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Abstract 27 

The demand for vegetable oils is increasing at a rapid pace due to our ever-expanding 28 

population, growing global affluence, changes in dietary choices, and the need for renewable 29 

plant-derived resources. However, oilseed production is negatively impacted by unpredictable 30 

environmental conditions caused by climate change, as well as associated increases in disease 31 

and pest infestations. Unfortunately, while conventional breeding techniques have been used to 32 

provide gains in terms of oilseed yields, they are often imprecise and lengthy processes. Crops 33 

derived from transgenic approaches, on the other hand, have proven difficult to get to market due 34 

to negative public perception and onerous regulatory requirements. Genome editing, primarily 35 

using the clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 36 

(CRISPR/Cas) platform, is a relatively recent addition to our plant breeding toolkit that allows 37 

the rapid generation of precise targeted genetic changes that can be indistinguishable from 38 

spontaneous mutations. In addition, the resulting plants can be made transgene-free with relative 39 

ease. While genome editing has been successfully used to modify a plethora of genes in the 40 

model plant Arabidopsis thaliana, the technology is only just taking off in oilseed crop species. 41 

This review discusses advances that have been made to date using CRISPR/Cas-mediated 42 

genome editing of oilseed crops to improve plant productivity under favorable and sub-optimal 43 

environmental conditions, leading to increased seed yields or reduced losses. Furthermore, we 44 

also examine potential avenues for future enhancements in these traits using this molecular 45 

breeding tool.  46 

 47 

 48 

 49 

 50 
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I. Introduction  51 

Plant-derived oils are an integral part of the human diet, comprising a large proportion of our 52 

daily caloric requirement. In addition, they also serve as raw material for various industrial 53 

products such as detergents, plastics, waxes, cosmetics and paints, as well as a supplement for 54 

animal feed and a renewable energy resource (Wittkop et al., 2009). While palm (Elaeis 55 

guineensis) provides the largest single source of vegetable oil globally, oilseed crops such as 56 

soybean (Glycine max), rapeseed/canola (Brassica napus), sunflower (Helianthus annuus), 57 

peanut (Arachis hypogaea) and cotton (Gossypium hirsutum) together provide more than half of 58 

the world supply (United States Department of Agriculture Foreign Agricultural Service, 2020). 59 

The demand for vegetable oils is growing steadily due to our expanding population, 60 

increasing global affluence, changes in dietary choices, and the need for more renewable plant-61 

derived resources (Villanueva-Mejia and Alvarez, 2017). Since a large proportion of our current 62 

vegetable oil supply derives from oilseed crops, substantial improvements in seed oil yield will 63 

be required to fulfil this demand. However, achieving such yield improvements will be 64 

complicated by the fact that oilseed production can be hindered by climate change-related 65 

environmental effects, as well as associated increases in disease and pest infestations, which are 66 

all likely to become more problematic in coming years (Jaradat, 2016; Raman et al., 2019). 67 

Therefore, multiple avenues could theoretically be taken to achieve enhanced oilseed yields 68 

(either alone or in combination), such as increasing seed oil content, enhancing seed yields, or 69 

reducing seed yield losses caused by factors such as pod/silique shattering, weed overgrowth, 70 

and abiotic/biotic stress resilience (Diepenbrock, 2000; Valantin-Morison and Meynard, 2008).  71 

Conventional breeding techniques, including artificial selection, hybridization and 72 

induced mutagenesis, have been employed previously in the development of oilseed crop 73 

cultivars; however, each of these methods are complicated by the polyploid nature of most 74 
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oilseed crops and require extensive labour and time investments to achieve improvements (Yang 75 

et al., 2017). In order to meet demands for seed oil in the coming decades, the use of advanced 76 

molecular breeding techniques as complementary breeding tools would therefore be highly 77 

beneficial to expedite the pace of crop improvement programs. While transgenic approaches 78 

have been applied successfully in many oilseed crops to improve a wide range of traits to date 79 

(e.g., Meesapyodsuk et al., 2018; Na et al., 2018; Shah et al., 2018; Kim et al., 2019; Wang et 80 

al., 2019a), only a small number of these plants have made it to market due to poor public 81 

perception, as well as the exorbitant cost and duration of existing regulatory processes (Mall et 82 

al., 2018). Indeed, with the exception of a small number of oilseed cultivars, including those 83 

exhibiting high lauric acid (12:0; LauricalTM canola, Monsanto) or oleic acid (18:0; e.g., 84 

Vistive® Gold soybean, Monsanto) seed oil, or drought tolerance (HB4® soybean, Verdeca), the 85 

vast majority of transgenic oilseed cultivars that have been commercialized thus far have 86 

included only two traits (herbicide tolerance and/or insect resistance).  87 

Genome editing using the clustered regularly interspaced short palindromic 88 

repeats/CRISPR-associated protein (CRISPR/Cas) platform is a relatively recent addition to our 89 

plant breeding toolkit, and is particularly valuable in polyploid species (e.g., Mohanta et al., 90 

2017) for its ability to elicit targeted bi-allelic/homozygous mutations in multiple alleles. In its 91 

simplest form, CRISPR/Cas requires a Cas nuclease, which elicits a double-stranded DNA break 92 

(DSB), as well as a short single guide RNA (sgRNA) that includes an approximately 20 93 

nucleotide user-defined sequence responsible for guiding Cas to a specific, pre-determined 94 

chromosomal locus upstream of a Cas-dependent protospacer-adjacent motif (PAM). Various 95 

Cas nucleases derived from numerous bacterial species, including Cas9 (e.g., Kaya et al., 2016; 96 

Li et al., 2018a), Cas12a (formerly known as Cpf1; e.g., Zaidi et al., 2017) and Cas12b (Ming et 97 

al., 2020), as well as a number of engineered Cas variants with alterations in their PAM 98 
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recognition domains and/or specificities (Raitskin et al., 2019), have been used effectively in 99 

plants to date, with the most commonly used being Cas9 from Streptococcus pyogenes (PAM = 100 

5’ – NGG – 3’). DSBs produced by these Cas nucleases are most frequently repaired by the 101 

plant’s inherent non-homologous end-joining (NHEJ)-based repair mechanism, which leads to a 102 

small insertion or deletion (indel) at the target site. This yields a genetic change that can be 103 

indistinguishable from those occurring spontaneously or through induced mutagenesis, and 104 

typically knocks out or knocks down the function of the edited gene (reviewed by Subedi et al., 105 

2020; Figure 1). Another DNA repair pathway, termed homology-directed repair (HDR), can 106 

also be harnessed to achieve targeted transgene insertions and allele replacements in plants (Shi 107 

et al., 2016); however, this technology has been limited by low efficiencies and difficulties 108 

associated with the delivery of the DNA repair template that must accompany the Cas protein 109 

and sgRNA in this instance (Chen et al., 2019).  110 

CRISPR-based technology is evolving at a very rapid pace, and a number of alternative 111 

derivatives to standard NHEJ- and HDR-based platforms have now been developed. For 112 

example, the fusion of transcriptional repressor, activator or demethylase domains to deactivated 113 

Cas9 can provide transcriptional or epigenetic regulation (Lowder et al., 2015; Gallego-114 

Bartolomé et al., 2018), and the use of the Cas13 single-stranded RNA nuclease elicits post-115 

transcriptional regulation of gene expression (Wolter and Puchta, 2018). In addition, systems 116 

involving the use of Cas enzymes that have been modified to cut only a single strand of a DNA 117 

duplex (nickase activity), such as base-editing (Zong et al., 2017; Li et al., 2018b) and prime-118 

editing (Anzalone et al., 2019), where specific nucleotide changes can be made at targeted 119 

locations, have also been shown to be functional in plants (Lin et al., 2020; Wu et al., 2020a; 120 

Figure 1) and improvements in the efficiencies of these tools are almost certainly on the horizon.  121 
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While all of these techniques have value, one of the most important considerations in 122 

their implementation will be minimizing regulatory burden with respect to new cultivars. Several 123 

countries, including the United States, currently do not consider transgene-free NHEJ-derived 124 

genome edited plants to be ‘GMO’, thereby eliminating the need for regulatory measures and 125 

facilitating commercialization (Scheben and Edwards, 2018). However, the global regulatory 126 

landscape is incredibly complex, and many countries are currently in a state of flux in an attempt 127 

to modernize their guidelines and encompass crop varieties developed using genome editing into 128 

their policy frameworks (reviewed by Metje-Sprink et al., 2020; Parrott et al., 2020; Schulman et 129 

al., 2020). Although global synchrony among countries may not be seen in the short term, it is 130 

likely that, in at least some countries, the relaxation of regulations for genome edited crops will 131 

hinge upon a lack of foreign, transgenic DNA. In certain instances, such as with transcriptional 132 

repression and activation, or RNA-mediated editing, the presence of a transgene expressing Cas 133 

and the sgRNA is a requirement. However, in the case of basic NHEJ-mediated editing, as well 134 

as base- and prime-editing, plants can be made transgene-free once the targeted edit has been 135 

achieved, either by segregating out the transgene or by removing the transgene through 136 

programmed death of pollen/embryos containing the transgene (He et al., 2018). Alternatively, 137 

transgene-free genome edited plants can be made through the direct introduction of Cas/gRNA 138 

ribonucleoprotein (RNP) complexes, which degrade rapidly in plant cells (Liang et al., 2017; 139 

Andersson et al., 2018; Park et al., 2019). As such, these techniques in particular could hold a 140 

great deal of promise in terms of the future improvement of crops. 141 

Although a plethora of CRISPR/Cas-related research has been carried out in the model 142 

species Arabidopsis thaliana to date (e.g., Gao et al., 2016; Jiang et al., 2014; Li et al., 2014; 143 

Miki et al., 2018; Xu et al., 2018), attempts to edit oilseed crop species such as soybean (Cai et 144 

al., 2015; Li et al., 2015), Brassica spp. (Yang et al., 2017), cotton (Zhang et al., 2018c) and 145 
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camelina (Jiang et al., 2017) have lagged until recently. In this review, we summarize current 146 

progress in the utilization of CRISPR/Cas-mediated genome editing achieved through NHEJ or 147 

base-editing to elicit improvements in plant productivity in the form of enhanced seed yields and 148 

reduced yield losses. Such improvements can be achieved through alterations in plant 149 

architecture and seed characteristics, as well as superior resistance to seed shattering and 150 

diseases, herbicide tolerance, and climate change resilience (for a recent review of genome 151 

editing for enhanced oilseed lipid content and composition see Subedi et al., 2020; Figure 2). We 152 

also examine additional gene targets that may have potential to be utilized for the improvement 153 

of these traits using genome editing methods that could lead to transgene-free plants. Since the 154 

vast majority of genome editing attempts thus far have involved NHEJ-mediated mutations, 155 

which typically result in the functional knock-down or knock-out of the targeted gene, we have 156 

mainly focused on potential targets that have been shown previously to act as negative regulators 157 

within related pathways. However, we also consider the prospect of more recent CRISPR-based 158 

technologies, such as prime-editing, as a means of contributing to our ability to meet demand for 159 

seed oil in the future.  160 

 161 

II. Increasing seed number and size 162 

Seed size and number are major determinants of the total yield for oilseed crops per unit area. 163 

Both are complex traits, and while genetic/genomic information regarding their regulation is 164 

now beginning to accumulate, the precise molecular mechanisms governing them remains 165 

unclear (Li et al., 2019a). However, progress is being made in this area and several negative 166 

regulators of various morphological and physiological parameters, including silique 167 

characteristics, stem/inflorescence branching, and cell proliferation within developing seed 168 

tissues, have been found to be beneficial in this context (Figure 2). 169 



8 
 

 170 

A. Modification of plant architecture  171 

The manipulation of plant architecture or growth characteristics can significantly enhance crop 172 

adaptability and seed yield (Teichmann and Muhr, 2015), typically through increased seed 173 

number. A particularly interesting group of genes that appears to function in this capacity 174 

includes CLAVATA homologs (CLV1, CLV2 and CLV3), which play a prominent role in the 175 

determination of plant body form by directing meristematic stem cells towards organ initiation 176 

(Schoof et al., 2000; Yu et al., 2003). In line with this, mutations affecting the function of any 177 

of the three CLV genes typically leads to a delay in organ formation, along with a resulting 178 

overgrowth of meristematic cells and the production of extra floral organ whorls (Clark et al., 179 

1993; Clark et al., 1995; Kayes and Clark, 1998; Schoof et al., 2000). In terms of agronomic 180 

performance, this effect can provide desirable outcomes such as increased flower number and 181 

alterations in fruit morphology. For instance, it has been suggested that a partial loss-of-182 

function mutation of tomato CLV3 played a role in the increase in fruit size and locule number 183 

that has occurred during domestication (Xu et al., 2015). Similarly, increased silique locule 184 

number, which translates into higher seed yields, seen in certain genotypes of Brassica juncea 185 

and Brassica rapa has been attributed to mutations in CLV1 or CLV3 homologs, respectively 186 

(Yadava et al., 2014; Xu et al., 2017a).  187 

However, multilocular mutants derived from spontaneous or induced mutagenesis have 188 

not been identified in B. napus, which is likely a direct result of its allotetraploid nature and the 189 

associated minute probability of achieving simultaneous random mutations across multiple 190 

gene copies (Yang et al., 2018). To overcome this challenge, NHEJ-mediated mutations in 191 

both subgenome copies of CLV1, CLV2 and CLV3, respectively, were realized in B. napus 192 

using CRISPR/Cas9 (Yang et al., 2018), which is known for its ability to yield a range of 193 
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mutation dosages across multiple gene copies in polyploid species (e.g., Wang et al., 2014a; 194 

Braatz et al., 2017). While plants with bi-allelic/homozygous mutations in BnCLV1, BnCLV2 195 

and BnCLV3 gene copies, respectively, were found to exhibit a multilocular silique phenotype, 196 

this effect was more variable and less stable in lines bearing mutations in BnCLV1 and 197 

BnCLV2 than in those with mutations in BnCLV3. Lines bearing mutations in BnCLV3 also 198 

displayed a significant increase in the number of seeds per silique, seed weight and the number 199 

of leaves per plant than wild-type controls (Yang et al., 2018), which suggests that the genome 200 

editing-mediated modulation of CLV3 homologs could be a promising strategy for the future 201 

improvement of oilseed yields.  202 

Increasing stem branching, and hence silique production, can also prove beneficial with 203 

respect to boosting seed yields. The MORE AXILLARY GROWTH 1 (MAX1) gene, which 204 

encodes a cytochrome P450 monooxygease (CYP711A1) that is involved in strigolactone 205 

biosynthesis and acts as a repressor of vegetative axillary bud outgrowth in a wide range of 206 

plant species (e.g., Lazar and Goodman, 2006; Zhang et al., 2018a; Zheng et al., 2020), may 207 

provide an ideal target in this context. Indeed, the simultaneous CRISPR/Cas9-induced NHEJ-208 

based knock-out of all four B. napus BnaMAX1 alleles has been found to result in a semi-dwarf 209 

phenotype with significant enhancements in both branch and silique number, as well as seed 210 

yields (Zheng et al., 2020). Above and beyond seed yield gains, the short stature of these 211 

plants could also be beneficial in terms of reducing the risk of lodging and facilitating 212 

harvesting (Zheng et al., 2020). Since the function of MAX1 homologs appears to be well-213 

conserved among plant species, especially in dicotyledonous plants, it is possible that this 214 

approach could yield similar results in a range of oilseed species. However, strigolactones are 215 

also known to function as host recognition signals for symbionts in the rhizosphere, and the 216 

knock-down of GmMAX1a in soybean has been found to lead to decreased nodule numbers (ur 217 
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Rehman et al., 2018), which implies that this strategy may not be ideal for leguminous oilseed 218 

species. 219 

The mutation of APETALA 1 (AP1), which encodes a well-known floral homeotic gene 220 

that plays an important role in floral meristem establishment and the determination of floral 221 

organ identity (Irish and Sussex, 1990), has also been found to increase seed number in 222 

Brassicaceae species through effects on plant architecture and flowering (Shah et al., 2018). 223 

Indeed, the ethyl methylsulfonate (EMS)-induced mutation of a single B. napus Bna.AP1.A02 224 

gene (of six paralogs total) led to significant increases in plant height, branch length, and 225 

branch number compared to wild-type plants. Increased seed yields in these mutant plants were 226 

also observed, resulting from a significant enhancement in the number of siliques and seeds per 227 

plant (Shah et al., 2018) that were likely due to the production of ectopic floral buds and 228 

enhanced shoot branching. These effects are characteristic of ap1 mutants in Brassicaceae 229 

species (Bowman et al., 1993), and while concomitant increases in seed weight cannot be ruled 230 

out, this was not assessed in this study (Shah et al., 2018).  231 

However, such findings may be limited to species within the Brassicaceae family due to 232 

the presence of the paralogous CAULIFLOWER (CAL) gene, which arose in this lineage and 233 

provides a partially redundant function in the determination of the floral meristem (Lawton-234 

Rauh et al., 1999). In these species, the presence of a wild-type copy of CAL may partially 235 

complement the loss of floral meristem identity in ap1 mutants and allow floral transitions, and 236 

seed production, to occur. In non-Brassicaceae species where CAL is not present, mutation of 237 

the AP1 ortholog (SQUAMOSA [SQUA]) seems to lead to more severe phenotypes with few 238 

flowers (Huijser et al., 1992) or seeds (Taylor et al., 2002), which implies that a CRISPR/Cas-239 

based approach targeting this gene may only be useful in certain oilseed species. 240 
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SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) transcription factors are 241 

known to play a vital role in many plant developmental processes, including juvenile-to-adult 242 

and vegetative-to-reproductive transitions, as well as shoot branching (Wang and Wang, 2015). 243 

Indeed, a subset of these genes have central functions in a complex flowering regulatory 244 

network where they up-regulate the expression of various floral homeotic genes (including 245 

AP1/SQUA homologs), as well as other promoters of the floral transition (Wang et al. 2009a; 246 

Wang and Wang, 2015). Due to the roles of several SPL genes in shoot branching, their 247 

mutation can elicit consequent increases in vegetative biomass (Schwarz et al., 2008; Gou et 248 

al., 2017), which could feasibly lead to enhanced seed numbers. In line with this, the 249 

CRISPR/Cas9-mediated NHEJ-based disruption of various combinations of soybean SPL9 250 

homologs resulted in plants with higher leaf, node and branch numbers (Bao et al., 2019). 251 

Although seed yield was not assessed in these lines, the results hint at the possibility that 252 

increased seed yields could be realized using this strategy. However, many SPL genes (or their 253 

downstream targets) have undergone neo-functionalization in a number of plant species (e.g., 254 

Martin et al., 2009; Preston et al., 2012; Van et al., 2013), and redundancy between different 255 

family members is common. Furthermore, several SPL family members have been shown to 256 

function as positive regulators of seed size (Si et al., 2016), which could complicate efforts in 257 

this area and highlights the importance of elucidating SPL networks in a broad range of oilseed 258 

species in the near future. 259 

The highly conserved FLOWERING LOCUS T (FT) also plays a central role in the 260 

floral transition as an integrator of several major flowering pathways and encodes a florigen 261 

that is transported from the leaves to the shoot apical meristem through the phloem to induce 262 

floral initiation through the activation of downstream targets, including AP1 (Jaeger and 263 

Wigge, 2007). In addition, FT homologs have also been shown to be involved in other 264 
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developmental processes, including the outgrowth of lateral shoots (e.g., Hiraoka et al., 2012) 265 

and the differentiation of storage organs (e.g., Navarro et al., 2015). Intriguingly, the 266 

CRISPR/Cas9-mediated NHEJ-based mutation of two FT homologs in soybean (GmFT2a and 267 

GmFT5a) has been found to lead to substantial photoperiod-dependent delays in flowering 268 

compared to wild-type (Cai et al., 2018; Cai et al., 2019). In addition, both GmFT2a and 269 

GmFT2a/GmFT5a mutants exhibited significant increases in height and node number 270 

compared to wild-type plants, while GmFT2a/GmFT5a double mutants also displayed more 271 

than a 250% relative enhancement in seed number per plant compared to wild-type under short 272 

days (SD; Cai et al., 2019). Since soybean typically initiates flowering under SD, its 273 

cultivation has been largely limited to temperate regions. The ability to extend vegetative 274 

growth under SD, as appears to be the case in double GmFT2a/GmFT5a mutants, could 275 

provide a step towards the cultivation of this, and other similar species at tropical latitudes (Cai 276 

et al., 2019).  277 

However, the down-regulation/mutation of FT homologs has not always been found to 278 

have this same effect. For example, in B. napus (which possesses 6 FT paralogs), the EMS-279 

mediated mutation of the BnC6FTa gene did not impact flowering time; however, the mutation 280 

of BnC6FTb led to a flowering delay along with a reduction in fertility (Guo et al., 2014). 281 

Furthermore, while the artificial miRNA-mediated down-regulation of FT in B. juncea has 282 

been shown to increase vegetative biomass and severely delay flowering compared to wild-283 

type, these plants produced only rudimentary siliques with non-viable seeds (Tyagi et al., 284 

2018). These data suggest that different BnFT paralogs have distinct functions, and that 285 

modification of their expression using CRISPR/Cas must be carefully assessed for beneficial 286 

agronomical outcomes among species.  287 

 288 
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B. Alteration in seed cell proliferation 289 

Another approach to increase seed yield includes the modulation of seed size, which is a 290 

complex trait involving interactions among the embryo, endosperm, seed coat and parent plant. 291 

Various pathways are known to contribute to seed size control (Li et al., 2019a), and several 292 

negative regulators associated with seed cell proliferation or expansion have been identified to 293 

date, although research is sparse in oilseed crop species. For example, BIG SEEDS (BS) (also 294 

known as PEAPOD [PPD]) encodes a plant-specific member of the TIFY transcription factor 295 

family. In legumes, this gene has been shown to negatively regulate primary cell proliferation, 296 

at least in part through the repression of GROWTH REGULATING FACTOR 5 (GRF5) and 297 

GRF-INTERACTING FACTOR 1 (GIF1) genes (Ge et al., 2016). In line with this, the mutation 298 

of BS homologs in the legumes Medicago truncatula (BS1) and blackgram (Vigna mungo), as 299 

well as the simultaneous down-regulation of both BS/PPD homologs in soybean, resulted in 300 

plants with increased organ size, leading to leaves, pods and seeds that were dramatically 301 

greater in size and weight compared to wild-type. This enlargement was due to an increase in 302 

cell number rather than cell size (Ge et al., 2016; Naito et al., 2017). However, where it was 303 

assessed, seed number per plant was found to be reduced in these lines, and total seed weight 304 

per plant tended to not be altered, or was reduced, compared to wild-type (Naito et al., 2017).  305 

CRISPR/Cas9-mediated NHEJ double disruption of these same two genes in soybean 306 

was found to lead to two separate phenotypic classes, depending on whether all edits involved 307 

frameshift mutations or if one comprised an in-frame deletion, which could theoretically allow 308 

at least partial functionality of one homolog (Kanazashi et al., 2018). In the case of double 309 

frameshift mutations, plants were severely affected in terms of leaf development and very few 310 

seeds were produced. However, when one of the mutations was in-frame, plants produced large 311 

pods and seeds that were reminiscent of those noted previously with the down-regulation of 312 
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these genes (Kanazashi et al., 2018). While these plants were also found to produce fewer 313 

seeds per plant than wild-type, seed yields were not assessed, and it remains to be determined 314 

whether the mutation of only one of two BS/PPD homologs could provide superior results. 315 

Furthermore, the redundant PPD1 and PPD2 from Arabidopsis have a slightly different 316 

function than their legume counterparts, repressing the asymmetric division of meristemoids 317 

and regulating the size and shape of leaves and siliques, but not seeds (White, 2006; Gonzalez 318 

et al., 2015; Ge et al., 2016). Therefore, it may be that this approach, if successful, will be 319 

limited to leguminous oilseeds, such as soybean and peanut. 320 

The enhancement of hexose (glucose and fructose) to sucrose ratios in seeds can also 321 

have a profound effect on seed yield by stimulating cell proliferation and/or expansion (Weber 322 

et al., 1996; Wang and Ruan, 2013). In higher plants, cell wall, cytoplasmic and vacuolar 323 

invertases are known to play a critical role in determining hexose to sucrose ratios due to their 324 

function in the hydrolysis of sucrose into hexoses. This function is highly important in plants, 325 

and these proteins are essential for many processes, including sugar metabolism and signaling, 326 

development, cell division and differentiation, senescence, abiotic and biotic stress responses, 327 

and source-sink interactions (Weber et al., 1996; Sturm, 1999; Essmann et al., 2008; Jin et al., 328 

2009; Sun et al., 2014). Correspondingly, the over-expression of these genes has been found to 329 

elicit improvements in traits such as enhanced pathogen resistance (Sun et al., 2014), 330 

augmented salinity and cold tolerance (Fukushima et al., 2001; Qian et al., 2018), increased 331 

water use efficiency and drought resilience (Albacete et al., 2014), and elevated grain yield 332 

(Wang et al., 2008; Li et al., 2013). 333 

Plant invertases are regulated not only at the transcriptional level, but also post-334 

transcriptionally through the repressive role of invertase inhibitor proteins (e.g., Jin et al., 335 

2009; Qin et al., 2016). It follows then that the down-regulation or mutation of genes encoding 336 
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invertase inhibitors would provide similar phenotypes as those seen in plants over-expressing 337 

invertases. Indeed, the constitutive RNAi-mediated silencing of a putative tomato (Solanum 338 

lycopersicum) invertase inhibitor was found to increase cell wall invertase activity, leading to 339 

prolonged leaf life span and enhanced fruit hexose levels, as well as elevated seed protein 340 

content and seed weight (Jin et al., 2009). While relatively little research has been carried out 341 

with regards to the function of these genes in oilseed crop species as of yet, the constitutive 342 

RNAi-mediated silencing of the GmCIF1 cell wall invertase inhibitor gene in soybean has 343 

similarly been found to increase the activity of cell wall invertases, and the resulting plants 344 

displayed improvements in seed weight and protein content compared to wild-type (Tang et 345 

al., 2017). These results suggest that such genes may be ideal targets for NHEJ-mediated 346 

mutation via CRISPR/Cas as a means of achieving oilseed yield gains. Temperature-related 347 

stress tolerance has also been found to be enhanced in tomato plants with down-regulated 348 

invertase inhibitor genes (e.g., Liu et al., 2016; Xu et al., 2017b), which could lend even 349 

further advantages to this approach. However, the RNAi-mediated down-regulation of an 350 

invertase inhibitor gene has also been found to lead to reductions in drought tolerance in sweet 351 

potato (Ipomoea batatas; Yang et al., 2020), which indicates that differences may exist among 352 

plant species or types of stress, and care will need to be taken to thoroughly assess such 353 

parameters in modified lines.  354 

APETALA 2 (AP2), which encodes a well-known floral homeotic gene that, like AP1, is 355 

involved in the establishment of the floral meristem and the specification of floral organ 356 

identity, has also been found to play a role in seed development (Jofuku et al., 1994). As is the 357 

case with ap1 mutants, plants with mutations in AP2 produce flowers with homeotic 358 

conversions of floral organs (mainly sepals and petals), and in at least certain cases enhanced 359 

seed yield (Jofuku et al., 1994; Ohto et al., 2005). However, despite the similar functional 360 
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roles of AP1 and AP2 in floral development, the effect of their mutation on vegetative and seed 361 

characteristics differs quite substantially. In the case of Arabidopsis ap2 mutants, alterations in 362 

plant architecture are not evident and yield increases are the result of enlarged seeds rather 363 

than elevations in seed numbers (Jofuku et al., 1994). These seeds also display an increased 364 

ratio of hexose to sucrose, which is known to promote cell division and thus may be at least 365 

partly responsible for increased seed size (Ohto et al., 2005; Ohto et al., 2009). However, 366 

mature ap2 mutant embryos display elevations not only in cell number, but also cell size, and 367 

additionally exhibit enhanced accumulation of storage proteins and lipids (Ohto et al., 2005; 368 

Ohto et al., 2009), which suggests that other mechanisms are also involved, such as an 369 

extended period of seed development. In any case, it is possible that the targeting of AP2 370 

homologs using NHEJ-mediated CRISPR/Cas might have the potential to not only boost 371 

oilseed yields, but also improve seed quality.  372 

An alternative approach to boost seed size would be to target genes encoding products 373 

that function in seed carbon allocation. One example of such a gene is that encoding ADP-374 

glucose pyrophosphorylase (AGPase), which is a key enzyme of the starch biosynthetic 375 

pathway and tends to elicit increases in seed size when down-regulated/mutated in oilseed 376 

species. For example, when the CsAPS gene encoding the AGPase small subunit was down-377 

regulated in camelina using seed-specific RNAi, the resulting lines exhibited moderate 378 

decreases in seed starch accumulation, along with increases in soluble sugar and protein 379 

content, as well as enhanced seed size and weight, without any concomitant alterations in seed 380 

number, seed oil content or fatty acid composition (Na et al., 2018). Increased seed size was 381 

found to be the result of larger cells in the seed coats and embryos, and germination was not 382 

impacted in these lines. The findings were consistent in both the greenhouse and field, and 383 

while this certainly suggests that yields would be improved, this has yet to be assessed in large 384 
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scale field trials. In contrast to these findings, however, the embryo-specific antisense 385 

repression of an APS homolog in B. napus did not lead to increased seed size or weight 386 

(Vigeolas et al., 2004), which may be attributable to the different promoters used to drive 387 

transgene expression.  388 

While both of these studies involved down-regulation of AGPase specifically within 389 

seed tissues, it has been shown previously that a partial loss-of-function mutation of a gene 390 

encoding a catalytic AGPase large subunit (APL1) in Arabidopsis did not lead to any 391 

substantial growth penalties under low nitrogen conditions (Schulze et al., 1991); however, 392 

significant reductions in plant biomass were noted when plants had access to high levels of 393 

nitrogen (Schulze et al., 1991). An effect on vegetative growth is not surprising in these lines 394 

since starch plays an important role in the changing carbon budget of plants under diurnal 395 

conditions; a proportion of photosynthate is often stored as starch in the leaves during the day, 396 

which is subsequently remobilized at night as a means of supporting respiration and the export 397 

of carbon to sink organs (e.g., Zeeman et al., 2007). Similarly, mutation of the APS1 small 398 

subunit in Arabidopsis has been found to result in delayed flowering and growth compared to 399 

wild-type when grown under a typical day/night photoperiod (Ventriglia et al., 2008). 400 

However, these growth penalties do not always appear to be the case with constitutive 401 

disruption of AGPase subunits since a null mutation within the upstream region of another 402 

Arabidopsis gene encoding a distinct APGase large subunit (APL4), which does not exhibit 403 

catalytic activity and instead provides regulatory function within sink tissues, led to significant 404 

increases in both root and shoot biomass (Sulmon et al., 2011). This latter result indicates that 405 

the targeting of genes encoding at least certain AGPase subunits using CRISPR/Cas, which 406 

results in plant-wide effects and at present cannot be utilized to generate tissue-specific edits 407 
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unless a transgene is retained in the plant, may still have the potential to provide benefits in the 408 

context of seed yields and thus warrants further exploration.  409 

Several other pathways have also been shown to be important for seed size determination 410 

and may provide additional prospects for CRISPR/Cas targets in oilseeds in the future. For 411 

instance, several genes within the ubiquitin-proteasome pathway, including SAMBA, DA1 and 412 

ENHANCER OF DA1/BIG BROTHER (EOD1/BB), have been shown to negatively regulate seed 413 

size in Arabidopsis by limiting cell proliferation, and their mutation or down-regulation increases 414 

seed size (e.g., Li et al., 2008; Eloy et al., 2012; Vanhaeren et al., 2016). Similarly, 415 

phytohormone-related pathways are also known to influence seed growth and size (e.g., 416 

Morinaka et al., 2006; Riefler et al., 2006; Schruff et al., 2006). In terms of oilseed crop species, 417 

the mutation of AUXIN RESPONSE FACTOR18 (ARF18), which encodes a repressor of auxin-418 

responsive genes, in B. napus leads to increases in seed weight (Liu et al., 2015a). However, as 419 

of yet, relatively little is known about these pathways in oilseed crop species, and additional 420 

research will be required to unravel their roles in seed development. 421 

 422 

III. Reducing yield losses  423 

While boosting seed yields directly is certainly an important target for oilseed improvement, 424 

reducing yield losses that are incurred on a regular basis, both pre- and post-harvest, will also be 425 

of paramount importance for meeting seed oil demand. The enhancement of pod/silique 426 

shattering and herbicide resistance, as well as abiotic and biotic stress tolerance, have been long-427 

standing targets for oilseed breeders for many years (Figure 2). However, these traits are now 428 

also beginning to gain attention in the context of CRISPR/Cas-mediated oilseed improvement. 429 

 430 

A. Minimization of seed shattering 431 
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Although seed shattering, which refers to pod/silique shattering in legumes and members of the 432 

Brassicaceae family, is essential for propagation in many wild plant species, this trait is one of 433 

the most critical yield-reducing factors in cultivated seed crops (Funatsuki et al., 2014; 434 

Steponavičius et al., 2019; Tsujimura et al., 2019). In canola, it has been estimated that seed 435 

yield losses due to seed shattering are typically in the range of 5 to 10%; however, over 40% of 436 

the total harvest can be lost as a result of seed shattering in seasons with adverse weather 437 

conditions that delay harvesting (Gan et al., 2016). In addition to the reduction in economic 438 

return sustained by such losses, shattered pods/siliques also increase production costs in 439 

subsequent years since the inadvertently dispersed seeds can lead to recurring growth as a weed 440 

(Gan et al., 2008). As such, enhancing shatter resistance has become a priority in the breeding of 441 

certain oilseed crops as a means of maintaining seed yield and boosting profitability. Since 442 

differences exist among the shattering mechanisms of different plant groups and our 443 

understanding of the precise mechanisms underlying these processes is still incomplete, 444 

furthering research in this area will benefit our ability to achieve this goal in the future. 445 

At present, the vast majority of research focusing on the elucidation of molecular 446 

mechanisms driving pod/silique shattering has been carried out in Arabidopsis, where intricate 447 

regulatory networks involving multiple transcription factors and phytohormones have been 448 

unraveled that appear to be conserved in other members of the Brassicaceae. In these species, 449 

silique shattering commences with the degradation and separation of cell walls along the length 450 

of a layer of cells termed the dehiscence zone (Meakin and Roberts, 1990). The redundant 451 

SHATTERPROOF 1 (SHP1) and 2 (SHP2), which encode MADS-domain transcription factors, 452 

function at the top of the genetic cascade controlling the development of the dehiscence zone in 453 

siliques (Lewis et al., 2006). Intriguingly, the constitutive RNAi-mediated silencing of 454 

SHATTERPROOF (SHP) alleles in B. napus has been found to lead to the production of 455 



20 
 

indehiscent siliques with no other obvious morphological abnormalities compared to wild-type, 456 

although quantitative measurements of important characteristics such as seed yield were not 457 

assessed in this study (Kord et al., 2015).  458 

INDEHISCENT (IND) and ALCATRAZ (ALC), which encode basic helix-loop-helix 459 

(bHLH) transcription factors and are termed valve margin identity genes, are positively regulated 460 

by SHP1/2 and also function in the control of silique dehiscence (Rajani and Sundaresan, 2001; 461 

Liljegren et al., 2004). IND directs the differentiation of lignified and separation layers, which 462 

together make up the dehiscence zone (Liljegren et al., 2004), whereas ALC is required only for 463 

the formation of the separation layer (Rajani and Sundaresan, 2001). In Arabidopsis, the 464 

mutation of IND or ALC lead to a lack of valve margin formation, resulting in indehiscent or 465 

partially indehiscent siliques (e.g., Rajani and Sundaresan, 2001; Liljegren et al., 2004), making 466 

them ideal candidates for CRISPR-mediated modulation in the breeding of shatter-resistant 467 

Brassicaceae species. Indeed, the CRISPR/Cas9-mediated NHEJ-based homozygous knock-out 468 

of the BnA03.IND gene leads to increased shatter resistance in B. napus compared to wild-type 469 

controls. However, the CRISPR/Cas-mediated mutation of the BnC03.IND paralog did not have 470 

the same effect, and double mutation of both IND paralogs resulted in severe defects in silique 471 

morphology (Zhai et al., 2019). In contrast, the CRISPR/Cas9-mediated NHEJ-based double 472 

knock-out of both BnALC homologues in B. napus was found to either enhance shatter resistance 473 

only in siliques longer than 5 cm (Braatz et al., 2018) or have no obvious effect on shatter 474 

resistance compared to wild-type (Zhai et al., 2019), which suggests that this particular approach 475 

may have limited applicability in terms of increasing pod shatter resistance (Braatz et al., 2018).  476 

Gibberellin 3-oxidase 1 (GA3ox1) catalyzes the final step in the biosynthesis of bioactive 477 

gibberellins (Talon et al., 1990), which are involved in the regulation of plant growth through 478 

their effects on cell division and elongation (Yamaguchi et al., 2008). The expression of Ga3ox1 479 
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is directly up-regulated by IND in tissues such as valve margins, and its mutation tends to lead to 480 

partially indehiscent siliques due to defects in the separation layer (Talon et al., 1990; Arnaud et 481 

al., 2010; Stephenson et al., 2019). In line with this, the CRISPR/Cas9-mediated NHEJ-based 482 

knock-out of one of two GA3ox1 paralogues in B. oleracea led to the production of siliques with 483 

defects in silique valve margin development, which suggests that these plants would exhibit at 484 

least some level of shatter resistance, although this was not assessed in this study (Lawrenson et 485 

al., 2015). Moreover, the edited plants also displayed a semi-dwarf phenotype, as has often been 486 

observed previously in Arabidopsis plants bearing mutations in GA3ox1 (e.g., Talon et al., 487 

1990). While it is currently unknown how this would affect agronomic performance, many crop 488 

species exhibiting dwarfism as a result of a reduction in the production of, or insensitivity to, 489 

gibberellins have been found previously to display decreased lodging and/or increased seed 490 

yields (e.g., Muangprom et al., 2005; Zhou et al., 2012), and such mutations were important 491 

contributors to the ‘Green Revolution’ promoted in large part by the work of Norman Borlaug 492 

(Peng et al., 1999; Hedden and Sponsel, 2015). Taken together, this suggests that this approach 493 

could provide a promising means of enhancing the productivity of oilseed species in the future.  494 

 495 

B. Engineering herbicide tolerance  496 

Weeds invariably need to be managed in cropping systems to prevent competition with crop 497 

plants for various resources including sunlight, water and nutrients (Sedeek et al., 2019). Their 498 

unhindered growth not only substantially reduces the yield of oilseed crops, but also 499 

contaminates harvested product, which can be problematic (Asaduzzaman et al., 2020). As a 500 

means of mitigating these losses, transgenic herbicide-tolerant oilseed varieties have become a 501 

mainstay of crop production (Bonny, 2008; Schütte et al., 2017), with genetically engineered 502 

herbicide-tolerant soybean and cotton, for example, making up more than 90% of their respective 503 
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crop acreages in the United States (United States Department of Agriculture Economic Research 504 

Service, 2019). The well-known Roundup Ready® trait is one of the most commonly used in 505 

terms of herbicide tolerance, and occurs through the genomic insertion of a transgenic cassette 506 

including a sequence encoding a glyphosate-insensitive form of 5-enolpyruvylshikimate 3-507 

phosphate synthase (EPSPS) from Agrobacterium sp. strain CP4. This renders these plants 508 

resistant to the broad-spectrum herbicide glyphosate, and allows its application for weed control 509 

on a regular basis (Funke et al., 2006). Several other transgenic oilseed varieties have also been 510 

developed with resistance to different herbicides, including glufosinate, dicamba and 2,4-511 

dichorophenoxyacetic acid (Nandula, 2019). However, in all cases, they face market and 512 

regulatory limitations due to the presence of a transgene, which has provided an impetus to find 513 

alternative routes for achieving herbicide tolerance in less widely grown oilseed crops. While 514 

several non-transgenic herbicide tolerance traits (e.g., sulfonylurea, imidazolinone and triazine 515 

tolerance) have been developed through induced mutagenesis, tissue culture or spontaneous 516 

mutations, many of the resulting plants have displayed only modest improvements in agronomic 517 

performance overall (e.g., Nandula, 2019; Asaduzzaman et al., 2020). 518 

 While glyphosate resistance has typically been achieved through the insertion of a 519 

glyphosate insensitive EPSPS gene of bacterial origin, the precise mutation of endogenous 520 

EPSPS genes can also elicit the same effect. Normally, the EPSPS enzyme is involved in the 521 

biosynthesis of essential aromatic amino acids, but its activity is inhibited by glyphosate, which 522 

ultimately leads to plant death (Schönbrunn et al., 2001). In flax (Linum usitatissimum), two 523 

paralogous EPSPS genes were edited simultaneously through the transient introduction of a 524 

single‐stranded oligonucleotide (ssODN) in combination with CRISPR/Cas9, leading to 525 

glyphosate tolerance in the resulting plants (Sauer et al., 2016). While this technology requires 526 

the use of a chemically synthesized oligonucleotide (~150 nucleotides in length), which acts as a 527 
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DNA template during the editing process and allows precise nucleotide edits to be made at the 528 

site of the Cas9-induced double strand break, the resulting edit only consisted of two nucleotide 529 

substitutions compared to the endogenous sequence. More specifically, this strategy resulted in 530 

the conversion of T178I and P182A; alterations that rendered the enzyme insensitive to 531 

glyphosate (Sauer et al., 2016).  532 

Acetolactate synthase (ALS) is another key metabolic enzyme in the biosynthesis of amino 533 

acids, but unlike EPSPS, it is involved in the production of branched-chain amino acids such as 534 

valine, leucine and isoleucine. Its activity is inhibited by certain classes of herbicides such as 535 

sulfonylureas and imidazolinones (Lee et al., 1988), and genome editing techniques such as 536 

oligonucleotide-directed mutagenesis, zinc finger nucleases (ZFN), transcription activator-like 537 

effector nucleases (TALEN) and CRISPR/Cas9 have been employed in various crops to 538 

produce precise alterations in this gene to establish herbicide tolerance to date (e.g., Gocal et 539 

al., 2015; Sun et al., 2016; Songstad et al., 2017; Tian et al., 2018). For example, CRISPR-540 

mediated base-editing has been used to precisely edit the ALS1 gene in B. napus to elicit a 541 

P197S mutation and consequent herbicide tolerance (Wu et al., 2020a), and a sulfonylurea-542 

resistant canola variety achieved using ssODN-mediated mutagenesis is already on the market 543 

in the US and Canada (SU-canola; Cibus). In addition, HDR-mediated CRISPR/Cas has been 544 

used to replace the endogenous ALS gene in soybean with a homologous 1,084-bp DNA 545 

fragment containing three silent nucleotide substitutions that led to a P178S mutation that 546 

should theoretically result in herbicide tolerance; however, resistance was not assessed in this 547 

study (Li et al., 2015).  548 

While many herbicide-tolerant transgenic and conventionally bred oilseed cultivars are 549 

already on the market, weed resistance to the various herbicides currently in use is becoming 550 

problematic (e.g., Heap and Duke, 2017; Perotti et al., 2020). This has led to the stacking of 551 
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multiple herbicide tolerance traits in many varieties over recent years, and the use of herbicide 552 

rotation/mixtures as one component of an integrated crop management approach to mitigate this 553 

issue. However, with the hope that new herbicides with novel sites of action will be developed, 554 

and currently underutilized oilseed species gain popularity for cultivation, the ability to rapidly 555 

and precisely edit plant genes to elicit herbicide tolerance could prove to be extremely valuable. 556 

Since this typically requires the generation of specific nucleotide substitutions within a target 557 

gene, newer CRISPR/Cas technologies, such as base- and prime-editing, will likely play a 558 

central role in such endeavours in the future.  559 

 560 

C. Enhancement of abiotic stress tolerance  561 

Environmental stresses such as drought, salinity, and waterlogging, as well as low or elevated 562 

temperatures, are major factors limiting the growth, development, seed quality and overall 563 

productivity of oilseed crops (Boem et al., 1996; Purty et al., 2008; Singer et al., 2016; Elferjani 564 

and Soolanayakanahally, 2018). For example, severe soil water deficits during flowering and pod 565 

setting stages in soybean have been found to lead to a 61% reduction in total leaf area per plant, a 566 

67% decrease in aboveground biomass, and up to 82% seed yield losses (Wei et al., 2018). 567 

Unfortunately, these types of stresses are becoming more frequent and their intensity is 568 

escalating in many parts of the world due to climate change (AghaKouchak et al., 2020), which 569 

means that oilseed yield losses resulting from abiotic challenges are likely to worsen in coming 570 

years.  571 

Although a comprehensive understanding of the cascade of physiological and molecular 572 

events that takes place upon exposure to these types of stresses is still lacking, our knowledge in 573 

this area has increased markedly in recent years (e.g., Wang et al., 2019b; de Souza et al., 2020). 574 

Abiotic stresses such as drought, hypoxia, salinity and extreme temperatures typically lead to an 575 
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influx of calcium (Ca2+) into the cytosol of plant cells, and a surge in the production of reactive 576 

oxygen species (ROS), which can damage DNA, RNA proteins and lipids when above a 577 

threshold level. The accumulation of Ca2+ and ROS then activates various signaling pathways 578 

that, along with phytohormones such as abscisic acid (ABA), results in an adaptive and 579 

integrated response to maximize survival (Mohanta et al., 2018). This response employs 580 

numerous mechanisms, including the production of structural or protective proteins, an 581 

accumulation of osmoprotectants and enhanced antioxidative capacity. To date, a large number 582 

of plants over-expressing various miRNAs (e.g., Arshad et al., 2017; Ho et al., 2019), as well as 583 

genes encoding a number of transcription factors (e.g., Hao et al., 2011; Zhu et al., 2018), 584 

antioxidant enzymes (e.g., Saxena et al., 2020), proteins involved in the production of molecular 585 

antioxidants (e.g., Kim et al., 2019) or osmoprotectants (e.g., Sun et al., 2019), and proteins that 586 

function in phytohormone signaling pathways (e.g., Sahni et al., 2016) have been shown to 587 

exhibit an enhanced ability to withstand various types of abiotic stress. However, there is a 588 

distinct paucity of information regarding negative regulators within abiotic stress response-589 

related pathways, and therefore studies involving CRISPR/Cas-mediated improvement of abiotic 590 

stress tolerance remain scarce.  591 

While various phytohormones are believed to play a role in plant stress response, ABA is 592 

particularly well-known for the central role that it plays in a plant’s ability to cope with osmotic 593 

stress. When plant cells are exposed to osmotic stress, de novo ABA biosynthesis is up-594 

regulated, which leads to the transcriptional modulation of many genes and promotes stomatal 595 

closure to avoid transpiration-related water loss (Nakashima and Yamaguchi-Shinozaki, 2013). 596 

The WD40-repeat family protein RECEPTOR FOR ACTIVATED C KINASE 1 (RACK1) is a 597 

known negative regulator of ABA responses in plants (Guo et al., 2009; Zhang et al., 2013), and 598 

the constitutive RNAi-mediated down-regulation of a RACK1 homolog in soybean has been 599 
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found to increase drought and salt tolerance compared to wild-type plants (Li et al., 2018c; 600 

Zheng et al., 2019). Under stress conditions, these lines also displayed enhancements in ABA 601 

content, elevated antioxidant enzymatic activities and expression levels, and a reduction in the 602 

expression levels of genes involved in ROS production compared to wild-type, which likely all 603 

contributed to their stress resilience (Li et al., 2018c; Zheng et al., 2019). A similar improvement 604 

in drought and/or salinity tolerance has also been observed in rice RACK1 RNAi lines (Li et al., 605 

2009; Zhang et al., 2018b), which suggests that this approach may be applicable across a wide 606 

range of plant species. However, there is also evidence that RACK1 genes may act as positive 607 

regulators in the response to some fungal phytopathogens (e.g., Wang et al., 2014b; Li et al., 608 

2017a); a finding that will warrant further assessments in knock-down and knock-out lines in the 609 

future. Furthermore, loss-of-function Arabidopsis rack1a mutants, but not rack1b or rack1c 610 

mutants, have been found to display severe morphological defects under non-limiting growth 611 

conditions (Chen et al., 2006a; Guo and Chen, 2008) and exhibit hypersensitivity to salt (Guo et 612 

al., 2009). While the reasons behind these discrepancies among species have yet to be unraveled, 613 

it is clear that the specific paralog chosen for CRISPR/Cas-mediated targeting, as well as gene 614 

dosage, may all be important factors for consideration with this approach. 615 

In plants, the post-translational farnesylation of proteins, whereby a farnesyl group is 616 

added to a conserved cysteine residue at the carboxy terminus of a protein, allows otherwise 617 

hydrophylic proteins to function as peripheral membrane proteins and plays a critical role in 618 

many cellular processes, including abiotic stress response (e.g., Jamshed et al., 2017). The 619 

FARNESYLTRANSFERASE A (FTA) and ENHANCED RESPONSE TO ABA1 (ERA1) genes 620 

encode the α and β subunits of farnesyltransferase, which functions in ABA signaling, and the 621 

down-regulation/mutation of both genes has been found to result in ABA hypersensitivity, 622 

stomatal closure and reduced transpiration rates (Allen et al., 2002; Wang et al., 2009b). In B. 623 
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napus, the drought-inducible down-regulation of both BnFTA and BnERA1, respectively, has 624 

been found to provide yield protection under drought stress at flowering without negatively 625 

impacting growth under well-irrigated conditions (Wang et al., 2005; Wang et al., 2009b). 626 

However, this approach may be contingent upon the conditional down-regulation of these genes 627 

under drought conditions since the mutation of both genes in Arabidopsis causes pleiotropic 628 

defects (Yalovsky et al., 2000; Running et al., 2004; Daszkowska-Golec et al., 2018), increased 629 

susceptibility to pathogens (Goritschnig et al., 2008) and reduced tolerance to moderate 630 

sustained heat stress (Wu et al., 2016), which would almost certainly limit agronomic usefulness. 631 

Since inducible expression with the CRISPR/Cas system is not possible using transgene-free 632 

forms of the technology, it remains to be determined whether this strategy would provide 633 

benefits in this area. Several other ABA hypersensitive Arabidopsis mutants, such as abh1 634 

(Hugouvieux et al., 2001), abo1 (Chen et al., 2006b), and cyp85a2 (Northey et al., 2016) have 635 

also been shown to exhibit enhancements in drought response; however, very little is known 636 

about potential pleiotropic effects, or their roles in other plant species, as of yet. 637 

Another important component of stress response involves the signaling molecule nitric 638 

oxide (NO), which accumulates under a wide range of stress conditions and elicits its effect via 639 

the prevention of oxidative damage by ROS, modulations in phytohormone signaling, and post-640 

translational modifications of target proteins (Asgher et al., 2017; Nabi et al., 2019). In addition, 641 

NO is also known to stimulate the growth of lateral roots, root hairs and adventitious roots (e.g., 642 

Foreman et al., 2003; Correa-Aragunde et al., 2004; Liao et al., 2012), which may also 643 

contribute to its function in stress response. The enzymatic activity of arginase (ARG), which 644 

catalyzes the production of ornithine and urea from arginine, suppresses the production of nitric 645 

oxide by nitric oxide synthase due to competition for their common arginine substrate (Shi et al., 646 

2013). In line with this, Arabidopsis arg mutant lines exhibit higher levels of NO production, 647 
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reduced ROS accumulation under stress conditions, and augmented production of lateral and 648 

adventitious roots, as well as improvements in drought, salt and freezing tolerance, compared to 649 

wild-type plants (Flores et al., 2008; Shi et al., 2013). Similarly, the simultaneous NHEJ-based 650 

CRISPR/Cas9-mediated mutation of two paralogous GhARG genes in allotetraploid cotton 651 

resulted in plants with increased NO content and enhanced lateral root production compared to 652 

wild-type (Wang et al., 2017a). While stress tolerance was not assessed in this study, this 653 

strategy certainly holds promise for enhancing resilience to abiotic challenges in oilseed crop 654 

species in the future. 655 

The ability of plants to withstand salinity involves several processes above and beyond 656 

those typically employed during osmotic stress response, many of which center on the prevention 657 

of Na+ accumulation within cells. For instance, the SALT OVERLY SENSITIVE (SOS) 658 

pathway consists of three main components, including the calcium-binding protein SOS3, 659 

protein kinase SOS2, and plasma membrane Na+/H+ antiporter SOS1 (Zhu, 2002; Guo et al., 660 

2004; Ke et al., 2017).  Under non-limiting growth conditions, GIGANTEA (GI), which is 661 

predominantly associated with photoperiodic control of flowering and is a major component of 662 

salt stress adaptation (Ke et al., 2017), binds SOS2 and prevents the activation of SOS1. 663 

However, under salt stress, GI undergoes proteasomal degradation, which promotes the 664 

formation of SO2-SO3 complexes that activate SOS1 via phosphorylation, resulting in the export 665 

of Na+ ions from the cell and aiding in a plant’s ability to withstand these conditions (Yoon et 666 

al., 2018). Consequently, GI has been shown to function as a strong negative regulator of salt 667 

stress tolerance in various plant species to date, including members of the Brassicaceae family 668 

(Kim et al., 2013; Kim et al., 2016; Ke et al., 2017). For instance, the mutation or constitutive 669 

down-regulation of GI in both Arabidopsis and B. rapa resulted in enhanced resilience to salinity 670 

stress compared to wild-type plants (Kim et al., 2013; Kim et al., 2016). Furthermore, transgene-671 
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free delivery of CRISPR/Cas9 RNPs into B. oleracea protoplasts was also successfully utilized 672 

to simultaneously target two GI alleles, but phenotypic assessments have yet to be carried out in 673 

these lines (Park et al., 2019). Since GI is also linked with flowering time, the knock-out/down-674 

regulation of GI can lead to delayed flowering (Kim et al., 2013; Ke et al., 2017), which may or 675 

may not be desirable in terms of agronomic performance. However, this is not always the case, 676 

and the constitutive down-regulation of BrGI in B. rapa did not result in any alteration of 677 

flowering time, suggesting that gene dosage and/or avoiding loss-of-function mutations may be 678 

required for the most beneficial outcomes with CRISPR/Cas editing of this gene in the future. 679 

Other potential candidates for the NHEJ-based CRISPR/Cas-mediated improvement of 680 

abiotic stress tolerance in oilseed species are particular members of the STRESS-ASSOCIATED 681 

PROTEIN (SAP) gene family, which contain A20/AN1 zinc finger domains and are often 682 

differentially regulated in response to stress (e.g., Huang et al., 2008; Xuan et al., 2011; Dixit et 683 

al., 2018). Many studies have found that the over-expression of certain SAP genes elicits broad 684 

improvements in abiotic stress tolerance in many plant species (e.g., Mukhopadhyay et al., 2004; 685 

Kanneganti and Gupta, 2008; Dixit et al., 2018; Zhang et al., 2019), or has distinct effects 686 

depending on the type of stress (e.g., Huang et al., 2008; Xuan et al., 2011), which suggests that 687 

members of this gene family play differential roles in stress-signaling pathways. In addition, it 688 

appears that at least a small subset of these genes act as negative regulators of both abiotic and 689 

biotic stress response (e.g., Sharma et al., 2015; Kang et al., 2017). For example, the down-690 

regulation of PagSAP1 in poplar has been found to enhance salinity tolerance through an 691 

increase in the accumulation of Ca2+ and K+, along with a concomitant decrease in Na+, as well 692 

as increased expression of stress response genes including SOS1 and SOS3 (Yoon et al., 2018). 693 

Therefore, while the CRISPR/Cas-mediated editing of a homologous gene in an oilseed species 694 

also has the potential to elicit a similar effect, very little is currently known regarding the 695 
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functions of these genes in oilseed crop species. Given that there are at least fifty-seven SAP 696 

genes in B. napus (He et al., 2019), a substantial amount of research will need to be dedicated 697 

towards unraveling their precise roles in stress response. 698 

Another important consideration for the development of climate-smart oilseed cultivars is 699 

that the vast majority of studies in which abiotic stress tolerance has been assessed thus far have 700 

been based upon the effect of a single form of stress. While prolonged or acute exposure to any 701 

single abiotic stress can be enough to devastate oilseed crop yields in the field, several stresses 702 

often occur simultaneously in various combinations and at varying levels, which can compound 703 

the resulting negative effects (Elferjani and Soolanayakanahally, 2018). The precise molecular 704 

effects of such interactions have not been well-studied, and an improved understanding of abiotic 705 

stress response mechanisms under complex growing conditions will therefore be of the utmost 706 

importance for maximizing our ability to provide oilseed crop improvements using any breeding 707 

platform in the future.  708 

 709 

D. Improvement of disease resistance 710 

Biotic stress caused by phytopathogens can result in considerable crop yield losses both before 711 

and after harvest (Savary et al., 2012). Moreover, with impending climate change scenarios, the 712 

establishment and long-term survival of existing phytopathogens, as well as the 713 

emergence/spread of new and aggressive species, may very well increase in coming years 714 

(Chattopadhyay et al., 2019; Wu et al., 2020b). While conventional breeding has been utilized to 715 

develop varieties with improved resistance to certain pathogens, large gaps still remain in terms 716 

of controlling a vast number of biotic stressors in a wide range of crop species. Therefore, an 717 

ability to develop new oilseed cultivars with improvements in biotic stress resilience will almost 718 
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certainly be of critical importance for oilseed breeders in terms of meeting growing demand with 719 

the added benefit of reducing fungicide and/or pesticide use.  720 

The vast majority of breeding attempts to enhance disease resistance in crop species have 721 

focused primarily on the introgression or transgenic over-expression of resistance (R) genes 722 

(Ercolano et al., 2012), which in many cases has led to reductions in disease severity and/or 723 

incidence (e.g., Li et al., 2019b; Qi et al., 2019; Xun et al., 2019). Most of these genes encode 724 

cell surface or intracellular receptors, which can trigger disease resistance in numerous ways, 725 

typically through recognition of the pathogen (Kourelis and van der Hoorn, 2018). Alternatively, 726 

resistance to certain phytopathogens can also be achieved through the impairment of susceptible 727 

(S) genes, which encode products that phytopathogens require for their initial establishment, as 728 

well as their subsequent growth and proliferation (Pavan et al., 2010). As such, the disruption of 729 

such genes using either conventional or genome editing approaches can break host-pathogen 730 

compatibility by impairing pre-penetration (e.g., host recognition, penetration, leaf surface 731 

modulation) or post-penetration (e.g., nutrients) processes, and can provide broad-spectrum and 732 

durable resistance against bacterial and fungal pathogens (Hernández-Blanco et al., 2007; Bai et 733 

al., 2008; Wang et al., 2014a). 734 

Fungal diseases can have a serious impact on oilseed crop production, and are largely 735 

controlled through cultural practices, host plant resistance and the use of chemical fungicide 736 

applications. However, fungicides can be costly and pose health risks for growers, achieving 737 

appropriate timing can be challenging, and the development of fungicide resistance is becoming 738 

increasingly problematic (e.g., Carter et al., 2014; Derbyshire and Denton-Giles, 2016). In 739 

addition, cultivars offering full resistance to particular pathogens are lacking for many crop 740 

species (e.g., Derbyshire and Denton-Giles, 2016). For these reasons, attempts to modulate 741 

fungal disease resistance using CRISPR/Cas-based methods have been gaining momentum in 742 
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recent years, and several strategies have shown great promise (e.g., Wang et al., 2016; Wang et 743 

al., 2018). Under mild temperatures and humid conditions, oilseed crops are negatively affected 744 

by powdery mildew (PM), which can result in yield losses as high as 20-30% (Uloth et al., 2018; 745 

Dunn and Gaynor, 2020). Intriguingly, the CRISPR/Cas-mediated NHEJ knock-out of the S 746 

gene MILDEW RESISTANCE LOCUS O (MLO), which confers susceptibility to various PM-747 

causing phytopathogens in a broad range of crop species (Shen et al., 2012), has been utilized to 748 

successfully enhance resistance to PM in wheat (Wang et al. 2014a) and tomato (Nekrasov et al., 749 

2017). While little is known about MLO homologs in oilseed species as of yet, these genes 750 

appear to be highly conserved across a wide range of plant species (Pessina et al., 2016), and 751 

Arabidopsis mlo mutants have also been found to exhibit enhanced PM resistance (Frye et al., 752 

2001; Consonni et al., 2010; Acevedo-Garcia et al., 2017). Therefore, it is likely that the 753 

CRISPR/Cas-mediated targeting of MLO homologs could also yield beneficial results in oilseed 754 

crops.  755 

Similarly, the CRISPR/Cas9-mediated NHEJ-based bi-allelic/homozygous disruption of 756 

two Gh14-3-3d homologs in cotton has been found to lead to improvements in resistance to the 757 

fungal pathogen Verticillium dahliae (Zhang et al., 2018c). Members of the 14-3-3 protein 758 

family are involved in a wide range of biological functions in plants, and act by binding 759 

numerous other proteins to regulate their degradation, activity, or sub-cellular localization (Paul 760 

et al., 2005). They are highly conserved across plant species, including B. napus (Zhan et al., 761 

2010) and soybean (Li and Dhaubhadel, 2011), with at least certain members having been 762 

suggested to provide a role in signaling pathways and stress response (Seehaus and Tenhaken, 763 

1998; Lapointe et al., 2001). Therefore, while it is feasible that similar outcomes could be 764 

achieved in other oilseed species using CRISPR/Cas, relatively little is currently known 765 

concerning the precise function of the numerous 14-3-3 homologs in oilseed species as of yet, 766 
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and further research will therefore be a pre-requisite for the successful application of this 767 

approach. 768 

Genes encoding certain members of the WRKY transcription factor domain family have 769 

also been found to play an important role in plant disease resistance, acting as either positive or 770 

negative regulators of defense. Indeed, numerous studies have demonstrated improvements in 771 

resistance to a wide range of phytopathogens (including both fungal and bacterial diseases) as a 772 

result of their over-expression (e.g., Abbruscato et al., 2012; Yu et al., 2012) or down-773 

regulation/mutation (e.g., Journot-Catalino et al., 2006; Li et al., 2017b) in a multitude of plant 774 

species to date. In line with this, the simultaneous CRISPR/Cas9-mediated NHEJ-based knock-775 

out of three out of four BnWRKY70 paralogs (two mono-allelic mutations and one bi-allelic 776 

mutation) in B. napus has been found to lead to a small reduction in the size of Sclerotinia 777 

sclerotiorum-induced lesions on detached leaves compared to wild-type. These differences were 778 

significant in two of the four lines assessed, suggesting that the BnWRKY70-edited plants may 779 

possess at least some enhancement in their resistance to this pathogen (Sun et al., 2018). Since S. 780 

sclerotiorum affects virtually all dicotyledonous plant species (Bolton et al., 2006) and can have 781 

a considerable impact on yield in oilseed crops (e.g., del Rio et al., 2007; Peltier et al., 2012), 782 

additional research in this area is warranted. However, further elucidation of the roles of each 783 

family member in oilseed species will likely be necessary for the implementation of such a 784 

strategy since at least some WRKY genes appear to provide differential effects depending on the 785 

particular type of pathogen (Wang et al., 2017b) or type of stress (Liu et al., 2015b).  786 

While little progress has been made to date in oilseed species with respect to the 787 

modulation of negative regulators controlling resistance to bacterial or viral diseases, progress is 788 

being made in other plant species in these areas that could potentially be applied to oilseed crops 789 

in the future. For example, CRISPR/Cas has been applied to Arabidopsis, cassava (Manihot 790 
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esculenta) and cucumber (Cucumis sativus) to disrupt EUKARYOTIC TRANSLATION 791 

INITIATION FACTOR 4E (eIF4E) homologs, which are known to be a major susceptibility 792 

factor for RNA viruses (Bastet et al., 2017), leading to improved resistance to various 793 

potyviruses (Chandrasekaran et al., 2016; Pyott et al., 2016; Bastet et al., 2019; Gomez et al., 794 

2019). No obvious morphological defects were observed in the edited lines, and where it was 795 

assessed, seed yield was not negatively affected (Bastet et al., 2019). Furthermore, the RNAi-796 

mediated down-regulation of eIF4E in soybean has also been found to lead to enhancements in 797 

potyvirus resistance, suggesting that this approach could be broadly applicable across species 798 

(Gao et al., 2020).  799 

 800 

IV. Conclusions 801 

Crop improvement programs could benefit tremendously from the advent of several 802 

CRISPR/Cas-based genome editing tools that offer simple and low-cost options for plant 803 

breeding, and provide non-transgenic germplasm. There is an imminent need to develop higher 804 

yielding oilseed crops with concomitant reductions in losses associated with seed shattering, 805 

weed invasion and environmental challenges in order to fulfill the demand of our ever-increasing 806 

population under a changing climate. Although a small number of traits in oilseeds have been 807 

modulated using CRISPR/Cas platforms thus far, there is much room for further research in 808 

which current approaches are expanded to other oilseed species, or potential target genes 809 

identified previously through mutation or RNAi-mediated down-regulation are assessed with 810 

CRISPR/Cas.  811 

The adjustment of a number of additional traits also has the potential to contribute to 812 

oilseed yield increases, including enhancements in photosynthetic efficiency/capacity, response 813 

to agronomic inputs and pest tolerance. However, very little progress has been made as of yet 814 



35 
 

regarding the identification of negative regulators within these processes that would benefit from 815 

NHEJ-mediated disruption. Similarly, proteins that could be improved via a small number of 816 

nucleotide substitutions using base- or prime-editing remain scarce, which has hindered efforts 817 

thus far. Therefore, attempts to utilize CRISPR/Cas to up-regulate target gene expression, rather 818 

than knock-down/knock-down gene function, may be a better option in these instances. This 819 

approach could also substantially facilitate gains in other areas, such as abiotic stress tolerance 820 

and disease resistance. Although this can be technically challenging to achieve in a manner that 821 

would yield non-transgenic germplasm, the disruption of repressor elements within target gene 822 

promoters, as has been demonstrated previously in tomato (Rodríguez-Leal et al., 2017), or the 823 

NHEJ-based mutation of upstream open reading frames within 5’ untranslated regions of a target 824 

gene, which has been shown to increase translation of the associated mRNA (Zhang et al., 825 

2018d), could both provide valuable options in this field. Alternatively, at least in cases where 826 

transcriptional silencing of a gene is directed by DNA methylation, the fusion of a catalytically 827 

inactive Cas protein (dCas) to either the catalytic domain of the Arabidopsis REPRESSOR OF 828 

SILENCING 1 (ROS1) glycosylase or a C-terminal tail that is recognized and bound by a 829 

separate module containing the catalytic domain of the human TEN-ELEVEN 830 

TRANSLOCATION1 (TET1cd) demethylase could be used to effectively trigger cytosine 831 

demethylation at a targeted location. This has been shown to lead to transcriptional up-regulation 832 

of the associated gene (Gallego-Bartolome et al., 2018; Devesa-Guerra et al., 2020), and such 833 

epigenetic alterations appear to be heritable, remaining present even once the transgene is 834 

segregated out (Gallego-Bartolome et al., 2018). While these tools are more challenging to 835 

implement than simple NHEJ-based CRISPR/Cas knock-outs elicited through mutations within 836 

coding sequences, they have the potential to expand CRISPR/Cas-editing capacity immensely in 837 

the future. 838 



36 
 

Although the use of CRISPR/Cas for oilseed improvement holds great promise for 839 

increasing the pace and precision of breeding in coming years, and the vast amount of genomic 840 

data for a wide range of species is simplifying such efforts, a major bottleneck remains in the fact 841 

that many oilseed species, or agronomically-important genotypes, remain recalcitrant to in vitro 842 

regeneration, and thus genetic transformation in general (e.g., Maheshwari et al., 2011; Sujatha 843 

and Tarakeswari, 2019). As such, the development and optimization of genotype-independent 844 

transformation protocols for these species will be of the utmost importance for the successful 845 

implementation of CRISPR/Cas editing technologies. Furthermore, concerns have also been 846 

raised regarding the possibility of off-target effects derived from the use of these tools, and the 847 

frequency with which these occur remains unclear. However, while off-target mutations have 848 

been found to occur in plants in certain cases (Sun et al., 2015), in the vast majority of instances 849 

CRISPR/Cas editing has been shown to be highly precise in plants (e.g., Nekrasov et al., 2017; 850 

Feng et al., 2018; Lee et al., 2018; Li et al., 2019c; Graham et al., 2020). In any case, the 851 

propensity for off-target effects can be minimized using a variety of approaches, including the 852 

careful selection of target sites, the introduction of RNPs (Murovec et al., 2018) or the fusion of 853 

dCas to the FokI nuclease (Guilinger et al., 2014), as well as the use of truncated gRNAs (Fu et 854 

al., 2014), paired Cas9 nickases with paired gRNAs (Mikami et al., 2016), or alternative Cas 855 

enzymes (Strohkendl et al., 2018).  856 

 In addition to their potential use for the improvement of oilseed crop species that are 857 

widely grown, CRISPR/Cas also holds promise for furthering the de novo domestication of wild 858 

or underutilized oilseed species through the targeting of multiple genes known to be involved in 859 

the domestication process (McGinn et al., 2019). Such a feat has been accomplished in stress-860 

tolerant tomato wild relatives previously (Zsögön et al., 2018). While the use and development 861 

of CRISPR/Cas-based technologies is just beginning to take off in oilseed species, it is clear that 862 
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these highly precise molecular breeding tools have the potential to provide an unprecedented rate 863 

of productivity-related improvements in agronomically-valuable oilseed crops, and could thus 864 

provide a substantial contribution towards our ability to sustainably meet future demand for 865 

oilseed-derived products.  866 
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Figure 1. Main CRISPR/Cas-related approaches for eliciting targeted genome editing and 1968 

the generation of non-transgenic edited plants. Red indicates nucleotide changes in targeted 1969 

region, dark purple denotes the PAM. Cas, CRISPR-associated protein; NHEJ, non-homologous 1970 

end-joining; PAM, protospacer adjacent motif; pegRNA, prime-editing guide RNA; RTase, 1971 

reverse transcriptase; sgRNA, single guide RNA. 1972 

 1973 

Figure 2. Possible routes, traits and target genes for increasing oilseed crop productivity 1974 

via CRISPR/Cas-mediated genome editing. 14-3-3, encodes a member of the 14-3-3 protein 1975 

family; APS, encodes the small subunit of ADP-glucose pyrophosphorylase; ALC, ALCATRAZ; 1976 

ALS, encodes acetolactate synthase; AP1, APETALA 1; AP2, APETALA 2; ARF18, AUXIN 1977 

RESPONSE FACTOR 18; ARG, encodes arginase; BS, BIG SEEDS; CIF1, encodes a cell wall 1978 

invertase inhibitor; CLV1, 2 and 3, CLAVATA homologs; DA1, encodes ubiquitin-activated 1979 

peptidase; eIF4E, EUKARYOTIC TRANSLATION INITIATION FACTOR 4E; EOD1/BB, 1980 

ENHANCER OF DA1/BIG BROTHER; EPSPS, encodes 5’enolpyruvylshikimate 3-phosphate 1981 

synthase; ERA1, ENHANCED RESPONSE TO ABA1; FT, FLOWERING LOCUS T; FTA, 1982 

FARNESYLTRANSFERASE A; GA3ox1, encodes gibberellin 3-oxidase; GI, GIGANTEA; IND, 1983 

INDEHISCENT; MAX1, MORE AXILLARY GROWTH 1; MLO, MILDEW RESISTANCE LOCUS 1984 
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