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Abstract

Finsler geometry studies the length of paths in a space. Two important specializa-
tions of Finsler spaces are Landsberg spaces and Berwald spaces. All Berwald spaces
are Landsberg spaces. An example of a Landsberg space which is not a Berwald
space is not known. This thesis consists of three sections. The first introduces the
basic results and notation to discuss these spaces. The second examines theorems in
the mathematical literature which consider conditions under which Landsberg spaces
become Berwald spaces. The third section contains original work which introduces

new classes of metrics: these may contain Landsberg spaces which are not Berwald.
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Chapter 1
Introduction

The study of Finsler geometry concerns the lengths of paths in a space. Within
Finsler spaces, Landsberg spaces and Berwald spaces are of particular importance.
Berwald spaces include the set of Riemannian and Minkowski spaces. The prob-
lem with Berwald spaces is that they are too benign—their geodesics (the “natural”
paths) can often be given by a Riemannian metric. Yet, many important applications
have been derived from their theory [1, 2, 3]. Landsberg spaces are a generalization
of Berwald spaces. They are spaces where the Chern/Rund connection coincides with
the Berwald connection. Also, the horizontal part of the Cartan connection coincides
with that of the Berwald connection for this class of Finsler spaces. This is signifi-
cant as the Cartan connection is a metrical and h-torsion free connection, while the
Berwald connection comes from the theory of sprays. Both types of connections are
generalizations of the Levi-Civita connection of Riemannian geometry. The first sec-
tion covers the background information necessary to discuss Landsberg and Berwald
spaces.

There are several theorems regarding Landsberg spaces—however, a specific ez-
ample of a Landsberg space which is not a Berwald space is not yet known. The second
section presents several reduction theorems and proofs, taken from the mathematical

literature, which are of the following form:
with property P, a Landsberg space is a Berwald space.

In the third section, the author introduces some new types of metrics. These may

contain Landsberg spaces which are not Berwald.



1.1 Preliminaries from differentiable manifold the-
ory

1.1.1 Definition A differentiable manifold .M™ is a separable Hausdorff space

M with a maximal collection of charts {{’y, h\}rey such that
o hy:Uy— VA CR"is a homeomorphism where V) is an open set;

o for all @, 3 € A the composition A, o h;l is C'* when restricted to the domain
hs(Us N U3).

1.1.2 Definition  Let M" be a manifold. p € .M". A tangent vector £ at p is
an assignment of a n-tuple of numbers for every a € \. denoted & withi=1.....n.

which obeys the relation

3= D(hgoh;")n.(p) " Ea-

D denotes the derivative operator; this is evaluated at h,(p). The tangent space
at a point p € .M", denoted T,.U", is a vector space formed by the disjoint union
of all tangent vectors at p. The tangent space of .M" , denoted by T.M", is the
disjoint union of all T,.M". The tangent space can also be considered as a tangent

manifold. and as a fiber bundle over M" .

1.1.3 Notation  Often a particular coordinate chart A is implicitly assumed and
coordinates are imposed from V). Namely, a point p € [’y is identified with A\(p).
so the standard Euclidean coordinates (z!.....z") of R™ when restricted to V) are

interpreted as coordinates on M"™ . Furthermore, a basis for the tangent space at

p € M™ is given by 3‘%. Vectors in this tangent space can be expressed as y =
Y r,y's. Hence coordinates in T.M" are given by (z!,...,z" y%,...,y"). This

local coordinate description is abbreviated by the notation (z,y).

1.1.4 Definition  The term conical tangent manifold is used to denote an open

region of the tangent manifold that
i. does not contain (z,0),
li. contains (z,Ay) for A > 0 if it contains (z,y).
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The conical tangent manifold is represented by the symbol TM.

1.1.5 Definition  Consider the map 7 : TM"™ — M"™ where 7(z,y) = z. Taking
the differential of this map yields D7 : TTM™ — T.M™. Let VT M denote the kernel
of Dr; this space is a sub-bundle of TT M" over T M". A (spray) vector field on
TM™ is a C* section of VT M. A (spray) vector field is just a second order ordinary
differential equation; it does not have to be homogeneous of degree 2. Define (VT M)
as the dual vector bundle to V7. over T M". A (spray) one-form field on T M"
is a ("*° section of (VT M)*. A ("™ section of
VITME---3VTME YTM) 9.8 (VTM )

Van

T p—

r copies 3 copies

is called a (spray) (r,s) tensor field on .M" . The term tensor field will refer to

spray tensor flelds in this paper.

1.1.6 Notation  Einstein summation is used to simplify the notation of objects
in coordinate form. Namely. Latin indices which are used once in subscript and once
in the superscript of a term are assumed to be summed in an expression over the
values l.... .n. For example if 4 is a (0.3) tensor, then A;jry! = Z;;L ;‘1{jkyj and
the result is a (0.2) tensor. Summing in this manner is also called transvection. An
index with the number 0 is used as a shorthand notation to indicate that the index

has been transvected with y'. For example, 4,01 = Ay

1.1.7 Notation In local coordinates (z!,...,z",y'.... .y") denote partial differ-

entiation as follows.

O = 5— O = 5

1.1.8 Definition  Let TM denote a conical region in a tangent manifold. A fun-

damental function

o——

L:TM—>R

is used to define lengths of parameterized paths in the manifold. Namely, if o :
[0,1] = M™ is a path, then it has length Length(a) = [, L{a(t),o(t))dt. Note
that in general, this definition of length depends on para.meterlzatlon of the path.

3



If z = («%,... ,2") denotes local coordinates on .M™ and y denotes the induced
tangent vector coordinates on 7M™ then the fundamental function is often written

in the form L(z,y).

1.1.9 Definition A metric tensor associated to a fundamental function L is
given by

1 AN r2
gi; = 3C)i0jL'.

<

1.1.10 Definition  Let V" be a vector space. A function f: V' — R is positively
homogeneous (or p-homogeneous) of degree d € R if for each y € V', f(\y) = A f(y)
for all A > 0.

1.1.11 Proposition  (Euler) A smooth function f: V" — R, with V" open in R?,
is p-homogeneous of degree d if and only if
af b
dvi~

where v' are an orthogonal basis of V.

d- f(u) (L.1)

Proof: We follow {2] for the proof. Suppose fis p-homogeneous of degree d. Then

f(pr) = pf(v) for p € Rsq. Differentiate this equation with respect to p to obtain
af

g . d=l
o d-p™ " f(v)
and set p = | to get
af

For the reverse implication, assume the above equation holds. Evaluate f at pv
to obtain
|, ftm)
d- = —| pv'=p——7>.
flpv) = 55 N V=P,
Now for fixed v, define g(p) = f(pv). The above equation can then be written as
d-g(p) _ 99(p)
p dp
This is a separable differential equation which vields the solution g(p) = p®g(1). This

implies f(pv) = p?f(v) so f is p-homogeneous of degree d. ]

4



1.1.12 Definition A Finsler space is a pair (ﬂ?, L) where .M™" is a manifold,

and L is a fundamental function which satisfies properties below.
I. L>0,and Lis C™on TM.

2. L is positively homogeneous of degree one in y. This implies that the length of
a path does not depend on parameterization. though it may depend on orien-

tation.

3. The induced metric tensor gi;(z.y) is positive definite. This means that if
(z.y) € TM and { € To.M™ then gij(z. y)¢'¢? > 0.

The last requirement is sometimes replaced with regularity

{det(g:;) # 0) to include more general spaces.

1.1.13 Definition  The indicatrix at a point p € .\" is defined to be the set
I,={(p,y) € TM|L(p,y) = 1}.

1.2 Metric properties

Although Finsler spaces are commonly called Finsler metric spaces, they are not
necessarily metric spaces in the traditional sense. A metric on a topological space T

is well known as a function
d:TxT—=R
which satisfies the following properties:
. d(z,y) 20Vz,yeT,
i. d(z,y) =0 & z =y,
iii. d(z,y) = d(y, ) (symmetry),
iv. d(z,z) < d(z,y) + d(y, z) (triangle inequality).

Originally Finsler spaces satisfied all of these condition and the terminology of
metric space was well justified. The theory of Finsler spaces under the original re-

stricted assumptions was pursued by Busemann [8]. He showed that on a one or two
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dimensional space X, defining a metric on X which satisfies certain assumptions will
imply that X is a manifold. Moreover, a metric defined on a manifold (of arbitrary
dimension) which satisfied a few additional assumptions had to be Finsler.

Later, the requirement of symmetry was dropped for many applications. One
striking example of the strength of this is the discovery of a non-symmetric Finsler
structure of constant curvature on the sphere [7]. No symmetric example is known
which is not Riemannian.

On reduction to a Finsler metric defined only on a conical region. positive defi-
niteness no longer ensures the triangle inequality. The example indicates how it can

fail.

1.2.1 Example Let .M" = R? and let
TM = {(z', 2% y' . y%) € TM"| y* £0}.
Define the fundamental function

Vgt +0.32 + (y2)?  ify?>0.
Vgt =035+ (y3)?  ify? <.

The fundamental function is clearly positive definite in TM. Let
m =(0,0,1.3,-0.3), p2=(0,0,0.5.1).
Then

Lip)) + L(pa) = V1+ .25+ VI + 1 < /(2.5)2 + .25 = L(p1 + pa).
Hence, the triangle inequality does not hold in general.

Note in Figure 1.1 that the line connecting p, and p; crosses the line y*> = 0 and hence
does not lie entirely inside TM. This is essentially the only way that the triangle
inequality can be broken. The triangle inequality does hold in a weaker form, as is

shown in the following theorem.

1.2.2 Lemma (Rund [19]) Let L be the fundamental function of a Finsler space
TM. Let (z,y) € TM and (z,£) € TM". Then

a1 i
(8:0;5L(z.y))§'¢" 20,
with equality holding if and only if £ = sy for some s.

6
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Figure 1.1: The indicatrix of the metric L, with the points py, pa. p1 + p2.
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Proof: Let (z.y) € TM. and let £,v € T, M". Then
iz Y)E + sV )(E + sv) = gijla, y)E'E + 253y (2. Y)Y + gy,

where s € R. The equation can be viewed as a quadratic equation in s. Since g;;
is positive definite by assumption, the left hand term can only be zero if £ + sv =
0. Hence. the quadratic equation in s has at most one real solution. Then the

discriminant of the equation must be negative, so

(946" ) < (9:,6°8 ) (giyv'v”). (1.2)
The definition of the metric tensor can be evaluated explicitly.
g‘-j(:l:,y) = 8,-81-3L2 = 81(120]1:) = (B‘L)(d,L) + L(deL) (13)

Euler’s theorem yields

(a',»a’,é/;z)yi = (8;L)(3; L)y’ + L(8:d,L)y’ = (8:L)LL + LO = (9;L)L, and

N S . : "
(0d;5L7)'y' = LGiL)y' = L?

7



by the one and zero degree p-homogeneity of 9;L and &&LL respectively. The first
of the above two equations can be solved &L = %L’l(aﬁjlﬂ)yj and this can be

substituted into Equation (1.3) to get
1 o« : s S oe e C o
L8 L)z.y) = %L'Z(B,Bh[,“)yh(akdjll')yk + L(@Bd;L).
Solving for the term (0,0,L) in the above and contracting by &’ yields
L s s i Lpoa 2 s e i) ?
B40EE = L7 (@, LeE - 517 ((Bd,Lwe ) )

Substitute the inequality 1.2 into the above with v = y.

1 l

BALIEE > LD LHEE — SL7B:0; L6 (0:0; L)'y}
> Laa rge - 80, ee L)
> 0

O

1.2.3 Theorem (Rund [19]) Let L be the fundamental function of a Finsler
manifold TM. Let ¢ € M™. Let (£.€).(zx.v) € T M. Further. assume (z.ré + (1 —
rjv) € TM forall r € [0,1]. Then L{z.&+v) < L(x. &)+ L(z.v). and equality holds
& £ =rv withr >0

Proof: Let z',u'.€ be given as in the theorem statement in coordinate form. The

mean value theorem yields the equation
L(z.€) = Lz, v) + (& L(z.v))( = V') + & (& = ') (& =)
The remainder term in the above is given by
i = 0i0;L(x,sv + (1 = 3)§).

where s € (0, 1) is some unknown number given by the mean value theorem. Since L

is p-homogeneous of degree 1, L(z.v) = 3,-[-(1', v)v'. Hence the first equation reduces

to
L(z,€) = (8:L(z,v))€ + (€ — V) (& = V).

8



Note that (z,0) € TM so £ # sv for s < 0. This ensures that §;; is well -defined, as
L is smooth at (z,s€ + (1 —s)v) € TM by assumption. Define

¢ = (& —)(E — ).
Now by Lemma 1.2.2, & > 0 with equality if and only if there is a number r such
that

£ —v =r(sv+ (1 —3s)),
which is equivalent to

E(l+rs—r) =0 (1 +rs).

Now l+rs=0 = r=-1/s = (l+rs—r)=1/s #0, hence both (l+rs) and
(14rs-r) can not vanish simultaneously. This implies that neither can vanish at all.
for it would imply that one of £ or v was the zero vector.
Hence @ is non-negative and vanishes if and only if £ = tv for some t > 0. This
implies
L(z.€) 2 &:L(z.v)E,
with equality only in the aforementioned case. Applying this result to the points
(z.€) and (z,.€ + v) yields
L(x.£) > 0 L(x.6 + V)€,
Applying the result to the points (z.v) and (r, £ + v) yields
L(z,v) > a;L(J:,f + Ut
This implies
L(z.v) + L(2.€) > §L(2.€ + v)(' + €.
Since L is p-homogeneous of degree 1, the right hand side equals (L,z.£ + v) by
Euler’s theorem. This is the desired result. a
The theorem shows that the Finsler function is locally convex in TM. The above
theorem can be useful when visually examining an indicatrix; if the indicatrix of a
fundamental function is not locally convex, then it does not give rise to a positive
definite Finsler space. Strict convexity is not sufficient to ensure that the metric

is positive definite—the requirement is that the quadratic form osculating to the

indicatrix must be non-degenerate.



1.3 Finsler connections

1.3.1 Definition A frame at a point p € M" is an ordered set of n linearly inde-
pendent tangent vectors. The set of all frames above a point p forms the structure
group G L(n). The collection of all frames over all points forms the principal bundle
called the frame bundle over M" | and is denoted by L(.M").

Flme) 2 e

TM——M"

Define the spray bundle over .M" as the pullback of the frame bundle over the
conical tangent bundle. The spray bundle is denoted by F(.M"). and it is a principal

bundle with structure group GL(n).

1.3.2 Definition  There is a map 3, : F(.M") — F(M") called right transla-
tion. [t iz understood that ¢ € GL(n). and it maps (z.y.=) = (I.y.zg). where
(2.y.2) € 77 (2, 9))-

1.3.3 Definition  Let .M" be 2 manifold which is a base space of the vector bundle
E with a projection map 7 : £ = M". A distribution in E over MM is a C™ map
A, which maps p € .M" to a subspace in #~!(p). The vertical sub-bundle V£ of
TE is the kernel of Dr : TE — T.M™. The fiber of V'E above a point y € TM" is
denoted E} = (D7)~ (y).

1.3.4 Definition A spray connection N on a manifold M is a distribution in
E = TM over M, where for all y € M, T,E = E! 2 N(y). A linear connection in
F(M™) is a spray connection on F(.M") which also satisfies (D3,)(N(y)) = N(yg)-

1.3.5 Definition A pre-Finsler connection is a pair (I', V), where [' is a linear
connection in FM™, and N is a spray connection on TM. In coordinate notation,
such a connection is represented by the triad (F7;, N}, V},). A pre-Finsler connection
is called a Finsler connection if it defined using a fundamental function. The

Levi-Civita connection */;k of Riemannian geometry corresponds to FJj.

10



1.3.6 Remark  Let (F}, N}, V}}) be a pre-Finsler connection on .M" . In general
F. and V are p-homogeneous of degrees 0 and -1 respectively, while z\/’j has no p-
homogeneous constraint. For the connections which are examined in this work, it is

assumed that N;.' is p-homogeneous of degree 1.

1.3.7 Definition The Cartan torsion tensor is defined as
1.
Cii = 50k9i;-

1.3.8 Definition = The angular metric tensor is defined as h;; = gij — L™yy;.

1.3.9 Definition A space is said to be C-Reducible if the Cartan torsion tensor
is of the special form
hng},- -+ hj/cC, - h;“'C'J

n+1

ijr'c =

The term C; is referred to as the contracted torsion tensor. and is defined by
C, = g/*Cijx. All two dimensional spaces are of this form. as are Riemannian spaces,

so they are excluded for convenience.[2][p. 32]

1.3.10 Notation  The following symbols are defined. The degree listed is the

degree of p-homogeneity .

Name Degree 1 Definition

Levi-Civita Symbol (first kind) 0 Yije = 3(0jgik + Oegis — igix)
Levi-Civita Symbol (second kind) 0 1/};‘ = §" sk

Spray functions 2 G' = %'/;kyjyk

Nonlinear connection of Cartan 1 G = 9;,¢¢

Spray connection coefficients 0 Gy = OGS

The spray functions come from the calculus of variations. Namely, if s is a path
between two points p and ¢ on the manifold, then s is called a geodesic if the length
of s is a local extremum. This condition, ds = 0, is converted into the differential
equations

i

FER viey'y* = 0.

The term v, y/y* is set to equal 2G*. This system will be a classical Douglas spray if
and only if G* is p-homogeneous of degree 2.

11



1.3.11 Notation  Berwald’s nonlinear operator is defined to be § = J — Ni(8,).

1.3.12 Definition  The h-covariant derivative relative to (F}, VJ‘X/J‘k) of a

(1,1) tensor field A! is given by
|k_($kPl +{] sk {s 7k

The short bar is used to denote the h-covariant derivative in coordinate form. In

non-coordinate form, this operator is represented by the symbol V*.

1.3.13 Definition  The v-covariant derivative relative to (F}. N}, V) of a

(1.1) tensor field —{; is given by
L] = Ol + AV, — ALV

The long bar denotes the operation when the tensor is in coordinate form, and the

symbol V* is used when the tensor is given in non-coordinate form.

1.3.14 Notation  The symbol (j|k), where j and k are indices, is used to denote
that all the terms in front of the symbol should be added with the symbols j and &

interchanged. In other words
Ay = By = Dy — Uilk) = i, = Biy = Dl — (B, ~ DLy}

t

1.3.15 Definition  Given a pre-Finsler connection ( F Jk V1. V) the following ten-

sors are defined. The degree of their p-homogeneity is listed in bracl\etb.
e Deflection tensor D= D‘ = F‘Jy - \‘ (1)
o A curvature = K}, = &Fi + F[ Fi— (jlk)  (0)
e F tensor = F};, = akF,ﬁj (-1)

1.3.16 Definition  Given a pre-Finsler connection (Fj, ¥, V) the following cur-

vatures and torsions are defined as in [2].
e (h) h -torsion T' = T}, = F}; — (jk) (0)
o (v) h-torsion R'= R}, =N} - (jlk) (1)

12



(h) hv-torsion V=V, (-1)

¢ (v) hv-torsion P'= P}, = = O Ni — Fi. (0)

(v) v-torsion S'= S =V}, — (jlk) (-1)

o h-curvature R? = R}, = K}, + Vi, R}, (0)
s hv-curvature P? = ,ﬁlk =Fi.- an‘w Ve Pr (-1)
¢ v-curvature S =5th = dwhj + L;U o= Uk (-2)

1.3.17 Definition  The Cartan connection is a Finsler connection given by the
triad C'T = ( ;}c . "jk) where

G°(8;Gsk + 9kgjs — dsGjk)

l\‘)lv—‘

;;: lSF‘L_g (,sjk—CserZ. CJLrG -L-Cser, ):

and C};, = 9*Cyji. The symbol [}, is obtained from the definition of ;¢ by replacing
d with 8. By construction, ('} is the Christoffel symbol of the second kind in the

tangent space of a fixed value of .

M. Matsumoto showed that this connection is uniquely determinedby D = 0,T =
0,S! =0,Vhg =0,V = 0. The last two imply that raising and lowering indices is

compatible with the covariant derivatives. [2]
1.3.18 Definition  The Rund connection is defined to be R[ = (['3;. G, 0).

1.3.19 Definition = The Berwald connection is B[' = (G}k,Ci- 0). Covariant
derivatives taken with this connection are denoted by (;,||) for the h and v directions

respectively.

T. Okada showed the Berwald connection is uniquely determined by VAL = 0,T =
0,0 = 0,P! =0,V = 0. [18] Raising and lowering coefficients are not necessarily

metric compatible, but they can be computed using Proposition 1.4.7.

1.3.20 Notation The h-curvature tensor R? of the Berwald connection is

written as H, and is given by
Hij = 6Gh; + GiyGri — (71k)-

13



The hv-curvature tensor P? of the Berwald connection is written as G and is

given by G, = Z)kG‘}U«.
1.3.21 Lemma  The Berwald, Cartan, and Rund connections all give the same

value for a horizontal covariant derivative followed by a transvection.

Proof: All that needs to be shown is ( ;;c - Gj-k)yk = 0 or equivalently F;};yk = G;

This last equation is clear since D =0 for the Cartan connection. a

1.4 Finsler identities
A number of useful identities hold for homogeneous functions.

1.4.1 Proposition  Let R, S.and T be functions on T Mwhich are p-homogeneous
of degree s, s. and t respectively. Then the following combinations are p-homogeneous

of the given degree.

Function Degree

ST S+t
s/T st
R+S s
8;5. V"S S
S. V'S sl

Proof: The proof of the first three is trivial.

dS(z, \y) S(z! + 8k, Ay?) — S(2d, \y?)

0:S(x.hy) = —5— =i h
o S(ai 48R,y - S, ) 9S(z.y) ,
= N\ L - = N2 =) S T,
fimm A h Nt = VOS]

The covariant horizontal derivative of S is a partial derivative with respect to z
summed with the products of S and functions which are p-homogeneous of degree
sero. Hence the horizontal covariant derivative does not affect homogeneity. Euler’s

theorem gives the result for ;S since differentiation of the result in Euler’s theorem

14



yields

8:9,5(x.y)y’ = 0isS(z.y)
3j(3i5(2,y))yj+3,~S(1:,y)5{ = sé,-S(m,y)
0,08z, = (s = 1DASEY),

where by Euler’s theorem. the last line implies 9,5(z,y) is p-homogeneous of degree s-
1. Finally the vertical covariant derivative consists of a partial derivative with respect
to y summed with products of S and functions which are p-homogeneous of degree

minus one. a

1.4.2 Definition  The inverse metric tensor g' is defined by the relationship

g'*gs; = &' where

! 0 otherwise.

If gi; is considered as a matrix of entries. then g will be the matrix inverse.

1.4.3 Notation  The indices of a tensor can be raised or lowered by contraction
with the metric. If 5* and T are defined tensors. then S := gis5* and T' := g**Ts.
If there are indices at both the top and bottom of a tensor. then conventions dictate

the new position of the index.

1.4.4 Definition  The length of a vector { at a point (z,y) is given by the formula
gi; (L. y)EE Similarly, the length of a one-form w; at a point (z.y) is given by

Vg (z, yywiw;. v should be noted that L(z.y) = Vi (2 Y)Yy

1.4.5 Notation  All functions, tensors and connections are defined on TM: ev-
erything in Finsler geometry has angular dependence. This dependence is often sup-
pressed for notational clarity. For example gij is written instead of gi(z,y). Note

that although gi;j is 0 degree p-homogeneous it still depends on the ratios y*/y'

1.4.6 Definition A canonical vector field is defined on TM by I = y*/L. The
covariant form of this vector field is given by i = ['gy? = L7105 L% = 9;L. Both
[ and [; have unit length.



1.4.7 Proposition
gi;g” =n ghi; = (n—1)
gijy'y' = L* hijyt =0
9;1}: = _thgxsg,jzkﬁl € {I' Y

Proof: The first four are immediate.

gijgij = 4 =n
¢hij = hi=d&—lli=n-1

gGyy = 3(0g81£')y‘y1=3(3jﬂ')y1= 2L° = L[* by Euler’s theorem.

v

| o—

hiy' = gy =)y =y, — Ll =0
The last relationship follows from

0= (8 )k = (9" Gsi )ik = Gings; + 9" Gsik 50

13 th 13

9290 = =G Geie => 92950 = =g 9 g => 10 = —¢" 9" Guii-

This implies that the covariant derivative of the inverse metric tensor is zero in CT,

and in Bl we have

git = —g 9" g = 297" Py = 2P{". and
ok = =g uiipe = 207g" Cpe = 263"

The following proposition lists many identities used in Theorem 2.5.1

1.4.8 Proposition  Berwald identities for & and ! and y.

16



Proof:

y]ila. = 4
gie = (LO:L)ye = a(LE:L) = azai(%ﬁz) = Gia
I o R U N
e = (L7 = —L7lays + 17 e = L7 (91 — L7%yayi) = L7 hia
hae = (Gab — Labs )i = 2Cabe — Lafiels = lLaloyie = e — L7 hucls = L L™ e
hip = (88 = Ll )y = —(Ufpla + 'laypp)
= —(L7'Ril, + hal™h) = — L™ (Ably + U*hao)
yihlys = — L7 (Lhas) = —has
Ripe = —(L7 Ayl + Lhas)ie
= L7 (hila + Fhus) = L™ (higela + Bl + fichas & Uhasy)
= L2 (hily + Phay) = LH((= L7 (AL + Uhec))a + hilae + (L7 hE)ha
+11(2C e — L™ haels = LaL™ hae))
gkt = L73lhile + hay) = L7H(= L7 (Lhse))la + 0+ 0
4+ L(2C e = L™ hacly = L™ 5hoc))
= [ kg — L7 (=hsele + 2LC b = hacls = Lahse)
= L™Y(lheo + lohae = 2LCabe + 2hscls)

1.5 Landsberg spaces

1.5.1 Definition A Landsberg space is a Finsler space where [} = v (2
this condition holds in one coordinate system, it will hold in any coordinate system.
The geometric invariance of this definition lies in the fact that the difference of these

two connections is zero.

In Landsberg spaces the Berwald connection will be h-metrical and symmetric. This
is a desirable property since this is the condition that distinguishes the Levi-Civita
connection in Riemannian geometry. Landsberg spaces can also be characterized by

a result of Ichijyo:



In order that a connected Finsler manifold M be a Landsberg space, it
is necessary and sufficient that, for arbitrary two points p and ¢ in M
and for any plecewise differentiable curve [ joining p and ¢, the holonomy
mapping from T,(M) to T,(M) along [ with respect to Cartan’s non-linear
connection Gj- = I'y™ is always an afine mapping from the tangent

Riemannian space Tp(M) to the tangent Riemannian space Ty(M). (10]

1.5.2 Proposition.  In a Landsberg space; h-covariant differentiation is the same

in BT, CT, and RI.

Proof: This follows directly from the definition of the h-covariant derivative since

Several other conditions are equivalent to the given definition.

1.5.3 Theorem  The following are all equivalent [2].
(1) T =G (2) Ciko =0 (3) gisie = 0 (&) PR=0
(3) Pfkl =0 (6) "?:jk = Ciltx-u (7) G?]kyh =0
Proof: The result for (2) and (3) follow from a Ricci identity with the Berwald

connection. In particular it yields

Al T . .
Gij:hllk = Gigllksh = —9ri e — GirGlnk by definition.
gijmite — 2Cijen = —Gijhk = Gjink
¢ . h
Gijolik 2060 = —Glijok — G iox contraction by y

gizopk — 2Cijke = 0

since by Euler’s theorem Gasniy™ = 0. Now. gij;h”kyh = (g;j;hy")“k — Gijik SO Gijollk =

—gij as gijo = 0. Hence,
Gijie = —2Cjk0-
Define DY, = [ji — G, and consider

Gijik — Gijk = 0+ 2C;;k:0 by above and h-metricity of CT, (1.4)
= —g,;D% — g-: D by the definitions. (1.3)

Symmetry implies Cijro = Cikjo, so the above yields grj Dl = g« D7; since Dy,
is symmetric in the lower two indices. Also Cijro = Ckijio implies gr: D% = grk D,

18



Hence Equation (1.4) implies 2Cijr0 = —2g, Df; which by the symmetry the Cartan
torsion tensor implies Cijro = gir Dj. Now Cipg = —Dj, so (1).(2) and (3) are
equivalent.

For (4) and (5), identities for C'T [2] are used. The identity is
Prijk = Cinkli + CinPrix + Priji — (2]7) = 0.
Then phijx + Pijak — Pjric = 0 will imply that
Prijk = Cijip — Cijrgi + Cr; P — Cl; Penke (1.6)
Transvect by y* in the above and use Euler’s theorem to find
Pk = Poijk = Cijipo — CT; Prok:

where first equality follows from a Ricci identity. Moreover. if this expression is
transvected by y’ it shows P, = 0. Hence P = Cijro = Cijko so () is equivalent

to {3). Next the Bianchi identity
qhijk = PhriChj = Paij |, +Puni; — (i) =0
implies that gaijx + gijak — qjaic = 0. This in turn yields
Puijk = Pjki|, +PuirCjy, — (h0).

Hence (4) implies (5). From the Ricci identity mentioned earlier, Poijx = Pk, (5)
implies (4).

For (6), first assume the space is Landsberg. Then the P' and P? tensors (of
CT) are zero, so substituting into the definition of the P? tensor yields G‘,'Ijk = C;;klj.
Conversely, (6) implies C} .y’ = 9;Ghy! = 0 since G* is p-homogeneous of degree
zero. It is clear that C ‘.’;:(0 =0 is equivalent to (2) since the connection is metrical.

For (7), first note that in a Landsberg space the tensor Cijky is fully symmetric
in all indices. This occurs since the P? and P! tensors are zero in Equation (1.6).

Hence (6) implies (7) as

yrijk = yhghrcirku = thihk!j = 0.
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Conversely, assuming (7) a Ricci identity can be applied (2, 2.5.2.3].

Yijite — Yillks = ~Yr T?jk

0—guyy = —u-Glji
Hence (7) implies (2). a
[n a Landsberg space, the Cartan connection has a zero hv-curvature tensor.

Indeed, in CT the following are zero: T, P',S', P?, D for Landsberg spaces.

1.6 Berwald spaces

1.6.1 Definition A Finsler spaceisa Berwald space if the connection ij(l', y) =
Gil(z) is a function of z alone. This is a geometric definition because if it holds in

one coordinate chart, it will hold in all coordinate charts.

1.6.2 Example A Riemannian space is one where the metric tensor is a function
of z alone. It is easy to see that a Riemannian space is Berwald. A space is said to
be locally Minkowski if every point has a neighborhood in which the metric tensor is

a function of y alone. These spaces are also Berwald.

1.6.3 Theorem  The following are equivalent.

(1) L is Berwald (2) G =0

(3) Cijep =0 (4) Cijea = 0
Proof: (1) <= (2) is clear from the definition. Moreover (2) will imply that a
Berwald space is a Landsberg space by a later result. In a Landsberg space. the
tensor Gj-k, = ';'kll = C}k:‘ so (2) implies (3) and (4). Finally (3) or (4) implies the

space is Landsberg, so the above equation implies (2). a

1.6.4 Remark A Berwald space has several additional properties. The Berwald
connection has a zero hv-curvature tensor. Normal coordinates are smoothly defined
at the origin, in contrast to the general theory where normal coordinates are C°
on the zero section of the tangent bundle. Many applications are known 11, 2, 3.
Due to close ties with Riemannian geometry; the theory of Laplacians and Finslerian

diffusions is well developed on Berwald spaces [3].
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Chapter 2

Landsberg spaces which are

Berwald

921 One-form metrics in two dimensions

2.1.1 Definition  Let .M" be a manifold with n linearly independent one-forms
a?(z) with a € {l,...,n}, and the functions a®(z.y) := a?(z)y’ are defined. A
Finsler space is said to have a one-form Finsler metric if the fundamental function

is a function of a*, namely L(z.y) = L{at,... a%).

Two objects play a fundamental role in almost all theory involving two-

dimensional Finsler spaces: the Berwald frame, and the main scalar.

2.1.2 Definition  Locally define the unit length one-form m; by myl‘ = 0. This
one-form is uniquely determined up to an orientation. Raising the index with the
‘nverse metric, the Berwald frame is defined as the pair {I*,m'}. The metric tensor
can be written gij = lilj + emim; where ¢ = £l When ¢ = —1. the metric is not

positive definite.

9.1.3 Definition = The Cartan torsion tensor goes to zero when transvected with
y on any index. This implies LCijx = Im;m;m; for some function [ : TM = R: Lis

called the main scalar of a two dimensional Finsler space.

2.1.4 Proposition A two dimensional Finsler space is Landsberg if and only if
Ilg =0.



Proof: Since gijix = 0 = Lk, we must have m;m; = —miMmjjk- This implies m;x = 0.

By the definition of the main scalar
C:‘jklo = ([/L)mm;mjmk = Ilomim]-mk/[;,
since Ljp = 0. Hence Cijro =0 & [x =0 O

2.1.5 Proposition A two dimensional Finsler space is a Berwald space if the

main scalar is constant.

Proof: If the main scalar is a coustant, then the definition of the main scalar implies
(LCiji)p = 0. This in turn implies LyCijx = —LCljkit, 0 Cisep = 0. Hence the space
is Berwald. O

The previous statement can be strengthened to state that a Berwald space in two

dimensions is either locally Minkowski, or the main scalar is constant (2].

.

2.1.6 Theorem (Matsumoto and Shimada [16]) If a one-form metric in two

dimensions is a Landsberg space. then it is also 2 Berwald space.

Proof: For a scalar function F : TM — Rona one-form space. where F' can be written
in terms of the one-forms, define F, := gTF; Consider the h-covariant derivative of a

scalar F.
F“ = a‘F - GZO,F = Faaiaa - -;:Faaraa = Faaﬁ

Since L; = 0. the above formula implies that Laaj} =0 which can be weakened to
state Lqafy = 0. Since [ can be written as a function of the one-forms. the assumption
that the space is Landsberg, [jo = 0. implies [afy = 0. Because the space is two-

dimensional, the above equations imply one of two possibilities.

(i) I, and L, are proportional ([o = ALa for some scalar A). Since [ is p-
homogeneous of degree 0 and L is p-homogeneous of degree 1, and L, is not
zero for every a , we must have A =0 = I[,. Hence [ is a constant, and this

implies the space is Berwald.
(i) afg =0 Expanding the h-covariant derivative yields
dia’y' = in,”-é;,a“,
8;0?(m)yjyi = 2G’3,a;‘-(z)yj = Qa;?(:r)Gj.
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Multiply the above equation with the inverse matrix a to get

2G* = ai(r)@iaf(x)yi‘y-j.

1

Differentiating this expression twice shows that G is 2 function of z alone

which implies the space is Berwald.

a

2.9 TRanders and Kropina spaces in two dimensions

C-reducible spaces in dimension three or greater are all Randers or Kropina spaces.
Both are metrics of (. 3) type: this means that the fundamental function can be
specified in terms of a Riemannian metric a;;(x) with a = \/m, and a one-form
bi(r) with 3 = biy'. A Randers space is given by the fundamental function L = « +3.
The metric is positive definite as long as the length of the one-form bi(z) is less than
one when measured by the Riemannian metric a;;. A Kropina space is given by
L = a*/3 and these spaces are never positive definite. These two spaces have been
studied extensively by Finsler geometers as there are some physical applications for
these metrics (2],

In [9], Hashiguchi, H5j6 and Matsumoto showed that two dimensional Randers and
Kropina spaces which are Landsberg are Berwald spaces. Their proof, which follows.
does not require the positive definiteness of the metric a;j: @ij is only assumed to be

regular. First some notation is required.

2.9.1 Notation  Given an (a,3) metric, let the connection associated to the Rie-
mannian metric a;; be denoted by [ (z). Let covariant differentiation with respect
to this connection be denoted with the symbol /: VhA = Ay Define the following.

b = a'"b, (b)? := a"*b.bs
ri o= S0y + bipe) i =5y — bj/:)
rj- = a'"r,; b; = a5,
ri = brl s; = b.s]

It should be evident from the above definitions that a;; is used as a metric. Define
the difference tensor B := G%, — [ Define the difference vector B := G* — ;T
— 8L .— 9L
Define L, = §2 and Lg := 35
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Now L‘i =0= [.Qali + [.5‘3“ implies

Now consider the h-covariant derivative of 3.

18 t

Buyt = (bey" )yt = baay'y” = (8ibe — Grb )Yy

= (8by — Thiby + [iby — Griba)y™y' = (beyi = Bib )y Y

= bO/O b BSObS = TI'go — :ZBSb_,

A similar procedure applied to the (b)? yields another relation.

(b)y' = (b)}y’ = (a”beba)iy’ = y'a" (byjibs + brbyyi)
= 2yia " by(bei) = 2y @by (1 + $ri) = 2ihy(r! + 37)
= 2y'(ri + 5:) = 2(ra + o)
Defining the scalar p = (b)%c® — 32, the above equations imply
oy’ = (b’ + 2b) aayy’ 233"
=2rq+ so)a’ + Q(b)za(—%ijli)yi - '2}djd|,~y"
L )

= 2(ro + s0)o’ — ‘2((b)2az— + 3)3y"

‘X

. . L ,
= 2(rg + so)a* — ’2((6)'af‘3- + 3)(roo — 2bsB%).

2.2.2 Lemma In (5], Bdscd and Matsumoto showed that if bi(z)y* is a factor of

a;;(z)y'y’ then the dimension of the space is two, () = 0. and there exists § = di(z)y’

which satisfies d;b* = 0.

2.2.3 Lemma In two dimensional (e, 3) spaces with 3 # 0
o (B)2#£0 = Je=%l,30= di(z)y’ such that o® = 32/(b)? + €d*.
e (b)?=0 = Jo0= di(z)y* where o? = 34.
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Proof: If (b)? is not zero then defining ci; = aij — bib;/(b)? yields

. bib
¢t = (aij — m%)b" =b; -b;=0.
Let d; be defined by d'b; = 0 with d;d? = e. This implies ¢;jd = a;d? = di. Let

yt = Ad' + pb
ciy'y = cs(Md + ub YN + ) = Mg did = Ne

Now consider 6% = diy'djy’ = di( M+ pbt)d; (A + pbl) = \d;idid;d? = N*. Hence
a? -3 (bY =cw = ¢§?. which completes the first part.

If (b)? = 0, there are two cases to consider.

o If b,.by # 0, define the one-form d by the equations a = byd; and ax = bads.

9

Let a = det(a;;) = anaa — d2d. To show * = 34, it remains to show that

ap = (bida + d1b2) /2. Consideration of the last term vields

(b1)*bada + (b2)*bidy
byba

L (b)axn +bjan

2b, b biba

a

11 2, 22 2
= 2b1b2(a (bl) - a (bg) .

1 1
§(bld'z+bzdx) =3

since at! = asg/a. a** = ay/a. The assumption that (b)* = 0 now implies

b]bg

0= aijb;bj = a“(bl)z + a?.'.’(be)‘l + 2&12b1b2 = ——(bl(lg - bgdl) + 2(ll'zblb2.
a
As by # 0, we have al® = -—'—’1522“"—:& s0 ajz = (bid2 + bady)/2.

e Now suppose b; # 0 and b, = 0 (the case where the indices are transposed is

similar). We now have
0= (b)?=0bb= atth, = a''=0 = an= 0.

Define (d;,dz2) by a11 = bid; and a2 = bid,/2. This yields a;; = (bid; +b;d:) /2.
]

2.2.4 Lemma  Consider a two dimensional (a,3) space. If there are two functions

f(z),g(z) which satisfy

| V)
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1) f012+g/32=0thenf=g—_-0;ol-if
ii) f,32+gp=0thenf—_—g=00rf=g,(b)2___0'

iii) Similarly, if there are two one-forms \, u which satisfy Aa? +p3% = 0. then either
(52 #0,A=p=0o0r (b = 0.A = f(z)3,pn = — f(z)d, where § is from the

above lemma.
Proof:

i) fa? + g3®> = 0 implies of = —(g/f)3% it f # 0. This is not possible since
ai; = —(g/ f)bid; would imply det(a;;) = 0. Hence f=0=g

i1) Assume f3*+go=01 (b)? = 0 then p = —3% and f = g. Suppose (b)* # 0.
Then f3* + g3 + g(h)*a® = 0. By the first case, this implies f =g =0.
iii) If (b)* # O then using Lemma 2.2.3 implies

b;bi
A,,(EJE-)—: + Cdjd;c) + /.L,'bjbk = 0.

Then \; = p; = 0 since 3 and § are independent. 1f (b)> =0, then Lemma 2.2.3
implies A3d + p3? = 0 which implies A§ = —p3. Since these terms are linear
functions in y with 3 and ¢ being independent. A = f(z)3 for some f(r). This

choice will also imply g = —f(z)9.

g

2.9.5 Theorem A two dimensional Randers space which is Landsberg is Berwald.

Proof: The difference vector in a Randers space is computed using a formula from [14]

as

The main scalar of a Randers space of signature € = +1 is given by (2]
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Taking a h-covariant derivative of 9p = 4Lael? yields

9pi; = 4L;cel® + 4La‘ie[2 + 4Laelﬁ-

Ls
= 0+4L(-223;
T )4L
903,
= PN el
(8]

Rearranging and a transvection yields the following.

4
§Lae[|}y

= {pi+ ——}y
= 2ro + so)a —2((b)*a + 3)(reo — 26-B") + plreo — 2b.B")(1/a)

= Yrg + so)ad — (2Ab)Pa+23 - (bfe” = 3y = 5,8

9 l 9 9 9
= 2rg+ so)a” — -C:((b)'a' +2a3 + 3*)(roo — 26-8B")

Using the above formula for the difference vector allows the last term to be rewritten.

1

roo — Z("‘oo — 2as0)y'bi — 20espbi

1

roo — Z(ruoﬁ —2as03) — 2asg

w—2B.B"

(reo(L — 3) + 2ase(3 — L))

(T'QQ - 20(50 )

Q) |

This now implies

4 9 { 1 i 2] 2
§Lae[l“-y' = 2rg + so)a? — z((b)'a’ +2a3 + 3*)(roo — 2aso)-

Now [}, =0 <= [p= 0. so the space is Landsberg <

0

2

2rg + so)La” — ((b)%a® + 2a3 + 3%)(rea — 2aeso)
2rg + so)(a T B)a —((6)%® + 3*)(roo — 2cs0) — 2a3(rgo — 2as0)
2(rg + s0)(3 Ja? — ((b) 20% + B3%)re0 + 2a3(2as0)

+2a{(ro + s0)e® + ((b)%a® + 8%)sg — Broo}

Iro + 3s0)(B)a? — ((b)*a® + B)roo +

+2a{(ro + s0)a® + ((b)%a® + 3%)s0 — Broo}-

8}
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The above equation splits the terms into two pieces: one is polynomial in y* and

the other is an irrational in y'. Hence the pieces must individually be equal to zero.

)
)

Now suppose that (b)* # 0. By Equation (2.5) this implies a’roo has 3 as a factor.

o

o o

0 = 2a°3(ro+ 3s0) — ((b)2a® + 3*)re0 (:
0 = o?(ro+so) — Broo+ ((b)’’ + B%)so (:

| Q]

Since (b)? # 0, by the first lemma above roo = 3w wherew is a one-form. This implies

one factor of 3 can be canceled from Equation (2.3). leaving
a?(2rg + 630 — (b)'zu.') - J2w=0.

Applying Lemma 2.2.4 implies that w = 0. This implies that reo = 0. Making this
substitution into Equation (2.6) and applying the lemma again implies so = 0.

Suppose that (b)? = 0. Equation (2.5) can be simplified to a2(2r0+6so)—5roo =0,
by removing an excess factor of 3. Subtracting Equation (2.6) from the above yields

(12((7‘0 + 5.5'0) - ‘3280 = 0.

Now Lemma 2.2.4 yields so = fd and ro = f(3 —39). The second lemma gives
a? = 36 which implies roo = 2f§(3 — 28). Moreover (b)* = 0 and Equation (2.3)
imply f(3 —48) = 0. Since 3 = 1§ => o? = 447 which means that o is not regular,
f must be zero. Again. this implies rgo = 0 and so = 0.

[n two dimensions the conditions reg = 0. or equivalently bi/; + bj/i = 0, becomes

bl/l = b‘2/2 =0 and bl/2 = '—b?/l
which implies that the condition so = 0 is reduced to
blbl/x + b2b2/1 = bzbg/l =0 and b1b1/2 + bzbg/g = —blb-z/l =0.

Hence b;/; = 0, a condition that implies a space is Berwald [11]. a

2.2.6 Theorem I[f a Kropina space of two dimensions is Landsberg with ()% # 0,

then it is Berwald.

Proof: L = o?/3 in a Kropina space and the difference vector is computed from [14]

to be

Bi

1 i 2 i
= TOE (roo + Lso)(b' — -[-:y } — Lsg-
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This equation yields the relation

- 1 , 2
- ?.biBl = Trgo — '(b—)_l‘(‘f'oo + LSQ)((b)" - 2‘3) -+ LSO

1 2
= (—b)—2(7‘00 + LSO)(Z'B)

The main scalar is given by [12]

9p

SN TACEEY

Bringing the denominator to the left side and taking an h-covariant derivative yields

SL(b)23el? + 2L(6)*Byel® + 2L(b)F 3l = 9py

9 5 gp gp
IL(B)23el} + 23 + —(b) = e
(B)Belii + 79 T Gy T3 (O P
LBl = _9335“ _ gf;—z(b)fi-%-t)m

Contracting the above equation with ¢ yields

2L(b)*Jel}

9p 9p (b

_F"}‘O DL Jb + 91
9 9
—Fp(roo 2, B') — (b’)’ 2(ro + 50)

U S .
+9(2(ro + so)a® — z(zi(b)-a + 3)(roo — 26:BY))

15

_9_923(7'00 + Lso) _ 9p 9 N CY?U’)2 5 e
3 L(b)? (b).,-(f‘o +59)+9 OE 2(ro + s0)
23 Ls
B
3 2(roo + Lso) 932 o/, e 5 _ f‘oo + Lsg)
p L(b)"" + (b)g-’(ro +°0) +9 -(a ( ) 23 ) b) )
(To0 + Lsu) 952 (roo + Lso)
-9.9 9 s
9 "'p L(b)2 ( ) "(r0+30 +9 (,0 /6 ) L(b)g )
B*(Lrg + Lso) _ 2{(reo + Lso)
+18 Loy 183 —___L(b)2 )
Lﬂro + L,BSQ - ,’3‘7‘00 - ‘SLSO
184 L)’
1350 To — 37‘00.

L(b)?



Now the first lemma implies ro = f3 with f = f(z). Hence the above equation in a

Landsberg space ([ = 0) implies rog = fo?. which yields the equation

(8%
-1
—

bis; + bjji = 2fasj- (2.
Writing the terms out in two dimensions yields
51/1 = fau, bz/'z = fa:’/m bl,’2+b?/l =2fai.

Define the functions ( fy. f2) by the following relations

o] —

Bf, + b fa=f.  —bafi+bifa=5(by2— bayn)-

Iy

These two functions are well defined since (6> # 0. In conjunction with Equa-
tion (2.7). this implies by; = (b f)ai; + bif; — bifie This last relation implies the
space is Berwald [12]. a

2.3 C-reducible in more than two dimensions

Matsumoto and Hajo showed that all C-reducible spaces for n > 2 are of Randers or

Kropina type. (13]

2.3.1 Theorem (Matsumoto [13]) If a C-reducible space is Landsberg with

n > 2, then the space is Berwald.

Proof: In a Landsberg space, the hv-curvature Pijii = gis Py of Cartan’s connec-

tion is zero. Now there is a Bianchi identity (2, eqn 2.4.3.13] which states
Piw = Cian — Catj + CikrClio — ik Cltio-

The last two terms vanish in a Landsberg space, so the vanishing of the P? tensor

implies that

(]
oD
~

Cixii = Ciriij- (2.
Since h-covariant differentiation is metrical,
Cji = ¢"Ciwi = 9" Caai = Cits-
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Now substitution of the definition of a C-reducible space into Equation (2.8) yields
Rk Cupi + hjiCrii — hixCijj — hiCrij = 0 (2.9)

using hijie = 0.
The contraction of the middle two terms by ¢ yields
¢ihCri — ¢ hiCyy = g (gs — Lil)Cri — g"(gix — L) Clij

= (g = il")Cuii — (g — LLe)Cly;
= §iCui— LICi — 5iCuy + I'1.Cy;
= §Cw—&Cuy T 11.Cyy = LU Crii
= l'Cy — LI Cy
= Y LMCip = LT C
= L'llijlo—l,'L"lC'ku‘o.

Moreover, Crjo = (g Crrs ¥’ = g Chrapy’ = 0 since gy =0 Hence contraction

of Equation (2.9) by g" yields
hjkg“C”i —_ (n - 1)Ck|‘, =0
by Proposition 1.4.7. This is rewritten as

Cyj = phij (2.10)

where g is a scalar on T M.
Now consider the v-curvature tensor. The definition of the Cartan connection

yields
Shijk = —GisIhjk
= “gis{cfrsz:k - C;;kc:j}
= C}’;kcrij - C}:jcrik-
Using the definition of C-reducibility, the above can be expanded using C}, = g% Ciat-
1 l r r el
Sijkl = m(huc,- +hi:Cr + h{ng)m(hjCk -+ hjkC + hkC,)

1
(17

(hixCr + hieCis + hi-Ci)(RSCL + hyC™ + hiC;)
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Using the identity h, CT = g,C" — Lil,C" = C; where appropriate the above is ex-

panded.
o _ 1
Dijkl = mrlR
= )2
— 1
(n+1)?
= 2

{(haC;Ck + hahjCTCr + haCiCj + hi;CiCr +hiCiCr + hiC1C;

-+ h[]‘CiC'k -+ h,-kCIC,» + h{kCng) - (h,’ijC( + hgkhﬂCrCr + hikCICj

- lz‘,CkCz -lrhjo,'C,x- + h;zC;;Cj + h,z;jCiC( + h_,;CkC,- + hk[C','Cj)}
6

(huCl‘Ck + hg[hjkCrCr + hlkCiCz - hikCJC[ - hikthCrCr — /‘LﬂC"Ck)
1 1
(hit(§h;‘kcrcr + CC) + h,k(;huCrCr + C.C)

1 L
_hik(;)'hjlcrcr + C;C)) + h;il(shikCrCr + CiC))

£4

(haCik + hjkCu = hixCit = hiCix)

The last line of the above follows from the definition C,, := 3CCrhyj + CiC). One

Bianchi identity {2, eqn 2.4.3.4] in a purely covariant form vields

Spnijie + { PrneiCh; = Smbir Pij — Pais |, —(ilJ)} = 0.

Since the P! and P? tensors are zeroin a Landsberg space. this implies that Shik = 0.

Now observe,

1
Cije = shii(CRCr + C"Cri) + CiCi + CiClipp

2

1
= shgj(g”C”kC,- —+ CrC,-M-) + C,»“cC', + CiCljk

=4

1
= $hi(CapCs + CTCoi) + CanC + CiClitx
= hiC"Crix + CiuCi + CiCjik-

Using Equation (2.10) the above becomes

Cijlk = hijcrllhrk T ,Uhiij + Ci/lhjk
= #(hijck + hixC; + Cihjk)
p(n + 1)Cljk-

I



Hence,

0 = Shijkll

- 1 M U
= (n+ 1)2(hhkcii“ + hijChry — hun; Ciy — hixChrjit)

= p(hneCit + hijCrit = hinjCixt — hikChjt)-

Contract the above equation by g"* followed by g'.

0 = g¢7ug™(hmCijt+hiChi = hiCikt = hiCrst)
= giu((n - VCit + hiiCr - hajCh — hixC)
= ¢7pu((n = 1)Cijt + hiiCi - Ciji = Ca)
= g¢Yu((n- 3)Ciji + hiyCi)
= u((n=3)C+(n=1C)
= u(2n - 4G

Since n # 2 either p or (', must be zero. If C; is zero. then the definition of
C-reducible implies that Cijx = 0 s0 the space is Riemannian and Berwald. If p =0
then Ci; = 0. The definition of C-reducible shows that Cin = 0 so the space s

Berwald.
O

9.4 Landsberg spaces with vanishing projective

Douglas tensor
Define the tensor Gi; = G¥y.-
2.4.1 Definition  The projective Douglas tensor is defined by
Di; = Ghje = ‘n__l:_l’(inhjllk + 5:Ghk + 64Gix + 8Gnj)-
The Douglas tensor is invariant under projective transformations.

2.4.2 Theorem ([4, 6]) A Landsberg space with vanishing Douglas tensor is a

Berwald space.
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Proof: Assume that the Douglas tensor is zero. Then tranvecting the definition of

the Douglas tensor by Rl yields

RLGE, = RL{y G+ ShG ke + 61Ga + 6:Gij}
(8 — )Gl = {RLy G + RiGik + hiGa + hiGij}
Gl {hGji + hiGa + hiGij}

]
- ¥
pa

3
- %
=

With Ginji = ghs Gy the index | can be lowered in the above.

' l i »
Gujx = m{hquk +hGi + huGij} (2.11)

Next note that Ginjk = Ghijk since Ghije = Chijix by Theorem 1.5.3-(6) and the C

tensor is fully symmetric. Now using Equation (2.11) in the above identity yields
haGie + hyiGi + huliy = haG o + hyiGue + hiiGy
FhiGu = ¢ {RhiGu — huGi + hiiGij}
(n—1)Gu = hiGu —hlGij + hiGg'"

l . L » ,
Gy = . 1{(65 - le")sz - (c);’c - [Jlk)ng + h.kiCr}
with ¢ := Gijgij
G = : b G
n—1

since Gor = Gig = 0. Using the above evaluation of G:;, Equation (2.11) reduces to

G
n2 -1

Ginjk = (haihjk + Rajhic + hakhij)- (2.12)
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Note h,-jCi, = ¢;C}, - lglei‘ — (. Next, a Bianchi identity is applied [2, eqn
2.4.3.4).
0 = Shijkt
= (CherC5)a — (CrjrCii)u
= ChirtCl; + CrirCijy — ChjrtCle = CrirClku
= GuprtCF 4 Crirg™ Clsjut — GrirtCl = Chijrg"* Ciski
= GurtClj + Crirg" Gisjt = GrjriCle — Chjrg™ Giski
= (Ut b+ haa)CG + Cilhak & b+ Bk
—(hnjhe + hachji + hithje)Cl — Cijlhishi + hicha + hithse)}
= G{huCiji + Cijuhu + huCije + Chirhji +hijCrit + haChrjk
—hpCiet = Chikhji = harCijk = Crijhw —hixChji — haChijk}
= G{hneCiji + hijCrai = hijCit = hixChyu}

Sum the last line by tranvecting with gtgl.

0 = G{¢"g"hnCin + g g7 hi;Chit — g% g7 b, Cir — "' g7 huChji}
= C{g"huCE + ¢ (n = 1)Chat = 9" haj i — ¢*huCi}
= G{g"Chj+(n—-1)Cr - ¢ Cant = 9% Chia}
— G{Ch+(n=1)Ch = Ch=Ci}
= G(n—2)Chx

Now, n > 2 by assumption so G =0,or Cp=0. IfG=0. then by Equation (2.12)
we have Ghijx = 0 so the space is Berwald. If Cr = 0 then note by Theorem 1.5.3

Chik = (97 Ches)ik = G Chrsite = 97 Grkrs = G-

This implies Che =0 = Gk, so again Grijk = 0. a

2.5 Constant curvature

2.5.1 Theorem (Numata [17]) A Landsberg space of scalar curvature K is a
Berwald space if K # 0 and n 2> 3.
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Numata went further to show that the space will be a Riemannian space of constant

curvature. We need some definitions to make sense of the above.

2.5.2 Definition A Finsler space is of scalar curvature if the tensor Rior =
A L2h; where Riok := gir Bgi bY definition. The space has constant curvature if A

s a constant. Note the function K is p-homogeneous of degree 0

Proof: Assume .M" is a Landsberg space with non-zero scalar curvature. The

Berwald connection has the Bianchi identity
i i i _
G omy — Gt jmae T Hi jiom = 0.

Contract the above by y*. Then Glims; €20 be written out as homogeneous terms

which when contracted with y* will give zero. Hence. the above equation reduces to
i i k
Gl}m;t) - Plljkllmy = 0.
The contraction of the above with 3y is quickly seen to be
o R 8 . o . . i 8 . ; k P
0= (3G mo¥i — 'SHI‘ijm}ULUi = 3(CljmYido — '3f[!jk|[mykyi = =3 Hijiym¥ Y- (2.13)

The second equality sign in the above follows since the Berwald connection is
h-metrical in a Landsberg space. The third equality follows from Theorem 1.3.3-(7).
In a Landsberg space. the Berwald h-curvature tensor has the special form Hj; =

Rj-k“, due to a Bianchi identity. Moreover.

l .
[\'j = 5[42[\’”]‘ + L[\’l_,
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The remaining term of Equation (2.13) is computed using Proposition 1.4.8 as

required.

0= 3Hlijkl|mykyi = 3Rj’kul||mykyi
= Vuilhiym3Es — R 35%)
+{ykyghi”131\"j“m - ykyihjut:”\"kllm + (Ijm)} +
3y (yihh K — Yihs Kiittim)
~~ ~——

0 0

= (Qhim)3RK; — L™ (Lnhji + Lihjm = 2LC jim + huml,)(0 +3L*K)
+{0 — y*(—h) (L K + 3R yidym + (lim)}

= 2him(3R; —3Ry;) — 3LA (Imhji + lihjm — 2LCjim)
+{ykhﬂ(2[,lm1\'||k + L*Kyjiym + 3 Kimyx + 3N grm) + (ltm)}

= 2hm(3R; —3Ky;) — 3LK (Lmhyt + lihjm = 2LC)im)
+{hji(0 = L*Kjjm + 3Kjim L} + 3R ym) + ({Im)}

= 2hm(L2Ry;) = 3ym A hj + Ui Rhjm —2L*KCim)
+hi(2K\im [P+ 3Ryn) + hjm(QI\'”zL") +3Ay)

= 2L him Ay + hiBym hjm By + 38 Clim)

Since L # 0 on T M. the above equation implies
1 . . .
Cjim = —g=(hjtKjm T hym By + him Ky5)- (2.14)
RYN
provided that A’ # 0. Contraction of the above equation by g™ yields

Lo . . 9 1=
C;j = — g R + B +(n = D Ry;): (2.15)

since K is p-homogeneous of degree 0 implies

g™ bt K = AT Eipm = 87 Ky + 15 7 Ky, = By
N —’
0 by Euler
Now Equation (2.15) implies Ay; = -2 KC;. When this is substituted back into
Equation (2.14), the Cartan torsion tensor is seen to be C-reducible. Since the di-

mension of the space is assumed to be greater than three, Theorem 2.3.1 implies that

the space is Berwald. a
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Chapter 3
New classes of Metrics

In the previous section, several important type of Finsler metrics were shown to be
Berwald if they were Landsberg. There are other types of metrics which reduce
to Berwald spaces. Often, these spaces are also Riemannian—for example Randers
spaces and spaces of scalar curvature become Riemannian if they are Landsberg. In
this section some different methods of creating Finsler metrics are introduced. The

potential for Landsberg spaces to exist within these classes is then examined.

3.1 Geometrical mean metrics

Given two fundamental Finsler functions C: and fI. the fundamental function L =
VGH is defined and called the geometric mean of G and H. It is clearly positive and
positive homogeneous. It is not however always positive definite. Positive definite-
ness can be obtained in some appropriately chosen region as the following example

indicates.

3.1.1 Example  Since the dependence on the z! coordinate does not affect the
positive definiteness of the resulting metric, assume G and H are independent of
2. It suffices to examine the situation in two dimensions as in higher dimensions
similar structure appears. By appropriate choice of coordinates, assume that G* =
(y')2+(y?)?. With a rotation of this basis if required, H can now be expressed as H? =
a(b(y')?+(1/b)(y*)?) where a and b are real constants. The positive definiteness of the

resulting metric can be examined by ensuring that both the trace and determinant
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Figure 3.1: The geometric mean. [t is not positive definite in the shaded region.

of gi; are positive. The trace will be positive. The value of a will not affect the
sign of the determinant since it can be factored out. Moreover. the determinant is a
0-degree homogeneous function in y*, so its value only depends on 9 = arctan(y'/y*).
Finally. the study of b > 1 will correspond to b < 1 with y' and y? interchanged in the
formulas. Hence the determinant needs only be examined for b > 1 and 8 € [0.7/2].
The region where the metric is not positive definite is shaded in Figure 3.1. The point

where the determinant first becomes zero. in the figure. is g =37/3andb=3 +2V2.

The above example proves the following proposition

3.1.2 Proposition  Let G and f be (two dimensional) Riemannian metrics and
let L be their geometric mean. Let [, denote the indicatrix bundle ¢ at z € M™.
Let py,q: € [; with

Hp:) = min H(v).  H(g:) = max H(v).

Then L is positive definite everywhere Yz € M*, Hlaz) < (3 +24/2).

3.1.3 Remark  The construction of a geometric mean can be used with metrics
which are not Riemannian and it can also be used with more than two metrics. In

general, define the geometric mean of p Finsler fundamental functions G; as
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4 P
L= HG?‘ with ¢; € Q and Zqi =1
=1 =1
L may not be positive definite everywhere in general. The construction of the geo-

metric mean in this manner is analogous to the construction of the m-th root metric
L= %/y'y?...y™

3.1.4 Proposition Let Gy,... -Gp be Riemannian metrics on a two dimensional
manifold. Assume that L is a geometric mean of these metrics. 1f L is positive definite
and Berwald on T M" with the O-section removed, then the space is locally Minkowski

or G; = oi(z)L for all 1.

Proof: Let L be Berwald and positive definite on
TV = TM\{(z.0)lx € M"}-

A theorem of Szabd [20] asserts that [ is either Riemannian ot locally Minkowski.
Assume the space is Riemannian. Choose n € N such that qn € N for all i. Now
L is a quadratic polynomial in y* and GI" divides L™. Since L is 2 positive definite
Riemannian space. L is an rreducible polynomial of degree 2. Now Rly'.....y"l is
a unique factorization domain since R is a unique factorization domain. This implies
GI". a polynomial in y', must be a power of L. Since G is a irreducible quadratic

—

polynomial in y', this implies that G; = ai{z)L. G

3.2 Arithmetic mean metrics

Metrics of the fundamental function L=VL*+ [2 have the property of being the
arithmetic mean of two standard metric tensors. Moreover, the metric tensor is split
into two components, on€ dependent on ¥y and the other on Z. This allows some

simplifications when computing.

3.2.1 Proposition Let [ and L be Finsler metrics defined on T¥. Then L =
Viz+L*2isa Finsler metric on TM.
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Figure 3.2: Indicatrix comparison of arithmetic and geometric means of G and H

Proof: It is clear that L is positive, and that it is p-homogeneous of degree one.

Regularity is easily verified since for (. y) € TM and EeTM
gij(2.y)EE = 48 + 5,6
a
3.2.2 Example [t is useful to compare the geometric and arithmetic means. Let
M* = R? with coordinates in TM of (z!,z% y'.y?). Define the two metrics G =

V16(y")? + (y*)? and H = V(y')? + 16(y*)?. The indicatricies of these metrics and

their means is given in Figure 3.2. It is seen that the geometric mean is not positive

definite everywhere in T M, since there is a region where the indicatrix is not convex.
However, there is an open subset where VGH is positive definite. In contrast, the

arithmetic mean is positive definite everywhere as expected.

This type of metric is considered in [4], and they show that among Landsberg

spaces, only Berwald spaces share common geodesics with Riemannian spaces.
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3.3 Search for analytic existence

It is possible to examine the existence of Landsberg spaces in a manner analogous to
the use of powers series in solving ordinary differential equations in one dimension.
This can be used to examine the existence and construction of Landsberg spaces
which are not Berwald. Unfortunately. the problem is computationally quite long, so
definitive results have not vet been obtained.

The method is as follows. First assume that a fundamental function L is defined in
TM. An arbitrary point pis picked on the indicatrix of L. A special set of coordinates
to ease computation is chosen, and a Taylor expansion of the function is performed

about the point p. The function L is now represented by
S R
' J k {

Using this representation, all the tensors, connections. and constraints can be for-
mulated in polynomial expressions of a;j. Moreover, the conditions of homogeneity
and positive-definiteness can also be enforced. The space will be Landsberg and not
Berwald if Cijio = 0 and Cijiy # 0.

To attempt to show that all Landsberg spaces are Berwald, reduces to showing
that the constant terms of Cijxy lie in the ideal of the polynomial constraints given
by Cijko- The theory of Grobner basis allows these computations to be performed on
the computer by symbolic computation. This is done using the constraint terms from
Cijio = 0 of total degree < d for some d € N. Unfortunately, these computations
can take double exponential time in the number of variables, which makes examining
higher dimensional spaces much more difficult. Moreover. even if no Landsberg spaces
exist, d could be arbitrarily large. This has resulted in the inability to resolve this
issue using present computing resources.

Conversely, this theory can be used to attempt to construct Landsberg spaces
which are not Berwald. This is done by choosing values for some a;;x to ensure that
Cijkq is not identically zero at p. and then attempting to find recurrence formulas for
the remainder of a;jx. Elimination theory, which has also developed with Grobner
basis theory, can be used for the final step. Unfortunately, this process is not precise,

and the computations can take even longer.



3.4 Conclusions

The number of reduction theorems that have been found is quite discouraging. The
form of these theorems shows that finding 2 two-dimensional Landsberg space which
s not Berwald will likely involve methods which are different from those used for
higher dimensional cases. Since many common classes of metrics in Finsler geometry
are Berwald when they are Landsberg, it seems that Landsberg spaces which are not

Berwald are quite rare. and possibly do not exist.
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