
Optimal Motion Planning in GPS-Denied Environments using Nonlinear
Model Predictive Horizon

by

Younes Moh’d Awad Al-Younes

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Mechanical Engineering
University of Alberta

© Younes Moh’d Awad Al-Younes, 2022

Abstract

Navigating robotic systems autonomously through unknown, dynamic, and GPS-

denied environments is a challenging task. One requirement of this is a path planner

which provides safe trajectories under real-world conditions such as nonlinear vehi-

cle dynamics, real-time computation requirements, complex 3D environments, and

moving obstacles. The limitations of existing methods for path planning related to

computational efficiency, consideration of complex system dynamics, and achieving

consistency and optimality of the solution, have pushed our research towards propos-

ing an approach that tackles these challenges all at once.

The goals of the proposed research are threefold. The first goal is proposing a

novel framework for trajectory generation based on optimization and implementing

it on a multi-rotor drone. The nonlinear dynamics of a drone make it an excellent

test candidate for this work. The proposed trajectory planning system, named Non-

linear Model Predictive Horizon (NMPH), extends the well-known Nonlinear Model

Predictive Control (NMPC) methodology by combining it with a nonlinear control

design, for instance FeedBack Linearization (FBL) or BackStepping Control (BSC).

The purpose of embedding a nonlinear control law within the optimization is to reduce

the non-convexity of the problem and thus provide faster solutions for the trajectory

planning problem. NMPH provides feasible solutions, generates smooth and collision-

free trajectories, supports moving obstacles, is able to run in real-time, and reduces

battery power consumption by producing smooth flight trajectories for the drone to

follow.

The second goal is developing a global motion planning system to allow the drone

ii

to explore a complex and GPS-denied environment with the presence of both static

and dynamic obstacles. This system is a three-stage modular design that incorpo-

rates the NMPH trajectory planning algorithm and a graph-based planner. The first

stage operates by building an incremental map of the environment, also containing

a volumetric representation of the static and dynamic obstacles. The second stage

is a graph-based planner that generates waypoints within unexplored areas of the

map. The final stage uses the NMPH algorithm to produce continuous and optimal

trajectories from the vehicle’s current pose to the waypoints generated by the graph-

based planner. For a smooth integration between the three layers, computationally

efficient algorithms for obstacle mapping and avoidance plus robust path guidance al-

gorithms are developed. The presented approaches are then implemented in software

to generate optimal paths for a drone navigating an unexplored GPS-denied environ-

ment, with several simulations and experimental results provided to demonstrate the

features and evaluate the performance of the overall design.

The third goal is proposing an adaptive learning scheme for the NMPH algorithm

based on Deep Reinforcement Learning (DRL). The resulting design is called ‘adaptive

NMPH’, which generates optimal trajectories for an autonomous drone based on the

system’s states and its environment. This is done by online tuning the NMPH’s op-

timization parameters using two different Actor-Critic DRL-based algorithms, Deep

Deterministic Policy Gradient (DDPG) and Soft Actor-Critic (SAC). Both adaptive

NMPH variants are trained and evaluated on an aerial drone inside a high-fidelity

simulation environment. The results demonstrate the learning curves, sample com-

plexity, and stability of the DRL-based adaptation scheme, and show the superior

performance of adaptive NMPH relative to non-adaptive designs.

iii

Preface

This thesis is an original work by Younes Al-Younes. The work contained herein is my

own except where explicitly stated otherwise in the text, and has not been submitted

for any other degree or professional qualification.

Chapters 2 and 3 of this thesis have been published as: Y. Al Younes and M.

Barczyk, “Nonlinear model predictive horizon for optimal trajectory generation,”

Robotics, vol. 10, no. 3, p. 90, 2021. I was responsible for conceptualization,

methodology, software, validation, formal analysis, investigation, data curation, writ-

ing—original draft preparation, and visualization. My supervisor M. Barczyk was

involved with conceptualization, and responsible for supervision, project administra-

tion, resources, funding acquisition, and writing—review and editing the manuscript.

Chapter 4 of this thesis has been published as: Y. Al Younes and M. Barczyk, “A

Backstepping Approach to Nonlinear Model Predictive Horizon for Optimal Trajec-

tory Planning,” Robotics, vol. 11, no. 5, p. 87, 2022. I was responsible for concep-

tualization, methodology, software, validation, formal analysis, investigation, experi-

mentation, data curation, writing—original draft preparation, and visualization. My

supervisor M. Barczyk was involved with conceptualization, and responsible for su-

pervision, project administration, resources, funding acquisition, and writing—review

and editing the manuscript.

Chapter 5 of this thesis has been published as: Y. Al Younes and M. Barczyk, “Op-

timal motion planning in GPS-denied environments using nonlinear model predictive

horizon,” Sensors, vol. 21, no. 16, p. 5547, 2021. I was responsible for concep-

tualization, methodology, software, validation, formal analysis, investigation, experi-

iv

mentation, data curation, writing—original draft preparation, and visualization. My

supervisor M. Barczyk was involved with conceptualization, and responsible for su-

pervision, project administration, resources, funding acquisition, and writing—review

and editing the manuscript.

Chapter 6 of this thesis has been published as the article: Y. Al Younes and M.

Barczyk, “Adaptive Nonlinear Model Predictive Horizon using Deep Reinforcement

Learning for Optimal Trajectory Planning,” Drones, vol. 6, no. 11, p. 323, 2022. I

was responsible for conceptualization, methodology, software, validation, formal anal-

ysis, investigation, implementation, experimentation, data curation, writing—original

draft preparation, and visualization. My supervisor M. Barczyk was involved with

conceptualization, and responsible for supervision, project administration, resources,

funding acquisition, and writing—review and editing the manuscript.

v

Dedicated to my beloved parents,

Ruwaida & Mohammad

to my lovely wife,

Nedaa

and to my precious kids,

Lamar & Eyas

for their boundless love, support, and encouragement.

vi

Acknowledgements

This amazing and exciting journey would not have been possible without the help

of many people. First and foremost, I would like to express my heartfelt gratitude

to my supervisor, Dr. Martin Barczyk, for his profound knowledge and unwavering

guidance throughout my Ph.D. studies. Without your unyielding assistance and en-

couragement, this research would not have been possible. You have truly been an

inspiration to me.

To my supervisory committee members Dr. Hossein Rouhani and Dr. Michael

Lipsett, I would like to thank you for your invaluable suggestions and support through-

out this journey. Please accept my deepest thanks.

To my colleagues at the Mechatronic Systems Lab, thank you very much for

fostering a lively and welcoming workplace environment for me. I cannot adequately

describe how grateful I am to you for the priceless moments we had together. Thank

you, you’re amazing!

I would like to thank my family for all of the love, support, inspiration, and prayers

they have given me along this journey.

To the joy of my life, Lamar and Eyas, you are my inspiration to reach greatness.

You are my soul and the driving force to achieve the unachievable. Thank you for

being in my life. I breathe your love every single moment.

Last, but not least, I cannot begin to express my gratitude to my beloved wife,

Nedaa, for her unending support before and during my Ph.D. studies. You have been

the source of love and strength that empowered me to succeed. Your unconditional

love and support have meant the world to me. I hope that I have made you proud.

vii

Table of Contents

1 Introduction 1

1.1 Motion Planning . 1

1.2 Nonlinear Model Predictive Approach 6

1.3 Adaptation and Deep Reinforcement Learning 9

1.4 Thesis Objectives . 10

1.5 Thesis Outline . 11

2 Nonlinear Model Predictive Horizon for Optimal Trajectory Gener-

ation 13

2.1 Introduction . 13

2.2 Nonlinear Model Predictive Horizon Algorithm 15

2.3 NMPH Constraints . 21

2.4 Continuous-time Representation of NMPH 25

2.5 NMPH Optimization Problem . 27

2.6 Summary . 28

3 Nonlinear Model Predictive Horizon with Feedback Linearization

Control 30

3.1 Introduction . 30

3.2 NMPH Closed-loop Form with Feedback Linearization Control Law . 31

3.3 Application of NMPH-FBL to a Drone Vehicle 34

3.3.1 System Model . 34

3.3.2 Development of Feedback Linearization Control Law on a Drone

Vehicle . 37

3.3.3 Trajectory Generation using NMPH-FBL 41

3.4 Simulation Results . 41

3.4.1 Predicted Output and Estimated Reference Trajectories 43

3.4.2 Trajectory Generation and Initial Conditions 44

3.4.3 Trajectory Tracking . 46

viii

3.4.4 Dynamic Obstacle Avoidance 47

3.4.5 Hardware-In-The-Loop Simulation 49

3.5 Conclusions . 51

4 A Backstepping Approach to Nonlinear Model Predictive Horizon

for Optimal Trajectory Planning 52

4.1 Introduction . 52

4.2 Backstepping Control Law Integration within NMPH 53

4.2.1 Drone Dynamics . 53

4.2.2 Backstepping Control Design 57

4.2.3 NMPH-BSC Design of a Drone Vehicle 64

4.3 Evaluation of NMPH-BSC . 65

4.3.1 Simulation Environment . 66

4.3.2 Hardware Flight Experiment 71

4.4 Conclusions . 74

5 Optimal Motion Planning for Exploration of GPS-denied Environ-

ments using Nonlinear Model Predictive Horizon 75

5.1 Introduction . 75

5.2 Motion Planning in GPS-denied Environments 77

5.2.1 Motion Planner Architecture 77

5.2.2 Volumetric Mapping . 80

5.2.3 Graph-based Path Planning 81

5.2.4 NMPH for Local Path Planning 82

5.3 Experimental Results . 90

5.3.1 Simulation Results . 91

5.3.2 Real-time flight test results 98

5.4 Conclusions . 102

6 Adaptive Nonlinear Model Predictive Horizon using Deep Rein-

forcement Learning 104

6.1 Introduction . 104

6.2 Deep Reinforcement Learning Overview 105

6.2.1 Reinforcement Learning Preliminaries 105

6.2.2 Deep Deterministic Policy Gradient 107

6.2.3 Soft Actor-Critic . 110

6.3 Adaptive Trajectory Planning Framework 113

6.3.1 Agent and Environment Representations 113

ix

6.3.2 DRL-based Adaptive NMPH Architecture 116

6.4 Implementation and Evaluation . 118

6.5 Conclusions . 124

7 Hardware Platform and Software Architecture 126

7.1 Hardware Platform . 126

7.1.1 High-level onboard computing module 128

7.1.2 Low-level flight controller . 128

7.1.3 Sensors . 129

7.1.4 Airframe . 129

7.2 Software Architecture . 130

7.3 Summary . 132

8 Conclusions and Future Work 133

8.1 Conclusions . 133

8.1.1 Nonlinear Model Predictive Horizon 133

8.1.2 NMPH with Feedback Linearization 134

8.1.3 NMPH with Backstepping Control 134

8.1.4 Global Motion Planning using NMPH approaches 135

8.1.5 Adaptive NMPH Design using Deep Reinforcement Learning . 135

8.2 Future Perspectives . 137

8.2.1 Experimental Testing . 137

8.2.2 Towards Faster and Smarter Drone Exploration 137

8.2.3 Deep Reinforcement Learning for Intelligent Robots 138

8.2.4 Next Generation Drones . 138

Bibliography 139

x

List of Tables

1.1 Comparison between Nonlinear Model Predictive Control-based ap-

proaches. 7

4.1 Comparison between Graph-based and Graph-based-plus-NMPH-BSC

to motion planning . 71

5.1 Comparison between Graph-based and Graph-based-plus-NMPH-FBL

approaches to path planning. 95

5.2 Comparison between Graph-based and Graph-based-plus-NMPH ap-

proaches to motion planning. 97

6.1 Comparison between the conventional NMPH design (fixed values of

the NMPH parameters) and the adaptive NMPH-SAC approach, for

different flight trials. 123

xi

List of Figures

1.1 Overall System Architecture. 12

2.1 Nonlinear Model Predictive Horizon architecture. A model of the non-

linear system dynamics is used to perform the optimization process

within NMPH (gray box). The resulting optimized reference trajec-

tory is passed to the actual closed-loop system for tracking purposes. 14

2.2 NMPH structure which combines a model of the nonlinear plant dy-

namics plus a nonlinear control law within its optimization problem. . 16

2.3 NMPH process at time tn, which predicts the optimal trajectory until

time tn+N . The difference between the predicted output ξk and the

estimated reference ξ̂k trajectories is penalized to ensure their conver-

gence towards each other. 20

2.4 Optimization problem for NMPH . 28

3.1 Reference frames used for (a) quadcopter and (b) hexacopter vehicles. 35

3.2 Simulation Architecture. 43

3.3 Predicted and estimated trajectories obtained from NMPH algorithm

for an 8 s prediction horizon. For conciseness, the sequences of pre-

dicted output trajectory ξk and the estimated reference trajectory ξ̂k
represent only the quadcopter position pn. 44

3.4 Trajectory generation for different initial conditions. The quadcopter

moves along the dashed line. The trajectories all converge toward the

stabilization setpoint shown to the left at [5, 10, 5]T 45

3.5 Drone trajectory tracking of a continuously updated trajectory by

NMPH while avoiding two static obstacles. The drone is commanded

first to hover at a height of 1.5 m, then to track the NMPH trajectory

between the start and the terminal position. 46

xii

3.6 Drone trajectory tracking of the predicted reference trajectory by NMPH.

At the start position pn = [0, 0, 1.5]T m, NMPH generated the predicted

trajectory 1, and when the drone reached [5.5,−0.25, 1.5]T m, NMPH

re-optimized the trajectory, which is represented by predicted trajectory

2. 47

3.7 Dynamic obstacle avoidance for a 2 m spherical obstacle that moves

at a velocity of 0.5 m/s in the y-axis direction starting from the initial

position (3, 0, 0.5) m. (a) to (c) show the continuous regeneration of the

NMPH predicted optimal trajectory which avoids the moving obstacle,

and (d) depicts the smooth regeneration process for a selected number

of the trajectory updates. 48

3.8 HITL simulation for NMPH trajectory generation and tracking. (a)

NMPH generates the predicted trajectory when the quadcopter is at a

hover state (0, 0, 5.5) m, then the vehicle is asked to track the trajec-

tory. (b) shows some of the NMPH predicted trajectory updates while

the drone is moving towards the setpoint stabilization (10, 10, 10) m. . 50

3.9 HITL simulation for NMPH trajectory generation and tracking at the

presence of obstacles. The obstacles, predicted trajectory, and the

actual trajectory are depicted in (a) a top view 2D plot, and (b) a 3D

plot. The drone generates the predicted trajectory from the hovering

position at (0, 0, 3.5) m to the setpoint stabilization at (12, 1.5, 3.5) m. 50

4.1 Reference frames used for our quadrotor vehicle 54

4.2 Trajectory Planning using the NMPH-BSC approach. (a) AirSim sim-

ulation environment. (b) Trajectory generation while avoiding static

obstacle. 67

4.3 NMPH reference trajectory generation. The estimated and predicted

reference position trajectories are depicted in (a), and the estimated

reference velocity trajectories are shown in (b). 68

4.4 Vehicle’s trajectory tracking performance between the start position

(0, 0, 2)m and the terminal setpoint (5.8,−4.5, 2)m. 69

4.5 Exploration of unknown environment using global motion planner us-

ing NMPH-BSC for local trajectory planning. 70

4.6 DJI FlameWheel F550 hexacopter vehicle equipped with onboard sen-

sors and computing systems. 71

xiii

4.7 Trajectory planning with obstacle avoidance flight test using the NMPH-

BSC algorithm. (a) Trajectory generation. (b) Trajectory tracking. (c)

The mapped obstacle as seen from the left fisheye lens of the onboard

camera. 72

4.8 Hardware flight test for trajectory planning involving a dynamic obsta-

cle using the NMPH-BSC algorithm. (a) Hardware drone avoiding the

moving obstacle. (b) RViz visualization of the trajectory regeneration

and flight path. 73

5.1 Block diagram of the proposed global motion planner. 77

5.2 Motion Planner Architecture. The Mesh blocks are used for visualiza-

tion of the environment. 79

5.3 Dynamic Local Obstacle Mapping (DLOM). The virtual drone is flying

through AirSim’s SimpleMaze environment; further information will be

provided in Section 5.4. 86

5.4 Dynamic Local Obstacle Mapping. (a) All voxels are used to map the

obstacle’s surface. (b) A subset of voxels (highlighted in red) is selected

to represent the obstacle’s surface, and their neighbouring voxels are

excluded. 87

5.5 Graph-based vs NMPH path planning. (a) The terminal vertex of

the green path (from graph-based planner) is sufficient to generate the

optimum blue path by NMPH. (b) All the vertices of the green path are

used successively to guide the solutions of NMPH to the final optimal

trajectory (blue path). 90

5.6 Motion Planner. (a) Path planning using graph-based approach (pink)

and NMPH algorithm (red). (b) Optimal path using NMPH algorithm. 93

5.7 Illustration of trajectory generation and tracking. The green path is

the trajectory of the vehicle, and the red path is the future reference

path. 93

5.8 Dynamic Local Obstacle Mapping and Avoidance. In (a) the DLOM

is made visible while in (b) it is hidden. 94

5.9 Autonomous navigation and exploration in GPS-denied environment.

The vehicle travelled a total distance of 774.5 m in about 1035 s. . . 95

5.10 Comparison of path lengths between graph-based planner and our pro-

posed NMPH-FBL path planner. (a) Path length between stabilization

points. (b) Total length of generated paths. 96

xiv

5.11 Obstacle avoidance for a moving object. The object (sphere) is moving

to the left. The NMPH regenerates the red path continuously to avoid

the object. The blue curve represents the flight trajectory of the drone. 97

5.12 The hardware hexacopter vehicle navigating an underground parking

area using the presented global motion planner approach. 98

5.13 3-D volumetric map of the unknown space at the beginning of the flight

test. The estimated predicted trajectory ξ̂ref to a setpoint can be seen

in this figure (green curve). It overlaps another trajectory (red curve)

which represents the predicted out trajectory ξ̃. 99

5.14 3-D volumetric map of the explored underground space at the end of

the flight test. The volumetric map is constructed from free and occu-

pied voxels and built nicely to represent the space for a safe exploration

mission. 100

5.15 Tracked trajectories by the drone in the underground parking space

using graph-based planner to generate terminal setpoints and NMPH-

BSC to generate local trajectories between setpoints. 101

5.16 Flight test employing the NMPH-BSC algorithm in an outdoor envi-

ronment with a 15 km/h wind speed. 102

6.1 Block diagram of an RL framework 106

6.2 Adaptive NMPH Architecture . 114

6.3 Observations from the Environment for one Iteration 115

6.4 Adaptive NMPH-DDPG structure . 117

6.5 Adaptive NMPH-SAC structure . 118

6.6 Neural networks used by DDPG. IL: Input Layer, HL: Hidden Layer,

OL: Output Layer. 120

6.7 Neural networks used by SAC. IL: Input Layer, HL: Hidden Layer, OL:

Output Layer. 120

6.8 Training curves of SAC, DDPG with pre-exploration, and DDPG with-

out pre-exploration for adaptively tuning three NMPH parameters. . 121

6.9 Training curve of SAC adaptively tuning 12 parameters of the NMPH

optimization. 122

6.10 Observations at start of iterations. 124

6.11 Values of NMPH weighting matrix entries being adjusted online by

SAC. 125

7.1 Exploded view of the hardware setup used in our autonomous drone. 127

7.2 The drone system used for testing. 127

xv

7.3 Software Architecture used in our system and the development of the

presented approaches. 131

xvi

List of Algorithms

2.1 NMPH algorithm with stabilizing terminal condition xss 18

2.2 Continuous-time NMPH algorithm 27

5.1 Graph-based Planner . 83

5.2 Local Optimal Path Planning using NMPH 85

5.3 Obstacle Constraints . 89

6.1 Deep Deterministic Policy Gradient 109

6.2 Soft Actor-Critic . 113

xvii

List of Acronyms

A3C Asynchronous Advantage Actor–Critic.

AI Artificial Intelligence.

ANN Artificial Neural Network.

ARA* Anytime Repairing A*.

BFS Breadth-First Search.

BSC Backstepping Control.

CG Center of Gravity.

CHOMP Covariant Hamiltonian Optimization for Motion Planning.

DDPG Deep Deterministic Policy Gradient.

DFS Depth-First Search.

DLOM Dynamic Local Obstacle Mapping.

DOF Degrees-Of-Freedom.

DRL Deep Reinforcement Learning.

EKF Extended Kalman Filter.

ENU East, North, and Up.

ESDF Euclidean Signed Distance Field.

FBL Feedback Linearization.

FLOAM Fast Lidar Odometry And Mapping.

xviii

FUEL Fast UAV Exploration.

GPS Global Positioning System.

GPU Graphics Processing Unit.

HITL Hardware-In-The-Loop.

IMU Inertial Measurement Unit.

LPA* Lifelong Planning A*.

LQR Linear Quadratic Regulator.

MIMO Multi-Input Multi-Output.

MPC Model Predictive Control.

MSBE) Mean Square Bellman Error.

NED North, East, and Down.

NLP Nonlinear Programming.

NMHE Nonlinear Moving Horizon Estimation.

NMPC Nonlinear Model Predictive Control.

NMPH Nonlinear Model Predictive Horizon.

OCP Optimal Control Problem.

OP Optimization Problem.

OTP Optimal Trajectory Problem.

PRM Probabilistic Road-Map.

RL Reinforcement Learning.

ROS Robot Operating System.

RRG Rapidly-exploring Random Graph.

xix

RRT Rapidly-exploring Random Tree.

SAC Soft Actor-Critic.

SE() Special Euclidean group.

SO() Special Orthogonal group.

SQP equential Quadratic Programming.

TD3 Twin Delayed Deep Deterministic.

TSDF Truncated Signed Distance Field.

xx

Chapter 1

Introduction

1.1 Motion Planning

Throughout the last century, injuries and fatalities in subterranean environments have

remained a major concern around the world. For example, mine workers are vulnera-

ble to hazards such as cave-ins, underground flooding, and gas explosions. Unmanned

vehicles can play a key role in performing both tedious and dangerous tasks, for in-

stance air quality sampling, tunnel inspections, and search-and-rescue missions. A

flying drone is a particularly attractive platform for underground operations due to

its abilities to move quickly, traverse any terrain, navigate through tight spaces, and

capture data from any angle. Recent advances in robotics have motivated research

into designing novel path planning approaches, allowing the vehicle to plan safe paths

and navigate through previously unknown environments.

Planning collision-free trajectories for autonomous unmanned vehicles operating

within unknown, dynamic, 3D, geometrically complex, and GPS-denied environments

is a challenging and exciting research problem for both academia and industry. For

agile drone systems, generating efficient trajectories in real-time requires using path

or trajectory planning methods which respect the vehicle’s dynamics and input con-

straints as part of the prediction process. Researchers are now studying different

planning approaches which can take these considerations into account, for instance

receding horizon-based methods [1–3].

1

Path planning, also called motion planning, is a computational problem to generate

and follow a collision-free trajectory from one point to another [4]. It has many ap-

plications, such as robotic surgery [5], driverless cars [6], automation [7], and mining

[8]. An extensive amount of research has been conducted in the field of path planning

for autonomous vehicles [6, 9]. However, most of the presented approaches provide

non- or sub-optimal solutions and do not account for the dynamics of the vehicle, in-

stead treating it as a kinematic model with velocity inputs [4], for instance a unicycle

or kinematic car [10]. Moreover, navigating through dynamic and unknown envi-

ronments is a challenging task as it requires safe navigation around both static and

dynamic obstacles, which adds computational load for the onboard computer of the

autonomous vehicle. On the other hand, trajectory planning provides a parameterized

path from a starting configuration to a terminal setpoint while avoiding obstacles. It

is considered a superset of path planning by generating reference kinematics over the

entire path instead of geometric paths only [11]. Nonlinear Model Predictive Control

(NMPC [12]) is an attractive methodology to address the above-named challenges,

since it is capable of predicting parameterized optimal paths (trajectories), accounts

for the dynamics of the plant, and supports hard state constraints which can be used

to model either static or dynamic obstacles.

Planning algorithms have received much attention from robotics researchers, where

most of the published algorithms fall under one of the following categories: search-

based, sampling-based, artificial potential field, artificial intelligence, and optimization-

based methods. The search-based methods, a.k.a. grid-based, discretize the environ-

ment map into a graph of grids then use a search algorithm to find a collision-free

path through these grids [9]. The two fundamental graph search algorithms are

Breadth-First Search (BFS) and Depth-First Search (DFS) [13]. BFS is based on a

first-in-first-out queue and can produce an optimal solution if the graph is uniformly

weighted. Meanwhile, a last-in-first-out stack is used in DFS until the goal is reached,

but no optimality is guaranteed.

2

One of the most widely used optimal searching algorithms for quickly finding the

shortest path is the Dijkstra algorithm [14]. It directs the search towards unvisited

nodes, then calculates and updates the shortest distances to the neighbor nodes from

the root node. It keeps doing this until all the nodes are visited. Meanwhile, A*

[15] is a commonly used algorithm for path planning. A* is an extension to Dijk-

stra algorithm, which combines the cost search with heuristics that guide the search

towards the goal point to achieve quicker searching performance. Many extensions

of A* have been proposed, for instance Lifelong Planning A* (LPA*) [16] was devel-

oped to support changes in the environment without recalculating the entire graph,

D* Lite [17] extended LPA* works to re-plan the path while the robot is moving,

Anytime Repairing A* (ARA*) [18] improves the optimality of the path by reusing

suboptimal solutions from previous executions, and Hybrid-state A* [19] generates

the graph based on the robot’s velocity, acceleration, and force constraints, and thus

searches for a dynamically feasible path.

The sampling-based methods are considered one of the main motion planning meth-

ods for robots with a high number of Degrees-Of-Freedom (DOF) [20]. In these

methods, feasible robot poses are randomly sampled to form admissible paths. Prob-

abilistic Road-Map (PRM) [21] and Rapidly-Exploring Random Tree (RRT) [22] are

the fundamental sampling-based methods for motion planning. In PRM, a graph is

built from random configurations and connected using a local planner (for instance Di-

jkstra’s searching algorithm for the shortest path between two configurations). PRM

is complete but does not necessarily provide an optimal path solution. The RRT

method is designed to randomly build a space-filling tree of vertices and edges inside

a complex environment to find a feasible path to the goal node. However, the RRT-

generated paths are not optimal [23]. Asymptotic optimality of paths can be achieved

by employing various extensions of RRT, such as RRT* and Rapidly-Exploring Ran-

dom Graph (RRG) methods [23]. RRG constructs a graph by connecting new samples

with all nodes within a specified distance, then finding the shortest path using a local

3

planner such as the Dijkstra algorithm. Meanwhile, RRT* searches the local nodes

and finds the shortest path from the start to the end nodes.

The artificial potential field method developed in [24] plans a path to a goal that

avoids collisions by assigning an attractive force to the desired goal and repulsive

forces to obstacles [25]. A variety of artificial intelligence-based algorithms for path

planning have been proposed in the literature, for instance Artificial Neural Network

(ANN) [26], Genetic Algorithm [27], Ant Colony Optimization [28], Particle Swarm

Optimization [29], and Simulated Annealing [30] algorithms. Reference [31] presents

a comprehensive review of artificial intelligence-based methods for path planning up

to 2018.

In general, there are three main limitations of the previously mentioned motion

planning approaches. First, they do not account for the constraints imposed by the

robot dynamics, even if some support kinematic and/or dynamic constraints (e.g. ve-

locity and/or acceleration limits, respectively) [32]. A second limitation is consistency,

since for several executions the algorithms may not produce identical trajectories

between a start and goal configuration in the very same environment. Third, the

computational load of these methods generally prevents them from being able to ac-

tively regenerate paths while moving between the start and goal configuration, which

keeps them from being used in dynamic environments. In addition, some approaches

generate non-smooth paths that lead to jerky motions and create inefficiency in the

vehicle’s power draw [4]. However, some optimization-based methods can overcome

these limitations, and the present work is directed at using optimization for planning

safe, consistent, and time-efficient paths which also respect the dynamics of the ve-

hicle. This last feature allows generating smooth trajectories for the robot vehicle,

avoiding the jerky motions and rapidly changing trajectories often generated by other

planning methods [4].

Recently, optimization-based motion planning methods have gained researchers’

attention due to their ability to resolve some or all of the above-mentioned limi-

4

tations. The optimization-based approaches solve a constrained non-convex opti-

mization problem, where some of the methods use cost-gradient information of a

trajectory’s waypoints for refinement purposes. The best-known optimization-based

methods for motion planning are Covariant Hamiltonian Optimization for Motion

Planning (CHOMP) [33] and Stochastic Trajectory Optimization for Motion Planning

[34]. The former uses gradient-based optimization while the latter uses stochastic op-

timization, and both produce collision-free trajectories that satisfy given constraints,

but are computationally expensive. In addition, CHOMP is prone to getting trapped

in local minima, where it returns infeasible or sub-optimal solutions.

Other optimization-based methods are more closely related to optimal control,

which focus on system dynamics more than collision prevention. Examples include

dynamic programming [35], LQR-based [36], and Model Predictive Control (MPC)

[37].

One of the challenges of using an optimization-based path planning approach is

accounting for obstacle constraints at each time instant the optimization problem is

solved, especially for real-time implementations [38]. For a small number of obstacles,

it has been demonstrated that finding local optimal trajectories is possible with MPC

in outdoor environments [39]. Conversely, increasing the number of obstacles and

considering 3D and dynamic environments makes the optimization problem much

more computationally expensive to find feasible paths in real-time. Also, using the

Nonlinear version of MPC (a.k.a. NMPC) for nonlinear systems makes solving the

optimization problem more challenging in terms of feasibility and stability of the

solution.

Despite these challenges, NMPC is considered an interesting candidate for path

planning that can generate real-time trajectories for highly nonlinear systems which

respect the system dynamics as well as internal and external constraints.

5

1.2 Nonlinear Model Predictive Approach

Nonlinear Model Predictive Control (NMPC) is the nonlinear variant of Model Predic-

tive Control (MPC), which was originally developed for process control applications

and can be traced back to the late 1970s [40, 41]. MPC, sometimes called moving

horizon or receding horizon optimal control, involves using a system dynamics model

to predict a sequence of control inputs over a time interval known as the prediction

horizon. For nonlinear systems, NMPC can be used as an optimization-based feed-

back control technique [12], and it has been viewed as one of the few control strategies

which can account for state and input constraints plus respect the nonlinearities and

coupling of the system dynamics.

NMPC is employed in applications including setpoint stabilization, trajectory track-

ing, and path following. In setpoint stabilization, the system is controlled to converge

to a specified setpoint within a terminal region. NMPC for setpoint stabilization has

been used in many applications, such as fluid level and temperature control [42, 43].

In trajectory tracking, the system must track a time-varying reference, which is a

more challenging problem. Some examples of this taken from the fields of aerial ve-

hicles and medicine are presented in [44, 45]. Meanwhile, the path following problem

considers time-invariant reference trajectories, where the goal is to achieve the best

possible tracking of the geometric path regardless of the time taken. A common exam-

ple of a path following problem is controlling the end-effector of a robot manipulator

to follow a prescribed path within its workspace, which is treated using MPC in [46,

47]. [48] provides a comprehensive overview of the setpoint stabilization, trajectory

tracking, and path following problems and their relevant features and challenges.

Within the model predictive control approach, the optimization problem solves for

both the input and the state of the system over a finite time horizon. These local plans

can then be combined online to generate a prediction of the state trajectory, which

is used for motion planning [49]. The work in [50] considers the problem of point-

6

to-point trajectory generation using linear MPC, while NMPC is used for trajectory

optimization and tracking control in [51], where it solves the nonlinear problem using

an iterative sequential linear quadratic algorithm to obtain the optimal feedforward

and feedback control inputs to a hexacopter vehicle.

Our work presents the development of an algorithm which allows the generation

of optimal trajectories based on the NMPC approach. This proposed formulation

is called Nonlinear Model Predictive Horizon (NMPH). The novelty of NMPH is

to incorporate a nonlinear control law to reduce or eliminate the non-convexity of

the optimization problem, as opposed to working directly with the nonlinear plant

dynamics as in standard NMPC.

To understand the differences between the proposed method and approaches based

on model predictive control, Table 1.1 shows a comparison between NMPC, NMPH

and NMHE (Nonlinear Moving Horizon Estimation). NMHE is an optimization-

based technique which inputs measurements, which may contain noise and other

uncertainties, and outputs estimates of the nonlinear system state or parameters.

Further information about NMHE is given in [52].

Table 1.1: Comparison between Nonlinear Model Predictive Control-based ap-
proaches.

NMPC NMHE NMPH (ours)

Objective Predicts future
control inputs and
states of the system

Estimates the
system states from
previous
measurements over
the estimation
horizon

Plans an optimal
reference trajectory
for the system under
an existing feedback
control design

7

Optimization
Problem
(OP)

Dynamic OP is
solved iteratively for
the optimal control
inputs over the
prediction horizon

OP is solved for
state estimates and
model parameters

Dynamic OP is
solved iteratively for
the optimal
trajectory over the
given prediction
horizon

Cost
Function

In general, a
quadratic function
which penalizes
deviations of the
predicted system
states and control
inputs. Composed of
a stage cost and a
terminal cost

In general, a
quadratic function
which penalizes
deviations of the
estimated outputs
from the measured
outputs. Composed
of an arrival cost
and a stage cost

Quadratic function
which penalizes the
deviation of the
predicted system
states and reference
trajectory.
Composed of a stage
cost and a terminal
cost.

Optimization
Variables

System inputs
(states might be
considered in some
implementations)

System states and
parameters

System states and
prediction of the
reference trajectory.

OP
Convexity

Non-convex Non-convex Reduced
non-convexity or
convex

OP
Constraints

* Initial state
* Nonlinear system
model
* Limits on states
and control inputs

* Nonlinear system
model
* Limits on states
and parameter
values

* Initial state
* Nonlinear system
model
* Limits on
trajectories, states,
controls; obstacles

Optimization
Perfor-
mance

Depends on the
accuracy of the
system model and
initial state estimate

Sensitive to the
accuracy of the
system model.
Process noise may
affect the solution,
leading to inaccurate
or unstable results

Relies on the
accuracy of the
system model,
stability of
closed-loop system,
and accuracy of the
initial state estimate

8

1.3 Adaptation and Deep Reinforcement Learning

For autonomous robotic systems, some path planning and trajectory tracking con-

trol formulations require accurate system dynamics models to design the control and

navigation algorithms [53]. However, obtaining accurate models is challenging in

practice, especially if the system dynamics are time- or task-varying. Changes in sys-

tem dynamics require updating the system model and/or the associated control and

navigation algorithms. For instance, adaptive control designs adjust the controller’s

parameters in response to changes in the system dynamics and the environment [54].

Adaptive control methods can be traced back to the 1950s and early 1960s [55].

Richard Bellman showed how Dynamic Programming is related to the different as-

pects of adaptation [56], and various adaptive flight control systems from this era

are reported in [57]. One of the simplest instances of adaptive control is dynamically

adjusting the gains of a PID control law; some techniques proposed by researchers

for online PID tuning include [58–61].

The world is witnessing rapid progress in the use of Artificial Intelligence (AI)

techniques for self-adaptive systems [62]. In particular, some AI-based techniques

have generated great interest for adaptive control designs for mobile robots [63–65].

One of the most productive paradigms in AI is Reinforcement Learning (RL), which is

a learning method for an agent interacting with its environment [66]. In the literature,

RL has been used by researchers as an adaptive control strategy, for instance a Q-

learning based cruise control method was developed by [67] to control a vehicle’s

speed on curved lanes, where Q-learning [68] is an RL algorithm that learns the value

of an action for a given state of the system. For online tuning purposes, [69] used

the Q-learning method to auto-tune fuzzy PI and PD controllers for both single- and

multi-input/output systems, while [70] used an Actor-Critic RL technique to tune

the weights of an LQR controller to adjust to different payloads being carried by a

robot arm manipulator.

9

Recent Developments in RL have made it possible to use neural networks as ap-

proximators of the RL value and policy functions [66]. In general, RL methods that

use neural networks in their structure are called Deep Reinforcement Learning (DRL).

A class of DRL methods which support continuous-time system models belong to the

Actor-Critic family [71], such as the Deep Deterministic Policy Gradient (DDPG)

[72], Twin Delayed Deep Deterministic (TD3) [73], Soft Actor-Critic (SAC) [74], and

Asynchronous Advantage Actor–Critic (A3C) [75]) algorithms. Actor-Critic methods

simultaneously learn policy and value functions that are maintained independently

using separate memory structures [66]. The Actor is a policy function that selects

the best action for the current observations, and the Critic is a value function that

criticizes the actions made by the actor. The algorithms listed above have recently

begun being used to implement adaptive control. For example, the DDPG algorithm

was used by [53] for self-tuning gains of PID controllers onboard mobile robots, while

[76] utilized the A3C algorithm to tune the gains of a PID controller used for position

control of a two-phase hybrid stepping motor. DRL-based algorithms can also be used

to autonomously tune the parameters of algorithms other than control, for instance

path planning. This will be the focus of one of our work directions, specifically using

two different DRL algorithms as adaptive solutions to enhance the performance of

our proposed motion planning approach by tuning the parameters of the optimization

problem online.

1.4 Thesis Objectives

This research aims to develop an optimization-based trajectory planning algorithm

for an autonomous drone vehicle to navigate through unexplored and GPS-denied en-

vironments. In particular, this thesis encompasses the development, implementation,

and validation of the following methodologies:

1. Proposing a novel framework for an optimization-based trajectory generation

10

approach and implementing it on a multi-rotor drone. This framework was

formulated with two different nonlinear control laws to efficiently solve the op-

timization problem and provide feasible, optimal, smooth, and collision-free

trajectories that support static and moving obstacles in real-time.

2. Incorporating the proposed trajectory planning method into a methodologi-

cal design of a global motion planner to explore unknown, unstructured, and

GPS-denied environments; and developing computationally efficient algorithms

for obstacle mapping and avoidance, plus robust path guidance algorithms to

enhance the vehicle’s robustness in performing autonomous navigation and ex-

ploration within these environments.

3. Proposing an adaptive learning scheme based on Deep Reinforcement Learning

to dynamically adjust the parameters of the optimization problem based on the

vehicle’s state and the environment conditions, leading to better flight trajectory

generation performance. The system was implemented using two different deep

reinforcement learning algorithms, and the resulting designs were evaluated in

terms of their learning performance and ability to provide the best possible

optimal trajectories for an autonomous drone vehicle in real-time.

1.5 Thesis Outline

This thesis is based on four published manuscripts [77–80]. The thesis chapters are

formatted to ensure structured and non-repetitive contents. Chapter 7 provides an

overview of the hardware and software used in the real-time testing.

The remainder of this thesis is organized as follows:

• Chapter 2 introduces the Nonlinear Model Predictive Horizon framework for

optimal trajectory generation, and the different constraints employed within its

optimization problem.

11

• Chapter 3 presents the formulation of NMPH design with the state feedback

linearization control law (NMPH-FBL) for optimal trajectory generation.

• Chapter 4 provides a new candidate to the NMPH design by integrating it with

the nonlinear backstepping control technique (NMPH-BSC) for optimal and

efficient trajectory planning.

• Chapter 5 presents a methodological global motion planner design and choices

of algorithms to provide robust path planning and obstacle avoidance.

• Chapter 6 introduces the development of the adaptive NMPH framework with

deep reinforcement learning methods for online tuning of the NMPH optimiza-

tion problem parameters to enhance trajectory planning performance.

• Chapter 7 provides an overview of the hardware of our drone vehicle and the

software architecture used in the real-time flight tests.

• Chapter 8 summarizes and concludes the work presented in this thesis, and

outlines different future research directions of the work.

The overall system architecture of the work included in this thesis is depicted in

Figure 1.1.

Drone System

SLAM or
Volumetric
Mapping

Graph-Based
Planner

NMPH with
Feedback Linearization or
Backstepping Control

Desired path

State estimation

Point-cloud

Setpoints

Robust Path
Guidance

Dynamic Obstacles
Mapping

Global Motion Planner

3D map3D obstacles
map

Optimal Path Planning

(Chapter 2)
(Chapter 3)
(Chapter 4)

DRL-based
Adaptive
Scheme

(Chapter 6)

(Chapter 5)

(Chapter 7)

Figure 1.1: Overall System Architecture.

12

Chapter 2

Nonlinear Model Predictive Horizon for
Optimal Trajectory Generation

2.1 Introduction

Our proposed Nonlinear Model Predictive Horizon (NMPH) is an optimization-based

trajectory generation method based on Nonlinear Model Predictive Control (NMPC).

Unlike NMPC, which yields an optimal feedback control law for a nonlinear system,

the objective of NMPH is to generate optimal reference trajectories that a closed-loop

system can follow.

The goal of NMPH is to generate a smooth trajectory which is continuously up-

dated by solving an Optimal Control Problem (OCP) in real time while respecting

the state and input constraints of the closed-loop system. The resulting optimization

problem will be referred to as an Optimal Trajectory Problem (OTP).

An overview of the NMPH architecture is depicted in Figure 2.1. The Nonlinear

System Model and the Nonlinear Control Law, representing the model of the plant

and the nonlinear control law design, are both involved in the solution of the opti-

mization problem. The NMPH inputs the current system state and a desired setpoint

stabilization, and outputs an optimal reference trajectory by solving the OTP at each

time instant tn.

Our proposed NMPH method:

• predicts the trajectory of a nonlinear closed-loop system,

13

Closed-loop
System

current system state

optimized
reference
trajectory

Nonlinear Model Predictive Horizon

Nonlinear
Control Law

Nonlinear
Plant Model

Optimization
Problem

Solver

Constraints

Cost Function

Stabilization
/terminal
setpoint

Figure 2.1: Nonlinear Model Predictive Horizon architecture. A model of the nonlin-
ear system dynamics is used to perform the optimization process within NMPH (gray
box). The resulting optimized reference trajectory is passed to the actual closed-loop
system for tracking purposes.

• works in real-time using a specified time horizon,

• uses a nonlinear control law, such as feedback linearization, to reduce the non-

convexity of the optimization problem,

• supports state and input constraints of the closed-loop system, and is able to

account for environmental constraints such as dynamic obstacles,

• assumes that a stable terminal point is specified, and the state vector of the

closed-loop system is available (measured or estimated), and

• provides a combination of stabilization and tracking functionality:

– Stabilization: provides a solution which guides the closed-loop system to

a specified setpoint or terminal condition.

– Tracking : generates a smooth reference trajectory for the closed-loop sys-

tem to track or follow.

The NMPH provides a dynamic parameterization of the reference trajectory. This

provides a continually evolving optimal reference trajectory from the current state of

14

the closed-loop system to the terminal setpoint, which respects the system dynamics

and environmental constraints such as dynamic obstacles.

The main research contributions presented in this chapter are:

• Formulating a new variant of NMPC (named NMPH), which employs a model

of a closed-loop system under nonlinear control law to efficiently solve for the

optimal reference trajectory of the target closed-loop system.

• Supporting static and dynamic obstacles within the NMPH, enabling collision-

free reference trajectory generation in unknown and dynamic environments.

In the following subsections, a discrete-time formulation of the NMPH algorithm

is presented in Section 2.2. The different constraints employed within the NMPH op-

timization problem are discussed in Section 2.3. The continuous-time representation

of NMPH is presented in Section 2.4, then the method of solving the NMPH opti-

mization problem is described in 2.5. Finally, a summary of this chapter is presented

in Section 2.6.

2.2 Nonlinear Model Predictive Horizon Algorithm

Consider a discrete-time model of the nonlinear closed-loop system at time instant

tn,

x (n+ 1) = f
(︁
x (n) , u (n)

)︁
(2.1a)

ξ (n) = h
(︁
x (n)

)︁
(2.1b)

u (n) = g
(︁
x (n) , ξ

ref
(n)
)︁

(2.1c)

where x (n) ∈ X ⊆ Rnx are the system states, ξ (n) ∈ Ξ ⊆ Rnξ are the system

outputs, u (n) ∈ U ⊆ Rnu are the system inputs, and ξ
ref

(n) ∈ Ξ is the reference

trajectory at time instant tn. We assume that the system outputs are a subset of the

system state vector, Ξ ⊆ X, in our case the drone’s position and yaw angle. The map

15

current
system state

𝑥 𝑛

optimized
variables

𝑥𝑘 , መ𝜉𝑘

Nonlinear Model Predictive Horizon

Nonlinear
Control Law

𝑢𝑘

Nonlinear
System Model

𝑥𝑘+1 Optimization
Problem

Solver

Constraints

Cost Function, 𝐽 𝑥𝑘 , መ𝜉𝑘stabilization
setpoint

𝑥𝑠𝑠

Figure 2.2: NMPH structure which combines a model of the nonlinear plant dynamics
plus a nonlinear control law within its optimization problem.

f : X × U → X represents the discrete-time plant dynamics and x (n+ 1) are the

states at the next sampling instant. g : X ×Ξ→ U is the control law that is used to

steer the system output to follow the reference trajectory.

A closer look at the NMPH structure is shown in Figure 2.2. The OTP solver uses

the plant dynamics (2.1a), output (2.1b) and control law (2.1c) plus any applicable

constraints (e.g. obstacles in the environment) to predict the sequence of future states

and outputs of the closed-loop system model over the finite time horizon. In order

to differentiate between the variables of the actual nonlinear system and its model

within the NMPH, the latter uses subscripts as seen in Figure 2.2 and discussed below

in Algorithm 2.1.

As shown in Figure 2.2, the sequence xk provides a prediction of the trajectory

of the system (2.1) between its current state x(n) and the setpoint stabilization xss,

which is re-generated each time the OTP is solved. Meanwhile, the sequences ξk and

ξ̂k calculated by the OTP are defined as follows:

• ξk is the predicted output trajectory sequence which represents a subset of the

vector entries of the state sequence xk (in our case the quadrotor’s position and

yaw angle). It is important to distinguish between ξ(n), the current output of

the actual closed-loop system, and ξk, the predicted output sequence produced

by the OTP solution.

16

• ξ̂k is the estimated reference trajectory sequence which is calculated by solving

an optimization problem inside the NMPH. Using ξ̂k as the reference trajectory

for the actual closed-loop system yields smoother flight paths plus the ability to

deal with constraints such as obstacles in the environment. In this way ξ
ref

(n)

in (2.1c) acquires its value from the first predicted point of the ξ̂k sequence.

As will be illustrated in Figure 2.3, the trajectory sequences ξk and ξ̂k will converge

to each other and towards the terminal point. Thus, either of them can be taken as

the reference trajectory for the actual closed-loop system.

The predicted future of the closed-loop system’s behaviour is optimized at each

sampling instant n and over a finite time horizon k = 0, 1, . . . , N − 1 of length

N ≥ 2. The system is assumed to follow the first j elements of the predicted optimal

trajectory sequence until the next sampling instant, at which time the trajectory is

re-calculated, and so on. The predicted state xk and the control input uk sequences

at each time instant n are calculated as

xk (0) = x (n) , xk+1 = f (xk, uk) , uk = g(xk, ξ̂k), k = n, . . . , n+N − 1 (2.2)

Now, consider µ (xk, uk) : Rnx×Rnu → Rnξ which is the mapping from the predicted

state and control law sequences to the estimated trajectory sequence. This is written

as

ξ̂k := µ (xk, uk) , k = n, . . . , n+N − 1 (2.3)

Our objective is to use an optimization methodology to determine the estimated

reference trajectory ξ̂k and the state xk (whose subset is ξk) sequences that both

converge to the stabilization setpoint xss = xrefN . To do this, a cost function J(xk, ξ̂k)

is chosen to penalize the deviation of the system states from the reference, and the

predicted output from the estimated reference trajectory, as shown below in Algo-

rithm 2.1 and the cost function in (2.5).

17

Algorithm 2.1 NMPH algorithm with stabilizing terminal condition xss

1: Let n = 0; measure the initial state x0 ← x(n)|n=0

2: while ∥xss − x0∥ ≥ δ do
Solve the following Optimal Trajectory Problem,

min
xk,ξ̂k

(︄
J(xk, ξ̂k) :=

n+N−1∑︂
k=n

L(xk, ξ̂k) + E (xn+N)

)︄
(2.4)

subject to xk=0 = x (n) (2.4a)

xk+1 = f (xk, uk) , k = n, . . . , n+N − 1, (2.4b)

uk = g(xk, ξ̂k), k = n, . . . , n+N − 1, (2.4c)

xk ∈ X , k = n, . . . , n+N, (2.4d)

ξ̂k ∈ Z, uk ∈ U , k = n, . . . , n+N − 1, (2.4e)

Oi (xk) ≤ 0 , i = 1, 2, . . . , p (2.4f)

if xk → xss then (estimated trajectory converges to terminal condition)
n← n+ 1;

else
break;

In Algorithm 2.1, N is the prediction horizon, x (n) is the current measured state

at a time instant tn, which represents the initial condition of the OTP, and L (·, ·)

and E (·) are the stage cost function and the terminal cost function, respectively.

The constraint sets X , U , and Z will be defined in Section 2.3, and the inequality

constraints Oi (xk) ≤ 0 allow modeling a set of p static and dynamic obstacles. The

optimization process of Algorithm 2.1 is summarized as follows:

1. Measure or estimate the actual closed-loop system’s current state x(n).

2. Obtain a prediction of the reference trajectory sequence ξ̂k for an admissible

control input by minimizing the cost function over the prediction horizon subject

to the dynamics of the closed-loop system plus state and input constraints.

3. Send the predicted reference trajectory sequence to the closed-loop system for

18

tracking.

4. Repeat until the system reaches the desired terminal point or encounters an

infeasible optimization solution.

Within NMPH, convergence can be achieved by proper choices of the stage cost

L(x, ξ̂) and the terminal cost E (x) for a setpoint stabilization problem [48]. The

requirements for these cost functions are summarized below in Assumption 2.1:

Assumption 2.1 (Cost Function) The stage cost L(x, ξ̂) : Rnx × Rnξ → R+
0 and

terminal cost E (x) : Rnx → R+
0 functions introduced in (2.4) have the following

properties:

• The stage cost is continuous and bounded from below, meaning that L(x, ξ̂) ≥ α

for all (x, ξ̂) ∈ X × Ξ\{0, 0} and L (0, 0) = 0.

• The terminal cost is a positive semi-definite function, which is continuously

differentiable and satisfies

∂E

∂x
f
(︁
x, g(x, ξ̂)

)︁
+ L(x, ξ̂) ≤ 0

• The terminal constraint set EN is a subset of the state constraint set X and it

is compact.

• For every xN ∈ EN there exists an estimate of the reference trajectory ξ̂k and

predicted output trajectory ξk sequences where both converge to the terminal

setpoint, and stay within the terminal region EN .

Our cost function is chosen to penalize the deviation of states from their refer-

ence values, and the deviation of the predicted output trajectory from the estimated

reference trajectory, as follows:

J(xk, ξ̂k) :=
n+N−1∑︂
k=n

(︂
∥xk − xrefk ∥

2
Wx

+ ∥ξk − ξ̂k∥2Wξ

)︂
+ ∥xN − xrefN ∥

2
WN

(2.5)

19

prediction horizonpast time

optimal estimated

trajectory መ𝜉𝑘

optimal predicted
trajectory 𝜉𝑘

penalize
the difference

mapping 𝜇 𝑥𝑘 , 𝑢𝑘 ≜ መ𝜉𝑘

control values 𝑢𝑘 from the control law

terminal
constraint

past predicted
trajectory

past control values

current state

𝑥0 = 𝑥 𝑛

𝑡𝑛 𝑡𝑛+1 𝑡𝑛+𝑁

Figure 2.3: NMPH process at time tn, which predicts the optimal trajectory until time
tn+N . The difference between the predicted output ξk and the estimated reference ξ̂k
trajectories is penalized to ensure their convergence towards each other.

where xrefk ∈ X is the reference states sequence used in the optimization problem.

The terminal cost ∥xN − xrefN ∥2WN
with its weighting matrix WN steers the system

towards the stabilization setpoint xss = xrefN , while the stage cost function L(xk, ξ̂k)

uses the weighting matrices Wx and Wξ to penalize deviations of the states and

outputs, respectively. The entries of the weighting matrices are selected to adjust the

relative importance of these three factors for the optimization problem.

A visual interpretation of the NMPH process can be seen in Figure 2.3, where the

path planning task is to guide the closed-loop system described by (2.1) to follow

a predicted trajectory from x(n) (at time instant tn) to xss (at a future time tn+N)

while minimizing the cost function (2.5) and respecting the system’s state and input

constraints.

Some of the features of the predicted trajectory sequences are:

• The first j elements of the reference trajectory sequence ξ̂k are passed to the

closed-loop system, which is different from the NMPC control problem where

20

only the first element of the predicted control sequence u∗(n) is used. This

provides some flexibility in choosing the rate at which the OTP is solved, which

addresses the computation time issue of solving a Nonlinear Program (NLP).

• Thanks to recent advancements in computing, specifically graphics processing

units (GPUs), the computations required for optimization problems can be

performed very quickly, meaning solving the NLP problem for OTP or even

OCP can be done in real-time. Irrespective of this, OTP has an advantage over

OCP since the computational power requirement can be controlled by adjusting

the rate of solving the optimization problem while allowing the vehicle to track

the first j elements of the estimated reference trajectory.

• While the tailing N − j elements of the reference trajectory sequence are dis-

carded, the entire trajectory is still required to be calculated over the prediction

horizon. The reason for this is that optimizing over the full horizon ensures a

smooth trajectory from the initial state to the terminal setpoint.

• The optimization problem is solved iteratively using a reliable and accurate

optimization approach based on the multiple shooting method and sequential

quadratic programming.

2.3 NMPH Constraints

Support for constraints within the NMPH algorithm provides full control over the

optimization problem. The constraints can apply to the state, input and output

trajectories, and also model dynamic obstacles.

State constraints belong to the subset X ⊆ X while outputs, which are assumed to

be a subset of the state vector entries, are the subset Z ⊆ X . U
(︂
x, ξ̂
)︂
⊆ U is defined

by physical input constraints in the system, for instance due to actuator limits.

The objective of introducing the constraint sets are to ensure that the optimized

21

trajectories are bounded and lie within their allowable ranges. The following assump-

tions regarding the constraint sets are made [12, 48]:

Assumption 2.2 (Closed and Bounded Sets) The constraint sets of the state X

and the reference trajectory Z are closed, and the control constraint set U is compact.

Assumption 2.3 (Differentiability and Lipschitz) The system dynamics f (x, u) :

Rnx × Rnu → Rnx is continuously differentiable for all (x, u) ∈ X × U . Also, f (x, u)

and the reference trajectory mapping µ (x, u) : Rnx × Rnu → Rnξ are considered to

be locally Lipschitz.

Assumption 2.4 (Uniqueness) For any element of the estimated reference trajec-

tory ξ̂ resulting from a control input u and any possible initial states x0 ∈ X , the

system dynamics produce a unique and continuous solution.

Assumption 2.5 (Viability) For each state x ∈ X and estimated reference trajec-

tory ξ̂ ∈ Z there exists a control u = g(x, ξ̂) ∈ U such that f (x, u) ∈ X .

Taking Assumptions 2.2–2.4, we can make the following definition:

Definition 2.1 (Admissibility) In the discrete-time OTP, consider the system dy-

namics xk+1 = f (xk, uk) and the control law uk = g(xk, ξ̂k), which maps the state

to the estimated trajectory as µ (xk, uk) := ξ̂k ∈ Z, with the constraint sets for state

X ⊆ X, control U(x, ξ̂) ⊆ U , and reference trajectory Z ⊆ X.

• The system states xk ∈ X and the estimated reference trajectory ξ̂k ∈ Z are

called admissible states and trajectories, respectively, and the control uk =

g(xk, ξ̂k) ∈ U are called admissible control values for xk and ξ̂k. Hence, the

admissible set can be defined as

Y :=
{︂
(xk, ξ̂k, uk) ∈ X × Ξ× U | xk ∈ X , ξ̂k ∈ Z, uk = g(xk, ξ̂k) ∈ U

}︂
(2.6)

22

• The control sequence uk and its associated estimated reference trajectory ξ̂k and

state sequence xk from the time t0 of the initial value x0 ∈ X up to time tN

of the setpoint stabilization value xN , are admissible if (xk, ξ̂k, uk) ∈ Y for

k = 0, . . . , N − 1 and xN ∈ X .

• The control law is called admissible if g(xk, ξ̂k) ∈ U for all xk ∈ X and ξ̂k ∈ Z.

• The estimated reference trajectory is called admissible if µ (xk, uk) ∈ Z for all

xk ∈ X and uk ∈ U .

A feasible problem is defined as an optimization problem in which there exists

at least one set of solutions that satisfies all the constraints [12]. Based on As-

sumptions 2.2-2.5 and the admissibility Definition 2.1, the feasibility of the OTP is

determined by Theorem 2.1.

Theorem 2.1 (Feasibility) If the OTP is feasible for an initial condition x0 and the

cost function for a setpoint stabilization problem with associated constraint sets satisfy

Assumptions 2.2-2.5, then the OTP is recursively feasible, meaning the state converges

to the stabilizing terminal point xN , and both the estimated reference trajectory ξ̂k and

predicted output trajectory ξk sequences converge toward the terminal stabilization

setpoint under sampled-data NMPH.

Proof: The solution of the OTP is feasible for an initial value x0 ∈ X to a stabilizing

terminal point xN ∈ X if the sets over which we optimize are non-empty. The viability

considered in Assumption 2.5 for Z and X implies that the OTP is feasible for each

initial state x0 and consequently ensures that the control g(xk, ξ̂k) is properly defined

for each x ∈ X and ξ̂ ∈ Z. Since the OTP is performed with respect to admissible

predicted state trajectory and control law sequences (as stated in Definition 2.1), the

future behavior of the system is consequently feasible. □

It is important to note that the solution of the OTP is viable in the case of a

stabilizing terminal constraint, meaning the NMPH problem is confined to feasible

23

subsets since the terminal constraint is viable. The closed-loop system embedded

within NMPH satisfies the desired constraints, which will lead to a feasible solution

in the OTP. The stability of a feasible solution is governed by Theorem 2.2.

Theorem 2.2 (Stability) Assume that the OTP within Algorithm 2.1 satisfies As-

sumption 2.1 and has a feasible solution as determined by Theorem 2.1. Then the

optimized solution leads to a stable prediction of the system state xk and estimated

reference trajectory ξ̂k.

Proof: Assume that at any time instant ti, i ∈ [n, ..., n + N − 2], x∗i and ξ̂
∗
i are the

optimal solutions of the OTP in Algorithm 2.1, with their associated control value

u∗i . A Lyapunov-like function is defined as

V (xi, ξ̂i) = min
x∗i ,ξ̂

∗
i

J(xi, ξ̂i) = J(x∗i , ξ̂
∗
i) (2.7)

The cost function in (2.4) guarantees a positive semi-definite Lyapunov-like candi-

date [81], meaning that 0 ≤ V (xi, ξ̂i) <∞, which can be written at time ti as

V (xi, ξ̂i) = E
(︁
x∗n+N

)︁
+

n+N−1∑︂
i=n

L(x∗i , ξ̂
∗
i) (2.8)

Considering the solution at a subsequent time ti+δ, the feasible solution of the cost

function is

J(xi+δ, ξ̂i+δ) = E (xn+N+δ) + L(xn+N−1+δ, ξ̂n+N−1+δ) +
n+N−1∑︂
i=n+δ

L
(︁
x∗i , ξ̂

∗
i

)︁
(2.9)

Since V (xi+δ, ξ̂i+δ) ≤ J(xi+δ, ξ̂i+δ), we have

V (xi+δ, ξ̂i+δ)− V (xi, ξ̂i) ≤ J(xi+δ, ξ̂i+δ)− V (xi, ξ̂i)

≤ E (xn+N+δ) + L(xn+N−1+δ, ξ̂n+N−1+δ)

+Σn+N−1
i=n+δ L(x

∗
i , ξ̂

∗
i)−

(︁
E(x∗n+N) + Σn+N−1

i=n L(x∗i , ξ̂
∗
i)
)︁

≤ L(xn+N−1+δ, ξ̂n+N−1+δ) + E (xn+N+δ)

−L(x∗n, ξ̂
∗
n)− E(x∗n+N)

24

where E (xn+N+δ)− E
(︁
x∗n+N

)︁
+ L(xn+N−1+δ, ξ̂n+N−1+δ) ≤ 0 based on the inequality

considered in Assumption 2.1. Therefore,

V (xi+δ, ξ̂i+δ)− V (xi, ξ̂i) ≤ −L
(︁
x∗n, ξ̂

∗
n

)︁
this implies that the rate of change of the Lyapunov-like function is decreasing with

time. Hence, the solution of the OTP problem in Algorithm 2.1 converges asymptot-

ically to the terminal setpoint. □

To perform safe navigation, it is necessary to include the obstacle constraints within

the optimization problem. The inequality constraint presented in (2.4f) accounts for

the space that the predicted trajectory should avoid. For instance, the obstacle

constraints Oi (xk) ≤ 0 are defined as

∥xposk − oi∥ − ϵi ≤ 0 , i = 1, 2, . . . , p

where xposk ∈ R3 is the predicted vehicle position over the prediction horizon, oi ∈ R3

are the position of the obstacles centers, and ϵi represents the safety distance between

the ith obstacle and the vehicle, which accounts for the drone and obstacle sizes

including a safety tolerance.

2.4 Continuous-time Representation of NMPH

The discrete-time representation (2.1) shown in Section 2.2 is presented to understand

the problem formulation analysis and NMPH development, with the optimization be-

ing performed in the discrete-time domain as in sampled-data MPC [82]. Conversely,

a continuous-time representation is important for NMPH implementation since our

chosen optimization algorithm (ACADO [83]) has the ability to discretize the system

equations.

25

Consider the continuous-time nonlinear closed-loop system

ẋ(t) = f
(︁
x(t), u(t)

)︁
(2.10)

ξ(t) = h
(︁
x(t)

)︁
u(t) = g

(︁
x(t), ξ

ref
(t)
)︁

where x(t) ∈ X ⊆ Rnx are the system states and u(t) ∈ U ⊆ Rnu are the system

inputs. ξ(t) ∈ Ξ ⊆ Rnξ are the system outputs, assumed to be a subset of the

state vector x(t), such that Ξ ⊆ X (e.g. for a drone vehicle the outputs are the 3D

position and heading). The map f : X×U → X represents the system dynamics and

g : X × Ξ→ U is the control law that is used to make the system output follow the

reference trajectory.

Remark 2.3 The character (·)̃ is added to the variables used within the continuous-

time optimization problem to differentiate them easily from the actual closed-loop

system variables.

The optimization problem presented in Algorithm 2.1 can be rewritten in the

continuous-time domain

26

Algorithm 2.2 Continuous-time NMPH algorithm

1: Let tn, n = 0, 1, 2, · · · represent successive sampling times; set n = 0
2: while ∥xss − x(tn)∥ ≥ δ do

min
x̃,ξ̂ref

(︃∫︂ tn+T

tn

L
(︁
x̃ (τ) , ξ̂ref (τ)

)︁
dτ + E (x̃ (tn + T))

)︃
= (2.11)

min
x̃,ξ̂ref

(︃∫︂ tn+T

tn

(︂
∥x̃ (τ)− xss∥2Wx

+ ∥ξ̃ (τ)− ξ̂ref (τ) ∥2Wξ

)︂
dτ

+ ∥x̃ (tn + T)− xss∥2WT

)︃

subject to x̃(tn) = x (tn) , (2.11a)

ẋ̃ (τ) = f (x̃ (τ) , ũ (τ)) , (2.11b)

ũ (τ) = g
(︁
x̃ (τ) , ξ̂ref (τ)

)︁
, (2.11c)

x̃ (τ) ∈ X , ũ (τ) ∈ U , ξ̂ref (τ) ∈ Z, (2.11d)

Oi (x̃) ≤ 0 , i = 1, 2, . . . , p. (2.11e)

if x̃→ xss then
n← n+ 1;

else
break;

The continuous-time optimization problem is solved over the finite time horizon τ ∈

[tn, tn+T]. As discussed in Section 2.2, the closed-loop system will be asked to track

a portion of the resulting reference trajectory running from tn to tn+ tj, where tj < T

and where tj can be adjusted online to affect the trajectory generation and tracking

performance and control the computational power required by the optimization.

2.5 NMPH Optimization Problem

The optimization problem of NMPH uses a model of the nonlinear system dynamics

and nonlinear control law to solve for an optimal reference trajectory for the resulting

closed-loop system. The OTP, which is written in the continuous-time domain and

27

presented in (2.11), is solved using an efficient direct multiple shooting technique

[84]. The solver discretizes the system dynamics, control law, and state and input

constraints over the prediction horizon into k = n, ..., n + N at each time instant

tn as discussed in (2.4). An overview of the process from the optimization problem

formulation to the trajectory generation is given in Figure 2.4.

Optimization
Problem

optimize w.r.t. system’s
trajectories & states

Multiple
Shooting Method

discretizes the
optimization problem

Nonlinear Program (NLP)
Solves the optimization problem that

includes nonlinear function and/or
nonlinear constraints using Sequential

Quadratic Programming (SQP)

Trajectory
Generation

Continuous online
generation of the desired
trajectory for the system

Figure 2.4: Optimization problem for NMPH

The optimization problem operates on the dynamics of a closed-loop system which

may not be convex. Therefore, the optimization problem is solved iteratively using a

Sequential Quadratic Programming (SQP [85]) approach of splitting the problem into

a sequence of subproblems, each of which solves for a quadratic objective function

subject to linearized constraints about their operating point using the qpOASES

solver [86].

To ensure local convergence of the SQP, the quadratic function of the subproblem

has to be bounded within a feasible region of the optimization problem sets. Starting

from an initial condition x0, the optimization variables should be sufficiently close to

the terminal condition xss; then the sequence xk generated by the NMPH converges

to the terminal condition at a quadratic rate.

2.6 Summary

In this chapter, we proposed a novel reference trajectory generation framework for a

nonlinear closed-loop system based on the NMPC approach. The proposed formu-

lation, called NMPH, applies a nonlinear control law to the nonlinear plant model,

aiming a closed-loop dynamics model with decreased non-convexity used by the on-

line optimization problem to generate feasible and optimal reference trajectories for

28

the actual closed-loop system. The proposed NMPH algorithm supports both static

and dynamic obstacles, enabling trajectory generation in continuously changing en-

vironments.

29

Chapter 3

Nonlinear Model Predictive Horizon with
Feedback Linearization Control

3.1 Introduction

This chapter presents the development of an algorithm which allows the generation

of optimal trajectories based on the NMPH approach by using a closed-loop system

model consisting of the nonlinear plant connected to a state feedback linearization

(FBL) control law. This proposed formulation is denoted by NMPH-FBL. The pur-

pose of employing FBL within the NMPH is to reduce or eliminate the non-convexity

of the optimization problem relative to working directly with the nonlinear plant dy-

namics as in standard NMPC. The nonlinear system studied in this work, a drone

vehicle, is a Multi-Input Multi-Output (MIMO) system. We thus start by reviewing

the method of feedback linearization for a class of MIMO systems, as presented next.

In this chapter, the research contributions are:

• Formulating the NMPH design with a feedback linearization control law, aiming

on decreasing the non-convexity used by the online optimization problem to

efficiently generate feasible and optimal reference trajectories for the actual

closed-loop system.

• Designing a feedback linearization control law for a model augmented with

integral states to achieve more robust performance in the presence of modeling

uncertainties.

30

• Implementing support for static and dynamic obstacles within the NMPH, en-

abling trajectory generation in continuously changing environments.

• Validating the ability of the system to generate optimal trajectories for the

quadrotor vehicle using realistic various flight environment simulation scenarios.

The remainder of this chapter is structured as follows. Section 3.2 presents the

formulation of NMPH design with the the state feedback linearization control law.

The application of the algorithm to a drone vehicle is presented in Section 3.3. Sec-

tion 3.4 presents different simulation scenarios to evaluate and validate the proposed

approach. Concluding remarks are given in Section 3.5.

3.2 NMPH Closed-loop Form with Feedback Lin-

earization Control Law

Consider a MIMO nonlinear control-affine system of the form

ẋ = f (x) +
nu∑︂
i=1

gi (x) ui ≜ f (x) +G (x)u (3.1)

in which x ∈ Rnx , and f , g1, . . . , gnu are smooth vector fields in Rnx . G (x) is an

nx × nu matrix and its rank at x = 0 is rank G(0) = nu. For notation simplicity in

the following sections, take nx ≡ n and nu ≡ m.

Prior to feedback linearization analysis, the following theorems and definitions are

presented in the context of differential geometry.

Definition 3.1 (Diffeomorphism) A diffeomorphism is a differentiable map φ be-

tween two manifolds M and N , such that φ : M → N is one-to-one and onto

(bijective), and its differentiable inverse map φ−1 : N → M is bijective as well. φ

is called a Cω diffeomorphism if it is ω times continuously differentiable. If ω = ∞,

then φ is called a C∞ smooth map [87].

A change of coordinates can be defined globally or locally. A map ξ : Rn →

Rn is called a global diffeomorphism between two coordinates if, and only if, the

31

determinant det ∂ξ
∂x
̸= 0 for all x ∈ Rn , and lim∥x∥→∞ ∥ξ (x) ∥ = ∞ [88]. For a local

change of coordinates, let U be an open subset of Rn with ξ : U → Rn. If det ∂ξ
∂x
̸= 0

at some x ∈ U , then there exists V ⊂ U , which is an open set that includes x such

that the map ξ : V → V (ξ) is a diffeomorphism [87].

A specific class of nonlinear systems can be transformed into a linear state feedback

controllable form by satisfying the conditions to be presented in Theorem 3.1. To fa-

cilitate our understanding of this process, we first define a non-singular state feedback

transformation and controllability indices in Definitions 3.2 and 3.3, respectively [87]:

Definition 3.2 (Non-singular state feedback transformation) Consider V0 ⊂

U0 which is a neighborhood of the origin. On the one hand, the non-singular state

feedback is defined as:

u = β (x) +D (x)−1 v (3.2)

where the function β (x) is smooth from V0 into Rn and β (0) = 0. D (x)−1 is the

inverse of a non-singular m×m matrix in V0.

On the other hand, a local diffeomorphism in V0 (defined by: ξ = T (x), T (0) = 0), ex-

ists if, and only if, in U0 the distributions Gl = span
{︁
adjfgi : 1 ≤ i ≤ m, 0 ≤ j ≤ l

}︁
are involutive and of constant rank for 0 ≤ l ≤ n− 2, and the rank of the distribution

of n− 1 is rank Gn−1 = n.

A transformation that contains a non-singular state feedback and a local diffeomor-

phism is called a non-singular state feedback transformation.

Definition 3.3 (Controllability Indices) Controllability indices ri, i = 1, . . . ,m

associated with control-affine systems of the form (3.1) are calculated as

ri = card {mj ≥ i : j ≥ 0} (3.3)

with

m0 = rank G0,

mk = rank Gk − rank Gk−1, k = 1, . . . , n− 1.

32

Employing Definitions 3.2 and 3.3, the sufficient conditions for feedback lineariza-

tion and the form of its feedback transformation are given in Theorem 3.1 [87].

Theorem 3.1 (MIMO Feedback Linearization) A system of the form (3.1) can

be locally transformed by means of a non-singular state feedback transformation as

given in Definition 3.2 into a linear Brunovsky controller form in U0 if:

i) The controllability indices satisfy the condition r1 ≥ . . . ≥ rm;

ii) The distributions Gri−2 are involutive and of constant rank for i = 1, . . . ,m;

iii) The rank of the distribution Gr1−1 is rank Gr1−1 = n.

In this case there are smooth functions {φi (x) : ⟨dφi,Gri−2⟩ = 0, j ≥ i, i = 1, . . . ,m}

that form a non-singular matrix D (x) in V0,

D (x) =

⎡⎢⎢⎢⎣
⟨dφ1, ad

r1−1
f g1⟩ . . . ⟨dφ1, ad

r1−1
f gm⟩

...
. . .

...

⟨dφm, adrm−1
f g1⟩ . . . ⟨dφm, adrm−1

f gm⟩

⎤⎥⎥⎥⎦ , (3.4)

and consequently the non-singular state feedback transformation is

v =

⎡⎢⎢⎢⎣
Lr1f φ1

...

Lrmf φm

⎤⎥⎥⎥⎦+

⎡⎢⎢⎢⎣
Lg1L

r1−1
f φ1 . . . LgmL

r1−1
f φ1

...
. . .

...

Lg1L
rm−1
f φm . . . LgmL

rm−1
f φm

⎤⎥⎥⎥⎦u , ξ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ1

...

Lr1−1
f φ1

...

φm
...

Lrm−1
f φm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.5)

In Theorem 3.1, Lfφ = ⟨dφ, f⟩ is the Lie derivative which can be realized as a

directional derivative of the smooth function φ along the smooth vector field f , and

adrfg = [f, adr−1
f g] is the iterated Lie bracket between the vector fields f and g.

Using the feedback linearization control law yields a locally stable closed-loop sys-

tem model within the NMPH structure. One of the main motivations for choosing the

33

feedback linearization approach in our work was to reduce nonlinearities. Since the

NMPH works with a closed-loop system model, the optimization problem will have

a reduced non-convexity as compared to working directly with the nonlinear plant

model as in NMPC. This will lead to better optimization performance in terms of

computation time to find feasible solutions.

Modeling errors, system uncertainties, and external disturbances can affect the

performance of the state feedback linearization control law. For instance, a constant

wind gust applied to the drone while following a trajectory will lead to an offset in

the corresponding position outputs. The baseline feedback linearization controller

is unable to compensate for this type of offset, which will consequently degrade the

accuracy of the predicted states and reference trajectories produced by the NMPH. To

overcome this issue, an extension of the state feedback linearization can be achieved

by augmenting the system model with integral states of the position vector and yaw

angle of the drone. The validity of using this extension is demonstrated by using

Theorem 3.1 in the feedback linearization design Section 3.3.2.

3.3 Application of NMPH-FBL to a Drone Vehicle

In this section, the NMPH is developed for a drone vehicle based on the feedback

linearization control law.

3.3.1 System Model

In this section, both a quadcopter and a hexacopter system are modeled as rigid

bodies with lumped force and torque inputs at each rotor. A standard nonlinear

rigid-body dynamics vehicle model is adopted in this work from [89]. For simplicity,

drag forces, rotor gyroscopic effects, and propeller dynamics are not included in the

model. The rigid-body dynamics are formulated using the Newton-Euler equations

[90].

The rigid-body kinematics and dynamics are developed using two reference frames,

34

which are the fixed navigation frame N and the moving body frame B (fixed to the

drone’s Center of Gravity, CG). The basis of both frames are selected based on the

North, East, and Down (NED) directions in a local tangent plane as the orthonormal

vector sets {n1, n2, n3} and {b1, b2, b3} for the navigation and body frames, respec-

tively. The two basis for each drone are depicted in Figure 3.1.

𝑓4

𝑓2

𝑓1

𝑓3

𝑏1

𝑏2𝑏3
𝑛1

𝑛3
𝑛2

𝑝𝑛

𝑚𝑔

𝑓6

𝑓4
𝑓1

𝑓3

𝑏1

𝑏2
𝑏3

𝑛1

𝑛3
𝑛2

𝑝𝑛

𝑚𝑔

𝑓5

𝑓2

(a) (b)

Figure 3.1: Reference frames used for (a) quadcopter and (b) hexacopter vehicles.

In general, any configuration of a rigid-body in space belongs to the Special Eu-

clidean group SE(3), the product space of the rigid-body orientation and position

(Rnb, p
n) ∈ SO(3) × R3 = SE(3), where the Special Orthogonal group SO(3) is de-

fined as SO(3) = {R ∈ R3×3 | RRT = RTR = I, det (R) = +1}, and the rotation

matrix of B with respect to N is denoted as Rnb ∈ SO(3). To represent the orienta-

tion, the ZYX Euler angle parameterization is employed. Based on the roll-pitch-yaw

Euler angles η = [ϕ, θ, ψ]T , the rotation matrix can be written as

R = Rnb = RψRθRϕ =

⎡⎢⎢⎢⎣
cθcψ sϕsθcψ − cϕsψ cϕsθcψ + sϕsψ

cθsψ sϕsθsψ + cϕcψ cϕsθsψ − sϕcψ
−sθ sϕcθ cϕcθ

⎤⎥⎥⎥⎦ (3.6)

where s(·) = sin(·) and c(·) = cos(·). Note t(·) = tan(·) will be used in (3.9).

The most prominent issue of using Euler angles is the singularity when the pa-

rameterization loses injectivity at θ = π/2 + kπ , k ∈ Z. A recent work by [91]

tackles this issue by using Non-Euclidean rotation groups in the NMPC, but in this

35

work the problem is addressed simply by adding state constraints within the NMPH

optimization problem in (2.11d).

The rigid-body kinematics and dynamics are modelled as shown below,

ṗn = vn (3.7)

mv̇n = −ūRn3 + gn3

Ṙ = R S(ωb)

Jω̇b = −S(ωb)Jωb + τ b

where pn, vn ∈ R3 are the vehicle’s position and velocity with respect to the in-

ertial frame N , respectively. m is the mass of the drone, g = 9.81m/s2 is the

gravitational acceleration, and the vehicle’s mass moment of inertia matrix is as-

sumed to be diagonal with J = diag([J1, J2, J3]). The system input vector is [ū, τ b]T ,

where ū =
∑︁4

i=1 fi > 0 is the total generated thrust in the direction of −b3, and

τ b = [τ b1, τ b2, τ b3]T are the torques created by the rotors about the body frame axes.

ωb and ωḃ are the angular velocity and acceleration vectors, respectively. The operator

S(·) : R3 → so(3) maps a vector to a skew-symmetric matrix such that S(a)b = a× b

for a, b ∈ R3.

It is important to mention that each of the vehicle configurations (quadcopter and

hexacopter) transforms the rotors’ thrusts and torques to the system input vector

[ū, τ b]T differently. These transformations are assumed to be performed in the onboard

flight controller, and consequently both configurations are represented by the same

dynamics (3.7). Hence, the proposed algorithm development is the same for both

configurations.

36

3.3.2 Development of Feedback Linearization Control Law
on a Drone Vehicle

The system represented in (3.7) has to be described in a nonlinear control-affine form

as shown in (3.1). The state and input vectors are,

x =
[︁
(pn)T , (vn)T , (η)T , (ωb)T

]︁T ∈ R12 (3.8)

u =
[︁
ū, (τ b)T

]︁T ∈ R4

The control affine form is as described below,

ẋ = f (x) +
4∑︂
i=1

gi (x)ui ≜ f (x) +G (x)u (3.9)

where,

f (x) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x4

x5

x6

0

0

g

x10 + sx7tx8x11 + cx7tx8x12

cx7x11 − sx7x12
sx7
cx8
x11 +

cx7
cx8
x12(︂

J2−J3
J1

)︂
x11x12(︂

J3−J1
J2

)︂
x10x12(︂

J1−J2
J3

)︂
x10x11

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, G (x) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0 0 0 0

0 0 0 0

− 1
m
(cx7sx8cx9 + sx7sx9) 0 0 0

− 1
m
(cx7sx8sx9 − sx7cx9) 0 0 0

− 1
m
cx7cx8 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 1
J1

0 0

0 0 1
J2

0

0 0 0 1
J3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
As stated in Theorem 3.1, the controllability indices {r1, r2, r3, r4} of the system

need to be found first to verify whether the system is state feedback linearizable

or not. To find them, first mj, 0 ≤ j ≤ 4 is computed based on the distributions

Gl = span
{︁
adjfgi : 1 ≤ i ≤ 4, 0 ≤ j ≤ l

}︁
for l = 0, ..., 10. Therefore, the calculated

controllability indices are {5, 2, 2, 2}. These need to be checked against the conditions

37

of Theorem 3.1. G3 is found to be not involutive and dimG4 = 11 ̸= n. Hence, the

system is not state feedback linearizable as conditions (ii) and (iii) are not satisfied.

It can also be noted that
∑︁4

i=1 ri = 11 ̸= n.

From above, the system is not locally state feedback linearizable, meaning it cannot

be transformed into a linear controllable system written in Brunovsky controller form.

The system states and inputs are thus reformulated by augmenting the state vector

with two additional states, which are the thrust x13 = ū and its rate x14 = u̇̄, and

replacing the thrust by ǖ in the input vector. The same approach was successfully

validated in [92–94]. Furthermore, the system is extended by including the integral

states ζ defined by ζ̇
p
= pn, ζ̇

ψ
= ψ as shown below:

x =
[︁
(pn

3×1
)T , (vn

3×1
)T , (η

3×1
)T , (ωb

3×1
)T , ū, u̇̄, (ζp

n

3×1
)T , ζψ

]︁T ∈ R18 (3.10)

u =
[︁
ǖ, (τ b

3×1
)T
]︁T ∈ R4

Based on the extended system’s vectors, the presented state space control-affine

form in (3.10) can be written as follows,

ẋ = f̄ (x) + Ḡ (x)u (3.11)

38

where,

f̄ (x) =

⎡⎢⎢⎢⎣

x4

x5

x6

− 1
m
(cx7sx8cx9 + sx7sx9)x13

− 1
m
(cx7sx8sx9 − sx7cx9)x13
g − 1

m
cx7cx8x13

x10 + sx7tx8x11 + cx7tx8x12

cx7x11 − sx7x12
sx7
cx8
x11 +

cx7
cx8
x12(︂

J2−J3
J1

)︂
x11x12(︂

J3−J1
J2

)︂
x10x12(︂

J1−J2
J3

)︂
x10x11

x14

0

x1

x2

x3

x9

⎤⎥⎥⎥⎦

, Ḡ (x) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

09×4

0 1
J1

0 0

0 0 1
J2

0

0 0 0 1
J3

0 0 0 0

1 0 0 0

04×4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The controllability indices of the extended system are {5, 5, 5, 3}, where
∑︁4

i=1 ri =

18 = n. With r1 = 5, the distribution G3 is found to be involutive and dimG4 = 18 =

n, meaning all conditions of Theorem 3.1 are satisfied. Therefore, the system is state

feedback linearizable, meaning locally transformable into a linear controllable system

in Brunovsky controller form about the origin as shown below in (3.12).

We are guaranteed the existence of four smooth functions representing the lineariz-

ing position and yaw outputs {φ1 (x) = x1, φ2 (x) = x2, φ3 (x) = x3, φ4 (x) = x9},

such that matrix D (x) in (3.4) is non-singular about the origin. The resulting linear

39

system is written as

ż = Ac z +Bc v , z ∈ R18, v ∈ R4 (3.12)

ξ = Cc z , ξ ∈ R4

where,

z =
[︁
φ1, . . . , L

r1−1
f φ1, . . . , φm, . . . , L

rm−1
f φm

]︁T
=

[︂
x15, x1, x4, ẋ4, ẍ4, x16, x2, x5, ẋ5, ẍ5, x17, x3, x6, ẋ6, ẍ6, x18, x9, ẋ9

]︂T

ż =
[︂
z2, z3, z4, z5, v1, z7, z8, z9, z10, v2, z12, z13, z14, z15, v3, z17, z18, v4

]︂T
To determine the domain of the transformation, the determinant of the matrix

D (x) is calculated to be

detD(x) = − ū2 cos (ϕ)

m3J1J2J3 cos (θ)

Therefore, the domain for a non-singular solution is {ū ̸= 0, −π
2
< ϕ < π

2
, −π

2
< θ <

π
2
}. As discussed earlier in Section 3.3.1, these constraints will be included within the

NMPH optimization problem in (2.11d).

The actual control law is obtained using (3.5), giving

ǖ = m cx9sx7v2 −m sx7sx9v1 −m cx7 (sx8cx9v1 + sx8sx9v2 + cx8v3) (3.13)

+ x13
(︁
x210 + x211

)︁
τ b1 =

mJ1
x13

sx7 (sx8cx9v1 + sx8sx9v2 + cx8v3) +
mJ1
x13

cx7 (cx9v2 − sx9v1)− (J2 − J3)x12x11

+
J1
x13

(x11x12x13 − 2x10x14)

τ b2 = −mJ2
x13

cx8 (cx9v1 + sx9v2) +
mJ2
x13

sx8v3 −
J2
x13

(x10x12x13 + 2x11x14)

+ (J1 − J3)x12x10

τ b3 = − 1

cx7cx8x13

[︂
2J3

(︁
2x12x11c

2
x7

+ sx7x
2
11 − x212cx7 − x12x11

)︁
x13sx8

+
(︁
(J1 − J2 + J3)x10x11x13cx7 + J3sx7 (msx8v3 − 2x10x12x13 − 2x11x14)

)︁
cx8

− J3
(︁
m sx7 (cx9v1 + sx9v2) + x13v4

)︁
c2x8

]︂
40

where the feedback inputs are selected as follows,

v :=

{︄
v4 =

18∑︂
i=16

kiezi , vj =

5j∑︂
i=5j−4

kiezi : j = 1, 2, 3

}︄
(3.14)

and the error ezi is defined as the difference between the desired and the actual feed-

back state ezi = zrefi −zi , i = 1, . . . , n. The errors can be interpreted as the differences

between the desired outputs [pnd , ψd]
T with their rates, and the corresponding actual

system outputs [pn, ψ]T with their rates.

3.3.3 Trajectory Generation using NMPH-FBL

As presented in (3.7) and (3.13), the drone’s behavior is described by its nonlinear sys-

tem dynamics and the feedback linearization control. The optimization within NMPH

exploits their integration to enhance the performance of generating the reference tra-

jectory. The continuous-time NMPH presented in Algorithm 2.2 is solved using a

multiple shooting optimization technique. The solver used in our work, ACADO [83],

discretizes the system dynamics, control law, and inequality constraints over the pre-

diction horizon at each time instant tn. Figure 2.4 shows the optimization process

from the problem formulation to the trajectory generation.

A perfect model of the system dynamics would allow the closed-loop form to be

represented by a linear canonical form as shown in (3.12), for which the feasibility

and stability of the optimized solution are guaranteed and the computational power

needed to solve the optimization problem is greatly reduced over the non-convex case.

However, even an imperfect model still reduces the non-convexity of the optimization

problem as compared to working directly with the (nonlinear) plant dynamics as in

standard NMPC.

3.4 Simulation Results

In this Section, several simulations are presented to validate the proposed NMPH

approach to generating optimal trajectories for a quadcopter vehicle.

41

The Robot Operating System (ROS) [95] is the base environment used to imple-

ment our algorithm. It is a platform that integrates different software packages or

frameworks by handling communication between them and the host hardware. The

ACADO Toolkit [83] is used for dynamic optimization in this work. It allows users

to write their code within a self-contained C++ environment and generates the non-

linear solver that can solve the optimization problems in real-time. The compiled

codes run within ROS to communicate with either a simulation model or the actual

hardware [84]. For testing and validation of the proposed approaches on a quad-

copter vehicle, we use the AirSim simulator [96], which is an open-source software

that includes a physics engine and provides photo realistic images.

The NMPH optimization problem (2.11) was written in C++ code using ACADO

and compiled into a highly efficient C code that is able to solve the optimization

problem online. The AirSim simulator, ACADO optimization solver, and ROS en-

vironment run on a system with an Intel Core i7-10750H CPU @ 2.60-5.00 GHz

equipped with the NVIDIA GeForce RTX 2080 Super (Max-Q) GPU. The prediction

horizon of the optimization problem was set to N = 40 with a sampling period of

0.2 s, which was found sufficient for the purposes of trajectory generation. The cost

function weights Wx, Wξ, and WT were adjusted heuristically to ensure a balanced

trajectory generation performance towards the terminal setpoint.

The initial state of the quadcopter is acquired from the AirSim simulator and sent

to the NMPH solver. The solution of the optimization problem is sent back to AirSim

as a reference trajectory for the vehicle. The 3D visualization tool for ROS (RViz) is

used to monitor and visualize the simulation process. Figure 3.2 shows the network

architecture of the nodes and topics employed for running the simulation.

42

Figure 3.2: Simulation Architecture.

In the following Sections, various simulation scenarios are provided to verify the

features and evaluate the performance of the proposed NMPH approach. Note the

NED frame representation used within NMPH is converted to ENU (East, North, and

Up) representation used by AirSim, and so the simulation results will be presented

using the ENU convention as well.

3.4.1 Predicted Output and Estimated Reference Trajecto-
ries

The purpose of this simulation is to show the convergence of the estimated reference

ξ̂k and predicted output ξk trajectories toward the setpoint stabilization xss while

minimizing the difference between them. The quadcopter is assumed to start at

position pn = [0, 0, 0.2]T m and NMPH is used to generate a trajectory to the terminal

setpoint pd = [6,−3, 5]T m as shown in Figure 3.3. The plots depict a sequence of the

optimal predicted trajectory ξk, k = 0, ..., N , and the estimated reference trajectory

ξ̂k, k = 0, ..., N − 1 produced by the NMPH. It is important to mention that the

convergence of the estimated reference trajectory to the terminal point ensures that

the closed-loop system is steered to the desired endpoint.

43

0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

x
 a

x
is

predicted trajectory

estimated trajectory

0 1 2 3 4 5 6 7 8

� 3.0

� 2.5

� 2.0

� 1.5

� 1.0

� 0.5

0.0

y
 a

x
is

0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

z
 a

x
is

z
 a

x
is

 (
m

)
y
 a

x
is

 (
m

)
x
 a

x
is

 (
m

)

time (sec)

Figure 3.3: Predicted and estimated trajectories obtained from NMPH algorithm
for an 8 s prediction horizon. For conciseness, the sequences of predicted output
trajectory ξk and the estimated reference trajectory ξ̂k represent only the quadcopter
position pn.

3.4.2 Trajectory Generation and Initial Conditions

In this simulation, the generated trajectory is investigated for different initial condi-

tions. The initial conditions being tested are related to the quadcopter’s kinematics,

where the vehicle is commanded to move in a straight path between [4, 2, 0]T and

[8, 8, 8]T while changing its speed |v| linearly from 0 to 1.5 m/s as shown in Fig-

ure 3.4. Note the objective is not to track generated trajectories, but just to observe

the behaviour of OTP solutions towards the stabilization setpoint pd = [5, 10, 5]T .

44

x
ax

is
 (
m

)

0

2

4

6

8

10

y axis (m)
0

2

4

6

8

10

z
 a

x
is

 (m
)

0

2

4

6

8

10

actual path

Figure 3.4: Trajectory generation for different initial conditions. The quadcopter
moves along the dashed line. The trajectories all converge toward the stabilization
setpoint shown to the left at [5, 10, 5]T .

The solution of the optimization problem for 8 different trajectories are plotted in

Figure 3.4 to show the effect of the initial conditions on them. The resulting solution

of each one shows a trajectory which convergences smoothly to the stabilization set-

point while taking into consideration the initial position and velocity of the system.

Commanding the quadcopter to track generated trajectories which account for its

initial conditions will reduce jerky flight motions and therefore reduce flight power

consumption, which is especially important for exploration missions.

Using the setup described in Section 3.4, our NMPH achieves a 250 Hz generation

rate, meaning a reference trajectory is generated every 4 ms. If running on lower-

powered hardware, the computational power can be minimized by reducing the rate

45

of trajectory generation, which still provides a smooth reference trajectory for the

vehicle.

3.4.3 Trajectory Tracking

In this simulation, the quadcopter’s trajectory tracking and static obstacle avoidance

performance are examined. First, the vehicle is commanded to track a continuously

updated trajectory generated on-the-fly by the NMPH algorithm while avoiding static

obstacles, as shown in Figure 3.5. Each static obstacle is considered to be a sphere

of 1 m in diameter. A radial allowance of 1 m is considered about the obstacle to

avoid crashing to it. Hence, the constraint of each obstacle represents a sphere with

a diameter of 3 m, which makes the safety distance ϵ = 1.5. The smooth tracking

performance while avoiding the obstacles can be seen in Figure 3.5, which shows the

importance of using the NMPH in regenerating the trajectory while tracking it.

Figure 3.5: Drone trajectory tracking of a continuously updated trajectory by NMPH
while avoiding two static obstacles. The drone is commanded first to hover at a height
of 1.5 m, then to track the NMPH trajectory between the start and the terminal
position.

In the second study, the regeneration process of the predicted trajectory is limited

to one regeneration in order to examine its effect on the tracking performance while

46

avoiding the obstacles. The simulation result is depicted and explained in Figure 3.6.

0 2 4 6 8 10 12

�0.50

�0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50
y
 a

x
is

 (
m

)
predicted trajectory 1

predicted trajectory 2

actual trajectory

trajectory regeneration

x axis (m)

Figure 3.6: Drone trajectory tracking of the predicted reference trajectory by NMPH.
At the start position pn = [0, 0, 1.5]T m, NMPH generated the predicted trajectory 1,
and when the drone reached [5.5,−0.25, 1.5]T m, NMPH re-optimized the trajectory,
which is represented by predicted trajectory 2.

The continuous regeneration of the reference trajectory provides optimal flight

paths in real time based on the system’s state. This ability also enables handling

dynamic obstacles, as shown next in Section 3.4.4.

3.4.4 Dynamic Obstacle Avoidance

Figures 3.7(a) to 3.7(c) depict the online regeneration of the predicted optimal tra-

jectory when the obstacle moves in the direction of y-axis. The optimized trajectory

starts at the hover position p = [0, 0, 1.5]T m and converges to the terminal setpoint

pd = [4, 0, 0.5]T m while the predicted reference trajectory is being continuously re-

generated. An obstacle placed at the initial position (3, 0, 0.5) m with total diameter

of 2 m moves at a velocity of 0.5 m/s in the y-axis direction.

Selected predictions over 2 s are shown in Figure 3.7(d) which illustrates the

smooth regeneration of the trajectories while avoiding the dynamic obstacle. It is

important to note that about 500 trajectories are generated in 2 s.

47

x axis (m
)

y axis (m
)

z
 a

x
is

 (m
)

z
 a

x
is

 (m
)

x axis (m
)

y axis (m
)

(a) (b)

z
 a

x
is

 (m
)

x
a
xi

s
(m

)

y axis (m)

x axis (m
)

1.00
1.25

1.50
1.75

2.00
2.25

2.50
2.75

3.00

y axis (m)

� 1.00
� 0.75

� 0.50
� 0.25

0.00
0.25

0.50
0.75

1.00

z
 a

x
is

 (m
)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

(c) (d)

Figure 3.7: Dynamic obstacle avoidance for a 2 m spherical obstacle that moves
at a velocity of 0.5 m/s in the y-axis direction starting from the initial position
(3, 0, 0.5) m. (a) to (c) show the continuous regeneration of the NMPH predicted
optimal trajectory which avoids the moving obstacle, and (d) depicts the smooth
regeneration process for a selected number of the trajectory updates.

48

3.4.5 Hardware-In-The-Loop Simulation

Realistic simulations of PX4 autopilot [97] can be achieved using hardware-in-the-

loop (HITL) simulation with AirSim. In this test, the Pixhawk 2.1 flight controller is

used, which runs PX4 firmware, to evaluate the performance of the developed codes

on the real hardware.

Two trajectory tracking scenarios are offered in HITL tests. The first scenario al-

lows the quadcopter to track the generated NMPH trajectory from an initial position

to a stabilization setpoint. The NMPH trajectory keeps updating while the drone

is moving towards the setpoint. Figure 3.8 shows the NMPH predicted trajectory

and the vehicle’s tracking performances in HITL mode. The second scenario aims

to test the drone’s predicted trajectory tracking at the presence of two obstacles,

each represents a sphere with a radius of 1.5 m, and are located at (4, 1, 3.5) and

(8,−1, 3.5). Figure 3.9 depicts the vehicle’s tracking response while avoiding the ob-

stacles. Both figures show how the drone managed to track the predicted trajectories

at the presence of the real hardware uncertainties and obstacles.

49

x axis (m)

0

2

4

6

8

10

y
ax

is
 (m

)

0

2

4

6

8

10

z
 a

x
is

 (
m

)

0

2

4

6

8

10

predicted trajectory

actual trajectory

(a)

0

2

4

6

8

10 0

2

4

6

8

10

0

2

4

6

8

10

x axis (m)

y
ax

is
 (m

)

z
 a

x
is

 (
m

)

(b)

Figure 3.8: HITL simulation for NMPH trajectory generation and tracking. (a)
NMPH generates the predicted trajectory when the quadcopter is at a hover state
(0, 0, 5.5) m, then the vehicle is asked to track the trajectory. (b) shows some of the
NMPH predicted trajectory updates while the drone is moving towards the setpoint
stabilization (10, 10, 10) m.

0 2 4 6 8 10 12
�6

�4

�2

0

2

4

6

y
 a

x
is

 (
m

)

predicted t rajectory

actual t rajectory

x axis (m)

(a)

x
a
xi

s
(m

)

0

2

4

6

8

10

12

y axis (m)
�6

�4
�2

0
2

4
6

z
 a

x
is

 (m
)

0

1

2

3

4

5

predicted t rajectory

actual t rajectory

(b)

Figure 3.9: HITL simulation for NMPH trajectory generation and tracking at the
presence of obstacles. The obstacles, predicted trajectory, and the actual trajectory
are depicted in (a) a top view 2D plot, and (b) a 3D plot. The drone generates
the predicted trajectory from the hovering position at (0, 0, 3.5) m to the setpoint
stabilization at (12, 1.5, 3.5) m.

50

3.5 Conclusions

In this chapter, a proposed formulation, called NMPH-FBL, applies a feedback lin-

earization control law to the nonlinear plant model, resulting in a closed-loop dynam-

ics model with decreased non-convexity used by the online optimization problem to

generate feasible and optimal reference trajectories for the actual closed-loop system.

The feedback linearization design includes integral states to compensate for modeling

uncertainties and external disturbances in the system. The proposed NMPH algo-

rithm supports both static and dynamic obstacles, enabling trajectory generation in

continuously changing environments.

The NMPH-FBL was implemented on a simulated quadcopter drone and validated

to generate 3D optimal reference trajectories in real time. Different simulation scenar-

ios (including HITL simulations) were carried out to evaluate the performance of the

proposed method. Convergence of the predicted and estimated trajectories, trajectory

generation under different initial conditions, trajectory tracking performance, and the

ability to navigate around static and dynamic obstacles were validated through sim-

ulation results.

51

Chapter 4

A Backstepping Approach to Nonlinear
Model Predictive Horizon for Optimal
Trajectory Planning

4.1 Introduction

This chapter presents an alternative solution of generating optimal trajectories using

the NMPH approach based on Backstepping Control (BSC) technique [98]. This is

done by combining the nonlinear plant model with a recursive design of the back-

stepping control method within the optimization problem. The new formulation is

named NMPH-BSC.

In Chapter 3, we proposed an NMPH formulation which used Feedback Lineariza-

tion (FBL) within its dynamics to compensate for nonlinearities [77]. In that work,

the state augmentation process required to make the system state feedback lineariz-

able created numerical difficulties due to the need to obtain the second-order time

derivative of the total thrust of the drone. Also, the NMPH-FBL formulation re-

lied on state feedback linearization [87], which creates challenges dealing with more

sophisticated system models than the one presented in (3.7).

The presented difficulties with using the NMPH-FBL design steered us to find an

alternative feedback design methodology to be used within the NMPH optimization

problem. The new NMPH-BSC formulation compensates for the system nonlineari-

ties and guarantees global asymptotic stability of the closed-loop system within the

52

optimization problem used to predict the reference trajectories for a system, which is

a drone vehicle in this work. The recursive structure of BSC provides stable response

of a dynamic system and makes it more robust to parameter uncertainties.

The research contributions of this chapter are:

• Implementing the BSC method within NMPH to compensate for nonlinearities

in order to reduce the non-convexity of the trajectory generation optimization

problem.

• Demonstrating the versatility of the NMPH-BSC approach by using both a

simplified and a higher-fidelity dynamics model of the drone.

• Using the NMPH optimization problem to predict both the reference trajectory

as well as its rates of change for the onboard flight trajectory controller.

• Validating and evaluating the performance of the proposed approach in both

simulation and hardware drone flight experiments.

The remainder of this chapter is arranged as follows: the design of the NMPH-BSC

for two variants of drone dynamics models is presented in Section 4.2. Section 4.3

evaluates the proposed designs in simulation and hardware flight tests. Section 4.4

summarizes the chapter.

4.2 Backstepping Control Law Integration within

NMPH

In this section, both high-fidelity and simplified drone dynamics models are presented

and a backstepping design for each model is derived and integrated into the NMPH.

4.2.1 Drone Dynamics

To demonstrate the versatility of the NMPH-BSC approach, a more detailed model of

the vehicle dynamics is employed (compared to the model presented in Section 3.3.1)

53

which includes aerodynamic drag forces and rotor gyroscopic effects .

The dynamics of a multi-rotor drone vehicle can be modeled using the Newton-

Euler equations [90] governing six degree of freedom rigid-body motion, augmented

with force and torque generation models of the individual rotors. The model can

either assume static hover conditions for simplicity, or include linear and angular

velocity drag forces and rotor gyroscopic effects to yield a more complicated but

higher-fidelity model.

To model rigid-body dynamics, two reference frames are used: a stationary ground-

fixed navigation frameN , and a moving body-fixed frame B. The origin of the latter is

placed at the drone’s center of gravity, as shown in Figure 4.1. In this model, the frame

bases employ the East, North, and Up (ENU) convention, with orthonormal basis

vectors {n1, n2, n3} and {b1, b2, b3} for the navigation and body frames, respectively.

𝑓3

𝑓1

𝑓2

𝑓4

𝑏1
𝑏2

𝑏3
𝑝𝑛

𝑛1

𝑛3

𝑛2

𝑚𝑔

Ω4

Ω1

Ω3

Ω2

Figure 4.1: Reference frames used for our quadrotor vehicle

Rigid-body pose in space can be described as a member of the Special Euclidean

group SE(3) = SO(3)×R3, the product space of the orientation and position (R
nb
, pn)

where R
nb
∈ SO(3) is the rotation matrix of the body frame with respect to the

navigation frame, pn = [x y z]T ∈ R3 is the position vector of the vehicle’s body

frame with respect to the navigation frame. The roll-pitch-yaw Euler angles η =

[ϕ θ ψ]T are employed to parametrize the rotation matrix.

54

Remark 4.1 The Euler angle parameterization exhibits singularities at θ = π/2+kπ,

k ∈ Z. One solution is to maintain −π/2 < θ < π/2 by adding constraints within the

NMPH optimization problem under (2.11d).

Conversion between translational and rotational velocity vectors can be done using

the transformations [99]

ṗn = vn = R
nb
vb (4.1a)

ωb = Wη̇ (4.1b)

where vn, vb ∈ R3 are the translational velocity vectors in frame N and B coordinates,

respectively, η̇ = [ϕ̇ θ̇ ψ̇]T is the vector of Euler angle rates, and ωb ∈ R3 is the

angular velocity vector in frame B coordinates. The rotational velocity transformation

matrix W is given by

W =

⎡⎢⎢⎢⎣
1 0 −sθ
0 cϕ sϕcθ

0 −sϕ cϕcθ

⎤⎥⎥⎥⎦ (4.2)

The time derivative of the rotation matrix is Ṙ
nb

= R
nb
S(ωb), where S(·) : R3 →

so(3) maps a vector to a skew-symmetric matrix such that S(a)b = a×b for a, b ∈ R3.

Taking the time derivatives of (4.1a) and (4.1b),

v̇n = R
nb
v̇b +R

nb
S(ωb)vb = R

nb

(︁
v̇b + ωb × vb

)︁
(4.3a)

ω̇b = Ẇ η̇ +Wη̈ (4.3b)

where Ẇ = ϕ̇(∂W/∂ϕ) + θ̇(∂W/∂θ).

The Newton-Euler equations for a multi-rotor drone read [99]

mv̇b + ωb ×mvb = ū−Ktv
b −mRT

nb
ḡ (4.4a)

Jω̇b + ωb × Jωb = τ̄ −Krω
b −

4∑︂
i=1

(︁
S(ωb)Jr qi

)︁
(4.4b)

55

where m is the drone’s mass, ū = [0 0 u]T is the thrust vector with u =
∑︁4

i=1 fi

the total thrust generated in the direction of b3, τ̄ = [τ b1 τ b2 τ b3]T is the vector

of torques about the b1, b2 and b3 frame axes, ḡ = [0 0 g]T is the gravitational

acceleration vector where g = 9.81 m/s2, J = diag(Jx, Jy, Jz) is the drone’s mass

moment of inertia matrix which is assumed to be diagonal, the scalar Jr is the rotor’s

inertia, qi = [0 0 (−1)i+1ωi]
T where ωi is the angular speed of the ith propeller,

and Kt = diag(kt1, kt2, kt3), Kr = diag(kr1, kr2, kr3) represent the translational and

rotational drag coefficient matrices of the drone, respectively.

To express the drone’s dynamics with respect to the navigation frame, equations

(4.4) are combined with (4.1) and (4.3) to yield

mRT
nb
v̇n = ū−KtR

T
nb
vn −mRT

nb
ḡ (4.5a)

JWη̈ + JẆ η̇ + S(Wη̇)JWη̇ = τ̄ −KrWη̇ − S(Wη̇)
4∑︂
i=1

Jr qi (4.5b)

This leads to

v̇n = − 1

m
R
nb
KtR

T
nb
vn − ḡ + 1

m
R
nb
ū (4.6a)

η̈ = −(JW)−1
(︁
JẆ η̇ +KrWη̇ + S(Wη̇)

(︁
JWη̇ +

4∑︂
i=1

Jr qi
)︁
− τ̄
)︁

(4.6b)

Remark 4.2 Each multi-rotor configuration (quadrotor, hexarotor, octorotor, and

so on) has a different expression for the net body-frame thrust and torque vectors ū

and τ̄ . These expressions are algebraic and can be readily calculated. The dynamics

presented in (4.6) thus model any multi-rotor drone as long as the correct ū and τ̄

expressions are used.

The development of the proposed NMPH with a backstepping control design will

be based on the dynamics model presented in (4.6). We will also present a design

based on a simplified version of (4.6) to illustrate the ease of adapting the proposed

approach to different model representations. This is in contrast to the formulation

56

of NMPH with feedback linearization presented in Chapter 3 where this adaptation

requires a fundamental re-derivation of the expressions involved.

In the simplified version of (4.6), body and propeller gyroscopic effects are dropped

from the model, and the translational and rotational drags are neglected as well. The

simplified model can then be written as⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ϕ̈

θ̈

ψ̈

ẍ

ÿ

z̈

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Jy−Jz
Jx

θ̇ψ̇ + 1
Jx
τ b1

Jz−Jx
Jy

ϕ̇ψ̇ + 1
Jy
τ b2

Jx−Jy
Jz

ϕ̇θ̇ + 1
Jz
τ b3

(cϕsθcψ + sϕsψ)
u
m

(cϕsθsψ − sϕcψ) um
−g + (cϕcθ)

u
m

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.7)

4.2.2 Backstepping Control Design

Because a drone’s dynamics are nonlinear, solving the NMPC optimization problem

is challenging because of its non-convexity. Introducing backstepping control into the

optimization problem (within the framework of NMPH) will either remove or reduce

the nonlinearity of the overall system, and consequently the non-convexity of the

optimization problem. This will make it possible to find an optimal solution more

quickly.

In this section, a backstepping control law is derived for the drone dynamics,

which will be used within the NMPH framework to enhance the performance of the

reference trajectory prediction. To demonstrate the versatility of this methodology,

both the simplified (4.7) and high-fidelity (4.6) models of the drone dynamics will be

considered.

Our Backstepping control design consists of a coupling of inner and outer control

loops [100]. The inner loop controls the rotational dynamics of the drone and tracks

desired values provided by the outer loop, which controls the translational dynamics.

In the literature, many studies of backstepping control applied to multi-rotor drones

57

considered applying the design steps to each system output separately [99, 101–103],

but in our work the method is first applied to the rotational dynamics subsystem by

itself, then to the translational dynamics subsystem. This approach will facilitate the

integration of BSC within the NMPH framework as discussed later in Section 4.2.3.

First, recall the terms

η = [ϕ θ ψ]T , η̇ = [ϕ̇ θ̇ ψ̇]T , η
d
= [ϕd θd ψd]

T (4.8)

where η
d
∈ R3 are the desired Euler angles, to be provided by the outer loop design.

Now, define the tracking error vector δ1 ∈ R3 as

δ1 = η
d
− η, (4.9)

and choose a positive semi-definite Lyapunov function candidate V1 ≥ 0 ∈ R, such

that

V1 =
1

2
δT1 δ1 (4.10)

The time derivative of (4.10) is

V̇ 1 = δT1 δ̇1 = δT1 (η̇d − η̇) (4.11)

Next, define the virtual tracking error rate δ2 ∈ R3 and the first virtual control

v1 = [vϕ vθ vψ]
T ∈ R3 as

δ2 = v1 − η̇ (4.12)

v1 = η̇
d
+ Λ1δ1 (4.13)

where Λ1 = diag(λ1, λ2, λ3) ∈ R3×3 is a diagonal gain matrix that contains positive

entries such that Λ1 is positive definite or Λ1 > 0. Using (4.12) and (4.13), the

derivative of the Lyapunov function candidate (4.11) can be written as

V̇ 1 = δT1 (v1 − Λ1δ1 − η̇) = δT1 (δ2 − Λ1δ1) = δT1 δ2 − δT1 Λ1δ1 (4.14)

58

which by inspection may or may not be negative semi-definite. Therefore, a recursive

step must be performed. Note that the time derivatives of (4.9) and (4.12) are

δ̇1 = η̇d − η̇ = v1 − Λ1δ1 + δ2 − v1 = −Λ1δ1 + δ2 (4.15)

δ̇2 = v̇1 − η̈ = η̈
d
+ Λ1δ̇1 − η̈ (4.16)

Now define the new positive semi-definite Lyapunov function candidate V2 ≥ 0 ∈ R

as

V2 =
1

2
δT1 δ1 +

1

2
δT2 δ2 (4.17)

such that
V̇ 2 = δT1 δ̇1 + δT2 δ̇2

= −δT1 Λ1δ1 + δT1 δ2 + δT2
(︁
η̈
d
+ Λ1(−Λ1δ1 + δ2)− η̈

)︁
= −δT1 Λ1δ1 + δT2

(︁
δ1 + η̈

d
− Λ2

1δ1 + Λ1δ2 − η̈
)︁ (4.18)

where δT1 δ2 = δT2 δ1. To stabilize the tracking errors δ1 and δ2, the backstepping

control formulation will introduce a second virtual control v2 ∈ R3. We will define v2

based on the system dynamics, and then recursively design it within the backstepping

control structure.

As mentioned in Section 4.2.1, we will apply the backstepping technique to both

the full and simplified system dynamics presented in (4.6) and (4.7), respectively. For

the full model, the attitude dynamics in (4.6b) can be written as

η̈ = f̄ 1(x) + ḡ1(x, τ̄) (4.19)

where

f̄ 1(x) = −(JW)−1
(︁
JẆ η̇ +KrWη̇ + S(Wη̇)

(︁
JWη̇ +

4∑︂
i=1

Jrqi
)︁)︁

(4.20)

ḡ1(x, τ̄) = (JW)−1τ̄ =

⎡⎢⎢⎣
1
Jx
τ b1 + 1

Jy
sϕtθτ

b2 + 1
Jz
cϕtθτ

b3

1
Jy
cϕτ

b2 − 1
Jz
sϕτ

b3

1
Jy

sϕ
cθ
τ b2 + 1

Jz

cϕ
cθ
τ b3

⎤⎥⎥⎦ :=

⎡⎢⎢⎣
τϕ

τθ

τψ

⎤⎥⎥⎦ (4.21)

The second virtual control is defined as v2 = ḡ1(x, τ̄) = [τϕ τθ τψ]
T , where τϕ, τθ

and τψ are the virtual inputs of the rotational subsystem.

59

We now design v2 to make the time derivative of the Lyapunov candidate function

(4.18) negative semi-definite. Let

v2 = v̇1 + δ1 − f̄ 1(x) + Λ2δ2

= η̈
d
+ Λ1δ̇1 + δ1 − f̄ 1(x) + Λ2δ2

= η̈
d
+ Λ1(−Λ1δ1 + δ2) + δ1 − f̄ 1(x) + Λ2δ2

(4.22)

where Λ2 = diag(λ4, λ5, λ6) ∈ R3×3 is the second diagonal gain matrix with positive

entries such that Λ2 > 0. By substituting (4.19) and (4.22) into (4.18) we obtain

V̇ 2 = −δT1 Λ1δ1 + δT2
(︁
δ1 + η̈

d
− Λ2

1δ1 + Λ1δ2 − f̄ 1(x)− v2
)︁

= −δT1 Λ1δ1 − δT2 Λ2δ2 ≤ 0
(4.23)

By (4.17) and (4.23), we can thus conclude the asymptotic stability of the error

terms δ1 and δ2, and thus the rotational subsystem. Consequently, the physical control

law for the rotational subsystem can be found by returning to (4.22),

v2 = [τϕ τθ τψ]
T = η̈

d
+ (I − Λ2

1)δ1 + (Λ1 + Λ2)δ2 − f̄ 1(x), (4.24)

then solving (4.21) to obtain the physical control inputs as⎡⎢⎢⎣
τ b1

τ b2

τ b3

⎤⎥⎥⎦ =

⎡⎢⎢⎣
Jx
(︁
τϕ − sθτψ

)︁
Jy
(︁
cϕτθ + sϕcθτψ

)︁
Jz
(︁
− sϕτθ + cϕcθτψ

)︁
⎤⎥⎥⎦ (4.25)

We now perform the backstepping design for the translational dynamics of the drone.

The actual and desired position vectors with respect to the navigation frame are

written as

χ = pn = [x y z]T , χ̇ = vn = [ẋ ẏ ż]T , χ
d
= pn

d
= [x

d
y
d

z
d
]T (4.26)

For the first step of the backstepping design, the position tracking error vector and

its time derivative are defined as

δ3 = χ
d
− χ , δ̇3 = χ̇

d
− χ̇ ∈ R3, (4.27)

60

Consider the Lyapunov candidate function V3 ∈ R and its time derivative

V3 =
1

2
δT3 δ3 (4.28)

V̇ 3 = δT3 δ̇3 = δT3 (χ̇d − χ̇) (4.29)

Also define the virtual tracking error rate and the first virtual control for the trans-

lational subsystem as

δ4 = v3 − χ̇ (4.30)

v3 = χ̇
d
+ Λ3δ3 (4.31)

where Λ3 = diag(λ7, λ8, λ9) ∈ R3×3 is a diagonal gain matrix with positive entries,

and v3 = [vx vy vz]
T ∈ R3 is the virtual control vector. Substituting (4.30) and

(4.31) into the Lyapunov candidate function rate (4.29) yields

V̇ 3 = δT3 (v3 − Λ3δ3 + δ4 − v3)

= −δT3 Λ3δ3 + δT3 δ4

(4.32)

which cannot be guaranteed to be negative semi-definite. Therefore, a new Lyapunov

candidate function V4 ∈ R is defined as

V4 =
1

2
δT3 δ3 +

1

2
δT4 δ4 (4.33)

V̇ 4 = δT3 δ̇3 + δT4 δ̇4 (4.34)

= −δT3 Λ3δ3 + δT3 δ4 + δT4
(︁
χ̈d + Λ3(χ̇d − χ̇)− χ̈

)︁
= −δT3 Λ3δ3 + δT4 δ3 + δT4

(︁
χ̈d + Λ3(v3 − Λ3δ3 + δ4 − v3)− χ̈

)︁
= −δT3 Λ3δ3 + δT4

(︁
δ3 + χ̈

d
− Λ2

3δ3 + Λ3δ4 − χ̈
)︁

The translational dynamics of the full model (4.6a) can be written as

χ̈ = f̄ 2(x) + ḡ2(x, u) (4.35)

61

where

f̄ 2(x) = − 1

m
R
nb
KtR

T
nb
vn − ḡ (4.36)

ḡ2(x, u) =
1

m

⎡⎢⎢⎢⎣
(cϕsθcψ + sϕsψ)u

(cϕsθsψ − sϕcψ)u

(cϕcθ)u

⎤⎥⎥⎥⎦ :=

⎡⎢⎢⎢⎣
ux

uy

uz

⎤⎥⎥⎥⎦ (4.37)

and where u ∈ R is the total thrust of the propellers, a physical input.

The next step of the backstepping design introduces the second virtual control for

the translational system v4 = ḡ2(x, u) = [ux uy uz]
T . Assign this control as

v4 = v̇3 + δ3 − f̄ 2(x) + Λ4δ4

= χ̈d + Λ3

(︁
χ̇d − χ̇

)︁
+ δ3 − f̄ 2(x) + Λ4δ4

= χ̈d + Λ3

(︁
v3 − Λ3δ3 + δ4 − v3

)︁
+ δ3 − f̄ 2(x) + Λ4δ4

= χ̈
d
+ δ3 − Λ2

3δ3 + Λ3δ4 + Λ4δ4 − f̄ 2(x)

(4.38)

where Λ4 = diag(λ10, λ11, λ12) ∈ R3×3 contains positive entries. Substituting (4.35)

and (4.38) into (4.34) yields

V̇ 4 = −δT3 Λ3δ3 + δT4
(︁
v4 + f̄ 2(x)− Λ4δ4 − f̄ 2(x)− v4

)︁
= −δT3 Λ3δ3 − δT4 Λ4δ4

(4.39)

such that V̇ 4 ≤ 0, meaning the error terms δ3, δ4 are asymptotically stable, and thus

the translational subsystem dynamics.

For our cascaded control design, the desired roll and pitch angles for the inner loop

system are extracted from (4.37) after computing (4.38). Assume ψ is a measured

state of the system. Then, the desired roll and pitch angles ϕd, θd and thrust u are

obtained by solving (4.37), which gives

θd = tan−1

(︃
cψux + sψuy

uz

)︃
ϕd = tan−1

(︃
sψux − cψuy

uz
cos θd

)︃
u =

muz
cosϕd cos θd

(4.40)

62

Remark 4.3 In addition to the Euler angles limitations mentioned in Remark 4.1,

the outer loop control law provides solutions if and only if the total thrust is a non-

zero positive value, u > 0. This condition must be included within the constraints of

the optimization problem in (2.11d) to avoid solution infeasibility.

We can also perform the backstepping control design using the simplified system

model (4.7). The second time derivative of the Euler angles vector η is written as

η̈ = f̄ 3(x) + ḡ3(τ̄) (4.41)

where

f̄ 3(x) =

⎡⎢⎢⎣
Jy−Jz
Jx

θ̇ψ̇
Jz−Jx
Jy

ϕ̇ψ̇
Jx−Jy
Jz

ϕ̇θ̇

⎤⎥⎥⎦ , ḡ3(τ̄) =

⎡⎢⎢⎣
1
Jx
τ b1

1
Jy
τ b2

1
Jz
τ b3

⎤⎥⎥⎦ (4.42)

The terms δ1, δ2 and virtual input v1 are defined exactly as in the full model back-

stepping design. Analogously to (4.24), the second virtual input v2 for the (simplified)

rotational dynamics is now assigned as

v2 = η̈d + (I − Λ2
1)δ1 + (Λ1 + Λ2)δ2 − f̄ 3(x) (4.43)

and since v2 = [τϕ τθ τψ]
T = ḡ3(τ̄), the physical inputs are obtained from (4.41) as

τ̄ =

⎡⎢⎢⎢⎣
τb1

τb2

τb3

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
Jxτϕ

Jyτθ

Jzτψ

⎤⎥⎥⎥⎦ = diag(Jx, Jy, Jz) v2 (4.44)

For the translational dynamics, define the position vector χ, whose second time deriva-

tive is written as χ̈ = f̄ 4(x) + ḡ4(x, u) where

f̄ 4(x) =

⎡⎢⎢⎢⎣
0

0

−g

⎤⎥⎥⎥⎦ (4.45)

ḡ4(x, u) =

⎡⎢⎢⎢⎣
(cϕsθcψ + sϕsψ)

u
m

(cϕsθsψ − sϕcψ) um
(cϕcθ)

u
m

⎤⎥⎥⎥⎦ (4.46)

63

The definitions of δ3, δ4 and virtual input v3 remain identical to the full model case.

Assign the virtual control v4 like (4.38)

v4 = χ̈d + (I − Λ2
3)δ3 + (Λ3 + Λ4)δ4 − f̄ 4(x) (4.47)

where f̄ 4(x) is given in (4.45). Since v4 = [ux uy uz]
T = ḡ4(x, u), assuming the

yaw angle ψ is known, we solve this expression for the desired roll and pitch angles

ϕd, θd and the total thrust u using equation (4.40).

4.2.3 NMPH-BSC Design of a Drone Vehicle

A copy of the full system model in (4.6) is used within the NMPH optimization

problem as ẋ̃ = [p̃n ṽn η̃ η̇̃]T . Let χ̃ = p̃n and χ̇̃ = ṽn below. The backstepping

control design representing ũ (τ) = g
(︁
x̃ (τ) , ξ̂

ref
(τ)
)︁
within the NMPH (2.11c) is

implemented in two stages. The first stage is the outer loop, which takes the desired

position vector of the drone, and computes the thrust plus the desired roll and pitch

angles. The second stage is the inner loop, which takes the computed roll and pitch

angles plus a desired yaw angle, and computes the torque inputs. The details of

the two-stage process (implemented as input constraints within the NMPH) are as

follows:

1. For the first NMPH input constraint, define the virtual input for the transla-

tional dynamics (4.38) as

ṽ4 = χ̈̃
d
+ (I − Λ2

3)δ̃3 + (Λ3 + Λ4)δ̃4 − f̄ 2(x̃) (4.48)

where δ̃3 = χ̃
d
− χ̃ from (4.27) and δ̃4 = χ̇̃

d
+ Λ3δ̃3 − χ̃ from (4.30)

2. Associate the total thrust u and the desired roll and pitch angles ϕd, θd from

(4.40) with [ux uy uz]
T = ṽ4 and ψ = η̃(3)

3. For the second NMPH input constraint, define the virtual input for the rota-

tional dynamics (4.24)

ṽ2 = η̃̈
d
+ (I − Λ2

1)δ̃1 + (Λ1 + Λ2)δ̃2 − f̄ 1(x̃) (4.49)

64

where δ̃1 = η̃
d
− η̃ from (4.9) and δ̃2 = η̇̃

d
+ Λ1δ̃1 − η̃ from (4.12).

4. Associate the input torques τ b1 , τ b2 and τ b3 from (4.25) with [τϕ τθ τψ] = ṽ2

and ϕ = η̃(1), θ = η̃(2).

5. Let [u τ b1 τ b2 τ b3] be ũ(τ) (2.11c) in the NMPH optimization problem, a

function of the NMPH states x̃ and the estimated reference trajectories ξ̂ref ,

where

ξ̂ref = [χ̃
d

χ̇̃
d

χ̈̃
d

η̃
d
(3) η̇̃

d
(3) η̃̈

d
(3)]T (4.50)

6. Solve the optimization problem (2.11), which leads to the prediction of the

system states x̃ and the estimated reference trajectories ξ̂
ref

. The latter is used

as the reference trajectory for the actual closed-loop system.

4.3 Evaluation of NMPH-BSC

For testing and validation, the NMPH-BSC approach was implemented and tested

in simulated and hardware flight tests on quadcopter and hexacopter drone vehicles,

respectively.

The algorithms are implemented within the Robot Operating System (ROS) [95], a

Linux-based software environment that handles communications between the vehicle’s

onboard computer and its hardware subsystems. The ACADO Toolkit [83] is used

to solve the optimization problem. For implementation, the overall NMPH problem

(2.11) was coded in C++, then converted into highly efficient C code by ACADO to

be able to run the calculations in real-time.

The set of continuous-time equations in (2.11) is a Nonlinear Programming (NLP)

optimization problem, which can be discretized using the direct multiple-shooting

method. NLP solves optimization problems which include nonlinear functions and/or

nonlinear constraints using Sequential Quadratic Programming (SQP) [85], and in our

case the qpOASES solver is used to solve SQP numerically [86].

65

4.3.1 Simulation Environment

The proposed approach is first implemented in simulation on a quadcopter drone using

the AirSim simulator [96]. The photo-realistic rendered environments and a physics

engine of AirSim enable performing lifelike simulations of drone vehicles. Moreover,

we used the PX4 autopilot [97] running onboard the drone for software-in-the-loop

operation to make the simulated drone’s characteristics more closely resemble the

hardware unit.

In our work, an incremental volumetric mapping technique named Voxblox [104]

is used. Voxblox represents the environment volumetrically using a signed distance

field and classification into unknown, free, or occupied spaces. Voxblox is part of the

global motion planning framework which will be presented in Chapter 5. The drone

then uses this generated map to continuously build dynamic obstacle constraints that

are used by the NMPH optimization problem to generate collision-free trajectories

[79].

A desktop computer equipped with an Intel Core i7-10750H CPU and an NVIDIA

GeForce RTX 2080 Super GPU is used to run the optimization calculations and

simulation environment in conjunction with ROS. The prediction horizon of the op-

timization problem was set to 8.0 s and discretized into 40 samples, which was found

sufficient for motion planning purposes. The cost function weights were empirically

tuned to provide good trajectory planning performance.

The drone’s pose and environmental sensor readings are obtained from the Air-

Sim simulator and communicated to our NMPH-BSC trajectory planning system.

The resulting output is used as a reference trajectory for the drone vehicle’s flight

controller.

4.3.1.1 Trajectory Planning

In this simulation, an optimal reference trajectory is planned and tracked within the

AirSim simulator as shown in Figure 4.2a. The quadcopter vehicle starts at pn =

66

[−9,−3.5, 2]T m, ψ = 0◦ and the NMPH-BSC algorithm is used to generate an opti-

mal trajectory to the desired setpoint pnd = [−5,−8, 5]T m, ψd = 90◦ while avoiding

an obstacle as shown in Figure 4.2b. The optimization problem within NMPH-BSC

provides an estimate of the reference output trajectory ξ̂
ref

and a prediction of the sys-

tem state trajectory x̃, which includes the predicted output trajectory ξ̃ as a subset.

Figure 4.3 shows that the estimated reference trajectories of the vehicle’s position and

velocities ξ̂
ref

= [ξ̂
x,ref

, ξ̂
y,ref

, ξ̂
z,ref

, ξ̂
ψ,ref

, ξ̂
ẋ,ref

, ξ̂
ẏ,ref

, ξ̂
ż,ref

, ξ̂
ψ̇,ref

] perfectly match their

corresponding predicted reference trajectories ξ̃ = [x̃
x,ref

, x̃
y,ref

, x̃
z,ref

, x̃
ψ,ref

, x̃
ẋ,ref

,

x̃
ẏ,ref

, x̃
ż,ref

, x̃
ψ̇,ref

]. This confirms that using the stage cost function in (2.5) mini-

mizes the deviation between the estimated and predicted reference trajectories, and

thus ensures their convergence towards each other. This validates the statement made

in Section 2.2 that either the estimated or the predicted trajectory can be used as

the reference trajectory for the closed-loop system.

(a) (b)

Figure 4.2: Trajectory Planning using the NMPH-BSC approach. (a) AirSim simu-
lation environment. (b) Trajectory generation while avoiding static obstacle.

67

0 1 2 3 4 5 6 7 8
9

8

7

6

5

x
(m

)

x, ref

xx, ref

0 1 2 3 4 5 6 7 8
8

6

4

y
(m

)

y, ref

xy, ref

0 1 2 3 4 5 6 7 8
time (s)

2

3

4

5

z (
m

)

z, ref

xz, ref

0 1 2 3 4 5 6 7 8
time (s)

0.0

0.5

1.0

1.5

 (r
ad

)

, ref

x , ref

(a)

0 1 2 3 4 5 6 7 8
0.0

0.5

1.0

x
(m

/s
)

x, ref

xx, ref

0 1 2 3 4 5 6 7 8

2

1

0

y
(m

/s
)

y, ref

xy, ref

0 1 2 3 4 5 6 7 8
time (s)

0.0

0.5

1.0

z
(m

/s
)

z, ref

xz, ref

0 1 2 3 4 5 6 7 8
time (s)

0.0

0.5

1.0

 (r
ad

/s
) , ref

x , ref

(b)

Figure 4.3: NMPH reference trajectory generation. The estimated and predicted
reference position trajectories are depicted in (a), and the estimated reference velocity
trajectories are shown in (b).

In the second simulation, tracking performance is assessed by having the vehicle

move from the initial position pn = [0, 0, 2]T m to the desired terminal point pd =

[6,−4, 2]T m using the optimized reference trajectory provided by the NMPH-BSC.

The tracking performance is plotted in Figure 4.4 showing the vehicle satisfactorily

tracks the time-varying reference trajectory generated by the NMPH-BSC algorithm.

The small variation between the desired and actual outputs is because the former

are obtained from numerical integration of the drone dynamics (4.6), while the latter

are obtained from the physics engine of the simulation environment, which likely

uses more complicated aerodynamic force and torque models than our design. This

68

modeling mismatch can also be expected for real-world hardware testing, which will

be covered in Section 4.3.2.

0 1 2 3 4 5 6 7 8
0

2

4

6

x-
ax

is
(m

)

x, ref

x

0 1 2 3 4 5 6 7 8

4

2

0

y-
ax

is
(m

)

y, ref

y

0 1 2 3 4 5 6 7 8
time (s)

0

1

2

3

4

z-
ax

is
(m

)

z, ref

z

Figure 4.4: Vehicle’s trajectory tracking performance between the start position
(0, 0, 2)m and the terminal setpoint (5.8,−4.5, 2)m.

4.3.1.2 Exploration of Unknown Environment

In this simulation test, the drone explores an unknown environment by using a mod-

ular global motion planner, as described in Chapter 5. This graph-based motion

planner generates terminal setpoints within unexplored areas of an incrementally

built-up volumetric map of the environment [8, 104], and the NMPH-BSC algorithm

is used to calculate optimal trajectories from the vehicle’s current pose to these termi-

nal setpoints. To achieve a smooth integration between the graph-based planner and

the NMPH-BSC trajectory planning approach, computationally efficient algorithms

for obstacle mapping and avoidance plus robust path guidance algorithms are used.

Further details of this methodology are discussed thoroughly in Chapter 5.

Figure 4.5 depicts a part of the exploration mission performed by the drone. The

vehicle explored an unknown environment using the global motion planner in con-

junction with the NMPH-BSC for local trajectory planning, which leads to smoother

flight trajectories than the stop-and-go patterns obtained from the motion planner

69

alone. The data was collected over an exploration time of 1002 s. Table 4.1 offers a

comparison between the Graph-based planner only [8] and the Graph-based planner

plus NMPH-BSC. Based on this comparison, it can be seen that NMPH-BSC algo-

rithm has the effect of reducing the distance traveled, which reduces the mission time

and consequently the energy consumption of the vehicle.

Figure 4.5: Exploration of unknown environment using global motion planner using
NMPH-BSC for local trajectory planning.

70

Table 4.1: Comparison between Graph-based and Graph-based-plus-NMPH-BSC to
motion planning

Total length of
the generated
paths

Average path
length (between
terminal points)

Exploration
time

Continuous
path
generation

Graph-based 1252 m 8.03 m 1322 s No

Graph-based
& NMPH-BSC

949 m (24.2%
improvement)

6.08 m (24.3%
improvement)

1002 s
(24.2%)

Yes

4.3.2 Hardware Flight Experiment

For hardware experiments, a custom DJI FlameWheel F550 hexacopter was built

and instrumented to test our proposed NMPH-BSC approach for local planning. The

drone is equipped with a Pixhawk 2.1 flight controller running the PX4 autopilot

system [97], plus an NVIDIA Jetson Xavier NX system-on-module running ROS

Melodic Morenia [95] under Ubuntu 18.04. A Velodyne Puck LITE LiDAR sensor

and an Intel RealSense T265 stereo camera are mounted on the drone to provide 360◦

point cloud and estimated pose data, respectively. The drone system used for testing

is depicted in Figure 4.6.

Figure 4.6: DJI FlameWheel F550 hexacopter vehicle equipped with onboard sensors
and computing systems.

71

(a) (b)

(c)

Figure 4.7: Trajectory planning with obstacle avoidance flight test using the NMPH-
BSC algorithm. (a) Trajectory generation. (b) Trajectory tracking. (c) The mapped
obstacle as seen from the left fisheye lens of the onboard camera.

In this preliminary flight test, trajectory generation and tracking were evaluated

by running the NMPH-BSC algorithm onboard the vehicle. Figure 4.7a shows the

planned trajectory between two setpoints avoiding a sensed obstacle generated by

the NMPH-BSC algorithm, while Figure 4.7b depicts the flight trajectory achieved

by the drone using its flight controller to track the planned trajectory. The NMPH-

BSC solver provides continuous updates of the estimated and predicted reference

trajectories as the vehicle moves towards its endpoint. In this way, the system can

handle uncertainties and disturbances such as dynamic environments and moving

obstacles. The regeneration rate was set to 5 Hz, although this can be set as high as

72

100 Hz with the presented hardware.

Trajectory planning using NMPH-BSC in the presence of dynamic obstacles was

evaluated experimentally as shown in Figure 4.8. In this Figure, it can be seen that

the drone was able to regenerate trajectories to avoid a moving obstacle while fly-

ing through a constrained indoor environment. It is worth pointing out that the

continuous trajectory regeneration process of NMPH-BSC provided smooth transi-

tions between the generated trajectories, leading to smooth flight around the moving

obstacle.

⇓ ⇓

⇓ ⇓

(a) (b)

Figure 4.8: Hardware flight test for trajectory planning involving a dynamic obstacle
using the NMPH-BSC algorithm. (a) Hardware drone avoiding the moving obstacle.
(b) RViz visualization of the trajectory regeneration and flight path.

73

4.4 Conclusions

In this chapter, we presented an optimization-based trajectory planning approach for

drones operating in unknown environments. The proposed method embeds the Back-

stepping Control technique within our proposed Nonlinear Model Predictive Horizon

framework [77] for generating reference trajectories for nonlinear dynamical systems.

This integration reduces the non-convexity of the optimization problem and thus

enables real-time computation of optimal trajectories which respect the nonlinear

dynamics of the vehicle while avoiding static and dynamic obstacles.

The resulting NMPH-BSC design was tested in simulation and hardware flight

experiments on quadcopter and hexacopter drone vehicles, respectively. The results

showed an improvement in performance over the conventional path planning algo-

rithms. The new design was shown to offer additional implementation advantages

over NMPH-FBL including the ability to readily extend to more complicated plant

models and avoiding numerical differentiation.

74

Chapter 5

Optimal Motion Planning for Exploration
of GPS-denied Environments using
Nonlinear Model Predictive Horizon

5.1 Introduction

NMPH algorithm provides feasible solutions, generates smooth and collision-free

paths, supports moving obstacles, is able to run in real-time, and reduces battery

draw by minimizing abrupt drone motions. The goal of this chapter is developing an

NMPH-based global motion planner for the drone to explore a subterranean environ-

ment. This operates by building a map of the environment and guiding the vehicle

to unexplored areas within this map using a graph-based planner. The global mo-

tion planner is a design that integrates the local NMPH path planning design with a

graph-based planner named GBPlanner [8, 105, 106]. We propose a choice of compu-

tationally efficient algorithms for obstacle mapping and avoidance, plus robust path

guidance. A block diagram of the proposed global motion planner design is shown in

Figure 5.1.

The contributions of the work presented in this chapter are as follows:

• The NMPH approach is integrated inside a global motion planner and produces

optimal local trajectories for the drone vehicle in real-time.

• A methodological three-stage global motion planner design is proposed. The

first stage operates by building an incremental volumetric map of the environ-

75

ment. The second stage utilizes a graph-based planner to generate terminal

setpoints within the map for the third stage, which uses the NMPH design

to generate continuous optimal paths from the vehicle’s current pose to the

terminal setpoint in real time.

• Efficient algorithms for obstacle mapping and avoidance are proposed which

produce models of static and dynamic obstacles used by the NMPH to generate

safe and collision-free paths in a dynamically changing environment.

• A robust path guidance algorithm is implemented to avoid the risk of NMPH

getting trapped into a local minima.

• The overall design is implemented using quadcopter and hexacopter drone dy-

namics, enabling navigation through unknown, dynamic and GPS-denied envi-

ronments.

• Several simulation and experimental results are presented in this chapter to

validate the proposed approach.

The remainder of this chapter is organised as follows; the three-layer global motion

planner design and choices of algorithms to provide robust path planning and ob-

stacle avoidance are discussed in Section 5.2. In Section 5.3, various simulation and

experimental results are presented to evaluate and validate the proposed approach.

Finally, concluding remarks are given in Section 5.4.

76

Controller
Unmanned

Aerial System
Sensors /

Estimators

SLAM or
Volumetric
Mapping

Graph-Based
Planner

NMPH-FBL Optimal
Local Path
Planning

Desired
path

Control
inputs

Actual
outputs

Pose

Measured outputs

Point
cloud

Setpoints

Robust Path
Guidance

Dynamic Obstacles
Mapping

Proposed Motion Planner Structure

3D map

3D obstacles
map

Figure 5.1: Block diagram of the proposed global motion planner.

5.2 Motion Planning in GPS-denied Environments

Our proposed motion planning design aims to produce optimal vehicle paths while

navigating in unexplored, dynamic and GPS-denied environments. We combine a

graph-based exploration technique with a Nonlinear Model Predictive Horizon-based

approach based on optimization which respects the vehicle’s dynamics and supports

dynamic obstacles. This integration yields feasible, optimal, and robust paths while

exploring challenging environments.

5.2.1 Motion Planner Architecture

Figure 5.2 describes the overall architecture of our motion planner. The design is

composed of three successive stages. The first stage acquires sensor data to build a

physical representation of the environment which contains both static and dynamic

objects in it. Volumetric mapping is used for this stage since it is computationally

efficient, easy to visualize, can be incrementally constructed and reconstructed online,

and provides the voxel grid structure needed for the next stage. Details about the

volumetric mapping and its layers will be discussed in Section 5.2.2.

77

Section 5.2.3 discusses the second stage of the motion planner, which is built around

a graph-based planning approach. It consists of the sampling-based RRG algorithm,

which builds a connected roadmap graph, and the Dijkstra searching algorithm to

extract the best path from within the graph. The main purpose of the graph-based

approach is to guide the vehicle towards unexplored areas within the environment

and provide terminal vertices, a.k.a. stabilization or terminal setpoints, to the local

path planner.

The third stage of the motion planner uses the NMPH local path planning method.

Fusing this method with the earlier stages improves the robustness of generating

optimal paths and avoiding static and dynamic obstacles. The considerations involved

in finding a feasible path are shown in Figure 5.2. Further details are provided in

Section 5.2.4.

The reference trajectory computed by the path planner is fed to the control system

of the vehicle for tracking purposes. As the drone vehicle moves, the NMPH continues

to update its reference trajectory in response to feedback of the vehicle’s state and

new obstacles. Once the vehicle reaches a setpoint, the motion planning process is

repeated, which continues until the environment is fully explored or the mission is

interrupted by the operator.

78

Dijkstra to generate the

shortest paths between the

graph vertices

Extract best path by

evaluating the branch gain

for the paths

Solution

found?

No

Yes

Extract the destination vertex

(setpoint) of the best path

Feasible

solution?
No

Yes

Feasible

solution?

No

YesPerform path following

/ trajectory tracking

Use the non-optimal path

generated by the

Graph-based planner

Done?

Update the global graph

Yes

Update the global graph and

the solution search bound

No

TSDF Layer

ESDF

Integrator

ESDF Layer

Mesh

Integrator

Mesh Layer

Map

Mesh Visualization

Volumetric Mapping

(Voxblox)

Pointcloud

Data

Pose

Estimation

TSDF

Integrator

RRG to build a connected

roadmap

Use Path Guidance algorithm

for robust path generation

Graph-Based Planner

Optimal Path Planning

(NMPH with FBL)

Generate optimal

trajectory/path using NMPH

with obstacle avoidance

Generate Dynamic

Local Obstacle Map

Figure 5.2: Motion Planner Architecture. The Mesh blocks are used for visualization
of the environment.

79

5.2.2 Volumetric Mapping

Volumetric mapping is the foundation of motion planning and navigation strategies

in 3D environments. The volumetric mapping algorithm named Voxblox [104] is used

in our work. In this technique, the map of the environment is represented volumetri-

cally using the signed distance field to distinguish between known, unknown, free, and

occupied spaces [107]. The grid consists of voxels with a corresponding type. Groups

of occupied voxels represent surfaces of an object, walls, and so on. The main advan-

tage of volumetric mapping is its real-time capability for incrementally representing

unstructured and unexplored environments, which makes it a suitable solution for

online planning and exploration. The Truncated Signed Distance Field (TSDF [108])

is one of the most efficient methods of representing volumetric maps. TSDF is an

implicit surface representation that consists of a 3D voxel array. Each voxel is indexed

by the distance of the ray between the sensor and the surface, and is truncated near

the surface to decrease the errors that are caused by sensor noise. TSDFs are compu-

tationally efficient and can be constructed online. Also, they are capable of filtering

out sensor noise and create meshes with voxel resolution for visualization purposes.

In contrast to TSDF, the Euclidean Signed Distance Field (ESDF) uses the Eu-

clidean distance to the nearest occupied cell in labeling the voxel grid [104]. ESDFs

are directly built out of existing TSDFs to make use of the distance information in de-

termining the obstacle surface location for planning purposes. In other words, TSDF

is for mapping and ESDF for planning, and the main difference between them is the

way that distances are computed [109].

As presented in Figure 5.2, the volumetric mapping process consists of three layers.

The sensor data is processed to build the TSDF layer, then the voxels are integrated

into the ESDF and mesh layers as presented in [104]. The ESDF voxels and mesh

blocks are updated incrementally allowing real-time map generation for planning and

online visualization of the environment. To reduce the complexity of calculating the

80

layers data, a voxel hashing approach [110] is used to store the information of each

layer in a hash table, which results in O(1) complexity for adding or retrieving the

data.

5.2.3 Graph-based Path Planning

In this section, we summarize the graph-based planner presented in [8], which is used

to help the vehicle navigate through unknown GPS-denied environments.

Assume that MG is a global 3D voxel-based map, which consists of voxels m ∈MG.

The map is incrementally built by a depth sensor S plus the vehicle’s pose estimation

using the volumetric mapping approach previously discussed in Section 5.2.2. The

map is categorized into three spaces, free spaceMf
G, occupied spaceMo

G, and unknown

space Mu
G. The map has a global volume VG and is incrementally constructed within

a local map sub-space ML of volume VL centered around the current vehicle’s output

(here 3D position and heading) ξ0 =
[︂
x0 y0 z0 ψ0

]︂T
.

The graph-based planner [8] performs a local search towards unknown areas of

MG. It is based on the sampling-based RRG algorithm [111] which builds a connected

roadmap graph GG composed of collision-free vertices ν and edges e stored in vertex

set V and edge set E, respectively. The edges are straight paths connecting the

vertices using the nearest neighbor search [112]. The global graph GG is continuously

constructed from the undirected local graph GL within the local space ML. The local

search within the bounded volume VL considers the physical size of the vehicle VR

and bounds it within a sub-space MR. Collision detection is performed to ensure

collision-free paths σL, where MR ∈ Mf
G for all randomly generated vertices and

edges.

The set of all shortest paths ΣL, starting from the initial or current vertex ξ0 to

all destination vertices ξν , is found using the Dijkstra algorithm [13]. After that,

the best path is evaluated by calculating the Volumetric Gain V for each vertex.

The Volumetric Gain of a vertex is a measure of the unmapped volume based on

81

the depth reading around that vertex. The weight functions related to distance and

direction combined with V are used to compute the Exploration Gain E(σi) for all

σi ∈ ΣL , i = 1, . . . , n. The vertices of these paths are νij , j = 1, . . . ,mi, and ν
i
0 is

the initial vertex along path σi. The Exploration Gain for a path is calculated as [8]

E(σi) = e−λS S(σi,σsp)
mi∑︂
j=1

V
(︁
νij
)︁
e−λD D(νi0,ν

i
j) (5.1)

where S(σi, σsp) is a distance factor between a path σi and its corresponding straight

path σsp which has the same length along the estimated exploration direction. This

factor prevents the vehicle from sudden changes in its exploration direction which

might happen in branched environments withinML. D(σi, σsp) is the distance between

νij and ν
i
0 of the path σi, which penalizes longer paths for a higher exploration rate.

The tunable gains λS and λD are positive gains.

Subsequently, the best path σbest that maximizes the Exploration Gain is selected

and sent to the NMPH local motion planner to find the optimal path that the vehicle

will follow. The whole procedure is repeated once the vehicle reaches the destination

vertex. The detailed algorithm for building the map and planning the best path is

presented in Algorithm 5.1.

If all vertices within GL are explored, the search will be expanded to the unexplored

vertices of GG. This will guide the vehicle to another location on the global map

and continue the exploration mission. For the return-to-home feature, the Dijkstra

algorithm is also used to find the shortest path between the vehicle’s current output

ξ0 and the homing vertex on GG. This feature can be invoked once the exploration

mission is completed, the battery level is low, or by intervention from the operator.

5.2.4 NMPH for Local Path Planning

The graph-based planner in Section 5.2.3 generates non-optimal or sub-optimal paths

because the vertices are created randomly within VL. In addition, the straight edges

connecting vertices cause jerky motions for a drone following the path. Finally, the

82

Algorithm 5.1 Graph-based Planner

1: ξ0 ← CurrentMeasurement();
2: MG ← VolumetricMapping(S);
3: V← {ξ0}; E← ∅; GL = (V,E);
4: ML ← LocalBoundSpace(ξ0,MG);
5: for i = 1, . . . , n do ▷ RRG to build the local graph GL

6: ξrand ← SampleFreei(ML);
7: ξnearest ← NearestVertex(GL, ξrand);
8: if CollisionFree(ξrand, ξnearest) then
9: V← V ∪ {ξrand};
10: E← E ∪ {ξrand, ξnearest};
11: Nnear ← NearVertices(GL, ξrand);
12: for each ξnearest ∈ Nnear do
13: if CollisionFree(ξrand, ξnear) then
14: E← E ∪ {ξrand, ξnear};
15: end if
16: end for
17: end if
18: end for
19: ΣL ← DijkstraAlgorithm(GL, ξν); ▷ Find the shortest paths
20: σbest ← ∅; Ebest ← 0;
21: for each σ ∈ ΣL do ▷ Find the best path
22: Eσ ← ExplorationGain(σ,VolumetricGain(V));
23: if Eσ > Ebest then
24: σbest ← σ; Ebest ← Eσ;
25: end if
26: end for
27: GG ← GG ∪GL; ▷ Update the global graph
28: if ReturnHome = true then
29: σbest ← DijkstraAlgorithm(GG, ξhome); ▷ Find the shortest path to home

30: end if

83

path generated by the graph-based planner does not respect the vehicle’s dynamics.

The NMPH-equipped path planning approach presented in Algorithm 5.2 overcomes

these issues by generating a path which respects the system’s dynamics and provides

a smooth and optimal path which also avoids obstacles. From Figure 5.2, the NMPH

path planning stage includes

• Dynamic Local Obstacle Mapping (c.f. Section 5.2.4.1), a technique which uti-

lizes the continously updated volumetric map of the environment to generate

a dynamically changing map of obstacles which are used as constraints for the

optimization within the NMPH algorithm.

• Obstacle Avoidance (c.f. Section 5.2.4.2), an algorithm which allows the opti-

mization problem solver to select constraints which correspond to obstacles in

the path of the vehicle.

• Path Guidance (c.f. Section 5.2.4.3), an algorithm which enhances the robust-

ness of path generation to situations by making use of all the vertices of the

graph-based planner-generated path, not just the terminal vertex. This allows

the generation of multiple consecutive and feasible paths, leading to an overall

path to the terminal vertex.

5.2.4.1 Dynamic Local Obstacle Mapping

Transforming physical obstacles within the volumetric map to optimization con-

straints is a challenging task. These obstacles need to be represented by a cluster

of constraints while respecting the limitations of the optimization process, specifi-

cally a limit on the number of inequality constraints that the optimization problem

can handle.

In this Section, we will present a strategy that maps obstacles in the environment

into a dynamically moving space around the vehicle. This facilitates representing the

obstacles as inequality constraints for optimization. This mapping technique, called

84

Algorithm 5.2 Local Optimal Path Planning using NMPH

1: σbest ← GraphBasedPlanner(ξ0,MG);
2: νterm ← ExtractVertexterminal(σbest);
3: Mobs ← LocalObstacleBound(ξ0,MG); ▷ Consider certain voxels around ξ0
4: for i = k, . . . , n do ▷ Remove extra voxels
5: for j = i− k, . . . , i do
6: if ∥mi −mj∥ < δ then
7: Mobs ←Mobs\mi; ▷ Remove νi from the obstacles map

8: end if
9: end for
10: end for
11: CL ← ObstacleConstraint(νterm, ξ0,Mobs); ▷ Find the obstacles constraints
12: σopt ← NMPH Planning(νterm, ξ0,CL);
13: if σopt not feasible then
14: for i = 1, . . . , n do ▷ Path Guidance Algorithm
15: νi ← ExtractVertexi(σbest);
16: σopt ← NMPH Planning(νi, ξ0,CL);

17: end for
18: if σopt not feasible then
19: σopt = σbest;

20: end if
21: end if
22: PathFollowing(σopt); ▷ Follow the optimal path

85

Dynamic Local Obstacle Mapping (DLOM), generates a continuously changing map

Mobs.

Based on the occupied voxel in Mo
G, the DLOM strategy generates virtual spheres

centered on occupied voxels within a certain space surrounding the vehicle (e.g., a

box of dimensions Dobs). These virtual spheres have a radius which ensures a safe

clearance between the vehicle sides and the occupied voxel. Figure 5.3 shows the

volumetric map without and with DLOM. One advantage of using a sphere is for

modeling the obstacle as a state constraint. This inequality constraint requires riobs,

the distance between the vehicle and the center of the ith sphere, to be larger than a

specific threshold rthld representing the radius of the virtual sphere as (riobs ≥ rthld).

The solution of the optimization problem within NMPH will thus generate a path

that doesn’t pass through the virtual spheres and hence avoids the obstacles in the

environment.

(a) Without DLOM (b) With DLOM

Figure 5.3: Dynamic Local Obstacle Mapping (DLOM). The virtual drone is flying
through AirSim’s SimpleMaze environment; further information will be provided in
Section 5.4.

Modeling all occupied voxels in Dobs as obstacles would result in an excessively

large computational burden to continuously generate Mobs and solve the optimization

problem. Instead, any voxels inside the ith sphere are excluded from Mobs. Lines (3-

86

10) of Algorithm 5.2 employ a simple running window strategy to remove extra voxels,

and those remaining are represented as virtual spheres which provide constraints to

the optimization problem. Figure 5.4 shows how the extra spheres are removed to

reduce the computational load involved in producing the obstacles map. The exact

time needed to build the dynamic obstacles map depends on the number of occupied

voxels within Dobs. Experimentally, we found that the time required to build such

a map on a desktop-class machine with a modern GPU (detailed specifications are

given in Section 5.4) takes approximately 3 ms.

(a) (b)

Figure 5.4: Dynamic Local Obstacle Mapping. (a) All voxels are used to map the
obstacle’s surface. (b) A subset of voxels (highlighted in red) is selected to represent
the obstacle’s surface, and their neighbouring voxels are excluded.

5.2.4.2 Obstacle Avoidance Algorithm

As soon as the obstacle map is created, the NMPH creates an optimal local path

respecting the constraints acquired from Mobs. The optimization solver is limited in

the number of inequality constraints it can handle, making it impossible to include

all the mapped obstacles in Mobs within the optimization problem. Hence, a dynamic

method for selecting a specific number of constraints is described next and included

in Algorithm 5.3.

87

Our chosen solver provides a solution to the optimization problem every ∼ 4 ms

(running on the computer described in Section 5.4), which makes it possible to solve

the problem several times before sending the optimum reference path to the vehicle’s

flight control system. The Obstacle Avoidance algorithm takes advantage of this by

first solving the optimization problem without considering obstacle constraints, then

running a collision check on the generated path to find whether it crosses any virtual

spheres in Mobs. It is important to mention that the collision check is performed over

the entire optimization horizon [tn, tn+ T] in Algorithm 2.2, which is discretized into

N points for numerical computation.

If a collision is detected at some points within the optimization horizon, a Dynamic

Constraint Array registers the center of a sphere s ∈ R3 that contains these collision

points, and passes them to the solver as inequalities used to compute a new solution

which avoids them. The Dynamic Constraint Array has dimensions of N ×3 and can

register up to N different inequality constraints for the next run of the optimization

problem. For example, assume that a collision is detected on horizon points 3, 4

and 5, and each of the collision points are located within the 40th virtual sphere. In

this case, the coordinates of the center of this sphere are registered in the Dynamic

Constraint Array at indices 3, 4 and 5, while the rest of the array entries are kept

Null. In the next iteration of the solver, a new constraint representing the cloned

entries of the Dynamic Constraint Array will yield a path which avoids the region

where the collisions previously occurred.

To enhance the reliability of the Obstacle Avoidance algorithm while the vehicle

is in motion, a specific number of Temporary Constraint Arrays (labeled by k in

Algorithm 5.3) store the information from the Dynamic Constraint Array and are

used in the optimization solution as well. The Temporary Constraint Arrays are

static, which means that each registers only one virtual sphere over all its N indices.

88

Algorithm 5.3 Obstacle Constraints

1: function ObstacleConstraint(νterm, ξ0,Mobs)
2: σopt ← NMPH Planning(νterm, ξ0);
3: k = 1;
4: CD ← ∅; Ck

T ← ∅; ▷ Dynamic and Temporary Constraint Arrays
5: for j = 1, . . . , N do ▷ N is the number of the horizon points
6: for i = 1, . . . , nobs do ▷ nobs is the number of obstacles
7: if riobs,νj < rthld then

8: CD ← sji ; ▷ Store ith obstacle position which is indexed by j
9: Ck

T ← si; ▷ Store ith obstacle position in the kth temp constraint
10: k = k + 1;
11: if k is n

T
then

12: k = 1;

13: end if
14: end if
15: end for
16: end for
17: CL = (CD,Ck

T);

18: return CL

5.2.4.3 Robust Path Guidance Algorithm

The initial state of the vehicle, the nature of the environment (e.g. branched narrow

passages), and the terminal condition location may all affect the feasibility of the op-

timization problem solution. Figure 5.5 depicts two different path planning scenarios.

In Figure 5.5(a), the obstacle is small and NMPH can easily find a feasible solution.

In Figure 5.5(b), the obstacles almost block the way to the destination point. In this

situation, the NMPH solver risks producing infeasible solutions by getting trapped in

local minima.

As mentioned in Section 5.2.3, the graph-based path planning yields multiple ver-

tices, which are used by the NMPH approach to generate multiple feasible paths,

ranging from the nearest to the most distal (terminal) vertex. The small obstacle

depicted in Figure 5.5(a) does not cause any issues for the NMPH in generating a

feasible path directly to the terminal vertex. However, Figure 5.5(b) illustrates how

the NMPH algorithm uses multiple consecutive paths (gray lines) generated to the

89

intermediate vertices of the path generated by the graph-based planner (green line)

to eventually find the resulting optimal path (blue line). Lines 12-21 in Algorithm

5.2 demonstrate the Path Guidance algorithm that adds robustness to the NMPH

approach in finding a feasible solution. Note in case the Path Guidance algorithm is

unable to help NMPH find a feasible path to the terminal vertex, the system can still

use the path generated by the graph-based planner.

(a) (b)

Figure 5.5: Graph-based vs NMPH path planning. (a) The terminal vertex of the
green path (from graph-based planner) is sufficient to generate the optimum blue
path by NMPH. (b) All the vertices of the green path are used successively to guide
the solutions of NMPH to the final optimal trajectory (blue path).

5.3 Experimental Results

In this section, simulation and a preliminary real-time hardware flight test are pre-

sented to evaluate and validate the proposed design on quadcopter and hexacopter

vehicles while operating in GPS-denied environments.

The algorithms are implemented within the Robot Operating System (ROS) [95], a

Linux-based system that handles communication between the individual subsystems

and the vehicle. The ACADO Toolkit [83] is used for optimization. The optimization

problem is programmed in a self-contained C++ environment within this toolkit,

90

then a real-time nonlinear solver is generated to run the optimizations online. The

resulting code can be compiled and run within ROS, which also handles the commu-

nication between the solver and the vehicle, either simulated or real [84]. The NMPH

optimization problem (2.11) was written in C++ code using ACADO, then automat-

ically converted into a highly efficient C code that is able to solve the optimization

problem in real-time.

5.3.1 Simulation Results

In order to test the proposed approach before implementing it on a real drone, the

quadcopter drone vehicle is simulated within AirSim [96]. All frameworks and the

AirSim simulator are run in ROS on an Intel Core i7-10750H CPU @ 2.60-5.00 GHz

equipped with the NVIDIA GeForce RTX 2080 Super Max-Q GPU. The prediction

horizon for NMPH was set to T = 8 s using a sampling time of 0.2 s, which was found

satisfactory for trajectory generation. The cost function weights Wx, Wξ, and WT

were adjusted heuristically to ensure a balanced trajectory generation performance

towards the terminal setpoint.

The drone’s measured pose and pointcloud information are obtained from the Air-

Sim simulator and sent to the motion planner. The global graph-based and local

NMPH planners generate reference trajectories for the vehicle, which are forwarded

to AirSim for trajectory tracking purposes. RViz, the 3D visualization tool for ROS,

is used to monitor and visualize the simulation process.

Different simulation results are now presented to evaluate the performance of the

proposed approach on a quadcopter drone navigating autonomously through a previ-

ously unexplored, GPS-denied underground environment available within the AirSim

simulator. The motion planner design illustrated in Figure 5.2 is implemented for

this purpose. Within AirSim, the virtual quadcopter is equipped with a customized

32-channel 360◦ scanning Lidar sensor with a 45◦ vertical field of view, 10 Hz rotation

rate, and 50 meters range. The pointcloud data plus the vehicle pose are acquired

91

and used to build a volumetric map of the environment and locate the vehicle within

it.

As discussed in Section 5.2.3, the graph-based planning algorithm guides the ve-

hicle towards unexplored areas within the map and provides vertices as terminal

setpoints xss for the NMPH local path planner. The design’s robustness is increased

by implementing the Obstacle Avoidance and Path Guidance algorithms proposed

in Sections 5.2.4.2 and 5.2.4.3, respectively. Finally, the generated reference path

from the motion planner is sent to the AirSim quadcopter for tracking. The NMPH

continues updating the path during the vehicle’s movement toward a setpoint. This

allows to avoid dynamic obstacles and improves the tracking performance. Once the

vehicle reaches a setpoint, the planning process is repeated until the environment is

fully explored or the mission is interrupted by the operator.

Figure 5.6 shows the paths generated by the graph-based and the NMPH path

planners. The NMPH is seen to provide a smooth and optimal path as compared to

the sharp-corner path generated by the graph-based planner. Moreover, the NMPH

keeps updating the path dynamically from the start to the terminal point at a rate

of up to 100 Hz, while the graph-based planner generates only one path between

the two points. To reduce computational load, the NMPH algorithm rate is set to

5 Hz, which was found to be suitable in generating continuous and smooth paths in

the environment. This rate of path regeneration also provides good path following

performance in the presence of static and dynamic obstacles.

92

(a) (b)

Figure 5.6: Motion Planner. (a) Path planning using graph-based approach (pink)
and NMPH algorithm (red). (b) Optimal path using NMPH algorithm.

Figure 5.7: Illustration of trajectory generation and tracking. The green path is the
trajectory of the vehicle, and the red path is the future reference path.

93

A portion of the overall tracked trajectory between multiple vertices using the

NMPH algorithm can be seen in Figure 5.7. Respecting the system dynamics provides

smooth flight paths and thus reduces power consumption caused by abrupt changes

in the trajectory.

The DLOM generates a continuously changing obstacle map modeled by virtual

spheres as depicted in Figure 5.8. As discussed in Sections 5.2.4.1 and 5.2.4.2, mapped

obstacles are represented by (continuously updated) inequality constraints within the

optimization problem. The Obstacle Avoidance Algorithm helps in creating and

updating a path that avoids the obstacles as shown in Figure 5.8.

(a) (b)

Figure 5.8: Dynamic Local Obstacle Mapping and Avoidance. In (a) the DLOM is
made visible while in (b) it is hidden.

In the next simulation test, the quadcopter autonomously navigates an unexplored

GPS-denied environment. Figure 5.9 shows the exploration mission performed by the

quadcopter. The drone travels a total distance of 774.5 m while following smooth

trajectories generated by our proposed algorithm. Meanwhile, the graph-based plan-

ner generated paths with a total length of 993.1 m for the same exploration mission.

Table 5.1 and Figure 5.10 offer a mission performance comparison between using the

graph-based planner solo versus using the graph-based planner integrated with our

NMPH approach in terms of exploration time, average computation time of the gen-

erated paths, path lengths between terminal vertices, and average and total length

94

of the generated paths. This comparison shows the impact of using the NMPH-FBL

algorithm for reducing power consumption, total mission time, and unwanted abrupt

motions while following the generated reference paths.

Table 5.1: Comparison between Graph-based and Graph-based-plus-NMPH-FBL ap-
proaches to path planning.

Total length
of the gener-
ated paths

Average
path length
(between
setpoints)

Average
path com-
putation
time

Exploration
time

Continuous
path gen-
eration

Graph-based 993.1 m 8.79 m 733 ms 1327 s No

Graph-based
& NMPH-FBL

774.5 m 6.86 m 4.34 ms 1035 s Yes

(a) (b)

Figure 5.9: Autonomous navigation and exploration in GPS-denied environment. The
vehicle travelled a total distance of 774.5 m in about 1035 s.

95

(a)

(b)

Figure 5.10: Comparison of path lengths between graph-based planner and our pro-
posed NMPH-FBL path planner. (a) Path length between stabilization points. (b)
Total length of generated paths.

For a second exploration mission, another comparison between the global mo-

tion planning with NMPH-based approaches (NMPH-FBL and NMPH-BSC) and the

graph-based planner is offered in Table 5.2. It can be concluded that the NMPH-based

approaches provide better exploration performances compared to the conventional

graph-based planner. Moreover, the NMPH-BSC approach outperforms its predeces-

sor (NMPH-FBL), which supports our claims from Chapter 4 that NMPH-BSC can

provides more efficient local trajectories than NMPH-FBL.

96

Table 5.2: Comparison between Graph-based and Graph-based-plus-NMPH ap-
proaches to motion planning.

Total length
of the gener-
ated paths

Average path
length (between
setpoints)

Exploration
time

Continuous
path genera-
tion

Graph-based 1252m 8.03m 1322s
(calculated)

No

Graph-based
& NMPH-FBL

977m 6.25m 1032s
(calculated)

Yes

Graph-based
& NMPH-BSC

949m 6.08m 1002s Yes

Figure 5.11: Obstacle avoidance for a moving object. The object (sphere) is moving
to the left. The NMPH regenerates the red path continuously to avoid the object.
The blue curve represents the flight trajectory of the drone.

In the final simulation test, obstacle avoidance for a moving object is tested while

the drone navigates through the environment. This is shown in Figure 5.11, where

97

the continuous regeneration of the path by the NMPH algorithm enables the drone

to safely navigate to the stabilization point.

5.3.2 Real-time flight test results

For real-time hardware testing, a DJI FlameWheel F550 hexacopter built and in-

strumented to explore unknown environments using our proposed NMPH approach

in conjunction with a global motion planner. The vehicle is equipped with a Pix-

hawk flight control board running the ArduPilot autopilot software [113], and an

onboard NVIDIA Jetson NX computer running ROS. The communication between

ROS and ArduPilot is established through MAVLink. A Velodyne Puck LITE LiDAR

is mounted on the hexacopter to provide pointcloud data required for 3D mapping

and state estimation. The detailed hardware setup and software architecture are

described in detail in Chapter 7.

The flight test evaluates the exploration performance of NMPH running onboard a

real drone. Also, local trajectory tracking and the functionality of the global motion

planner are tested in this experiment in an underground parking area, as shown in

Figure 5.12.

Figure 5.12: The hardware hexacopter vehicle navigating an underground parking
area using the presented global motion planner approach.

98

The navigation capabilities of the system were tested as the motion planner gen-

erated several terminal setpoints, and the NMPH algorithm provided continuously

regenerating local reference trajectories between the successive setpoints to ensure a

smooth flight.

Figure 5.13 shows the start of the exploration mission, and Figure 5.14 depicts the

end of the operation as the drone returned to the home position. In Figure 5.13, it can

be seen that the NMPH planning algorithm generated a continuous trajectory to the

first setpoint calculated by the graph-based planner. Also, it can be noted that the

estimated predicted trajectory ξ̂ref perfectly matches the predicted out trajectory ξ̃,

and fulfilling the objective of the stage cost function presented in (2.11) in minimizing

the deviation between the estimated and the predicted reference trajectories, and

ensuring their convergence to each other. As highlighted in Section 2.2, the estimated

reference trajectories or the predicted reference trajectory can be used as the desired

trajectories for the actual closed-loop system.

Figure 5.13: 3-D volumetric map of the unknown space at the beginning of the
flight test. The estimated predicted trajectory ξ̂ref to a setpoint can be seen in this
figure (green curve). It overlaps another trajectory (red curve) which represents the
predicted out trajectory ξ̃.

99

Figure 5.14: 3-D volumetric map of the explored underground space at the end of
the flight test. The volumetric map is constructed from free and occupied voxels and
built nicely to represent the space for a safe exploration mission.

Furthermore, Figure 5.15 shows the top and 3D perspective views of the tracked

paths by the hexacopter drone after completing the exploration mission. The space

covered by the drone is approximately 18 × 9 × 3 m and total flight time is 3 min.

The drone was asked to return home after generating 8 setpoints by the global motion

planner. All in all, the navigation capabilities and our system reliability (equipped

with the proposed approaches) were tested and validated in an unknown, unstruc-

tured, and GPS-denied environment and proved that system can achieve autonomous

navigation and exploration in confined places.

100

Figure 5.15: Tracked trajectories by the drone in the underground parking space using
graph-based planner to generate terminal setpoints and NMPH-BSC to generate local
trajectories between setpoints.

A final hardware flight test was performed outdoors in order to assess the trajectory

planning performance in the presence of wind, in this case approximately 15 km/h. As

before the graph-based motion planner provided multiple terminal setpoints, while

101

our NMPH-BSC planned smooth trajectories between them in real-time. The re-

sulting flight trajectory can be seen in Figure 5.16. Despite the presence of a wind

disturbance, the drone was able to smoothly navigate between generated setpoints as

in the earlier tests.

Figure 5.16: Flight test employing the NMPH-BSC algorithm in an outdoor environ-
ment with a 15 km/h wind speed.

5.4 Conclusions

This chapter presented a methodological motion planning approach for drone explo-

ration in GPS-denied environments, which integrates our proposed NMPH trajectory

planning approach with a graph-based planner. The NMPH formulation employs the

102

nonlinear system dynamics model with feedback linearization or backstepping control

inside an online optimization-based process to generate feasible, optimal and smooth

reference trajectories for the vehicle. The performance of the overall motion planner

is increased by introducing methods for robust path generation and dynamic obstacle

mapping and avoidance.

The developed motion planner was evaluated through a series of simulation flights

as well as a real-time hardware flight test to validate the performance of the pro-

posed design on quadcopter and hexacopter drones navigating the environment. The

results show the ability our algorithm to improve motion planning performance over

conventional techniques and generate smooth and safe flight trajectories in a compu-

tationally efficient way.

103

Chapter 6

Adaptive Nonlinear Model Predictive
Horizon using Deep Reinforcement
Learning

6.1 Introduction

The optimization problem of NMPH (2.2) contains different parameters that penal-

ize the deviations within its formulation. In this work a new formulation is proposed

to online tune the NMPH parameters and achieve the best possible planning per-

formance while the drone vehicle is running (instead of selecting them heuristically

with fixed values). Hence, this chapter presents an adaptive trajectory planning

approach for nonlinear dynamical systems using NMPH with Deep Reinforcement

Learning (DRL) adaptation scheme. The proposed adaptive design of this work is

called ‘adaptive NMPH’, which aims to generate the most efficient optimal trajec-

tories that an autonomous vehicle can follow based on the system and environment

states. This is done by online tuning the NMPH optimization problem parameters

using two different Actor-Critic DRL algorithms, which are Deep Deterministic Policy

Gradient (DDPG) and Soft Actor-Critic (SAC), one at a time.

The research contributions of this chapter are presented below:

• Introducing an adaptive NMPH framework which uses a DRL-based method to

tune the parameters of the underlying optimization problem of generating the

best possible reference trajectories for the vehicle.

104

• Designing the RL components (the agent, the environment, and the reward

scheme) of the proposed system.

• Implementing two different Actor-Critic DRL algorithms — the deterministic

DDPG approach and the probabilistic SAC algorithm — within the adaptive

NMPH framework, comparing them in terms of learning speed and stability.

• Evaluating the performance of the overall system with each of the above DRL

algorithms in a life-like simulation environment.

The remainder of this chapter is organized as follows: Section 6.2 describes the

various methodologies used in the adaptive schemes. Section 6.3 presents the adaptive

NMPH framework for trajectory planning. Section 6.4 evaluates the proposed designs

in simulation, and Section 6.5 concludes the work presented in this chapter.

6.2 Deep Reinforcement Learning Overview

This Section covers the preliminaries of reinforcement learning, then describes the

DDPG and SAC algorithms used within the adaptive NMPH frameworks.

6.2.1 Reinforcement Learning Preliminaries

A Reinforcement Learning (RL) system is composed of an agent that interacts with

an environment in a sampling-based manner. Assuming the environment is fully

observed, at each time sample the agent observes the environment state s ∈ S, applies

the action a ∈ A decided by a policy, and receives a scalar reward r : S × A → R,

where S and A are the environment state space and the action space, respectively.

In our work, we consider continuous action spaces with a real-valued vector a ∈ Rn.

The main components of an RL framework are depicted in Figure 6.1.

It is important to differentiate between the system state x (presented in Chapter 2,

Section 2.2) and the state s used in RL. The former means the state vector of a

dynamic system while the latter represents the state of the environment within the

105

RL context. Hence, to avoid confusion, the word ‘state’ used in the following sections

means ‘environment state’ as used in the RL literature, unless stated otherwise.

EnvironmentAgent

environment state (𝑠)

action (𝑎)

reward (𝑟)

Figure 6.1: Block diagram of an RL framework

The agent’s policy can be deterministic (denoted by µ(s)), or stochastic (denoted

by π(·|s)). In deep RL, we parameterize the policy and represent it using a universal

function approximator realized by a neural network. The parameters (representing

the weights and biases of the policy’s neural network) are denoted by θ and the

corresponding policies for the deterministic and stochastic cases are denoted by µθ(s)

and πθ(·|s), respectively.

We consider a stochastic environment with transition probability function p : S ×

R×S×A → [0, 1], where p(s′, r|s, a) is the probability of transition from the current

state s and action a to the next state s′ with reward r ∈ R. Also, we define the ‘return’

as the expected weighted sum of future rewards R =
∑︁∞

t=0 γ
tr(s, a), where r(s, a) is

the reward function and 0 ≤ γ ≤ 1 is the discounting factor. The main objective

in RL is to find a policy that maximizes the expected sum of rewards J = E
τ∼π

[︁
R
]︁
,

where τ = (s0, a0, s1, a1, ...) is the trajectory sequence of states and actions in the RL

system.

The state-action value function (a.k.a. Q-function) specifies the expected return of

an agent after performing an action a at a state s by following a policy π or µ. The

Q-function can be described by a Bellman equation [66], which for a stochastic policy

can be defined as

Qπ(s, a) = E
s′∼p

[︃
r(s, a) + γ E

a′∼π

[︂
Qπ(s′, a′)

]︂]︃
(6.1)

106

where s′ ∼ p represents the stochastic transition to the next state s′, and a′ ∼ π is

the action taken at the state s′ based on a stochastic policy π.

For a deterministic policy, the Q-function can be written as

Qµ(s, a) = E
s′∼p

[︃
r(s, a) + γQµ

(︁
s′, µ(s)

)︁]︃
. (6.2)

The process of computing the value functions for a policy using a Bellman equation

is called policy evaluation, while using the computed value functions to find better

policies is known as policy improvement [66].

Many recent advances in deep reinforcement learning consider a replay buffer (a.k.a.

experience buffer or experience replay) during the learning process. The replay buffer

is a memory that collects the previous experience tuples (s, a, r, s′) ∈ B, in which the

agent uses them to increase the computation efficiency and speed up learning [114].

We will now review the DDPG and SAC deep reinforcement learning algorithms

used within our proposed adaptive NMPH frameworks.

6.2.2 Deep Deterministic Policy Gradient

Deep Deterministic Policy Gradient (DDPG) [72] is a model-free deep reinforcement

learning technique that is designed for applications with continuous and deterministic

action spaces. It uses stored experiences in a replay buffer to concurrently learn a

Q-function and a policy. DDPG is classified as an Actor-Critic technique, where the

Actor is a policy network that receives the state of the environment and provides

continuous action to the system, while the Critic is a Q-function network that inputs

a state and action pair and outputs a Q-value.

Similarly to Q-learning, DDPG seeks to find the optimal action-value function

Q∗(s, a) followed by the optimal action a∗(s), where a∗(s) = argmaxaQ
∗(s, a). As a

deep reinforcement learning approach, DDPG uses universal function approximators

represented by neural networks to learn Q∗(s, a) and a∗(s). Consider a neural network

approximator Qϕ(s, a) (a.k.a. Q-network) with parameters ϕ, where the objective is

107

to make the approximator as close as possible to the optimal action-value function

written in the form of a Bellman equation. The associated Mean Square Bellman

Error (MSBE [115]) function is defined as

JQ(ϕ,B) = E
(s,a,r,s′)∼B

[︄(︂
Qϕ(s, a)−

(︁
r + γmax

a′
Qϕ(s

′, a′)
)︁)︂2]︄

(6.3)

where a random batch of data (s, a, r, s′) from the replay buffer B is used for each

update. The goal is to minimize the loss in (6.3) by performing a gradient descent of

the MSBE JQ(ϕ,B).

As shown in (6.3), the neural network parameters represented by ϕ are used for

both the action-value function approximator Qϕ(s, a) and the network that estimates

Qϕ(s
′, a′), which uses the next states and actions. Unfortunately, this makes it impos-

sible for the gradient descent to converge. To tackle this issue, a time delay is added

to the network parameters ϕ for Qϕ(s
′, a′). The adjusted network is called the target

Q-network Qϕtarg(s
′, a′) with parameters ϕtarg. A copy of the Q-network Qϕ(s

′, a′) is

used for the target Q-network Qϕtarg(s
′, a′), where the latter uses the weighted average

of the model parameters ϕtarg ← ρϕtarg + (1 − ρ)ϕ to stabilize Q-function learning

[116]. It should be noted that the parameters of the target Q-network are not trained.

However, they are periodically synchronized with the original Q-network’s parame-

ters.

The MSBE function given in (6.3) contains a maximization term for the Q-value.

One way to perform this maximization is to apply the optimal action a∗(s). This can

be achieved by creating another approximator for the policy µθ(s) with parameters θ

and maximizing the associated Q-function w.r.t. the replay buffer B. This new policy

also requires a time delay to stabilize its learning. Therefore, a target policy µθtarg(s)

is introduced to maximize Qϕtarg . The Bellman equation, MSBE, and policy learning

108

function are respectively given by

y(r, s′) = r + γ

target Q network⏟ ⏞⏞ ⏟
Qϕtarg(s

′, µθtarg(s
′)⏞ ⏟⏟ ⏞

target policy network

) (6.4)

JQ(ϕ,B) = E
(s,a,r,s′)∼B

[︃(︁
Qϕ(s, a)⏞ ⏟⏟ ⏞
Q network

− y(r, s′)
)︁2]︃

(6.5)

Jµ(θ,B) = E
s∼B

[︃
Qϕ

(︁
s, µθ(s)

)︁]︃
(6.6)

Practically, for a random sample B = {(s, a, r, s′)} from the replay buffer B with

cardinality |B|, equations (6.5) and (6.6) can be expressed as

JQ(ϕ,B) =
1

|B|
∑︂

(s,a,r,s′)∈B

(Qϕ(s, a)− y(r, s′))2 (6.7)

Jµ(θ, B) =
1

|B|
∑︂
s∈B

Qϕ

(︁
s, µθ(s)

)︁
(6.8)

During training, Ornstein–Uhlenbeck noise is added to the action vector to enhance

the exploration of the DDPG policy [115]. The pseudo-code summarizing the DDPG

process is given in Algorithm 6.1.

Algorithm 6.1 Deep Deterministic Policy Gradient

1: Initialize: θ, ϕ, B ← ∅
2: Set θtarg ← θ, ϕtarg ← ϕ
3: repeat
4: Observe the state s
5: Find and apply noise to the action a = µθ(s) + η

OU-noise

6: Apply a by the agent
7: Observe the next state s′ and calculate the reward r
8: Store (s, a, r, s′) in the replay buffer B
9: for a given number of episodes do
10: Obtain a random sample B = {(s, a, r, s′)} from B
11: Compute Bellman function y(r, s′)
12: Update the Q-function by applying gradient descent to MSBE:∇ϕJQ(ϕ,B)
13: Update the policy by applying gradient ascent to (6.8): ∇θJµ(θ, B)

14: Update target networks’ parameters:

{︄
ϕtarg ← ρϕtarg + (1− ρ)ϕ
θtarg ← ρθtarg + (1− ρ)θ

15: until convergence

109

The hyperparameters used for the DDPG algorithm are the number of training

episodes, target update factor (ρ), actor and critic networks learning rates, replay

buffer size, random batch size, and discount factor value. The sensitivity to the

hyperparameter values and the interaction between the Q-value and policy approx-

imator µθ(s) make analyzing the stability and convergence of DDPG difficult tasks

[117], especially when using high-dimensional nonlinear universal function approxi-

mators [118]. Moreover, DDPG is expensive in terms of its sample complexity, which

is measured by the number of training samples needed to complete the learning pro-

cess. The Twin Delayed Deep Deterministic algorithm (a.k.a. TD3) [73] improves the

overall efficiency of the DDPG process in terms of learning time and computational

resources, and it is less sensitive to changes in the hyperparameters [119], however

a careful choice of the hyperparameter values is still required for a stable learning

process.

An alternative approach which overcomes the issues of the DDPG algorithm is Soft

Actor-Critic (SAC) [74, 118], a probabilistic DRL algorithm, considered next.

6.2.3 Soft Actor-Critic

Soft Actor-Critic (SAC) is a model-free deep reinforcement learning technique that

obtains a stochastic policy by maximizing its expected return and entropy [74]. Maxi-

mizing the expected entropy in the policy leads to broader exploration in complicated

domains, which enhances the sampling efficiency, increases robustness, and guards

against convergence to a local maximum [115]. SAC is a probabilistic framework that

builds on Soft Q-learning within an Actor-Critic formulation for either continuous or

discrete action spaces. In the present work, we will focus exclusively on continuous

actions.

SAC involves simultaneously learning two Q-functions Qϕ1 , Qϕ2 using two different

Q-networks, as well as a stochastic policy πθ using a policy network. Both Q-functions

use a modified MSBE (we call it here soft-MSBE) to be presented in (6.10), where the

110

minimum Q-value of both functions is used to update the policy (known as clipped

double Q-learning [73]). SAC employs a ‘target network’ associated with each Q-

network to enhance the stability of the learning process, where both target Q-networks

are copies of the corresponding Q-network, but employ weighted averaging on the

network parameters during training. Because of the policy’s stochastic nature, SAC

uses the current policy to obtain the next state-action values without needing to have

a target policy [115]. Also, the stochastic nature of the exploration process means it’s

not necessary to artificially introduce noise, as was done in the deterministic DDPG.

The objective of SAC is to maximize the sum of the expected return and entropy.

The Bellman equation within its Q-value function thus includes the expected entropy

of the policy as follows:

Qπ(s, a) ≈ r + γ (Qπ(s
′
B, a

′
π)− α log π(a′π|s′B)) (6.9)

where α is the coefficient which regulates the trade-off between the expected entropy

and return, s′B indicates that the replay buffer is used to obtain the expectation of

the future states, and a′π ∼ π(·|s′) indicates that the current policy is used to obtain

future actions. For simplicity of notation, we will denote s′B by s′ and a′π by a′ in the

sequel.

For policy evaluation (Q-function learning), two Bellman residuals are used within

SAC [74], referred to as soft-MSBEs. In addition to the policy network πθ, each

soft-MSBE includes a Q-network and two target Q-networks in its calculation as

JQ(ϕi,B) = E
(s,a,r,s′,a′)∼B

[︃(︂
Qϕi(s, a)− y(r, s′, a′)

)︂2]︃
, i = 1, 2 (6.10)

and their Bellman equation forms are

y(r, s′, a′) = r + γ

(︃
min
j=1,2

Qϕtarg,j(s
′, a′)− α log πθ(a

′|s′)
)︃
, a′ ∼ πθ(·|s′) (6.11)

Similarly to DDPG, the Q-functions are updated using gradient descent, while

gradient ascent is utilized to update the policy network.

111

For policy improvement (policy learning), the policy should maximize the state-

value function Vπ(s) defined as

Vπ(s) = E
a∼π

[︂
Qπ(s, a)− α log π(a|s)

]︂
(6.12)

which represents the expected return when starting from a state s and following a

policy π.

For the optimal value of the action, we can employ reparameterization [74, 115] to

obtain a continuous action from a deterministic function that represents the policy.

The function is expressed by the state and additive Gaussian noise as

aθ(s, ξ) = tanh (µθ(s) + σθ(s) ξ) , ξ ∼ N
(︁
0, diag(1, . . . , 1)

)︁
. (6.13)

The policy optimization can be performed by maximizing the Q-function, which

implicitly maximizes the entropy of the trajectory. Using the computed value of the

action from (6.13), the function to be maximized is

Jπ(θ,B) = E
s∼B, ξ∼N

[︃
min
j=1,2

Qϕj(s, aθ(s, ξ))− α log πθ(aθ(s, ξ)|s)
]︃

(6.14)

and the optimum policy can be obtained by finding argmaxθ Jπ(θ,B) using gradient

ascent. For a random sample B = {(s, a, r, s′, a′)} from the buffer B, equations (6.10)

and (6.14) can be expressed as

JQ(ϕi, B) =
1

|B|
∑︂

(s,a,r,s′)∈B

(Qϕi(s, a)− y(r, s′, a′))
2
, i = 1, 2 (6.15)

Jµ(θ, B) =
1

|B|
∑︂
s∈B

(︂
min
j=1,2

Qϕj

(︁
s, aθ(s, ξ)

)︁
− α log πθ

(︁
aθ(s, ξ)|s

)︁)︂
(6.16)

Using a fixed value for the coefficient α in (6.16) makes the learning process sen-

sitive. The authors of the original SAC method [74] provided an updated version of

this algorithm in [118] that optimizes this parameter to predict the optimal actions

over the span of the RL space. This is done by introducing an optimization problem

which constrains the average entropy of the policy while allowing the entropy to vary

based on the states of the system. The parameter α can be tuned by minimizing an

112

objective function J(α) that includes the policy’s log probability and the expected

entropy constraint. More details about the optimization problem for α can be found

in [118].

The pseudo-code for the SAC algorithm is provided in Algorithm 6.2.

Algorithm 6.2 Soft Actor-Critic

1: Initialize: θ, ϕi, α, B ← ∅, i = 1, 2
2: Set ϕtarg,i ← ϕi
3: repeat
4: Observe the state s
5: Find the action a ∼ πθ(·|s), and apply it through the agent
6: Observe the next state s′ and the reward r
7: Find the next action a′ ∼ πθ(·|s′)
8: Store (s, a, r, s′, a′) in the replay buffer B
9: for a given number of episodes do
10: Obtain a random sample B = {(s, a, r, s′, a′)} from B
11: Compute y(r, s′, a′) in (6.11) and find the soft-MSBEs (6.10)
12: Apply gradient descent on the soft-MSBEs: ∇ϕiJQ(ϕi, B)
13: Reparametrize the action: aθ(s, ξ) = tanh (µθ(s) + σθ(s) ξ)
14: Apply gradient ascent on the policy: ∇θJµ(θ, B)
15: Apply gradient descent to tune α: ∇αJ(α)
16: Update target networks: ϕtarg,i ← ρϕtarg,i + (1− ρ)ϕi
17: until convergence

6.3 Adaptive Trajectory Planning Framework

In this Section, we present the DRL-based adaptive framework used to adjust the

gains of the NMPH trajectory planning algorithm. First, we will describe the agent

and environment involved in the DRL problem, then present two adaptive NMPH

architectures based on the DDPG and the SAC algorithm, respectively.

6.3.1 Agent and Environment Representations

Figure 6.2 shows the main components of the adaptive NMPH system. The envi-

ronment is an autonomous drone which flies within an incrementally built-up 3D

volumetric map of the surroundings. The drone uses the NMPH algorithm for plan-

ning local trajectories between the current pose and a terminal setpoint provided by

113

the exploration algorithm presented in [79]. As covered in Chapter 2 (Section 2.2), the

NMPH optimization process (blue box in Figure 6.2) contains models of the nonlinear

system dynamics and nonlinear control law, as well as constraints representing actu-

ation limits and environmental obstacles. The onboard flight control system tracks

the optimum reference trajectories generated by the NMPH.

From an RL perspective, at each episode the drone is commanded to fly through

k terminal setpoints. Hence, each episode consists of k iterations. Following each

iteration, three observations are sent to the Agent: initial velocity vo, angle φ between

the initial velocity vector vo and the vector r⃗ = pss−po running from the initial point

po to the terminal point pss, and the distance |r⃗|.

Drone
System

current state 𝑥 𝑡𝑛

optimized variables

෤𝑥 , መ𝜉𝑟𝑒𝑓

Nonlinear Model Predictive Horizon

Nonlinear
Control Law

෤𝑢 𝜏

Nonlinear
Plant Model

ሶ෤𝑥 𝜏 Optimization
Problem

Solver

Constraints

Cost Function, 𝐽 ෤𝑥, መ𝜉𝑟𝑒𝑓
𝑡𝑛 … 𝑡𝑛 + 𝑇

terminal setpoint

𝑥𝑠𝑠

Exploration
Algorithm

Environment

Agent

Policy

Reinforcement
Learning Algorithm

observation
/state, 𝑠 action, 𝑎

return, 𝑅

Policy
Update

Weights𝑥 𝑡𝑛

point cloud/
depth image

Figure 6.2: Adaptive NMPH Architecture

A sketch of the observations {vo, φ, |r⃗|} for one iteration is given in Figure 6.3.

114

𝑥

𝑧

𝑦

𝑝𝑠𝑠

𝜑

Ԧ𝑟

Ԧ𝑣𝑜

Generated

Trajectory

flight

Trajectory

𝑝𝑜

Figure 6.3: Observations from the Environment for one Iteration

Our objective is to tune the NMPH parameters online by using reinforcement

learning to maximize the total reward. This reward is a function of the tracking

performance by the drone of the reference path generated by the NMPH algorithm,

which consists of three indicators:

• Trajectory tracking reward, which reflects how well the flight trajectory matches

the generated reference. The trajectory tracking reward is calculated as

rtraj =

{︄
− rt,max

rt,th
e
t,RMS

+ rt,max, for e
t,RMS

≤ rt,th

0, otherwise

where e
t,RMS

is Root-Mean-Square (RMS) error between the generated and flight

trajectories, and rt,max and rt,th are the maximum and threshold values of the

trajectory tracking reward, respectively.

• Terminal setpoint reward, which reflects how close the ending point of the flight

trajectory is to the terminal setpoint of the reference trajectory. The terminal

setpoint reward is calculated as

rss =

{︄
− rs,max

rs,th
ess + rs,max, for ess ≤ rs,th

0, otherwise

where ess = ∥pss − ξ̂
pos

ref (tn + T)∥ is the error between the terminal point and

the final point of the reference trajectory generated by the NMPH, and rs,max,

rs,th are the maximum and threshold values of this reward, respectively.

115

• Completion reward which reflects how far the drone travels along its prescribed

flight trajectory in the associated time interval. This is given by

rc =

{︄
− rc,max

rc,th
ec + rc,max, for ec ≤ rc,th

−5, otherwise

where ec = ∥pss−p|tn+T
∥ is the error between the drone’s position at tn+T and

the flight trajectory’s endpoint, while rc,max, rc,th are respectively the maximum

and threshold values of the completion reward. We place more importance on

this factor by reducing the total reward (rc < 0) whenever the error ec exceeds

the assigned threshold value rc,th. Consequently, the overall algorithm will give

priority to ensuring the drone reaches the desired setpoint in the allotted time-

frame.

6.3.2 DRL-based Adaptive NMPH Architecture

The objective of adaptive NMPH is to integrate deep learning, here chosen as an

Actor-Critic method (DDPG or SAC) within the NMPH optimization problem to

adaptively tune the NMPH parameters and thus provide the best possible reference

flight trajectories for the drone.

The structures of the NMPH-DDPG and NMPH-SAC algorithms are illustrated in

Figures 6.4 and 6.5, respectively. Both DRL structures contain two parts, the Actor

and the Critic. The Actor contains the policy network, which selects the action which

maximizes the total reward (a function of the state of the vehicle and environment)

and subsequently improves the policy based on feedback from the Critic. A target

policy network is used in DDPG to obtain a stable learning process, while SAC doesn’t

need a target network because of its probabilistic nature. The Critic is responsible for

policy evaluation; within DDPG it consists of a Q-network and a target Q-network,

while in SAC it is composed of two Q-networks, two target Q-networks, and an

optimization problem for α tuning. Both DDPG and SAC employ a replay buffer to

store previous experiences which are used to refine the Actor and Critic networks. The

116

policy evaluation and improvement processes within DDPG and SAC are explained

in Sections 6.2.2 and 6.2.3, and depicted in Figures 6.4 and 6.5, respectively.

The action produced by the Actor is a vector of positive values representing the

entries of the weighting matrices used in the NMPH optimization problem. Using

these, NMPH calculates its stage and terminal cost functions used to perform its

optimization and generates the estimated reference trajectory ξ̂
ref

. This result is used

by the drone’s flight control system, and the vehicle’s resulting trajectory is used to

calculate the observations {vo, φ, |r⃗|} and the total reward rt = rtraj + rss + rc sent

to the replay buffer to be used in the learning process.

Replay Buffer

Q-Network
𝑄𝜙 𝑠, 𝑎

Target Q-Network
𝑄𝜙𝑡𝑎𝑟𝑔

𝑠, 𝑎

Policy Network
𝜇𝜃 𝑠

Policy
Improvement

Policy
Evaluation

Update

Sample
Data

Store
Data

Action

Observation

Reward

Target Policy
Network
𝜇𝜃𝑡𝑎𝑟𝑔 𝑠

Update

Sample
Data

NMPH
Optimization

Problem

Drone
system

Reference
trajectory

መ𝜉𝑟𝑒𝑓

𝑣𝑜, 𝜑, Ԧ𝑟

𝑟𝑡𝑟𝑎𝑗 + 𝑟𝑠𝑝 + 𝑟𝑐

𝑊

Figure 6.4: Adaptive NMPH-DDPG structure

117

Replay Buffer

Q- Networks
𝑄𝜙𝑖

𝑠, 𝑎

Target Q- Networks
𝑄𝜙𝑡𝑎𝑟𝑔,𝑖

𝑠, 𝑎

Alpha optimization

Policy Network
𝜋𝜃 𝑎|𝑠

Policy
Improvement

Policy
Evaluation

Update

Sample Data

Sa
m

p
le

 D
at

a Sto
re

 D
ata

log-probability

Action

Observation

Reward

m
in

𝑊

𝑟𝑡𝑟𝑎𝑗 + 𝑟𝑠𝑝 + 𝑟𝑐

NMPH
Optimization

Problem

Drone
system

Reference
trajectory

መ𝜉𝑟𝑒𝑓

𝑣𝑜, 𝜑, Ԧ𝑟

Figure 6.5: Adaptive NMPH-SAC structure

6.4 Implementation and Evaluation

This Section evaluates the effectiveness of tuning the NMPH parameters in real-time

via two DRL algorithms (DDPG and SAC). It also assesses the sample complexity

and stability of both methods.

The overall architecture is implemented within the Robot Operating System (ROS)

[95] which handles the interactions between the various subsystems including physics

simulation, optimization calculations and DRL algorithm. The AirSim open-source

simulator [96] is used to simulate the physics of the drone and provides photo-realistic

environment data. For optimization, the ACADO Toolkit [83] is used to solve the

NMPH’s optimization problem in real-time. The TensorFlow [120] and Keras [121]

libraries are used to train the deep neural networks within the DDPG and SAC

algorithms. In addition, the TensorLayer library [122] was used to tailor the SAC

algorithm to our application. TensorLayer is a TensorFlow-based package which offers

various RL and DRL modules for learning system implementations.

As stated in Section 6.3.2, three observations of the system are fed back to the

individual neural networks: vo, φ, and |r⃗|. DDPG is very sensitive to hyperparameters

when the action space has a high dimension, in which case achieving stable learning

118

becomes challenging. Therefore, we employ only three actions corresponding to the

weights of the NMPH optimization dealing with position states. The learning process

for the three weight factors {w1 = wx, w2 = wy, w3 = wz} is performed using DDPG

and SAC in parallel for comparison purposes.

Each episode is composed of a sequence of iterations, where each iteration rep-

resents a trajectory between two endpoints (terminal points). At the start of each

iteration, the velocity vector of the drone vo, the angle φ between the velocity and

endpoint-to-endpoint vectors, and the distance |r⃗| between endpoints are calculated,

followed by the errors {e
t,RMS

, ess, ec} and the total reward at the end of the iteration.

All this data is stored in the replay buffer. In order to cover a wider portion of the

state and action spaces of the system, the initial velocity is randomly selected at the

beginning of each episode.

The structures of the Actor-Critic DRL (policy and Q-networks) for DDPG and

SAC algorithms are presented in Figures 6.6 and 6.7, respectively. Each network

is composed of an input layer, multiple hidden layers, and an output layer. Figure

6.6 and 6.7 depict our neural network designs in terms of the layer structure of

each network and the number of nodes in each layer. The policy networks in the

Actor are responsible for generating actions that maximize the total reward based

on observations of the environment, while the Q-networks in the Critic compute a

Q-value which is used for policy improvement. For DDPG, four networks are used:

a policy network, a Q-network (depicted in Figure 6.6), a target policy network and

a target Q-network. The target networks are replicas of the policy and Q-networks

with a delay added to their parameters. Meanwhile, SAC consists of five networks: a

policy network, two Q-networks, and two target Q-networks. The SAC’s policy and

Q-network structures are shown in Figure 6.7.

119

(a) Actor Network (Policy Network) (b) Critic Network (Q Network)

Figure 6.6: Neural networks used by DDPG. IL: Input Layer, HL: Hidden Layer, OL:
Output Layer.

(a) Actor Network (Policy Network) (b) Critic Network (Q Network)

Figure 6.7: Neural networks used by SAC. IL: Input Layer, HL: Hidden Layer, OL:
Output Layer.

Figure 6.8 shows the average episodic reward during the training processes of the

DDPG and SAC architectures. In this comparison, each framework is learning to

optimize the values of only three actions, which represent the entries of the weight

120

matrix corresponding to the position states within the NMPH optimization problem.

To enhance DDPG performance in terms of sample complexity and its sensitivity to

hyperparameters, we propose and apply a ‘pre-exploration’ technique which traverses

the RL problem spaces before the training process is started. Pre-exploration is

performed by applying a set of predefined actions, and considering a random system

state for each action. The collected experiences of the pre-exploration process are then

stored in the replay buffer, which is used during the training process. It was found

that using this technique helps DDPG to improve convergence and stability over the

case without pre-exploration, as can be seen from Figure 6.8. Conversely, a number

of episodes must be spent for pre-exploration, which delays the learning process in

the real-time adaptation. Note the results shown in Figure 6.8 also show that SAC

generally outperforms DDPG (either with or without pre-exploration) in terms of

learning speed. In addition, during the training process SAC showed noticeably better

learning stability relative to DDPG w.r.t. the process of selecting the hyperparameter

values for each algorithm.

0 50 100 150 200 250
Episode

0

20

40

60

80

100

Av
g.
 E
ps
io
di
c
Re

wa
rd

SAC
DDPG with pre-exploration
DDPG without pre-exploration

Figure 6.8: Training curves of SAC, DDPG with pre-exploration, and DDPG without
pre-exploration for adaptively tuning three NMPH parameters.

To test the performance of the SAC approach in a higher-dimensional setting, the

121

number of actions was increased to 12 to estimate the weight matrix gains correspond-

ing to the position, velocity and acceleration states {wx, wy, wz, wψ, wẋ, wẏ, wẋ, wψ̇,

wẍ, wÿ, wẍ, wψ̈} within the NMPH optimization problem. Figure 6.9 shows the re-

sulting training curve of SAC; DDPG failed to complete the learning process in this

case. The effect of increasing the number of NMPH parameters being tuned can be

seen by comparing the SAC training curves in Figures 6.8 and 6.9 in terms of the aver-

age episodic reward. In the 12-parameter trial, SAC has better training performance

than in the 3-parameter case, which is because the former covers a larger action space

and consequently provides better solutions of the NMPH optimization problem.

0 200 400 600 800 1000
Episode

0

20

40

60

80

100

Av
g.
 E
ps
io
di
c
Re

wa
rd

Figure 6.9: Training curve of SAC adaptively tuning 12 parameters of the NMPH
optimization.

To test the trajectory planning performance of NMPH with and without the pro-

posed adaptation scheme, four different flight tests were performed within the AirSim

simulation environment. For the second case, the weighting matrices within NMPH

used fixed parameters, which were used as the initial values in the DRL-based adap-

tation method. Table 6.1 provides a comparison between the conventional NMPH

design with fixed parameter values and the adaptive NMPH-SAC design. The com-

parison is based on the average of the error metrics discussed in Section 6.3.1, namely

122

e
t,RMS

, ess , and ec . Each flight trajectory consists of ten trials, and each trial includes

five iterations. The initial velocity and drone orientation were selected randomly at

the beginning of each trial. The first trial uses a zigzag pattern, which consists of five

paths, each with length 5.6m. For the second trial (square pattern), the side length

was 5m. For the third trial (ascending square pattern), the elevation gain was set to

1m. The fourth trial involved a set of position setpoints provided by a Graph-based

exploration algorithm (see [79] for the complete details). As shown in Table 6.1, the

flight performance obtained with the adaptive NMPH is much better than the one

from the non-adaptive (conventional) NMPH. The reason for this is that real-time

adaptation of NMPH parameters works better than using a single set of fixed values

when performing a variety of different flying trajectories.

Table 6.1: Comparison between the conventional NMPH design (fixed values of the
NMPH parameters) and the adaptive NMPH-SAC approach, for different flight trials.

Average
error

Zigzag
pattern

Square
pattern

Ascending
square
pattern

Random
setpoints
(Exploration)

Fixed NMPH
parameters

e
t,RMS

ess
ec

0.11353
0.08659
0.12033

0.09758
0.07547
0.06426

0.10741
0.07663
0.07413

0.09646
0.07339
0.07739

Adaptive
NMPH-SAC

e
t,RMS

ess
ec

0.08877
0.01029
0.04400

0.08495
0.00919
0.04419

0.09212
0.01046
0.04952

0.06749
0.01150
0.05874

To show how the values of the NMPH parameters are adjusted online using SAC,

Figures 6.10 and 6.11 present the results of a flight through 20 randomly generated

setpoints. Figure 6.10 depicts the values of the observations vo, φ and |r⃗| at the

beginning of each iteration and Figure 6.11 shows the changing values of the NMPH

weighting matrix entries.

123

6.5 Conclusions

This chapter presented a DRL-based adaptive scheme to tune the optimization param-

eters of our previously-proposed NMPH trajectory planning approach. The overall

design aims to provide the best-performing flight trajectory generation for an aerial

drone across a wide range of flight patterns and environments by tuning these param-

eters in real-time flights instead of selecting them a-priori. The adaptation scheme is

implemented through two different Actor-Critic DRL algorithms — the deterministic

DDPG and the probabilistic SAC.

The two variants of DRL-based NMPH were trained and tested on an aerial drone

in a simulation environment. The results showed a marked improvement in flight

performance when using the adaptive NMPH-DDPG and NMPH-SAC over the con-

ventional NMPH. Comparisons between DDPG and SAC showed that the latter out-

performs the former in terms of learning speed, ability to handle a larger set of tuning

parameters, and overall flight performance.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Iteration

0

2

4

6

8

St
at
e vo (m/s)

ϕ (rad)
|r| (m)

Figure 6.10: Observations at start of iterations.

124

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Iteration

0

25

50

75

100

125

150

175

200

Pa
ra
m
et
er
 V
al
ue

wx

w ̇x
w ̈x

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Iteration

0

25

50

75

100

125

150

175

200

Pa
ra
m
et
er
 V
al
ue

wy

w ̇y
w ̈y

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Iteration

0

25

50

75

100

125

150

175

200

Pa
ra
m
et
er
 V
al
ue

wz

w ̇z
w ̈z

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Iteration

0

25

50

75

100

125

150

175

200

Pa
ra
m
et
er
 V
al
ue

wψ
wψ̇
wψ̈

Figure 6.11: Values of NMPH weighting matrix entries being adjusted online by SAC.

125

Chapter 7

Hardware Platform and Software
Architecture

7.1 Hardware Platform

Our modular drone system design consists of state-of-the-art computing units for real-

time environment perception and flight control, onboard vision and 3-D laser scanning

sensors, and a modular airframe for carrying the overall payload; and includes a

software stack running the implementations of the NMPH designs described in this

thesis.

The drone is built on a DJI FlameWheel F550 hexacopter platform. Figure 7.1

provides a high-level illustration and overview of our system.

The hexacopter vehicle is equipped with a Pixhawk 5X flight controller running

either PX4 or ArduPilot autopilot system, plus an NVIDIA Jetson Xavier NX single-

board computer running ROS Melodic Morenia under Ubuntu 18.04. In addition to

a computer vision system, a Velodyne Puck LITE LiDAR sensor is mounted on the

drone to provide 360◦ point cloud data for mapping and state estimation. The drone

system used for testing is depicted in Figure 7.2.

126

Velodyne

Puck LITE

Jetson

Xavier NX

Pixhawk 5X

Intel RealSense T265

Figure 7.1: Exploded view of the hardware setup used in our autonomous drone.

Figure 7.2: The drone system used for testing.

127

The design choices for the different system components used for our vehicle are

explained below.

7.1.1 High-level onboard computing module

The high-level onboard computer has the processing power required to run the soft-

ware stack, including estimation, optimization-based solver, global motion planning,

and other applications. The module used in our work (NVIDIA Jetson Xavier NX)

supports fast prototyping, flight experimentation, and a wide variety of Linux-based

software.

The NVIDIA Jetson Xavier NX is a powerful device that offers excellent computa-

tional performances along with low power consumption. The board is equipped with

6-core Carmel ARM v8.2 64-bit CPU, 384 NVIDIA CUDA Cores GPU, and 8 GB of

LPDDR4x RAM, with all running under Linux-based system (here Ubuntu 18.04).

The Jetson Xavier NX development kit has a mass of 172 grams and consumes 10 to

20 W based on the running condition. The kit provides 4 x USB 3.1 ports, Ethernet,

and other interfaces for display, storage, and wireless modules.

This Xavier NX onboard computer is perfect for implementing and processing mul-

tiple tasks including deep learning models. The Xavier NX board runs the NVIDIA

JetPack software, which includes the Jetson Linux Driver Package and CUDA libraries

that are suitable for computer vision, optimization, and navigation applications.

7.1.2 Low-level flight controller

The low-level flight controller offers real-time and reliable control. Pixhawk 5X is a

powerful and low-latency flight controller based on the Pixhawk FMUv5X open-source

project. The FMUv5X open standard includes high-performance FMU Processor (32

Bit Arm Cortex-M7, 216MHz, 2MB memory, 512KB RAM); three low-noise and

Temperature-controlled IMUs; two barometers; and a vibration isolation system.

Pixhawk supports two well-known open-source autopilot firmware projects, PX4

128

and ArduPilot. Both projects provide flexible set of tools for our design solutions and

applications. Both PX4 and ArduPilot were tested in our application, and found to

provide good flight control performance in terms of flight stability and safety. After

conducting many flight trials, ArduPilot was chosen over the PX4, as the former

provided more stable state estimation which did not exhibit drift when deployed in

indoor environments.

7.1.3 Sensors

To navigate through unknown, unstructured and GPS-denied environments, our drone

uses different sensing devices to measure the drone’s position with respect to its sur-

roundings. The sensors used in our drone include a stereo camera, 3-D laser scanner,

plus the various inertial sensors equipped onboard the Pixhawk 5X flight controller.

A Velodyne Puck LITE was used to acquire pointcloud measurements used for

mapping and state estimation. The Puck LITE is a 16-channel LiDAR device that

provides 10Hz laser scan measurements with a range of 100m and a field of view of

(360◦, 30◦). The device weighs approximately 0.55kg and acquires 300,000 points/sec-

ond in single return mode.

An Intel RealSense T265 tracking camera was used as an alternative source of

state estimation. The T265 camera has a mass of only 55 g, and comes with a

visual SLAM implementation in its firmware which provides 6-DOF estimation of the

camera’s position and velocity relative to the environment at 200 Hz. The camera

consists of two global shutter fisheye cameras with 173◦ diagonal field of view and

848 × 800 pixel resolution, a 3-DOF gyroscope, and a 3-DOF accelerometer.

7.1.4 Airframe

The DJI FlameWheel F550 hexacopter is a multi-rotor flying platform that provides

high thrust-to-weight ratio and modular design features, making it a suitable choice

for our application. The DJI F550 strucutural elements are made from PA66+GF30

129

(glass fibre-reinforced polyamide plastic), and the drone is equipped with six brushless

DC motors with Electronic Speed Controllers (ESCs), 8-inch propellers, and an a

central PCB board for wiring between the battery and ESCs.

7.2 Software Architecture

Figure 7.3 shows the software architecture used in our system. The algorithms are

implemented within the Robot Operating System (ROS) [95], a Linux-based sys-

tem that handles communication between the individual software modules and the

vehicle’s hardware, either simulated or real [84]. The ACADO Toolkit [83] is used

for optimization calculations. The optimization problem is programmed in a self-

contained C++ environment within this toolkit, then a real-time nonlinear solver is

generated to run the optimizations online. The resulting code can be compiled and

run within ROS. The NMPH optimization problem (2.11) was written in C++ code

using ACADO, then automatically converted into efficient C code which is able to

solve the optimization problem in real-time.

The drone’s pose and pointcloud information obtained from the onboard sensors is

sent to the global motion planner, which uses Voxblox [104] to build a volumetric map

of the environment to distinguish between unknown, free, and occupied spaces. The

global motion planner integrates a graph-based planning approach called GBPlanner

[8, 105, 106] with the NMPH algorithm to generate optimal reference trajectories for

the vehicle, which are forwarded to the drone through MAVROS for trajectory track-

ing purposes, where MAVROS is a ROS package that enables communication through

the MAVLink communication protocol [123]. The ROS tool RViz is a ROS tool that

is used for robot monitoring and 3D visualization, while QGroundControl [124] is a

software that provides mission flight planning and control for MAVLink-based drones.

130

ESCs -> Rotors

Onboard flight
Controller

MAVROS/ MAVLink Fast-LOAM

Nonlinear Model
Predictive Horizon

LiDAR / Camera

Exploration Planner
(GBPlanner)

Volumetric Mapping
(Voxblox)

Visualization / Mission Planner
H

ar
d

w
ar

e
C

o
n

tr
o

lle
r

A
p

p
/G

U
I

Figure 7.3: Software Architecture used in our system and the development of the
presented approaches.

Our setup provides different solutions to estimate the pose of the drone relative

to its environment. The first one is a stereo camera-based solution which relies on a

proprietary Visual-SLAM algorithm running onboard the Intel RealSense T265 stereo

camera, while the second one is a LiDAR-based solution that uses a front-end SLAM

algorithm called Fast Lidar Odometry And Mapping (Fast-LOAM a.k.a. FLOAM)

[125]. The autopilot then fuses the pose estimates (either from T265 or FLOAM) with

IMU data using an Extended Kalman Filter (EKF) to provide accurate estimates of

the drone’s states, which are subsequently employed for mapping, motion planning,

131

and flight control.

7.3 Summary

In this chapter, we presented an overview of the hardware setup of the hexacopter

drone used in the real-time flight experiments. The software architecture used to

implement our proposed approaches was also described.

132

Chapter 8

Conclusions and Future Work

8.1 Conclusions

In this dissertation, a novel optimization-based reference trajectory generation method

for a nonlinear system (here an aerial drone) was developed, named Nonlinear Model

Predictive Horizon or NMPH. Different algorithms and methodologies complimen-

tary to NMPH were also proposed to provide a comprehensive solution for a vehicle

to autonomously navigate and explore an unknown GPS-denied environment. The

following sections summarize and conclude the work presented in this thesis.

8.1.1 Nonlinear Model Predictive Horizon

The main part of this research focused on proposing a novel optimization-based ref-

erence trajectory generation framework for a nonlinear closed-loop system based on

the NMPC approach. The proposed formulation (NMPH) considered a nonlinear

control law and a nonlinear plant model within its optimization problem constrains,

aiming for a closed-loop dynamics model with decreased non-convexity used by the

online optimization problem to generate feasible and optimal reference trajectories for

the actual closed-loop system. The proposed NMPH algorithm was presented in dis-

crete and continuous time domains, and supports both static and dynamic obstacles,

enabling trajectory generation in continuously changing environments.

133

8.1.2 NMPH with Feedback Linearization

In the second part of the research, a feedback linearization control law was developed

within the NMPH framework. The proposed formulation is abbreviated as NMPH-

FBL. The feedback linearization control law converts the closed-system to a linear

form, which results in reduced non-convexity of the optimization problem to generate

feasible and optimal reference trajectories for the actual closed-loop system. In addi-

tion, the feedback linearization design uses integral states to compensate for modeling

uncertainties and external disturbances present in the actual system. The proposed

NMPH-FBL algorithm supports both static and dynamic obstacles as constrains to

generate continuous trajectories in dynamic environments.

The NMPH-FBL approach was implemented on a simulated quadrotor drone and

validated to generate 3D optimal reference trajectories in real time. Different sim-

ulation scenarios and hardware-in-the-loop (HITL) simulations were carried out to

evaluate the performance of the proposed method. Convergence of the predicted and

estimated trajectories, trajectory generation under different initial conditions, trajec-

tory tracking performance, and the ability to navigate around static and dynamic

obstacles were validated through simulation results.

8.1.3 NMPH with Backstepping Control

In the third part of the research, an enhancement to the NMPH was developed by

using a Backstepping control law within the optimization problem of NMPH instead

of feedback linearization. The NMPH-BSC design was shown to offer additional

implementation advantages over NMPH-FBL including the ability to readily extend

to more complicated plant models and avoiding numerical differentiation. We showed

that the NMPH-BSC reduced the nonlinearities of the overall closed-loop system,

and thus improved the real-time computation of optimal trajectories by reducing the

non-convexity of the optimization problem.

The resulting NMPH-BSC design was tested in simulation and hardware flight

134

experiments on quadrotor and hexarotor drone vehicles, respectively. The results

showed an improvement in performance over conventional path planning algorithms,

and demonstrated the algorithm’s ability to generate optimal and smooth trajectories

for the vehicle while avoiding static and dynamic obstacles.

8.1.4 Global Motion Planning using NMPH approaches

The fourth part of this research presented a methodological motion planning approach

for drone exploration in GPS-denied environments. This motion planing method in-

tegrated the NMPH approach with a graph-based planner in a three-stage modular

design: building an incremental volumetric map of the environment, generating stabi-

lization setpoints within this map using a graph-based planner, and using the NMPH

approach to produce local optimal trajectories to the generated stabilization setpoints.

In order to smoothly integrate the three stages, computationally efficient algorithms

for obstacle mapping and avoidance plus robust path guidance were developed and

implemented.

The developed motion planner was evaluated through a series of simulation flights

as well as a real-time hardware flight test to validate the performance of the proposed

design on quad- and hexrotor drones navigating within unexplored GPS-denied envi-

ronments. The results showed the ability of the proposed design to improve motion

planning performance over conventional techniques and generate smooth and safe

flight trajectories in a computationally efficient way.

8.1.5 Adaptive NMPH Design using Deep Reinforcement
Learning

In the final part of this research, an adaptive scheme optimization-based trajec-

tory planning approach was presented, which aims to continuously plan the best-

performing flight trajectories for an aerial drone across a wide range of flight envelopes

and environments by online tuning the NMPH parameters in real-time flights rather

135

than selecting them a-priori. The adaptation scheme was implemented through two

different Actor-Critic DRL algorithms, the deterministic DDPG and the probabilistic

SAC.

The presented designs were trained and tested in a simulation environment. The

results showed a marked improvement in flight performance when using the adaptive

NMPH-DDPG and NMPH-SAC over the conventional NMPH. Comparisons between

DDPG and SAC showed that the latter outperforms the former in terms of learning

speed, ability to handle a larger set of tuning parameters, and overall flight perfor-

mance.

The pros, cons and limitations of this study are summarized as follows:

• Pros:

– The proposed design is able to dynamically adjust the parameters of the

optimization problem online during flight, which is preferable to tuning

them before flight and evaluating the resulting performance afterwards.

– The DRL model can adapt the gains of the optimization problem in re-

sponse to changes in the vehicle, such as new payload configurations or

replacing hardware components.

• Cons:

– DRL algorithms employ a large number of hyperparameters. While SAC

is less sensitive to hyperparameters than DDPG, finding the best combi-

nation of these parameters to achieve fast training is a challenging task.

• Limitations:

– The present study was performed entirely within a simulation environment,

and does not include hardware testing results.

136

8.2 Future Perspectives

8.2.1 Experimental Testing

In this work, tremendous efforts were made in implementing and testing most of the

presented techniques in a variety of real-world settings. Further experiments should

be performed to challenge the presented techniques in harsh environments. Some of

the possible steps towards this are:

• Testing and validating the proposed methods onboard the hardware drone in

large-scale, GPS-denied environments such as subterranean mines.

• Implementing the adaptation scheme (adaptive NMPH) onboard the hardware

drone and testing its performance in a variety of real-world environments, as

well as using the DRL algorithms for disturbance and parameter estimation.

8.2.2 Towards Faster and Smarter Drone Exploration

A novel local trajectory planning algorithm was introduced and integrated within a

modular global motion planner as presented in Chapter 5. In particular, the global

motion planner uses a graph-based algorithm for exploration, which suffers from lim-

itations such as exploration speed, high computational power, and the lack of smart-

ness in making decisions based on the environment features. For faster, smarter, and

more efficient robot exploration and navigation, future work should consider one of

the following directions:

• Integration of the just-released Fast UAV Exploration (FUEL) [126] package

into the NMPH framework. Since graph-based exploration is currently the

most processor-intensive task in our motion planning pipeline, this new package

is expected to greatly increase efficiency and free up resources for other tasks.

• An investigation of using deep learning for the drone’s mapping and explo-

ration to achieve smart sensing, cognition, and motion planning in unknown,

137

unstructured GPS-denied environments [127].

8.2.3 Deep Reinforcement Learning for Intelligent Robots

Nowadays, many research works incorporate machine learning (DRL algorithms in

particular) within the various components of a robotic system to create more intelli-

gent machines that are capable of performing challenging tasks in an optimum way.

Some possibilities for this project include proposing DRL algorithms with continuous

action that are more robust and less sensitive to hyperparameters, and developing

DRL algorithms for computer vision applications such as 3D point-cloud registration

[128] and depth estimation [129].

8.2.4 Next Generation Drones

One of the main future directions is to design and build a versatile, standardized, and

intelligent platform of a drone vehicle with a custom-tailored software stack, which

can be used for the next generation of applications related to the fourth industrial

revolution and the Internet of Things.

138

Bibliography

[1] K. Bergman, O. Ljungqvist, T. Glad, and D. Axehill, “An optimization-based
receding horizon trajectory planning algorithm,” IFAC-PapersOnLine, vol. 53,
no. 2, pp. 15 550–15 557, 2020.

[2] A. Manoharan, R. Sharma, and P. Sujit, “Multi-AAV cooperative path plan-
ning using nonlinear model predictive control with localization constraints,”
arXiv preprint arXiv:2201.09285, 2022.

[3] D. M. Wu et al., “Fast velocity trajectory planning and control algorithm of
intelligent 4WD electric vehicle for energy saving using time-based MPC,” IET
Intelligent Transport Systems, vol. 13, no. 1, pp. 153–159, 2019.

[4] S. M. LaValle, Planning algorithms. Cambridge university press, 2006.

[5] A. Sozzi, M. Bonfè, S. Farsoni, G. De Rossi, and R. Muradore, “Dynamic
motion planning for autonomous assistive surgical robots,” Electronics, vol. 8,
no. 9, p. 957, 2019.

[6] B. Paden, M. Čáp, S. Z. Yong, D. Yershov, and E. Frazzoli, “A survey of
motion planning and control techniques for self-driving urban vehicles,” IEEE
Transactions on intelligent vehicles, vol. 1, no. 1, pp. 33–55, 2016.

[7] S. M. Ahmed, Y. Z. Tan, G. H. Lee, C. M. Chew, and C. K. Pang, “Object
detection and motion planning for automated welding of tubular joints,” in
2016 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), IEEE, 2016, pp. 2610–2615.

[8] T. Dang, F. Mascarich, S. Khattak, C. Papachristos, and K. Alexis, “Graph-
based path planning for autonomous robotic exploration in subterranean envi-
ronments,” in 2019 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), IEEE, 2019, pp. 3105–3112.

[9] L. Quan, L. Han, B. Zhou, S. Shen, and F. Gao, “Survey of UAV motion
planning,” IET Cyber-systems and Robotics, vol. 2, no. 1, pp. 14–21, 2020.

[10] P. Corke, Robotics, vision and control: fundamental algorithms in MATLAB
second, completely revised. Springer, 2017, vol. 118.

[11] A. Gasparetto, P. Boscariol, A. Lanzutti, and R. Vidoni, “Path planning and
trajectory planning algorithms: A general overview,” Motion and operation
planning of robotic systems, pp. 3–27, 2015.

139

[12] L. Grüne and J. Pannek, Nonlinear Model Predictive Control: Theory and
Algorithms. Springer, 2017.

[13] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
algorithms, Third. MIT press, 2009.

[14] E. W. Dijkstra et al., “A note on two problems in connexion with graphs,”
Numerische mathematik, vol. 1, no. 1, pp. 269–271, 1959.

[15] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” IEEE transactions on Systems Science
and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.

[16] S. Koenig and M. Likhachev, “Fast replanning for navigation in unknown
terrain,” IEEE Transactions on Robotics, vol. 21, no. 3, pp. 354–363, 2005.

[17] K. Al-Mutib, M. AlSulaiman, M. Emaduddin, H. Ramdane, and E. Mattar,
“D* lite based real-time multi-agent path planning in dynamic environments,”
in 2011 Third International Conference on Computational Intelligence, Mod-
elling & Simulation, IEEE, 2011, pp. 170–174.

[18] M. Likhachev, G. J. Gordon, and S. Thrun, “ARA*: Anytime A* with prov-
able bounds on sub-optimality,” Advances in neural information processing
systems, vol. 16, pp. 767–774, 2003.

[19] D. Dolgov, S. Thrun, M. Montemerlo, and J. Diebel, “Path planning for au-
tonomous vehicles in unknown semi-structured environments,” The interna-
tional journal of robotics research, vol. 29, no. 5, pp. 485–501, 2010.

[20] Y. Yang, J. Pan, and W. Wan, “Survey of optimal motion planning,” IET
Cyber-systems and Robotics, vol. 1, no. 1, pp. 13–19, 2019.

[21] T. Siméon, J.-P. Laumond, and C. Nissoux, “Visibility-based probabilistic
roadmaps for motion planning,” Advanced Robotics, vol. 14, no. 6, pp. 477–
493, 2000.

[22] S. M. LaValle, J. J. Kuffner, B. Donald, et al., “Rapidly-exploring random
trees: Progress and prospects,” Algorithmic and computational robotics: new
directions, vol. 5, pp. 293–308, 2001.

[23] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal mo-
tion planning,” The international journal of robotics research, vol. 30, no. 7,
pp. 846–894, 2011.

[24] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile robots,”
in Autonomous robot vehicles, Springer, 1986, pp. 396–404.

[25] I. Iswanto, A. Ma’arif, O. Wahyunggoro, and A. Imam, “Artificial potential
field algorithm implementation for quadrotor path planning,” Int. J. Adv.
Comput. Sci. Appl, vol. 10, no. 8, pp. 575–585, 2019.

[26] P. Martin and A. Del Pobil, “Application of artificial neural networks to the
robot path planning problem,” WIT Transactions on Information and Com-
munication Technologies, vol. 6, 1970.

140

[27] M. Zhao, N. Ansari, and E. S. Hou, “Mobile manipulator path planning by
a genetic algorithm,” Journal of Robotic Systems, vol. 11, no. 3, pp. 143–153,
1994.

[28] H. J. Wang and W. Xiong, “Research on global path planning based on ant
colony optimization for AUV,” Journal of Marine Science and Application,
vol. 8, no. 1, pp. 58–64, 2009.

[29] Z. Qiaorong and G. Guochang, “Path planning based on improved binary
particle swarm optimization algorithm,” in 2008 IEEE Conference on Robotics,
Automation and Mechatronics, IEEE, 2008, pp. 462–466.

[30] H. Martinez-Alfaro and D. R. Flugrad, “Collision-free path planning for mobile
robots and/or AGVs using simulated annealing,” in Proceedings of IEEE In-
ternational Conference on Systems, Man and Cybernetics, IEEE, vol. 1, 1994,
pp. 270–275.

[31] H. Y. Zhang, W. M. Lin, and A. X. Chen, “Path planning for the mobile robot:
A review,” Symmetry, vol. 10, no. 10, p. 450, 2018.

[32] J. Canny, A. Rege, and J. Reif, “An exact algorithm for kinodynamic planning
in the plane,” Discrete & Computational Geometry, vol. 6, no. 3, pp. 461–484,
1991.

[33] M. Zucker et al., “Chomp: Covariant hamiltonian optimization for motion
planning,” The International Journal of Robotics Research, vol. 32, no. 9-10,
pp. 1164–1193, 2013.

[34] M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor, and S. Schaal, “STOMP:
Stochastic trajectory optimization for motion planning,” in 2011 IEEE inter-
national conference on robotics and automation, IEEE, 2011, pp. 4569–4574.

[35] C. G. Atkeson et al., “Using local trajectory optimizers to speed up global
optimization in dynamic programming,” Advances in neural information pro-
cessing systems, pp. 663–663, 1994.

[36] A. Perez, R. Platt, G. Konidaris, L. Kaelbling, and T. Lozano-Perez, “LQR-
RRT*: Optimal sampling-based motion planning with automatically derived
extension heuristics,” in 2012 IEEE International Conference on Robotics and
Automation, IEEE, 2012, pp. 2537–2542.

[37] M. Nolte, M. Rose, T. Stolte, and M. Maurer, “Model predictive control based
trajectory generation for autonomous vehicles—An architectural approach,”
in 2017 IEEE Intelligent Vehicles Symposium (IV), IEEE, 2017, pp. 798–805.

[38] O. Andersson, O. Ljungqvist, M. Tiger, D. Axehill, and F. Heintz, “Receding-
horizon lattice-based motion planning with dynamic obstacle avoidance,” in
2018 IEEE Conference on Decision and Control (CDC), IEEE, 2018, pp. 4467–
4474.

141

[39] O. Andersson, M.Wzorek, P. Rudol, and P. Doherty, “Model-predictive control
with stochastic collision avoidance using bayesian policy optimization,” in 2016
IEEE International Conference on Robotics and Automation (ICRA), IEEE,
2016, pp. 4597–4604.

[40] J. Richalet, A. Rault, J. Testud, and J Papon, “Model predictive heuristic con-
trol: Applications to industrial processes,” Automatica, vol. 14, no. 5, pp. 413–
428, 1978.

[41] C. E. Garcia, D. M. Prett, and M. Morari, “Model predictive control: Theory
and practice—a survey,” Automatica, vol. 25, no. 3, pp. 335–348, 1989.

[42] M. El Ghoumari, H.-J. Tantau, and J Serrano, “Non-linear constrained MPC:
Real-time implementation of greenhouse air temperature control,” Computers
and electronics in agriculture, vol. 49, no. 3, pp. 345–356, 2005.

[43] L. O. Santos, P. A. Afonso, J. A. Castro, N. M. Oliveira, and L. T. Biegler,
“On-line implementation of nonlinear MPC: An experimental case study,”
Control Engineering Practice, vol. 9, no. 8, pp. 847–857, 2001.

[44] A. P. Aguiar and J. P. Hespanha, “Trajectory-tracking and path-following of
underactuated autonomous vehicles with parametric modeling uncertainty,”
IEEE transactions on automatic control, vol. 52, no. 8, pp. 1362–1379, 2007.

[45] R. Hovorka et al., “Nonlinear model predictive control of glucose concentration
in subjects with type 1 diabetes,” Physiological measurement, vol. 25, no. 4,
p. 905, 2004.

[46] T. Faulwasser, T. Weber, P. Zometa, and R. Findeisen, “Implementation of
nonlinear model predictive path-following control for an industrial robot,”
IEEE Transactions on Control Systems Technology, vol. 25, no. 4, pp. 1505–
1511, 2016.

[47] J. Matschek, J. Bethge, P. Zometa, and R. Findeisen, “Force feedback and path
following using predictive control: Concept and application to a lightweight
robot,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 9827–9832, 2017.

[48] J. Matschek, T. Bäthge, T. Faulwasser, and R. Findeisen, “Nonlinear pre-
dictive control for trajectory tracking and path following: An introduction
and perspective,” in Handbook of Model Predictive Control, Springer, 2019,
pp. 169–198.

[49] T. A. Teatro, J. M. Eklund, and R. Milman, “Nonlinear model predictive con-
trol for omnidirectional robot motion planning and tracking with avoidance of
moving obstacles,” Canadian Journal of Electrical and Computer Engineering,
vol. 37, no. 3, pp. 151–156, 2014.

[50] M. M. G. Ardakani, B. Olofsson, A. Robertsson, and R. Johansson, “Model
predictive control for real-time point-to-point trajectory generation,” IEEE
Transactions on Automation Science and Engineering, vol. 16, no. 2, pp. 972–
983, 2018.

142

[51] M. Neunert et al., “Fast nonlinear model predictive control for unified tra-
jectory optimization and tracking,” in 2016 IEEE international conference on
robotics and automation (ICRA), IEEE, 2016, pp. 1398–1404.

[52] M. Mehndiratta, E. Kayacan, S. Patel, E. Kayacan, and G. Chowdhary, “Learning-
based fast nonlinear model predictive control for custom-made 3D printed
ground and aerial robots,” in Handbook of Model Predictive Control, Springer,
2019, pp. 581–605.

[53] I. Carlucho, M. De Paula, and G. G. Acosta, “An adaptive deep reinforcement
learning approach for MIMO PID control of mobile robots,” ISA transactions,
vol. 102, pp. 280–294, 2020.

[54] K. J. Åström, “Theory and applications of adaptive control—a survey,” auto-
matica, vol. 19, no. 5, pp. 471–486, 1983.

[55] K. Åström, History of adaptive control. 2015.

[56] R Bellman, “Adaptive control processes; a guided tour, princeton univ,” Press,
NJ, 1961.

[57] P. Gregory, “Proceedings of the self adaptive flight control systems symposium,
january 13-14, 1959,” Aeronautical Systems Div Wright-Patterson AFB OH
Flight Control Lab, Tech. Rep., 1959.

[58] S. K. Panda, J. Lim, P. Dash, and K. Lock, “Gain-scheduled PI speed con-
troller for PMSM drive,” in Proceedings of the IECON’97 23rd International
Conference on Industrial Electronics, Control, and Instrumentation (Cat. No.
97CH36066), IEEE, vol. 2, 1997, pp. 925–930.

[59] H. P. Huang, M. L. Roan, and J. C. Jeng, “On-line adaptive tuning for PID
controllers,” IEE Proceedings-Control Theory and Applications, vol. 149, no. 1,
pp. 60–67, 2002.

[60] F. Gao and H. Tong, “Differential evolution: An efficient method in optimal
PID tuning and on–line tuning,” in Proceedings of the First International Con-
ference on Complex Systems and Applications. Wuxi, China, 2006.

[61] N. J. Killingsworth and M. Krstic, “PID tuning using extremum seeking: On-
line, model-free performance optimization,” IEEE control systems magazine,
vol. 26, no. 1, pp. 70–79, 2006.

[62] O. Gheibi, D. Weyns, and F. Quin, “Applying machine learning in self-adaptive
systems: A systematic literature review,” ACM Transactions on Autonomous
and Adaptive Systems (TAAS), vol. 15, no. 3, pp. 1–37, 2021.

[63] R. Jafari and R. Dhaouadi, “Adaptive PID control of a nonlinear servomecha-
nism using recurrent neural networks,” Adv. Reinforcement Learning, pp. 275–
296, 2011.

[64] I. Dumitrache and M. Dragoicea, “Mobile robots adaptive control using neural
networks,” arXiv preprint arXiv:1512.03345, 2015.

143

[65] F. G. Rossomando and C. M. Soria, “Identification and control of nonlinear
dynamics of a mobile robot in discrete time using an adaptive technique based
on neural PID,” Neural Computing and Applications, vol. 26, no. 5, pp. 1179–
1191, 2015.

[66] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT
press, 2018.

[67] B. Hu et al., “Reinforcement learning approach to design practical adaptive
control for a small-scale intelligent vehicle,” Symmetry, vol. 11, no. 9, p. 1139,
2019.

[68] C. J. C. H. Watkins, “Learning from delayed rewards,” 1989.

[69] H. Boubertakh, M. Tadjine, P.-Y. Glorennec, and S. Labiod, “Tuning fuzzy
PD and PI controllers using reinforcement learning,” ISA transactions, vol. 49,
no. 4, pp. 543–551, 2010.

[70] B. Subudhi and S. K. Pradhan, “Direct adaptive control of a flexible robot
using reinforcement learning,” in 2010 International Conference on Industrial
Electronics, Control and Robotics, IEEE, 2010, pp. 129–136.

[71] A. G. Barto, R. S. Sutton, and C. W. Anderson, “Neuronlike adaptive ele-
ments that can solve difficult learning control problems,” IEEE transactions
on systems, man, and cybernetics, no. 5, pp. 834–846, 1983.

[72] T. P. Lillicrap et al., “Continuous control with deep reinforcement learning,”
arXiv preprint arXiv:1509.02971, 2015.

[73] S. Fujimoto, H. Hoof, and D. Meger, “Addressing function approximation er-
ror in actor-critic methods,” in International conference on machine learning,
PMLR, 2018, pp. 1587–1596.

[74] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor,” in
International conference on machine learning, PMLR, 2018, pp. 1861–1870.

[75] V. Mnih et al., “Asynchronous methods for deep reinforcement learning,” in
International conference on machine learning, PMLR, 2016, pp. 1928–1937.

[76] Q. Sun, C. Du, Y. Duan, H. Ren, and H. Li, “Design and application of
adaptive PID controller based on asynchronous advantage actor–critic learning
method,” Wireless Networks, vol. 27, no. 5, pp. 3537–3547, 2021.

[77] Y. Al Younes and M. Barczyk, “Nonlinear model predictive horizon for optimal
trajectory generation,” Robotics, vol. 10, no. 3, p. 90, 2021.

[78] Y. Al Younes and M. Barczyk, “A backstepping approach to nonlinear model
predictive horizon for optimal trajectory planning,” Robotics, vol. 11, no. 5,
p. 87, 2022.

[79] Y. A. Younes and M. Barczyk, “Optimal motion planning in GPS-denied en-
vironments using nonlinear model predictive horizon,” Sensors, vol. 21, no. 16,
p. 5547, 2021.

144

[80] Y. Al Younes and M. Barczyk, “Adaptive nonlinear model predictive horizon
using deep reinforcement learning for optimal trajectory planning,” Drones,
vol. 6, no. 11, p. 323, 2022.

[81] S. Yu, X. Li, H. Chen, and F. Allgöwer, “Nonlinear model predictive control
for path following problems,” International Journal of Robust and Nonlinear
Control, vol. 25, no. 8, pp. 1168–1182, 2015.

[82] R. Findeisen, “Nonlinear model predictive control: A sampled data feedback
perspective,” Ph.D. dissertation, University of Stuttgart, 2005.

[83] B. Houska, H. Ferreau, and M. Diehl, “ACADO Toolkit – An Open Source
Framework for Automatic Control and Dynamic Optimization,” Optimal Con-
trol Applications and Methods, vol. 32, no. 3, pp. 298–312, 2011.

[84] M. Kamel, T. Stastny, K. Alexis, and R. Siegwart, “Model predictive con-
trol for trajectory tracking of unmanned aerial vehicles using robot operating
system,” in Robot operating system (ROS), Springer, 2017, pp. 3–39.

[85] P. T. Boggs and J. W. Tolle, “Sequential quadratic programming,” Acta nu-
merica, vol. 4, no. 1, pp. 1–51, 1995.

[86] H. Ferreau, C. Kirches, A. Potschka, H. Bock, and M. Diehl, “qpOASES:
A parametric active-set algorithm for quadratic programming,” Mathematical
Programming Computation, vol. 6, no. 4, pp. 327–363, 2014.

[87] R. Marino and P. Tomei, Nonlinear Control Design: Geometric, Adaptive, and
Robust. Prentice Hall, 1995, isbn: 9780133426359.

[88] F. Wu and C. Desoer, “Global inverse function theorem,” IEEE Transactions
on Circuit Theory, vol. 19, no. 2, pp. 199–201, 1972.

[89] H. Xie, “Dynamic visual servoing of rotary wing unmanned aerial vehicles,”
Ph.D. dissertation, University of Alberta, 2016.

[90] R. M. Murray, Z. Li, S. S. Sastry, and S. S. Sastry, A mathematical introduction
to robotic manipulation. CRC press, 1994.

[91] C. Rösmann, A. Makarow, and T. Bertram, “Online motion planning based on
nonlinear model predictive control with non-euclidean rotation groups,” arXiv
preprint arXiv:2006.03534, 2020.

[92] F. Sabatino, “Quadrotor control: Modeling, nonlinear control design, and sim-
ulation,” M.S. thesis, KTH Royal Institute of Technology, 2015.

[93] A. Spitzer and N. Michael, “Feedback linearization for quadrotors with a
learned acceleration error model,” arXiv preprint arXiv:2105.13527, 2021.

[94] A. Mokheari, A. Benallegue, and B. Daachi, “Robust feedback linearization
and GH-inf controller for a quadrotor unmanned aerial vehicle,” in Proceedings
of the 2005 IEEE/RSJ International Conference on Intelligent Robots and
Systems, 2005, pp. 1198–1203.

[95] M. Quigley et al., “ROS: An open-source robot operating system,” in ICRA
workshop on open source software, Kobe, Japan, 2009.

145

[96] S. Shah, D. Dey, C. Lovett, and A. Kapoor, “AirSim: High-fidelity visual and
physical simulation for autonomous vehicles,” in Field and Service Robotics:
Results of the 11th International Conference, ser. Springer Proceedings in Ad-
vanced Robotics, M. Hutter and R. Siegwart, Eds., vol. 5, Cham, Switzerland:
Springer, 2018, pp. 621–635.

[97] L. Meier, D. Honegger, and M. Pollefeys, “PX4: A node-based multithreaded
open source robotics framework for deeply embedded platforms,” in 2015 IEEE
international conference on robotics and automation (ICRA), IEEE, 2015,
pp. 6235–6240.

[98] M. Krstic, P. V. Kokotovic, and I. Kanellakopoulos, Nonlinear and adaptive
control design. John Wiley & Sons, Inc., 1995.

[99] T. Madani and A. Benallegue, “Control of a quadrotor mini-helicopter via full
state backstepping technique,” in Proceedings of the 45th IEEE Conference on
Decision and Control, IEEE, 2006, pp. 1515–1520.

[100] Y. A. Younes, A. Drak, H. Noura, A. Rabhi, and A. E. Hajjaji, “Quadrotor
position control using cascaded adaptive integral backstepping controllers,” in
Applied Mechanics and Materials, Trans Tech Publ, vol. 565, 2014, pp. 98–106.

[101] S. Bouabdallah and R. Siegwart, “Full control of a quadrotor,” in 2007 IEEE/RSJ
international conference on intelligent robots and systems, IEEE, 2007, pp. 153–
158.

[102] M. A. M. Basri, A. R. Husain, and K. A. Danapalasingam, “Enhanced back-
stepping controller design with application to autonomous quadrotor unmanned
aerial vehicle,” Journal of Intelligent & Robotic Systems, vol. 79, no. 2, pp. 295–
321, 2015.

[103] F. Chen, R. Jiang, K. Zhang, B. Jiang, and G. Tao, “Robust backstepping
sliding-mode control and observer-based fault estimation for a quadrotor UAV,”
IEEE Transactions on Industrial Electronics, vol. 63, no. 8, pp. 5044–5056,
2016.

[104] H. Oleynikova, Z. Taylor, M. Fehr, R. Siegwart, and J. Nieto, “Voxblox: In-
cremental 3d euclidean signed distance fields for on-board mav planning,” in
2017 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), IEEE, 2017, pp. 1366–1373.

[105] T. Dang, M. Tranzatto, S. Khattak, F. Mascarich, K. Alexis, and M. Hutter,
“Graph-based subterranean exploration path planning using aerial and legged
robots,” Journal of Field Robotics, vol. 37, no. 8, pp. 1363–1388, 2020.

[106] M. Kulkarni et al., “Autonomous teamed exploration of subterranean environ-
ments using legged and aerial robots,” in 2022 International Conference on
Robotics and Automation (ICRA), IEEE, 2022, pp. 3306–3313.

[107] F. Steinbrücker, J. Sturm, and D. Cremers, “Volumetric 3D mapping in real-
time on a CPU,” in 2014 IEEE International Conference on Robotics and
Automation (ICRA), 2014, pp. 2021–2028.

146

[108] B. Curless and M. Levoy, “A volumetric method for building complex models
from range images,” in Proceedings of the 23rd annual conference on Computer
graphics and interactive techniques, 1996, pp. 303–312.

[109] H. Oleynikova, A. Millane, Z. Taylor, E. Galceran, J. Nieto, and R. Sieg-
wart, “Signed distance fields: A natural representation for both mapping and
planning,” in RSS 2016 Workshop: Geometry and Beyond-Representations,
Physics, and Scene Understanding for Robotics, 2016.

[110] M. Nießner, M. Zollhöfer, S. Izadi, and M. Stamminger, “Real-time 3D re-
construction at scale using voxel hashing,” ACM Transactions on Graphics,
vol. 32, no. 6, p. 169, 2013.

[111] S. Karaman and E. Frazzoli, “Sampling-based motion planning with deter-
ministic µ-calculus specifications,” in Proceedings of the 48h IEEE Conference
on Decision and Control (CDC) held jointly with 2009 28th Chinese Control
Conference, 2009, pp. 2222–2229.

[112] A. W. Moore, “Efficient memory-based learning for robot control,” University
of Cambridge, Computer Laboratory, Tech. Rep., 1990.

[113] ArduPilot Development Team, ArduPilot Autopilot Software Suite. [Online].
Available: https://ardupilot.org/.

[114] R. Liu and J. Zou, “The effects of memory replay in reinforcement learning,”
in 2018 56th annual allerton conference on communication, control, and com-
puting (Allerton), IEEE, 2018, pp. 478–485.

[115] J. Achiam, “Spinning Up in Deep Reinforcement Learning,” 2018. [Online].
Available: https://github.com/openai/spinningu.

[116] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press, 2016.

[117] Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel, “Benchmarking
deep reinforcement learning for continuous control,” in International confer-
ence on machine learning, PMLR, 2016, pp. 1329–1338.

[118] T. Haarnoja et al., “Soft actor-critic algorithms and applications,” arXiv preprint
arXiv:1812.05905, 2018.

[119] M. K. M. Meral, “Comparing model-free deep reinforcement learning algo-
rithms on stock market,” 2021.

[120] M. Abadi et al., TensorFlow: Large-scale machine learning on heterogeneous
systems, Software available from tensorflow.org, 2015. [Online]. Available: https:
//www.tensorflow.org/.

[121] F. Chollet et al., Keras, 2015. [Online]. Available: https://keras.io.

[122] C. Lai, J. Han, and H. Dong, “Tensorlayer 3.0: A deep learning library com-
patible with multiple backends,” in 2021 IEEE International Conference on
Multimedia & Expo Workshops (ICMEW), IEEE, 2021, pp. 1–3.

[123] L. Meier, MAVLink: Micro Air Vehicle Communication Protocol, 2009. [On-
line]. Available: https://mavlink.io/en/.

147

https://ardupilot.org/
https://github.com/openai/spinningu
https://www.tensorflow.org/
https://www.tensorflow.org/
https://keras.io
https://mavlink.io/en/

[124] QGroundControl GCS. [Online]. Available: http://qgroundcontrol.com/.

[125] H. Wang, C. Wang, C. Chen, and L. Xie, “F-LOAM : Fast LiDAR odometry
and mapping,” in 2021 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2020.

[126] B. Zhou, Y. Zhang, X. Chen, and S. Shen, “FUEL: Fast UAV exploration using
incremental frontier structure and hierarchical planning,” IEEE Robotics and
Automation Letters, vol. 6, no. 2, pp. 779–786, 2021.

[127] T. Lee, S. Mckeever, and J. Courtney, “Flying free: A research overview of
deep learning in drone navigation autonomy,” Drones, vol. 5, no. 2, p. 52,
2021.

[128] D. Bauer, T. Patten, and M. Vincze, “Reagent: Point cloud registration us-
ing imitation and reinforcement learning,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2021, pp. 14 586–
14 594.

[129] C. Zhao, Q. Sun, C. Zhang, Y. Tang, and F. Qian, “Monocular depth esti-
mation based on deep learning: An overview,” Science China Technological
Sciences, vol. 63, no. 9, pp. 1612–1627, 2020.

148

http://qgroundcontrol.com/

	Introduction
	Motion Planning
	Nonlinear Model Predictive Approach
	Adaptation and Deep Reinforcement Learning
	Thesis Objectives
	Thesis Outline

	Nonlinear Model Predictive Horizon for Optimal Trajectory Generation
	Introduction
	Nonlinear Model Predictive Horizon Algorithm
	NMPH Constraints
	Continuous-time Representation of NMPH
	NMPH Optimization Problem
	Summary

	Nonlinear Model Predictive Horizon with Feedback Linearization Control
	Introduction
	NMPH Closed-loop Form with Feedback Linearization Control Law
	Application of NMPH-FBL to a Drone Vehicle
	System Model
	Development of Feedback Linearization Control Law on a Drone Vehicle
	Trajectory Generation using NMPH-FBL

	Simulation Results
	Predicted Output and Estimated Reference Trajectories
	Trajectory Generation and Initial Conditions
	Trajectory Tracking
	Dynamic Obstacle Avoidance
	Hardware-In-The-Loop Simulation

	Conclusions

	A Backstepping Approach to Nonlinear Model Predictive Horizon for Optimal Trajectory Planning
	Introduction
	Backstepping Control Law Integration within NMPH
	Drone Dynamics
	Backstepping Control Design
	NMPH-BSC Design of a Drone Vehicle

	Evaluation of NMPH-BSC
	Simulation Environment
	Hardware Flight Experiment

	Conclusions

	Optimal Motion Planning for Exploration of GPS-denied Environments using Nonlinear Model Predictive Horizon
	Introduction
	Motion Planning in GPS-denied Environments
	Motion Planner Architecture
	Volumetric Mapping
	Graph-based Path Planning
	NMPH for Local Path Planning

	Experimental Results
	Simulation Results
	Real-time flight test results

	Conclusions

	Adaptive Nonlinear Model Predictive Horizon using Deep Reinforcement Learning
	Introduction
	Deep Reinforcement Learning Overview
	Reinforcement Learning Preliminaries
	Deep Deterministic Policy Gradient
	Soft Actor-Critic

	Adaptive Trajectory Planning Framework
	Agent and Environment Representations
	DRL-based Adaptive NMPH Architecture

	Implementation and Evaluation
	Conclusions

	Hardware Platform and Software Architecture
	Hardware Platform
	High-level onboard computing module
	Low-level flight controller
	Sensors
	Airframe

	Software Architecture
	Summary

	Conclusions and Future Work
	Conclusions
	Nonlinear Model Predictive Horizon
	NMPH with Feedback Linearization
	NMPH with Backstepping Control
	Global Motion Planning using NMPH approaches
	Adaptive NMPH Design using Deep Reinforcement Learning

	Future Perspectives
	Experimental Testing
	Towards Faster and Smarter Drone Exploration
	Deep Reinforcement Learning for Intelligent Robots
	Next Generation Drones

	Bibliography

