =
L∑
l=1

f(νl)ŵ(νl) (4.26)

where ŵ(νl) = w̃(νl)∑L
l=1 w̃(νl)

and w̃(νl) = q̃(νl)
g̃(νl)

. The samples νl ∀ l ∈ {1, 2, . . . L} are

drawn from an easier distribution g(ν), and the introduced bias is corrected by ŵ.

The support distribution g(ν) is chosen to be the truncated Gaussian distribution for

simplicity. The functional expectations of the transition variables required to update

the parameters of other random variables are shown in (4.27).

f(a, b) ∈
{

a2 + b2

1 − a2 − b2
,

a

1 − a2 − b2
,

b

1 − a2 − b2
,

1

1 − a2 − b2
, log |1 − a2 − b2|,

a2, a, b2, b, log

{
Ψ

(√
1 − a2 −mb√

vb

)
− Ψ

(
−mb√
vb

)}}
(4.27)

4.4 Simulation and Applications

In this section, the effectiveness of the proposed modelling algorithm in predictive

modelling is investigated with the help of a simulation and an industrial case study.

The prior parameters are selected based on the cross-validation data performance and

preference for slow oscillations, as shown below:

• The mean and covariance are chosen to be zero vector and identity matrix for

all the unobserved random variables whose prior is a Gaussian distribution.

• The shape and rate parameters are chosen to be 0.5 and unity for all the unob-

served random variables with a Gamma distribution prior.

• The truncated Gaussian distribution prior parameters {m, v} of the random

variables a and b are selected to be {0.5, 0.04} and {0.7, 0.025}, respectively,

thus inducing a modelling preference for oscillations.
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4.4.1 Numerical case study

It is shown in [129] that the velocity of the generated oscillating feature is dependent

on the real part of the eigenvalue. Therefore, the block diagonal state-transition ma-

trix shown in (4.28) is utilized to generate oscillating patterns with different velocities.

Ac∗ = blkdiag

{[
0.96 0.21
−0.21 0.96

]
,

[
0.65 0.75
−0.75 0.65

]}
(4.28)

Further, θθθ∗2×1, C
∗
1×4, D

∗
7×4, E

∗
7×2 are randomly drawn matrices from the standard Gaus-

sian distribution. δδδ∗2×1 is drawn from a standard uniform distribution to obtain pos-

itive values. The precision matrices Λ∗
1×1,Γ

∗
7×7 are chosen so that the ratio of the

variance of noise-free observed variables to the noise is equal to three to produce

noisy observed variables. Finally, eight measured variables are generated with the

help of six hidden features and corresponding parameters using (4.11)-(4.12). A

quality variable qqq is produced, as shown in (4.29), with the help of the stationary

oscillating features sss∗, a regression vector mmm∗ and an additive noise eee∗.

qqqk = sss∗k
Tmmm∗ + eee∗k (4.29)

where mmm∗ ∼ N (0, 1). The observation data and their corresponding Pearson cor-

relation coefficients (ρ) against the quality variable are shown in the Fig. 4.2. The

generated dataset with 2000 data samples is divided into training and cross-validation

sets. The hyper-parameters of the prior distributions are chosen with a preference for

slowness and oscillating patterns. The extracted features using the VBCPSFA are

shown in the Fig. 4.3. The optimal order, i.e., four stationary and two non-stationary

features, in this case, is obtained based on the value of log model evidence log p(yyy)

computed using the cross-validation data. The higher correlation coefficients indicate

that the features possess superior prediction abilities.

Finally, we compare the proposed methodology with other linear unsupervised

state-of-the-art models available in the literature for soft-sensing applications. The

original data are used for all the dynamic models such as SFA, DiPCA, DiCCA,

PSFA, NSPSFA, VBPSFA, CPSFA, and VBCPSFA. In contrast, the data are stacked

with the time-delayed copies up to order two for static models like OLS and PCA,

so the comparison is fair. The latent dimensions for the PCA, SFA, DiPCA, and
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Figure 4.2: Observed dataset
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Figure 4.3: Extracted features (Only 500 data points are shown).
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DiCCA are chosen based on the predictability of extracted features against the quality

variable. On the other hand, the log-likelihood is utilized for the remaining iteration-

based models. The performance metrics RMSE and ρ between the measured and the

predicted quality variable, along with the latent dimension and CPU time, are shown

in Table 4.2. We observe that the VBCPSFA features, followed by CPSFA, result in

lower RMSE due to explicit modelling of the oscillations. The computation time is

relatively higher since the parameters in the proposed algorithm are obtained in an

iterative manner. Further, a Monte-Carlo simulation is performed in each iteration

to compute the expectations of aaa and bbb, as shown in (4.25)-(4.27). It is observed that

a higher dimensional process data mainly increases the dimension of C,D,E,∆,Γ.

Since the exact update expressions for all those parameters are explicitly available,

an increase in the dimension does not incur additional computation time.

Table 4.2: Performance comparison

Method latent dimension ρ RMSE CPU time (s)

OLS 13 0.51 2.3 0.012

PCA 10 0.56 2.01 0.028

SFA 8 0.68 1.8 0.062

DiPCA 5 0.66 1.4 0.1

DiCCA 6 0.71 1.6 0.08

PSFA 11 0.55 2.16 13.12

VBPSFA 10 0.76 1.2 28.78

NSPSFA 8 0.71 1.5 13.16

CPSFA 8 0.82 0.99 14.69

VBCPSFA 6 0.94 0.8 21.05

4.4.2 Industrial case study

Steam-assisted gravity drainage is a process where steam is pumped into the sub-

surface oil reservoir through a steam injection well to reduce the viscosity of the

bitumen. The low-viscous bitumen and the condensed steam emulsion then flows

downwards due to gravity and are subsequently pumped to the surface through the

production well. Further, the emulsion is treated to produce boiler feed water (BFW)

for new steam generation. Although several water treatment methods are being used
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in series, the boiler feed water still contains impurities, such as oil, grease, silica

and sulphates, responsible for fouling in steam generators. The fouling material is

physically removed by a process called pigging, during which the unit must shutdown.

A temporary shutdown is associated with multiple problems that oil companies are

trying to avoid. Therefore, developing a model that can extract the fouling pattern

is extremely important to plan the pigging events.

The development of monitoring techniques [151] is challenging since fouling de-

pends on the equipment type, feed temperature and impurities. A popular method is

to monitor the pressure difference between the inlet and outlet. However, it may not

be reliable because of noise. Further, several other factors may affect the pressure

difference other than fouling. Different fouling mechanisms [152,153] were developed

depending upon the assumptions on fouling deposit and removal rate. The saw-

tooth trend is a fouling mechanism that assumes an overall increasing trend with

a periodic decrease due to the shedding of fouling deposits after reaching a thresh-

old amount. Therefore, the start of high-amplitude oscillations marks the threshold

phase. The increasing trend can be attributed to the fouling amount since the fouling

material builds up over a period of time. This section presents an industrial applica-

tion that leverages the proposed methodology’s ability to separate oscillations from

non-stationary behaviour.

Table 4.3: OTSG process variables

BFW Temperature (C) Steam temperature (C)

BFW Pressure (Kpa) Steam pressure (Kpa)

BFW flowrate
(
Kg
hr

)
)

Field differential pressure (Kpa)

Oil and grease (ppm) Fuel gas flow rate
(
Kg
hr

)
This study considers eight variables (listed in Table 4.3) from a once-through steam

generator [154] for fouling buildup monitoring. Two pigging events were performed

in May 2015 and August 2016, respectively. Hence, the process monitoring methods

are expected to raise continuous alarms before those two events. We calculate False

Alarm Rates (FAR) to compare the ability of different models in fouling monitoring.

FAR is the fraction of the number of alarms raised during the first 90% operating time

between two consecutive pigging events. A total of 4060 data points, spanning four
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consecutive years, are used for the current study. The pressure difference evolution

between the inlet and the outlet is shown in the Fig. 4.4. We observe that the plot

is quite noisy.
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Figure 4.4: Pressure difference (For the proprietary reason, all data have been nor-
malized)

Two statistics [131,155], namely Hotelling T 2 and squared prediction error (SPE),

are constructed to detect the operating condition changes, as shown below.

T 2
k = sTk Σ−1

s sk; SPEk = yrk
TΣ−1

yr y
r
k (4.30)

where yk = Csk + yrk, C is the emission matrix, sk is the latent vector and yrk is the

residual vector. The latent and the residual vector covariance matrices are denoted

by Σs and Σyr , respectively. The proposed formulation is applied and compared with

other extensive process monitoring techniques like NSPSFA and CPSFA.

The T 2 and SPE statistics constructed with the help of NSPSFA, CPSFA and

VBCPSFA features are shown in Fig. 4.5, Fig. 4.6 and Fig. 4.7, respectively. The

statistics follow a chi-square distribution to set the control limits. Table 4.4 indicates

the performance comparison between different methods based on false alarm rates.

Although NSPSFA-SPE statistic indicates that most of the observations match the

NSPSFA model output, NSPSFA is prone to false alarms due to its inability to ex-

tract oscillatory patterns. The CPSFA-T 2 statistic produced relatively fewer false
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alarms. Still, the model is ineffective as it cannot separate drift-type non-stationary

patterns from oscillatory behaviour. Finally, the VBCPSFA-SPE statistic demon-

strates that the proposed model accommodates most of the observations. Further,

the VBCPSFA-T 2 statistic continuously exceeds the 95% confidence limit around

three regions, i.e., April 2015, July 2016 and February 2017. Since the VBCPSFA-T 2

statistic is constructed with the help of oscillating features, the three regions can

be attributed to high-amplitude oscillations. The extracted drift-type non-stationary

feature is shown in the bottom subplot of the Fig. 4.7. We observe two sudden drops

in its evolution, supported by two performed cleaning events in May 2015 and Au-

gust 2016. Thus, the proposed methodology can correctly extract fouling patterns

and help schedule the cleaning events. A block-diagonal state-transition matrix is

a more general representation to which other structures may be converted through

a similarity transformation. The extracted model using the proposed methodology

possesses this structure automatically. Nevertheless, some mismatch may still exist

since any feature extraction is an approximate representation of the actual process

to capture the main dynamics of the process. We observe that the efficiency of the

proposed model is better than the other existing models due to its ability to separate

oscillatory patterns from non-stationary variables.

Table 4.4: False Alarm Rates

Method Pigging Event 1 Pigging Event 2

NSPSFA 0.41 0.53

CPSFA 0.46 0.59

VBCPSFA 0.10 0.05

4.5 Conclusion

This chapter develops a VB approach to extract slow oscillating and non-stationary

hidden features. A random walk with drift-type property is utilized to model the

non-stationary behaviour. Further, the measurement noise of each variable is inde-

pendently modelled to handle dissimilarities in the uncertainty. An efficient algorithm

is derived to estimate the distributions of underlying parameters using VBI. The pri-
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mary advantage is that the proposed algorithm fuses the prior information with the

observed data and thus naturally accounts for the uncertainty in the parameters.

Two case studies are demonstrated to verify the proposed algorithm’s efficacy in soft-

sensor and fouling monitoring applications. The proposed algorithm can be extended

to handle processes with varying operating conditions and non-linearities by assuming

locally linear models. Further, heavy tail distributions like Student’s t or Laplace can

be considered for the measurement noise to construct robust models for outliers.
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Figure 4.5: T 2 and SPE statistics using NSPSFA features
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Figure 4.6: T 2 and SPE statistics using CPSFA features
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Figure 4.7: T 2 and SPE statistics using VBCPSFA features
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Chapter 5

Nonlinear Slow Feature Analysis
for Oscillating Characteristics
under Deep Encoder-Decoder
Framework ∗

Slow feature analysis aims to linearly transform measured data into uncorrelated sig-

nals that vary from slow to fast. While earlier extensions successfully extracted slow

features from nonlinear sequential data, they lacked a modeling preference for non-

stationary and oscillating features due to constraints on the prior distribution. To

address this limitation, a semi-supervised encoder-decoder architecture is proposed in

this chapter, integrating a statistical preference for such characteristics. This regular-

ization is achieved by introducing a first-order autoregressive Gaussian prior within

a regular variational auto-encoder framework, as opposed to the standard Gaussian

distribution. The evidence lower bound associated with the proposed model is de-

rived within the variational Bayesian inference framework, and the model parameters

are estimated iteratively. The effectiveness of the proposed approach is evaluated on

both simulated and real industrial processes.

∗This chapter has been submitted as: V. K. Puli and B. Huang, ”Nonlinear Slow Feature Anal-
ysis for Oscillating Characteristics under Deep Encoder-Decoder Framework,” in IEEE Transactions
on Industrial Informatics, 2023
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5.1 Introduction

Process industries usually involve quality-related/target variables that are often dif-

ficult to measure using sensors due to physical, monetary and safety constraints.

Therefore, data-based models are constructed to predict the target variables based

on easy-to-measure/input variables [137,144,156,157]. The prediction performance is

affected by the high dimensionality, noise and spatiotemporal correlations of the raw

data. To address this, dimensionality reduction techniques are commonly applied as

a pre-processing step to uncover meaningful patterns, known as features, from the

measured variables.

The literature offers a range of extraction techniques tailored to the specific charac-

teristics of the extracted features. Among these techniques are dynamic inner princi-

pal component analysis [123], dynamic inner canonical correlation analysis [124], and

slow feature analysis (SFA) [36], which aim to extract intrinsic dynamic properties

in a reduced dimensional subspace. SFA, in particular, focuses on extracting slowly

varying patterns from the time-series data. However, it lacks a proper representation

of the underlying dynamics. To address this limitation, probabilistic SFA [54,55,158]

has been proposed. This approach employs a first-order autoregressive model to cap-

ture feature evolution and models the noise using probability distributions, providing

better handling of outliers [56]. Additionally, various extensions, both determinis-

tic [97], and probabilistic [98], have been proposed to extract quality-relevant slow

features. More recently, complex probabilistic slow feature analysis [129] has been

introduced to explicitly model oscillatory patterns in the feature space. Further-

more, a variational Bayesian approach [49] has been presented to separate drift-type

non-stationary behavior and slow oscillating features.

Encoder-decoder networks [159–163] have achieved superior performance in learn-

ing representation from nonlinear data. These frameworks consist of two main com-

ponents: an encoder that processes the input data and encodes it into a latent vector

representation and a decoder that takes this latent vector and generates the desired

output. Kingma et al. [164, 165] introduced a regularization approach by constrain-

ing the posterior distribution towards a pre-chosen prior distribution, typically a

standard Gaussian. This regularization ensures that the latent variables’ distribu-
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tion aligns with the prior knowledge, allowing for more meaningful representations.

However, this traditional regularization approach is limited to static latent variables,

where the data dynamics are not considered explicitly.

Several interesting extensions [166–168] have been proposed to approximate the

posterior of the dynamic latent variables using recurrent neural networks. Jiang et

al. [169], in particular, considered the probabilistic slow feature analysis model [55]

as a prior distribution for the latent variables, thus facilitating the modelling prefer-

ence. Although the proposed methodology can extract slow features from nonlinear

sequential data, it has several shortcomings. The generative model may not ade-

quately separate oscillating slow features from drift-type non-stationary data due to

the restricted structure of the prior distribution. Furthermore, the authors assumed

that the approximate posterior distribution of the latent variable at the current time

step sssk depends only on its previous time step sssk−1 and the current observation yyyk,

which is a major deviation from the exact posterior’s variable dependency structure

(details are provided in section 5.3.2). Given the assumption in [169] that sssk depends

solely on sssk−1 and yyyk, utilizing a gated recurrent unit (GRU) to model the mean of

the posterior distribution may not offer a significant advantage, as GRUs are more

advantageous for handling long-term dependencies. Finally, the proposed framework

only considers a generative model for the target variable containing missing values

without any inference model for their imputation, while in this work, we consider the

imputation of missing target variables. We propose a novel learning algorithm called

oscillating slow feature inference network (OSFIN) to deal with the aforementioned

issues. The contributions of the chapter are summarized below:

• A novel learning algorithm is proposed, where the posterior distribution is in-

fluenced by a statistical preference for separating slow oscillating characteristics

from drift-type non-stationary data.

• Parameter sharing is introduced to constrain the magnitude of complex eigen-

values within the unit circle.

• The structure of the posterior, given the target and input variables, is derived,

and the inference model is designed to have a noncausal form, resulting in a

smoothing effect.
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• An additional inference model is proposed to impute missing target variables.

The evidence lower bound corresponding to the proposed model is derived

within the framework of variational Bayesian inference.

The remainder of this chapter is organized as follows: In Section 5.2, several

probabilistic slow feature extensions from the literature are introduced. Section 5.3

presents the proposed architecture, which includes the data generating model 5.3.1,

the inference structure 5.3.2, and the derivation of the evidence lower bound 5.3.3.

The efficiency of the proposed learning algorithm is evaluated in Section 5.4 using

both a numerical and an industrial dataset obtained from the residue hydro-conversion

industrial facility. Finally, the conclusions are summarized in Section 5.5.

5.2 Background

Probabilistic slow feature analysis (PSFA) [55,158] is a powerful framework used for

learning slow and meaningful representations from high-dimensional data. Unlike con-

ventional Slow Feature Analysis [36], which focuses on deterministic transformations,

PSFA introduces a probabilistic approach to capture uncertainty in the learned repre-

sentations. By incorporating probabilistic models, PSFA can effectively handle com-

plex and noisy data, making it well-suited for real-world applications. In PSFA, the

time-series dataset is represented as a sequence of observations: Y = {yyy1, yyy2, · · · , yyyN},

where yyyk denotes the observation at time k, and N is the total number of time steps.

The learning process aims to derive a set of latent variables S = {sss1, sss2, · · · , sssN} that

capture the slow and meaningful underlying dynamics of the data. The PSFA model

can be summarized using (5.1) - (5.2).

p(sssk|sssk−1) = N (sssk;Asssk−1, Q) (5.1)

p(yyyk|sssk) = N
(
xxxk;Vsssk,Γ−1

)
(5.2)

where A ∈ Rm×m andQ ∈ Rm×m denote the feature-transition matrix and the feature-

noise covariance matrix, respectively. The Gaussian distribution is represented by N ,

andm indicates the latent-space dimension. The prior distribution of the slow features

p(sssk) is assumed to be standard Gaussian for all k, which facilitates the imposition
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of zero-mean and unit-variance constraints. This assumption leads to the constraint

presented in (5.3) due to the feature-transition equation.

I = AAT +Q (5.3)

Several extensions are summarized below depending upon the characteristics of A

and measurement noise vvvk.

• PSFA assumes A and Q to be diagonal to obtain uncorrelated slow features.

Therefore, equation (5.3) boils down to (5.4), where ai and qi are the ith diagonal

entries of A and Q respectively.

a2i + qi = 1 (5.4)

Finally, ai is restricted to
(
0 1

)
to ensure stability and avoid switching every

single sample.

• In the context of state-transition matrices, the accommodation of complex poles

and extraction of oscillating patterns are limited in PSFA due to its diagonal

nature. However, a solution to this limitation has been proposed by Complex

PSFA [129], which introduces a block-diagonal structure for the matrix. This

modification allows CPSFA to accommodate complex eigenvalues and naturally

encode oscillating features, as demonstrated in (5.5).

A =


a1 b1
−b1 a1

0 0

0
. . . 0

0 0
am

2
bm

2

−bm
2

am
2

 (5.5)

At first glance, it may be inferred that the decorrelation constraint is violated

by this structure. However, the two features produced by each block primarily

differ in the phase angle while sharing the same power spectral density.

• The traditional PSFA is characterized by the restriction of ai within the unit

circle, resulting in the incorporation of solely stationary characteristics into the
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extracted features. To address this limitation and accommodate drift-type non-

stationary behavior, the variational Bayesian complex probabilistic slow feature

analysis is proposed by Puli et al. [49]. The proposed model, depicted in equa-

tions (5.6) to (5.7), incorporates a random walk with a drift-type mechanism to

separate the corresponding non-stationary characteristics.[
sssk
hhhk

]
=

[
A 0
0 Imns

] [
sssk−1

hhhk−1

]
+

[
0
θθθd

]
+

[
wwws

k

wwwns
k

]
; (5.6)[

yyysk
yyynsk

]
=

[
V1 0
V2 V3

] [
sssk
hhhk

]
+ vvvk; (5.7)

where [
wwws

k

wwwns
k

]
∼ N

(
0,

[
Ims − AAT 0

0 ∆−1

])
;

vvvk ∼ N
(

0,

[
Γ−1 0
0 Λ−1

])
;

where sssk ∈ Rms×1, hhhk ∈ Rmns×1, yyysk ∈ Rps×1 and yyynsk ∈ Rpns×1 denote the

oscillating slow feature, drift-type non-stationary feature, stationary, and non-

stationary observed variable, respectively. Further, A ∈ Rms×ms , θθθd ∈ Rmns×1,

{V1 ∈ Rps×ms , V2 ∈ Rpns×ms , and V3 ∈ Rpns×mns} represent block diagonal

feature-transition matrix, diagonal drift matrix and block-wise emission ma-

trices, respectively. The precision matrices ∆ ∈ Rmns×mns , Λ ∈ Rps×ps and

Γ ∈ Rpns×pns are defined accordingly. In contrast to other models, consideration

is given to model uncertainty by treating parameters as non-random entities.

Consequently, the posterior distributions are obtained using the variational in-

ference algorithm.

• In most state-of-the-art PSFA models, a linear mapping between the observed

and latent variables is assumed, which may result in insufficient representation

capabilities when dealing with data from nonlinear processes. To address this

limitation, a deep Bayesian extension of probabilistic slow feature analysis was

proposed by Jiang et al. [169]. Essentially it is a variational autoencoder frame-

work whose prior distribution over the latent space is inherited from PSFA, as

defined in (5.1). The calculation of the true posterior distribution pθ(s1:N |y1:N)

is often difficult due to the presence of an intractable normalizing constant. To
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address this, an inference network qϕ(s1:N |y1:N) is introduced to approximate

the true posterior distribution, as demonstrated in (5.8).

qϕ(sssk|sssk−1, yyyk) = N (sssk;µµµϕ(sssk−1, yyyk),σσσ2
ϕ(sssk−1, yyyk)) (5.8)

where mean µµµϕ and the standard deviation σσσ2
ϕ ∀ k ∈ {1, 2, · · · , N} are modelled

using a GRU and feed-forward neural networks, respectively. However, it should

be noted that the use of a GRU may not be advantageous since the mean

function µµµϕ exhibits only short-term dependencies, i.e., sssk−1 and yyyk.

5.3 Proposed Methodology

In this chapter, a novel deep network architecture is proposed in which the prior

assumption over the latent space is inherited from VBCPSFA [49] to prioritize the

separation of oscillating and drift-type non-stationary features from nonlinear sequen-

tial data.

5.3.1 Data Generating Model

The generative model of the OSFIN is represented by (5.9), where the input, tar-

get, and latent variables are denoted as follows: Y = [yyy1 yyy2 . . . yyyN ], yyyk ∈ Rp,

T = [ttt1 ttt2 . . . tttN ], tttk ∈ Rn, and Z = [zzz1 zzz2 . . . zzzN ], zzzk ∈ Rm, respectively. The target

variable is challenging to measure online and is less frequently available compared to

the input variables, as it requires time-consuming laboratory analysis. Consequently,

the time series is divided into two parts: [1 : N ] = {No, Nm}, representing labelled

and unlabelled time stamps, respectively. The latent variable zzzk is formed by combin-

ing the oscillatory slow feature (sssk ∈ Rms) and the drift-type non-stationary feature

(hhhk ∈ Rmh).

pθ(yyy1:N , ttt1:N) =

∫
pθ(yyy1:N , ttt1:N , zzz1:N)dzzz1:N (5.9)

where

pθ(yyy1:N , ttt1:N , zzz1:N) = p(zzz1)
N∏
k=2

pθ(yyyk|zzzk)pθ(tttk|zzzk)pθ(zzzk|zzzk−1)
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The latent space is organized by soft constraining the approximate posterior distri-

butions returned by the encoder to a pre-chosen prior distribution [49], as shown

below.

• For k = 1,

p(zzz1) = N (0, Im)

• For 2 ≤ k ≤ N ,

p(zzzk|zzzk−1) = p

([
sssk
hhhk

]∣∣∣∣[sk−1

hk−1

])
(5.10)

where

p(sssk|sssk−1) = N (Asssk−1, I − AAT )

p(hhhk|hhhk−1) = N (hhhk−1 + θθθd,∆
−1)

where A is assumed to follow the structure given in (5.5). The real and imaginary

parts of the eigenvalues of A are combined into two vectors for brevity, as illustrated

below.

aaa =
[
a1 a2 . . . ams

2

]T
; bbb =

[
b1 b2 . . . bms

2

]T
The condition shown in (5.11) must be satisfied for the positive definiteness of the

covariance matrix I − AAT .

I − AAT > 0 =⇒ 1 − a2i − b2i > 0 ∀i (5.11)

The hard constrained optimization resulting from this condition poses a challenge

for iterative algorithms such as gradient descent techniques. Consequently, a re-

parameterization method is utilized to reformulate the original constrained optimiza-

tion problem into an unconstrained form. This involves re-parameterizing the original

parameters {aaa, bbb} as {θθθa, θθθb} in a manner that the condition in (5.11) is always satis-

fied.

aaa =
1

1 + exp(−θθθa)

bbb =

√
exp(−2θθθa) + 2 exp(−θθθa)

(1 + exp(−θθθa))(1 + exp(−θθθb))
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where −∞ < θθθa, θθθb < ∞. The precision matrix ∆ is assumed as diagonal with its

diagonal vector denoted by δδδ. Subsequently, δδδ is constrained to the set of positive

real numbers using a Softplus function.

δδδ = log(1 + exp(θθθδ)) where −∞ < θθθδ <∞

The input and the target variables’ likelihood functions are assumed to follow a

Gaussian distribution, as shown below.

pθy(yyyk|zzzk) = N (µµµθy(zzzk),D{σσσ2
θy(zzzk)}) (5.12)

pθt(tttk|zzzk) = N (µµµθt(zzzk),D{σσσ2
θt(zzzk)}) (5.13)

where D{·} represents a diagonal matrix. The non-linear functions, µµµθy ,σσσ
2
θy

and

µµµθt ,σσσ
2
θt

, associated with input zzzk, are implemented by feed-forward neural networks

parametrized by θθθy and θθθt, respectively. These functions are referred to as decoder

blocks within the variational auto-encoder framework. The data-generating process

is described by the probabilistic graphical model depicted in Fig. 5.1, where shaded

green, yellow, and cyan circles represent the input, target, and latent variables, re-

spectively.

5.3.2 Inference Network

The posterior distribution of the latent variable can be expanded using the Bayes’

rule, as shown in (5.14).

pθ(zzz1:N |yyy1:N , ttt1:N) =
N∏
k=1

pθ(zzzk|zzz1:k−1, yyy1:N , ttt1:N) (5.14)

Consider four disjoint sets of nodes SA = {zzz1:k−2, yyy1:k−2, ttt1:k−2}, SB = {zzzk−1}, SC =

{yyyk−1, tttk−1}, and SD = {zzzk}. The directed acyclic graph corresponding to the defined

sets is shown in Fig. 5.2.

The joint distribution of SA,SC ,SD given SB can be written as shown below.

p(SA, SC ,SD|SB) =
p(SA,SB,SC ,SD)

p(SB)

=
p(SD|SB)p(SC |SB)p(SB|SA)p(SA)

p(SB)
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=
p(SD|SB)p(SC |SB)p(SA|SB)p(�

��SB)

����p(SB)

= p(SD|SB)p(SC |SB)p(SA|SB)

The equality of the joint distribution with the product of individual distributions

given SB establishes the conditional independence of nodes SA,SC , and SD. As a

result, the structure of the posterior distribution in (5.14) simplifies to (5.15).

pθ(zzz1:N |yyy1:N , ttt1:N) =
N∏
k=1

pθ(zzzk|zzzk−1, yyyk:N , tttk:N) (5.15)

The previous latent variable zzzk−1 and the future input yyyk:N and target tttk:N variables

solely determine the posterior distribution of zzzk. Despite its simplification, the exact

posterior distribution remains intractable, necessitating an approximation through an

inference network qϕz(·).

qϕz(zzz1:N |yyy1:N , ttt1:N) =
N∏
k=1

qϕz(zzzk|zzzk−1, yyyk:N , tttk:N)

The approximate posterior at time k is assumed to be Gaussian distribution, as shown

below.

qϕz(zzzk|zzzk−1, yyyk:N , tttk:N) = N (zzzk;µµµϕz(zzzk−1, yyyk:N , tttk:N),D{σσσ2
ϕz

(zzzk−1, yyyk:N , tttk:N)}) (5.16)

where µµµϕz and σσσ2
ϕz

are non-linear functions parameterized by feed-forward neural

networks with parameters ϕϕϕz and inputs {zzzk−1, yyyk:N , tttk:N}. In this work, unlike the

existing deep Bayesian model for PSFA [169] discussed in (5.8), the simplified func-

tional form that solely considers zzzk−1 and yyyk is not assumed. Instead, an inference

model is considered with a similar structure of variable dependencies in the exact

posterior [167], as illustrated in (5.16). Further, a backward gated recurrent unit

(BGRU) [167] is utilized for its need to incorporate the summary of all future input

and target variables at each time step, as shown in (5.17)-(5.20) [170].

qqqk = σ(Wqyyyk + Uqccck+1) (5.17)

rrrk = σ(Wryyyk + Urccck+1) (5.18)

c̃cck = tanh(Wcyyyk + Uc(rrrk ⊙ ccck+1)) (5.19)

ccck = (1 − qqqk) ⊙ ccck+1 + qqqk ⊙ c̃cck (5.20)
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where σ(·) and tanh(·) refer to the sigmoid and the hyperbolic tangent functions, re-

spectively. The set of adaptable parameters, denoted by ϕc = {Wq, Uq,Wr, Ur,Wc, Uc},

represents the first BGRU. Another BGRU, representing the second hidden variable

dddk with parameters ϕd, is utilized to summarize future target variables information.

To handle unavailable future target information, the masking method is applied to

exclude corresponding missing time steps during implementation. The mean, µµµϕz ,

and variance, σσσ2
ϕz

, of the latent variable, zzzk, are determined by combining the two

hidden variables, {ccck, dddk}, with the previously inferred latent variable, zzzk−1. The two

hidden variables and the inferred latent variables are denoted by shaded red diamonds

and cyan circles, respectively. Finally, the approximate posterior distribution of the

latent variable ∀ k ∈ [1 N ] is summarized below.

qϕz(zzz1|yyy1:N , ttt1:N) = N (zzz1;µµµϕz(ccc1, ddd1),D{σσσ2
ϕz

(ccc1, ddd1)})

qϕz(zzzk|zzzk−1, ccck, dddk) = N (zzzk;µµµϕz(zzzk−1, ccck, dddk),D{σσσ2
ϕz

(zzzk−1, ccck, dddk)})

5.3.3 Variational Lower Bound Maximization

The formulation of the objective function to estimate the optimal parameters is pre-

sented in this subsection. A dynamic semi-supervised method is proposed, which

follows two different cases based on the static equivalent [171]. In the first case, when

the target variable is observed with the input, only z is considered the latent variable

(Fig. 5.4). In the second case, when the target variable is missing, both the target

variable t and z are treated as latent variables (Fig. 5.5). The subsequent discussion

covers the posterior inference in both cases. (Note: Observed variables are denoted

by green nodes and latent variables by blue nodes.)

5.3.3.1 {y,t} are observed, and z is unobserved

The objective is to minimize the KL divergence between the approximate posterior

qϕ(zzz|yyy, ttt) and the true posterior pθ(zzz|yyy, ttt), as shown in (5.21).

KL(qϕ(zzz|yyy, ttt)||pθ(zzz|yyy, ttt)) =

∫
qϕ(zzz|yyy, ttt) log

(
qϕ(zzz|yyy, ttt)
pθ(zzz|yyy, ttt)

)
dzzz (5.21)

=

∫
qϕ(zzz|yyy, ttt) log

(
qϕ(zzz|yyy, ttt)
pθ(zzz)

)
dzzz +

∫
qϕ(zzz|yyy, ttt) log

(
pθ(y, ty, ty, t)

pθ(y, ty, ty, t|zzz)

)
dzzz

103



tttk−1 tttk tttk+1

dddk−1 dddk dddk+1

yyyk−1 yyyk yyyk+1

ccck−1 ccck ccck+1

µµµϕk−1
z
,σσσ2

ϕk−1
z

µµµϕk
z
,σσσ2

ϕk
z

µµµϕk+1
z
,σσσ2

ϕk+1
z

zzzk−1 zzzk zzzk+1

Figure 5.3: Inference network

104



zzz

yyy ttt

Figure 5.4: Model for the first case
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Figure 5.5: Model for the second case

= log pθ(y, ty, ty, t) − L(θ,ϕ)(y, ty, ty, t)

where pθ(y, ty, ty, t) denotes the model evidence when {yyy,ttt} are observed, and L(θ,ϕ)(y, ty, ty, t)

represents the evidence lower bound. The non-negativity property of the KL diver-

gence ensures that L(θ,ϕ)(y, ty, ty, t) ≤ log pθ(y, ty, ty, t). As the true posterior distribution is

unknown, it is difficult to minimize the original objective function (5.21). Instead,

the simplified lower bound L(θ,ϕ)(y, ty, ty, t) in (5.22) is maximized.

L(θ,ϕ)(y, ty, ty, t) = Ezzz∼qϕ(zzz|y,ty,ty,t) [log pθ (yyy|zzz) + log pθ (ttt|zzz)] − KL (qϕ(zzz|y, ty, ty, t)||pθ(zzz)) (5.22)

Substituting the previously defined distributions into (5.22), we obtain a directly

implementable final lower bound. The first term in (5.22) can be approximated as

Ezzzk∼qϕ(zzzk|yyyk,tttk)[log pθy(yyyk|zzzk)] ≈ 1

R

R∑
r=1

logN (yyyk;µµµθy(zzzrk),D{σσσ2
θy(zzzrk)}) (5.23)

where the samples zzzrk ∼ qϕ(zzzk|yyyk, tttk) ∀1 ≤ r ≤ R, and R refers to the number of

Monte-Carlo samples. Similarly, the second term in (5.22) can be obtained as shown

in (5.24).

Ezzzk∼qϕ(zzzk|yyyk,tttk)[log pθt(tttk|zzzk)] ≈ 1

R

R∑
r=1

logN (tttk;µµµθt(zzz
r
k),D{σσσ2

θt(zzz
r
k)}) (5.24)

Finally, the third term can be simplified as shown in (5.25).

KL(qϕ(zzz1:N |yyy1:N , ttt1:N)||pθ(zzz1:N))

= KL(qϕ(zzz1|yyy1:N , ttt1:N)||pθ(zzz1)) +
∑
k∈No

KL(qϕ(zzzk|zzzk−1, yyyk:N , tttk:N)||pθ(zzzk|zzzk−1)) (5.25)
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The KL divergence between the approximate posterior distribution and the prior

distribution in (5.25) provides a modelling preference towards the extraction of drift-

type non-stationary and oscillating slow features. Further, the KL divergence between

two normal distributions can be simplified using (5.26).

KL(N (µµµ1,Σ1)||N (µµµ2,Σ2) =
1

2
log

(
|Σ2|
|Σ1|

+ Tr
[
Σ−1

2 Σ1

]
+ (µµµ2 − µµµ1)

TΣ−1
2 (µµµ2 − µµµ1) −m

)
(5.26)

where Tr[·] refers to the trace of the matrix. Finally, the simplified form of the

objective function in (5.22) is obtained by substituting the terms (5.23)-(5.25), as

shown below.

−L(θ,ϕ)(yyyk:N , tttk:N) = fk(θ) + gk:N(θ, ϕ) (5.27)

where

fk(θ) =
1

2R

R∑
r=1

[
log |2πD{σσσ2

θy(zzzrk)}| + log |2πD{σσσ2
θt(zzz

r
k)}|

+ (yyyk − µµµθy(zzzrk))TD{σσσ2
θy(zzzrk)}−1(yyyk − µµµθy(zzzrk))

+ (tttk − µµµθt(zzz
r
k))TD{σσσ2

θt(zzz
r
k)}−1(tttk − µµµθt(zzz

r
k))

]

gk:N(θ, ϕ) =
1

2

[
log

(
|I − AAT |
|D{σσσ2

sk
}|

)
+ Tr

[
(I − AAT )−1D{σσσ2

sk
}
]

+ (µµµsk − Asssk−1)
T (I − AAT )−1(µµµsk − Asssk−1) −ms

− log
(
|∆||D{σσσ2

hk
}|
)

+ Tr
[
∆D{σσσ2

hk
}
]

+ (µµµhk
− hhhk−1 − θdθdθd)

T∆(µµµhk
− hhhk−1 − θdθdθd) −mns

]
such that

µµµz1 = µµµϕz(yyy1:N , ttt1:N); σσσ2
z1

= σσσ2
ϕz

(yyy1:N , ttt1:N);

µµµzk = µµµϕz(zzzk−1, yyyk:N , tttk:N) =

[
µµµsk

µµµhk

]
;

σσσ2
zk

= σσσ2
ϕz

(zzzk−1, yyyk:N , tttk:N) =

[
σσσ2
sk

σσσ2
hk

]
;
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5.3.3.2 y is observed, and {t,z} are unobserved

The missing target variable is treated as a latent variable and inferred through the

regressor network qϕ(ttt|yyy). The KL divergence between the approximate posterior

qϕ(t, zt, zt, z|yyy) and the true posterior pθ(t, zt, zt, z|yyy) is given by (5.28).

KL(qϕ(t, zt, zt, z|yyy)||pθ(t, zt, zt, z|yyy))

=

∫
qϕ(t, zt, zt, z|yyy) log

(
qϕ(t, zt, zt, z|yyy)

pθ(t, zt, zt, z|yyy)

)
dttt dzzz (5.28)

=

∫
qϕ(t, zt, zt, z|yyy) log

(
qϕ(t, zt, zt, z|yyy)

pθ(t, zt, zt, z)

)
dttt dzzz +

∫
qϕ(t, zt, zt, z|yyy) log

(
pθ(yyy)

pθ(yyy|t, zt, zt, z)

)
dttt dzzz

= log pθ(yyy) −M(θ,ϕ)(yyy)

where log pθ(yyy) denotes the log model evidence when the target variable is not ob-

served, and its lower bound M(θ,ϕ)(yyy) can be expanded as follows.

M(θ,ϕ)(yyy) = E(t,zt,zt,z)∼qϕ(t,zt,zt,z|yyy) [log pθ (yyy|t, zt, zt, z)] −KL (qϕ(t, zt, zt, z|yyy)||pθ(t, zt, zt, z))

= Ettt∼qϕ(ttt|yyy)
[
L(θ,ϕ)(y, ty, ty, t) − log qϕ(ttt|yyy)

]
(5.29)

Therefore, the overall objective function to maximize for the entire dataset is shown

in (5.30).

F (θ, ϕ) =
∑
k∈No

L(θ,ϕ)(yyyk:N , tttk:N) +
∑
k∈Nm

M(θ,ϕ)(yyyk:N) + α
∑
k∈No

log qϕ(tttk|yyyk) (5.30)

It should be noted that the regressor term is introduced with hyperparameter α to

enable the distribution qϕr(tttk|yyyk) to learn from the labelled dataset [171,172].

qϕr(tttk|yyyk) = N (zzzk;µµµϕr(yyyk),D{σσσ2
ϕr

(yyyk)}) (5.31)

The expression for Mθ,ϕ(yyyk) is straightforward as it is a function of L(θ,ϕ)(yyyk, tttk) and

the regression network qϕr(tttk|yyyk). The set of the inference network parameters is

denoted by ϕϕϕ = {ϕϕϕr,ϕϕϕc,ϕϕϕd,ϕϕϕz}. The parameters of the generative model are repre-

sented by θθθ = {θθθa, θθθb, θθθd, θθθδ, θθθy, θθθt}. The optimal parameter estimates {θ, ϕθ, ϕθ, ϕ} can be

obtained by minimizing the objective function defined in (5.30). The overall archi-

tecture of the proposed encoder-decoder network is depicted in Fig. 5.6. Finally,

a mask metric, denoted as eee1:N , is defined based on the availability of the target

variable. The problem of vanishing gradients due to the length of the data N being
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typically long is encountered in recurrent neural networks, which are trained using

the backpropagation-through-time algorithm. To address this, we construct a dataset[
yyyk yyyk+1 . . . yyyk+l−1

]
∀ : 1 ≤ k ≤ N−l+1 comprising overlapping time steps. Each

sample in the dataset consists of a single time series with l time steps. Algorithm 5.1

provides an overview of the learning methodology.

Algorithm 5.1 OSFIN learning methodology
Input: yyy1:N , ttt1:N .

Hyper-parameters: ms, mns, R and l
Inference parameters: ϕϕϕr,ϕϕϕc,ϕϕϕd,ϕϕϕz

Generative parameters: θθθa, θθθb, θθθd, θθθδ, θθθy, θθθt
Construct the mask metric eee1:N

while notConverged() do
F (θ, ϕ) = 0;
for k = 1, 2, · · · , N − l + 1 do
N = k + l − 1;
if ek is False then
F (θ, ϕ) = F (θ, ϕ) +M(θ,ϕ)(yyyk:N)

else
F (θ, ϕ) = F (θ, ϕ) + L(θ,ϕ)(yyyk:N , tttk:N) + α log qϕ(tttk|yyyk)

end

end

loss = − 1
N−l+1

F (θ, ϕ) Compute ∂
∂θ

(loss), ∂
∂ϕ

(loss) Update (θ, ϕ)

end
Output: θ, ϕ

5.4 Simulation and Industrial Application

5.4.1 Simulation Case Study

In this subsection, the simulated dataset is utilized to test the proposed methodology.

Two oscillating features are generated via eigenvalues 0.7457±0.6482i in (5.6). Addi-

tionally, the drift-parameter θd and variance δ−1 are drawn from a standard uniform

distribution to create a drift-type non-stationary feature. Four observed variables and

a target variable are subsequently formed by non-linearly transforming the generated

features, as shown in Fig. 5.7.

t[1] = z[1] tanh z[1] + z[2] + 0.01(z[1] + z[2])2 + z[1]z[2]
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Figure 5.6: Overall proposed variational autoencoder architecture

y[1] =
3

(z[1] + 10)2
+ 0.6 z[2]2

y[2] =
z[2] − 2 tanh z[3]

1 + exp {−0.4z[1]}
y[3] = 5 exp

{
−0.1z[1]2 − 0.1z[2]2

}
y[4] = 5 log

(
1 + (2z[1] − z[3])2

)

Finally, the observed variables are corrupted with additive Gaussian noise with a

signal-to-noise ratio of ten. The original dataset is divided into training, validation

and testing datasets with 1500, 750 and 750 samples, respectively. The network

is trained using the training dataset, while the validation dataset is employed to

determine the hyperparameters. The optimal latent dimensions (ms and mns) are

computed based on the validation data, where the loss function values at convergence

for each pair of ms and mns are plotted as shown in Fig. 5.8. It is observed that the

training data loss function continued to decrease due to network overfitting, whereas

the validation data loss provides a clearer insight into the optimal dimension pair.

The minimum validation data loss occurs at (ms = 2,mns = 1), indicating it as
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the optimal latent dimension pair. This process can be similarly repeated for other

hyperparameters.

The performance of the proposed method on the test data is compared with the

other state-of-the-art techniques, including a regular quality-relevant slow feature

analysis (QRSFA) [98], GRU-based auto-encoder (GRU-AE), variational Bayesian

complex PSFA (VBCPSFA) [49], and variable-wise deep Bayesian PSFA (VW-DBPSFA)

[169]. Table 5.1 presents the latent variable dimension, observed variables reconstruc-

tion root mean square error (R-RMSE), target variable prediction root mean square

error (P-RMSE), and the correlation between the prediction and the actual target

variable (ρ) of different methods for two scenarios. We observe an increase in P-RMSE

of 35.6%, 37.7%, 56.71%, 22.22% and 18.75% for the QRSFA, GRU-AE, VBCPSFA,

VW-DBPSFA, and OSFIN models, respectively. VBCPSFA performs poorly due to

its inability to model non-linear relations. Although GRU-AE and VW-DBPSFA

perform better than VBCPSFA, the performance indices in Table 5.1 indicate that

the proposed OSFIN model performs better due to the explicit representation of the

oscillating patterns using a complex slow feature model prior.

Table 5.1: Performance comparison on simulated dataset

Method dim(z) R-RMSE P-RMSE ρ

No missing label
QRSFA 7 0.95 0.73 0.69

GRU-AE 6 0.72 0.53 0.81

VBCPSFA 6 0.89 0.67 0.77

VW-DBPSFA 4 0.68 0.45 0.87

OSFIN 3 0.54 0.32 0.94

30% missing labels
QRSFA 7 1.22 0.99 0.47

GRU-AE 7 0.94 0.73 0.73

VBCPSFA 8 1.14 1.05 0.51

VW-DBPSFA 7 0.87 0.59 0.79

OSFIN 5 0.63 0.35 0.88
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5.4.2 Industrial Case Study

In this subsection, the efficiency of the proposed modelling algorithm is tested using

a Residue Hydroconversion industrial facility dataset. The residue of the vacuum dis-

tillation unit usually consists of long-chain hydrocarbons with higher boiling points.

These hydrocarbons are less flammable and must be converted into higher-value hy-

drocarbons. The Residue Hydroconversion process is a pivotal operation in petroleum

refining for such an upgradation. The process involves three essential steps: Stabi-

lizer, Depropanizer and Amine absorber, as shown in Fig. Fig. 5.9. In the stabilizer

unit, where initial distillation occurs, volatile components are separated from the

heavy feedstock. The separated vapor then advances to the depropanizer unit to fur-

ther fractionate the vapor, primarily focusing on isolating propane and other heavier

components from the desired product stream. The final stage of the process involves

the amine absorber, where any remaining traces of undesirable components, such as

hydrogen sulphide and other acidic gases, are removed through selective absorption.

Given the high temperature associated with the bottoms section and the relative

rarity of level sensors capable of withstanding such extreme conditions, the prediction

of the depropanizer’s bottoms level emerges as a focal point in this analytical study.

This prediction aids operators in preventing damage to trays and pumps while effi-

ciently managing downstream separation processes. This investigation encompasses

ten variables across 1438 samples, partitioned into training, validation, and testing

sets, comprising 1100, 150, and 188 samples, respectively. All the variables are nor-

malized for proprietary reasons. The activation function employed in all hidden layers

is the hyperbolic tangent form.

The oscillating slow features (Fig. 5.10) are extracted using the proposed method-

ology, and the trained generative model pθ(tttk|zzzk) is utilized for predicting the bottoms

level. The yellow dashed curve in Fig. 5.11 represents the predictive pattern on the

test-dataset. It is observed that the predictive pattern closely follows the reference

(black solid curve), and this observation is further reinforced by the best performance

index of 0.321 P-RMSE, surpassing the performance of other state-of-the-art methods.

The performance of the proposed model under multiple missing label scenarios is also

analyzed, as depicted in Table 5.2. The explicit modeling preference for oscillatory
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and drift-type non-stationary features enables the proposed model to achieve signif-

icantly improved performance, even when dealing with missing labels. For instance,

under a 50% missing label scenario, the proposed model exhibits a P-RMSE of 0.371,

whereas the next best model shows a P-RMSE of 0.724, representing an improvement

of 95.14%. The results clearly demonstrate the efficacy of the proposed methodology

in capturing oscillating slow features and utilizing them for accurate predictions of

the bottoms level. Moreover, its robustness under missing label scenarios showcases

the model’s ability to handle real-world data with incomplete information, making it

a promising approach for various practical applications.

Table 5.2: P-RMSE comparison on industrial dataset

Missing
label %

GRU-NN VBPSFA VW-DBPSFA OSFIN

0 0.832 0.975 0.623 0.321

10 0.851 0.901 0.691 0.345

25 0.812 0.951 0.675 0.338

40 0.887 0.997 0.715 0.355

50 0.815 1.121 0.724 0.371

5.5 Conclusion

A new deep learning algorithm with a preference for modeling non-stationary and

oscillatory representations is presented in this work. Parameter sharing during back-

propagation is utilized to impose a hard constraint on the magnitude of the complex

eigenvalue within the unit circle. The structure of the true posterior distribution,

given the target and input variables, is employed for the inference model. The latent

variable is inferred based on past and future observations according to this poste-

rior structure. Accordingly, a Gaussian regression network is introduced naturally to

estimate missing target variables from observed variables. The results are validated

through simulation and an industrial case study. The superior performance of the

proposed model compared to state-of-the-art methods highlights its potential as a

valuable tool in the field of predictive modeling and time-series analysis.
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Figure 5.11: Time trend comparison
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Chapter 6

Robust Complex Probabilistic Slow
Feature Analysis in the Presence of
Skewed Measurement Noise ∗

Complex slow feature analysis is a feature extraction technique that extracts slow

oscillating patterns from the measured data. The measurement noise is usually as-

sumed to follow a Gaussian distribution to obtain a closed-form solution. However,

industrial process data is often characterized by measurement issues such as outliers,

including asymmetric measurement noise. Such issues reduce the performance of the

extracted features if not accounted for explicitly. Therefore, this chapter proposes a

novel robust complex slow feature model to tackle the mentioned issues. In partic-

ular, this work considers a Skewed t-distribution for the measurement noise of the

complex slow feature model. The parameters of the Skewed t-distribution, especially

the degree of freedom and the shape parameters, account for the outliers and the

asymmetric nature of the measurement noise. The parameters of the proposed model

are jointly estimated using the expectation-maximization algorithm. The efficiency

of the approach is demonstrated using simulated and industrial data.

6.1 Introduction

Slow feature analysis (SFA) is an unsupervised latent variable (LV) extraction method

that extracts temporally correlated or slow features from a time-series dataset [173].

∗This chapter has been published as: V. K. Puli, R. Chiplunkar and B. Huang, ”Robust
Complex Probabilistic Slow Feature Analysis in the Presence of Skewed Measurement Noise,” IFAC-
PapersOnLine, 56(2), 10947-10952, 2023
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This modelling technique is especially suited for data obtained from process systems

with slowly varying dynamics. Thus, SFA has found increasing applications, such as

soft sensing and fault detection, in recent times [174].

Although effective for slow processes, the deterministic nature of SFA makes it

incapable of handling data complexities such as non-linearity, outliers, missing data,

and asymmetric noise. Probabilistic slow feature analysis (PSFA) is the stochastic

extension of the SFA that is capable of handling many such issues since the measure-

ments and LVs are modelled as random variables [175]. The PSFA model is a linear

hidden Markov model (HMM) with a unique structure for the evolution of the LVs,

which ensures slowness during the feature extraction. The PSFA model thus has been

used in a variety of applications such as soft sensing [55], process monitoring [176],

and gross error detection [177]. The HMM formulation of PSFA also allows for more

flexibility in a model to tailor it to various scenarios. Hence, various extensions of the

PSFA model have been proposed in the literature, such as the robust PSFA model

fan2018identification to address the issue of measurement outliers, PSFA with the

additional random-walk model [49, 178] for non-stationary processes, and non-linear

PSFA [179,180].

The complex probabilistic slow feature analysis (CPSFA) [129] model is recently

proposed to extract slow LVs with oscillatory patterns. Oscillations are common in

many industrial datasets caused by valve stiction, aggressive control tuning, and ex-

ternal oscillatory disturbances [181]. Hence, models for such systems need to consider

the oscillatory behaviour explicitly. Given data with a low noise, a deterministic SFA

is generally suited to extract oscillatory LVs as oscillating signals exhibit temporal

correlations. However, a probabilistic version of the SFA needs to be considered in

the presence of significant noise. The vanilla PSFA model structure does not account

for the oscillatory behaviour explicitly. Thus, the CPSFA model is more apt for such

a scenario as it contains complex poles in the transition matrix that represents the

dynamics of the slow features.

The performance of any machine learning model depends on how well it represents

the underlying patterns and complexities of the real-world data. Industrial datasets

are usually characterized by measurement outliers. Moreover, the sensory measure-

ments of variables such as pressure and flow rate are often corrupted by skewed
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noise [182]. The basic version of PSFA (and CPSFA) assumes a Gaussian measure-

ment noise, which fails to account for these complexities because of the thin tails and

symmetric nature of the Gaussian density function. This inaccurate description of the

measurement noise makes the estimated parameters unreliable and manifests outliers

with asymmetry in the extracted features. Such a manifestation is not desirable be-

cause the extracted features, rather than measured variables, are often used to predict

the target variable that is usually free of complexities. Therefore, this work proposes

a novel approach to address the case where oscillatory datasets have the measure-

ment issues mentioned earlier. In this approach, a Skewed t-distribution, which has

both asymmetry and fat-tails, is used to represent the noise in the measured data.

However, estimating the distribution of features with a Skewed t-noise leads to in-

tractability. The Skewed t-distribution can be considered as a Gaussian scale mixture

(GSM) distribution and thus can be represented in a hierarchical form [183,184]. This

hierarchical representation allows one to obtain a closed-form analytical expression

of the features and model parameters. The effectiveness of the proposed approach

is demonstrated through two case studies: a simulated and an industrial case study.

The main contributions of this chapter are as follows:

1. Extracting the oscillatory LVs from data corrupted by both outliers and asym-

metric measurement noise under the complex PSFA framework.

2. Utilizing the hierarchical representation of the Skewed t-distribution to repre-

sent the complex measurement noise. A detailed derivation of the expressions for

the oscillatory LVs and model parameters is provided through the expectation-

maximization (EM) and variational Bayesian inference (VBI) framework.

The remainder of the chapter is organized as follows. Section 2 revisits the probabilis-

tic SFA. The proposed model and the detailed derivation of the LVs and parameters

are given in section 3. The results from the case studies are presented in section 4.

Section 5 summarizes the obtained results.
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6.2 Revisit of SFA

This section summarizes the relevant literature and highlights the limitations of ex-

isting methods.

6.2.1 Probabilistic Slow Feature Analysis (PSFA)

Shang et al. [55] proposed the probabilistic slow feature analysis to explicitly rep-

resent the dynamics (and hence slowness) in the feature space with a probabilistic

description, as shown in (6.1) - (6.2).

sssk = Asssk−1 +wwwk; wwwk ∼ N (wwwk; 0, I − AAT ) (6.1)

xxxk = Csssk + vvvk; vvvk ∼ N (vvvk; 0, R) (6.2)

where sssk ∈ Rm×1 and xxxk ∈ Rp×1 denote the slow feature and the observation, respec-

tively. The state-transition and the emission matrices are denoted by A ∈ Rm×m and

C ∈ Rp×m, respectively. Further, the feature noise wwwk and the measurement noise vvvk

are assumed to follow Gaussian distribution with mean 0 and covariance (Im −AAT )

and R, respectively. Here Im represents an identity matrix of size m. Finally, m and p

represent the dimension of the feature and the measurement space, respectively. The

authors proposed Expectation-Maximization based algorithm to estimate the model

parameters in an iterative manner.

6.2.2 Robust Probabilistic Slow Feature Analysis (RPSFA)

Fan et al. [56] proposed robust probabilistic slow feature analysis to deal with the data

contaminated by outliers. The author used Student’s t-distribution denoted by St to

describe the measurement noise as it has fat tails to accommodate for the outliers, as

shown in (6.1) and (6.3).

xxxk = Csssk + vvvk; vvvk ∼ St(vvvk; 0, R, ν) (6.3)

Since the feature estimation requires a Kalman filter, which is only optimal when

the model is linear, and both the feature and measurement noises are described by a

normal distribution, the estimation problem is therefore recast as shown in (6.4) and
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(6.5).

vvvk|λk ∼ N (vvvk; 0, R/λk) (6.4)

λk ∼ G(λk;
ν

2
,
ν

2
) (6.5)

where

St(vvvk; 0, R, ν) =

∫ ∞

0

N (vvvk; 0, R/λk) G(λk;
ν

2
,
ν

2
) dλk

The Student’s t-distribution can be viewed as an infinite mixture of Gaussian distri-

butions with an introduction of an additional LV λk that follows the Gamma distri-

bution G. However, the authors approximate solutions by using a weighted gain in

the Kalman filter equations to provide heavier weights to normal observations than to

outliers. Further, Student’s t-distribution is not appropriate to cope with data that

has a noise skewed towards one side, as shown in [185], [184] and [183].

6.2.3 Complex Probabilistic Slow Feature Analysis (CPSFA)

The probabilistic slow feature model assumes a diagonal structure in the state transi-

tion matrix of feature space to obtain uncorrelated features. Therefore, the oscillating

patterns cannot be extracted since a diagonal matrix cannot accommodate complex

poles. Hence, the complex probabilistic slow feature analysis as proposed by [129]

can extract slow features with oscillating patterns, as shown in the (6.6) and (6.7).

sssk = Asssk−1 +wwwk; wwwk ∼ N (wwwk; 0, Q) (6.6)

xxxk = Csssk + vvvk; vvvk ∼ N (vvvk; 0, R) (6.7)

where

A = blkdiag

{[
a1 b1
−b1 a1

]
, . . . ,

[
am

2
bm

2

−bm
2

am
2

]}
;

Q = blkdiag
{
Q1, . . . , Qm

2

}
;Qj = (1 − a2j − b2j)I2;

Essentially, the author relaxed the diagonal assumption of the state-transition matrix

and assumed a block diagonal structure to accommodate complex poles. In particular,

the structure shown in (6.3) was chosen to satisfy the constraint that ensures the

extracted features are uncorrelated. Although CPSFA can extract slow features with

oscillating patterns, it is not robust to outliers and cannot deal with asymmetric

noise.
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6.3 Robust CPSFA for outliers and asymmetric

noise

6.3.1 Proposed methodology

Nurminen et al. [185] introduced the Skewed t-distribution ST , which is robust to

outliers and can describe skewed noise distribution, and presented an algorithm to

estimate the states for a general state-space model with known parameters. In this

section, we propose an extension to the CPSFA model but with unknown parameters

in the Skewed t-distribution and derive an algorithm that can jointly estimate both

the hidden variables and unknown parameters. The proposed formulation is shown

in (6.8)-(6.9).

sssi:i+1
k =

[
ai bi
−bi ai

]
sssi:i+1
k−1 +wwwi:i+1

k ; (6.8)

wwwi:i+1
k ∼ N (

−→
0 , (1 − a2i − b2i )I2); i = 2j − 1;∀1 ≤ j ≤ m

2

xxxk = Csssk + vvvk; vvvk ∼
p∏

i=1

ST (vvvik;µi, Rii,∆ii, νi) (6.9)

where the location parameter of the Skewed t-distribution is represented by µi. Fur-

ther, the diagonal entries of the scale and the shape matrix are denoted by Rii and

∆ii, respectively. The ith entry of the degrees of freedom vector is represented by

νi. We employ the Gaussian scale mixture representation to obtain the closed-form

solution, as shown in (6.10)-(6.12).

vvvk|uuuk,Λk ∼N (vvvk;µµµ+ ∆uuuk,Λk
−1R) (6.10)

uuuk|Λk ∼N+(uuuk;
−→
0 ,Λk

−1) (6.11)

Λk ∼G(Λk;
ννν

2
,
ννν

2
) =

p∏
i=1

G(λiik ;
νi
2
,
νi
2

) (6.12)

where

ST (vvvk; 0, R,∆, ν)

=

∫ ∞

0

∫ ∞

0

N (vvvk;µµµ+ ∆uuuk,Λk
−1R) N+(uuuk;

−→
0 ,Λk

−1)G(Λk;
ννν

2
,
ννν

2
) duuuk dΛk

where N+ denotes a multivariate truncated Gaussian distribution with closed positive

orthant as support. The observed variables, LVs and parameters are denoted by

X := xxx1:N , Z := {sss1:N ,uuu1:N ,Λ1:N}, and θ := {aaa, bbb, C,µµµ,R,∆, ννν}, respectively.
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6.3.2 Parameter Estimation

Given the observed variables, the parameters are estimated with the help of the

Expectation-Maximization algorithm in an iterative manner. The joint log-likelihood

p(X,Z|θ) of the proposed model is shown below.

log p(X,Z|θ) = log p(sss1) +
N∑
k=2

log p(sssk|sssk−1; θ)+

N∑
k=1

[log p(xxxk|sssk,uuuk,ΛΛΛk; θ) + log p(uuuk|Λk; θ) + log p(Λk; θ)] ;

where

log p(sss1) = −m
2

log 2π − 1

2
sssT1 sss1;

log p(sk|sk−1; θ) = −m
2

log 2π −
m
2∑

i=1

log |1 − a2i − b2i |

− 1

2
(sssk − Asssk−1)

T (Im − AAT )−1(sssk − Asssk−1);

log p(xxxk|sssk,uuuk,Λk; θ) = −p
2

log 2π − 1

2

p∑
i=1

log

∣∣∣∣Rii

Λii
k

∣∣∣∣
− 1

2

p∑
i=1

Λii
k

Rii
(xik − Cisssk − µi − ∆iuuuk)2;

log p(uuuk|Λk) = −p
2

log 2π +
1

2

p∑
i=1

[
log Λii

k − uik
2
Λii

k

]
;

log p(Λk|ννν) =

p∑
i=1

[νi
2

log
νi
2
− log Γ

(νi
2

)
+
(νi

2
− 1
)

log Λii
k − νi

2
Λii

k

]
;

Here Ci and ∆i denote the ith rows of C and ∆, respectively. Further, the Q-function

is defined as follows.

Q(θ|θη−1) = EZ∼p(Z|X;θη−1) {log p(X,Z; θ)}

= ⟨log p(X,Z; θ)⟩

where θη−1 refers to the parameters from previous iteration η−1. Finally, the update

expressions for each parameter can be obtained by equating the derivative of the

Q-function, with respect to each parameter, to zero.
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6.3.3 Update expressions:

The update expression for ai can be derived as shown in [129].

αi3a
3
i + αi2a

2
i + αi1ai + αi0 = 0 (6.13)

where

αi3 = −2(N − 1);

αi2 =
N∑
k=2

〈
siks

i
k−1 + si+1

k si+1
k−1

〉
;

αi1 = −αi3(1 − bi
2) + 2bi

N∑
k=2

〈
siks

i+1
k−1 − sik−1s

i+1
k

〉
−

N∑
k=2

〈
siks

i
k + si+1

k si+1
k + sik−1s

i
k−1 + si+1

k−1s
i+1
k−1

〉
;

αi0 = αi2(1 − bi
2);

Similarly, the equation for bi is shown in (6.14).

βi3b
3
i + βi2b

2
i + βi1bi + βi0 = 0 (6.14)

where

βi3 = −2(N − 1);

βi2 =
N∑
k=2

〈
siks

i+1
k−1 − sik−1s

i+1
k

〉
;

βi1 = −βi3(1 − ai
2) + 2ai

N∑
k=2

〈
siks

i
k−1 + si+1

k si+1
k−1

〉
−

N∑
k=2

〈
siks

i
k + si+1

k si+1
k + sik−1s

i
k−1 + si+1

k−1s
i+1
k−1

〉
;

βi0 = βi2(1 − ai
2);

The estimates ai and bi, {i = 2j − 1;∀1 ≤ j ≤ m
2
}, for the current iteration can

be obtained by solving the cubic equations shown in (6.13) and (6.14). Similarly by

setting the partial derivatives of Q−function to zero with respect to C, µ, Rii, ∆ii

and νi ∀1 ≤ i ≤ p, the update expressions can be obtained as shown in (6.15) - (6.19).

C =

[
N∑
k=1

(xxxk − µµµ− ∆⟨uuuk⟩)
〈
sssTk
〉] [ N∑

k=1

〈
sssksss

T
k

〉]−1

(6.15)
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µi =

∑N
k=1 ⟨Λii

k (xik − Cisssk − ∆iuuuk)⟩∑N
k=1 ⟨Λii

k ⟩
(6.16)

Rii =
1

N

N∑
k=1

〈
Λii

k (xik − Cisssk − µi − ∆iuuuk)2
〉

(6.17)

∆ii =

∑N
k=1 ⟨Λii

k (xik − Cisssk − µi)u
i
k⟩∑N

k=1

〈
Λii

ku
i
k
2
〉 (6.18)

log
νi
2
− ψ

(νi
2

)
+

1

N

N∑
k=1

[〈
log Λii

k

〉
−
〈
Λii

k

〉]
+ 1 = 0 (6.19)

where ψ is a digamma function. The update expressions in (6.13) - (6.18) involve

terms that require the expectations of coupled terms, such as sssk,uuuk and Λk, with

respect to the joint posterior p(sssk,uuuk,Λk|xxx1:N ; θ), which is not analytically tractable.

Therefore, we use the variational Bayesian inference algorithm to approximate the

joint posterior.

p(sssk,uuuk,Λk|xxx1:N ; θ) ≈ q(sssk|xxx1:N ; θ)q(uuuk|xxx1:N ; θ)q(Λk|xxx1:N ; θ)

Since conjugate priors are chosen for the LVs, as shown in (6.10)-(6.12), the posterior

distributions belong to the same family as shown in (6.20) - (6.22).

q(sssk|xxx1:N ; θ) = N (sssk;sssk|N , Pk|N) (6.20)

where

Pk|k−1 = APk−1|k−1A
T + Im − AAT

Kx = Pk|k−1C
T (CPk|k−1C

T + ⟨Λk⟩−1R)−1

sssk|k = Asssk−1|k−1 +Kx(xxxk − CAsssk−1|k−1 − µµµ− ∆⟨uuuk⟩)

Pk|k = (Im −KxC)Pk|k−1

The smoothing is applied using the following equations

Jk = Pk|kA
TP−1

k+1|k
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sssk|N = sssk|k + Jk(sssk+1|N − Asssk|k)

Pk|N = Pk|k + Jk(Pk+1|N − Pk+1|k)JT
k

q(uuuk|xxx1:k; θ) = N+(uuuk;uuuk|N , Uk|N) (6.21)

where

ϵk = xxxk − Csssk|N − µ

Ku = ∆(∆T∆ +R)−1

uuuk|N = Kuϵk

Uk|N = (Ip −Ku∆)⟨Λk⟩−1

The following expressions are computed ∀ 1 ≤ i ≤ p to estimate the mean and

covariance of uuuk.

χi
k =

1√
2π

exp

{
−
uik|N

2

2U ii
k|N

}
;

ωi
k =

1

2

1 + erf

 −uik|N√
2U ii

k|N

 ;

γik = uik|N +
√
U ii
k|N

(
χi
k

1 − ωi
k

)
;

Σii
k = U ii

k|N

1 −

 uik|N√
U ii
k|N

( χi
k

1 − ωi
k

)
−
(

χi
k

1 − ωi
k

)2
+ γik

2
;

q(Λii
k |xxx1:N ; θ) = G

(
Λii

k ;
νi
2

+ 1,
νi + ϕii

k

2

)
(6.22)

where

ϕk = R−1(ϵϵϵkϵϵϵ
T
k +CPk|NC

T ) + (∆R−1∆ + I)⟨uuukuuuTk ⟩ −R−1∆⟨uuuk⟩ϵϵϵTk − ∆R−1ϵϵϵk⟨uuuk⟩T

Finally, the expectations that are required to compute the parameter update expres-

sions are shown below.

⟨sssk⟩ = sssk|N ;
〈
sssksss

T
k−1

〉
= Pk|NJ

T
k−1 + sssk|Nsss

T
k−1|N ;
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〈
sssksss

T
k

〉
= Pk|k + sssk|Nsss

T
k|N ; ⟨uuuk⟩ = γγγk;

〈
uuukuuu

T
k

〉
= Σk;〈

Λii
k

〉
=

νi + 2

νi + ϕii
k

;

〈
log Λii

k

〉
= ψ

(νi
2

+ 1
)
− log

(
νi + ϕii

k

2

)
In the proposed methodology, explicit update equations are presented for each of

the involved parameters. So the computational load is similar to other EM-based

probabilistic models.

6.4 Case studies

This section demonstrates the effectiveness of the proposed algorithm using a simu-

lated and an industrial data set for soft-sensor applications. In both the case studies,

the measurement noise follows a skewed t-distribution with location parameter µ∗ = 0,

shape parameter ∆∗ = 2 for positive skewness, degree of freedom parameter ν∗ = 5

for outliers, and a scale parameter R∗ such that the signal-to-noise ratio is 0.2.

6.4.1 Simulation case study

We generated four slow oscillating features using (6.8) by using the state transition

matrix shown in (6.23). A target variable y is generated using these features with

the help of a linear model whose coefficients are drawn from a standard Gaussian

distribution and additive Gaussian noise.

A∗ =


0.49 0.86 0 0
−0.86 0.49 0 0

0 0 0.68 0.7
0 0 −0.7 0.68

 ; Q∗ = I4 − AAT ; (6.23)

We considered an emission matrix C∗ drawn randomly from a standard Gaussian

distribution to construct six measured variables, as shown in Fig. 6.1. The mea-

sured variables are positively skewed with outliers. A total of 2000 data samples are

generated for the analysis.

The data are divided into training (1000 samples), validation (500 samples),

and testing sets (500 samples) to train the model, select the hyper-parameters, and

compare the performance. LVs are extracted using the proposed methodology and

other state-of-the-art feature extraction methods, such as SFA, dynamic partial least
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Figure 6.1: Six observed variables and one target variable (Only 300 data points are
shown for better visualization)

squares (DPLS) kaspar1993dynamic, RPSFA, and CPSFA. Finally, regression models

are built between the target training data and the extracted LVs from each feature

extraction method. The scatter plot between the noise-free target variable and the

predictions based on various feature extraction methods is shown in Fig. 6.2. It is

observed that the predictions based on the RCPSFA features are closer to the 450 line,

indicating a better prediction. Table 6.1 shows the performance indices, namely the

root mean square error (RMSE) and the coefficient of determination (R2), calculated

with the help of predicted and the actual target testing dataset. It is observed that

the proposed method results in the highest R2 due to the explicit representation of

the oscillations and the consideration of data complexities.

Table 6.1: Performance comparison on simulated dataset

Method SFA DPLS RPSFA CPSFA RCPSFA

RMSE 0.94 0.88 0.75 0.71 0.56

R2 0.38 0.43 0.55 0.60 0.77
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Figure 6.2: Scatter plot of the simulated case study

6.4.2 Industrial case study

The depropanizer bottoms level is essential to the design of the operating conditions

in subsequent downstream cracking processes. However, a level sensor that can sus-

tain extreme bottoms temperature involves expensive installation and maintenance

costs. Therefore, we develop a soft sensor for the depropanizer bottoms level using

the dataset obtained from a residue hydro-conversion unit. The eighteen measured

variables are artificially corrupted with an additive Skewed t-distribution noise to

demonstrate the efficacy of the proposed algorithm. The measured and the target

variables are shown in their normalized form in Fig. 6.4 for proprietary reasons. The

dataset is partitioned into training, validation, and testing sets with 800, 160, and

480 samples, respectively.

We performed a similar analysis as discussed in the simulation case study. The

proposed algorithm is iterated until the Q-function, computed using the validation

data, no longer improves. The extracted slow oscillating features using the proposed

methodology are shown in Fig. 6.3. The extracted LVs are used to build a predictive

model for the target variable. The predictions and the performance indices con-

structed using the predictions obtained from various feature extraction methods on
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the test dataset are shown in Fig. 6.5 and Table 6.2 respectively. It is shown that the

proposed model exhibits better performance than the other slow feature extraction

methods when the observed variables contain outliers with skewed noise.
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Figure 6.3: Extracted features using the RCPSFA model in the industrial case study

Table 6.2: Performance comparison on the industrial dataset

Method SFA DPLS RPSFA CPSFA RCPSFA

RMSE 0.99 1.13 0.88 0.75 0.61

R2 0.43 0.36 0.48 0.55 0.66

6.5 Conclusion

This chapter proposes a novel feature extraction model that extracts slow oscillating

features from data that is corrupted with additive noise characterized by outliers and

asymmetric distributions. Using the expectation-maximization algorithm, we have

derived explicit update equations for the involved parameters, especially the skewed-

t distribution parameters. The effectiveness of the proposed algorithm is verified

using a simulation and an industrial case study. The future work is to extend the

solution to the case where both the measured and the target variables are corrupted

with Skewed t-noise.
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Figure 6.4: Observed and target variables
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Chapter 7

Sparse Robust Dynamic Feature
Extraction using Bayesian
Inference ∗

Data sets of large-scale industrial processes are often high-dimensional and are char-

acterized by outliers. Probabilistic latent variable models are effective for modeling

such data complexities. However, the performance of such models is influenced by

the number of latent variables and the adequacy of the noise model that describes

the data complexities, such as outliers and skewness. This chapter presents a proba-

bilistic slow feature model that considers these two issues simultaneously. The latent

space dimensionality is automatically obtained by modeling the emission matrix with

a Laplace distribution, resulting in a sparse model. Further, the measurement noise

is modeled with a skewed-t distribution to account for the outliers and asymmetry of

the noise. The hierarchical representation of these two distributions is considered to

obtain tractable solutions for the distributions of the latent variables and the model

parameters. The resulting model is estimated through variational Bayesian inference.

This chapter is a further extension of Chapter 6.

7.1 Introduction

Data-based modeling has been increasingly preferred to model complex processes for

industrial applications, such as soft sensing, process monitoring and prognosis. A few

∗This chapter has been published as: V. K. Puli, R. Chiplunkar and B. Huang, ”Sparse
Robust Dynamic Feature Extraction using Bayesian Inference,” in IEEE Transactions on Industrial
Electronics, 2023
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of the main challenges of industrial datasets are measurement-related issues, such as

collinearity, outliers, missing data, and asymmetric noise. Probabilistic latent variable

modeling is an effective tool to handle such issues [186]. This is a flexible framework

that allows one to represent a variety of aspects of a dataset based on the choice of

model structure and assumed distributions [187].

Often, high-dimensional datasets are generated from a very low-dimensional la-

tent space. Further, not all latent features affect all the input variables. Therefore,

extracting the correct number of latent variables corresponding to each input variable

is crucial. It can be achieved by a sparse representation of the emission matrix using

an L1 regularizer. A natural extension to probabilistic sparse latent models [188]

was introduced by assuming a generalized hyperbolic prior to the emission matrix.

As a particular case, Guan et al. [189] proposed the sparse probabilistic principal

component analysis model by incorporating a Laplace prior. Laplace distribution, as

such, does not yield tractable posterior estimates. However, the Laplace distribution

can be expressed as a Gaussian scale mixture distribution, resulting in an analytical

expression for the posteriors. The sparse principal component analysis model has not

been well explored for industrial process applications, and the research in this field is

limited [190].

Another important aspect of industrial datasets is the asymmetric nature of mea-

surement noise along with outliers. This is a common occurrence in many fields, such

as target-tracking and robotics [184]. In process industries, the measurement noise

of variables in the ranges of their limiting values will be skewed (e.g., the liquid level

close to zero). For such cases, an asymmetric and heavy-tailed distribution such as the

skewed-t distribution is the ideal choice to model the measurement noise [185, 191].

Various skewed-t distribution-based filtering schemes have been proposed in recent

years, such as the normal-skew mixture distribution-based filtering [192], skewed-t

mixture distribution-based filtering [193], and robust filtering with skewed-t noise for

state transition model mismatch [194]. It must be noted that using the skewed-t dis-

tribution as such also leads to intractability issues for the state estimation procedure.

Hence, the hierarchical representation of the skewed-t distribution is adopted, which

uses the fact that the skewed-t distribution can also be expressed as a Gaussian scale

mixture distribution [184].
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In this work, these two aspects are implemented in a dynamic latent variable

model. In particular, the probabilistic slow feature analysis (PSFA) is selected as the

latent variable model. The PSFA model is an extension of the slow feature analysis

(SFA) method, which is an unsupervised learning method that projects the input data

onto a latent space such that the latent variables are characterized by slow variations

[173]. The main rationale behind the technique is that although the input data

might have faster variations, the primary underlying phenomena are characterized

by temporally slowly changing sources. This technique is thus relevant to many

industrial processes that have slower dynamics and thus is increasingly being used in

process industries [174, 195, 196]. The PSFA model is a linear dynamic model that

explicitly characterizes the slowness of a process through a constrained state transition

model [55]. The PSFA model has been demonstrated to be effective for applications,

such as soft sensing [55], and process monitoring [176]. Numerous extensions to the

basic PSFA model have been explored to account for various aspects of data, such as

oscillatory behavior [129], measurement outliers [56], and multi-modality [197].

In PSFA, the slowest latent variables are usually selected for modeling because

they are regarded to be capable of presenting the primary dynamics of the pro-

cess. Their dimensionality is generally determined based on a trial-and-error proce-

dure [49, 99]. This procedure assumes that the order of importance is strictly based

on velocities, which may not be always accurate. A more efficient way is to be able

to select the latent variables that generate the input data automatically. This work

proposes a method to achieve it by having a sparse representation of the emission ma-

trix. This is achieved by considering the emission matrix rows as Laplace-distributed

random vectors. The method is also designed to be robust to asymmetric noise and

outliers by using a skewed-t distribution to model the measurement noise. Although

the issue of such a noise in the PSFA model is considered in a recent work [198],

it assumes the parameters as deterministic entities. The proposed approach has

model parameters modeled by random variables to account for model uncertainties

and include prior knowledge. The proposed model is estimated using the variational

Bayesian inference approach [77,199]. Finally, the efficiency of the proposed algorithm

is evaluated using two soft-sensor case studies: a numerical and an experimental case

study. The main contributions of the chapter are as follows.
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1. Automatic selection of the slow features relevant to the input-output data

through a sparse representation of the PSFA model.

2. Robust PSFA model in the presence of asymmetric measurement noise and

outliers.

3. Estimation of the posterior distribution of the model random variables using

both the input-output data for soft-sensor applications.

The remainder of the chapter is organized as follows. The background and the research

gap are presented in section II. The proposed model formulation is presented in section

III. The detailed derivation of the posterior distributions of the latent variables and

parameters is given in section IV. Section V presents the results from the case studies

and section VI outlines the conclusions.

7.2 Background and shortcomings

The PSFA model [55] was proposed to extract slowly varying dynamics from the input

data with a probabilistic interpretation, as shown in (7.1) - (7.2).

sssk = Asssk−1 +wwwk; wwwk ∼ N (wwwk; 0, I − AAT ) (7.1)

zzzk = Czsssk + vvvk; vvvk ∼ N (vvvk; 0, γ−1Ip) (7.2)

where sssk ∈ Rm×1 and zzzk ∈ Rp×1 denote the slow feature and the input observation,

respectively. Further, wwwk and vvvk represent the process and measurement noise, respec-

tively. The point estimates of the parameters were determined using the Expectation-

Maximization algorithm. Further, an extension to this work that estimates the pos-

terior distribution of the parameters has been proposed [99]. Essentially, the prior

information of the parameters A, Cz, and γ was introduced as shown below.

A = diag{a1, · · · , am}; p(A) =
m∏
i=1

Beta(ai|αa, βa);

Cz =
[
ccc1 ccc2 · · · cccp

]T
; p(Cz) =

p∏
i=1

N (ccci |⃗0,Λ−1
0 );

R = γ−1Ip; p(γ) = G(γ|αγ, βγ);
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A Beta distribution was selected for ai ∀1 ≤ i ≤ m to pass the prior information in

which the magnitude is within the unit circle. Further, the prior distributions of the

parameters Cz and γ were assumed to be Gaussian N and Gamma G, respectively,

owing to conjugate distributional properties. Although the method proposed in [99]

was successful in extracting slow features, as discussed in the introduction, it has

three primary shortcomings.

• Typically, the optimal number of slow features m is not known a priori. There-

fore, it is usually assumed to be the number of input variables p. However, such

a practice may result in the extraction of some irrelevant features.

• A Gaussian distribution is symmetric around its mean and possesses short tails.

Hence, it does not accommodate common industrial complexities like outliers

and skewed noise.

• Soft sensing is one of the important applications of the extracted features. How-

ever, the proposed slow feature model [99] does not consider the output infor-

mation for the estimation of the posterior distributions.

Recently, an algorithm called robust complex probabilistic slow feature analysis [198]

has been proposed to deal with the second shortcoming. Essentially, a skewed t-

distribution ST (vvvk|0, R,∆, ν) was considered for the measurement noise. Here R,

∆, and ν represent the scale, shape and degree of freedom parameters, respectively.

However, the algorithm assumes the parameters as non-random quantities, and hence,

the prior knowledge of these parameters cannot be integrated. Therefore, in the next

section, a new slow feature algorithm is proposed that can extract slowly varying

patterns from the input-output data corrupted with outliers and skewed noise, and

automatically select relevant features.

7.3 Mathematical Formulation

In this section, we propose a robust sparse probabilistic slow feature model that can

extract slowly varying patterns using input-output data in the presence of noise with

outliers and skewness, as shown in (7.3) - (7.4).

sssk = Asssk−1 +wwwk; wwwk ∼ N (wwwk; 0, I − AAT ) (7.3)
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Table 7.1: Prior distribution information

s.no. Variable Prior/likelihood Hyper parameters

1 A p(A) =
∏m

i=1 Beta(ai|αa, βa) αa, βa

2 C p(C|H) =
∏p

i=1N (ccci |⃗0, diag(hi)) −

3 H p(H) =
∏p

i=1

∏m
j=1 Exp(h

j
i |λ) λ

4 R p(R) =
∏p

i=1 G−1(Rii|αR, βR) αR, βR

5 ∆ p(diag(∆)) = N (diag(∆)|µ∆,Σ∆) µ∆,Σ∆

6 ν p(ν) =
∏p

i=1 G(νi|αν , βν) αν , βν

7 uuuk p(uuuk|Λk) = N+(uuuk;
−→
0 ,Λk

−1) −

8 Λk p(Λk|ν) =
∏p

i=1 G(Λii
k |νi2 ,

νi
2

) −

9 sss1 p(sss1) = N (sss1|⃗0, Im) −

10 sssk p(sssk|sssk−1, A) = N (sssk|Asssk−1, Im − AAT ) −

11 xxxk p(xxxk|sssk,uuuk,Λk, C,R,∆) = N (xxxk|Csssk + ∆uuuk,Λk
−1R) −

xxxk = Csssk + vvvk; vvvk ∼
p∏

i=1

ST (vvvik; 0, Rii,∆ii, νi) (7.4)

where the augmented data xxxk and the emission matrix C is defined as follows.

xxxk =

[
zzzk
yyyk

]
; C =

[
Cz

Cy

]
Here zzzk and yyyk represent input and output vectors with their corresponding emission

matrices Cz and Cy, respectively. Since the non-Gaussian representation of the mea-

surement noise hinders the regular usage of the Kalman state estimation algorithm,

we employ the hierarchical representation [183,185,200], as shown in (7.5) - (7.7).

p(vvvk|uuuk,Λk) =N (vvvk; ∆uuuk,Λk
−1R) (7.5)

p(uuuk|Λk) =N+(uuuk;
−→
0 ,Λk

−1) (7.6)

p(Λk) =

p∏
i=1

G
(
λiik ;

νi
2
,
νi
2

)
(7.7)

where

ST (vvvk; 0, R,∆, ν)

=

∫ ∞

0

∫ ∞

0

N (vvvk; ∆uuuk,Λk
−1R) N+(uuuk;

−→
0 ,Λk

−1)G(Λk;
ννν

2
,
ννν

2
) duuuk dΛk
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where N+ denotes a multivariate truncated Gaussian distribution with closed positive

orthant as support.
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Figure 7.1: Laplace vs. Gaussian distribution

Since the number of extracted slow features is assumed to be p, it is essential to

obtain a sparse emission matrix, and thus, extract only relevant features. Introducing

the L1 norm to the objective function is one of the popular ways to achieve sparsity.

In a probabilistic formulation, an L1 norm can be indirectly incorporated in the

objection function by assuming a Laplace prior to each of the entries of the emission

matrix [188, 189]. It is observed that the probability of obtaining a value closer

to zero is very high compared to the Gaussian distribution with the same mean

and the standard deviation, as shown in Fig. 7.1. Since the Laplace prior is not

conjugate for the Gaussian likelihood, we again employ a hierarchical representation

[201]. Essentially, the Laplace distribution can be written as a combination of a

Gaussian and an Exponential distribution with the introduction of an additional

variable hji , as shown in (7.8) - (7.9).

p(ccci|hhhi) =N (ccci; 0⃗, diag(hhhi)) (7.8)

p(hji ) =
1

λ
exp

{
−h

j
i

λ

}
(7.9)
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where

p(cji |λ) =

∫ ∞

0

p(cji |h
j
i ) p(h

j
i ) dh

j
i

sssk−1

sssk

Aαβ, ββ

xxxkλ H C

aν , bννΛkuuuk

µ∆,Σ∆∆

αR, βRR

Hierarchical model

Sparsity

Slowness

Robustness

B

E

G
GN+

N

G−1

Figure 7.2: Probabilistic graphical model of Robust Sparse PSFA

Due to modelling preference, the likelihood and prior distributions of various other

variables are introduced in Table 7.1. The hierarchical probabilistic graphical model

corresponding to the (7.3)-(7.9) is shown in the Fig. 7.2. The hyperparameters θ ∈

{αa, βa, λ, αR, βR, µ∆, σ∆, αν , βν} and latent variables d ∈ {A,C,H,R,∆, ν,Λ1:N ,uuu1:N ,

sss1:N} are denoted by the yellow circle, and text without the circle, respectively. Fi-

nally, the complete data likelihood is computed to obtain the posterior distributions

of all the latent variables.

log p(X, d|θ) =
N∑
k=1

log p(xxxk|C,sssk,∆,uuuk,ΛΛΛk, R) + log p(sss1) +
N∑
k=2

log p(sssk|sssk−1, A)

+
N∑
k=1

log p(uuuk|Λk) +
N∑
k=1

log p(Λk|ν) +
m∑
i=1

log p(ai) +

p∑
i=1

log p(ccci|hhhi)

+

p∑
i=1

m∑
j=1

log p(hji ) +

p∑
i=1

log p(Rii) + log p(diag(∆)) +

p∑
i=1

log p(νi);
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7.4 Posterior Distributions

Variational Inference can be used to obtain the expression for the approximate pos-

terior distribution q(ds) of any latent variable ds ∈ d as

log q(ds) ∝ ⟨log p(X, d|θ)⟩q(d′s)

where d
′
s denotes its complementary set. The approximate posterior distribution of

various latent variables is derived as shown below.

1. q(ccci) = N (ccci|⟨ci⟩,Σci) where

Σci =

(
⟨diag(hhhi)

−1⟩ +
N∑
k=1

〈
Λii

k

Rii
sssksss

T
k

〉)−1

;

⟨ci⟩ = ΣT
ci

N∑
k=1

〈
Λii

k (x
(i)
k − ∆iiuik)

Rii
sssk

〉
;

2. The distribution of hji belongs to an exponential family, as shown below.

q(hji ) ∝
1√
hji

exp

{
−(cji )

2

2hji
− hji

λ

}

3. q(diag(∆)) = N (diag(∆)|µ∆,Σ∆)

Σ∆ =

{
Σ−1

∆ +
N∑
k=1

〈
uuuTkR

−1Λkuuuk
〉}−1

;

µ∆ = Σ∆

(
N∑
k=1

〈
uuuTkR

−1Λk(xxxk − Csssk)
〉

+ Σ−1
∆ µ∆

)
;

4. q(Rii) = G−1(Rii|αRii , βRii)

αRii =αR +
N

2
;

βRii =βR +
1

2

N∑
k=1

Λii
k

(
(x

(i)
k )2 + tr

(
⟨cccicccTi ⟩⟨sssksssTk ⟩

)
+

⟨∆ii2uik
2⟩ − 2x

(i)
k ⟨cccTi sssk⟩ + 2⟨cccTi sssk∆iiuik⟩ − 2x

(i)
k ⟨∆iiuik⟩

)
;

142



5. The posterior distribution of ai upto some normalizing constant is given by

q̃(ai) = exp

{
N∑
k=2

⟨log p(sssik|sssik−1, ai)⟩

}
p(ai|αa, βa)

Since the Beta distribution is not conjugate to the Gaussian likelihood, the

posterior distribution does not belong to a known family. Hence, the impor-

tance sampling is performed to calculate the expectations with respect to the

distribution q(ai), as shown below.

⟨f⟩ =
L∑
l=1

f(ali)ŵ(ali) (7.10)

where ŵ(ali) =
w̃(ali)∑L
l=1 w̃(ali)

and w̃(ali) =
q̃(ali)

g̃(ali)
. Here f(ai) is some function of ai

whose expectations are of primary interest. The samples ali ∀ l ∈ {1, 2, . . . L}

are drawn from an easier distribution g̃(ai), for example, p(ai|αa, βa), and the

introduced bias is corrected by ŵ. Therefore

ŵ(ali) =
exp

{∑N
k=2⟨log p(s

(i)
k |s(i)k−1, a

l
i)⟩
}

∑L
l=1 exp

{∑N
k=2⟨log p(s

(i)
k |s(i)k−1, a

l
i)⟩
}

where

N∑
k=2

⟨log p(s
(i)
k |s(i)k−1, a

l
i)⟩ = −N − 1

2
log(1 − a2i ) −

1

2

(
N∑
k=2

⟨s(i)k−1s
(i)
k−1⟩

)
a2i

1 − a2i

+

(
N∑
k=2

⟨s(i)k s
(i)
k−1⟩

)
ai

1 − a2i
− 1

2

(
N∑
k=2

⟨s(i)k s
(i)
k ⟩

)
1

1 − a2i

6. The derived proposal distribution for νi up to some normalizing constant is

given by

q̃(νi) = exp

{
N∑
k=1

⟨log p(Λii
k |νi)⟩

}
p(νi|αν , βν)

Since it does not belong to any known distribution, we again use important

sampling, as shown below, where samples νli ∀ l ∈ {1, 2, . . . L} are drawn from

the distribution p(νi|αν , βν).

ŵ(νli) =
exp

{∑N
k=1⟨log p(Λii

k |νli)⟩
}

∑L
l=1 exp

{∑N
k=1⟨log p(Λii

k |νli)⟩
}
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where

N∑
k=1

⟨log p(Λii
k |νli)⟩ =

νliN

2
log

νli
2
−N log Γ

(
νli
2

)
+

(
νli
2
− 1

) N∑
k=1

log Λk −
νli
2

N∑
k=1

Λk

7. The derived proposal distribution q(s1:N) of slow features

log q(sss1:N) ∝ ⟨log p(xxx1:N , sss1:N ,uuu1:N ,Λ1:N , A, C,R,∆)⟩

∝ ⟨log p(sss1:N |xxx1:N ,uuu1:N ,Λ1:N , A, C,R,∆)⟩

��∝ log p(sss1:N |xxx1:N , ⟨uuu1:N⟩, ⟨Λ1:N⟩, ⟨A⟩, ⟨C⟩, ⟨R⟩, ⟨∆⟩)

To infer the distribution q(sss1:N) using the classical Kalman filter algorithm, we

define the following:

x̃k =

xk − ⟨∆⟩⟨uuuk⟩
0m

0m

∀ k = 1, 2, · · ·N ;

C̃k =

⟨C⟩UA

UC
k

∀ k = 1, 2, · · ·N − 1 and C̃N =

 ⟨C⟩
0m×m

UC
N

 ;

R̃k = diag
[
⟨Λ−1

k ⟩⟨R−1⟩−1, Im, Im
]

; Ã = ⟨A⟩;

with UA and UC
k defined by the Cholesky decompositions of ⟨AT (Im−AAT )−1A⟩−

⟨AT ⟩⟨(Im−AAT )−1⟩⟨A⟩ and ⟨CTR−1ΛkC⟩−⟨CT ⟩⟨R−1Λk⟩⟨C⟩, respectively. Fi-

nally, the following equation is obtained from the unified inference theorem [150]

q(sss1:N) = p̃(sss1:N |x̃xx1:N , ⟨Ã⟩, ⟨C̃⟩1:N , ⟨R̃⟩1:N)

=
N∏
k=1

N (sssk;sssk|N , Pk|N)

where

Pk|k−1 = ÃPk−1|k−1Ã
T + Im − ÃÃT

Kx = Pk|k−1C̃
T
k (C̃kPk|k−1C̃

T
k + R̃k)−1

sssk|k = Ãsssk−1|k−1 +Kx(x̃xxk − C̃kÃsssk−1|k−1)

Pk|k = (Im −KxC̃k)Pk|k−1

The smoothing is applied using the following equations

Jk = Pk|kÃ
TP−1

k+1|k
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sssk|N = sssk|k + Jk(sssk+1|N − Ãsssk|k)

Pk|N = Pk|k + Jk(Pk+1|N − Pk+1|k)JT
k

8. q(uuuk|xxx1:k; θ) = N+(uuuk;uuuk|N , Uk|N) where

ϵk = xxxk − ⟨C⟩sssk|N

Ku = ⟨∆⟩(⟨∆T∆⟩ + ⟨R−1⟩−1)−1

uuuk|N = Kuϵk

Uk|N = (Ip −Ku⟨∆⟩)⟨Λk⟩−1

The following expressions are computed ∀ 1 ≤ i ≤ p to estimate the mean and

covariance of uuuk.

χi
k =

1√
2π

exp

{
−
uik|N

2

2U ii
k|N

}
;

ωi
k =

1

2

1 + erf

 −uik|N√
2U ii

k|N

 ;

γik = uik|N +
√
U ii
k|N

(
χi
k

1 − ωi
k

)
;

Σii
k = U ii

k|N

1 −

 uik|N√
U ii
k|N

( χi
k

1 − ωi
k

)
−
(

χi
k

1 − ωi
k

)2
+ γik

2
;

9. q(Λii
k |xxx1:N ; θ) = G

(
Λii

k ; νi
2

+ 1,
νi+ϕii

k

2

)
where

ϕk =
〈
R−1(ϵϵϵkϵϵϵ

T
k + CPk|NC

T ) + (∆R−1∆ + I)uuukuuu
T
k −R−1∆uuukϵϵϵ

T
k − ∆R−1ϵϵϵkuuu

T
k

〉
Finally, the expectations that are required to compute the parameter update expres-

sions are shown below.

⟨∆⟩ = diag(µ∆);〈
Rii−1

〉
=
αRii

βRii

;〈
hji

−1
〉

=
2√

2λ|⟨cji ⟩|
;

⟨cicTi ⟩ = Σci + ⟨ci⟩⟨ci⟩T ;
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⟨sssk⟩ = sssk|N ;〈
sssksss

T
k−1

〉
= Pk|NJ

T
k−1 + sssk|Nsss

T
k−1|N ;〈

sssksss
T
k

〉
= Pk|k + sssk|Nsss

T
k|N ;

⟨uuuk⟩ = γγγk;〈
uuukuuu

T
k

〉
= Σk;〈

Λii
k

〉
=

νi + 2

νi + ϕii
k

;

〈
log Λii

k

〉
= ψ

(νi
2

+ 1
)
− log

(
νi + ϕii

k

2

)
;

Given a hyperparameter set, the proposed algorithm is run iteratively until the con-

vergence of the variational free energy is achieved. The variational free energy is

defined as follows.

L(q(d)) = ⟨log p(X, d|θ)⟩q(d) − ⟨log q(d)⟩q(d)

Different initial hyperparameter guess results in a different variational free energy

at the end of iterations. Therefore, the hyperparameters are selected based on the

validation data’s variational free energy with a preference for slowness and sparsity.

Further, we assume that outputs are not available during the online implementation,

and hence, only input information is being used to evaluate the states of the Kalman

filter [98]. In particular, only Cz is utilized to calculate the Kalman gain Kx, slow

feature sk|k, and the covariance matrix Pk|k. Even though the output information is

not used during the state computation, the dimension of sk|k does not alter. It is

to be noted that the Kalman filter is used to reconstruct only the input data in the

online implementation. Since the dimension of retained states (slow features) is much

lower than the dimension of the input due to sparsity constraint, the observability is

not a problem.

7.5 Soft Sensor Case Studies

This section demonstrates the efficiency of the proposed robust sparse probabilistic

slow feature model using a simulated and experimental data set for soft-sensor applica-

tions with hyperparameters {αa, βa, λ, αR, βR, µ∆,Σ∆, αν , βν} = {5, 1, 0.005, 3, 0.5, 0,
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1, 50, 1}. The measurement noise is drawn from a skewed t-distribution with ∆ = 2,

ν = 7, and a scale parameter R such that the signal-to-noise ratio is 1.

7.5.1 Simulation case study

The state-transition matrix for this constructed simulation is chosen to be A =

diag[0.99, 0.75]. Two slow features and four observed variables with 1500 data sam-

ples (800, 200 and 500 for training, validation and testing, respectively) are generated

using (7.3)-(7.4). The fourth observed variable serves as an output, whereas the re-

maining three are used as inputs. We do not make any differentiation between these

variables during the training phase. Due to the assumption that the output is not

available during testing, only the inputs and the input emission matrix Cz are used to

construct the Kalman gain and, thus, the slow features. The emission matrix C used

for this study is shown in (7.11). Finally, a skewed t-measurement noise is added

to the observed variables. The simulated input-output variables are shown in the

Fig. 7.3.

C =


0.54 0.32
1.83 −1.31

0 −0.43
0.86 0

 ; (7.11)

Latent variables are extracted using the proposed methodology and other state-

of-the-art feature extraction methods, such as variational Bayesian probabilistic slow

feature analysis (VBPSFA) [99], dynamic partial least squares (DPLS), slow feature

analysis (SFA) [173], robust PSFA [56], and least squares. The estimated emission

matrices using the VBPSFA and the proposed methodology are shown in the Fig. 7.4,

and Fig. 7.5, respectively. It is observed that the estimated emission matrix using

the proposed method is sparse and thus, it can be inferred that the effective number

of latent variables required for the reconstruction of the input variables is two. Fur-

ther, only one feature is required for the prediction of the output variable since the

second element of the last row is statistically zero. Table 7.2 shows the performance

indices, namely the root mean square error (RMSE) and the concordance correlation

coefficient (ρc), calculated with the help of predicted and the actual output testing
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Figure 7.3: Three input variables and one output variable

dataset. It is observed that the proposed method results in the lowest RMSE due to

the explicit representation of the outliers and skewness.

Table 7.2: Performance comparison on the simulation dataset

Method RSPSFA VBPSFA DPLS SFA RPSFA OLS

RMSE 0.34 0.68 0.86 0.88 0.52 0.90

ρc 0.83 0.53 0.46 0.42 0.60 0.41

Computational
time (in sec.)

16.44 10.12 0.02 0.01 11.60 0.01

7.5.2 Experimental case study

In this subsection, the efficiency of the proposed method is further validated using

the data generated from a pilot-scale hybrid tank system. Three cylindrical tanks are

connected in series through six valves, and water can be pumped into the left and the

right tanks separately using two pumps, as shown in Fig. 7.9. Three exit valves are

situated at the bottom of each of the tanks. The water level in the middle tank is the
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Figure 7.8: Estimated C using RSPSFA.

interest in the current experimental case study. We consider a total of eight inputs:

left and right tank level, left and right flow rate, left and right pump speed, and left

and right flow controller output. Readers are referred to [56] for further details of

the experimental setup. The measured and the target variables are shown in their

normalized form in Fig. 7.6. The dataset is partitioned into training, validation, and

testing sets with 800, 200, and 500 samples, respectively.

Table 7.3: Performance comparison on the experimental dataset

Method RSPSFA VBSFA DPLS SFA RPSFA OLS

RMSE 0.23 0.32 0.39 0.48 0.30 0.42

ρc 0.90 0.76 0.73 0.65 0.79 0.70

R2 0.77 0.60 0.37 0.08 0.67 0.27

We perform a similar analysis as discussed in the simulation case study. The

proposed algorithm is iterated until the Q-function, computed using the validation

data, no longer improves. It is difficult to interpret the importance of the extracted

features using the estimated emission matrix obtained from the VBPSFA method,

as shown in Fig. 7.7. However, it is observed that only three features are needed to

sufficiently account for all the input-output variables, as shown in Fig. 7.8. Several
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Figure 7.9: Experimental setup
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performance indices are constructed utilizing the predictions obtained from different

feature extraction methods on the test dataset, and their results are shown in Table

7.3. It is observed that the proposed method has resulted in higher R2 compared

to the other models due to the efficient modelling of the emission matrix and the

measurement noise. Fig. 7.10 indicates the plot between the noise-free output variable

and the predictions based on three latent variable models. It is observed that the

predictions based on the RSPSFA features are closer to the 450 line, indicating a

better prediction.

Apart from the increased accuracy, the proposed algorithm also has advantages

in terms of physical interpretability. It can be observed from Fig. 7.8 that the most

dominant latent variable in the level of the middle tank is s(1), which is also the

dominant latent variable in the levels of the left and right tanks. Thus, it can be

inferred that these two variables are most related to the level in the middle tank.

This corroborates with the process knowledge as evident in Fig. 7.9, where it can

be seen that the water level in the middle tank is most influenced by the levels in

the right and left tanks. Additionally, it can be observed that s(2) is predominantly

observed in the variables to the left side of the middle tank and s(3) in the variables

to the right side of the middle tank. Although this rule is broken for the flow rate,

one may conclude that s(2) and s(3) primarily represent the variations observed in the

left and right-hand side variables of the experimental setup. Such an interpretation

is not possible for the emission matrix of the VBPSFA model (Fig. 7.7)

7.6 Conclusion

This chapter introduces a new feature extraction model that extracts only the essential

slow features from data corrupted with outliers and skewed noise. A Laplace and

skewed t-distribution are introduced for the emission matrix and measurement noise

to achieve a robust sparse slow feature model. Further, the posterior distributions

of all the latent variables are derived under the variational inference framework. We

deduce that the proposed algorithm performs better than the state-of-the-art models,

especially when the noise is skewed with outliers, as supported by the simulation

and experimental case study results. Since the proposed method results in a sparse
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representation of the latent space that generates the data, the latent variables can be

helpful for process monitoring applications. The limitation of the proposed algorithm

is that it requires a slightly higher training computation time than the other state-

of-the-art methods, as shown in Table 7.2. However, the online implementation does

not require much time since the Kalman gain and, thus, prediction is computed

using standard filtering equations. The proposed model can be further extended to

accommodate multi-modal process data, where the operating conditions change over

a period of time.
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Chapter 8

Physics-Informed Probabilistic
Slow Feature Analysis ∗

This chapter presents a novel approach called the physics-informed slow feature anal-

ysis. Slow feature analysis, a probabilistic method, is employed to extract slowly

varying latent patterns from high-dimensional measured data. The extracted slow

features have proven effective in industrial applications such as soft sensing and pro-

cess monitoring. However, industrial processes come with various physical constraints

that must be taken into account, such as energy requirements, equipment limitations,

and safety considerations. The conventional black-box nature of the slow feature

model often leads to physically inconsistent or unacceptable results. To address this

issue, we propose integrating physics principles into the probabilistic slow feature

model, ensuring that the extracted features adhere to physics laws. Our formula-

tion incorporates two types of physical constraints: linear algebraic equality and

inequality constraints. The model parameters are estimated using the expectation-

maximization approach. Through an experimental case study, we demonstrate the

effectiveness of our methodology, showcasing the advantages of incorporating physics

in feature extraction. These advantages include improved interpretability, reduced

data dimensionality, and enhanced generalization performance.

∗This chapter has been submitted as: V. K. Puli, R. Chiplunkar and B. Huang, ”Physics-
Informed Probabilistic Slow Feature Analysis”, in Automatica, 2023
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8.1 Introduction

In recent years, there has been a growing prominence in the use of data-based mod-

eling to represent dynamic systems. This trend has been driven by a confluence of

multiple factors, including enhanced data storage and handling capabilities, the emer-

gence of sophisticated data analytics tools, and ambitious manufacturing goals [202].

Although data analytics has been maturing over the years, developing dynamic mod-

els that yield reliable long-term predictions remains a challenging problem. This

challenge arises due to issues such as sensory errors and the lack of comprehensive

dynamic information in historical data. To overcome these challenges, researchers

have turned to mechanistic models, which are built on a deep understanding of the

underlying physics of the processes. Integrating these models with observed data

can lead to enhanced models, a concept commonly referred to as ”physics-informed

machine learning” [203]. As a result, this approach has garnered significant inter-

est and application in diverse fields, such as climatology [204], fluid mechanics [205],

power-systems [206], and process systems engineering [207]. Although there is sub-

stantial research in the domain of physics-informed neural networks, the fusion of

physics-based knowledge with other data analysis methods remains relatively unex-

plored territory.

Latent variable models [186] are a powerful class of statistical tools that enable the

analysis of complex data by capturing underlying structures and relationships among

observed variables. Among these models, Principal Component Analysis (PCA) [34]

stands out as a widely-used technique for dimensionality reduction and feature ex-

traction. However, in dynamic systems with temporal dependencies, traditional PCA

may not fully capture the evolving patterns. This limitation has led to the devel-

opment of Dynamic Latent Variable Models (DLVM) [208–210], which encompass a

range of methods tailored to model time-varying data. One prominent approach in

this domain is Slow Feature Analysis (SFA) [173], which focuses on detecting and

characterizing slow variations in dynamic systems. SFA has shown promise in various

domains, particularly in process industries [174] where slow dynamics are prevalent.

SFA is designed to extract latent variables called ”slow features” by minimizing

their velocity [173]. These slow features are utilized in modeling, as they capture
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significant variations observed in systems primarily driven by slower changes. SFA has

been widely adopted in applications such as soft sensing and process monitoring [174].

Probabilistic Slow Feature Analysis (PSFA), an alternative interpretation of SFA,

assumes the latent variables to be dynamic random variables [54,55]. The probabilistic

nature of PSFA equips it with enhanced capabilities in handling noise, missing data,

and model uncertainties. Beyond basic PSFA versions, various extensions have been

proposed to address specific aspects of the data. For instance, Fan et al. introduced

a robust PSFA framework to handle measurement outliers [56], while Ma and Huang

extended the PSFA model to incorporate model uncertainties [99]. Furthermore,

Puli et al. proposed the complex PSFA model tailored for datasets characterized

by oscillations [129]. Recent literature has presented numerous other variants of the

PSFA model that consider aspects like nonstationary data [49], multimodal processes

[197], sparsity of the latent space [211], and irregular sampling rates [212].

The importance of physics information in enhancing the reliability of data-based

models has been highlighted previously. However, existing research on physics-informed

latent variable modeling has been confined to static models [213,214] and has not ex-

plored dynamic latent variable models. To bridge this gap, this study introduces a

novel approach that integrates physics knowledge with data in a DLVM framework,

specifically using the PSFA model due to its suitability for process systems modeling.

The incorporation of physics information occurs through linear equality and inequality

constraints. Equality constraints arise from physical realities or equilibrium relations

among variables (e.g., constant sum of concentrations or steady-state mass/energy

balance equations). Inequality constraints, on the other hand, define the physical

limits or safety-related constraints for variables. To account for the probabilistic na-

ture of PSFA, this study proposes formulating these constraints in a probabilistic

manner. Both constraints are expressed similarly to the emission equation of the

PSFA model, with the key difference lying in the choice of distributions. Specifi-

cally, a Gaussian distribution is utilized to represent the uncertainty in the equality

constraints, while a truncated Gaussian distribution is employed for the inequality

constraints. The model estimation is performed using the expectation-maximization

(EM) algorithm [215]. The effectiveness of the proposed framework is demonstrated

through a case study involving a pilot-scale hybrid tank system. The results show

157



that the incorporation of physics information leads to physically consistent predic-

tions. The main contributions of this chapter can be outlined as follows:

1. PSFA model is utilized to incorporate the physical constraints of the system in

a probabilistic fashion, encompassing both equality and inequality aspects.

2. The model estimation procedure is subsequently elaborated upon, with a thor-

ough derivation provided using the EM algorithm.

The chapter is structured as follows: In Section 8.2, the SFA and PSFA methods

are introduced. Section 8.3 presents the physics-informed PSFA method proposed

in this study. Subsequently, Section 8.4 discusses the results obtained from the case

study, while the conclusions are summarized in Section 8.5.

8.2 Literature

Given an input sequence X =
[
xxx1 xxx2 . . . xxxT

]
, xxxk ∈ Rp, the optimization problem

shown in (8.1)-(8.5) can be solved to obtain slow features in the order of increasing

velocities.

min
W

⟨ṡ(i)
2

k ⟩ (8.1)

s.t sssk = W Txxxk (8.2)

⟨s(i)k ⟩ = 0 (8.3)

⟨s(i)k

2
⟩ = 1 (8.4)

∀i ̸= j, ⟨s(i)k · s(j)k ⟩ = 0 (8.5)

where ⟨ṡ(i)
2

k ⟩ = 1
T −1

∑T
k=2(s

(i)
k − s

(i)
k−1)

2 denotes the squared average velocity, W ∈

Rp×m indicates the projection matrix and ⟨·⟩ stands for the average over data samples.

Equation (8.3) - (8.4) are applied to each slow feature to avoid trivial solutions,

whereas (8.5) ensures zero correlation among the extracted features.

Three observed variables are depicted in Fig. 8.1, originating from two cosines

with varying frequencies and a third variable representing a brief, high-frequency

cosine signal. By employing DSFA, we can accurately identify the latent variables

associated with different frequencies, as illustrated in Fig. 8.3. In contrast to PCA,
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which captures the latent variable with the highest variability (Fig. 8.2), SFA can

effectively isolate and eliminate the impact of the short-lived disturbance on other

latent variables.
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Figure 8.1: Measured variables

However, SFA assumes that the underlying factors causing the data variations are

deterministic, which may not always hold true in real-world scenarios. Therefore, the

probabilistic formulation [54,55] is introduced, as shown in (8.6) - (8.7).

sssk = Asssk−1 +wwwk; wwwk ∼ N (0,Γ) (8.6)

xxxk = Csssk + vvvk; vvvk ∼ N (0, R) (8.7)

where A ∈ Rm×m, C ∈ Rp×m, Γ ∈ Rm×m, and R ∈ Rp×p are the state-transition

matrix, the emission matrix, the state-noise covariance matrix, and the measurement

noise covariance matrix, respectively. Assumptions (8.8)-(8.10) were made regarding

the parameters involved to ensure that, in the limiting case, the solution of proba-
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Figure 8.2: Princpal components
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Figure 8.3: Slow features
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bilistic slow feature analysis converges to its deterministic counterpart.

A = diag(a1, a2, · · · , am) (8.8)

Γ = diag(γ1, γ2, · · · , γm) (8.9)

γi = 1 − a2i ∀1 ≤ i ≤ m (8.10)

The expectation-maximization algorithm is employed to estimate the distribution

of slow features and associated parameters solely from measured data. However,

heavy reliance on measured data may render decision-making unreliable and unreal-

istic, especially when the data length is small or contains faulty regions. To address

this issue, we propose a novel algorithm that incorporates process knowledge, enabling

intelligent and reliable decision-making, as demonstrated in section 8.3.

8.3 Physics-informed slow feature model

In this section, it is assumed that the observed variables adhere to the physics laws,

manifesting in the form of two constraints as described below.

1. The first constraint is expressed as a linear equality relation among the non-

mean-centered observed variables without the loss of generality.

M(xxxk + x̄xx) = b

=⇒ b−MCsssk −Mx̄xx = 0

where x̄xx is the mean of the observed data. Uncertainty is introduced to account

for the reliability of expert information, as shown in (8.11).

b−MCsssk −Mx̄xx = uuuk; uuuk ∼ N (0, Q) (8.11)

Here, the confidence associated with the physics-based formulation is denoted

as Q, while the discrepancy between the linear expert physics and the actual

reality is represented as uuuk.

2. The second form of physics manifests as a linear inequality relation among the

observed variables.

N(xxxk + x̄xx) < f
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=⇒ f −NCsssk −Nx̄xx > 0

Similarly, the reliability of this inequality information can be modelled as shown

in (8.12).

f −NCsssk −Nx̄xx = eeek (8.12)

Due to the fact that eeek > 0 is greater than zero, a simple Gaussian distribution

assumption is inadequate in this case. A distribution that has positive support

may be utilized instead. Specifically, a skew-normal distribution is selected due

to its ability to be expressed as a Gaussian scale mixture, effectively resolving

state estimation concerns with a non-Gaussian distribution.

Thus, by combining all the relevant information, the physics-informed slow feature

model is presented below.

sssk = Asssk−1 +wwwk; (8.13)xxxkb
f

 =

 C
MC
NC

sssk +

 0
M
N

 x̄xx+

vvvkuuuk
eeek

 ; (8.14)

where

wwwk ∼ N (wwwk; 0, I − AAT ); vvvk ∼ N (vvvk; 0, R) ; (8.15)

uuuk ∼ N (vvvk; 0, Q) ; eeek ∼
p∏

i=1

SN (eeeik;µi, σi, δi) (8.16)

Here the location, scale, and shape of the skew-normal distribution are represented

by µi, σi and δi, respectively. The use of the skew-normal distribution complicates

the filtering process due to the assumption made by the Kalman filter that measure-

ment noise follows a Gaussian distribution. While it is possible to derive analytical

expressions for the filtering and smoothing of skew-normal state space models, they

are computationally infeasible to implement [216,217].

To address this challenge, a hierarchical representation of the skew-normal distri-

bution can be employed. Assuming that variable y follows a skew-normal distribution,

it can be expressed as a linear combination of a Gaussian distribution e and a trun-

cated Gaussian distributed variable z, as shown in (8.17). This is similar to the form
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given in [218] with an additional scaling factor σ. This approach allows for more

effective handling of the skew-normal distribution within the filtering process.

y = σδz + σ
√

(1 − δ2)e (8.17)

where z ∼ N+(µ, 1) and e ∼ N (0, 1). Therefore,

p(y) =

∫ ∞

0

p(y, z) dz

=

∫ ∞

0

p(y|z)p(z) dz

=

∫ ∞

0

N
(
y;σδz, σ2(1 − δ2)

)
N+ (z;µ, 1) dz

=

∫ ∞

0

N
(
y;σδz, σ2(1 − δ2)

) 1
2π

exp
{
−1

2
(z − µ)2

}
(ϕ(∞) − ϕ (−µ))

dz

=
1

ϕ(µ)

∫ ∞

0

N
(
y;σδz, σ2(1 − δ2)

)
N (z;µ, 1) dz

Given the marginal Gaussian distribution for z and a conditional Gaussian distribu-

tion for y given z,

p(z) = N (z;m, v)

p(y|z) = N (y; az + b, c)

the marginal distribution of y and the conditional distribution of z given y are deter-

mined by using Bayes’ theorem [219].

p(y) = N (y; am+ b, a2v + c)

p(z|y) = N (z;m+ k(y − am− b), (1 − ka)v) where k =
av

a2v + c

Hence

p(y) =
1

ϕ(µ)

∫ ∞

0

N
(
y;σδµ, σ2

)
N
(
z;
µσ(1 − δ2) + δy

σ
, (1 − δ2)

)
dz

=
N (y;σδµ, σ2)

ϕ(µ)

∫ ∞

0

N
(
z;
µσ(1 − δ2) + δy

σ
, (1 − δ2)

)
dz

=
N (y;σδµ, σ2)

ϕ(µ)
ϕ

(
µσ(1 − δ2) + δy

σ
√

(1 − δ2)

)
The overall distribution is a product of a normal distribution multiplied by a CDF of

a normal distribution. For δ → 1,

lim
δ→1

ϕ

(
µσ(1 − δ2) + δy

σ
√

(1 − δ2)

)
=

{
1 y > 0

0 y < 0
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Thus, we can obtain a skew-normal distribution with only positive support in the

limiting case as δ → 1, as shown in Fig. 8.4.
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Figure 8.4: Density functions as δ → 1

Note: This formulation of constraints shares similarities with the concept of

chance constraints as discussed in the literature on chance-constrained optimization

[220]. In general, a linear chance constraint is represented as follows:

P [Nxk <= f ] >= 1 − ϵ (8.18)

In this equation, the parameter ϵ represents the probability to which the constraint

is allowed to deviate from its desired condition. Notably, a resemblance emerges

between the proposed approach and the chance constraints framework. In the pro-

posed framework, Any value of δ that deviates from its limiting case introduces a

finite probability less than zero, thus permitting the constraint to be violated with a

probability equivalent to the area under the probability density function below zero

(shaded red region in Fig. 8.5). While (8.18) specifies that Nx must be less than f ,

164



defining the constraint using a skew-normal distribution allows for the selection of the

mode’s position, resulting in a more adaptable framework for constraint definition,

as shown in Fig. 8.5.

Figure 8.5: Locations of the distribution modes for various µ

Finally, the physics-informed slow feature model can be written as follows.

sssk = Asssk−1 +wwwk; (8.19)xxxkb
f

 =

 C
MC
NC

sssk +

 0
M
N

 x̄xx+ vvvk; (8.20)

where

vvvk ∼ N

 0
0

σσσ ⊙ δδδ ⊙ zzzk

 ,
R 0 0

0 Q 0
0 0 diag(σσσ2 ⊙ (1 − δδδ2))


where z

(i)
k ∼ N+

(
z
(i)
k ;µi, 1

)
, R = diag(r1, r2, · · · , rp) and Q = diag(q1, q2, · · · , qn1).

Here ⊙ represents element-wise multiplication. Additionally, the description of the

various entities involved can be described as follows.
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• Measured Variables: xxxk ∈ Rp×1 ∀1 ≤ k ≤ T

• Latent Variables: sssk ∈ Rm×1, zzzk ∈ Rn2×1

• Parameters (θ):

A ∈ Rm×m C ∈ Rp×m M ∈ Rn1×p

N ∈ Rn2×p R ∈ Rp×p Q ∈ Rn1×n1

µµµ ∈ Rn2×1 σσσ ∈ Rn2×1 δδδ ∈ Rn2×1

• Physics information: bbb ∈ Rn1×1, fff ∈ Rn2×1

where m represents the latent variable dimension, p represents the observed variable

dimension, and n1 and n2 represent the number of equality and inequality constraints,

respectively. The sample size is denoted by T . Finally, the complete data-likelihood

can be expressed as follows.

log p(X,S, Z|θ) = log p(sss1) +
T∑

k=2

log p(sssk|sssk−1;A) +
T∑

k=1

log p(xxxk|sssk;C,R)

+
T∑

k=1

log p(b|sssk;M,C,Q) +
T∑

k=1

log p(f |sssk, zzzk;N,C,σσσ,δδδ) +
T∑

k=1

p∑
i=1

log p(z
(i)
k |µi)

The individual terms can be expanded as follows

log p(sss1) = −m
2

log 2π − 1

2
sssT1 sss1;

log p(sssk|sssk−1, A) = −m
2

log 2π − 1

2

m∑
i=1

log |1 − a2i | −
1

2

m∑
i=1

(sssik − aisss
i
k−1)

2

1 − a2i
;

log p(xxxk|sssk;C,R) = −p
2

log 2π − 1

2
log |R| − 1

2
(xxxk − Csssk)TR−1(xxxk − Csssk);

log p(bbb|sssk;C,M,Q) = −n1

2
log 2π − 1

2
log |Q|

− 1

2
(bbb−MCsssk −Mx̄xx)TQ−1(bbb−MCsssk −Mx̄xx);
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log p(fff |sssk, zzzk;N,C,σσσ,δδδ) = −1

2

n2∑
i=1

log
∣∣σ2

i (1 − δ2i )
∣∣

− n2

2
log 2π − 1

2

n2∑
i=1

(fff i − nnnT
i Csssk − nnnT

i x̄xx− σiδiz
(i)
k )2

σ2
i (1 − δ2i )

;

log p(zzzk|µµµ) = −n2

2
log 2π − 1

2

n2∑
i=1

(z
(i)
k − µi)

2 −
n2∑
i=1

log ϕ(µi);

where ϕ is the cumulative distribution function of standard normal distribution. All

the matrices have been defined with suitable dimensions in the following manner for

the purpose of facilitating representation.

C =
[
ccc1 ccc2 · · · cccp

]T
;

The parameters are estimated using the expectation-maximization algorithm. Essen-

tially, the update equations are obtained by taking the derivative of ⟨log p(X,S, Z|θ)⟩

with respect to θ and setting it equal to zero.

∂

J(θ)︷ ︸︸ ︷
⟨log p(X,S, Z|θ)⟩

∂θ
= 0 (8.21)

where ⟨.⟩ represents the expectation operator with respect to the joint posterior dis-

tribution p(S,Z|X; θold), and θold denotes the parameters from the previous iteration.

However, it is to be noted that the true joint posterior distribution does not have a

closed-form solution.

1. With respect to ai

− (T − 1)a3i +

(
T∑

k=2

〈
siks

i
k−1

〉)
a2i +

(
(T − 1) −

T∑
k=2

〈
sik

2
+ sik−1

2
〉)

ai

+

(
T∑

k=2

〈
siks

i
k−1

〉)
= 0

2. With respect to ri

ri =
1

N

T∑
k=1

(
x
(i)
k

2
+ cccTi ⟨sssksssTk ⟩ccci − 2cccTi ⟨sssk⟩xxx

(i)
k

)

167



3. With respect to Q

qi =
1

N

T∑
k=1

(
b2i +mmmT

i C⟨sssksssTk ⟩CTmmmi +mmmT
i x̄̄x̄xx̄̄x̄x

Tmmmi

−2mmmT
i C⟨sssk⟩bi − 2mmmT

i x̄̄x̄xbi + 2mmmT
i C⟨sssk⟩x̄̄x̄xTmmmi

)
4. With respect to C

C =

(
R−1 +MTQ−1M +

n2∑
i=1

nnninnn
T
i

σ2
i (1 − δ2i )

)−1

(
R−1

T∑
k=1

xxxk⟨sssTk ⟩ +MTQ−1(bbb−Mx̄̄x̄x)
T∑

k=1

⟨sssTk ⟩ +

n2∑
i=1

T∑
k=1

(fi − σiδi⟨z(i)k ⟩ − nT
i x̄)

σ2
i (1 − δ2i )

nnni⟨sssTk ⟩

)(
T∑

k=1

⟨sssksssTk ⟩

)−1

5. The derivation of the update equation for Mij is more complicated that will

now be presented in a concise and coherent manner. We will utilize the chain

rule, which will allow us to break down the derivation into manageable steps.

From Matrix Cookbook [221]:

∂J(θ)

∂Mij

= Tr

[(
∂J(θ)

∂M

)T
∂M

∂Mij

]

First,

∂J(θ)

∂M
= 2

T∑
k=1

Q−1M
〈
(Csssk + x̄xx)(Csssk + x̄xx)T

〉
− 2

T∑
k=1

Q−1bbb(C⟨sssk⟩ + x̄xx)T

Therefore,

∂J(θ)

∂Mij

= 0 =⇒

T∑
k=1

Tr
[〈

(Csssk + x̄xx)(Csssk + x̄xx)T
〉
MTQ−1Jij

]
=

T∑
k=1

Tr
[
(C⟨sssk⟩ + x̄xx)bbbTQ−1Jij

]
where Jij is the single-entry matrix, 1 at (i, j) and zero elsewhere. The following

two properties are used repeatedly for further simplifications.

Tr[AJij] = Aji (8.22)
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(BCD)ji = Bj,:CD:,i (8.23)

where Bj,: and D:,i represent the jth row and ith column of matrices B and D,

respectively. Therefore

Tr[⟨(Csssk +x̄xx)(Csssk + x̄xx)T
〉
MTQ−1Jij]

=
(〈

(Csssk + x̄xx)(sssTkC
T + x̄xxT )

〉
MTQ−1

)
ji

=
〈
(Csssk + x̄xx)j,: (sssTkC

T + x̄xxT )
〉
MTQ−1

:,i

=
〈
(cccTj sssk + x̄j) (sssTkC

T + x̄xxT )
〉
mmmiQ

−1
ii

=

〈
(cccTj sssk + x̄j)

(
sssTk

p∑
l=1

(cccl Mil) +

p∑
l=1

(x̄l Mil)

)〉
Q−1

ii

=

〈
(cccTj sssk + x̄j)

 p∑
l=1
l ̸=j

(sssTk cccl + x̄l)Mil + (sssTk cccj + x̄j)Mij

〉Q−1
ii

=

〈
(cccTj sssk + x̄j)

 p∑
l=1
l ̸=j

(sssTk cccl + x̄l)Mil

〉Q−1
ii

+
〈
(cccTj sssk + x̄j)(sss

T
k cccj + x̄j)

〉
MijQ

−1
ii (8.24)

Similarly

Tr
[
(C⟨sssk⟩ + x̄xx)bbbTQ−1Jij

]
=
(
cccTj ⟨sssk⟩ + x̄j

)
biQ

−1
ii (8.25)

Finally, the explicit equation for Mij is presented below after combining all the

terms and simplifying it further.

Mij =

∑T
k=1

〈
(cccTj sssk + x̄j)

(
bi −

∑p
l=1
l ̸=j

(sssTk cccl + x̄l)Mil

)〉
∑T

k=1

〈
(cccTj sssk + x̄j)(sssTk cccj + x̄j)

〉 (8.26)

6. With respect to Nij

Nij =
Term1 − Term2∑T

k=1(ccc
T
j ⟨sssk⟩ + x̄j)(sssTk cccj + x̄j)

where

Term1 =
T∑

k=1

(cccTj ⟨sssk⟩ + x̄j)(fi − σiδi⟨z(i)k ⟩)

Term2 =
T∑

k=1

〈
(cccTj sssk + x̄j)

p∑
l=1
l̸=j

(sssTk cccl + x̄l)

〉
Nil
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7. With respect to σi

∂

∂σi

(
−1

2

T∑
k=1

n2∑
i=1

⟨(fi − nnnT
i Csssk − nnnT

i x̄xx− σiδiz
(i)
k )2⟩

σ2
i (1 − δ2i )

)

− ∂

∂σi

(
T
2

n2∑
i=1

log
∣∣σ2

i (1 − δ2i )
∣∣) = 0

T (1 − δ2i )σ2
i +

(
T∑

k=1

(
fi − nnnT

i C⟨sssk⟩ − nnnT
i x̄xx
)
δi⟨z(i)k ⟩

)
σi

−
T∑

k=1

〈(
fi − nnnT

i Csssk − nnnT
i x̄xx
)2〉

= 0

8. With respect to µi

T∑
k=1

(
⟨z(i)k ⟩ − µi

)
− T
ϕ(µi)

√
2π

exp

{
−1

2
µ2
i

}
= 0

The solution to the above equation is obtained using a numerical solver because

an explicit equation for µi is not obtained.

9. Since the true joint posterior is not tractable, a mean-field approximation is

assumed as follows.

p
(
S,Z|X; θold

)
≈ q

(
S|X; θold

)
q
(
Z|X; θold

)
The approximate posterior q

(
z
(i)
k |X; θold

)
can be calculated using the varia-

tional Bayesian inference, as shown below.

log q
(
z
(i)
k |X; θold

)
∝ ⟨log p(X,S, Z|θold)⟩q(S|X;θold)

∝ −1

2

〈(
fi − nnnT

i Csssk − nnnT
i x̄xx− σiδiz

(i)
k

)2〉
σ2
i (1 − δ2i )

− 1

2
(z

(i)
k − µi)

2

Upon simplification, the following result is obtained.

q
(
z
(i)
k |X; θold

)
= N+

(
z
(i)
k ;µ

z
(i)
k
, (1 − δ2i )

)
where

µ
z
(i)
k

= (fi − nnnT
i C⟨sssk⟩ − nnnT

i x̄xx)
δi
σi

+ µi(1 − δ2i )
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10. Similarly, the posterior distribution q
(
sssk|X; θold

)
can be obtained as shown

below.

log q
(
sssk|X; θold

)
∝ ⟨log p(X,S, Z|θold)⟩q(Z|X;θold)

A typical state estimation problem is represented by this scenario, where the

mean and covariance of an approximate posterior distribution, which follows a

Gaussian distribution, are estimated using the widely recognized equations of

the Kalman filter and smoother. The equations [222] are avoided for brevity.

Figure 8.6: A Schematic of Hybrid Tank Pilot Plant

8.4 Experimental Validation

The efficiency of the proposed physics-informed probabilistic slow feature model is

demonstrated in this section through the utilization of a pilot-scale experimental

dataset for soft-sensor applications.
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Apparatus: The Hybrid Tank Pilot Plant’s schematic, depicted in Fig. 8.6,

consists of three equally sized transparent tanks installed at the same level. The

middle tank connects to both the right and left tanks through three connections at

different levels. Each tank is equipped with a discharge pipe at the bottom, which

empties into a reservoir on the lower level. Furthermore, overflow discharge pipes are

installed within each tank. The pumps enable water flow into either the left or right

tank, and various valves can be opened or closed, allowing for multiple flow paths,

including into the middle tank. The flow rates are measured using flow sensors, while

the levels of all three tanks are monitored using differential pressure (DP) sensors.

Table 8.1 presents the description of various variables used in the subsequent case

study.

Table 8.1: Process Variables description

s.no. Variable Symbol

1 Left tank level x(1)

2 Right tank level x(2)

3 Left flow-rate in x(3)

4 Right flow-rate in x(4)

5 Left pump speed x(5)

6 Right pump speed x(6)

7 Left flow-rate out x(7)

8 Intermediate flow-rate x(8)

9 Middle tank level x(9)

Process Design: The process has been designed to demonstrate the efficiency

of the proposed algorithm. The equality constraint x(3) = x(7) + x(8) is achieved by

maintaining the level in the left tank at the red solid line (set point) indicated in

Fig. 5.1 using a PID controller. This equality information is integrated through the

utilization of the M matrix, which is presented below.

M =
[
0 NaN 1 0 0 0 NaN −1 0

]
; b = 0

Importantly, it should be noted that the knowledge at hand is only partial, and any

missing information is denoted by NaN , reflecting a more realistic representation

of the scenario. The proposed algorithm exhibits a distinct advantage in accurately

estimating the missing physics using (8.26). Simultaneously, a pseudo-random bi-

nary input sequence is utilized for the right pump speed x(6) to enable fluctuations

172



in the level of the middle tank between the top and middle connections. This de-

liberate design allows the middle tank level to influence the intermediate flow rate

x(8), prompting the PID controller to adjust x(3) and maintain the left tank level x(1)

at the specified set point. The collected dataset has been corrupted with additive

Gaussian distributed noise. The focus of the current experimental case study is on

the water level in the middle tank. It is essential for the middle tank level to remain

below 25 units, as indicated by expert knowledge. To demonstrate the effectiveness of

the proposed methodology, two regions of interest in the target variable, representing

continuous sensory failures beyond the physical limit, are intentionally created, as

illustrated in Fig. 8.7. The incorporation of expert information is achieved using the

N matrix, as provided below.

N =
[
0 0 0 0 0 0 0 0 1

]
; f = 25

The original dataset is divided into three distinct sets, with 1700 samples allocated

for model training, 1000 samples for testing, and 300 samples for validation.

The algorithm proposed in equations (1)-(10) is iterated until the objective func-

tion J(θ) converges. The latent variable dimension is selected to maximize the corre-

sponding J(θ). A comparison with state-of-the-art methods is conducted to demon-

strate the superiority of the proposed algorithm. Notably, the predictions of the

proposed model remain strictly within the specified threshold, unlike other models

that do not integrate expert information. Fig. 8.8 depicts the extracted slow features

that adhere to the equality constraint, while the corresponding recovered physics is

presented below.

M̂ =
[
0 0.013 1 0 0 0 −8.130 −1 0

]
;

The estimated missing values of M are found to be closer to the true values, show-

casing the effectiveness of the proposed algorithm. The proposed algorithm is com-

pared with several competing algorithms, including ordinary least squares (OLS),

PLS [122], SFR [223], and PSFA [55]. Results show that predictions based on the PI-

PSFA features more closely align with the underlying truth (represented by a black

curve), demonstrating superior predictive capability. Moreover, these predictions

remain within the physical limit (indicated by the red line), highlighting the physics-

informed model as superior to other approaches. Performance indices in Table 8.2,
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Figure 8.7: Input-Output variables
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such as root mean square error (RMSE) and concordance correlation coefficient (ρc),

are calculated using the test dataset predictions from each model. The proposed

method achieves a significantly lower RMSE compared to other models, attributed

to the integration of process knowledge.

Table 8.2: Performance metrics comparison

Method OLS PLS SFR PSFA PI-PSFA

RMSE 0.635 0.607 0.619 0.485 0.254

ρc 0.671 0.667 0.676 0.783 0.874
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Figure 8.8: Time trend comparison

8.5 Conclusion

The current state of probabilistic feature extraction methods relies solely on data-

based approaches. This chapter aims to enhance the reliability and consistency of

inferences by introducing a novel probabilistic slow feature model that incorporates

process knowledge. The model considers two types of process knowledge: linear static
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equality and linear static inequality relationships among the observed variables. By

efficiently utilizing the available data, the proposed algorithm can estimate missing

physics information effectively. This chapter provides the derivation and presentation

of updated equations for all relevant parameters. To demonstrate its efficacy, the

proposed model is applied to an experimental pilot plant case study. Furthermore, this

model can be extended to incorporate other forms of expert information encompassing

non-linearity and dynamics.
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Chapter 9

Conclusions and Recommendations
for Future Work

This chapter presents the conclusions drawn from our investigation of slow feature

analysis. Moreover, based on the insights gained, we offer recommendations for future

work in this domain. These suggestions aim to further advance the understanding of

PSFA and explore its untapped potential.

9.1 Concluding Remarks

The central theme of this thesis has focused on probabilistic slow feature analysis, a

technique employed for low-velocity feature extraction from a given set of measured

variables that represent a specific process. Nevertheless, the existing framework may

not fully address broader industrial challenges, including plant-wide oscillations, non-

stationarities, non-linearities, strict physical limits, and skewed noise. This thesis

approaches each challenge individually in separate chapters, presenting novel and

intriguing models of PSFA tailored to effectively address these specific issues. The

efficiency of each modified model is thoroughly assessed through real case studies,

enabling a thorough evaluation of their practical applicability and performance.

1. Chapter 3 presents the first contribution of this thesis, which addresses the lim-

itation of PSFA in extracting oscillatory features from noisy data due to the

diagonality assumption of the state-transition matrix for uncorrelated features.

This assumption makes it challenging to handle complex poles, which are re-

quired for such feature extraction. To overcome this, a block-diagonal structure
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is proposed to accommodate complex poles effectively. An iterative algorithm

is developed, leveraging the expectation maximization framework, to simulta-

neously estimate the states and parameters. Moreover, initial guesses for all

involved parameters are provided using the deterministic SFA framework. The

proposed model has been applied to identify the source of plant-wide oscilla-

tions.

2. In process data analysis, drift represents a significant non-stationary character-

istic wherein the statistical properties of the data evolve over time. Factors such

as machinery and equipment wear, accumulation of contaminants, and calibra-

tion drift contribute to the manifestation of non-stationary behaviors in process

variables. However, the existing PSFA method assumes that the underlying

patterns are solely slow features, characterized by a constant mean of 0 and

variance of 1. Chapter 4 addresses the limitations of PSFA when dealing with

drift-type non-stationary data. To effectively segregate the underlying trends,

we propose the incorporation of an additional latent variable equation based on

a drift-type random walk model. Moreover, we account for model uncertainty

by introducing priors on the model parameters and subsequently derived their

posterior distributions using the variational Bayesian framework. The effec-

tiveness of the proposed model is demonstrated in its successful application to

monitor fouling, which also exhibits non-stationary characteristics.

3. The constrained linear state-space model, PSFA, examined in prior chapters,

lacks the ability to represent non-linear processes. To address this limitation,

we turn our attention to this problem in Chapter 5, where we tackle the issue

of non-linearity by incorporating neural networks. Specifically, we develop a

novel neural network architecture capable of extracting slow oscillating patterns

from non-linear data. This architecture utilizes a gated recurrent unit, which

facilitates the flow of information across different time steps. By employing this

approach, we enhance the model’s capacity to capture dynamics in the nonlinear

data.

4. In regular PSFA, the Gaussian distribution is commonly adopted to model the
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measurement noise due to its compatibility with the standard Kalman filter for

state estimation. Nevertheless, the limitations of this assumption arise when

dealing with broader applications characterized by the presence of outliers and

skewed values in the measurement noise. To address this concern, in Chap-

ter 6, we propose the adoption of a skewed-t distribution as an alternative

approach. However, this change introduces challenges in the state estimation

process. To mitigate these challenges, we opt for the implementation of a Gaus-

sian scale mixture representation of the skewed t-distribution. By employing

this approach, the measurement noise continues to follow the form of Gaus-

sian distribution, albeit with varying mean and covariance, accommodating the

complexities associated with the presence of outliers and skewed values.

5. Chapter 6 introduces an advanced PSFA model capable of addressing asym-

metric noise. Nevertheless, this model still exhibits two main drawbacks. First,

it considers the model parameters as fixed unknown entities, thus rendering it

incapable of handling model uncertainty. Additionally, the latent variable di-

mension is taken as the hyper-parameter, which is to be tuned. To deal with

these issues in Chapter 7, each parameter is assigned its own prior distribution.

As new data is acquired, the model updates its beliefs regarding these param-

eters using Bayes’ theorem, which combines prior knowledge with the observed

data’s likelihood to obtain posterior probability distributions. Specifically, the

emission matrix is assumed to follow a Laplace distribution, allowing for a sparse

representation and automatic determination of the optimal latent dimension.

6. The physics-informed slow feature model, introduced in Chapter 8, enables the

integration of expert information in a probabilistic manner. This chapter focuses

on two types of physics laws: linear equality and inequality constraints. Unlike

the data-based regular PSFA model, the integration of physics allows for more

reliable inferences, particularly in cases of limited data length and calibration

drifts beyond the physical limits. The efficacy of the proposed methodology is

demonstrated through pilot plant hybrid tank experimental data.
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9.2 Future Scope

1. Physics-Informed Dynamic and Non-linear Constraints: An extension

of probabilistic slow feature analysis is considered, where the incorporation of

physics-informed dynamic and non-linear constraints is explored. By extend-

ing the existing method to handle more complex and realistic physics laws, the

model’s applicability can be broadened to encompass a wider range of real-

world problems. This entails formulating the slow feature model to be adap-

tive to dynamic changes and capable of accounting for non-linear relationships

among variables. The implementation involves integrating expert knowledge

of the underlying physics and their corresponding temporal dynamics into the

probabilistic framework. The inclusion of dynamic and non-linear constraints

can significantly enhance the interpretability and predictive capabilities of the

model.

2. Gaussian Process Regression for the Emission Equation as a Non-

parametric Approach: Another extension involves leveraging Gaussian pro-

cess regression as a non-parametric approach for modeling the emission equation

within the probabilistic slow feature analysis framework. This extension is mo-

tivated by the need to address scenarios where traditional parametric models

may be inadequate to capture the underlying complexity of the data. By adopt-

ing Gaussian process regression, the emission equation gains the flexibility to

adapt to different data distributions and non-linear relationships, inherently

accommodating uncertainty in the modeling process. The application of a non-

parametric approach also offers the advantage of capturing complex patterns

and correlations present in the data, thereby enabling the extraction of more

informative slow features.

3. PSFA for Transfer Learning: Develop adaptive probabilistic weights for the

transfer of slow features from the source to the target domain. These weights can

dynamically adjust based on the similarity between domains or the confidence

in the transfer process, allowing for more accurate and efficient knowledge trans-

fer. One can further generalize this extension to support multi-source transfer
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learning, where information is transferred from multiple source domains to a

single target domain. This can be valuable in scenarios where multiple related

domains can collectively improve the target domain’s performance.

4. Slow feature-based reward shaping: Reward shaping is a technique used

in reinforcement learning to modify the reward signal to encourage desirable

behavior. Slow features can be used to shape the reward signal by providing

a more stable and informative representation of the state of the environment.

This can help the agent learn more efficiently and robustly.
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[191] H. Nurminen, T. Ardeshiri, R. Piché, and F. Gustafsson, “Skew-t Filter and

Smoother With Improved Covariance Matrix Approximation,” IEEE Transac-

tions on Signal Processing, vol. 66, no. 21, pp. 5618–5633, 2018.

[192] M. Bai, Y. Huang, B. Chen, and Y. Zhang, “A Novel Robust Kalman Filtering

Framework Based on Normal-Skew Mixture Distribution,” IEEE Transactions

on Systems, Man, and Cybernetics: Systems, vol. 52, no. 11, pp. 6789–6805,

2022.

[193] S. X. Lee, K. L. Leemaqz, and G. J. McLachlan, “A Block EM Algorithm for

Multivariate Skew Normal and Skew t -Mixture Models,” IEEE Transactions

on Neural Networks and Learning Systems, vol. 29, no. 11, pp. 5581–5591, 2018.

[194] P. Yun, P. Wu, S. He, and X. Li, “Robust Kalman Filter with Fading Factor

Under State Transition Model Mismatch and Outliers Interference,” Circuits,

Systems, and Signal Processing, vol. 40, no. 5, pp. 2443–2463, 2021.

[195] C. Zhao, W. Wang, C. Tian, and Y. Sun, “Fine-Scale Modeling and Monitor-

ing of Wide-Range Nonstationary Batch Processes With Dynamic Analytics,”

IEEE Transactions on Industrial Electronics, vol. 68, no. 9, pp. 8808–8818,

2021.

[196] C. Shang, F. Yang, B. Huang, and D. Huang, “Recursive Slow Feature Anal-

ysis for Adaptive Monitoring of Industrial Processes,” IEEE Transactions on

Industrial Electronics, vol. 65, no. 11, pp. 8895–8905, 2018.

202



[197] J. Zhang, D. Zhou, M. Chen, and X. Hong, “Continual Learning-Based Prob-

abilistic Slow Feature Analysis for Monitoring Multimode Nonstationary Pro-

cesses,” IEEE Transactions on Automation Science and Engineering, pp. 1–13,

2022.

[198] V. K. Puli, R. Chiplunkar, and B. Huang, “Robust complex probabilistic

slow feature analysis in the presence of skewed measurement noise,” IFAC-

PapersOnLine, vol. 56, no. 2, pp. 10947–10952, 2023. 22nd IFAC World

Congress.

[199] D. Ostwald, E. Kirilina, L. Starke, and F. Blankenburg, “A Tutorial on Vari-

ational Bayes for Latent Linear Stochastic Time-Series Models,” Journal of

mathematical psychology, vol. 60, pp. 1–19, 2014.

[200] T.-I. Lin, “Robust Mixture Modeling using Multivariate Skew t-Distributions,”

Statistics and Computing, vol. 20, no. 3, pp. 343–356, 2010.

[201] K. Lange and J. S. Sinsheimer, “Normal/Independent Distributions and their

Applications in Robust Regression,” Journal of Computational and Graphical

Statistics, vol. 2, no. 2, pp. 175–198, 1993.

[202] Z. Ge, Z. Song, S. X. Ding, and B. Huang, “Data Mining and Analytics in

the Process Industry: The Role of Machine Learning,” IEEE Access, vol. 5,

pp. 20590–20616, 2017.

[203] G. E. Karniadakis, I. G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, and L. Yang,

“Physics-Informed Machine Learning,” Nature Reviews Physics, vol. 3, no. 6,

pp. 422–440, 2021.

[204] K. Kashinath, M. Mustafa, A. Albert, J. Wu, C. Jiang, S. Esmaeilzadeh, K. Az-

izzadenesheli, R. Wang, A. Chattopadhyay, A. Singh, et al., “Physics-Informed

Machine Learning: Case Studies for Weather and Climate Modelling,” Philo-

sophical Transactions of the Royal Society A, vol. 379, no. 2194, p. 20200093,

2021.

203



[205] P. Sharma, W. T. Chung, B. Akoush, and M. Ihme, “A Review of Physics-

Informed Machine Learning in Fluid Mechanics,” Energies, vol. 16, no. 5,

p. 2343, 2023.

[206] B. Huang and J. Wang, “Applications of Physics-Informed Neural Networks

in Power Systems-A Review,” IEEE Transactions on Power Systems, vol. 38,

no. 1, pp. 572–588, 2022.

[207] T. Xiao and F. You, “Building Thermal Modeling and Model Predictive Con-

trol with Physically Consistent Deep Learning for Decarbonization and Energy

Optimization,” Applied Energy, vol. 342, p. 121165, 2023.

[208] Y. Dong and S. J. Qin, “Dynamic-Inner Partial Least Squares for Dynamic

Data Modeling,” IFAC-PapersOnLine, vol. 48, no. 8, pp. 117–122, 2015.

[209] W. Yu, M. Wu, B. Huang, and C. Lu, “A Generalized Probabilistic Moni-

toring Model with both Random and Sequential Data,” Automatica, vol. 144,

p. 110468, 2022.

[210] S. J. Qin, Y. Dong, Q. Zhu, J. Wang, and Q. Liu, “Bridging Systems Theory

and Data Science: A Unifying Review of Dynamic Latent Variable Analytics

and Process Monitoring,” Annual Reviews in Control, vol. 50, pp. 29–48, 2020.

[211] V. K. Puli, R. Chiplunkar, and B. Huang, “Sparse Robust Dynamic Feature

Extraction using Bayesian Inference,” IEEE Transactions on Industrial Elec-

tronics, pp. 1–9, 2023.

[212] J. Zheng, X. Chen, and C. Zhao, “Interval-Aware Probabilistic Slow Feature

Analysis for Irregular Dynamic Process Monitoring With Missing Data,” IEEE

Transactions on Systems, Man, and Cybernetics: Systems, pp. 1–12, 2023.

[213] P. K. Huynh, A. A. Alqarni, O. P. Yadav, and T. Q. Le, “A Physics-informed

Latent Variables of Corrosion Growth in Oil and Gas Pipelines,” in 2023 Annual

Reliability and Maintainability Symposium (RAMS), pp. 1–7, 2023.

204



[214] Z. Zhao, Y. Li, C. Liu, and X. Liu, “Predicting Part Deformation Based on De-

formation Force Data Using Physics-Informed Latent Variable Model,” Robotics

and Computer-Integrated Manufacturing, vol. 72, p. 102204, 2021.

[215] N. Sammaknejad, Y. Zhao, and B. Huang, “A Review of the Expectation Max-

imization Algorithm in Data-Driven Process Identification,” Journal of process

control, vol. 73, pp. 123–136, 2019.

[216] J. Rezaie and J. Eidsvik, “Kalman Filter Variants in the Closed Skew Normal

Setting,” Computational Statistics & Data Analysis, vol. 75, pp. 1–14, 2014.

[217] R. Chiplunkar and B. Huang, “Latent Variable Modeling and State Estimation

of Non-Stationary Processes Driven by Monotonic Trends,” Journal of Process

Control, vol. 108, pp. 40–54, 2021.

[218] A. Azzalini, “The Skew-Normal Distribution and Related Multivariate Fami-

lies,” Scandinavian journal of statistics, vol. 32, no. 2, pp. 159–188, 2005.

[219] C. M. Bishop, “Probability distributions,” in Pattern Recognition and Machine

Learning, ch. 2, p. 93, Springer, 2006.

[220] X. Geng and L. Xie, “Data-driven decision making in power systems with prob-

abilistic guarantees: Theory and applications of chance-constrained optimiza-

tion,” Annual Reviews in Control, vol. 47, pp. 341–363, 2019.

[221] K. B. Petersen and M. S. Pedersen, “The Matrix Cookbook,” nov 2012. Version

20121115.

[222] C. M. Bishop, “Sequential data,” in Pattern Recognition and Machine Learning,

ch. 13, pp. 639–642, Springer, 2006.

[223] C. Shang, F. Yang, X. Gao, and D. Huang, “Extracting Latent Dynamics from

Process Data for Quality Prediction and Performance Assessment via Slow Fea-

ture Regression,” in 2015 American Control Conference (ACC), pp. 912–917,

2015.

205


	Introduction
	Deterministic Slow Feature Analysis (DSFA):
	Does Dynamic PCA achieve the same result as SFA? 
	Probabilistic Slow Feature Analysis (PSFA):
	Motivation example:
	Thesis Outline

	Mathematical Background
	Probabilistic modelling with unknown parameters
	Gaussian Distribution
	Gamma Distribution
	Beta Distribution
	Laplace Distribution
	Truncated Gaussian Distribution
	Skew Normal Distribution
	Skewed t-distribution

	Maximum likelihood Estimation
	Probabilistic modelling with a latent variable
	Mean-field variational Inference
	Importance Sampling
	Kalman Filtering and Smoothing
	Kalman Filtering
	Kalman Smoothing


	Complex Probabilistic Slow Feature Extraction with Applications in Process Data Analytics
	Introduction
	Preliminaries
	Probabilistic Slow Feature Analysis

	Complex Probabilistic Slow Feature Analysis
	Parameter estimation using the EM algorithm
	Initialization strategy
	Using Linear slow feature analysis
	Using Subspace Identification


	Simulation and Applications
	Simulation
	Industrial Case Study-1
	Industrial Case Study-2

	Conclusion

	Variational Bayesian Approach to Nonstationary and Oscillatory Slow Feature Analysis With Applications in Soft Sensing and Process Monitoring
	Introduction
	Revisit
	Probabilistic Slow Feature Analysis
	Complex Probabilistic Slow Feature Analysis
	VBI for parameter learning

	VBCPSFA for non-stationary process
	Mathematical Formulation
	Prior distribution information
	Proposal distributions

	Simulation and Applications
	Numerical case study
	Industrial case study

	Conclusion

	Nonlinear Slow Feature Analysis for Oscillating Characteristics under Deep Encoder-Decoder Framework
	Introduction
	Background
	Proposed Methodology
	Data Generating Model
	Inference Network
	Variational Lower Bound Maximization
	{y,t} are observed, and z is unobserved
	y is observed, and {t,z} are unobserved


	Simulation and Industrial Application
	Simulation Case Study
	Industrial Case Study

	Conclusion

	Robust Complex Probabilistic Slow Feature Analysis in the Presence of Skewed Measurement Noise
	Introduction
	Revisit of SFA
	Probabilistic Slow Feature Analysis (PSFA)
	Robust Probabilistic Slow Feature Analysis (RPSFA)
	Complex Probabilistic Slow Feature Analysis (CPSFA)

	Robust CPSFA for outliers and asymmetric noise
	Proposed methodology
	Parameter Estimation
	Update expressions:

	Case studies
	Simulation case study
	Industrial case study

	Conclusion

	Sparse Robust Dynamic Feature Extraction using Bayesian Inference
	Introduction
	Background and shortcomings
	Mathematical Formulation
	Posterior Distributions
	Soft Sensor Case Studies
	Simulation case study
	Experimental case study

	Conclusion

	Physics-Informed Probabilistic Slow Feature Analysis
	Introduction
	Literature
	Physics-informed slow feature model
	Experimental Validation
	Conclusion

	Conclusions and Recommendations for Future Work
	Concluding Remarks
	Future Scope

	References

