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Abstract

An experimental and numerical study investigating the flow development and
fully developed flows of an incompressible Newtonian fluid in a curved duct of square
cross section for a curvature ratio of 15.1 is presented. Numerical simulations of
flow development were performed using a parabolized form of the steady three-
dimensional Navier-Stokes equations without imposing numerical symmetry. In
addition, the two-dimensional solution structure was calculated using a steady
formulation of the governing equations with a svmmetry condition applied at
the horizontal duct centerline. Both the three-dimensional and two-dimensional

computer codes used in this study had been developed by previous investigators.

Laser doppler measurements of axial velocity and flow visualization at Dn = 125,
137 and 150, revealed a steady and symmetric two-vortex flow at Dn = 125,
and a steady and symmetric four-vortex flow at both Dn = 137 and Dn = 150
(Dn = Re/ \/;{7 a where Re is the Reynolds number, R is the radius of curvature
of the duct and a is the width of the duct). Axial velocity measurements showed
that the four-vortex flow at Dn = 150 developed to the solution predicted by the
two-dimensional numerical simulation. However, the four-vortex flow at Dn = 137
was still developing when the flow had reached the end of the 240° axial length of
the duct. A numerical investigation for Dean numbers below Dn = 175 revealed

that at the limit point of the two-cell to four-cell transition the development length



appeared to be infinite and thereafter decreased for increasing Dean numbers. The
hehavior of decreasing development length of the four-vortex flow with increasing

Dcan number has not been reported previously.

Using a svmmetrically positioned pin at § = 5° to induce the four-cell flows,
the two-dimensional solution structure for Dn < 150 was experimentally observed
for the first time. Experiments confirmed the numerical prediction that four-
vortex flows are stable to symmetric perturbations, but unstable to asymmetric
perturbations. An experimental and numerical investigation suggested that the
four-vortex flow might evolve to flows with sustained spatial oscillations farther

downstream. However without sufficient axial length to experimentally verify this,

the state of the four-vortex flow at large axial distances still remains an unknown.
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Nomenclature

a width of rectangular duct; radius of pipe for a curved pipe
b height of rectangular duct (for a square cross section b = a)
cy calibration factor for LDV
Dn Dean number, Re/\/R.
dn hydraulic diameter, 2ab/(a + b); for a square cross section
dy = a; (for a pipe dy = 2a)
d, diameter of seeding particle
fa measured doppler frequency
g gravitational acceleration
m mass flow rate
p pressure
radius of curvature of the duct
Ra Rayleigh number, g8d,*AT/va
R, curvature ratio, R/dy (for a square duct R, = R/a)
AT temperature ¢ uerence
Re Reynolds number, vyd, /v
r,r radial coordinate
v',v velocity
vh average axial velocity



vl calibration velocity

'z radial coordinate with origin at duct center
2z vertical coordinate
Superscripts
! denotes dimensional quantity
Subscripts
r radial direction
2 vertical direction
0 axial direction

stream function

¥
Q vorticity

o coefficient of thermal diffusivity

B coefficient of thermal expansion

a, b curvature ratio for a curved pipe, a/R

¥ aspect ratio, b/a

0 axial coordinate

m absolute viscosity of working fluid

v kinematic viscosity of working fluid

p density of working fluid
P density of seeding particle

Tp time constant of particle velocity



Chapter 1
Introduction

Curved ducts of various cross sections are found in many engineering
applications. Due to the centrifugally induced secondary flows in curved ducts
they exhibit behavior quite different from straight pipes, some desirable, others
undesirable. An undesirable effect of the secondary flows in curved ducts is the
increase in pressure drop as compared to a straight section. On the other hand, the
secondary motions enhance heat transfer, makirg curved ducts very effective in heat
exchanger applications. Also, increased :esidence time of the fluid particles (due to
their helical motion through the duct) is a favorable feature in some continuous
chemical reactors. The desire to better understand the unique features of curved
duct flow (also known as the Dean problem) has made it a subject of extensive

research for over one hundred years.

As fluid flows through a curved duct, the axial velocity component is continuously
changing direction. This results in a centrifugal force perpendicular to the main flow
direction. Different magnitudes of the centrifugal forces, due to a non-uniform axial
velocity distribution, result in a pressure gradient across the duct cross section. The

pressure is greatest at the outer wall and less at the inner, top and bottom walls

1



CHAPTER 1. INTRODUCTION 2

where the centrifugal force is small due to slow moving fluid in the boundary layers.
As a result, a secondary flow occurs as the fluid in the central core of the duct moves
outward toward the outer wall and the fluid near the top and bottom walls flows
inward toward the center of curvature. The resulting motion of the fluid particles

as they move around the duct is a double helix symmetrically positioned about the

horizontal duct centerline.

In most engineering applications the flow through a curved duct will be in the
turbulent regime. However, in order to understand the fundamentals of curved
duct flow much of the work done has focused on the laminar regime. In the
last few years much effort has been directed towards the study of the non-linear
aspects of the Navier-Stokes equations as the flow progresses toward the turbulent
regime. As the Reynolds number is increased, the unique double helix flow can
give way to a flow where an additional pair of vortices appear. Masliyah (1980)
numerically and experimentally confirmed the existence of both a symmetric two-
vortex and symmetric four-vortex flow at the same Dean number in a curved duct
of semicircular cross section with a flat outer wall. A recent numerical study of the
fully developed flow in a curved square duct by Winters (1987) showed the solution
structure as a complex bifurcation diagram involving regions of multiple solutions
consisting of symmetric and asymmetric flows. The solution structure of the flow in

Winter’s study was presented in a state diagram of a velocity value plotted against

the pressure gradient.

All the numerical work on predicting the bifurcation structure of curved duct flow
concerns itself with two-dimensional solutions of the Navier-Stokes equations. In
reality, the flow must go through a development length to reach the fully developed
state, so it is possible for the inlet conditions to have an effect on the solution

observed in the fully developed region. In fact, a numerical study by Soh (1988,



CHAPTER 1. INTRODUCTION 3

suggested that the flow in a curved square duct developed into two quite different

downstream states depending on the inlet condition.

The investigation of the developing flow and the fully developed states that
it might evolve into, along with the investigation of the stability of the flows in
a curved square duct, was the focus of the present study. Both numerical and
experimental investigations were carried out with the numerical simulations being
the “road map” for the experimental investigations. Much of the work on curved
duct flows has dealt with the numerical analysis of the flow. Even though numerical
studies are a powerful tool in the understanding of the flow, experimental studies

are required to establish their validity.

1.1 Overview of Thesis

The purpose of this study was to investigate the developing and fully developed
laminar flows of an incompressible Newtonian fluid in a curved duct of square cross
section. The main focus of the study was the experimental verification of the
numerical predictions of the flow development and the fully developed bifurcation

structure at moderate Dean numbers.

Chapter two of this thesis gives a review of the relevant work that has been done
on curved duct flows. Special attention is given to the previous work done on the

non-linear aspect of the Navier-Stokes equations and the flow development.

In chapter three the governing equations for both the developing and fully
developed flows, along with the definition of Dean number are given. The computer
code used for the developing flow predictions was based on a parabolized form of
the steady three-dimensional Navier-Stokes equations. Fully developed flows were

computed by a computer code based on a vorticity stream function formulation of the
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steady two-dimensional Navier-Stokes equations. The three-dimensional computer
code used in this study had been developed by Sankar et al. (1988) and the two-
dimensional code had been developed by Shanthini (1985).

Chapters four and five describe the experimental system and errors associated
with making experimental measurements. The curved duct manufactured for this
study had a 1.27 cm square cross section with an axial length of 270° and a curvature
ratio, R. = R/dy = 15.1. A laser doppler velocimeter (LDV) was used to measure

the axial flow velocities and dye injection was used to visualize the secondary flow

patterns.

In chapter six measurements of flow development, starting from a fully developed
straight section inlet profile, are compared to numerical predictions for both a two-
vortex and four-vortex flow. Measurement of a developing four-vortex flow to its
numerically predicted fully developed state was accomplished for the first time in
this study. For the four-vortex flows investigated in this study it was discovered that
the development length decreased as the Dean number increased. The existence of
this behavior has not been previously reported. Flow visualization of the secondary .

flow patterns presented in this chapter show the development of symmetric two and

four-vortex flows.

The occurrence of dual solutions in a curved duct of square cross section was
experimentally verified for the first time in this study. Chapter seven shows the
experimental verification of the first dual solution region that had been previously
predicted by Shanthini and Nandakumar (1986) and Winters (1987). In order to
achieve the dual solutions experimentally, a pin had to be inserted along the duct’s
symmetry plane to induce some of the four-vortex solutions. The nature of the
disturbance created by the pin was investigated experimentally to determine its role

in inducing the four-vortex flows.
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In the numerical study of Winters (1987) all four-vortex flows calculated were
unstable to asymmetric disturbances. Given that any experimental apparatus
has inherent asymmetries in it, the physical stability of the four-vortex flows are
in question. It is shown in chapter eight that the four-vortex flows observed
in this study were stable to symmetric disturbances but unstable to asymmetric
disturbances. An experimental and numerical investigation suggested that the
four-vortex flow might evolve to flows with sustained spatial oscillations farther

downstream.

Chapter nine summarizes the conclusions of this present study and identifies
some areas that require further study. Also included in this chapter are some
recommendations for equipment improvements to the present LDV system that

would increase the accuracy of future velocity measurements.



Chapter 2

Literature Review

The earliest investigation of flow in a curved geometry was performed over a
century ago by Thompson (1876), who examined the role of the centrifugal force
in the erosion and deposition of material on banks of winding rivers. He suggested
that his analysis for winding rivers also explained the increased frictional losses in
curved pipes. Williams et al. (1902) observed that the maximum axial velocity was
shifted towards the outer wall in a curved pipe due to the centrifugal force. The
existence of secondary flows in curved ducts of both circular and rectangular cross
section was shown in the dye experiments of Eustice (1910, 1911, 1925). For the
same pressure gradient, Eustice observed that the volumetric flow rate through a

curved pipe was less than that of a straight pipe with the same length.

Using a perturbation analysis, Dean (1927, 1928a) was the first to show the
existence of one pair of counter-rotating vortices for the fully developed viscous flow
of a Newtonian fluid in a curved pipe. His analysis involved expanding the solution
in a power series of Dean number with the leading term being Poiseuille flow in a
straight pipe. This method is a perturbation analysis about Poiseuille flow where the

influence of the centrifugal force is calculated by successive approximations. Dean

6
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(1928a) carried out his analysis up to the fourth power of Dean number and assumed
that the radius of curvature of the pipe was large in comparison to the radius of
the pipe cross section. This assumption later became known as the loose coiling
approximation. With this approximation, Dean non-dimensionalized the equations
of motion and found them to be characterized by a single non-dimensional parameter

now known as the Dean number, Dn.

Dean’s original work was expanded by Topakoglu (1967), Larrain and Bonila
(1970), Sankaraiah and Rao (1973), and Van Dyke (1978) who extended Dean’s
power series to 24 terms with the aid of a computer. Typically the series solution
approach is only valid for small Dean numbers (i.e. Dn < 25). Investigators such
as Alder (1934), Barua (1963), Mori and Nakayama (1965), It6 (1969) and Smith
(1976) developed boundary-layer methods to analyze the flow at large Dean numbers
(i.e. Dn 2> 250). The boundary-layer method divides the flow into two regions, an
inner core where centrifugal and pressure forces are important, and a thin boundary
layer at the walls where viscous forces arc important. The core flow convects the
fluid towards the outer wall where it is then returned towards the inner wall in the

thin boundary layer.

For intermediate Dean numbers, numerical methods employing either a finite
difference or finite element technique have been the most common flow analysis
method. These methods are attractive because the equations of motion can be solved
without simplifying assumptions (e.g. loose coiling). Finite difference methods
have been used by Truesdell and Adler (1970), Akiyama and Cheng (1971), Austin
and Seader (1973), Greenspan (1973), Collins and Dennis (1975), Dennis (1980),
Manlapaz and Churchill (1980) and Nandakumar and Masliyah (1982). The finite
element approach was used by Tabarrok and Lin (1978). As pointed out by
Nandakumar and Masliyah (1986), the main thrust of these studies, until the mid
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1970’s, was to obtain more accurate solutions over a larger range of Dean numbers
and curvature ratios.

Since Dean’s original analysis, much work, both theoretical and experimental,
has been done in the area of flows in curved pipes. Apart from the hydrodynamic
aspects, there has also been considerable work done in the area of forced convection
heat transfer in coiled pipes. Many of the studies have been on the fully developed
flow region and focused on examining frictional and heat transfer characteristics.
The focus of this study was flow in a curved duct of square cross section, so much of
the past work in curved pipes has not been covered. The interested reader is directed
to review articles by Berger et al. (1983), Nandakumar and Masliyah (1986) and
1t6 (1987) that deal with the area in considerable depth.

2.1 Fully Developed Flow in Curved Ducts of

Rectangular Cross Section

The first theoretical analysis of flow in a curved duct of rectangular cross section
was performed by It5 (1951). Using a perturbation analysis he showed the existence
of secondary flows in hoth a square and elliptic cross section. Unaware of It&’s work,
Cuming (1952) also used a power series approach to show the existence of secondary
flows in a square and elliptic cross section. His analysis showed that the intensity
of the secondary flow in a square section was greater than that in a pipe of circular
cross section. Replacing the secondary flow by a uniform stream, Dean and Hurst
(1959) analyzed the flow in curved ducts of both circular and square cross section.
With their assumption, they showed the effect of secondary flows on reducing the

rate of flow through the duct.

A boundary-layer approach was used by Ludwieg (1951) to study the fully
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developed laminar flow in a coiled square tube rotating about its axis. Ludwieg also
measured the friction factors in the laminar and turbulent regimes for both rotating
and stationary ducts. Forced convection heat transfer for fully developed laminar
flow in a curved channel with a square cross was analyzed by Mori et al. (1971)
using a boundary-layer approach. Fully developed velocity profiles measured with
a hot wire anemometer in a square duct of R. = 14.0 showed their boundary layer
assumption to be valid for Dn > 250. Their analytical relation between resistance
coefficient and Dean number was in good agreement with the experimental results

of Ludwieg (1951).

Cheng and Akiyama (1970) used a finite-difference formulation to calculate the
secondary flows in curved rectangular ducts of aspect ratio, v = 0.2 — 5.0. Starting
from a Dean number of zero and proceeding gradually, they calculated the familiar
two-vortex pattern. However, when the Dean number was increased beyond a certain
critical value, a new four-vortex pattern emerged. The additional vortices were
smaller in size and located near the central part of the outer wall. The existence of
the additional vortices were only briefly mentioned by Cheng and Akiyama (1970)
and later presented by Cheng et al. (1975).

A numerical simulation by Joseph et al. (1975) for a curved duct of square
cross section, also showed the switch from the twin counter-rotating vortices to the
four-vortex pattern above a critical Dean number. Stream function contour plots
of the four-vortex pattern showed the additional vortices near the central part of
the outer wall. Flow visualization experiments by Joseph et al. in a helically coiled
tube of square cross section confirmed the existence of an additional swirling pattern
near the outer wall. Photographs of the additional vortices, for square as well as
other aspect ratio cross sections, have been presented by Cheng et al. (1977) and

Sugiyama et al. (1983).
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Cheng et al. (1976) extended the earlier work of Cheng and Akiyama (1970)
to higher Dean numbers and also included the effect of curvature in the numerical
formulation. They again observed the appearance of the additional pair of vortices at
certain higher Dean numbers, depending on the aspect ratio. For a square channel
of R, = 100, the additional vortices were present over a certain range of Dean
numbers (202 < Dn < 520) then disappeared at a higher Dean number. Cheng et
al. believed the appearance of the additional pair of vortices posed a question as
to the validity of the boundary-layer approximation for the high Dean number flow

regime.

Cheng et al. (1976) suggested that the appearance of the additional pair
of vortices was consistent with Dean’s (1928b) instability problem for a curved
parallel-plate channel flow. In a curved channel of infinite height the flow is purely
streamwise for sufficiently small Dean numbers. The velocity profile is similar to the
parabolic profile of plane channel flow, but the maximum velocity is slightly shifted
towards the outer wall. As the Dean number becomes high enough, a centrifugal
instability develops causing the formation of a secondary flow with streamwise-
orientated vortices. Cheng et al. believed the same type of centrifugal instability
was responsible for tlie formation of the additional pair of vortices in low aspect

ratio rectangular ducts.

Driving the flow electromagnetically, Baylis (1971) experimentally investigated
the flow of mercury in a square cross section torus. By keeping the current across
the channel height uniform, the resulting flow resembled a simple pressure driven
flow. Since a two-dimensional flow would result for any torus used, he was able to
investigate the dependence of friction factor on Dean number for a large range of
curvature ratios. For low values of Dean number, Baylis was able to approximately

validate the numerical analysis of Cheng and Akiyama (1970). A finite element
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analysis of flow and heat transfer in curved ducts by Tabarrok and Lin (1978) was
in good agreement with the results of Cheng and Akiyama (1970). Tabarrok and
Lin (1978) also presented flow and heat transfer results for some ducts of irregular

cross sections.

2.2 Bifurcation Phenomena

The existence of multiple solutions to the Navier-Stokes equations for curved duct
flow is not surprising, given that the equations are non-linear. As shown in recent
studies by Winters and Brindley (1984), Yang and Keller (1986), Winters (1987)
and Daskopoulos and Lenhoff (1989), the solution structures contained bifurcations
where regions of multiple solutions existed. Starting at a Dean number of zero
a unique solution existed, but as the Dean number was increased, critical values
were reached where multiple solutions appeared. The solution structures were
visualized by plotting a quantity such as friction factor or velocity against the

dynamic parameter (i.e. Dn or axial pressure gradient).

For flow in a curved duct, the first mention of dual solutions was reported in
a numerical study by Cheng and Akiyama (1970). Their study was for loosely
coiled ducts of rectangular cross section. Due to uncertainties associated with the
double-solutions they did not present any results, however, the double-solutions were
described in Akiyama (1969). The existence of dual solutions was established by
Masliyah (1980), both numerically and experimentally, for the flow in a curved duct

of semicircular cross section with a flat outer wall.
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2.2.1 Bifurcation Phenomena in Curved Pipes

The existence of dual solutions in a circular cross section was discovered in
numerical studies by Nandakumar and Masliyah (1982) and Dennis and Ng (1982).
Nandakumar and Masliyah used a bipolar-toroidal coordinate system to formulate
the problem and discretization was done with central-difference approximations.
Their formulation allowed the cross section to be easily changed from a semicircle
with a flat outer wall to a full circle, then to a semicircle with a curved outer
wall. Starting with a four-vortex solution in a semicircle with a flat outer wall, the
geometry of the outer wall was gradually changed to a full circle thus preserving
the four-vortex solution. An abrupt change from a semicircle to a full circle vrould
not preserve the four-vortex solution. A four-vortex solution for a semicircle with
a curved outer wall was achieved by starting with a four-vortex solution in a full
circle and gradually changing the geometry of the inner wall until it was flat. Once
a four-vortex solution was achieved in a certain geometry, the Dean number could
be varied to follow the solution branch. Nandakumar and Masliyah noted that it

was easiest to achieve the four-vortex solution when the outer wall was flat.

In order to calculate the flow in a curved pipe, Dennis and Ng (1982) reduced
the governing two-dimensional partial differential equations to an infinite set of
ordinary differential equations using substitution of Fourier series. The series was
then truncated to a finite series and solved numerically using central-differencing.
Starting with a two-vortex solution, solutions at higher Dean numbers were achieved
with the appropriate choice of relaxation factor. During the course of numerical
experimentation at a high Dean number, a relation factor was chosen such that the
solution obtained was a four-vortex solution rather than a two-vortex solution. It
was not clear to Dennis and Ng exactly how the procedure converged to the four-

vortex solution. However, once the four-vortex solution was achieved, it was used as
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the initial guess to calculate a four-vortex solution at a lower Dean number. Using
this procedure, the four-vortex solution branch was followed until it disappeared at
a critical Dean number (i.e. limit point). This critical Dean number where the four-
vortex solution changed back to the two-vortex solution was in very good agreement

with the value determined by Nandakumar and Masliyah.

In a numerical study for the fully developed flow in a curved pipe, Yang and
Keller (1986) discovered that the solution structure had numerous folds or limit
points. Carrying out their calculations to Dean numbers about six times larger than
the highest values of Nandakumar and Masliyah (1982) and Dennis and Ng (1982),
they observed four folds with five distinct solution branches. In order to follow the
solution structure, they used a truncated Fourier series approach like Dennis and Ng
(1982) combined with a path following method. This numerical technique allowed
solution branches to be followed around limit points, while the methods used by
Nandakumar and Masliyah, and Dennis and Ng would jump solution branches if a

limit point was encountered.

The first solution branch observed by Yang and Keller, which started with a
unique solution at a Dean number of zero, corresponded to the two-vortex solution
branches found by Nandakumar and Masliyah, and Dennis and Ng. Similarly, the
fovi-vortex branches found by Nandakumar and Masliyah, and Dennis and Ng
corresponded to the third solution branch discovered by Yang and Keller. The
critical Dean numbers observed by Nandakumar and Masliyah, and Dennis and Ng
corresponded to the second limit point discovered by Yang and Keller. Basically, the
studies of Nandakumar and Masliyah, and Dennis and Ng revealed a small portion

of the complex bifurcation structure observed by Yang and Keller.

The procedures used by Nandakumar and Masliyah (1982) and Dennis and Ng
(1982) to trace the dual solution branches parallels the work of Benjamin (1978a)
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very closely. In his work, Benjamin provided a general framework for general
properties of multiple solutions and stability in steady motion of bounded flows.
Benjamin pointed out that a primary solution branch starts at a zero value of the
dynamic parameter (e.g. Re, Dn) with a unique flow. As the flow increases, a
critical value in the dynamic parameter can be reached where additional solution
branches occur. Depending on the situation, the bifurcation structure can have
many different forms. In the case of curved ducts, the solution branch originating
from the unique solution at zero Dean number appears to contain one or more folds
depending on the cross-sectional geometry. According to Benjamin, the solution will
follow the primary branch if the dynamic parameter is changed gradually, and will
not change to another solution branch unless a limit point is encountered, or some
“trick” is used to force the solution to another branch. However, once a solution is

found on another branch it can be followed until another critical point is reached

where the solution can again jump branches.

Yang and Keller (1986) used a continuation scheme to follow the solution
branches around limit points, while Nandakumar and Masliyah (1982) and Dennis
and Ng (1982) used a “trick” to change solution branches. In the work of
Nandakumar and Masliyah (1982), the “trick” that was used to achieve the four-
vortex solution in a full circle was to start with a four-vortex in a semicircle and
gradually change the geometry. The four-vortex in the semicircle was originally
achieved by using an appropriate initial guess of the controlling parameters. In
the work of Dennis and Ng (1982), their “trick” was the appropriate choice of a
relaxation fact~r that resulted in the four-vortex solution. In both studies, the four-
vortex solution branch was followed once an originating solution on the branch had

been found, and a change back to the two-vortex solution was observed when a limit

point was encountered.
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In the experimental work of Benjamin (1978b), on the flow between concentric
cylinders with the outer stationary and the inner one rotating (i.e. Taylor
problem), he could only reach certain flow patterns experimentally by a sudden
start of his apparatus. Similarly, in their experimental investigation of the Taylor
problem, Pfister et al. (1988) also used sudden starts of their apparatus to reach
certain solution branches. In an experimental investigation of the non-linear flow
phenomena in a symmetric sudden expansion, Fearn et al. (1990) had to impulsively
start the flow to observe one of the asymmetric solutions. For the Dean problem,
Masliyah (1980) and Cheng and Yuen (1987) used a needle to disturb the flow in
order to achieve a four-vorte: solution in a semicircle and full circle cross-sectioned

curved duct respectively.

The stability of the dual solutions in a curved circular tube of slight curvature
was considered by Yanase et al. (1988). Using the Fourier-Chebyshev spectral
method, they numerically investigated the two-dimensional linear stability of the
dual solutions. Their investigation extended up to a Dean number that was twice
as high as the largest value investigated by Dennis and Ng (1982). For their lower
Dean numbers they observed the same solution structure as Dennis and Ng, while
the higher Dean numbers revealed the continuation of the dual solution region.
They found that the two-vortex solution was stable for any disturbance while the

four-vortex solution was unstable to asymmetric disturbances.

2.2.2 Bifurcation Phenomena in Curved Ducts of
Rectangular Cross Section
Shanthini and Nandakumar (1986) numerically investigated the bifurcation

phenomena of generalized Newtonian fluids in rectangular ducts. Their study was

an effort to map the regions of multiple solutions in the parameter space of Dean
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number, aspect ratio, power-law index and curvature ratio. Using a finite-difference
fermulation, they would set values of aspect ratio, power-law and curvature ratio
and march in pressure gradient. Starting with a converged solution for a straight
duct as an initial guess, they would calculate the familiar two-vortex solution at a
low Dean number for the curved duct. Gradually increasing the Dean number, by
small increases in the pressure gradient, they would follow the two-vortex branch
until a critical Dean number (i.e. limit point) was reached where the solution
would suddenly jump to a four-vortex solution, as previously observed by Joseph
et al. (1975) and Cheng et al. (1976). However, once the four-vortex solution
was obtained, Shanthini and Nandakumar continued their calculations for both
increasing and decreasing pressure gradient. On increasing the pressure gradient,
a four-vortex solution was found up to their highest Dean number. Decreasing the
pressure gradient, a four-vortex solution was maintained until another discontinuous
jump was observed, where the solution changed back to a two-vortex flow. Using
a bisection method, they attempted to locate the critical Dean numbers or limit

points where the solutions suddenly changed.

Using the method described above, Shanthini and Nandakumar (1986)
investigated the loci of limit points in the parameter space of Dean number and
aspect ratio for a given curvature ratio. For an aspect ratio of unity and a constant
curvature ratio, they calculated the limit points for different values of the power-law
index. They concluded that the bifurcation set in the Dean number-aspect ratic
space remains qualitatively the same at any value of power-law index or curvature
ratio.

A more complete picture of the solution structure for rectangular cross section

ducts has been presented in a numerical study by Winters (1987). He non-

dimensionalized the governing equations in terms of the pressure gradient, aspect
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ratio and curvature ratio in order to study the flow as each of these parameters
changed. Using continuation methods and Newton’s method to solve the appropriate
extended system of equations, he was able to follow solutions around limit points
plus explicitly locate the limit point. Winters presented a detailed state diagram
of velocity versus pressure gradient for a square duct with a curvature ratio of
R. = 25. For the same curvature ratio, he investigated the paths of limit points
and symmetry-breaking bifurcation points as the aspect ratio was varied. He also
presented results of the effect of curvature ratio on the axial pressure gradient, Dean
number and aspect ratio for the singular points. Winters determined the stability

of each of the calculated solution branches by a linear stability analysis.

Daskopoulos and Lenhoff (1939) performed a numerical study of the bifurcation
structure in curved ducts of rectangular and circular cross section. They used
orthogonal collocation in conjunction with continuation techniques to characterize
the bifurcation structure. In order to examine the bifurcation structure, their
approach was to start with the “perfect” problem of flow in an iniinite slit,
which bifurcates to form a vortex structure. By adding “stickiness” at the vortex
boundaries, they turned each pair of vortices into a curved duct of rectangular cross
section, which, by a geometry change, was then turned into a curved circular tube.
Starting with the perfect problem, a large number of solution branches were present,
but the addition of stickiness made them vanish as the na-slin limit was reached. At

the no slip limit, the remaining solution branches revealed ihe solution structure.

The results of Shanthini and Nandakumar (1986), Winters (1987) and
D:;skopoulos and Lenhoff (1989) are in very good agreement. However, Winters
numerical formulation allowed for the existence of asymmetric solutions, while
the studies of Shanthini and Nandakumar, and Daskopoulos and Lenhoff imposed

symmetry about the horizontal mid-plane. This difference in formulations is
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obvious, since all the solutions of Shanthini and Nandakumar, and Daskopoulos
and Lenhoff are symmetric, while Winters computed asymmetric solution bianches
that bifurcated from the primary solution branch. Using continuation methods,
Daskopoulos and Lenhoff, and Winters were able to follow entire solution branches
and explicitly determine singular points. The stability analysis of Winters revealed
that the symmetric two-vortex flows were stable, and that the symmetric four-
vortex flows were stable to symmetric disturbances, but unstable to asymmetric
disturbances. The study of Daskopoulos and Lenhoff also revealed that the four-

vortex solutions were stable to symmetric disturbances.

2.2.3 Bifurcation Phenomena in Other Related Problems

Bifurcation phenomena is common to systems that are governed by non-linear
equations. Of particular interest are the systems that have bifurcation diagrams very
similar to the Dean problem, such as mixed convection heat transfer in a horizontal
duct, flow through rotating ducts and convective heat transfer in porous media.
Each of these problems exhibit secondary flows in the cross section perpendicular
to the main flow with the familiar two and four-vortex solutions. Numerical
studies on mixed convection heat transfer in a horizontal duct by Nandakumar
et al. (1985) and Nandakumar and Weinitschke (1991), with Grashof number as the
dynamic parameter, revealed a similar bifurcation structure to the Dean problem.
The first study by Nandakumar et al. used methods analogous to Shanthini and
Nandakumar (1986) to determine solution branches and limit points. Using an arc
length continuation scheme, Nandakumar and Weinitschke revealed a much more
complicated solution structure than what was found in the first study. It is not
surprising that there is a strong similarity to the Dean problem given ihat the

governing equations of each problem are quite similar.
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Numerical studies by Weinitschke et al. (1990) on convective heat transfer in
porous media and by Nandakumar et al. (1991) on flow through rotating rectangular
ducts also revealed solution structures similar to the Dean problem. For example, in
all the problems a primary branch exists with a stable two-vortex solution, but the
four-vortex branch is only stable to symmetric and not asymmetric disturbances.
Given the similarities between the problems, careful numerical and experimental

investigations in one area could provide valuable insight to all the areas.

Much insight to the Dean problem can be obtained through studying the vast
amount of work that has been done on Taylor-Couette flow (i.e. Taylor problem). As
mentioned before, Taylor-Couette flow is the flow between two concentric cylinders
with the inner one rotating and the outer one stationary. Even though the Taylor
problem is a closed system, while the Dean problem involves the introduction of
the fluid and a development length, experimental and numerical methods such as
those used by Pfister et al. (1988) can be useful in the Dean problem. Given the
similar nature of the governing equations for the Taylor and Dean problems and the
fact that much is known about how Taylor flow progresses to turbulence, provides

a good base for speculation in the Dean problem.

2.3 Developing Flow in Curved Ducts

Developing flow in a curved duct has been of interest because of its classical
engineering importance as well as its recent biological significance to problems
such as the entry flow in the aorta. The amount of work done on the developing
flow problem has been small in comparison to the number of studies on the fully
developed region. As in the case of studies on the fully developed region, the

majority of the studies on developing flow have focused on the laminar regime and



CHAPTER 2. LITERATURE REVIEW 20

on curved pipes.

As seen in the studies of Olson and Snyder (1985) and Soh (1988), the flow
development can have a strong dependence on the inlet condition to the curved
section. For a piping system a common inlet condition would be a fully developed
straight pipe flow while in the case of the aorta the inlet might be approximated by
a reservoir condition. As a result, three different entry conditions that have been
used in developing flow analysis are: constant dynamic pressure (i.e. a free vortex),
uniform axial velocity and fully developed straight duct flow. The actual condition
existing at the inlet will be influenced by the degre= of curvature of the duct and flow
rate, thus resulting in a condition slightly different than the ideal case. However, for
practical purposes analytical and numerical analysis have used the approximation

of ideal conditions at the inlet.

2.3.1 Developing Flow in Curved Pipes: Parabelic Inlet

One of the earliest investigations of the flow development in a curved duct was
by Hawthorne (1951) for the inlet condition of fully developed straight duct flow. He
analyzed the flow development in a curved pipe using an inviscid flow approach, then
compared his theory with experiments on curved ducts with circular and rectangular
cross section. Axial velocity measurements of the developing flow in a curved pipe,
starting from a Poiseuille flow inlet, were performed by Austin and Seader (1974).
They proposed an empirical relationship for the entrance length that was accurate
to within 10° for each of their experimental data sets. Numerical predictions of
the flow development in a curved pipe by Patankar et al. (1974) were in good
agreement with the experimental results of Austin and Seader (1974). Tracking of
the flow to its fully developed state was accomplished using a parabolic formulation

of he steady three-dimensional Navier-Stokes equations.
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Elliptic forms of the Navier-Stokes equations were solved numerically by
Humphrey (1978) for flow development in a strongly curved 90° bend with straight
pipe Poiseuille flow at the inlet. He observed strong ellipticity in the flow field plus
for his largest Dean number he observed flow reversal in the axial direction at the

outer wall.

2.3.2 Developing Flow in Curved Pipes: Free Vortex and

Uniform Inlet

Flow development for an inlet condition of a uniform injection velocity or
potential vortex is distinctly different from the flow development with an inlet
condition of a fully developed straight duct flow. The influence of the inlet condition
persisting far downstream has been shown in the experimental measurements of
Olson and Snyder (1985) for flow development in a curved pipe, and in the numerical
results of Soh (1988) for a square duct. This difference is to be expected, since for
the fully developed straight section inlet the axial boundary layer is fully developed,
while for the uniform and free-vortex inlet the axial boundary layer has to develop.
A detailed review of the literature up to 1983 for the developing flow starting from

a uniform or free-vortex inlet condition is given by Berger et al. (1983).

Singh (1974) studied analytically the entry flow into a curved pipe for the
inlet conditions of constant dynamic pressure (i.e. a potential vortex) and uniform
velocity. He divided the flow into an inviscid core region and a thin boundary layer
region. In the inviscid core centrifugal forces due to the curvature were balanced
by pressure gradients in the direction of curvature, while in the boundary layer a
balance existed between viscous and inertial forces. His perturbation analysis, which
treated centrifugal effects as second order, was valid for all Dean numbers in the

region of O(a) immediately downstream of the inlet. Further downstream the flow
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development depends on the Dean number. For small Dean numbers the centrifugal
effects remain as second order and the boundary layer grows until it fills the pipe
and the flow becomes fully developed. At large Dean numbers the centrifugal forces
in the boundary layer become as important as the inertial and viscous forces, and
the displacement effect of the boundary layer on the core flow causes the centrifugal

forces to become more significant in that region.

For the free vortex inlet, Singh observed that the location of the maximum axial
shear stress was initially at the inner wall and then crossed over to the outer wall at
RO = 1.9a. This is consistent with the axial velocity initially being a maximum at
the inner wall and then further downstream shifting towards the outer wall. For a
uniform inlet, Singh found that a crossover in the maximum axial shear also occurred
from the inner to the outer wall, but at half of the downstream distance as compared
to the free-vortex case. He attributed the crossover in this case as solely being due to
the shorter/longer wall length on the inner/outer walls of the pipe. This crossover
in maximum axial shear stress was experimentally verified by Choi et al. (1979)
using an electrochemical technique. They also observed a slight movement of the

crossover point towards the inlet as the Dean number was increased.

Using a boundary-layer approach, Smith (1976) analyzed the influence of
curvature on a pipeflow for a pipe that started bending uniformly after an initial
straight section. He found that the core flow remained practically undisturbed until
it reached the curved section, but the boundary layer had to react in the upstream
section to adjust for the downstream curvature. As a result of this, a maximum of
the axial shear occurred at the inner wall of the curved section then crossed over to
the outer wall at 1.51 pipe-radii from the start of the curvature. Smith found this

crossover to be independent of Reynolds number, curvature and the initial entry

profile.
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The flow development for large Dean numbers, starting from a uniform inlet
condition to its fully developed state, was studied analytically by Yao and Berger
(1975). Their formulation included one set of equations for the inviscid core and one
set for the three-dimensional boundary layer. The boundary layer equations were
solved using the Karman-Pohlhausen integral technique. The technique consisted of
assuming an arbitrary velocity distribution in the boundary layer that satisfied the
no-slip condition at the boundary, as well as mutched the outer solution at the edge
of the boundary layer and satisfied the boundary-layer momentum integrals. The
fully developed flow results of Barua (1963) were used as the downstream conditions
in their analysis. Yao and Berger also assumed that the flow in the inviscid core was
parallel to the horizontal plane of symmetry. This assumption, which has been used

by many investigators, was confirmed by the numerical simulation of Yeung (1980).

Yao and Berger (1975) found that in the developing region the secondary
boundary layer separated at the inner wall. The width of the separation zone
increased with downstream distance, asymptotically approaching a width of 54°
in the fully developed region. In their analysis Yao and Berger also identified
two regions besides the initial development region of Singh (1974). They found
that most of the flow development occurred in a region of O(VaR) from the inlet
where centrifugal forces became as important as inertial and viscous forces. The
final approach to the fully developed state was found to happen in the region
of O(vVaRDnr) from the inlet. They also observed that Singh’s series solution
was a special case of their equations for the region of O(\/a_R-). An experimental
investigation of developing flow in a curved pipe by Agrawal et al. (1978), using the
laser-doppler technique, indicated that the circumferential boundary layer separated
at the inner wall. With respect to the axial velocity development the experiraents

were in poor agreement quantitatively with the analysis of Yao and Berger (1975),
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but the qualitative agreement was good. An interesting feature discovered by
Agrawal et al. was that their uniform entry profile quickly developed into a
free-vortex-like flow. The development of a uniform profile to a potential vortex
immediately downstream was also shown in the numerical investigation of Yeung

(1980) for developing flow in the entry region of a curved pipe.

In the downstream region of O(v/aR) for large Dean number, it was believed
that the flow was characterized by a cross-flow that locally became stagnation-like
at the outer wall. This caused the secondary boundary layer near the outer wall
to remain thin and act as a reservoir receiving the fluid flowing towards the outer
wall. The nature of the secondary boundary layer near the inner wall as the flow
became fully developed was not clear, since the analysis of Barua (1963) had shown
the existence of boundary-layer separation, while other studies such as Collins and
Dennis (1975) showed no separation. In order to throw some light on the interaction
of the boundary layer with the core flow in the inner wall region, Stewartson et
al. (1980) performed a numerical analysis of the three-dimensional boundary-layer
equations. Their analysis assumed a free-vortex inlet condition, and was valid for

loosely coiled pipes as the Dean number approached infinity.

A major finding of Stewartson et al. (1980) was that in the developing flow
region the axial shear stress at the inner wall vanished at R = 0.943a/ V6, where a
is the radius of the pipe, R is the radius of curvature, 8 is the angular position from
the inlet and § = a/R is the curvature ratio. Given their findings, they conjectured
that the two secondary boundary layers collided at the inner wall and formed a
radial jet conveying fluid from the inner bend to the outer core. Talbot and Wong
(1982) experimentally examined the nature of this boundary layer collision using
an electrochemical technique to measure the axial shear stress at the inner wall.

Talbot and Wong found that their measured shear stress dipped to a minimum at
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the proposed singular point, but did not vanish even though they observed a trend of
decreasing axial shear with increasing Dean number. Their experimental results were
in good agreement with the analytical predictions of Stewartson et al. upstream of
the collision point, but agreement was poor downstream. Axial shear measurements
by Kluwick and Wohlfart (1986) showed the same quantitative trend as the data of
Talbot and Wong, but their values were consistently higher. They attributed the
discrepancy to the fact that their shear stress values were not as accurate because
they were estimated from hot wire measurements of the boundary-layer velocity

profiles.

Numerical simulations of the flow development in a curved pipe using the full
three-dimensional Navier-Stokes equations were performed by Soh and Berger (1984)
and Humphrey et al. (1985). Soh and Berger used a fully elliptic formulation of the
governing equations, while Humphery et al. used a semi-elliptic truncation of the
equations allowing a finer numerical mesh. A free-vortex inlet condition was used
by Soh and Berger while a uniform injection velocity was used by Humphery et al..

The same two curvature ratios, 7:1 and 20:1, were investigated in both studies.

Soh and Berger (1984) observed that secondary flow separation occurred at the
inner wall in the developing region, but disappeared by the time the flow had become
fully developed. They found the location of the separation region and magnitude
of the secondary flows to be greatly influenced by curvature. A minimum in axial
shear stress was observed at the inner wall but it did not vanish. In agreement
with the experimental results of Talbot and Wong (1982), they observed a trend of
decreasing axial shear stress near the proposed singular point as the Dean number
was increased. This observation is consistent with the fact that the singular point
is predicted for an analysis that assumes the Dean number approaches infinity. The

computed axial velocity profiles of Soh and Berger were in good agreement with the
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experimental measurements of Agrawal et al. (1978).

Streamwise velocity profiles computed by Humphrey et al. (1985) were in
excellent agreement with the measured results of Agrawal et al. (1978). Less
favorable agreement between computed secondary velocities and experimental
measurements were attributed to the inherent difficulties in making the
measurements. Consistent with the findings of Soh and Berger (1984), the numerical
results of Humphrey et al. indicated a gradual approach towards the behavior of
the shear stress predicted by Stewartson et al. (1980) as the Dean number was
increased. Humphrey et al. also observed that the axial shear stress downstream of
the minimum displayed a damped oscillatory behavior, with the amplitude of the

oscillations increasing with increasing Dean number.

Yao and Berger (1988) investigated the developing flow in curved pipes with finite
curvature using a three-dimensional boundary-layer approach. The boundary-layer
equations were solved numerically to investigate the developing flow for non-zero
curvature ratios, a = a/R. They found that the series solution of Singh (1974) was
valid only for a < 0.1 and R8/vaR < 0.1, where a is the radius of the pipe, R is
the radius of curvature and 4 is the angular position from the inlet. Yao and Berger
also discovered that the crossover location of the axial shear stress, from the inner
to the outer wall, strongly depended on a and that the crossover location moved
downstream as « increased. No crossover was predicted for the limit of a = 0. Their
analysis also revealed that the crossover phenomena was strictly a geometric effect

and not associated with the inlet velocity profile.

The boundary-layer solution of Yao and Berger (1988) showed that the location
of the singular point, where the axial shear stress vanishes, is dependent on the
curvature ratio a. For a = 0 they found good agreement with the location predicted

by Stewartson et al. (1980). They also found that for a < 0.5 the separation point
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moved towards the pipe inlet as a was increased. A similar trend was observed
for curvature ratios up to @ = 0.2 in a boundary-layer analysis by Kluwick and
Wohlfart (1984). For a > 0.5 Soh and Berger observed that the separation point
moved downstream as a was further increased. Excellent agreement was observed
between their prediction and the experimental axial shear stress data of Talbot and

Wong (1982) for a curvature ratio of a = 1/7.

2.4 Developing Flow in Curved Ducts of

Rectangular Cross Section

Compared to developing flow in curved pipes, little work has been done on
developing flow in curved ducts of rectangular cross section. Of the work that
has been done, the focus has been on the numerical and experimental analysis of
developing flow in square cross sections. No analytical work has appeared in the
literature. The most probable reason for this is the inherent difficulty of treating

the singular points at the duct corners in a boundary-layer analysis.

The earliest numerical investigation of developing flow in a curved duct of
rectangular cross section was performed by Ghia and Sokhey (1977). Starting with
a uniform entry profile, they investigated the effect of aspect ratio (i.e. height of
duct divided by width of duct) and curvature ratio (i.e. radius of curvature divided
by hydraulic diameter) on the development of axial velocity profiles. In the fully
developed region, they found that as the aspect ratio decreased the maximum axial
velocity increased with a simultaneous outward shift in the location of the maximum.
Maintaining a constant Dean number while varying the curvature ratio, Ghia and
Sokhey found a small variation of the axial velocity profiles in the fully developed

region. The aspect ratios and curvature ratios investigated in their study were 0.5,
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1.0, 2.0 and 100, 14, 3 respectively.

For a curved duct of square cross section Ghia and Sokhey (1977) investigated
the flow development as the Dean number was increased. They found that for
a small Dean number (Dn = 55) the flow developed into a two-vortex pattern,
while for a larger Dean number (Dn = 210) the flow developed into a four-vortex
pattern. On further investigation they discovered that the critical Dean number for
the appearance of the four-vortex flow was at Dn = 143. Conducting a numerical
experiment, they also showed that the entrance length, Rf, to reach fully developed
flow increased as the Dean number was increased. In their numerical experiment

they held the Reynolds number constant and changed the curvature ratio to change

the Dean number.

A combined experimental and numerical study of the laminar flow development
in a square duct of strong curvature (curvature ratio, R/dy = 2.3), starting from a
fully developed straight section profile, was performed by Humphery et al. (1977).
Laser-doppler measurements of axial velocity in the 90° bend confirmed that the
maximum velocity shifted towards the outer wall as the flow developed. Only the
two-vortex flow was observed in the experiments. Numerical predictions of the
developing axial velocity profiles showed the same trends as the measured profiles.
Discrepancies were attributed to the available computer time and storage which
limited the number of node points in the fully elliptic finite difference formulation.
The calculations also revealed that the secondary flow, with velocities of up to
15% of the mean, was already established at the 0° inlet plane. Small regions of
flow recirculation in the axial direction were revealed by the numerical calculations
and later confirmed by flow visualization. The recirculation regions, which were
caused by the adverse pressure gradient along the outer wall, occurred close to the

outer corners of the duct. As mentioned earlier, this behavior was also observed by
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Humphery (1978) in a pipe of strong curvature.

An extension of the work of Humphery et al. (1977) was carried out by Taylor
et al. (1982). Their curved section was identical to Humphery et al.’s with only
the length of the upstream and downstream tangents being different. They used
a shorter upstream entrance section to provide an inlet profile to the bend with
a smaller axial boundary layer (i.e. not fully developed) for the same Reynolds
number used by Humphery et al.. They observed that the different inlet profile
affected the flow development in the bend, with the largest difference occurring in
the first half of the bend. Laser-doppler measurements of the radial component of
the secondary flow revealed secondary velocity maxima of 60% of the mean velocity.

Only the two-vortex flow pattern was observed in this work.

A numerical study of the developing flow and heat transfer in strongly curved
ducts of rectangular cross section was performed by Yee et al. (1980). They
numerically investigated ten cases of flow development for different wall heating,
inlet temperature, inlet profile, curvature ratio and aspect ratio. In order to test
their calculation procedure for flow development, they numerically simulated the
axial velocity measurements of Humphery et al. (1977). Using both elliptic and
parabolic formulations of the governing equations, Yee et al. found the elliptic
results to be in better agreement with the experimental data. Even though a finer
numerical mesh could be used with the parabolic formulation, it lacked the ability
to provide as accurate results because of the strong curvature effects. According to
Yee et al., the decoupling of longitudinal pressure links in the parabolic formulation
leads to an inaccurate determination of the pressure, which, in turn, affects the
development of the axial velocity. Even though the flow field was parabolic in
that it contained no flow reversals, the ellipticity in the pressure field could not be

neglected.
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The most detailed set of velocity measurements in a curved duct of rectangular
cross section have been presented by Hille et al. (1985) for a 180° bend of a square
cross section with a curvature ratio of R/dy = 6.45. A fully developed straight duct
flow was created at the inlet to the curved section by using a 2 m long straight section
fitted with a calming chamber and a honeycomb grid at its upstream end. Axial
and radial velocities were measured as a function of Dean number and axial duct
position using a laser-doppler anemometer. In their axial velocity measurements
Hille et al. observed the characteristic transfer of momentum towards the outer wall
between § = 0° and § = 60°. A partial back-transfer of momentum towards the
duct center was observed between 8 = 45° and 8 = 108°, with little further change

of momentum near the outer wall after § = 108°.

Measurements of the radial velocity component by Hille et al. showed the
existence of a four-vortex structure at Dean numbers between 150 and 300. The
additional pair of vortices developed near the outer wall in the region between
6 = 108° and @ = 171°. It was not possible for them to identify the existence of
the additional vortices between § = 60° and § = 108°. From a full two-dimensional
measurement of the secondary velocities at § = 136°, it was observed that the
additional pair of vortices near the outer wall were asymmetric. Experimentally
determined stream functions of the second vortex pair revealed that their strength
was still increasing when the end of the 180° bend had been reached. Using published
results of fully developed vortex strengths, Hille et al. conjectured that 220° of

development length would have been required to reach fully developed flow in their
experiment.
According to Hille et al., the Dean number at which the additional vortex pair

first occurred in their work (Dn = 150) was in good agreement with the numerical

result of Ghia and Sokhey (1977) (Dn = 143). Even though Hille et al. observed a
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four-vortex flow they did not observe any region of dual solutions. They believed that
dual solutions might only be reached by using large perturbations which involved
not just the developed flow but the developing flow region as well. Thus, having
found no evidence of the existence of dual solutions, Hille et al. concluded that
the question as to whether the flow structure was subject to a bifurcation remained

unanswered.

Sankar et al. (1988) numerically investigated the flow development in curved
ducts of square cross section using a parabolized and time-independent formulation
of the three-dimensional Navier-Stokes equations. Starting from a fully developed
straight duct inlet profile, they investigated the flow development at three Dean
numbers (50, 100, 200) for three curvature ratios (R, = R/a = 4, 10, 100, where
R is the radius of curvature and a is the duct width). For R, = 4 and 10, and up
to Dn = 200, they found that the flows developed into the previously known two
and four-vortex states. However, for a curvature ratio of R, = 100 and Dn > 125,
they observed that sustained oscillations developed in the axial direction. They
performed grid refinements and concluded that the observed spatial oscillations were

not a numerical artifact.

In order to reconcile the appearance of symmetric and axially invariant four-
vortex flows for R, = 4 and 10 with the conclusion of Winters (1987) that two
dimensional symmetric four-vortex flows were unstable, Sankar e al. introduced
symmetric and asymmetric perturbations at their inlet. In order to simulate a
symmetric or asymmetric disturbance, axial velocities at 5° downstream of the inlet
were set to zero along symmetric or asymmetric lines extending from the duct outer
wall to its center. For R. = 4 and Dn = 200, Sankar et al. observed that a
symmetric perturbation resulted in a symmetric four-vortex flow that was axially

invariant, but an asymmetric perturbation resulted in a sustained oscillation in the
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axial direction. They concluded that this behavior was consistent with Winters

result that four-vortex solutions were unstable to asymmetric perturbations.

Developing flow in a curved duct of square cross section was also studied
numerically by Soh (1988). He used a factored ADI finite-difference method on a
staggered grid to solve the fully elliptic time-independent Navier-Stokes equations.
Starting with an inlet condition of either a fully developed straight duct flow or a
free vortex, he followed the flow development around a 180° bend with a curvature
ratio R/a = 6.45. Both developing flows were calculated for a Dean number
of Dn = 226. Soh observed that the flow developed into quite different states
downstream depending on the inlet condition. For the free-vortex inlet the flow the
flow appeared to develop to a four-vortex flow. The flow was not fully developed by
the end = the 180° bend, but the additional pair of vortices was quite evident. For
the fully developed straight duct inlet, the flow appeared to develop to a state with
a primary vortex pair and a weaker vortex pair at the outer wall. Recalculating
this inlet condition case for a duct of 240°, Soh found that the solution remained
the same for the additional 60° of duct length. Solving the two-dimensional Navier-
Stokes equations for fully developed flow, Soh conjectured that with the appearance
of dual solutions, the developing flow becomes fully developed along either of the
two branches into which the solution is bifurcated. The free-vortex inlet develops
into the four-vortex fully developed solution, while the fully developed straight duct
inlet develops into some other state. Soh had imposed a symmetry condition when
he calculated the fully developed solutions, so he only calculated a symmetric four-
voriex solution at a Dean number of Dn = 226. Given that Winters (1987) had
calculated an asymmetric solution branch, plus the fact Hille et al. (1985) observed
a weak asymmetric vortex pair near the outer wall, led Soh to believe that the fully

developed inlet case could develop to a state that was asymmetric far downstream.
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Soh also conjectured that the flow far downstream might evolve into a flow that was

periodic in the axial direction.

2.5 Summary

The major focus of this chapter was to review the literature on fully developed
and developing flow in curved ducts of both circular and rectangular cross section.
For fully developed flow in a curved pipe, the numerical studies of Yang and Keller
(1986), Nandakumar and Masliyah (1982), and Dennis and Ng (1982) revealed the
existence of dual solutions. Flow visualization by Masliyah (1980) and Cheng and
Yeun (1987) confirmed their existence in a curved pipe of semicircular and circular
cross section respectively. A stability analysis of the dual solutions, performed
by Yanase et al. (1988), showed the two-vortex flow to be stable to an arbitrary
perturbation, while the four-vortex flow was stable to a symmetric perturbation but

unstable to an asymmetric perturbation.

For fully developed flow in a curved duct of square cross section, the r.umerical
study of Winters (1987) showed the solution structure as a complex bifurcation
diagram involving regions of multiple solutions consisting of symmetric and
asymmetric solutions. Similar to the case of the curved pipe, a linear stability
analysis by Winters also revealed that the two-vortex flows were stable to an
arbitrary perturbation, and the four-vortex flows were stable to a symmetric
perturbation but unstable to an asymmetric perturbation. Even though fou. - rtex
flows have been visualized by Cheng et al. (1977) and Sugiyama et al. (1983), the
experimental confirmation of the dual solutions in a rectangular cross section has

not appeared in the literature.

The majority of the theoretical studies of flow developraient in a curved pipe
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have used a boundary-layer analysis to examine the details oi the developing flow.
In contrast, the inherent difficulty in applying a boundary-layer analysis to a
rectangular cross section has resulted in all the theoretical work on this geometry
being numerical (i.e. numerical solution of the Navier-Stokes equations). Theoretical
investigations in a curved pipe have only shown the development of a two-vortex flow,
while the numerical studies in a rectangular geometry have shown the development
of both a two-vortex and four-vortex flow. For both a circular and rectangular cross
section, no experimental measurements exist for the development of a syrametric

four-vortex flow to its fully developed state.

The most detailed measurements of the flow development in a curved duct of
square cross section were performed by Hille et al. (1985). Their measurements
revealed the development of an asymmetric four-vortex structure at Dean numbers
between 150 and 300, but the flow had not reach a fully developed state within the
180° axial length of their duct. In a numerical study of the flow development in a
curved duct of square cross section, Sankar et al. (1988) found that it was possible
for a four-vortex flow to develop sustained spatial oscillations in the axial direction.
A numerical study by Soh (1988) showed that the flow might develop into quite
different states downstream depending on the inlet condition. Soh conjectured that
for the two inlet conditions, the flow might develop to the two branches into which
the fully developed solution bifurcates. However, due to the short development

length used in his calculations, his results are not conclusive.

After considering the work done on the developing and fully developed flows
in curved ducts it can be seen that there still exists some unresolved issues. In
the case of fully developed flows in a curved duct of square cross section it is still
to be determined experimentally if dual solutions exist. The existence of four-

vortex flows has been shown both nurnerically and experimentally, but there are
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no detailed measurements of the development of a symmetric four-vortex flow to its
fully developed state. If four-vortex flows are unstable to asymmetric perturbations,
what happens to them as they are allowed to evolve in the downstream direction?
Given the flow development observations of Hille et al. (1985), Sankar et al. (1988)
and Soh (1988), how do they relate to the fully developed solution structure that
has been presented by Winters (1987)? The present study was performed with these

issues in mind.
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Governing Equations

A square cross section curved duct is best described by a cylindrical coordinate
system as shown in figure 3.1. The origin of the coordinate system is at the center of
curvature of the duct, and the duct boundaries are located at —a/2 < 2’ > a/2 and
R —a/2 <t > R+ a/2. By introducing the coordinate z', where z' = r' — R, the

side boundaries of the duct can more conveniently be located at —a/2 < =’ > a/2.

In cylindrical coordinates the velocities v{, v and v; are in the radial, axial
and tangential directions respectively. However, to avoid confusion with existing
literature, terminology will be used that is not completely consistent with a
cylindrical coordinate system. The secondary velocity components v, and v;, in the
plane perpendicular to the main flow, will be referred to as the radial and vertical
velocities respectively. This does not create any confusion, but an inconsistency
arises when the term, “axial velocity”, is used to refer to the velocity in the primary
flow direction. In the cylindrical coordinate system the primary velocity is actually
in the tangential direction and not the axial direction. The reason “axial velocity” is
used for the primary flow is because, in the analysis of curved pipe flow, which uses

a toroidal coordinate system, the primary velocity is truly in the axial direction.

36
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Figure 3.1: Cylindrical coordinate system.
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Curved pipe flow analysis has set the precedent on how the velocity components
are referred to, therefore, in order to maintain consistency, “axial velocity” will be
used to mean the velocity perpendicular to the secondary flow plane containing the

radial and vertical velocities.

In this study it was desired to investigate the flow development and the flow
structure once the flow had reached a fully developed state. In order to calculate
the flow development, the three-dimensional (3-D) Navier-Stokes equations need
to be solved. However, fully developed solutions require the two-dimensional (2-
D) Navier-Stokes equations to be solved. Therefore, a numerical formulation of
both the two-dimensional and three-dimensional Navier-Stokes equations were used
in this study. The three-dimensional computer code used in this study had been

developed by Sankar et al. (1988), and the two-dimensional code had been developed
by Shanthini (1985).

3.1 Developing Flow Equations

In order to track the flow as it developed, it was necessary to solve a three-
dimensional formulation of the Navier-Stokes equations. The most accurate solution
would have required a full elliptic formulation, but due to available computing power,
this would have severely limited the number of simulations that could have been
run. In order to work around this problem, the equations used in this study had
been simplified by neglecting the axial diffusion of momentum. This changed the
equations from an elliptic form to a parabolic form which was much easier to solve.
The non-dimensional parabolized Navier-Stokes equations for a steady flow of an

incompressible Newtonian fluid are:
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The variables have been non-dimensionalized as follows
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where the prime denotes dimensional quantities.

The above equations were solved using the computer code of Sankar et al. (1988).
Their formulation did not impose any reflective symmetry about the z'/a = 0.0
axis, therefore, it allowed for the evolution of asymmetric flows in the 8 direction.
The equations were discretized by integrating them over a control volume and
solved according to the method given by Patankar (1980). For all developing flow

calculations, a grid of 31 x 31 was used in the cross plane and a marching step of
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0.5° was used in the axial direction. Typical computing times, in order to march
400° of axial length (i.e. 800 marching steps), were 1.2 hours of cpu usage on a

FPS-164 Scientific Computer (Floating Point Systems Inc.).

The terms that were dropped from the full three-dimensional steady flow

equations in Sankar et al.’s formulation were

1 @ 1 J%, 1 Q% 2 _3&
Rer? 96?2’ Rer? 062’ Rer? 86%° Rer? 36

The terms are multiplied by 1/Re and 1/r?, therefore, they will become less
important as Re and the radius of curvature increase. It is not shown in Sankar
et al., but on a careful examination of the details of their numerical formulation

(Sankar et al. private communication), the gradient of v, in the  direction was also

neglected.

3.2 Fully Developed Flow Equations

For the two-dimensional formulation of the Navier-Stokes equations, all the terms
involving gradients in the axial direction, except for the axial pressure gradient, were
dropped. As a result, the governing equations for fully developed steady flow of an
incompressible Newtonian fluid are:
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momentum in z direction
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The equations have been non-dimensionaiized as follows
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where the prime denotes dimensional quantities.

Equations 3.6 through 3.9 can be transformed to a vorticity stream-function
formulation by introducing a dimensionless stream function and vorticity function.
The dimensionless stream function which automatically satisfies continuity is

determined by

10y 10y
U= 1oz Vs = T or (3.10)
the dimensionless vorticity function is defined as
ov, Ov,
=% o (3.1)

Substituting equation 3.10 into equation 3.11 results in the vorticity stream-function

equation

Py Py 100 a2

or? + 022 rOr
Using equation 3.11, the radial and vertical momentum equations can be combined

to eliminate the pressure terms and form the vorticity-transport equation

an N v —2u0vs 920 d* 199 0
""67 +vz-3—z. T r T T r 08z + r2 ' 922 ' ror r (3.13)

The axial momentum equation remains as

3v9 ava Ve Vg _ lap 6’vg azva 1 ava Ve \
”'ar +”‘az r _—;.3_04“874- 022 +rar T2 (3.14)
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The solution to the two-dimensional flow field can novr be found by solving equations

3.12, 3.13 and 3.14.

For a square duct, the boundary conditions with imposed symmetry about the
horizontal centre line are

no slip at the walls

at the top wall

19%
=l
at the side walls
19%
& T ror?
along horizontal centre line
Ovg _ Ov, _
p=0= 9z 9z 0

The equations were solved using the computer programs written by Shanthini
(1985). In her formulation equations 3.12, 3.13 and 3.14 were discretized using
a three-point central-difference approximation. The imposed symmetry about
z'/a = 0.0 did not allow any asymmetric solutions to be calculated. A grid of 41x21
was used in all of the two-dimensional calculations performed in this study. Typical
computing times for one two-dimensional simulation were four to five minutes of

cpu usage on the FPS-164 Scientific Computer.

3.3 Definition of Dean Number

The non-dimensional equations of motion for the developing and fully developed

flow used in this study are not characterized by a single non-dime 1sional parameter.
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In the developing flow equations the Reynolds number and radius of curvature
appear as separate parameters. Similarly, in the fully developed flow equations the
axial pressure gradient and radius of curvature appear as separate parameters. Only
with the loose coiling approximation would these individual parameters collapse into
one parameter. Even though the equations are not characteri:. ! by a single non-
dimensional parameter, it is common practice to present results characterized by a

non-dimensional Dean number.

The Dean number, Dn, used throughout this study, was defined as

Re
VR,

This Dean number is similar to Dean’s (1928a) non-dimensional grouping which

Dn = (3.15)

included a curvature ratio and a slightly different form of Reynolds number. The
Dean number is a ratio of the inertial and centrifugal forces to the viscous forces.
Secondary flows are a result of the interaction of the centrifugal forces with the
viscous forces, so the Dean number is a measure of the strength of the secondary
flow. Many definitions of Dean number have been used in the analysis of curved

ducts and a review is given by Berger et al. (1983).

3.4 Comparison of Fully Developed Solutions
from 3-D and 2-D Codes

One way of checking the integrity of a numerical simulation is to compare it to
the result of an independent numerical simulation. The two and three-dimensional
simulations should give the same result in a region where a fully developed symmetric
solution exists. In figures 3.2 and 3.3 the two-dimensional solution for Dn = 125 is

compared to the axially invariant result of the three-dimensional simulation at the
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same Dean number. For both the radial and vertical profiles of axial velocity the

results of the two simulations differ by less than 0.5%.

Figures 3.4 and 3.5 show a comparison of the two-dimensional and axially
invariant three-dimensional solution for Dn = 150. From figure 3.4 it is seen that
the two-dimensional simulation predicts values that are about 2-4% lower than the
three-dimensional simulation in the region of 0.15 < 2’/a > 0.4. As a result of
continuity, the two-dimensional values in the flat region of the vertical profile in
figure 3.5 are about 0.7% higher than the three-dimensional simulation predictions.
The cause of this discrepancy is likely due to the different grid spacings used in the

cross plane for the two-dimensional and three-dimensional simulations.
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Figure 3.4: Comparison of two and three-dimensional simulations of axial
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Chapter 4

Experimental System

The purpose of this study was to experimentally investigate the developing
and fully developed flow in a syuare cross section curved duct. The investigation
consisted of measuring axial flow velocities and visualizing the corresponding
secondary flow structure at various axial locations throughout the duct. Design of
an experimental apparatus with water as the working fluid, and the developmen:
techniques to measure velocities and visualize the flow composed the main parts
of the experimental study. Flow velocities were measured with a laser-doppler
velocimeter (LDV). Flow visualization was accomplished by illuminating a cross
section of the duct with a thin sheet of laser light and then injecting fluorescent dye
into the flow. Careful attention to detail was required in all areas of the experimental

system tc ensure that reliable results would be obtained.

4.1 Experimental Apparatus

A schemctic of the curved duct apparatus is shown in figure 4.1. ‘The curved

duct section had a 1.27 cm square cross section with an axiai length uf 270° and a

47
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Figure 4.1: Schematic of curved duct apparatus.
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curvature ratio, R, = R/d,=15.1. A stilling chamber, with a smooth contraction
connected to a 1 m straight duct i+ 'et section, was used to provide a well controlled
inlet profile to the curved section. A 10 cm long by 1.9 cm diameter straight pipe
was fastened directly to the exit of the curved section. A tee connection fastened
to the end of the straight pipe was fitted with a flexible tubing coupling and an air

bleed valve.

The curved section, inlet section and stilling chamber were all made of plexiglass
to facilitate LDV measurements and flow visualization. The assembly was mounted
on a platform that allowed rotation about the center of the curved section and the
ability to traverse vertically and horizontally. Due to physical limits in the amount
that the assembly could be rotated, only about 240° of axial length was accessible
for measurement purposes. Traversing of the apparatus was necessary because the

LDV optics were held stationary.

In order tc grovide a steady flow rate, a constant head system consisting of
stainless steel overflow tanks positioned above and below the apparatus was used.
The distance between water levels in the two overflow tanks was approximately 3.5
m with the apparatus being about 0.5 m higher than thc lower tank. A reservoir
with a centrifugal pump supplied the upper overflow tank, while the lower overflow
tank would return to the reservoir or drain depending on if the system was run as
a closed or opened loop. Two bleed valves, one located on the stilling chamber and
the other at the exit of the curved section, were installed to allow air to be purged
from the system. A set point temperature controller was used to keep the working
Auid at a constant temperature. A constant temperature working fluid was required
when measuring velocities in the closed system or injecting dye in the open system

configuration.

Two Brocks 60v m: Full-View Model 6-1110-24 rotameters, each with a
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maximum flow rate capacity of 0.7 liters/min, were used to aid in the setting of
a desired flow rate. Since all flows investigated were below 0.7 liters/min, only
one rotameter was used to set flow rates. The mass flow rate for a given run was
determined by weighing the amount of water collected in a timed interval. Timing
was done with a hand held digital stop watch with a resolution of 0.01 s, and the

sample was weighed on a Mettler PC 8000 electronic balance accurate to 0.1 g.

4.1.1 Construction of Experimental Apparatus

A photograph of the experimental apparatus and LDV system is shown in
figure 4.2. The curved section was manufactured from a 3.3 cm thick block of
plexiglass that had been machined into a circular disk. The top, bottom and inside
walls of the 1.27 cm square channel were formed by machining a rectangular grove
into the edge of the disk. A 3.3 cm wide and 1.5 mm thick sheet of plexiglass was
glued around the edge of the disk to form the outer wall of the duct.

At 5° from the curved section inlet, three holes were drilled along radial lines
through the outer wall to allow a 0.4 mm diameter pin to be inserted across the duct.
The holes were drilled at z'/a = 0.0 and 2’/a = £0.25. A rubber seal, through which
the pin could be inserted, was placed over the holes to ensure that no leakage would
take place. In order to allow for a slight adjustment of the pin’s vertical position,
two small bends (i.e. a few degrees) were made in the pin to create a straight
section that was offset from the pin’s axis (i.e. resembling a crank). The bends
were positioned to coincide with the location of the pin’s guiding hole when the pin
had been inserted across the duct. When the section of the pin that was outside of
the duct was rotated, the section that was inside the duct would experience vertical
movement. The purpose of the pin was to allow the introduction of symmetric and

asymmetric perturbations into the flow.
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Figure 4.2: Photograph of experimental system showing curved duct apparatus,
LDV system and fiber optic laser light sheet.
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The 1 m straight channel section was constructed by machining a rectangular
grove into the larger section of a 5 cm diameter plexiglass rod that had been split
along its axial length. The rod had been split 0.635 cm above the centerline of
its cross section. The grove, which formed the bottom and two side walls of the
square channel, was machined such that its center coincided with the center of the
circular rod. The smaller section of the plexiglass rod was glued back onto the larger
section to form the top wall of the duct. Each end of the rod was machined to a
diameter of 4.0 cm and two O-rings installed to form the male ends of a leak proof
coupling with the female ends on the curved section and stilling chamber. The rod
was fastened to a 2.5 cm wide by 5.5 cm high section of aluminum along its length
to maintain straight alignment. At 6.5 cm upstream of the curved section a port

hole was machined into the side of the straight channel to allow measurement of the

inlet flow profile.

In order to facilitate dye injection, a 0.4 mm diameter hole was drilled through
the top wall of the straight section duct at 9.3 cm from the end which was connected
to the stilling chamber. A fitting installed on the straight section allowed dye to be

supplied by a 1 mm inside diameter tygon tube.

The stilling chamber was manufactured from 1.2 cm thick plexiglass sheet. Each
end of the chamber was made to detach allowing the insertion of screens and flow
straighteners. Holes, fitted with leak proof fittings, were drilled in the top of the
chamber to hold a thermometer and a thermocouple. An elliptic shaped contraction
that fed the straight section was fastened to the detachable front end of the stilling
chamber.

The curved section, straight section and stilling chamber were all mounted on a

1.3 cm thick aluminum plate that had been stiffened by the addition of a 7.6 cm wide
by 3.8 cm high by 0.5 cm thick channel section along its length. The curved section
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end of the base plate was bolted to a rotary table mounted to a horizontal-vertical
traverse. The rotary table had markings with a resolution of 1°, while the resolution
of the traverse was 0.025 mm in each direction. In order to allow vertical traversing
and rotation of the entire apparatus, the stilling chamber end of the base plate
was supported by a counter weight mechanism mounted on wheels. The respective
dimensions of the stilling chamber, straight section and curved section are shown in

a detailed schematic in figure 4.3.

4.1.2 Design of Inlet Section

The inlet section of the curved duct apparatus consisted of the stilling chamber
and the 1 m long straight section. Careful attention was paid to the design of
these two components to ensure that a well behaved flow was present at the inlet
of the curved section. One major aspect of this study was to investigate the effect
of perturbations on the curved duct flow, so a stable and clean inlet condition
was absolutely necessary. A fuily developed straight duct flow was chosen to be
the inlet profile to the curved section. A 1 m straight section was used, based
on the measurements of Goldstein and Kreid (1967). Using their experimentally
determined relation of, L/dy, = 0.09Re, where L is the development length, d, is
the hydraulic diameter and Re is the Reynolds number, a 1 m length of duct would
provide a fully developed inlet profile up to a Dean number of, Dn = 225.

In order to ensure that the profile would develop properly in the straight duct, a
stilling chamber with a contraction was used to feed the straight section. A detailed
schematic of the stilling chamber is shown in figure 4.4. The major components of
the chamber are two fine meshed screens, a flow straightener and a contraction. The
four curved surfaces of the contraction are quarter ellipses with minor and major axis

of 2.5 cm and 5.0 cm respectively. This results in a contraction with a contraction
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Figure 4.3: Schematic of stilling chamber, straight section and curved section
showing their respective dimensions.
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Figure 4.4: Detailed schematic of stilling chamber.
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ratio, based on area, of 25 to 1. The quarter ellipse, based on the experimental
system of Beavers et al. (1970), was chosen 1o provide a uniform entry profile to

the straight section.

The elliptic shaped contraction was constructed by first machining the desired
curve into one side of a plexiglass block. The block was cut at 45° into four identical
V-shaped sections and the pieces were glued together to form the contraction. The

resulting contraction had the elliptic shape in each duct wall.

In order to eliminate the development of swirl within the stilling chamber, flow
straighteners were installed in the 90° elbow feeding the chamber and in the chamber
itself. The downstream section of the 1.9 cm diameter 90° elbow was packed with
6.0 cm long and 0.3 cm o.d. stainless steel tubing. The flow straighter in the stilling
chamber was constructed from plastic drinking straws, 0.8 cm in diameter and 7.5

cm in length, packed together to fill the cross section of the chamber.

A 3 cm diameter piece of mesh screen was used as a deflector to distribute
the jet of fluid that entered the chamber from the 90° elbow. Fine mesh screens,
with 0.110 mm wire diameter and 0.149 mm openings, were placed on each side
of the stilling chamber flow straightener to help distribute the fluid throughout the
chamber cross section and reduce the scale of any motions. The mean residence time
of the fluid, to travel from the screen located downstream of the flow straightener
to the contraction, was about 15 to 20 minutes depending on flow rate. This length
of time should have been sufficient for any remaining small scales in the chamber to

have been dissipated by viscosity.
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4.1.3 Temperature Control

In order to eliminate the masking of centrifugally driven sccondary flows by
buoyancy driven secondary flows, temperature control was essential. Temperature
control was also necessary to keep the viscosity of the working fluid constant.
Therefore, a set point controller was used which held the temperature of the working

fluid at 23.1°C £0.1°C.

The set point control mechanism consisted of a temperature sensor, a 500 W
quartz glass heating rod, a 5 turn 25 cm diameter cooling coil (constructed from
0.95 cm diameter stainless steel tubing) connected to the tap water supply, and a
motor driven stirrer. All of these components were placed in the reservoir of the
curved duct apparatus. The temperature sensor and heating rod were connected to
a relay that energized the heater in response to the set point temperature of the
sensor. The purpose of the cooling coil was to offset the heating of the working
fluid by the pump (= 35 W), and to provide sufficient heat loss to maintain proper
controlling action of the heater. In order to compensate for the fiuid lost from the
system when an open system was used, a Haake model FS constant temperature
bath connected to an external water source supplied the reservoir with fluid at the

set point temperature.

The water temperature was monitored in the stilling chamber where the fluid
first entered. A Fisherbrand 15-000A glass thermometer with 0.1°C resolution was
used to measure the absolute temperature while a copper-constantan thermocouple
connected to a chart recorder was used to monitor the temperature variation with
time. The glass thermometer was calibrated in a celibration bath against a Fluke
2189A platinum resistor digital thermometer accurate to 0.01°C. Accurate absolute

temperature was required for the estimation of the working fluid viscosity.

According to Hille et al. (1985), for a Rayleigh number, Ra = 10000, buoyancy
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effects can cause secondary velocities with a magnitude of 1% of the mainstream
velocity when Reynolds number, Re > 400. Their estimate of the buoyancy
effects were based on published results for straight and curved pipes, and straight
rectangular ducts. The Rayleigh number, Ra, which is essentially a ratio of buoyancy
forces to viscous forces is given as

_ gBdAT

va

Ra (4.1)

where: g = gravitational acceleration
B = coefficient of thermal expansion
d;, = hydraulic diameter
AT = temperature difference
v = kinematic viscosity
a = coefficient of thermal diffusivity

In order to maintain the Rayleigh number under 10000 in this experiment, it
was required that temperature gradients in the working fluid be kept below 0.25°C.
Temperature control was more than adequate, so the only concern was to keep the
working fluid at room temperature to avoid any convective currents caused by heat

transfer from the surroundings.

On average the room temperature was typically 23.0°C with variations of
40.5°C. The apparatus was not insulated because, for the flow rates used, a
temperature difference of 0.5°C between the working fluid and room temperature
resulted in a temperature difference between the reservoir and outlet overflow tank
of less than 0.1°C. This negligible temperature difference, indicating insignificant
heat transfer from the surroundings to the working fluid, can be attributed to the

low thermal conductivity of the plexiglass and high specific heat capacity of water.

On very hot summer days the room temperature could continually climb,

becoming as high as 25.0°C. During these days, the temperature difference between
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the reservoir and outlet overflow tank would also continually climb becoming even
greater than 0.25°C. To avoid questionable results data was not collected on these

days.

Another seasonal variation that affected the collection of data was the
temperature of the tap water supply feeding the cooling coil in the reservoir. Given
enough hot days in succession, the temperature of the tap water supply could become
greater than the set point temperature (23.1°C') making temperature controlling
impossible. The tap water source was typically around 8.0°C during the winter and
22.0°C during the summer. Cooling water flow rates ranged form 0.3 liters/min in

the winter to around 1.0 liters/min in the summer.

4.2 Velocity Measurements

The flow velocity was measured with a single component Argon-ion laser-
doppler velocimeter (LDV) operating in backscatter mode with a frequency tracker
performing the signal processing. The system was composed of Dantec 55X modular
optics with a 80 mm focal length front lens, a Bragg cell and a Dantec 55N10
Frequency Shifter. The frequency shifter was modified to produce shift frequencies
that were one-half of the orig:.nal specification values. This was done in order to
allow frequency shifting in the lowest range of the Dantec 55N20 Doppler Frequency
Tracker. A Coherent Innova 90-3 Argon-ion laser capable of 3 W output on all lines
was used as the lasing source. All velocity measurements were made using the blue

(488.0 nm) line with typical laser powers of 200 mW.

The probe volume, formed by the crossing point of the laser beams, is an
ellipsoid with the axis in the direction of the beams much elongated. For the optical

arrangement used in this study the probe volume had a diameter of 0.017 mm and a
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length of 0.12 mm. With a duct dimension of 1.27 cm this gave about 100 resolvable
points across the duct.

The technique of laser anemometry requires that there are suitable particles
suspended in the flow to generate adequ: e doppler signals. The veloci*ies that
are measured are the velocities of th rticles in the fiow, thereiora. accurate
measurement of the flow depends on closely the particles follow the finw. Given
that the particles have inertia their 1iotion will lag behind that of the fuid. Also,

the particles have a settliag velocity causing an additional velocity com; wnent in

the direction «f the gravity vector.

In order to estimate the dynamic response of a seeding particle and its settling
velocity, Stoke’s law can be used. Drain (1330) pp. 182-184, using Stoke’s law, has
derived a relationship for the time constant of a particle velocity given a step change

in fluid velocity. The relatiouship is given as

9 2
= 2ty (4.2)

Tp 9%

where: 7, = time constant

pp = density of particle

d, = diameter of particle

i = absolute viscosity
In this study the flow was seeded with irregularly shaped silicon carbide purticles
that had a mean diameter of 1.5 x 10-¢ m. With a particle density, o, = 3.2 x 10°
kg/m?® and fluid viscosity, p = 9.3 x 107* kg/m s, the dynamic response of the
particles were calculated to be, 7, = 1.7 x 107® s. Using Stoke’s law and assuming
that the particles can be treated as spheres, as was done in the previous calculation,
the settling velocity vas calcuiated to be 3 x 107® m/s. The time constant and

settling velocitics were so sma.: that the measured particle velocities were taken to

be the fluid velocities.
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4.3 Flow Visualization

Flow visualization was accomplished by illuminating a cross plane of the square
duct with a thin sheet of blue laser light and injecting a laser fluorescent dye into
the flow. As the dye passed through the plane illuminated by the laser light its
fluorescence was bright enough to allow photographs to be taken. Rhodamine 6G
(alsc known as Rhodamine 590) at a concentration of 1 x 10=3 M was used as the
Cye source. Rhodamine B and Fluorescein at similar molar concentrations were also

tried but did not give as bright of an illumination as the Rhodamine 6G.

4.3.1 Laser Light Sheet

Figure 4.5 shows the method used to create a sheet of laser light in a fixed z’ — 2’
plane. A beam splitter was placed in the beam path between the laser and LDV
optics to provide a laser beam at 90° to the original beam path. A precision mirror
was placed in the path of the 90° beam to direct the beam along a radial line of
the curved section. A 10 mm focal length cylindrical lens was then used to fan the
beam out into a 1.5 mm thick sheet of light. This method, which resulted in a light
sheet 20° upstream from the LDV measurement location, was usea for all of the flow

visualization photographs.

The maximum beam power that could be achizved ia the light = = was only
about 200 mW, even though the maximum laser output on the blue lin¢ was around
550 mW. The beam splitter, which was placed at 45°, provided a 65/35 split of the
incoming laser beam. The power split was not 50/50 as one would expect becau
the beam being emitted from the laser was circularly polarized rather than linearly
polarized. Circularly polarized iight was required for the LDV optics so that proper

polarization of the crossing beams could be maintained while rotating the op:scs.
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Figure 4.5: Schematic of fixed laser light sheet.
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A portable light sheet, utilizing fiber optic cable, was also developed so that the
flow structure could be observed in the axial direction without having to rotate the
experimental apparatus. Figure 4.6 shows a schematic of the fiber optic light sheet
which was directly modeled after the technique presented by Koga et al. (1987).
The basic principal of a fiber optic light sheet is to transport the laser beam by fiber
optic cable, and then re-collimate the beam at the output end and send it through

a cylindrical lens.

The input coupler of the portable light sheet was used to laun:h the incoming
laser beam into the core of the 250 um multi-mode fiber optic cable. The 40x
microscope objective on the input coupler was used to focus the incoming laser
beam to a point. In order to launch the beam into the fiber optic cable, adjustment
screws on the assembly holding the optical cable were used to position the cable end
at the f~-al point of the microscope objective. At the output coupler, the reverse
procedii:> was followed by placing the 40x microscope objective at the focal point
of the optical cable to produce a wide diverging beam. Two spherical lenses, with
focal lengths of 19.0 mm and 62.9 mm, were placed in the beam path to create a
converging beam that was then passed through the 10 mm fozal length cylindrical
lens. At the beam waist of the converging light source, a 1 mm wide and 2.5 cm

long sheet of light was produced.

4.3.2 Photographing Secondary Flows

As seen in figure 4.5, the curved section was fitted with a movable viewing
block that allowed photographs to be taken through a flat surface. A thin film of
water placed between the curved section and viewing block allowed a clear view of
the illuminated seciion. Tlie vicwing block was held in place by two elastic bands

stretched between the viewing block and support pins at the center of the curved
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section.

A typical photograph involved injecting a slug of dye into the upstream end
of the straight section and waiting for it to pass through the illuminated plane.
Approximately 1-2 cc of dye was injected by quickly turning on and off a syringe
pump fitted with a syringe containing the fluorescent dye. A momentary increase
in flow rate would occur due to the injection of the dye, but the fluctuation would
quickly die out having no effect on the photographed flow patterns. A photograph
was usually taken as the trailing end of the dye slug moved through the illuminated

plane, resulting in a clear view of the illuminated plane.

Flow patterns were photographed with a 35 mm Nikon SLR camera fitted with a
105 mm Nikon lens and a Nikon TC-200 2x teleconverter. A No. 12 Kodak Wratten
Gelatin filter was attached to the lens assembly to attenuate the blue light of the
illuminating sheet but still allow the light from the fluorescing dye to pass through.
Good separation of the two colors was achieved since the peak fluorescence of the
dye was around 580.0-600.0 nm (Yarborough, 1974), while the illuminating sheet
was at 488.0 nm. Typical exposure times were from 1/30 to 1/100 second with a
lens aperture of f4 and ISO (ASA) settirg of 800. P800/1600 Kodak Ektachrome
professional slide film was used because of its fast speed and fine grain size. When
taking photographs, stray reflections were minimized by covering the curved section

with black felt.

4.3.3 Digital Enhancement of Photographs

Digital enhancement of the photographed flow patierns was required to trim off
unwanted reflections and linearly stretch the photographs in the radial direction.
The different refractive indexes between water and air, and the refraction of light at

the curved surface interface between the viewing block and duct, caused the viewed
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image to be compressed in the radial direction. Reflections of the illuminated flow

patterns appeared around the duct boundary, but had no adverse effect on viewing

the desired image.

Photographs were digitized with the assisiance and equipment of Campbell
(1991). The technique consisted of ill:: -inating the image of the flow patterns
contained on a slide, and then capturing the image digitally with a Hitachi VKC360
video camera connected to a Data Translation 2871 digital frame grabbing board.
The resuiting digital images of the flow patterns had a resolution of 512 pixels in
the vertical direction and 480 pixels in the radial direction. When the digital images
were displayed on a VGA monitor, only 16 grey levels were available even though
the original images were digitized in black and white with an intensity level of 0 to

255 for each pixel location.

Editing and layout of the digital images was done using the graphics capabiiities
of WordPerfect 5.1. The digital image was first displayed on a VGA graphics
screen, then stored in a WordPerfect file using their screen capture program
(GRAB.COM). The screen capture program allowed selection of any part of the
screen, so preliminary cropping of the images was possible. Once an image was in
the WordPerfect environment it could be stretched independently in either direction.

This allowed production of a square image that was w.ccurately crupped at the duct

boundaries.



Chapter 5

Experimental Errors

An experimental measurement of a quantity will always deviate from the true
value of the quantity because of errors introduced by the equipment or measurement
technique. The difference between the true value and the measured value is the error
in the measurement. In the strictest sense, the true value of a quantity is never
known, so it is not possible to assign a specific numeric value to the error. This
being the case, it is necessary to come up witi » best cstiv:ate of the magnitude
of the unknown error. The term “uncertairt’” [« asu~uy used to indicate the best
estimate of a particular error. In this study. ~vror. 2t lent tnemselves to an

uncertainty analysis were treated using the method piv.i ed in Appendix A

5.1 Uncertainty in Dean Nuniber

An experimentally determined Dean number, Dn, wil: be subject to uncertainty

because of the individual uncertainties in the parameters comprising the Dean

67
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number. The Dean number, as used in this study, is given as:

Re vhdy, = m 2\/a

Dn= = VR~ R+

(5.1)

where:  Re = Reynolds number
R. = curvature ratio, R/dj

v = mean axial velocity
d, = hydraulic diameter, 2ab/(a + b)

m = mass flow rate
p, v = density and kinematic viscosity

a, b = duct dimensions

The rightmost formulation of the Dean number in equation 5.1 is in the form that

contains all of the measured and inferred quantities that were used to calculate it.

The uncertainty in an experimentally determined Dean number was estimated
by using the method outlined in Appendix A. An expression for the fractional
uncertainty in Dean number was derived by the applying equation A3. The

expression is given as:

2 |G () GG (5 e

Before simplification, equation 5.2 had terms with (a + b) in them, however for a

square duct, where @ = b, the (a + b) terms can be replaced with either 2a «r 2b.
This simplification was only nade at the end of the analysis, because it was desired

to treat each duct dimension as independent during the analysis.

The mass flow rate was determined from the mass of water collected in a 60-100 s
interval. Given that timing was done with a hand held stopwatch, the uncertainty
i zeaction time was the major cause of uncertainty in the mass flow rate. For a

typical reaction time of about 0.1 s, the uncertainty in one measurement of mass flow
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rate was about 0.1%. An uncertainty of 0.1% was also calculated from a statistical

analysis of repeated measurements of the same flow rate.

The density and kinematic viscosity of the working fluid varied directly with
any temperature variations. Therefore, with temperature control to 0.1°C the
uncertainty in density was 0.002%, while the uncertainty in the kinematic viscosity
was 0.25%. Both duct walls were machined to 1.27 cm with a tolerance of
40.0025 cm which resulted in an uncertainty of 0.2% in their dimensions. The
radius of the duct was 19.196 cm with a machining tolerance of +0.0025 cm
resulting in an uncertainty of 0.013% in that dimension. Substitution of these
individual uncertainties into equation 5.2 results in an uncertainty of +0.3% in

an experimentally determined Dean number.

5.2 Uncertainties in LDV Calibration

A LDV measures the velocity of particles as they pass through the crossing point
of the laser beams. The particles scatter the laser light producing a signal that has
been doppler shifted by an amount that is directly proportional to the velocity of
the particle. Measuring the doppler frequency, the particle velocity is caiculated

from the relation

, A
% = Jan(e/2) (5:3)
where: v, = velocity of particle
A = wavelength of laser light
¢ = crossing angle between beams
fa = measured doppler frequen~v
The calibration factor, c; = A/(2sin(¢/2°. - = constant depending on the laser

light wavelength and the beam crossing angi . u.nce the laser wavelength is known,
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one way to determine the calibration factor is to measure the beam crossing angle.

Another method of determining the calibration factor is to calculate it from the

measurement of a known velocity standard.

In determining the calibration factor, a systematic or bias error will always be
introduced by the calibration technique. Unlike random errors, which introduce
scatter into the measured values, a bias error in the calibration factor will introduce
a systematic shift in all velocity measurements. Therefore, it is important to be

able to estimate the uncertainty that will be introduced into the calibration factor

by the calibration technique.

5.2.1 Measurement of Beam Crossing Angle

One method of determining the calibration factor is to measure the beam crossing
angle. In order to measure the beam crossing angle, the tangent of the crossing angle
can be determined by projecting the beams on a surface at a known distance from the
crossing point and measuring the spacing of the beams fr- 1+ space restrictions,
the furthest distance that a suitable measuring surface .. .:u be located was | m
from the crossing point. At this distance, a 1 mm uncertainty in determining the
beam spacing would result in a 0.75% uncertainty in the calibration factor. It seemed
nossible to make at least an error of 1 mm in the measurement of the beam spacing,

0 it was decided to use a known velocity to determine the calibration factor.

5.2.2 Spinning Wheel as Velocity Standard

When using a known velocity to determine the calibration factcr (i.e. ¢ =
v’/ f4), error can be introduced by both the uncertainty in the known velocity as

well as the uncertainty in the measured doppler frequency. A reasonable estimate
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of the error, using the method given in Appendix A, is

Ac Avt,\? Af)?
Ac _ \] (Sr)"4 (26) (5.4)
Cs Veal fa

where: Acy/cy = uncertainty in calibration factor

Av!,, /vl = uncertainty in known velocity
A faf f4 = uncertainty in measured doppler frequency
The fully developed flow profile in the straight section could be used as the known
velocity standard if it had developed properly. Since this was not known a priori, a
velocity standard independent of the flow was required. The velocity standard that

was used was a wheel of known diameter rotating at a constant angular velocity.

The surface velocity of a 2.915 cm £0.001 cm (i.e. 0.03% uncertainty) diameter
chuck rotating at constant angular velocity was used as the initial velocity standard.
The chuck was attached to a mixing motor which revolved at =~ 47 rpm. The
rotational speed of the motor was determined by timing the interval required for
60 revolutions of the chuck with a hand held stop watch. With a reaction time of
about 0.1 s, the uncertainty in the rotational speed of the chuck was approximately

0.15%. Since v/, = r.w., where r. is the radius of the chuck and w, is the angular

velocity of the chuck, the uncertainty in v/, was \/(Arc/rc)2 + (Awe/we)? = 0.15%.

The measured doppler frequency had an uncertainty of at least &+ 0.1 kH
which was caused by the resolution of the tracker processor. Noise in the doppler
signal added to the uncertainty in the detected doppler frequency, therefore the
actual uncertainty was probably higher than + 0.1 kH. For the doppler frequency
measured from the spinning wheel, a reasonable estimate of the uncertainty in the

measurement would be about 0.25%.

Only one measurement of the doppler frequency was used to determine the

calibration factor from the spinning wheel. For an unce:tainty of 0.15% in the
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velocity standard and 0.25% in the measured doppler frequency, equation 5.4
estimates the bias uncertainty in the calibration factor to be +£0.30%. This is the
standard deviation of the uncertainty in the calibration factor, so the maximum
uncertainty could be as high as three standard deviations or 40.90%. It can be
seen that the uncertainty in the calibration fact  « a result of using the spinning
wheel, is mainly due to the uncertainty in the =~ . oppler frequency. However
in hindsight, the uncertainty could have be ~ '*xti i by taking more than one

independent velocity measurement of the spinning wheel.

5.2.3 Inlet Profile as Velocity Standard

Calibrating the LDV independent of the flow apparatus :llowed the straight
section inlet profile to be examined. Figure 5.1 shows the measured inlet profiles

at two Aifferent Reynolds numbers compared to the analytically predicted profile.

Agre - is very good, confirming that the inlet profile has reached the fully
der e in this range of Reynolds numbers. Given that the inlet profile was
well ve . it was decidea ‘o use the inlet profile as the standard in subsequent

calibrations. In order to detersmune the ralibration factor from a measurement of

the inlet profile, the measured data was fitted to the analytically predicted profile.

When using the inlet profile as the velocity standard, the uncertainty in the
calibration factor will depend on the bias errors in the flow velocities and measured
doppler frequencies. Since the inlet profile is defined by an analytical function,
only the average velocity needs to be specified in order to define the entire profile.
Therefore, a systematic or bias error can be introduced into the calibration factor by

a bias error in the calculated mean velocity. The mean velocity can be determined



CHAPTER 5. EXPERIMENTAL ERRORS 73
2-5 L T ¥ T T L3 T T T
2.0 F J
>
=
13)
S 15¢} 1
[}
-
s — Theory
s 16F .
< o Re =770
L=}
> a Re = 583
05 o A Z'/& —_ 0.0 7
0.0 1 1 1 ¢ 1 1 1 1 1
-0.5 -0.4 -0.3 -0.2 -0.1 00 0.1 02 03 04 05

x'/a Horizontal Position

Figure 5.1: Comparison of measured inlet profiles to analytical prediction.
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from the following relationship:

o~

_m
~ pab

where: vh = average velocity
m = mass flow rate

p = density
a = duct width
b = duct height
Using equation 5.5 and equation 5.4, it is possible to derive an expression for the

uncertainty in the calibration factor when using the inlet profile as the velocity

standard. The expression is given as:

TG BB e

As mentioned before, the typical uncertainties in 1, p, a and b were 0.1%, 0.002%,

0.2% and 0.2% respectively. Since many velocity measurements were used to fit the
analytical profile, the uncertainty introduced by the measured doppler frequencies

was less than the uncertainty for an individually measured doppler frequency.

An estimate of the bias uncertainty caused by all of the measured doppler
frequencies was calculated by dividing the uncertainty of an individually measured
doppler frequency by the square root of the total number of velocity measurements
used to fit the analytical profile. The theoretical basis for this estimation is given in
Ang and Tang (1975) pp. 231-232. In order to apply this estimate to the measured
doppler frequencies, it was assumed that individual errors that occurred in the
measured doppler frequencies were random. This is a good assumption since the
individual error in a measured doppler frequency is caused by the tracker resolution
and noise contained within the doppler signal. The only place the assumption breaks

down is in the measurements near the wall, where reflections introduce a biased shift
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into the measured doppler frequency. The number of points where this occurred was

small, so the effect was ignored.

In order to determine the calibration factor, both a horizontal and vertical profile
were measured at the corresponding duct centerlines. In total, about 70 independent
velocity measurements were made while measuring the velocity profiles. Since
both profiles were used in fitting the measurements to the analytical prediction,
the uncertainty caused by all of the measured doppler frequencies was 1/V/70 of
the uncertainty in an individually measured doppler frequency. As seen in the
previous section, the uncertainty in an individual doppler frequency was 0.25%,
so the uncertainty caused by using 70 measured doppler frequencies is less than
0.03%. Substitution of the appropriate uncertainties into equation 5.6 resulted in
an estimated uncertainty of £0.3% in the calibration factor. As mentioned before
. is an estimate for the standard deviation, so the maximum error could be three
standard deviations or £0.9%. It must be remembered that the probability is around
0.7 that the error will be within one standard deviation, and 0.95 that it will be
within two standard deviations. It can be seen from equation 5.6 that the majority
of the uncertainty in the calibration factor, when using the inlet profile as the
standard, is caused by the uncertainty in the duct dimensions. Not much can be
done to improve the uncertainty, since tighter machining tolerances, when working
with plexiglass, are not easily obtainable. Therefore, when the inlet profile is used

as the velocity standard, the uncertainty introduced by the duct dimensions has to

be accepted.

From the preceding analyses, it can be seen that the most accurate determination
of the calibration factor is from an accurate measurement of the beam crossing angle,
or from many measurements of a reliable standard. Measuring the crossing angle is

an attractive method because it limits the error to one source and is a quick task to
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perform. In this study, the method of measuring the angle would have to have been
more reliable to give satisfactory results. Given the equipment used in this study,
the most accurate calculation of the calibration factor could have been obtained by
making many measurements of the spinning wheel. A large number of repeats could
have reduced the uncertzinties associated with the measured doppler frequencies
and measured rotation rates to a negligible amount. Despite this, the majority of
the velocity data in this study was acquired with a calibration factor determined

with the inlet profile as the velocity standard.

5.3 Uncertainties in Velocity Measurements

Once the LDV had been calibrated, a typical velocity measurement was
subject to uncertainty hecause of the uncertainty in the calibration factor and the
uncertainty in the measured doppler frequency. Other sources cf uncertainty in
velocity measurements were the systematic errors associated with the bias in the
output of the tracker processor, changes in the calibration factor due to traversing
the laser beams through a curved surface, positioning errors due to traversing
the apparatus while holding the LDV stationary, and positioning errors caused by
incorrectly locating the duct walls. Each possible source of error was investigated

to determine its effect on the accuracy of a velocity measurement.

5.3.1 Uncertainty in a Typical Velocity Measurement

The uncertainty in a velocity measurement will at least include the calibration
uncertainty and the uncertainty in the measured doppler frequency. Most of the
velocity measurements in this study are presented normalized by the mean velocity,

so the uncertainty in a non-dimensionzl velocity will also include the uncertainty
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in the mean velocity. The normalized axial velocity, vg, given in terms of all the

measured or inferred quantities used to calculate it is:

@~

m

vg =

Sl

where: vp = non-dimensional axial velocity
vj = dimensional axial velocity
v} = average axial velocity

¢y = calibration factor
f4 = measured doppler frequency

p = density
a, b = duct dimensions
m = mass flow rate

Applying the method of Appendix A, the uncertainty in a calculated value of vy is:

Bvg _ \J (Ber) e (3" (L) (B () + (38) 6o

cs fa; T\ \ @

As given previously, the uncertainties in ¢y, p, @, b ana ;> were 0.3%, 0.02%, 0.2%,
0.2% and 0.1% respectively. All of these uncertainties directly contrivuted towards
a biased shift in the measured profile. The uncertainty in fa was 0.25% for any
individual reading, but the bias introduced for the whole profile depended on the
number of measurements that were taken. That is, the individual uncertainties in
f4 would cause scatter about a smaller biased shift in the measured profile caused
by the uncertainties in all of the measured doppler frequencies. The appropriate
uncertainty estimate required that the uncertainty for an individual doppler
frequency measurement be divided by the square root of the number of readings
taken. A typical velocity profile involved the measurement of about 35 points, so
the uncertainty in f; to be used in equation 5.8 would be 0.04%. Substitution of the

above uncertainty values into equation 5.8 results in an uncertainty in vy of £0.45%.
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The estimate of the uncertainty in vy is very realistic as can be seen from the
measured velocity profiles presented in figure 6.2. At the center of the duct, where
the profiles are relatively flat and positioning of the LDV probe volume is not critical,
the measured values at Re = 583 and 770 are typically within 0.5%-0.75% of the

analytical curves.

5.3.2 Output Bias of Tracker Processor

The tracker processor gave an incorrect doppler frequency if wall reflections were
high or if the range and gain were set incorrectly. When measuring near a wall,
strong reflections caused the shift frequency to appear in the doppler signal, which
in turn caused the tracker to give erroneous results. The magnitude of this effect can
be seen in figure 5.2, where the velocities calculated from the doppler frequencies
measured by the tracker processor are compared to the velocities calculated from
the doppler frequencies measured by an unbiased FFT Spectrum Analyzer. The
solid line is the numerically predicted velocity profile. Near the wall, where the
reflections were the highest, the tendency was for the tracker processor to measure
low. The tendency to measure low is most likely a result of the tracker locking on to

a frequency somewhere between the doppler frequency and the lower shift frequency.

Significant error could be introduced into a measured doppler frequency if the
tracker had not been set to the proper range. Figure 5.3 shows the same velocity
profile measured using two different ranges of the tracker. The difference between
the measured profiles is about 5% in the central region of the profiles. The reason
the higher tracker range setting resulted in incorrect velocity values was because the
frequency of the doppler signal (= 20 kH in this case) was in the bottom end of the
range. Therefore, to guard against this type of error, care was exercised to ensure

that the proper tracker range was being used.
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Figure 5.2: Comparison of velocities determined with tracker processor to
velocities determined with FFT Spectrum Analyzer.
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A measured doppler frequency was sensitive to the gain setting of the tracker
processor .-hen the doppler signal contained a lot of noise. Noisy doppler signals
were encountered near the walls and also when the concentration of seeding particles
became too low. However, with proper seeding, most of the measurements taken

away from the walls did not exhibit high sensitivity to the gain setting.

5.3.3 Effect of Curved Wall

Velocity measurements were performed by passing the laser beams of the LDV
through the curved outer wall of the duct. Refraction of the laser beams at the
curved interfaces between the air, plexiglass and water affected the calibration factor
of the LDV. The dist-nce of the crossing point from the wall determined the crossing
angle of the beams, so the calibration factor continuously changed as the crossing
point was traversed across the duct. Also, as the distance of the crossing point froin
the outer wall changed, the ratio of the distance traversed in water to that traversed
in air was affected. Appendix B contains a detailed treatment of the changes in

calibration factor and traversing ratio when traversing across the duct.

Figures 5.4 and 5.5 show how the calibration factor and traversing were affected
by the refraction effects at the curved surfaces when traversing along a radial line.
Figure 5.4 shows the correction factor that had to be applied to the measured results
in order to compensate for the changing calibration factor. The fringe spacings, dy
and d,, are the calibration factors in the fluid and air respectively. The refraction
effect at the curved surfaces caused errors in the calibration factor of about 0.25%
at the outer wall and 2% at the inner wall. The correction curve acsumes that
the beams traverse across the duct on a radial line. All measured velocities were

adjusted using the correction factors presented in figure 5.4.

Fig re 5.5 shows a plot of the distance traversed in air cotnpared to the distance
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traversed in water. When the apparatus was traversed one unit, the actual distance
the crossing point traversed in the water was more than one unit. However, as
long as the ratio of the distance traversed in water to the distance traversed in
air is constant, the traversing distances in air can be used to calculate the non-
dimensional duct positions. A non-dimensional duct position was calculated by
dividing the distanced traversed in air from the outer wall by the total distance
traversed in air to go across the duct. Based on the lirear relationship shown in
figure 5.5, it was assumed that the traversing ratio was a constant. As a result of this
assumption, calculated duct positions were shifted from the actual duct positions.
The maximum error in calculated duct positions occurred near the center of the

duct, where calculated duct positions were shifted by about 0.4% from the actual

duct positions.

5.3.4 Traversing Errors

One eflect of holding the LDV stationary while traversing the apparatus was
that the path of the crossing point did not follow a radial line. Due to the physical
size and design of the apparatus, the curved section end of the apparatus could slide
3-4 mm to the side as it was traversed forward to move the crossing point across
the duct. As a result, the position of the crossing point would move in the axial
direction. The pcsition was about 1° out in the axial direction when the crossing
point had reached the inside wall. For a fully developed flow this is not a problem,
but in a developing region where strong axial gradients exist, significant error could
result. In this study the observed axial gradients were not large enough for this

effect to be significant.

The non-dimensional position in the duct was always calculated from the

traversing distances in air. It these calculations it was assumed that traversing
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was on a radial line. However, the actual path of the crossing point was not on a
radial line, so the error associated with this assumption had to be determined. In
order to determine the actual position of the crossing point in the duct, a general
ray tracing program for the laser beams was developed. The method, along with the
necessary equations, is presented in Appendix B. Given a position of the apparatus
relative to the LDV, the program would calculate the position of the crossing point

in the duct and the corresponding correction to the calibration factor.

In order to model the sliding of the apparatus, the crossing point was positioned
on the outer wall and then traversed on a straight line that was at an angle to the
radial path line. The traversing was stopped when the crossing point contacted the
inner wall. The non-dimensional radial duct positions were calculated using the
traversing dictances in air assuming that the angled path line was a radial line. As
a result, the calculated duct positions were shifted from the actual positions in the
duct. The effect that the shift had on an axial velocity profile can be seen in figure
5.6. The solid line is a numerically-calculated fully developed profile at Dn = 125.
The triangles are the calculated velocity values from each grid point of the numerical

prediction plotted at the shifted duct positions.

The calculated duct positions were based on the apparatus sliding 4.5 mm to the
side as it was traversed forward. A maximum error in position of about 0.6% occurs
in the central region of the duct. As seen from the triangies in figure 5.6, the effect
of the positioning error is to shift the velocity values downward. It is interesting to
note that the positioning error was about 0.4% when traversing was on a radial line.
This suggests that the majority of the positioning eric in the radial direction is due
to the fact that the traversing ratio is not a constant. In addition, the corrections
to the calibration factor for the sliding apparatus analysis, were almost identical to

the ones calculated from the radial path analysis.
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5.3.5 Errors in Measuring Vertical Profiles

When measuring a vertical profile, a shift in radial position was observed when
the direction of traversing was reversed. Figure 5.7 shows the shift in the vertical
profile that resulted from a change in the traversing direction once the top duct
wall was reached. The cause of this shift was probably due to movement in the
traversing mechanism as the weight of the apparatus was redistributed on the screw
threads when traversing direction changed. The shift was between 0.5-1.0 mm which

corresponds to a 5% error in duct position.

For a typical vertical profile, the apparatus was traversed vertically to position
the crossing point at the vertical duct center. The apparatus was then traversed
in the radial direction to set the desired radial position. Once the radial position
was set, the apparatus was again traversed in the vertical direction to position the
crossing point on the bottom or top duct wall. Using this as the starting position,
the apparatus was once again traversed vertically to measure a vertical profile. The
amount of shift in the radial direction was minimized by cnsuring that the screw
threads had supported the weight of the apparatus in the same manner when the

radial position was set as when the measurements were made.

Givea the radial movement of the apparatus when measuring vertical profiles, it
was impossible to completely eliminate a radial shift. Correction for a radial shift
was made by scaling the measured vertical profile to match the commeon point in
the measured horizontal profile at the same axial location. The correction was only
applied to the vertical profiles that were measured at z’/a = 0.0. It was assumed
that the shape of the vertical profile would remain constant for small changes in
radial position. The validity of this assumption is seen in figure 5.8 where the
vertical profile at Dn = 50 and z’/a = 0.0 is compared to the profiles corresponding

to a £5% shift in duct position. For higher Dean numbers, the shape of the vertical
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profiles around z'/a = 0.0 also remained constant.

5.3.6 Wall Location Error

A systematic error in radial position could be introduced by incorrectly locating
the inner side wall of the duct. In order to determine if the beam crossing point
was on a wall, the output of the LDV was monitored on an oscilloscope. When
positioning the crossing point on the outer wall, a well defined maximum occurred in
the output indicating the crossing point was on the wall. However, when positioning
of the crossing point on the inner wall, the signal seemed to remain fairly strong
with no well defined maximum as the crossing point was traversed through the wall.
The signal quality also varied with axial position, so no truly objective method for

finding the inner wall was discovered.

The top graph in figure 5.9 is an example of the error that resulted from
incorrectly locating the inner wall in the fully developed flow region. In the
developing flow region it would not be apparent whether a difference was due to
this effect, or to the fact that the numerical profiles might be in error due to the
assumptions associated with the formulation of the 3-D code. In figure 5.9 the wall
location error was a result of interpreting the LDV output to indicate the beam

crossing point was on the wall, hen in fact the crossing point was still in the fluid.

Interpreting the width of the duct to be narrower than it actually was, caused
the radial positions of the measured velocities to be iinearly stretched toward the
inner wall. A point on the outer wall experienced no shift, while the point believed
to be on the inner wall experienced the maximum shift. By correcting the measured
profile to fit the numerical prediction, as was done in the bottom graph of figure

5.9, it is seen that the error in locating the inner wall was 0.2 mm. It was very
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Figure 5.9: Correction to radial positions of measured axial velocities by
relocation of inner side wall of duct.
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conceivable that an error of 0.2 mm in locating the inner could have been made,

considering that the probe volume itself was 0.12 mm long in the radial direction.

The natural tendency when locating the inner wall was to interpret the LDV
output such that the calculated width of the duct would be too narrow. Reflected
light from the laser beams, as the probe volume approached the wall, caused a strong
output signal from the LDV. This signal could easily have been misinterpreted as
indicating the location of the wall when in fact the probe volume was still in the fluid.
The type of error shown in figure 5.9 would support this. Given this tendency, it was
necessary to use judgement to locate the inner wall as best as possible. Therefore,
the maximum error in locating the inner wall that could be expected using this

approach would probably be about 2%-3%.

5.4 Summary

The uncertainty in an experimentally determined Dean number was estimated
to be £0.3%. Using the straight section inlet velocity profile as the velocity
standard, the uncertainty in the calibration factor was estimated to be +0.3%.
It was estimated that the uncertainty in a typical experimentally determined non-
dimensional axial velocity, vg, was about £0.45%. As was seen in the measured
velocity profiles presented in figure 6.2, the estimated uncertainty was in good
agreement with the actual difference between the measurements and analytical
predictions in the central region of the duct. Therefore, if the measured velocities
are not subject to any further bias introduced by the signal processor, errors larger
that 0.5% in measured velocities are a result of position errors in the duct. The
refraction of the laser beams at the curved interfaces between the air, plexiglass and

water, caused the calibration factor to change as the crossing point was traversed
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across the duct. However, the effect was compensated for by using the analysis
presented in Appendix B. Non-dimensional duct positions were calculated using the
traversing distances in air, assuming that traversing had taken place on a radial
line, and that the traversing ratio was a constant. The actual traversing ratio was
not quite constant, so a small shift was introduced into the duct positions. The
maximum amount of the shift was about 0.4% at the center of the duct. Sliding
of the apparatus while the crossing point was traversed across the duct, resulted in
the actual traversing path not being on a radial line. The effect on calculated duct
positions in the radial direction was minimal, but a shift of 1° occurred in the axial

position.

Due to the traversing mechanism, an uncertainty of £5% in the radial position
was encountered when measuring a vertical velocity profile. Since the shape of the
vertical profiles near the center of the duct was constant, it was possible to scale
the measured values to correspond to the desired radial position. Errors in locating
the inner wall with the LDV caused shifts in the calculated radial duct positions
of 2%-3%. When measuring a radial velocity profile, this shift caused the velocity
measurements to be in error. Since the velocity profiles had strong gradients in the

radial direction, errors of up to 5% could occur in the central region of the duct.



Chapter 6

Investigation of Developing Flows

In order to investigate the flow development, flow visualization and axial velocity
measurements were performed at three Dean numbers, Dn = 125, 137 and 150.
Starting at an axial position of 20°, axial velocity profiles were measured every
20° up to an axial position of 240°. Photographs were taken at each location to
visualize the development of the secondary flows. Using the parabolized formulation
of the three-dimensional Navier-Stokes equations, numerical simulations of the flow

development corresponding to the measurements were performed.

6.1 Inlet Flow

The inlet condition to the curved section that was used in this study was a fully
developed laminar straight duct flow. The analytical solution for the fully developed
axial velocity distribution of a laminar flow through a rectangular duct, as given in

Shah and London (1978), is:

2 o ' !
vy(z',2') = _da%e > —13-(_1)('1—1)/2 [1 _ cosh(nrz'/a) /a)] cos (_m(rlz ) (6.1)

[T Sy cosh(nrb/2a)

92
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— acy 192 a = 1 nwb
w--f2[i- £ Len(P) e
—af2<z' <af2 ~-b/2< 2 <b/2

where: vj(z',z') = axial velocity
vh = mean axial velocity
a, b = duct width and height respectively
p = absolute viscosity
c2 = pressure gradient in axial direction

The coordinate system for the duct cross section is the same as that illustrated in
figure 3.1. Some of the coefficients in the above equations are different that those
presented in Shah and London (1978), because the duct width and height were taken
as a and b rather than 2a and 2b.

In the numerical simulations of developing flow the inlet velocity profile was
required as an initial condition. Instead of calculating the inlet velocity profile using
equations 6.1 and 6.2, the three-dimensional code used in this study (i.e. computer
code developed by Sankar et al. (1988)) calculated the inlet profile using a simple
approximation. The simple approximation, as given in Shah and London (1978),

for the non-dimensional axial velocity is:

= EHEDE-E -0 e

For a square cross section, where a = b, the value of the exponents arem = n = 2.2.

The form of equation 6.3 is also slightly different from the form presented in Shah

and London because of the different definitions used for the duct dimensions.

The velocity profile determined from the analytical solution (i.e. equations

6.1 and 6.2) is compared to the simple approximation of equation 6.3 in figure
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6.1. The velocity profiles shown are for the Lorizontal or vertical duct centerline.
The simple approximation predicts values that are higher than the analytical
solution in the central region of the duct. The maximum non-dimensional velocity
predicted by the analytical solution at z'/a = z'/a = 0.0 is 2.096, while the simple
approximation predicts a value of 2.116 at the same location. The difference is
only 1%, so the simple approximation is a good estimate of the analytical solution.
Considering that mass is conserved in the simple approximation, some profiles off

of the centerlines must have regions where the analytical solution is higher than the

simple approximation.

Figure 6.2 shows the analytically predicted profiles compared to the velocity
profiles that were measured at 5 hydraulic diameters upstream of the curved section
inlet. Horizontal and vertical axial velocity profiles were measured at the horizontal
and vertical duct centerlines respectively. The measured data is in excellent
agreement with the analytical prediction, confirming that for each of the Reynolds

numbers investigated, the measured velocity profile had reached the fully developed

state.

It was mentioned previously that the actual velocity profile that occurs at the
start of a curved section will deviate from a fully developed straight duct profile.
The reason for this is that, due to the elliptic nature of the flow, the curved section
will have an effect on the flow upstream of its inlet. The magnitude of the effect will
depend on the radius of curvature of the curved duct and the Reynolds number of
the approach flow. The sharper the radius of curvature and the smaller the approach

flow Reynolds number the greater the effect will be.

In axial velocity measurements ‘or a square duct with R. = 2.3 and approach flow
Re = 790, Humphrey et al. (1977) observed that there was a noticeable deviation

(= 5% in the axial velocity at the duct centerline and start of inlet section) from a
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fully developed profile in the region 0 to 5 hydraulic diameters upstream of the start
of the curved section. At the start of the curved section inlet, the secondary flow
structure had already been formed with secondary velocities as high as 15% of the
mean axial velocity. Secondary velocities, 7% of the mean velocity, were present at

0.3 hydraulic diameters upstream of the inlet, but no vortex structure was evident.

In the apparatus used in this study, the straight section inlet profiles were
measured at 5 hydraulic diameters upstream of the start of the curved secticn.
Due to the large curvature ratio, R. = 15.1 and approach flow Reynolds number,
Re = 500-700, no deviations of the measurements from the analytically predicted
profiles were observed. It seems reasonable that, based on the results of Humphrey
et al., the deviation of the inlet profile at the start of the curved section would be

small for the curvature ratio and flow rates used in this study.

6.2 Flow Development at Dn=125

Development of the axial velocity profiles with downstream position at Dn = 125
is shown in figures 6.3 through 6.14. The outer wall of the duct is at 2’ /a = 0.5.
For each downstream position, the measured horizontal axial velocity profile at the
horizontal duct centerline (i.e. z’/a = 0.0) is compared to the numerically predicted
profile. Vertical axial velocity profiles, measured at the vertical centerline of the duct
(i.e z'/a = 0.0) at two downstream positions, are shown in figures 6.15 and 6.16.
The numerical prediction of secondary flow development is presented in figure 6.17
in the form of arrow plots showing the secondary velocity vectors. All secondary
velocities have been normalized with the mean axial velocity to show the relative
strength of the secondary flow with downstream position. The outer wall is on the

right hand side of each arrow plot, and the length of the mean axial velocity vector
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is equal to the length of the duct walls. Flow visualization of the development of
the secondary flow patterns is shown in figure 6.18. Again the outer wall is on the

right hand side.

The development of the axial velocity profiles shown in figures 6.3 through 6.14
is similar to the observations of Austin and Seader (1974) for flow in a curved pipe,
and Hille et al. (1985) for flow in a curved duct of square cross section. The profiles
exhibit the characteristic initial transfer of momentum to the outer wall, with a
back-transfer of momentum as the secondary flow becomes developed. The overall
agreement with the numerical predictions is good, indicating that the parabolic
assumption is valid at this Dean number. A slight increase in the axial velocity near
the central region of the duct at 240° suggests that some exit effect might have been

present.

In the fully developed region, which occurred after an axial position of about
100°, it can be seen that the measured velocities are slightly in error. The error
appears to be systematic in nature, causing the measured values to be generally
higher than the predictions. The radii of the circular symbols showing the imeasured
velocities represent a 2% error at vy = 1.5, and a 3% error at vg = 1.0. Using this
as a guide, the majority of the velocity errors in the central region of the duct are
between 2% and 3%. Given that the uncertainty in vy was £0.45%, the errors were
obviously caused by positioning errors in the duct. The consistently lower values of
the measurements near the outer wall are likely due to the tendency of the tracker
processor to measure low in this region (refer to chapter five; Output Bias of Tracker

Processor).

As the flow initially developed, the fully developed straight duct inlet profile,
with its velocity maximum at the duct center, was quickly skewed toward the outer

wall. This large transfer of axial momentr:m is seen at 20° in figure 6.3, where the
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axial velocity maximum has been shifted toward the outer wall. This initial transfer
of momentum is a result of the fluid in the straight duct flowing toward the outer
wall of the curved section which is in line with the straight duct axis. Examining
the secondary velocity arrow plot at 20° in figure 6.17, it can be seen that a strong
secondary flow toward the outer wall is present, and a return flow at the top and
bottom walls of the duct has been established. The return flow has been set up in
response to the favorable pressure gradient caused by the high pressure region at the
outer wall. The maximum flow velocity toward the outer wall is 16% of the mean,

while the maximum velocity in the region returning fluid toward the inner wall is

22.5% of the mean.

At 40° from the inlet, the peak in the axial velocity profile has decreased and
started to move back toward the duct center. In addition, the axial velocity near the
inner wall has increased. This redistribution of axial momentum‘is a result of the
secondary flow transporting the high momentum fluid at the outer wall to the inner
wall. From the arrow plot at 40°, it can be seen that the strength of the secondary
flow toward the outer wall has decreased, as the initial linear momentum of the
straight duct flow has been dissipated. The maximum secondary velocity directed
toward the outer wall on the duct centerline is 5.3% of the mean, while the inward

flow at the top and bottom walls has a maximum secondary velocity of 12.5% of the

mean.

At 60° from the inlet, some further transfer of axial momentum from the outer
wall toward the duct center has occurred, filling in the central region of the profile.
The maximum secondary velocities have not signiricantly changed from the values
at 40°, as is evident in the arrow plot at 60°. At 80° there is a slight decrease
in the axial momentum in the central region of the duct, but no more appreciable

changes occur after 100°. After 80° the secondary velocities settle down to maximum
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values of 6.2% and 12.9% of the mean in the outward and inward flows respectively.
Judging from the axial velocity measurements and the arrow plots of the secondary

flow, it can be concluded that after 100° the flow has become fully developed.

Flow visualization in figure 6.18 sh.ws that symmetry about the horizontal duct
centerline was retained throughout the entire development process. This symmetry
was also confirmed by the measured vertical axial velocity profiles shown in figures
6.15 and 6.16. Flow visualization is useful in showing the boundaries of the cells,
but no velocity information can be obtained. The cell boundaries are traced out by
the dye as the secondary flow carries the fluid around the cross section. Given the
ratio of the mean axial velocity to the secondary velocities, a fluid particle will on
average rotate once around the top or bottom half of the duct approximately every
70° to 80° of axial length. This effect is evident in the flow visualization at 20° and

40°, since the dye has not yet completed one revolution in the cross section.

In the studies of Austin and Seader (1974) and Humphery et al. (1977), double
peaks in the axial velocity profiles were observed in the development of axial velocity.
This was not observed in this study because the curvature of the duct was not strong
enough. In strongly curved ducts as compared to gently curved ducts, more axial
momentum is initially transferred toward the outer wall, so the secondary flow will
bring fluid ~ith higher momentum to the inner wall. This causes the slow moving
fluid at the inner wall to be displaced toward the duct center leaving high momentum
fluid at the inner wall, thus creating the double peak. Maximum secondary velocities
of 23% of the mean in our study as compared to 65% of the mean in the study of
Humpbhery et al. (1977) shows the effect that stronger curvature has in increasing

the strength of the secondary flow.
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Figure 6.5: Measured velocity profile compared to numerical simulation at
Dn =125, 60 = 60° and z'/a = 0.0.
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Figure 6.18: Flow visualization showing secondary flow development every 20°
at Dn = 125.5.
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6.3 Flow Development at Dn=137

Development of the axial velocity profiles with downstream position at Dn = 137
is shown in figures 6.19 through 6.30. The outer wall of the duct is at z'/a = 0.5.
For each downstream position, the measured horizontal axial velocity profile at the
horizontal duct centerline (i.e. z’/a = 0.0) is compared to the numerically predicted
profile. The numerical prediction of secondary flow development is presented in
figure 6.31 in the form of arrow plots showing the secondary velocity vectors. As in
the case of Dn = 125, all secondary velocities have been normalized with the mean
axial velocity to show the relative strength of the secondary flow with downstream
position. As before, the outer wall is on the right hand side of each plot and the
length of the mean axial velocity vector is equal to the length of the duct walls.
Flow visualization of the development of the secondary flow patterns is shown in

figure 6.32. Again the outer wall is on the right hand side.

The initial development of the axial velocity profiles at Dn = 137 is very similar
to the development at Dn = 125. Up to § = 80° the axial velocity profiles for
the two Dean numbers are almost identical. Flow visualization and arrow plots up
to & = 80° are also very similar for the two cases. The numerical predictions of
the secondary flows revealed that the maximum secondary velocities, on average,
differed by about 0.5% in this initial development region. These observations show

that the initial low development at Dn = 137 is to a two-vortex structure.

After § = 80° the flow development at Dn = 137 starts to differ from the
development observed at Dn = 125. At Dn = 125 the axial velocity profile was
fairly well established by # = 80°, with no further changes observed with axial
position. However, the axial velocity profile at Dn = 137 and 6 = 100° is starting

to show a slight shift of the maximum axial velocity back toward the duct center.
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Examining the flow visualization at 6§ = 100° in figure 6.32, it is seen that an
additional pair of vortices are starting to form at the outer wall. In response to the
additional vortices, the peak in the axial velocity profile is starting to shift back
toward the duct center. The magnitude of the secondary flows at the outer wall are

very small, as is evident from the arrow plot.

From the flow visualization in figure 6.32, it is seen that the additional vortices
continue to grow with downstream distance. The vortices are still growing at 240°,
indicating that the flow has not reached a fully developed state. The numerical
prediction of secondary velocities indicate that slightly over 300° of development
length are required until the maximum radial velocities settle down to constant
values. Once the secondary velocities have reached a constant value, the maximum
radial velocity that occurs on the horizontal duct centerline in the additional vortex
pair is about 10% of the mean axial velocity. The maximum secondary velocity in
the larger vortex pair is about 11.5% of the mean. As in the case of Dn=125, this

occurs near the top and bottom walls in the flow returning fluid to the inner wall.

The response of the axial velocity profiles to the increasing size and strength
of the additional vortex pair is an increasing shift of the maximum velocity back
toward the duct center. With the opposite sense of rotation as compared to the large
vortices, the second vortex pair is able to transfer high momentum fluid toward the

duct center and cause the velocity maximum to shift.

Comparing the measured velocity profiles to the numerical simulations at § =
180°, 200° and 220°, it can be seen that the numerical simulation predicts a faster
growth rate of the additional vortices than observed. The larger vortex strength
predicted by the simulation causes a larger shift in the maximum of the axial velocity.
This is evident from the difference between the measurements and the numerical

predictions near the cuter wall. The difference at each location (i.e. 6 = 180°,
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200° and 220°) is larger than the 2-3% positioning error, so it is clearly due to
the different growth rates of the additional vortex pair. The faster growth rate of
the additional vortices is also evident by comparing the arrow plots with the flow
visualization. The reason the simulation differs from the experiments is because
the numerical formulation neglects elliptic effects in the axial direction and ignores

gradients of the radial velocity in the axial direction.

From the flow visualization in figure 6.32, it is seen that the additional vortices
retained their symmetry about the horizontal centerline throughout the investigated
development length. This is contrary to the asymmetric development that was
observed by Hille et al. (1985). This difference might be do to the stronger curvature
of their duct or possible physical asymmetries in their apparatus, given that the four-
vortex solutions are unstable to asymmetric perturbations. However, the existence
of their additional pair was first observed after § = 108°, in qualitative agreement

with the present study.
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Figure 6.23:
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Figure 6.27: Measured velocity profile compared to numerical simulation at
Dn =137, 60 = 180° and z'/a = 0.0.
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Figure ©.28: Measured velocity profile compared to numerical simulation at
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Figure 6.29: Measured velocity profile compared to numerical simulation at
Dn =137, § = 220° and 2'/a = 0.0.
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Figure 6.30: Measured velocity profile compared to numerical simulation at
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6.4 Flow Development at Dn=150

Development of the horizontal axial velocity profiles with downstream position at
Dn = 150 is shown in figures 6.33 through 6.44, and the development of the vertical
axial velocity profiles are shown in figures 6.45 through 6.56. For each downstream
position, the measured axial velocity profile at the duct centerline is compared
to the numerically predicted profile. The numerical prediction of secondary flow
development is presented in figure 6.57 in the form of arrow plots showing the
secondary velocity vectors. All secondary velocities have been normalized with
the mean axial velocity to show the relative strength of the secondary flow with
downstream position. The outer wall is on the right hand side of each plot and the
length of the mean axial velocity vector is equal to the length of the duct walls.
Flow visualization of the development of the secondary flow patterns is shown in

figure 6.58. Again the outer wall is on the right hand side.

The flow development up to 8 = 60° is essentially the same at Dn = 150 as it was
for Dn = 137 and Dn = 125, as indicated by the axial velocity profiles, arrow plots
and flow visualization. At 6 = 20°, the predicted maximum secondary velocity at
the top and bottom walls was 24.8% of the mean, as compared to 23.7% and 22.5%
for Dn = 137 and Dn = 125 respectively. The slight increase in the secondary
flow velocity is a direct result of the increased centrifugal force at the higher Dean
numbers. It is not surprising that the initial flow development is similar, given that
for each case the secondary flow is induced in response to the pressure gradient set

up by the fluid moving toward the outer wall.

At 0 = 80° the flow visualization in figure 6.58 suggests that an additional pair
of vortices is starting to form at the outer wall. Similar to the flow development at

Dn = 137, the axial velocity profile at Dn = 150 and 8 = 80° is starting to show the
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back-transfer of momentum toward the duct center in response to the appearance of
the additional vortices. The appearance of the additional vortices occur at an earlier
downstream position for Dn = 150 than for Dn = 137. From the flow visualization
sequence, it is seen that the auditional vortices continue to grow in the downstream

direction, however at a faster rate than at Dn = 137.

Comparing the horizontal axial velocity profiles at 8 = 140° and # = 160° to the
numerical simulation, it can be seen that the numerical simulation predicts a slightly
faster growth rate of the additional vortices. This is evident by the larger shift in the
axial velocity profiles toward the duct center for the numerical simulations. As in
the case of Dn = 137, the observed difference is not due to experimental uncertainty

in the measured velocities.

Comparison of the arrow plots and flow visualization at § = 140 and 8 = 180°
show the larger vortices predicted by the numerical simulation. From 6 = 180°
to & = 240°, the measured axial velocity profiles and flow visualization are in
good agreement with the numerical simulation. Both measurements and numerical
predictions indicate that by 8 = 240° the flow has reached a fully developed state.
Once the secondary velocities have reached a constant value, the maximum radial
velocity that occurs on the horizontal duct centerline in the additional vortex pair is
about 11% of the mean axial velocity. This is slightly larger than the maximum value
of 10% at Dn = 137. For both Dn = 150 and Dn = 137, the maximum secondary

velocity in the larger vortex pair is about 11.6% of the mean axial velocity.

The measured vertical profiles of axial velocity in figures 6.45 through 6.56,
and the flow visualization in figure 6.58 reveal that the flow development was
symmetric about the horizontal duct centerline. The measured vertical profiles
are in good agreement with the numerical predictions except for the tendency of

the measurements to be slightly higher than the numericalily predicted values. This
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is consistent with the horizontal profiles and as mentioned before is a result of
positioning errors in the duct. The common measured point on the horizontal and
vertical profile (i.e. z'/a = z'/a = 0.0) has the same value, so the appearance of
a larger difference from the prediction in the vertical profile is only a result of the
stretched velocity axis. The large dip in the vertical axial velocity profile at § = 40°
is a result of the secondary flow redistributing the axial momentum in the initial

development region. This dip in the vertical profile was also observed by Austin and

Seader (1974) for developing flow in a curved pipe.

The onset of the additional pair of vortices at Dn = 150 and Dn = 137 is
consistent with the instability explanation given by Cheng et al. (1976). Recalling
from the literature review, Cheng et al. believed that a centrifugal instability like
the one that occurred in Dean’s (1928b) instability problem was responsible for the
appearance of the additional vortices. Near the outer wall, where the axial velocity is
decreasing with increasing distance from the center of curvature of the duct, there is
a centrifugally unstable region. If the axial velocity becomes large enough, viscous

effects can no longer hold the two-vortex structure in place, thus the additional

vortices appear.

The flow development at Dn = 150, 137 and 125 showed that the initial flow
development was to a two-vortex structure. At Dn = 125, the centrifugal forces are
not large enough to cause the formation of the additional vortices, so the two-vortex
flow structure remains intact. However, at Dn = 137 viscous effects can no longer
retain the two-vortex structure, so the additional pair of vortices starts to form. At
Dn = 150 the centrifugal forces are even stronger, so the formation of the additional

vortices starts earlier and their growth rate is faster.
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Figure 6.35: Measured velocity profile compared to numerical simulation at
Dn =150, 6 = 60° and 2'/a = 0.0.
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Figure 6.36: Measured velocity profile compared to numerical simulation at
Dn =150, 8 = 80° and z’/a = 0.0.
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Figure 6.41: Measured velocity profile compared to numerical simulation at
Dn =150, 6 = 180° and 2'/a = 0.0.
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Figure 6.42: Measured velocity profile compared to numerical simulation at
Dn =150, 6 = 200° and 2'/a = 0.0.
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Figure 6.45: Measured velocity profile compared to numerical simulation at
Dn =150, 6 = 20° and z'/a = 0.0.
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Figure 6.47: Measured velocity profile compared to numerical simulation at
Dn =150, 8 = 60° and z'/a = 0.0.
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Figure 6.48: Measured velocity profile compared to numerical simulation at
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Figure 6.49: Measured velocity profile compared to numerical simulation at

Dn =150, 6§ = 100° and z'/a = 0.0.
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Figure 6.50: Measured velocity profile compared to numerical simulation at

Dn =150, 6 = 120° and z'/a = 0.0.
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Figure 6.52: Measured velocity profile compared to numerical simulation at
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Figure 6.53: Measured velocity profile compared to numerical simulation at
Dn =150, 6 = 180° and z'/a = 0.0.
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Dn =150, 6 = 200° and z'/a = 0.0.
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Figure 6.57: Arrow plots showing secondary flow development every 20° at
Dn = 150.
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6=220°

Figure 6.58: Flow visualization showing secondary flow development every 20°
at Dn = 149.9.
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6.5 Development Length

The widely accepted definition of development length is the axial length required
for the flow to reach an axially invariant state (i.e. fully developed state). In this
study, development length is defined as the length required to reach the flow state
that is predicted by the two-dimensional numerical simulations. Since four-vortex
flows are predicted to be unstable to asymmetric perturbations, they may appear
for some axial length, but farther downstream give way to time and/or spatial
oscillations. The numerical simulations in chapter eight suggest that a truly axially
invariant four-vortex flow does not exist. However, within the axial length of the
experimental apparatus used in this study, axially invariant four-vortex flows were

observed.

In order to determine if a flow has reached an axially invariant state, the state
of some parameter can be monitored with downstream position. In this study, the
axial velocity at z'/a = 0.24 and 2'/a = 0.0 was monitored with axial position
to determine if the flow had reached the state predicted by the two-dimensional
numerical solution. Compared to the axial velocities at other duct positions, the
axial velocity at z'/a = 0.24 and z’/a = 0.0 experienced the largest change when
going from a two-vortex to a four-vortex flow, so it was concluded that this location
would be the most sensitive te changes in the flow in the axial direction. A numerical
simulation of the flow development at Dn = 137 is presented in figure 6.59. The
simulation is presented in the form of a state diagram, with the axial and radial
velocities at z’/a = 0.24 and z’/a = 0.0 as the state variables. The development
length to reach the same solution as predicted by the two-dimensional simulation, is
shown to be approximately 315°. At this location, the radial and axial velocity
are no longer changing, indicating that axial velocity development is complete,

and that the secondary flow structure has been established. The radial velocity
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Figure 6.59: Numerically calculated state diagram showing the development with
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at z'/a = 0.24 and z'/a = 0.0 is very near the location of the maximum velocity
in the additional vortex pair, so it is a good indicator of the development of the
secondary flow structure. Comparing the axial velocity development to the radial
velocity development at z’'/a = 0.24 and z'/a = 0.0, suggests that th axial velocity

at this location is a good indicator of the overall flow development.

Experimentally determined state diagrams for the flow development at Dn =
125, 137 and 150 are compared to numerical predictions in figures 6.60, 6.61 and
6.62 respectively. For Dn = 125, the measured flow development is in very good
agreement with the numerical simulation. The measured values are slightly lower
in the fully developed region (i.e. 8 > 100°), suggesting a systematic positioning
error. At Dn = 137, it is obvious that the flow has not yet reached the predicted
two-dimensional solution. After 180°, the state diagram clearly shows that the
numerical simulation predicts a faster growth rate of the additional vortex pair. At
Dn = 150, it is seen that by § = 220° the flow has reached the solution predicted by
the two-dimensional simulation, clearly illustrating the shorter development length

at Dn = 150 as compared to Dn = 137.

For Dn = 137, it was mentioned that the measured data in figure 6.61 showed
a slower growth rate of the additional vortex pair than predicted by the numerical
simulation. Similarly, the state diagram for Dn = 150 in figure 6.62 reveals the
same effect at 120° < 6 < 160°, however the difference between the measured and
predicted values is not as large as it was for Dn = 137. The better agreement at
a larger flow rate suggests that elliptic effects are becoming less important. This is
not surprising since the viscous terms that were dropped in the three-dimensional

parabolized formulation were multiplied by 1/Re.

Figure 6.63 is a numerically generated state diagram showing the flow

development at Dn = 125, 131, 133, 137 and 150. At Dn = 125, the flow develops
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Figure 6.60: Experimentally determined state diagram compared to the
numerically predicted state diagram of flow development at Dn =

125, z'/a = 0.24 and 2'/a = 0.0.
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137, z'/a = 0.24 and z'/a = 0.0.



CHAPTER 6. INVESTIGATION OF DEVELOPING FLOWS 143

Vg Axial Velocity

2.5

2.0

1.0

Dn = 150
A x'/a = 0.24 1
/ z'/a = 0.0

<3 .t’\'\
Eh N o Measurements
i o —- Numerical Prediction |
—2_ 0
o &

0 100 200 300

9 Axial Position (degrees)

Figure 6.62: Experimentally determined state diagram compared to the

numerically predicted state diagram of flow development at Dn =
150, z'/a = 0.24 and 2'/a = 0.0.

400



CHAPTER 6. INVESTIGATION OF DEVELOPING FLOWS 144

into a two-vortex flow, while the flow at the other Dean numbers develops into a
four-vortex flow. The decrease of development length with increasing Dean number
for the four-vortex pattern is clearly indicated. For § < 60°, the flow develepment
is essentially the same for all the Dean numbers. At around 8 = 35°, the difference
in the minimum values is only an effect of the software plotting package. In figure

6.65, the same graph plotted at a slightly different size does not show this effect.

A numerically generated plot of development length versus Dean number is
presented in figure 6.64. For the two-vortex or two-cell flows the increase of
development length with Dean number is linear, while for the four-vi rtex flows a
decrease in development with increasing Dean number is observed. A sharp increase
in development length is seen fer the four-vortex or four-cell flows as the Dean
number approaches the critical va'ue (i.e. limit point) for the transition from a
two-vortex to a four-vortex flow. The development length appears to approach
the critical value asymptotically, indicating an infinite development length at th~
critical value. This is consistent with smaller centrifugal forces requiring a longer
axial length for the additional vortices to grow. The critical value predicted by
the three-dimensional parabolic simulation has to be slightly less than Dn = 130,
which was the smallest Dean number at which a four-cell flow was simulated. The
ciitical value for the two-cell to four-cell transition, predicted by the t wo-dimensional

simulation, was around Dn = 130.9.

In the numerical study of Ghia and Sokhey (1977) for a curved duct of square
cross section, a numerical experiment showed that the development length for a
four-vortex flow increased with increasing Dean number. In order to vary the Dean
number, they held the Reynclds number constant and changed the curvature ratio.
Using this approach, they missed the phenomena of decreasing development length

with increasing Dean number when the curvature ratio is maintained consiant.
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Figure 6.63: Numerically generated state diagram showing flow development at

Dn =125, 131, 133, 137 and 150.
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In the flow visualization studies of Cheng et al. (1979) and Sugiyama et al.
(1983), their flow visualization of the four-vortex flows in a square duct reveal
different sizes of the additional vortex pair depending on Dean number. At the lower
Dean numbers the size of the additional vortex pair was smaller. For a particular
aspect ratio, the additional vortex pair should be about the same size at all Dean
numbers when the flows are fully developed. The behavior observed in Cheng et al.

and Sugiyama et al., suggests that some of their flows were not fully developed as

they had assumed.

In a numerical study by Soh (1988), fcr the flow development in a curved duct
of square cross section, he suggested that the flow developed into different states
depending on the inlet profile to the curved section. For a fully developed straight
duct inlet profile, the flow appeared to develop to a two-vortex like state, while a
free-vortex inlet profile developed into a four-vortex flow. In order to observe the
effect that the inlet profile had on the flow development for the curvature ratio used
in this study, a numerical experiment was carried out using a fully developed straight
duct inlet profile and uniform inlet profile. Since Agrawal et al. (1978) found that a
uniform inlet profile quickly develops into a free vortex, the flow development for a

uniform inlet should be very similar to the flow development for a free-vortex inlet.

Figure 6.65 shows the flow development for a straight duct inlet profile compared
to the flow development for a flat inlet profile. For each Dean number simulated,
the flow develops to the same final state independent of the initial inlet profile. The
four-vortex flows take longer to develop with a uniform inlet profile than with the
fully developed straight duct inlet profile. The development to the same state is
contrary to what Soh (1988) predicts, however the results of Soh are not definitive
because of the short axial development length he used in his analysis. It is possible

that for a larger development length the same final states might have been observed.
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On the other hand, it just might be that the different curvature ratio used in his

analysis is responsible for a different behavior.



Chapter 7

Two-Dimensional Solution

Structure

For fluid flow in a curved duct of square cross section, Winters (1987)
numerically showed that the two-dimensional (2-D) solution structure was a complex
bifurcation diagram with areas of multiple symmetric and asymmetric solutions.
A linear stability analysis by Winters also showed that all solutions, except
the symmetric two-cell branches were unstable to perturbations that broke the
horizontal symmetry. Even though some of the solutions were also predicted to be
unstable to symmetric perturbations, the symmetric four-cell lows were predicted

to be stable for a perturbation that did not break the horizontal symmetry.

Given that symmetric four-cell flows were predicted to be unstable to asymmetric
perturbations, Winters questioned whether they could be experimentally observed.
The results presented in the previous chapter, showed that it is possible to
experimentally observe the predicted two-dimensional flow at Dn = 150. Even
though the four-vortex flow is unstable to asymmetric perturbations, the growth

rate of such perturbations must be small if it is possible to observe the flow pattern

150
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within the axial length of our apparatus. The ability to observe the symmetric
flows within the axial length of the experimental apparatus can be attributed to
the perturbation free inlecu profile. However, it is still in question as to what would
happen if enough axial length of the curved section was present for perturbations

to grow so their effect could be fully realized.

Using the two-dimensional Navier-Stokes equations given in chapter three, the
numerically predicted two-dimensional solution structure as a function of Dean
number is shown in figure 7.1. The solution structure is in the form of a state
diagram with the axial velocity at z’/a = 0.25 and 2'/a = 0.0 as the state variable.
The symmetry boundary condition imposed about the horizontal centerline only
allowed symmetric solutions to be calculated. Between Dn = 100 and Dn = 150 it
is seen that the solution structure contains a dual solution region with limit points
at Dn ~ 114 and Dn ~ 131. Winters (1987) showed that the connection between
the two-cell and four-cell branches is continuous, however the numerical formulation

used in this study was not able to follow the solution around the limit points.

It must be remembered that figure 7.1 has been calculated for a curved duct of
square cross section with a curvature ratio, R, = 15.1. For other curvature ratios
the solution structure will have the same appearance, but the location of the limit
points will be different. Both Shanthini and Nandakumar (1986) and Winters (1987)
have numerically shown that the Dn values of the two limit points increase as the
duct becomes more tightly coiled (i.e. as R. decreases). The two investigations have
also revealed that when the aspect ratio reaches a value of around 1.4 the two-cell

and four-cell branches become disconnected.

In order to generate the state diagram in figure 7.1, a solution was first obtained
on the two-cell branch by specifying an appropriate value for the non-dimensional

pressure gradient (Ap = dp/d8 = —235000). Once a converged solution had been
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Figure 7.1: State diagram, with axial velocity ai &' '» = 0.25 and 2'/a = 0.0 as

the state variable, showing the symmetric two-dimensional solution
structure for a curved duct with R, = 15.1.
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obtained, the corresponding Dean number (Dn = 101) was determined. Using this
solution as an initial guess, the pressure gradient was gradually increased to trace the
two-cell branch. When the pressure gradient was increased beyond Ap = —324000,
the value corresponding to Dn = 130.87, the solution jumped to the four-cell branch.
Starting with a converged four-cell solution, the four-cell branch was then followed
for both increasing and decreasing Dean number. For a pressure gradient smaller
than Ap = —277500, which corresponds to Dn = 113.97, the solution jumped back
to the two-cell branch. The values of the limit points were calculated by using
smaller increments in Ap as the limit points were approached. Using this method,

the limit points were determined to within 0.25% of the exact values.

7.1 Experimental Difficulties in Observing Two-

Dimensional Solution Structure

One of the goals of this study was to experimentally verify the two-dimensional
soluticn structure that was numerically predicted in the previous section. An
obvious problem in accomplishing this can be seen from figure 6.64. The lack
of sufficient axial development length in the experimental apparatus prevents
observation of the naturally developing four-cell flows below Dn =~ 130. Given
that measurements in the experimental apparatus were only possible to about
9240°, an experimental “trick” (i.e. inlet perturbation) was required to reduce the

development length of the four-cell flows that were below Dn = 150.

Figure 7.2 shows the natural occurring solution structure at 6 = 220° if no
inlet perturbation is used to induce the two-dimensional four-cell solutions below
Dn = 150. Figures 7.3 and 7.4 show corresponding arrow plots and flow visualization

of the secondary flow structure at § = 220°. The experimental data in figure
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7.2 was acquired by measuring the axial velocity at § = 220°, z'/a = 0.24 and
z'/a = 0.0 while the Dean number was varied. Unlike the numerically generated
two-dimensional solution structure, no hysteresis effect was observed when the flow

rate was reduced after having obtained a four-cell flow.

From figure 7.2 it can be seen that around Dn = 130 the value of vy is starting
to change in response to the onset of the additional vortex pair. Given that the
development length of the four-cell flow is infinite at the critical value, it is difficult
to experimentally determine the two-cell to four-cell limit point. Flow visualization
in figure 7.4 also indicates that the limit point is around Dn = 130, hut it is
impossible to determine a value with a high degree of accuracy. Forinstance, the flow
visualization at Dn = 129.9 might represent a four-vortex flow where the additional
vortices have not yet started to grow. Based on the axial velocity measurements
and flow visualization, a best estimate of the experimentally determined two-cell to

four-cell limit point is Dn = 130 £1-2%.

The numerical curve in figure 7.2 was generated by performing a developing
9ow simulation for each of a series of Dean numbers between Dn = 100 and
On = 150. Once a developing flow simulation had been completed, the axial
velocity at 6 = 220°, z'/a = 0.24 and z'/a = 0.0 was extracted and used in the
construction of the state diagram. The difference between the numerical prediction
and measurements in the region between Dn = 133 and Dn = 145 is a result of
the numerical simulation predicting a faster growth rate of the additional vortices.
This effect can also be seen by comparing the arrow plots and flow visualization
in figures 7.3 and 7.4 respectively. A feature that is ~ommon to the numerical
simulation and the experimental measurements is the difficulty in determining the

value of the two-cell to four-cell limit point.
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Figure 7.2: State diagram, with axial velocity at z'/a = 0.24 and 2'/a = 0.0
as the state variable, showing the experimentally and numerically
determined natural occurring solution structure at 6 = 220°.
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Figure 7.4: Flow visualization of secondary flow patterns at 6 = 220° for the
natural occurring solution structure.
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7.2 Reduction of Development Length

In order to observe the four-cell flows at Dean numbers below Dn = 150, a
perturbation was introduced at 5° downstream from the curved section inlet. A
0.4 mm diameter pin was inserted across the duct on a radial line at the duct’s
horizontal axis of symmetry (z'/e = 0.0). The appearance of the four-cell flows was
very sensitive to the positioning of the pin. If the pin did not cause a symmetric
perturbation, then the symmetric four-cell flows could not be observed. Instead, an

asymmetric four-cell was observed when the inlet perturbation was asymmetric.

The size of the pin was kept small enough so that no undesirable effects were
introduced from its wake. Assuming that the pin would see a maximum v_locity
equal to the value at the duct center of the straight section inlet, the pin Reynolds
number, Re,;, (based on the pin’s diameter), was 39 at Dn = 150. For Re,n less
than about 60, Schlichting (1979) p. 31 states that the wake behind a circular
cylinder will be laminar with no appearance of a Kérman vortex street. Since the
pin was r.ot subjected to a Dean number higher than Dn = 150, the wake behind

the pin would always have been free of a vortex sireet.

The effect of a pin placed symmetrically across the duct at Dn = 137 can be
seen in figure 7.5. The circles are the :neasured flow development w:th no pin and
the triangles show the flow development for the symmueirically placed pin ~h the
pin, the flow appears to have already become axially invariant by about 6 = 40°.
Measured velocity profiles at Dn = 137, 8 = 60°, § = 140° and 8 = 229° compared
tc the numerically calculated 2-D profile in figure 7.6, verify that the flow throughout
most of the duct’s axial length is axially invariant. In figure 7.7, flow visualization of
the flew development at Dn = 133.9 with a symmetrically positioned pin at § = 5°

shows that the secondary flow structure has been formed by 8 = 90° and that ::
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Figure 7.5: State diagram, with axial velocity at z'fa=0.24 and 2'[a = 0.0 as
the state variable, showing the reduction in development length at
Dn = 137 for an experimental and numerical symmetric trip.
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Figure 7.6: Measured axial velocity profiles, at Dn = 137, 8 = 60°, 140°, 220°
and z’/a = 0.0, with a symmetric trip at § = 5° compared to
numerically calculated fully developed profile.
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vigure 7.7:  Flow visualization of flow development at Dn = 133.9 with a
symmetric trip at § = 5°.
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remains constant thercafter.

The symmetric trip was numerically modeled by setting the axial and radial
velocity components to zcro at the grid points on the duct's horizontal axis of
symmetry. This was done at & = 5° once a converged profile had already been
obtained. The dotted line in figure 7.5 shows the numerically predicted flow
development with a symmetric trip compared to the experimentally measured
development with the symmetrically positioned pin (i.e. symmetric trip). The
numerical simulation shows a reduced development length, but it is nowhere near
to what was measured. The difference has to be due to the fact that the numerical
trip (i.e. setting the velocities at -0.5 < r’/a < 0.5 and z'/a = 0.0 to zero) is not

an accurate model of the pin’s effect.

7.3 Experimental Observation of Dual Solutions

The experimentally observed two-dimensional solution structure at § = 220° is
shown in figure 7.8. The two-cell branch was determined up to Dn = 130.5 by
measuring the state variable with no pin inserted at § = 5°. Since the two-cell to
four-cell transition was expected to be around Dn = 130, the measured value at
Dn = 130.5 may or may not actually be a two-cell flow. The entire four-cell branch
was observed upon the symmetric insertion of the pin. Starting with a two-cell flow
at Dn = 125, the pin was inserted and adjusted until a symmetric four-cell flow
was observed. Once a four-cell flow had been obtained, the flow rate was increased
or decreased to trace the solution brzach. Using the pin as an experimental “trick”
to observe the four-cell solution branch is consistent with the work of Benjamin

(1978b) described in chapter two.

Figure 7.9 summarizes the role that the pin played in experimentally observing
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Figure 7.8: State diagram, with axial velocity at z'fa = 0.25 and 2'/a = 0.0
as the state variable, showing the experimentally determined two-
dimensional sehition structure for a curved duct w.ih R = 15.1.
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the state variable, used to illustrate role of pin in observing different
regions of the 2-D solution structure.
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different regions of the two-dimensional solution structure. The two-cell flows in
region A-B and the four-cell flows in region E-F could be observe:: with and without
the pin inserted at the inlet. However, in region E-F the four-cell flows below
Dn =~ 150 were not fully developed if no pin was used. The four-cell flows in
region D-E could only be observed if the pin was used to induce the four-cell flows.

Conversely, the two-cells flows in region B-C could only be observed without the

pin inserted at the inlet.

In figure 7.8, the Dean number for the jump from the four-cell branch back
to the two-cell branch appears to be close to the numerically predicted value of
Dn ~ 114. For Dean numbers above Dn = 118, the four-cell flows would remain,
but at Dn = 115.1 (the lowest experimentally c!«erved value) the four-cell flow
was only observed briefly. As the flow rate was decreased below Dn ~ 118, the
pin (located at § = 5°) was no longer effective in inducing the four-cell flow, so a
two-cell flow developed. However, before the developing two-cell flow reached the
downstream measurement position, it appeared that the four-cell structure being
convected out of the duct had adjusted to the lower Dean number. Therefore, in
order to observe the experimental point at Dn = 115.1, the flow rate was reduced
and the lowest velocity valuc was recorded. Since the ime scale for the flow to
adjust to ihe lower flow rate was comparable to the convection time scale, ‘he

velocity value corresponding *: the four-cell flow at Dn = 115.1 was only observed

for a few seconds.

Figures 7.10 and 7.11 show the axial velocity profiles of a two-cell and four-
cell flow respectively, measured at Dn = 125, 6 = 220° and z'f/a = 0.0. Flow
vi- alization of the secondary flow patterns at Dn = 123.4 are compared to the
numerically predicted secondary flow streamlines for a two-cell and four-cell flow

in figures 7.12 and 7.13 respectively.  From figures 7.10 through 7.13 it can be



CHAPTER 7. TWO-DIMENSIONAL SOLUTION STRUCTURE 166

2-5 Ll 1 T T ¥ Bl T T L ]
Dn = 125
2.0} .
;5 8 = 220
g z'/a = 0.0 P
T 15t
> 2 Cell
i )
5 1.0 o
<)
s ()
°
0.5+t
(&) o

2.0 — —
~05 -0.4 -03 -02 ~0.1 00 01 02 03 04 05

x'/a Radial Position

Figure 7.10: Measured axial velocity profile of a two-cell flow at Dn = 125,
6 = 220° and z'/a = 0.0.
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Figure 7.11: Measured axial velocity profile o7 = ' ir-cell flow at Dn = 125,

6 = 220° and z'/a = 0.0.
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Figure 7.12: Flow visualization of two-cell flow compared to numerically
predicted secondary flow streamlines at Dn = 123.4.

Figure 7.13: Flow visualization of four-cell flow compared to numerically
predicted secondary flow streamlines at Dn = 123.4.
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seen that the experimentally observed dual solutions at Dn =~ 125 are in very good

agreement with the numerical predictions.

7.4 Role of Pin in Inducing Four-Vortex Flows

The role of the pin in inducing the four-cell flows can be explained with the aid of
the three-dimensional (3-D) plots of axial velocity in figures 7.14 and 7.15. The two-
cell and four-cell axial velocity surfaces were numerically calculated using the two-
dimensional vorticity stream-function formulation. The major difference between
the two-cell and four-cell velocity surfaces is the depression at the horizontal line
of symmetry in the four-cell velocity surface. The velocity gradients near the cuter
wall in the four-cell profile are necessary if the additional pair of vortices are to exist.
In fact, the vorticity transport equation given in equation 3.13 reveals that it is the

gradients of the axial velocity in the vertical direction that drive the secondary flow.

Figure 7.16 shows the measured axial velocity profiles in the vertical direction
at Dn = 125, 0 = 20° and z’/a = 0.32 with and without the pin. Without the pin
the profile is fairly uniform in the central region. However, upon the insertion of
{ae symmetrically placed pin, the profile develops a depression. The vertical axial
velocity gradients induced by the pin’s presence cause the additional vortices to
form at the outer wall. Given tha* the pin’s role is to create the proper velocity

gradients, the axial position of the pin should not be critical.

Figures 7.17 and 7.18 show the axial velocity profiles at the duct’s horizontal
and vertical axis of symmetry with and without the pin at § = 5°. It is seen from
figure 7.17 that the axial velocity in the region near the wall is reduced as a result of
the presence of the pin. The axial velocity at the duct center, i figure 7.18, adjusts

in order to satisfy continuity.
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Chapter 8

Stability of Flows

The numerical studies of Winters (1987) and Yanase et al. (1988) demonstrated
that the four-cell flows in curved ducts of both rectangular and circular cross section
are unstable to asymmetric perturbations. In each case the four-cell flows were found
to be stable for a symmetric disturbance, while the two-cell flows were found to be
stable for any arbitrary disturbance. The use of a symmetric pin to experimentally
induce the four-cell flows, as was shown in chapter seven, confirms that the flows
are stable to symmetric disturbances. The fact that asymmetric four-cell flows were
observed when the pin was not symmetrically positioned, also confirms that the

symmetric four-cell flows are unstable to an zsymmetric perturbation.

In the previous two chapters it was shown that for Dn < 150, the symmetric
four-cell flows predicted by the two-dimensional Navier-Stokes equations could be
experimentally observed within 240° of axial length. Given that four-cell flows are
unstable to asymmetric perturbations, and that any experimental apparatus will
have inherent asymmetries, suggests that the growth rate of such disturbances must
be small in order to experimentally observe the flows. If an asymmetric disturbance

is not introduced at the inlet, naturally occurring asymmetries might require large

172
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axial lengths before their effects are observed. However, whether an asymmetric
disturbance is deliberately introduced at the inlet or allowed to grow naturally, the

question still remains as to what happens to the flow far downstream.

8.1 Steadiness of Flows

One possible way that the four-cell flows could respond to growing asymmetric
perturbations is to develop time dependent fluctuations. In order to check the
steadiness of the flows that were investigated, a point at § = 240° was chosen, and
the axial velocity was monitored for at least 80 minutes. The puint at which the
velocity was monitored at was on the horizontal line of symmetry (i.e. z’/a = 0.0)
and at one quarter of the duct width from the outer wall (i.e. z’/a = 0.25). For
the four-cell flows, this position was between the additional vortex pair at the outer

wall, so any motion in the vortices could easily be detected.

It was necessary to know that the inlet conditions did not provide the source of
any fluctuations, so the steadiness of the inlet flow had to be investigated. Figure
8.1 shows time records of the axial velocity at the center of the straight duct inlet
section for Re = 388.0, 585.9 and 778.3. The three flow rates show that, for the
range of Dean numbers investigated in the curved duct, the inlet flows are steady.
The small fluctuations (i.e. noise) that are seen in the signals are a result of the

inherent phase fluctuations associated with the doppler signals of the LDV.

Figure 8.2 shows the time records for a two-cell and four-cell flow at Dn =~ 125.
The two-cell flow time record at Dn = 124.9 has a slight rise in the first 600 seconds.
This effect is likely due to the flow rate settling down to steady state. Since the
two-cell flows are stak'e to any arbitrary perturbation, no time dependence is to be

expected. The four-cell flow time record at Dn = 125.4 is fairly constant, but a slight
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increase in the signal is noticeable between 4500 and 5000 seconds. This increase
is likely due to a small asymmetric disturbance introduced by the accumulation of
air bubbles on the pin, or a slight movement of the pin in the rubber mount. The
axial velocity at the monitoring point was observed to be a minimum when the

additional vortices were symmetric, so an increase of velocity indicated that the

cells had become asymmetric.

Both four-cell flows at Dn = 137.6 and Dn = 149.8, shown in figures 8.3 and
8.4 respectively, were extremely steady for the 6000 second sample time, confirming
that the flows were time independent. The non-dimensional velocity, vs, is slightly
larger at Dn = 137.6 than at Dn = 149.8, since the flow at Dn = 137.6 has not
developed by 8 = 240°. The steadiness of these four-cell flows also suggests that any
asymmetries appearing in the induced four-cell flows below Dn < 150 are a result

of asymmetries associated with the pin.

At Dn ~ 200, the time records presented in figures 8.5 and 8.6 show the effect
of heat transfer between the ambient air and working fluid. In figure 8.5, the signal
starts at a value of vs =~ 1.3 and after about 2500 seconds (i.e about forty minutes)
ve has increased to around 1.5. The increase of the axial velocity indicates an
increasing asymmetry in the additional vortex pair near the outer wall. However,
once the velocity reached the higher value, it remained there for the remainder of
the sample time. In fact, figure 8.6 shows that, for an additional 6000 seconds after

the end of the first time series, the velocity still remains constant.

The transient behavior observed in the first forty minutes of the time record
shown in figure 8.5 is a result of the working fluid in the apparatus changing
temperature. When the apparatus was first started up it had been sitting for some
time, so the working fluid in the stilling chamber would have been at the ambient

temperature. During the course of the measurement, the room temperature was
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about 0.5° to 1° higher than the set point temperature of the working fluid, and
as the fluid in the stilling chamber was replaced by the working fluid at the lower
set point temperature, the initial transient was observed. Even though the system
eventually reached a steady state condition, the temperature difference between the
working fluid and ambient air caused an asymmetric four-cell flow to be observed
at 6 = 240°. The fact that the asymmetry grew with time also confirmed that the
effect was not an asymmetry in the apparatus that was just starting to appear at

Dn ~ 200.

The temperature effect was not observed at Dn < 150, even though the same
temperature difference existed between the working fluid and the ambient air.
This seems to suggest that the asymmetric four-cell at Dn =~ 200 resulted from
an asymmetric disturbance caused by buoyancy effects rather than a combined
centrifugal and buoyancy effect. If the asymmetry in the vortices was a mixed
convection effect, as in the studies of Yao and Berger (1978) and Sankar et al.
(1986), the effect would have been more pronounced at the lower Dean numbers.
Figure 8.7 shows an asymmetric four-cell flow at Dn = 150 and § = 220° caused
as a result of an asymmetric perturbation created by warming the first 20° of the

curved section by the observers hand.
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Figure 8.1: Time records of measured axial velocity in straight duct section at
t'/a = 0.25 and z'/a = 0.0 showing steadiness of inlet flow for
Re = 388.0, 585.9 and 778.3 (measurement location; 5a upstream
of curved section inlet).
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Figure 8.3: Time record of measured axial velocity at Dn = 137.6, 0 = 240°,
z'/a = 0.25 and 2/a = 0.0 showing steadiness of the four-cell flow.
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Figure 8.4: Time record of measured axial velocity at Dn = 149.8, 6 = 240°,
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dependence.
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four-cell flow.
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Figure 8.7: Flow visualization of secondary flow patterns at Dn = 150 and
9 = 220° showing asymmetry introduced into flow structure by
warming inlet section with observer’s hand.
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8.2 Numerical Investigation of Flow Behavior at

Large Axial Distances

In the experimental apparatus used in this study, measurement of the flow
development was limited to an axial length of around 240°. This amouit of
development length was not sufficient to determine the ultimate state of the four-
cell lows. Therefore, in order to conjecture what might happen, a numerical
investigation of the flow development to large axial lengths was performed. Figures
8.8 through 8.12 show state diagrams of the numerically simulated flow development

at Dn = 125, 130, 137, 150 and 200 respectively.

In figure 8.8, it is seen that at Dn = 125 the flow remains axially invariant
after @ =~ 100°. It is not surprising that the two-cell flow remains axially invariant,
since it is supposedly stable to any arbitrary perturbation. In contrast, the four-cell
flows at Dn = 130, 137, 150 and 200, shown in figures 8.9 through 8.12 respectively,
evciiually develop a spatial oscillation in the axial direction. The frequency of these
oscillations increased as the Dean number was increased. As shown by Sankar et
al. (1988), these oscillations are not a numerical artifact. They repeated some
calculations with different axial step sizes and cross plane grid resolution and found

that the nature of the oscillations and periods were sustained.

The oscillations in the axial velocity are a result of oscillations in the additional
pair of vortices at the outer wall. Figures 8.14 through 8.16 show arrow plois of the
secondary flow corresponding to the one cycle of the axial velocity shown in figure
8.13. From the arrow plots it is seen that the additional vortex pair starts to show
a slight asymmetry beyond 8 = 600°. This is evident at § = 620° to § = 660° from
the direction of the secondary velocity vectors near the outer wall un the horizontal

line of symmetry. For a symmetric flow the velocity vectors would be purely radial,
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but in this case a small vertical component in the downward direction is starting to
appear. The arrow plots from 6 = 680° to 6 = 780° reveal the growing asymmetry
in the additional vortex pair as they move downward in the cross section. The top
cell appears to increase in size slightly while the bottom cell is compressed into the
corner. The increase in axial velocity between 6 = 600° and 6 = 780°, in the state

diagram of figure 8.13, reflects the growing asymmetry of the additional vortex pair.

In the region from 8 = 800° to = 860°, the additional vortex pair disappears
into the bottom vortex of the larger pair. By 6 = 920° the larger vortex pair has
readjusted to what appears to be a symmetric two-cell flow. The axial velocity at
9 = 920°, as seen in the state diagram of figure 8.13, has a value that is typical of
a two-cell flow. After 6 = 920°, the additional vortex pair reappears and continues
to grow in size until § = 1040°. As in the previous case, a slight asymmetry in the
additional vortex pair at § = 1040° is evident in the secondary velocity vectors near
the outer wall on the horizontal line of symmetry. In contrast to the arrow plot at
# = 620°, the secondary velocity vectors at § = 1040° now reveal a small vertical
component in the upward direction. Following the flow development to 0 = 1200°, it
is seen that tke asymmetry in the additional vortex pair grows as before. However,

the movement, of the cells is now toward the top of the duct.

Monitoring the axial velocity on the horizontal line of symmetry does not reveal
that the additional vortex pair alternately moves up and down in the cross section.
Figure 8.17 shows that, by monitoring the vertical velocity on the horizontal line of
symmetry, a period of twice the length is found. Monitoring the radial velocity on the
horizontal line of symmetry will also produce the same period as the axial velocity
and obscure the fact that the vortices move up and down. Sankar et al. (1988)
monitored both the axial and radial velocity on the horizontal line of symmetry,

and as a result missed the fact that the additional vortices alternately move up and
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down.

The oscillation of the flow between a two-cell and four-cell state is consistent
with the fact that there is no stable two-dimensional flow predicted in the region
immediately beyond the limit point of the two-cell to four-cell transition. Once the
limit point is exceeded and a four-cell flow develops, numerical round-off introduces
asymmetries which cause the additional vortex pair at the outer wall to experience
a spatial oscillation. This behavior agrees with Winters (1987) prediction that four-
cell flows are unstable to asymmetric perturbations. In the work of Sankar et al.
(1988), they found that their four-cell flows at Dn = 200, for curvature ratios R, = 4
and R, = 10, remained axially invariant up to § = 2500°. However, after rerunning
their simulations for larger axial lengths, it was found that sustained oscillations

appeared.

In the state diagram of figure 8.18, the numerical si.nulation shows that at
Dn = 250 the flow appears to eventually develop in%o an axially invariant two-
cell state. The numerical study of Winters (1987) revealed that an isolated two-cell
branch exists at this higher Dean number, so it is possible that the flow has been
attracted to this state. Winters also predicted that the isolated two-cell branch was
stable to any arbitrary perturbation. The breakdown of the four-cell flow to what
appears to be an axially invariant two-cel, _tate in figure 8.18, is consistent with the

solution siructure and stability characteristics predicted by Winters.

The above phenomena of a four-cell flow giving way to a stable two-cell flow also
happens in the dual solution region between Dn ~ 114 and Dn =~ 130. Figure 8.19
shows the numerical prediction of flow development at Dn = 110, 125 and 137 with
a four-cell flow inlet profile. The inlet profile used was the axially invariant four-cell
profile calculated in the flow development simulation at Dn = 150. At Dn = 110,

the two-cell flow is the unique solution to the two-dimensional equations, so the flow
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quickly evolves to the two-cell state. After an initial adjustment region, the four-cell
flow at Dn = 125 is axially invariant for about 500° before giving way to a two-cell
fAow. The use of a four-cell flow as the inlet profile was the only way that the dual
solutions could be observed with the three-dimensional numerical formulation. The
familiar spatial oscillation is again seen at Dn = 137, once the limit point of the

two-cell to four-cell transition is exceeded.

The numerical investigation of flow development confirms the prediction that
four-cell flows are unstable to asymmetric perturbations. In the regions of dual
solutions, it was seen that the four-cell flow would give way to an axially invariant
two-cell flow. If the axial length was sufficient in the experimental apparatus used
in this study, it is plausible that the four-cell flows in the dual solution region (i.e.
Dn ~ 114 to Dn =~ 130) would be observed to give way to two-cell flows. For Dean
numbers higher than Dn =~ 130, the flows might develop spatial oscillations or time
dependence, or even some combination of the two. In the numerical study of Finlay
et al. (1988) for flow in a curved channel, they found that travelling waves developed
in the streamwise direction at higher Reynolds numbers. Their observation suggests
that the same type of phenomena might be possible in a curved duct of finite aspect
ratio. It must be kept in mind that the three-dimensional numerical formulation
used in this study could not model time dependence, so the instabilities in the

four-cell flows were forced to show up as spatial oscillations.
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Figure 8.8: Numerically calculated state diagram, with axial velocity at z’ [a=
0.24 and z'/a = 0.0 as the state variable, showing flow development

to 9 = 2000° at Dn = 125.
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Figure 8.9: Numerically calculated state diagram, with axial velocity at z’/a =
0.24 and 2’/a = 0.0 as the state variable, showing flow development
to § = 4000° at Dn = 130.
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Figure 8.10: Numerically calculated state diagram, with axial velocity at z’/a =
0.24 and 2'/a = 0.0 as the state variable, showing flow development
to 8 = 3000° at Dn = 137.
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Figure 8.11: Numerically calculated state diagram, with axial velocity at z'/a =
0.24 and z'/a = 0.0 as the state variable, showing flow development

to 6 = 2000° at Dn = 150.
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Figure 8.12: Numerically calculated state diagram, with axial velocity at z'fa =
0.24 and z’/a = 0.0 as the state variable, showing flow development
to 8 = 2000° at Dn = 200.
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Figure 8.13: Numerically calculated state diagram, with axial velocity at z'/a =
0.24 and 2'/a = 0.0 as the state variable, showing spatial oscillation
between § = 600° and 6 = 1200° at Dn = 150.



= L e
_"W*\\ [}
AL
:‘ “..a-//)"/'—v
B Saded

"/ '
- - o S EC— o -
0-‘-\.”4_\\‘

PP

TuNNNS S

v ety

<« X sy, ]

Jlaemrts N
ISP B L s ]

O Lm0

. 4o L N Y

ijpw=
)

‘....a”’ -\
Iy ) A A X

P s Sy

"**-014—4-"“'; .
i

‘v

e S NN A Y £

DR Rl
V- PW D P Ty
\\..,v’///'—k‘\.

‘0
‘0

¢

:\._..'I// -
\‘.....'”f’.‘ '
--.....-'O\N_(i‘
LR R S . =L
rd
s
t

;’--‘ -\
5 st s mmf
. “/’1‘:’. AT s

) e~ N

B e e 2 o P

T - L Oy

PR Y I
“/1"\'. -2 X T, |
\\",jﬂ/y’“\‘
hPORYY 2 SN .
‘.,,...-p'\\..’).
- - o P - -
e gt
- Vel [
4 ’o\\\\k\*""
RIS

AR Y

R Y

tCMNN S g

L Y
re
7 -

[ - _x

0=640°

LA
-”W%\\ +

\
Y

IR T AP R Sy
Nttt o,
s e P

Cara—r—

-t 2 & o)
“""\’_ -t A,

T = & 2L SA Sand
. -—w N\

B

“\Wﬂ—rt', A

“/",.':13111

NN

NENE et BER

\‘\-01'\\@’ ;o

PPN T IRE - i A
. ,a-.,-“"_,,_\\*;
R R 2D A
tr ALY
?

AR A
RN e
‘\\“"\\\\‘\\l

-
-
-

RN 2 e g

0=660°

-\
PR I rrtd
N s NI W or
- I oy |

P

--.ool’ff.\ :
-....--'\\._’ .
K ww s g
R DT WL I
’I-\‘\\\‘-.-
Nm e s N wmu
B e R

s = - = o

e ™
Ao s par

”

6=800°

Figure 8.14:

—= -
™ L U WA
.‘/,‘,,-~-'l’lf'

’J....\~"‘_Q-\ )
’p-‘\\\\‘o'o

"'\\\\\*"‘-
AR LY

V4
»”

T

.,‘,‘«««4—\\\ fl

T T

PN RN
”":’, e m A
v ‘....JI’IJ-O-.
Ny ‘..-v’/',’l..\ J
‘....-v—v,/’/’.'\

DRIy S . A v

LA B 2 T "-\ 4
. ‘;

.
~
y ‘
AT AP P b O '
I A SRR

. o o
4 /

P rea e

6=820°

Arrow plots of the spatial oscillation at L'n

- ¢ o

PR

- =

/i

----o|\‘~<_‘:j :

gl IR andiellid
l-o..“ ’,\\ ]
lav..‘\\\‘\\"/ o
M NN NS Al

T NN - T
- v, *\\f\
, - s v 2mrfo
,“1,‘"',”’/’)4’4
,‘\\‘...-xl/ o, |
N \\‘..'I’ ,"\\\
,\“..—-’,/’-~ |
.----111\-‘ N
AR B T R .
. 'tlo--“l“.‘_- .
. ! .
AT OTeR
o R RN E
“\“‘-o \:‘\\\\'n
¢ NNt - o g
.« a a c - X s -

A YR Y 4
¢
i
b
\
i
”

I .

f'p.--..,;

\\\‘---,

o

. s Pamn s

wetcceceecnl ¥

0=840°

150 showing the

development of the secondary flow between 6 = 620° and § = 840°.



,'—- e\
/‘:‘," e et b !

AN
\ .‘.‘-.-0—’
N dadadilid

; ;’M‘-s‘ -
Pt o ' 5 S NN
Nx,_..,‘\\“:
LR Sy
\\\\“‘"d( &

A S X

L e - —— o oy

LA T

P e 2o~ N

B R o o 2 R

L W
-t PR 2N BN
"~‘--II’/".
\\_‘..,v”ztlf,

R e diadiad A

-\

P I
e T S R
P IO PPy
e T T SR NEY
/l.o...‘“\‘

A
\
te, <
LR SR N NEN
\\\\;...,,‘::

TuauNNG -

PN s - -

L e - e -

SN

o

¢ ) A= N

v e e

T -

IR A I
,/“."'-ll”,,’-

\“..1-111'104
\.\..—..'-'”f--
RPN el A
-~ L e oo
fadE T R R I N A
[afiadt 2 T X G
i e S v
by N\
S e e mmm VY
e
o f
- e giecef—- -~ s -

/;*\\\ ¥ S

6=860°

Y
I N 2 Adns

. ..
.t t;....”’/’lo,
N

\‘......-'ﬁtl r . .

- # s S
> s P -
B o L L LI S ]

L T O

NN L

""-Oqs\\\\\\-
'!-“\\\\\.
Y., AT

-

_

| PN

0=920°

0=880°

A
]
f
A

PR A
.\\_o’ﬂ’lfl.
\‘.._.”Ilfﬁ-.
\\-;-.-o.vll" PN

r a4

-\

[ Y I A R T

PR AY Sl

- b -
iR B K L N
I 2 T S R
’I.o....‘\\\\_.
tr, LR IE SENE AR

TMNND -

= - T
- W\

P LA
"‘"\ R Y R
\\.,-o’l’/”,_
\‘.,-.J""' . o

- ” .,

-\

BRI N

- e vee e e -

R L LR N SR

NN s~

,J-.-..“\‘\ R

f’.....,\\\\\.-
'la-“\\\\‘.
wNe ., , VA Y

LA

[ A R O
AN
”

*

g
o
4

-

6=980°

-
-
[

A3

L3
A
- -
PITIIINGLy
- - - e o o C— .
vt
L B Y .
'f’p,‘\\\\\‘\‘—"l
P o “\\\VI

-~
”
!
v
’
4
i
[}
' 4

DI A &
NV~

== =
- WA

P N A
AR Pted
\‘..»II’,/‘J“
\\.._...I/’f <0
[ B TN
P N R
e L G
FIIIINMNN L
At S VRV

IV, -
A S9N
\\\--,.\\\\

” -
s - s -

P3

6=900°

- = A -
‘4 o A
A NN
\ 11/‘"‘\.;”/’/-.
-.\\\‘-.”’:”l-.
..\\"-.»Jl LI
S e IR
EERE S W . A ST
PR X T e
. r ﬁla,,.._.“‘\\ v
. :f’:""“\\\\"
g 'a--‘\ J
Y N
AR, L, ) \\\‘\'
PR a“ g ¥ *
e = . e - -_r )
0=960°
T -
'aa«&«é"“"“"\ N
A l,,.\fl’/l-
” i/ . ‘-II//),D,.,
N - AR
SN NN- T4
NN N g
.\\‘w‘."'\"c—’t
P O
.. ao‘,‘-"”‘\‘ |
.Il’.o_.“\ (SR
B f”’,“\\\\\\, ﬂ
.ff?l._‘\\\\\*...
AR e
¢ AWt s 7 ¢
PR X y = -

™

4

\
NI S S A
“‘-’f!\\‘_‘,),
---oo.«(:o..
s g X.
Y w4 -t L
7 DTN

t

6=1020°

T

0=1040°

0=1060°

S Rt o ¢

bl S UIEEY 4 4
‘
[
]
¥
A Y
f
*
N

L SR

»
¥

AN b L 2N

. . - P

e=1080°

Figure 8.15: Arrow plots of the spatial oscillation at Dn = 150 showing the
development of the secondary flow between § = 860° and = 1080°.



CHAPTER 8. STABILITY OF FLOWS

r——
-1t‘«<4‘—-""‘\\ .

PR

e - -

P N B d
“”’\ e AN Ty,

\‘...vl///—v‘\.
\....’/’f'- ' .
‘,.-..‘l\“-‘,’ "
D Y = 2

""“\\‘l"\\ .
phatad b SRR

et SNV Y &d
-

.,,“«.eq—a---\\ .

“ e

TuNN S gy

Eaaninin o 2 20 o 2 P A

Darar—a— L I s

PN . L X
“I"\ WD Pl T
\‘-I’,’l’o‘\‘
Ay b B .
‘-.-..oaQ‘ﬂ(—-—’ .
PSR
. --,‘\\‘,_3§;
’

4 lﬁ..“\ \\ |
tte, J
t -

-
”

Te s v wmmy

— =~
.,,‘«é.(_«—c.v.\\ [
i

)

c v
Lol R

B e R

PR I LN
IR Pl T
\ een AAA,

[N -~y Y
\.‘-.J”"-‘ |

‘..--’|"~<_."’ B

--—-..«(—\ .
-k,

If'

il R

”'*\\\\ -

195

RPREPRRSISE 5 e

E———— L e

PN R T XA
NP P el T
\‘..."/”.'

\\\
\.‘...-I"'.“‘

-

-

-
\

-
-

PR
LS Y

o~
”
;
e
Y
?

a4 38|
Y P

0=1140°

= e = > — 1

Figure 8.16: Arrow plots of the spatial oscillation at Dn

6=1160°

—

' 4

- .- LAy
- . oM o -
oo“‘,",‘_‘\“-
-o-.‘\\“- \
l.'..‘\ “

’ ..“\\\;uﬂi

r5 =

‘-p”’/.'

ArPtna M

\

= Sy A

—

- ¢ Attt = % N

c .

T - e =%

PR [ PV
' ‘\.ol//'/'.u.....

\“”/”o‘\.
\‘-Jl"\\"‘
- - o S -
SRRt
Vot

i &

NN sy
\
\
4
[}
’
~

\Rw

150 showing the

development of the secondary flow between 8 = 1100° and 0 =

1200°.



CHAPTER 8. STABILITY OF FLOWS 196

V, Vertical Velocity

2.5 T o T = R = hams 0.20
Dn = 137

2.0 x'/a =024 10.15
> z'/a = 0.0
3]
2 15 ¢ 1 0.10
L
> Vo
g
% 1.0} 1 0.05
=

Vz
0.5 0.00
0.0 e 005
0 500 1000 1500 2000 2500 3000
8 Axial Position (degrees)

Figure 8.17: Numerically calculated state diagrams, with axial and vertical

velocity at Dn = 137, z'/a = 0.24 and 2'/a = 0.0 as the state
variables, showing a comparison of the periods of oscillation in the
axial and vertical directions.
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Figure 8.18: Numerically calculated state diagram, with axial velocity at z’'/a =
0.24 and 2'/a = 0.0 as the state variable, showing flow development
to § = 2000° at Dn = 250.



CHAPTER 8. STABILITY OF FLOWS 198

2.0 L — ——
Dn=110
5 ¢ x'/a = 0.24
z'/a=0.0
1.0 =
=
3]
o
m b
> 15} Dn = 125
E x/a=0.24
' Z'/a=0.0
= D
1.0
Dn =137
L x'/a=0.24
15 F 2'la=0.0 b
1.0 . . . s
0 500 1000 1500 2000 2500
@ Axial Position (degrees)
Figure 8.19: Numerically calculated state diagram, with axial velocity at z'/a =

0.24 and z'/a = 0.0 as the state variable, showing flow development
to 8 = 2500° at Dn = 110, 125 and 137 with a developed four-cell
flow as the inlet condition.
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8.3 Response of Flow to Asymmetric Inlet

Perturbations

In chapter seven, it was shown that a symmetric perturbation decreased the
development length of a four-cell flow without destroying the symmetry of the
additional vortex pair. This confirmed that the four-cell flows were stable to
symmetric perturbations. The numerical investigation of the previous section
showed that, given enough axial length, asymmetries will develop and cause spatial
oscillations. However, there is still some doubt as to how the flow will behave in the
real situation. In order to study this, asymmetric perturbations were deliberately
introduced at the inlet of the experimental apparatus in the hope of observing some

far downstream behavior within the axial length of the apparatus.

In order to gain some insight into the effect of an asymmetric perturbation at the
inlet, a numerical simulation was performed. Figure 8.20 shows a state diagram of
the flow development at Dn = 150 for an asymmetric perturbation at § = 5°. The
asymmetric perturbation was accomplished by setting the axial and radial velocities
at z'/a = 0.034 to zero. This was done at all grid points across the width of
the duct (i.e =0.5 < z'/a < 0.5). The simulation reveals that an asymmetric
perturbation at the inlet results in the earlier appearance of the sustained spatial
oscillations. It is easy to imagine that for different degrees of asymmetry in the inlet
perturbation, the axial position of the spatial oscillations would correspondingly
shift. Therefore, the spatial oscillation could be observed at one axial location by
shifting the axial position of the oscillation with different asymmetric perturbations.
The slight difference in the detail of an oscillation, between the dashed line and solid

line, is an effect that has been solely introduced by the plotting package.

Varying degrees of asymmetry were introduced in the experimental apparatus by
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rotating the pin. Small rotations of the pin, resulting in small vertical movements
of the pin, broke the symmetry of the flow about the horizontal centerline (i.e
z'/a = 0.0). In figure 8.21, flow visualization of the secondary flow patterns at
Dn = 133.9 and 8 = 220° show the patterns for various perturbations at § = 5°. As
expected, with no perturbation at § = 5°, a developing four-cell flow is observed at
= 220°. Also, a symmetric perturbation at 6 = 5° resulted in a developed four-cell
flow at 6 = 220°. The three asymmetric perturbations, identified as 1, 2 and 3, have
an increasing degree of asymmetry associated with them. This can be seen from
the vertical profiles of axial velocity at 6 = 20° presented in figure 8.22. The small
difference between the axial velocity profiles of the symmetric perturbation and
asymmetric perturbation #1, reveals the sensitivity of the secondary flow pattern

observed at 8 = 220° to the position of the pin.

From figure 8.21 it is seen that the three asymmetric perturbations cause an
increasing asymmetry of the additional vortex pair at § = 220° until they finally
disappear into the top vortex. The progression actually happens in space. However,
by manipulation of the pin at § = 5° the progression can be observed at one axial
location. Using the portable laser light sheet, the increasing asymmetry in the
additional vortex pair and its subsequent disappearance into the larger vortex, as
shown in figure 8.21, was observed within an axial length of about 40°. This is in
very good agreement with the behavior shown by the three arrow plots at 6 = 800°
to @ = 840° in figure 8.14. The secondary flow structures at 8 = 220°, caused by
the asymmetric perturbations, did not display any time dependence. This confirms
that within the axial length of the experimental apparatus, there exists a spatial

variation that resembles the numerically predicted spatial oscillation.

For the condition of an asymmetric trip at § = 5°, figure 8.23 shows a

comparison between the experimentally measured state diagram of flow development
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at Dn = 137 and the corresponding numerical prediction. The top graph shows
that the asymmetric perturbation in the numerical simulation does not model the
asymmetric perturbation caused by the pin in the experiment. The same inability to
model the pin was observed for the case of the symmetric pin in figure 7.5. However,
by shifting the numerically predicted curve 225° to the left, as shown in the bottom
graph of figure 8.23, the numerical prediction agrees quite well with the measured
data. The fact that part of a spatial oscillation is observable in the experimental
apparatus suggests that they might exist for large axial lengths. However, without
sufficient axial length to verify this, the state of the four-cell flow at large axial

distances still remains an unkiown.
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Figure 8.20: Numerically calculated state diagram, with axial velocity at Dn =
150, z'/a = 0.24 and 2’/a = 0.0 as the state variable, showing
flow development with and without an asymmetric perturbation at
6 =5°.
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Figure 8.21: Flow visualization of secondary flow patterns at Dn = 133.9 and
6 = 220° showing effect of different perturbations at 8 = 5°.
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Figure 8.22: Vertical profiles of axial velocity measured at Dn = 133.9, 6 = 20°
and z'/a = 0.32 showing degree of asymmetry in axial velocity
profile for different perturbations.
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Measured state diagram, with axial velocity at Dn
0.24 and 2'/a = 0.0 as the state variable, compared
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137,

to the numerically calculated state diagram with an asymmetric
perturbation at § = 5° (in bottom graph the numerical curve has
been shifted 225° to the left in order to line up with the measured

data).



Chapter 9

Conclusions and

Recommendations

Axial velocity profiles of flow development were measured every 20° up to an
axial length of 8 = 240° at Dn = 125, 137 and 150 for a square duct of curvature
ratio, R, = 15.1. As expected, the flow at Dn = 125 developed into a symmetric
iwo-vortex flow. Measurement of vertical velocity profiles and flow visualization
confirmed the symmetry of the flow. At Dn = 150, the flow developed into
the symmetric four-vortex state that was predicted by the steady two-dimensional
Navier-Stokes equations. Flow visualization and measured vertical velocity profiles
verified that the flow was symmetric. The axial velocity measurements and flow
visualization at Dn = 137 revealed that by 6 = 240° the flow had not yet developed
to the state predicted by the two-dimensional equations. Numerical simulations of
the flow development at Dn = 125, 137 and 150, using a steady three-dimensional
parabolized formulation of the Navier-Stokes equations, were in good agreement
with the measured axial velocities. Measurement of a developing four-vortex flow

to its fully developed state (i.e. at Dn = 150) was accomplished for the first time in
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this study. Also, the discovery of the decrease of development length with increasing

Dean number for the four-vortex flows has not been previously reported.

Given that the development length of the four-cell flows decreased with increasing
Dean number, a numerical investigation for Dean numbers below Dn = 175 was
performed to reveal more detail. At the limit point of the two-cell to four-cell
transition the development length appeared to be infinite, while at Dn = 175 the
development length was calculated to be about 165°. The faster development of the
additional vortices for a larger centrifugal force (i.e. larger Dn), is consistent with
the suggestion of Cheng et al. (1976) that the formation of the additional vortex

pair is due to a centrifugal instability.

Using a symmetrically positioned pin at § = 5° to induce the four-cell flows, it
was shown for the first time that the predicted symmetric two-dimensional solution
structure for Dn < 150 could be experimentally observed. The pin reduced the
development length of the four-cell flows, allowing the two-dimensional solutions
to be observed within the 240° axial length of the experimental apparatus. The
experimentally determined limit points of the two-cell to four-cell transition and
the four-cell to two-cell transition were in good agreement with the numerically

predicted values of Dn ~ 131 and Dn =~ 114 respectively. Axial velocity profiles

and flow visualization were taken of a dual solution at Dn = 123.4.

Winters (1987) numerical prediction that four-cell flows are stable to symmetric
perturbations, but unstable to asymmetric perturbations, was experimentally
confirmed for the first time. The fact that a symmetrically positioned pin was
able to induce a symmetric four-cell flow showed that a four-cell flow was stable
to a symmetric perturbation. If the pin was not positioned symmetrically (i.e.
asymmetric perturbation), a symmetric four-cell flow could not be observed. Given

that four-cell flows were unstable to asymmetric perturbations, a numerical study
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was performed to determine what might happen to the flow at large axial lengths.
The numerical simulation suggested that, in the regions where there were no
stable two-dimensional solutions, the four-cell flows would develop to a state
involving sustained spatial oscillations. In a dual solution region, the numerical
simulations showed that the four-cell flow would give way to a stable two-cell
flow. An experimental investigation showed the existence of a time-independent
spatial variation resembling the initial part of a spatial oscillation. The spatial
variation was observed within the axial length of the apparatus by deliberately
inserting asymmetric perturbations at § = 5°. This suggests that a sustained spatial

oscillation might be observed farther downstream.

9.1 Future Studies

Given that the four-cell flows are unstable to asymmetric perturbations, the
question as to what happens to the flows farther downstream still exists. The
parabolized steady three-dimensional equations used for the numerical simulations
were restricted to show instabilities in space, so they could not predict any time
dependent motions. Even though no time dependence was observed in the flows
measured within the axial length of the experimental apparatus, it is possible that
the unstable four-cell flows might develop time dependence farther downstream.
It would be expected that the growth rate of the asymmetric disturbances would
increase with incrcasing Dean number. Therefore, experiments at higher Dean
numbers might show time dependence within the axial length of the present
apparatus. In order to numerically determine time-dependent behavior, a numerical

formulation would be required that retained the time dependant terms.

In order to confirm the existence of spatial oscillations, an experimental
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apparatus with a longer axial length is required. For the axial lengths required
to observe a complete spatial oscillation, a helically coiled duct would have to be
used. If the pitch of the helix was kept low, the asymmetry introduced by the pitch

should not drastically affect the qualitative behavior of the flow.

9.2 Equipment Improvements

The factor that caused the largest source of error in the velocity measurements
was the inaccuracy in positioning the crossing point in the duct cross section.
Traversing the experiment while holding the crossing point stationary and not being
able to accurately locate the duct walls resulted in the positioning problem. Given
the velocity gradients that existed in the radial direction, it is easy to see how a
small error in position can cause a large error in the measured velocity. In order
to improve the positioning accuracy it is essential that the experiment be hald
stationary and the crossing point traversed. Since determining the location of the
walls is critical to the accurate placement of the beam within the cross section, a
pin-hole section for the LDV optics would be extremely useful. A pin-hole section
would filter unwanted reflections when the crossing point was near the wall, allowing

more accurate determination of when the crossing point was actually on the wall.
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Appendix A

Uncertainty Analysis Method

The uncertainty in a variable, X, can be estimated if the equation that governs
the variable is known. Given the governing equation, X = f(A, B,C, D), the
uncertainty in X can be estimated from the known uncertainties in A, B, C and D.

Taking the total derivative of X results in:

_O0f 0 05, 0, OF
dX = Z2dA+ 2LdB + 25dC + rdD (A.1)

For small errors dX can be replaced by AX to give:

_of of of of
AX = ZZAA+ ZEAB + 55AC + o5 AD (A.2)

Equation A.2 can not be used directly to calculate AX, since the signs of the
other uncertainties are not known. In order to get around this, both sides of
equation A.2 can be squared, allowing the mean square uncertainty to be used.
If the quantities A, B, C and D are statistically independent and symmetrically
distributed random variables (Schenck, 1979 p. 76), the cross products will
disappear leaving:

2 2 2 2
(AX)? = (g—ﬁAA) + ( g—gw) + (%AC) + (%AD) (A.3)
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Consider the following function for X:

A™B

=55 (A4)

X

Taking the partial derivatives and substituting into equation A.3 gives:

m_lB 2 A™ 2 AmB 2 A™ 2
(AX)" = (T%_DTAA) +(Ze8) +(ipvaC) +(GpmdD) A9

Dividing through by equation A.4 results in the following expression for the

C D

Anytime the functional relationship of a variable is of the form of equation A.4,

the fractional uncertainty in the variable will have the form of equation A.6. An
interesting point to note, is that the exponent of a variable shows up as a weighting

factor in the fractional uncertainty.



Appendix B

Correcting Velocity for Surface

Curvature

The calibration factor of a LDV is determined by the wavelength of the laser
light and the crossing angle between the beams (i.e. ¢; = A/2sin(¢/2)). When
the laser beams pass through a flat surface into a fluid with a different refractive
index than air, both the beam crossing angle and wavelength of the laser light in
the fluid differ from their values in air. However, this is not a problem, because
the changes in the crossing angle and wavelength cancel each other resulting in the
same calibration factor in the fluid as was in air. This result is independent of the

refractive index of the fluid as long as the beams pass through a flat surface.

Due to the difference in the refractive index between the fluid and air, the
distance traversed in the fluid is different from the distance traversed in air. When
the beams pass through a flat surface from air into the fluid this traversing ratio is

a constant. A detailed treatment of this can be found in Durst et al. (1976) p. 18.

The above results are no longer valid when the laser beams pass from air through
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a curved surface into a fluid. The curvature of the surface affects the calibration
factor in the fluid and traversing ratio. The reason for this effect is illustrated in
figure B.1. As a laser beam passes through the curved plexiglass wall, the beam
is refracted twice, both as it enters the curved wall and when it exits the curved
wall. The angle that the refracted beam makes with the normal, 8,;, on the entering
surface is different than the angle that the incident bearn makes with the normal,
0,2, on the exiting surface. The result of this is that the angle of the refracted
beam entering the fluid, 8y, and the resulting beam crossing angle, 6., depend on
the angles that the beam makes with the normals as the beam passes through the
curved wall. In addition, the traversing ratio is no longer a constant as the crossing
point is traversed. If the traversing path of the laser beams is along a radial line,
then the crossing point remains on the radial line with only its radial position being
affected by the traversing ratio. However, when the beams are not traversed along
a radial line, the position of the crossing point is affected in both the radial and

tangential directions. In addition, the probe volume can become inclined to the

radial direction.

B.1 Traversing Along a Radial Line

It is possible to determine the beam crossing angle and to track the position of
the crossing point along a radial line. This can be accomplished by following the
path of a beam as it passes through the curved wall into the fluid. A convenient
way to track the position of the crossing point is to start with the crossing point on
the inside surface of the curved plexiglass wall. Referring to figure B.1, when the

crossing point is on the inside surface is the following relationships apply:
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Figure B.1: Schematic of laser beam passing through a curved surface.



APPENDIX B. CORRECTING VELOCITY FOR SURFACE CURVATURE 224

R, sin ay;
R] Cos Oy — Rg

tan(ay; + 0s1) =

8,, = arcsin( 2 sin 6,) (B.1)

3

where: ay; = angle that normal to outer surface makes with vertical
(i.e. radial) when crossing point is on inner surface

0,, = angle refracted beain makes with normal
¢ = crossing angle of beams in air
6, = angle incident beam makes with outer surface normal
Ry, R2 = outer and inner radius of surface

Na,7s = refractive index of air and surface
Now that the crossing point has been positioned on the inside surface, it is possible
to traverse the beams and determine the corresponding angles, a; and a3, that the
outer and inner surface normals make with the vertical (i.e. radial). Once ; and
a, have been determined, it is possible to trace the beam path and calculate the the
crossing angle, 0..
The distance traversed in air to move the crossing point from the outer surface

of the plexiglass to the inner surface is given by:

L= M’% + Ry (1 — cos ay;) (B.2)

tan —
2
Traversing the crossing point a distance l, = Al + lii, where Al, is the distance

traversed in air after contacting the inner surface, the angle a; is given by:

[la — R1(1 — cos )} tang = R;sinay (B.3)
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Once equation B.3 has been solved to determine o, the angles 6, and 8,, can be

determined from the following relationships:

oa = ?' —
2 Ta (B.4)
0,1 = arcsin(n— sinf,)

The relationship for 8,; was determined by using Snell’s law of refraction. Since the
angles a; and 6,; have been determined, the angle a; can be calculated using the

following relationship:
[R1cosay — Rpcos az) tan(ay + 6,51) = [Rysinay — Rpsinay) (B.5)

Having solved equation B.5 for ay, it is now possible to determine 6,3, and the

resulting angle of refraction, 6y,

Oy =a; + 0, — a2
0; = arcsin(y—g-sin 0,2) (B-6)
ns
As before, the relationship for 8; has been determined by using Snell’s law of
refraction. The crossing angle of the laser beams 6, in the fluid is then simply

2(az + 8;). The actual distance that the crossing point has traversed in the fluid

from the inner surface is given by:

Ry sinay

0
tan —

2
The calibration factor or fringe spacing of the LDV in the fluid can be compared to

Aly = + R2(1 — cos az) (B.7)

that of the calibration factor in air resulting in:

dy _masing (B.8)
d, _n,sin‘-’,{- ’

Using the calibration factor in air as the standard, equation B.8 is the correction

factor to be applied to measured velocity values. Figure B.2 shows the variation
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of the correction factor as a function of the position of the crossing point in the
duct. Figure B.3 compares the distance traversed in the fluid, Aly, to the distance
traversed in air, Al,. The relationship in figure B.3 is for all practical purposes
a straight line, therefore the traversing ratio can be taken to be constant. The
curves in figures B.2 and B.3 were calculated using R, = 19.98 cm, R; = 19.83 cm,

¢ = 15.7°, 9, = 1.0, n, = 1.49 and n; = 1.33.

B.2 Traversing Along an Arbitrary Path

Given an arbitrary traversing path of the experiment relative to the laser it is
desirable to be able to calculate the path that the crossing point takes. In addition,
the resulting beam crossing angle at each position must be determined. In order
to achieve this, it is necessary to be able to determine the position of the crossing

point for any given laser position relative to the apparatus.

Figure B.4 shows a typical laser beam passing through a cylindrical curved
surface which has its origin at (0,0) in a cartesian coordinate system. As the beam
passes through the curved wall it first contacts the outer surface of the wall and is
refracted. The refracted heam then contacts the inner surface of the wall where it
is «gain refracted as it enters the fluid. The beam, which can be treated as a ray
of lizht, always travels in a straight line. However, its direction will change if it is

refracted. The path of the beam is given by the equation of a line:

(¥ — %) = m(z — zo)
1
~ tanf

(B.9)

where: z,,y, = coordinates of a point on beam path
§ = angle that beam makes with vertical (clockwise is the
positive direction).
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Figure B.2: Correction factor as a function of radial position in duct.

1.4 T T v

1.2+ &= duct width (1.27 cm) ]

1.0

Alg/a = 1.307(Al,/a)

(o]
o]
0.765 ——>

Alg/a Distance Traversed in Water

0.8 |
04|
02} ]
0.0 : . :

0.0 0.2 0.4 0.8 0.8

Alp/a Distance Traversed in Air

Figure B.3: Traversing distance in water compared to traversing distance in air.
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Figure B.4: Schematic of typical laser beam passing through a circular curved
surface.
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The starting values of z, and y, are the coordinates of the crossing point (i.e. focal
point of lens) in air. The location where the beam strikes the outer surface of the

wall is the intersection point of a line with a circle given by:

(1+m?)z.+2mbz.+ (*+ R?) =0
(B.10)
b=-mz,+yo

Equation B.10 can be solved using the quadratic equation then substituting the
proper root into equation B.9 to get y.. The angle the surface normal makes with

the vertical at the point of intersection is given by:

Ie

=) (B.11)

a = arcsin(
The angle that the incident bearn makes with the normal is:
ﬂ,-=0,~—a (8'12)

The angle that the refracted beam makes with the normal, as given by Snell’s law

of refraction, is:

Br = arcsin(ﬁsinﬂ;) (B.13)

r

The angle that the refracted beam makes with the vertical is:
6, =B, +a (B.14)

Once z., y. and 8, have been determined, equations B.9 through B.14 can be used
again to calculate the intersection point of the refracted beam with the inner surface
of the wall, and to determine the angle, v, that the beam entering the fluid makes

with the vertical.

The path of the beam in the fluid is described by the equation of a straight line
as given in B.9. Using the relationships in B.9 through B.14, the equations for both
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laser beam paths in the fluid can be determined. The crossing point of the two

beams in the fluid is the intersection between the two lines given by:

b — b,
Zeross = (_(TTL—Q_:EE‘) (B15)

Yeross Can be determined by back substitution into one of the equations of the beam

paths. If the angle that each beam makes with the vertical as it enters the fluid is

1 and 72, then the crossing angle is given by:
0c =7~ N (B16)

Since the traversing path might not be along a radial line, the beam crossing point

may become inclined to the vertical axis by an amount:

oinc = 12—;':'2’ (B.17)

The subscript 1 refers to the laser beam which initially is at a negative angle to the

vertical before passing through the wall into the fluid, while the subscript 2 refers

to the positive angle beam.

The above equations formed the core of a computer program that was used to
calculate the crossing point coordinates, and the crossing and inclination angles,
given a location of the front lens of the LDV relative to the apparatus. Using the

program to traverse along a radial line gave identical results to the radial traversing

analysis.



Appendix C

Physical Properties

C.1 Water

At 23.1°C, the properties of water used in this study were:
p=9.304 x 107" kg/m s

p = 9.975 x 10% kg/m>
v = 0.9327 x 107 m?/s
n =133
where g, p, v and 7 are the absolute viscosity, density, kinematic viscosity and
refractive index respectively.

The absolute viscosity was calculated from an equation given in the CRC
Handbook of Chemistry and Physics 70th. edition (1989-1990) p. F-40. For a
temperature between 20°C and 100°C, the viscosity, pr, is given by the following

relationship:

ur  1.3272(20 — T) — 0.001053(T — 20)?
T _ C.1
logw#zo T +105 (C.1)
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where pz0, the absolute viscosity at 20°C, is taken as 1.002 x 10~2 kg/m s. For
T = 23.1°C, the value of absolute viscosity is 9.304 x 10™* kg/m s.

The value for the density of water was taken from a table in Perry’s Chemical
Engineering Handbook (1984) p. 3-75. The value for kinematic viscosity was
calculated using the above values for the absolute viscosity and density. At 23.1°C,

the kinematic viscosity, v, where v = p/p, was calculated to be 0.9327 x 10~ m?/s.

The refractive index of water was taken from Halliday and Resnick (1974)

Fundamentals of Physics p. 670.

C.2 Plexiglass

The properties of the plexiglass used in this study were:
p =1.18 x 10° kg/m®

n = 1.49

where p and 7 are the density and refractive index respectively. The properties were

taken from a catalog distributed by Johnston Industrial Plastics.

C.3 Rhodamine Dye

Rhodamine 6G, or also known as Rhodamine 590 (Cas Hao N, O3 - H Cl), with

mol. wt. = 479.02 g/mol., was the dye used in the flow visualization experiments

in this study.



APPENDIX C. PHYSICAL PROPERTIES 233

C.4 Silicon Carbide Particles

The silicon carbide seeding particles were obtained from T.S.I. (Part# 10081).
The physical properties of the particles were:

p =3.2x10% kg/m°®

n =2.65
mean diameter = 1.5 x 10™® m
geometric standard deviation = 1.4
particle shape = irregular

p and n are the density and refractive index respectively. The properties were

supplied on the product label.
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# Axial Position

20°
40°
60°
80°
100°
120°
140°
160°
180°
200°
220°
240°

Dean Number

125.9
125.2
125.8
124.9
124.8
125.0
125.0
124.7
124.7
124.8
125.0
125.4

Table D.1: Dean numbers of measured horizontal velocity profiles at Dn = 125.

@ Axial Position

20°
40°
60°
80°
100°
120°
140°
160°
180°
200°
220°
240°

Dean Number

137.0
137.0
137.1
137.3
137.3
1374
137.3
136.9
137.3
137.2
137.2
137.5

Table D.2: Dean numbers of measured horizontal velocity profiles at Dn = 137.
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0 Axial Position Dean Number
20° 149.9
40° 149.5
60° 149.5
80° 150.5
100° 150.4
120° 149.4
140° 149.5
160° 149.8
180° 150.3
200° 150.1
220° 150.2
240° 150.3

Table D.3: Dean numbers of measured horizontal velocity profiles at Dn = 150.

0 Axial Position Dean Number
20° 150.0
40° 149.6
60° 148.8
80° 149.7
100° 1494
120° 149.5
140° 1494
160° 149.9
180° 149.3

200° 150.7
220° 150.3
240° 150.4

Table D.4: Dean numbers of measured vertical velocity profiles at Dn = 150
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Dean Number Development Length
50 70°
75 80°
100 90°
125 100°
130 730°
131 520°
132 425°
133 385°
135 335°
137 315°
140 280°
142 265°
144 255°
146 240°
148 235°
150 225°
163 180°
175 165°

Table D.5: Tabulated data for figure 6.64.



