
MINT 709

OpenStack - Service 
Orchestration with Openstack 
 Implement Tenant Firewall and 

Load-balance service 
orchestration

Dmitriy Kupch

 
Master of Science in Internetworking 

Supervisor: Muhammad Durrani 
Brocade Communications Systems 



Capstone Project Report 

ABSTRACT 

Virtualization nowadays is absolutely with no doubt one of the main 
trend that technology is moving towards. The majority of engineers 
always been working on shorting expenses and having same or even 
better level of performance, same applies to virtualization. In order to 
improve data centre performance while shorten expenses for an 
enterprise infrastructure and multivendor Internet Service Providers, 
cloud based services has been announced. Cloud-based applications and 
services is a big part of our day-to-day activity, but even such a great 
mechanism has drawbacks and problems we are intended to look at by 
approaching Network Functions Virtualization (NFV).  
 
Still the problem of automation some services in cloud-environment is a 
big concern for lots of engineers in that industry those are working on 
making the process of providing application services in a more efficient 
and convenient way as for provides and for the end users.  

In this project we are proud to present a Network Functions 
Virtualization (NVF) within Openstack cloud-based Environment is 
presented in action. In conjunction with LBaaS, MaaS, FWaaS and not 
only our cloud-based environment, will be able to deliver more up-to-
date and reliable services. Physical network implementation with virtual 
network components forms the hybrid network topology with all those 
services included. In this project we also intended to demonstrate the 
way of controlling cloud-based environment in a more efficient way, 
thus we had to use Rest API for example to control traffic flow between 
tenants inside/outside our environment with Firewall as a Service 
(FWaaS) and Load-Balancer as a Service (LBaaS). We are sure that 
automation that we achieved will help to understand hybrid network 
infrastructure as well as traffic management and tenants deployment 
within cloud environment.  

OpenStack - Service Orchestration with Openstack 
 Implement Tenant Firewall and Load-balance service orchestration 



Capstone Project Report 

Acknowledgments 

Special regards to the MINT program itself and to it’s director  
Dr. M. H. MacGregor and MINT program coordinator  
Mr. Shahnawaz Mir for providing me with such a great opportunity to 
make this project real with giving me access to MINT Laboratory with 
all up-to-date devices as well as providing me with one of the most 
experienced mentor, Mr. Muhammad Durrani. It was really beneficial 
for me to have a great experience with hands on cloud-based technology 
as well as practicing my networking skills on the most relevant 
networking equipment. I am sure the benefits I gained from this project 
will contribute to the MINT program at University of Alberta. I am 
greatly thankful for all possible assistance and knowledge that 
University of Alberta and Master of Science in Internetworking program 
itself gave me to complete this project. 

OpenStack - Service Orchestration with Openstack 
 Implement Tenant Firewall and Load-balance service orchestration 



Capstone Project Report 

Table of Contents 

ABSTRACT 2
Acknowledgments 3
Table of Contents 4
Table of Figures 6

1 INTRODUCTION 10
1.1 SCOPE 12
2. TERMINOLOGY AND CONCEPTS 13
2.1 Virtualization 13
2.2 Architecture of the Network Virtualization 15
2.3 Hardware 16
2.4 Hypervisor 17
2.5 Virtual Machine 18
2.6 Operating System 18
2.6.1 Hosted Operating System 18
2.6.2 Cloud software platform 18
2.7 Application Layer 20
2.8 Network Function Virtualization 20
2.9 Dynamic DNS service 21
2.9.1 Dynamic DNS service configuration 21
3. SOFTWARE AND HARDWARE USED FOR PROJECT 23
3.1 VirtualBox 23
3.2 Openstack Cloud platform 23
3.2.1 Mirantis Openstack 7.0 23
3.2.2 Controller node 23
3.2.3 Compute node 23

OpenStack - Service Orchestration with Openstack 
 Implement Tenant Firewall and Load-balance service orchestration 



Capstone Project Report 

3.2.4 Storage node 24
3.2.5 Orchestration module 24
3.3 Brocade Vyatta vRouter  24
3.4 KEMP Load Master (Load-Balancer) 25
3.5 Hardware Equipment used in the Project 26
4. NETWORK TOPOLOGY DESIGN CONSIDERATIONS 27
4.1 Multivendor Hybrid Network Topology for Cloud Deployment 27
5. IMPLEMENTING VIRTUAL INFRASTRUCTURE 28
5.1 Installation and Configuration of VirtualBox 5.0 (Hypervisor) 28
5.2 Installation and Configuration of Mirantis Openstack 7.0 28
5.2.1 Creating Openstack cloud environment using Mirantis Fuel 7.0 32
5.2.2 Controller, Compute, Storage nodes deployment 37
5.3 Openstack Environment Configuration 47
5.3.1 Setting up network topology 50
5.3.2 Setting up firewall rules inside Openstack 51
5.3.3 Heat Orchestration 53
5.4 Creating tenant-1 54
5.5 Deployment of Brocade Vyatta 5400 vRouter 59
5.5.1 Configuration of vRouter 61
5.5.2 Enabling REST API on vRouter 65
5.6 Tenant-2 Netwok Configuration 66
5.7. Deploying KEMP Load Master virtual appliance 67
5.7.1 Configuring LoadBalancer 71
5.8. Checking overall connectivity 76
6. LAB EXPERIMENT DEMO WITH RESULTS 80
6.1 Configuring Firewall rules using REST API 80
6.2  Checking connectivity between tenant-1 and tenant-2 88

OpenStack - Service Orchestration with Openstack 
 Implement Tenant Firewall and Load-balance service orchestration 



Capstone Project Report 

Table of Figures

6.3 Installing HTTP Server application on both Servers 89
6.4 Enabling LoadBalancer LB interfaces 92
6.5 Verification LB functionality from http client 92
7 SUMMARY AND CONCLUSION 93
Bibliography & References: 95

Figure 1: Data Centres with Virtual & Traditional Architectures 14
Figure 2: Architecture of Network Functions Virtualization 15
Figure 3: Virtualization within physical server and cluster of servers 16
Figure 4: Data centre architecture with virtualization 17
Figure 5: Openstack distributive diagram 19
Figure 6: Cisco Router DPC3825 WEB Access 21
Figure 7: Cisco Router DPC3825 DDNS Activation 22
Figure 8: Router Port Forwarding 22
Figure 9: Network topology for the project 27
Figure 10: vbox-script location 28
Figure 11: Mirantis Openstack 7.0 config.sh 29
Figure 12: ISO location for Openstack 30
Figure 13: VMs in Virtualbox after Fuel installation 30
Figure 16: OpenStack name and release configuration 35
Figure 17: OpenStack compute node configuration 35
Figure 18: OpenStack network configuration 36
Figure 19: OpenStack create configuration 36
Figure 20: Openstack environment created 37
Figure 21: Compute node bootstrap process 37

OpenStack - Service Orchestration with Openstack 
 Implement Tenant Firewall and Load-balance service orchestration 



Capstone Project Report 

Figure 22: Assigning roles to the nodes allocated in FUEL 38
Figure 23: Nodes that are ready for deployment 39
Figure 24: Controller node parameters 40
Figure 25: Compute node parameters 41
Figure 26: Storage node parameters 42
Figure 27: Openstack Deployment  process 43
Figure 28: Openstack deployment Logs 44
Figure 29: Deployed Openstack Environment 45
Figure 30: Openstack WEB GUI Access 46
Figure 31: Openstack Usage summary Overview 46
Figure 32: SSH Key Pair creation 47
Figure 33: Openstack Flavor creation 48
Figure 34: Openstack Floating IP Allocation 49
Figure 35: Network Topology inside Openstack Environment 50
Figure 36: Firewall settings for Openstack Environment 51
Figure 37: Adding Firewall rule for HTTP access 52
Figure 38: Heat orchestration Template 53
Figure 39: Deploying tenant-1 Instance 54
Figure 40: Setting up the details for the Instance 55
Figure 41: Choosing SSH Key Pair for the Instance 56
Figure 42: Assigning NIC to the Instance 57
Figure 43: Assigning floating IP to the Instance 57
Figure 44:  Pinging public DNS from tenant-1 58
Figure 45:  Brocade Vyatta vRouter’s Installation initiation 59
Figure 46:  Brocade Vyatta vRouter’s Installation 60
Figure 47: Accessing Vyatta vRouter’s Web GUI 65
Figure 48: tenant-2 Network Configuration 66

OpenStack - Service Orchestration with Openstack 
 Implement Tenant Firewall and Load-balance service orchestration 



Capstone Project Report 

Figure 49: Downloading KEMP Load Master 67
Figure 50: Importing KEMP  Load Master virtual appliance 68
Figure 51: KEMP CLI GUI 69
Figure 52: KEMP VLM IP address configuration 69
Figure 53: KEMP VLM default gateway and dos address set up 70
Figure 54: KEMP System status 70
Figure 55: KEMP Load Master activation request page 71
Figure 56: KEMP Licensing process 71
Figure 57: KEMP License Key installation 72
Figure 58: KEMP License installed 72
Figure 59: KEMP System status 73
Figure 60: KEMP Virtual Service configuration 74
Figure 62: KEMP LoadMaster - Virtual services page 76
Figure 63: Remote Machine vnc access 76
Figure 64: Remote Machine access 77
Figure 65: Remote Machine access via SSH 78
Figure 66: Verifying public IP address of the External http client 79
Figure 67: Checking tenant-2 reachability from tenant-1 80
Figure 68: Checking tenant-1 reachability from tenant-2 81
Figure 69: Restfull API query/respond to vRouter 82
Figure 70: Restfull API session ID query/respond to vRouter 83
Figure 71: RESTfull API Firewall rule action set up on vRouter 84
Figure 72: RESTfull API commit firewall changes on vRouter 85
Figure 73: Checking reachability btw tenants 86
Figure 74: RESTfull API applying changes on vRouter 87
Figure 75: connectivity between tenant-1 and tenant-2 88
Figure 76: HTTP Service installation on both tenants 89

OpenStack - Service Orchestration with Openstack 
 Implement Tenant Firewall and Load-balance service orchestration 



Capstone Project Report 

Figure 77: HTTP Service configuration on tenants-2 90
Figure 78: HTTP Service configuration on tenants-1 91
Figure 79: Functioning Real Servers on KEMP VLM 92
Figure 80: Verification LB functionality from http client 92

OpenStack - Service Orchestration with Openstack 
 Implement Tenant Firewall and Load-balance service orchestration 



Capstone Project Report 

1 INTRODUCTION  

Virtualization technologies that exists nowadays changed the way of 
datacenter environment deployment as for enterprise or ISP 
organizations, moreover testing environment of small datacenter can be 
deployed even on one powerful machine.  Clusters of servers controlled 
by one operating system we call cloud environment. And there are two 
main types of it, private and public cloud environments. In both cases 
meaning is slightly the same we want our operating system to run 
application, the way it was before virtualization came in, but with that 
difference that we may want to use clusters of servers, we want to 
control it through some cloud operating system and be able to deploy 
virtual tenants to run some applications by simple clicking on the web 
page. This cloud infrastructure gives us flexibility of service distribution 
and centralized support,  time consuming to deploy application, higher 
throughput with low cost, because now we don’t need to have as many 
physical servers as number of applications we want to run, now 
hardware is used in more efficient way i.e if some resources from 
particular hardware is not fully utilized by your application, then that 
capacity might be used for another application without security 
vulnerability even on the same physical hardware. As long as there are 
numerous virtual machines with operating systems and applications 
running on top of it the system must have some communication, that’s 
what Network Functions Virtualization is standing for, there is a network 
layer with all virtualized network components, such as virtual router, 
virtual switch, virtual load-balancer, virtual firewall and etc. Moreover 
cloud infrastructure may be used for providing such a services like 
Firewall as a Service or Load-Balancer as a Service and not only, more 
and more cloud environment is used for backup and recovery and data 
storage services, which also involves Layer-3 services in virtualized data 
centre environment.  

The main part of this project is to deploy Service Orchestration with 
Openstack, Implement Tenant Firewall and Load-balance service 
orchestration which will be able to control traffic between the cloud and 

OpenStack - Service Orchestration with Openstack 
 Implement Tenant Firewall and Load-balance service orchestration 



Capstone Project Report 

physical network infrastructure, both consisting of physical and virtual 
network devices. Reachability from throughout the network will be 
demonstrated as well as configuration of security features.  

In between both networks, physical and virtual we use Brocade Vyatta 
vRouter v.5410 as a Router that forwards packets based on OSPF router 
protocol and also plays a role of firewall which is controlled via 
RESTfull API from the outside of our private network environment. 
Oracle’s product VirtualBox is used as a type-2 hypervisor for this 
project. For Openstack deployment we used Mirantis Openstack 7.0 
distributive. To provide Load-balancer functionality to our hybrid 
network environment we used KEMP’s product Virtual LoadMaster with 
virtual appliance. firewall rules changes will be made by using curl 
application that can send/receive http requests/responds to/from the 
WebServer. Network connectivity and reachability will be tested by ping 
and traceroute commands. Overall system functionality will be tested 
and all outputs will be provided in current report.

OpenStack - Service Orchestration with Openstack 
 Implement Tenant Firewall and Load-balance service orchestration 



Capstone Project Report 

1.1 SCOPE  

In this project we are intended to maintain a hybrid network with using 
cloud infrastructure with Firewall and Load Balancer As A Service. We 
will deploy tenants in private cloud using Openstack with Kilo 
distributive, which was the most stable release by the time of writing this 
project report. To provision Firewall rules (Stateful and Stateless) with 
Openstack on Vyatta FW and verify tenant separation we are using a 
Brocade Vyatta vRouter ver. 5410 in between the cloud and the Internet. 
Inside our cloud we use Neutron plugin for Openstack with VLAN 
segmentation function, which provides us with network connectivity 
inside the cloud environment. Eventually we will have a private network 
in the cloud environment as well as another private network in the 
physical environment, both network must accessible through vRouter 
and have access to the Internet, each server in both private networks are 
running simple HTTP service, which is accessible from the outside 
private networks via KEMP LoadBalancer, which in our case is a 
software Layer-7 Load Balancer, which provides balancing loads 
between both HTTP servers, if one server is going to have more 
connections then another one, then LB will route the traffic in a way to 
stabilize traffic between both Web Servers. 

OpenStack - Service Orchestration with Openstack 
 Implement Tenant Firewall and Load-balance service orchestration 



Capstone Project Report 

2. TERMINOLOGY AND CONCEPTS  

2.1 Virtualization  

Virtualization is a term that is used to describe the software used for 
simulation of hardware existence in order to create virtual computer 
system. There are two main types of it, one of them is when we are not 
simulating Operating System installed on one physical machine, but 
rather using the whole cluster of servers to present as a one powerful 
hardware unit with OS, another type is when we run several virtual 
machines by simulating separate hardware, whereas actually it runs VMs 
on top of OS of hosted physical machine.  

The process of virtualization is taking it’s place in a real world, when it 
comes for the enterprise to short their IT expenses by running several 
application on existent hardware, rather then running basically one 
application per physical machine, as it was presented in x86 architecture.   
Moreover in x86 architecture we had to run as many servers as 
applications we wanted to run, but servers utilization could be as low as 
15%, which is unbelievably inefficient, while being most of the time 
idle, whereas now, we can calculate at redistribute server’s hardware 
capacity with better utilization, which causes shorten expenses on IT. 

OpenStack - Service Orchestration with Openstack 
 Implement Tenant Firewall and Load-balance service orchestration 



Capstone Project Report 

On the figure below we could find detailed diagram of how traditional 
x86 data centres architecture differs in compare with data centres 
running under virtualized architecture.

Figure 1: Data Centres with Virtual & Traditional Architectures  

OpenStack - Service Orchestration with Openstack 
 Implement Tenant Firewall and Load-balance service orchestration 

Data Centres 
 with Virtualization architecture

Data Centres
with traditional architecture



Capstone Project Report 

2.2 Architecture of the Network Virtualization  

On the figure below you may find graphical representation of Network 
Virtualization. Virtual Networking is realized on application layer, i.e. 
KEMP Virtual Load Balancer is working on layer 4 and layer 7 
according to their documentation, which can be also deployed within a 
cloud infrastructure, basically firewall in the cloud environment can be 
delivered on the same principle, which of course makes whole virtual 
network more manageable and flexible.

Figure 2: Architecture of Network Functions Virtualization  

OpenStack - Service Orchestration with Openstack 
 Implement Tenant Firewall and Load-balance service orchestration 



Capstone Project Report 

2.3 Hardware  

 
In our case Hardware might be represented as one physical machine as 
well as a cluster of servers. 

Interconnected with network and functioning as one organism Clusters 
of servers are greatly used for example on ISP side, where it’s really 
convenient to have ability of centralized management. Hosted 
virtualization architecture on the other hand is rather used for testing 
purposes or to have opportunity to run several OSs on one physical 
machine. Although both models will work only if hardware in both cases 
supports virtualization. 

Figure 3: Virtualization within physical server and cluster of servers 

OpenStack - Service Orchestration with Openstack 
 Implement Tenant Firewall and Load-balance service orchestration 



Capstone Project Report 

2.4 Hypervisor 

Hypervisor is the layer within virtualization model that sits in between 
OS and Hardware layers and provides such functionality that lets us 
running multiple virtual machines on existent physical machine.  
 
There are two types of hypervisors: 
Type-1 hypervisor has OS, which runs directly on physical machine and 
further is able to run multiple virtual machines from centralized 
managed system.  
Type-2 hypervisor runs on top of already existent hosted operating 
system and simulates existence of several hardware units for those VM’s 
with OSs that they run. 

Figure 4: Data centre architecture with virtualization 

OpenStack - Service Orchestration with Openstack 
 Implement Tenant Firewall and Load-balance service orchestration 



Capstone Project Report 

2.5 Virtual Machine 

A virtual computer systems is known as “virtual machine” (VM):  a 
tightly isolated software container with an operating system and 
application inside.  Each self-contained VM is completely independent. 
Putting multiple VMs on a single computer enables several operating 
systems and applications to run on just one physical server, or “host”. 

A thin layer of software called a hypervisor decouples the virtual 
machines from the host and dynamically allocates computing resources 
to each virtual machine as needed. 

2.6 Operating System 

A system software that controls software and hardware resources 
utilization is called Operating System or OS. OS gives basic 
functionality that can be used to run Application on top of it. 

2.6.1 Hosted Operating System 

Hosted OS is a system that carries one or more operating systems by 
running one or more virtual machine 

2.6.2 Cloud software platform 

Cloud software platform was created  for centralized control and 
utilization of hardware resources and redistribution those resources 
between nodes, such as compute, network, storage, controller and etc., 
that provides cloud system functionality. 

There are several vendors that supports Openstack community, of course 
there are even more open-sourced projects that focuses on improving 
Openstack and Openstack deployment process as well as on upgrading 
Openstack distributives supervised by Openstack community. 

OpenStack - Service Orchestration with Openstack 
 Implement Tenant Firewall and Load-balance service orchestration 



Capstone Project Report 

On the diagram below I showed only few, that I personally experienced 
in current project. Previously I had to try all of them starting from 
Canonical’s product JuJu and MaaS (Metal as a Service) to DevStack 
with script deployment to Cookbook distributive of Openstack, but 
finally I stopped on Mirantis product. Using all four distributives I was 
able to finally bootstrap all the nodes and tenants that would be able 
eventually functioning well, but I found that Mirantis with deployment 
tool, called FUEL provides more solid distributive and user-friendly 
interface for deployment Openstack. 

Figure 5: Openstack distributive diagram 

OpenStack - Service Orchestration with Openstack 
 Implement Tenant Firewall and Load-balance service orchestration 



Capstone Project Report 

In our scenario we are using Mirantis Opentstak version 7.0 distribution 
with an open source tool used for deployment and management of 
Openstack called FUEL. FUEL is a software that supports by Openstack 
community and provides user friendly GUI interface while at the same 
time supporting different Openstack distributions and plugins. The main 
purpose of which is to automate the deployment process. 

“Fuel brings consumer-grade simplicity to streamline and accelerate the 
otherwise time-consuming, often complex, and error-prone process of 
deploying various configuration flavors of OpenStack at scale.” 

Source: https://www.mirantis.com/products/mirantis-openstack-software/openstack-deployment-
fuel/ 

2.7 Application Layer 

In the Open Systems Interconnection (OSI) seven-layer model the 
application layer is a top layer that provides end-user interface. 

2.8 Network Function Virtualization  

The main idea of NFV is to bring network functionality within 
virtualization environment. Usually network devices manufactures 
provides proprietary software that runs on top of their hardware, the idea 
of NFV is to separate software of the network devices from hardware 
and put it into virtualized environment and be able to use commodity 
hardware instead. There are several benefits of using NFV like Reduce 
CapEx and OpEX, where OpEX stands for reducing rack space, power 
and cooling requirements of the devices as well as making more 
convenient to manage the network services, and Capex stands for 
reducing cost by using commodity hardware and supporting easily 
expandable model to reduce useless over-provisioning.  

OpenStack - Service Orchestration with Openstack 
 Implement Tenant Firewall and Load-balance service orchestration 



Capstone Project Report 

2.9 Dynamic DNS service 

Dynamic DNS service is used simply to bind dynamically changed 
public IP address to the fixed domain name. It works by installing 
client’s information on router or on client’s application, so each time 
client is going online it sends new public IP to the DynDNS server, then 
DynDNS binds particular public IP address to the domain name we 
assigned to our account. 

2.9.1 Dynamic DNS service configuration 

Previously I have registered for Dynamic DNS Service using  
DynDNS Pro subscription on http://dyn.com. In order to allow external 
traffic for my router I had to enable DynDNS service on the router and 
forward ports to my services (i.e. port 80 to access RESTfull API of 
Brocade Vyatta vRouter). 

Figure 6: Cisco Router DPC3825 WEB Access 

OpenStack - Service Orchestration with Openstack 
 Implement Tenant Firewall and Load-balance service orchestration 

http://dyn.com


Capstone Project Report 

Figure 7: Cisco Router DPC3825 DDNS Activation 

Figure 8: Router Port Forwarding 

OpenStack - Service Orchestration with Openstack 
 Implement Tenant Firewall and Load-balance service orchestration 



Capstone Project Report 

3. SOFTWARE AND HARDWARE USED FOR PROJECT 

3.1 VirtualBox 

Oracle VirtualBox ver.5.0 is used for this project. VirtualBox is a type-2 
hypervisor, which means it runs virtual machines on physical hosted 
machine with operating system. 

3.2 Openstack Cloud platform 

OpenStack is a free software platform that supports by open-source 
community and is used for cloud computing, mostly deployed as an 
infrastructure-as-a-service (IaaS). As Openstack is a cloud software 
platform so everything written under 2.3.2 paragraph is also corresponds 
to it. 

3.2.1 Mirantis Openstack 7.0 

Mirantis Openstack 7.0 is a vendor supported distributive of Openstack, 
which provides support of various plugins and features. It includes 
FUEL as a deployment and managing tool to bootstrap Openstack. 

3.2.2 Controller node 

The Controller Node hosts all OpenStack services needed to orchestrate 
virtual machines deployed on the Compute Nodes. In our case it is 
managed and deployed through the FUEL software.  

3.2.3 Compute node 

OpenStack Compute is a service that provides hosting and management 
for cloud computing systems. It plays a huge role of an Infrastructure-as-
a-Service (IaaS) system. OpenStack Compute interacts with OpenStack 
Identity for authentication, OpenStack Image service for disk and server 
images, and OpenStack dashboard (Horizon) for the user and 
administrative interface. OpenStack Compute can scale horizontally on 
standard hardware, and download images in order to launch instances.  

Source: OpenStack Installation Guide for October 30, 2015 kilo Ubuntu 14.04  
OpenStack - Service Orchestration with Openstack 

 Implement Tenant Firewall and Load-balance service orchestration 



Capstone Project Report 

3.2.4 Storage node 

OpenStack Block Storage is a piece of software that provides 
functionality that needs for centralized management and creation of a 
service that deploys storage using a model of a block of devices called 
Cinder volumes. Those volumes further is used as a persistent storage to 
instances managed by Openstack compute software.  

Source: http://searchstorage.techtarget.com/definition/Cinder-OpenStack-Block-Storage, 
September 2013 

3.2.5 Orchestration module  

The Orchestration module provides a template-based orchestration for 
describing a cloud application, by running OpenStack API calls to 
generate running cloud applications. The software integrates other core 
components of OpenStack into a one-file template system. The 
templates allows user to create most OpenStack resource types, such as 
instances, floating IPs, volumes, security groups and users. It also 
provides advanced functionality, such as instance high availability, 
instance auto-scaling, and nested stacks.  

Source: OpenStack Installation Guide for October 30, 2015 kilo Ubuntu 14.04  

3.3 Brocade Vyatta vRouter   

The Brocade® Vyatta® 5400 vRouter delivers advanced routing for 
physical, virtual, and cloud networking environments. It includes 
dynamic routing, Policy-Based Routing (PBR), stateful firewall, VPN 
support, and traffic management in a solution optimized for virtualized 
environments. All features can be configured through a familiar, 
network-centric Command Line Interface (CLI), a Web-based GUI, or 
external management systems using the Brocade Vyatta Remote Access 
API. 

Source: Brocade Vyatta 5400 vRouter data sheet 

OpenStack - Service Orchestration with Openstack 
 Implement Tenant Firewall and Load-balance service orchestration 



Capstone Project Report 

3.4 KEMP Load Master (Load-Balancer)  

Kemp Load Master is a Layer 4 and Layer 7 virtual Load Balancer that 
manages user traffic and applications, to deliver website integrity for all 
sizes of businesses and managed service providers.KEMP products 
optimize web infrastructure as defined by high-availability, high-
performance, flexible scalability, ease of management and secure 
operations - while streamlining IT costs. LoadMaster simplifies the 
management of networked resources, and optimizes and accelerates user 
access to diverse servers, content and transaction-based systems. 

Source: KEMP LoadMaster Product Overview, Feb 2015 

OpenStack - Service Orchestration with Openstack 
 Implement Tenant Firewall and Load-balance service orchestration 



Capstone Project Report 

3.5 Hardware Equipment used in the Project  

• MacBook Pro 

• D-link DIR-820LA1 

• Ethernet Cables with RJ-45 Connectors  

Hardware Specifications for MacBook Pro 

MacBook Pro 

  Processor Name:	 Intel Core i7 Quad Core

  Processor Speed:	 2.5 GHz

  Number of Processors:	 1

  Total Number of Cores:	 4

  L2 Cache (per Core):	 256 KB

  L3 Cache:	 6 MB

  Memory:	 16 GB

  Storage (SSD) 	 256GB

  Network	 Gigabit Ethernet port


Hardware Specifications for tenant-2 

name: tenant-2  
host name: qp4-X101CH  
Asus X101CH 

  Processor Name:	 Intel® Atom™ N2600 (Dual Core; 1.6GHz) Processor  

  Processor Speed:	 1.6 GHz

  Number of Processors:	 1

  Total Number of Cores:	 2

  L2 Cache (per Core):	 1 MB

  Memory:	 2 GB

  Storage (SSD) 	 256GB

  Network	 Gigabit Ethernet port


OpenStack - Service Orchestration with Openstack 
 Implement Tenant Firewall and Load-balance service orchestration 



Capstone Project Report 

4. NETWORK TOPOLOGY DESIGN CONSIDERATIONS  

4.1 Multivendor Hybrid Network Topology for Cloud Deployment 

 

Figure 9: Network topology for the project 

OpenStack - Service Orchestration with Openstack 
 Implement Tenant Firewall and Load-balance service orchestration 



Capstone Project Report 

5. IMPLEMENTING VIRTUAL INFRASTRUCTURE  

5.1 Installation and Configuration of VirtualBox 5.0 (Hypervisor)  

We chose version 5.0 because as it was the most actual version of Oracle 
VirtualBox but the time of writing this report 

5.2 Installation and Configuration of Mirantis Openstack 7.0  

Installation of Mirantis Openstack started with downloading proper 
package  of scripts from the official website called vbox-scripts-7.0.zip 
and image file for Mirantis Openstack 7.0, then after unpacking we got 
folder “virtualbox” with all necessary scripts to deploy our future cloud 
environment. 

Mirantis Openstack 7.0 is based on Centos 6.0 operating system, which 
next bootstrapping other nodes, like compute, controller and storage. 

Figure 10: vbox-script location 

Firstly we had to edit config.sh, as long as we are going to use 8GB 
configuration, then our Openstack will try to fit in 8GB RAM 
configuration of the hardware resources we have, but I do have more 
RAM, so I intend to contribute more memory to compute node, which is 
actually starting tenants inside Openstack Cloud Environment and we 
need to do that because we want to run tenant-1 with Ubuntu Server 
14.04 with HTTP service and also we we need resources to run compute 
node with OS itself, so we will change string with content: 

OpenStack - Service Orchestration with Openstack 
 Implement Tenant Firewall and Load-balance service orchestration 



Capstone Project Report 

from: vm_slave_memory_mb[2]=2048  
to: vm_slave_memory_mb[2]=4096 

where: 
v m _ s l a v e _ m e m o r y _ m b [ 2 ] r e s i d e s f o r c o m p u t e n o d e , 
vm_slave_memory_mb[1] resides for controller node and 
vm_slave_memory_mb[3] for block of storage 

Figure 11: Mirantis Openstack 7.0 config.sh  

 
So we added 2GB of memory to our future compute node, which now 
will be able to run more tenants or give more memory to one of those. 
So we made our cloud environment fit into 10GB hardware 
configuration. 

OpenStack - Service Orchestration with Openstack 
 Implement Tenant Firewall and Load-balance service orchestration 



Capstone Project Report 

Next we have to upload .iso image of the distributive we are intend to 
use, in our case Mirantis Openstack 7.0 inside  “iso” folder. So the script 
will pick it up afterwards when we run launch_8GB.sh which will 
initiate start for config.sh to run and will choose 8GB configuration, that 
we previously changed. 

Figure 12: ISO location for Openstack 

From now we will be able to run launch_8GB.sh from sudo user.After 
installation of fuel will be completed we will pointed to FUEL Web GUI 
to continue FUEL configuration. 

Finally we end up having 4 virtual machines  consisting fuel-master VM 
running and 3 fuel-slave VMs which FUEL will use to bootstrap 
controller, compute and block storage nodes. 

Figure 13: VMs in Virtualbox after Fuel installation 

OpenStack - Service Orchestration with Openstack 
 Implement Tenant Firewall and Load-balance service orchestration 



Capstone Project Report 

Network configuration of Mirantis Openstack using FUEL: 

Figure 14: Mirantis OpenStack Network Settings 

OpenStack - Service Orchestration with Openstack 
 Implement Tenant Firewall and Load-balance service orchestration 



Capstone Project Report 

Where Public addresses are available from outside of openstack, 
Neutron L3 Configuration is related to internal network, that tenants 
inside of our cloud environment are going to use. Storage and 
Management Network configurations are in place for overall 
communication between FUEL, controller, block of storage and compute 
nodes. 

5.2.1 Creating Openstack cloud environment using Mirantis Fuel 7.0 

We need to import public key to the FUEL in order to be able to login to 
nodes, that FUEL will bootstrap. This key will give us the most secure 
way of access to our environment without entering and retrieving any 
plain passwords. 

Generate SSH Private and Public Key 

After key generation is completed I can copy the whole public key for 
import to FUEL. 

OpenStack - Service Orchestration with Openstack 
 Implement Tenant Firewall and Load-balance service orchestration 



Capstone Project Report 

Importing SSH private key 
To do that we have to access our FUEL and in Settings menu choose 
Common, then in Public Key field we can paste generated public key. 

Figure 15: Mirantis SSH Key Pair import 

From now we will be able to access fuel-master node and all fuel-slave 
nodes, that fuel will bootstrap using SSH.  

A pool of one or more unallocated nodes is needed for this operation. To 
add to the pool, configure nodes to boot from the network (a.k.a. PXE 
booting). Fuel will automatically provision and discover the nodes. 

In order to deploy Controller , Compute or Storage node first of all we 
must be sure that it boots up using PXE and connected to FUEL 
management network, so FUEL will be able to assign IP address using 
DHCP to the node and then deploy OS with the service we will choose. 

OpenStack - Service Orchestration with Openstack 
 Implement Tenant Firewall and Load-balance service orchestration 



Capstone Project Report 

First we have to create Openstack Environment with Kilo distributive 
using FUEL deployment tool:  

Figure 16: Mirantis OpenStack Environment  

By clicking on New Openstack Environment, FUEL will start process of 
creation of a new environment.  

OpenStack - Service Orchestration with Openstack 
 Implement Tenant Firewall and Load-balance service orchestration 



Capstone Project Report 

On the next step we will have to choose the name of our Openstack 
Environment and release, in our case Kilo with Ubuntu 14.04 OS 
installed. 

 
Figure 16: OpenStack name and release configuration  

On the next step we choose type of hypervisor we are going to use, in 
our case we are using VirtualBox with QEMU hypervisor type. 

Figure 17: OpenStack compute node configuration 

OpenStack - Service Orchestration with Openstack 
 Implement Tenant Firewall and Load-balance service orchestration 



Capstone Project Report 

As long as we are going to use Neutron with VLAN segmentation for 
internal network we will leave option Neutron with VLAN segmentation 
chosen and will click next. 

Figure 18: OpenStack network configuration 

The rest settings we left as a default and by clicking create button FUEL 
will start process of creation Openstack Environment with the 
parameters we chose. 

Figure 19: OpenStack create configuration 

OpenStack - Service Orchestration with Openstack 
 Implement Tenant Firewall and Load-balance service orchestration 



Capstone Project Report 

5.2.2 Controller, Compute, Storage nodes deployment 

Now we can add our nodes to the environment if those won’t be detected 
automatically 

Figure 20: Openstack environment created 

After node will be started in VirtualBox and will boot up from the PXE 
and will get the image to load from FUEL we should be able to find it in 
our FUEL GUI with status discovered. 

Figure 21: Compute node bootstrap process 

OpenStack - Service Orchestration with Openstack 
 Implement Tenant Firewall and Load-balance service orchestration 



Capstone Project Report 

From now we can rename the node and assign role, i.e. Compute  

Figure 22: Assigning roles to the nodes allocated in FUEL 

Same operations we repeat to deploy Block of Storage (Cinder) and 
Controller nodes. 

OpenStack - Service Orchestration with Openstack 
 Implement Tenant Firewall and Load-balance service orchestration 



Capstone Project Report 

After applying changes we should we should have all three nodes ready 
to be deployed with the following parameters. 

Figure 23: Nodes that are ready for deployment 

OpenStack - Service Orchestration with Openstack 
 Implement Tenant Firewall and Load-balance service orchestration 



Capstone Project Report 

Controller node in our case has the following parameters: 

Figure 24: Controller node parameters 

OpenStack - Service Orchestration with Openstack 
 Implement Tenant Firewall and Load-balance service orchestration 



Capstone Project Report 

As long as we assigned 4096MB to fuel-slave1 VM, now we need to 

assign Compute role for particular node. Form now this node’s compute 
resources will be used to deploy tenants inside Openstack environment. 

Figure 25: Compute node parameters 

OpenStack - Service Orchestration with Openstack 
 Implement Tenant Firewall and Load-balance service orchestration 



Capstone Project Report 

For Storage service we will use 3-rd fuel-slave node with 192GB storage 
capacity. 

Figure 26: Storage node parameters 

OpenStack - Service Orchestration with Openstack 
 Implement Tenant Firewall and Load-balance service orchestration 



Capstone Project Report 

Finally when all our nodes detected and all roles assigned we are ready 
to click “Deploy Changes” button on top, so FUEL will execute process 
of Openstack Environment deployment.  

Figure 27: Openstack Deployment  process 

OpenStack - Service Orchestration with Openstack 
 Implement Tenant Firewall and Load-balance service orchestration 



Capstone Project Report 

During deployment we can observe Logs in case we may need to 
troubleshoot. 

Figure 28: Openstack deployment Logs  

OpenStack - Service Orchestration with Openstack 
 Implement Tenant Firewall and Load-balance service orchestration 



Capstone Project Report 

Finally we should get fully operational Openstack Environment 
manageable using FUEL. On the figure below it also shows resources 
we are using on our Openstack Environment and nodes we are 
controlling. 

 

Figure 29: Deployed Openstack Environment 

OpenStack - Service Orchestration with Openstack 
 Implement Tenant Firewall and Load-balance service orchestration 



Capstone Project Report 

From now we can use controller IP address in order to access Openstack 
WEB GUI. 

Figure 30: Openstack WEB GUI Access  

Figure 31: Openstack Usage summary Overview  

OpenStack - Service Orchestration with Openstack 
 Implement Tenant Firewall and Load-balance service orchestration 



Capstone Project Report 

5.3 Openstack Environment Configuration 

Creating ssh private/public key 

In compute Access & security we need to create SSH Key Pair that we 
will use later to access instance. 

We create a new SSH Key Pair, named “opkey” that we will download 
and will use to access our instance, later on we will be able to choose 
which SSH Key Pair will be installed automatically during instance 
deployment process and on which instance. 

Figure 32: SSH Key Pair creation  

OpenStack - Service Orchestration with Openstack 
 Implement Tenant Firewall and Load-balance service orchestration 



Capstone Project Report 

Creating correct flavor for future tenants 

By default Openstack might already have typical flavours that we may 
use in order to deploy our tenants, but we decided to create the one that 
is going of fit better to our requirements in order to run Ubuntu Server 
14.04 with HTTP Service on top of it. 

To do that we have to go to Admin Console and choose Flavor >> Create 
Flavor with the following parameters: 

Figure 33: Openstack Flavor creation 

OpenStack - Service Orchestration with Openstack 
 Implement Tenant Firewall and Load-balance service orchestration 



Capstone Project Report 

Allocating Floating IPs 

Floating IPs are really important in Openstack Cloud Environment when 
it comes to access internal tenants from the outside, it basically creates 
NAT rule and assigns particular floating IP from floating IP available list 
to the tenant you wish. 

To allocate Floating IP address from the pool we have to go to Compute 
Console >> Access & Security >> Floating IPs tab >> Allocate Floating 
IP 

Pool that is used has been pre-configured by FUEL, we could change it 
in config.sh file as well as we have changed VM RAM size previously. 

Figure 34: Openstack Floating IP Allocation 

OpenStack - Service Orchestration with Openstack 
 Implement Tenant Firewall and Load-balance service orchestration 



Capstone Project Report 

5.3.1 Setting up network topology 

Network topology installed according to project requirements, with one 
instance tenant-1 inside private network, which connects to the router 
which has a connection to external network. Subnets for both networks 
has been defined in Network tab of FUEL WEB GUI. 

Figure 35: Network Topology inside Openstack Environment 

OpenStack - Service Orchestration with Openstack 
 Implement Tenant Firewall and Load-balance service orchestration 



Capstone Project Report 

5.3.2 Setting up firewall rules inside Openstack 

Firewall rules, that applies to Openstack Environment is defined under 
Compute >> Access & Security >> Security groups >> Manage Rules 
tab.  

Figure 36: Firewall settings for Openstack Environment 

OpenStack - Service Orchestration with Openstack 
 Implement Tenant Firewall and Load-balance service orchestration 



Capstone Project Report 

Then we have to click on “Add Rule” button and specify protocol/port 
for which we are creating rule and IP address of the subnet that we are 
permitting or restricting. The list of all rules is attached above. For 
example to have an access to http service of our tenant tenant-1 we had 
to create permit rule, so router will be able to forward packets from 
external network to any tenant of internal network and vice-versa. 

Figure 37: Adding Firewall rule for HTTP access 

OpenStack - Service Orchestration with Openstack 
 Implement Tenant Firewall and Load-balance service orchestration 



Capstone Project Report 

5.3.3 Heat Orchestration 

Using Heat Orchestration module gives us ability to automate process of 
tenant deployment. In the Stack we can create template that further will 
be used to deploy tenants. According to our Template, Heat 
Orchestration module will run script that will use script version: 
2015-04-30, which is going to start an instance with vm_test name, 
using m1.small flavor, image:TEST VM (cirros image that I have 
uploaded previously), also SSH Key Pair that will be imported can be 
defined here, in our case opkey, and our tenant will be connected to the 
network with Network ID 61bb4f77-2091-454a-b943-d6657a721909, 
which is ID of private_network1, to which we want to connect our 
tenant. 

Figure 38: Heat orchestration Template 

OpenStack - Service Orchestration with Openstack 
 Implement Tenant Firewall and Load-balance service orchestration 



Capstone Project Report 

5.4 Creating tenant-1 

In order to create a tenant we may either use Heat Orchestration 
template, manually using Openstack WEB GUI. On the previous figure I 
have showed how to use Heat Orchestration to create tenant, below you 
can see how I have created tenant-1 using Openstack WEB GUI.  
 
First we have to go to Compute >> Images, choose the image we want to 
use for OS on our instance, in our case “UBUNTU”, which stands for 
Ubuntu Server 14.04, that I have previously imported using “Create 
Image” button and then “Launch Instance”.  

Figure 39: Deploying tenant-1 Instance 

OpenStack - Service Orchestration with Openstack 
 Implement Tenant Firewall and Load-balance service orchestration 



Capstone Project Report 

The next step will be to configure parameters for the instance, such as 
name, flavour and boot image.  

Figure 40: Setting up the details for the Instance 

OpenStack - Service Orchestration with Openstack 
 Implement Tenant Firewall and Load-balance service orchestration 



Capstone Project Report 

After we set up the details we might want to specify the SSH Key Pair 
that we previously created, so it will be imported on the stage of instance 
deployment automatically. 

Figure 41: Choosing SSH Key Pair for the Instance 

OpenStack - Service Orchestration with Openstack 
 Implement Tenant Firewall and Load-balance service orchestration 



Capstone Project Report 

Assigning NIC 

Then we assigning network interface to the instance and specifying to 
which network it will be connected. 

Figure 42: Assigning NIC to the Instance 

Figure 43: Assigning floating IP to the Instance 

OpenStack - Service Orchestration with Openstack 
 Implement Tenant Firewall and Load-balance service orchestration 



Capstone Project Report 

Checking connectivity to the external network 

In order to access tenant-1 we are using ssh with the following 
command: 
ssh -i opkey.pem ubuntu@172.16.0.131 

Then we are pinging public IP address: 8.8.8.8, which resides for Google 
Public DNS IP address according to Google’s developer Guide: 

h t t p s : / / d e v e l o p e r s . g o o g l e . c o m / s p e e d / p u b l i c - d n s / d o c s /
using#important_before_you_start 

Figure 44:  Pinging public DNS from tenant-1 

As we can see it’s been successfully pinged, thus we know that we have 
access to the Internet from the private network of Openstack. 

OpenStack - Service Orchestration with Openstack 
 Implement Tenant Firewall and Load-balance service orchestration 

mailto:ubuntu@172.16.0.131


Capstone Project Report 

5.5 Deployment of Brocade Vyatta 5400 vRouter  

Figure 45:  Brocade Vyatta vRouter’s Installation initiation 

OpenStack - Service Orchestration with Openstack 
 Implement Tenant Firewall and Load-balance service orchestration 



Capstone Project Report 

Then after installation system asks to change default password for user 
“vyatta”: 

Figure 46:  Brocade Vyatta vRouter’s Installation 

After GRUB boot loader installed deployment of Vyatta vRouter v5400 
Virtual Appliance is finished.  

OpenStack - Service Orchestration with Openstack 
 Implement Tenant Firewall and Load-balance service orchestration 



Capstone Project Report 

5.5.1 Configuration of vRouter 

vyatta@vyatta:~$ show configuration  
firewall { 
    all-ping enable 
    broadcast-ping disable 
    config-trap disable 
    ipv6-receive-redirects disable 
    ipv6-src-route disable 
    ip-src-route disable 
    log-martians enable 
    name network_firewall { 
        default-action drop 
        rule 100 { 
            action accept 
            description allow_icmp 
            destination { 
                address 192.168.111.17 
            } 
            protocol icmp 
            source { 
                address 192.168.95.100 
            } 
        } 
        rule 200 { 
            action accept 
            description from_host 
            destination { 
                address 192.168.95.0/24 
            } 
            source { 
                address 0.0.0.0/0 
            } 
        } 
    } 
    receive-redirects disable 
    send-redirects enable 
    source-validation disable 
    state-policy { 
        established { 
            action accept 
        } 
        related { 
            action accept 
        } 
    } 
    syn-cookies enable 
} 

OpenStack - Service Orchestration with Openstack 
 Implement Tenant Firewall and Load-balance service orchestration 



Capstone Project Report 

interfaces { 
    ethernet eth0 { 
        address dhcp 
        duplex auto 
        hw-id 08:00:27:4d:3f:d7 
        smp_affinity auto 
        speed auto 
    } 
    ethernet eth1 { 
        address 172.16.0.253/24 
        duplex auto 
        firewall { 
            in { 
                name network_firewall 
            } 
            out { 
                name network_firewall 
            } 
        } 
        hw-id 08:00:27:cb:f6:b6 
        smp_affinity auto 
        speed auto 
    } 
    ethernet eth2 { 
        address 192.168.95.1/24 
        duplex auto 
        hw-id 08:00:27:c7:10:9b 
        smp_affinity auto 
        speed auto 
    } 
    loopback lo { 
        address 1.1.1.1/24 
    } 
} 
nat { 
    source { 
        rule 1 { 
            log disable 
            outbound-interface eth2 
            protocol all 
            source { 
                address 172.16.0.0/24 
            } 
            translation { 
                address masquerade 
            } 
        } 
        rule 2 { 

OpenStack - Service Orchestration with Openstack 
 Implement Tenant Firewall and Load-balance service orchestration 



Capstone Project Report 

            log disable 
            outbound-interface eth1 
            protocol all 
            source { 
                address 192.168.95.0/24 
            } 
            translation { 
                address masquerade 
            } 
        } 
        rule 3 { 
            outbound-interface eth2 
            source { 
                address 192.168.111.17 
            } 
            translation { 
                address masquerade 
            } 
        } 
    } 
} 
protocols { 
    ospf { 
        area 0.0.0.0 { 
            network 192.168.95.0/24 
            network 172.16.0.0/24 
        } 
    } 
    static { 
        route 192.168.111.0/24 { 
            next-hop 172.16.0.130 { 
            } 
        } 
    } 
} 
service { 
    dhcp-server { 
        disabled false 
        shared-network-name pool2 { 
            authoritative disable 
            subnet 192.168.95.0/24 { 
                default-router 192.168.95.1 
                lease 86400 
                start 192.168.95.100 { 
                    stop 192.168.95.200 
                } 
                static-mapping pc2 { 
                    ip-address 192.168.95.100 

OpenStack - Service Orchestration with Openstack 
 Implement Tenant Firewall and Load-balance service orchestration 



Capstone Project Report 

                    mac-address 30:85:A9:7A:32:A1 
                } 
            } 
        } 
    } 
    https { 
        http-redirect enable 
    } 
    ssh { 
        port 22 
    } 
} 
system { 
    host-name vyatta 
    login { 
        user vyatta { 
            authentication { 
                encrypted-password **************** 
            } 
            level admin 
        } 
    } 
    syslog { 
        global { 
            facility all { 
                level notice 
            } 
            facility protocols { 
                level debug 
            } 
        } 
        user all { 
            facility all { 
                level emerg 
            } 
        } 
    } 
    time-zone GMT 
} 
vyatta@vyatta:~$  

OpenStack - Service Orchestration with Openstack 
 Implement Tenant Firewall and Load-balance service orchestration 



Capstone Project Report 

5.5.2 Enabling REST API on vRouter 

To enable Restfull API access we need to initiate this command on 
vRouter: 

set service https 

after service has been enabled we checked it by accessing router’s via 
Web GUI, so we can check all the settings we made through Web GUI 

Figure 47: Accessing Vyatta vRouter’s Web GUI 

OpenStack - Service Orchestration with Openstack 
 Implement Tenant Firewall and Load-balance service orchestration 



Capstone Project Report 

5.6 Tenant-2 Netwok Configuration 

Hardware: Asus X101CH 

Figure 48: tenant-2 Network Configuration 

OpenStack - Service Orchestration with Openstack 
 Implement Tenant Firewall and Load-balance service orchestration 



Capstone Project Report 

5.7. Deploying KEMP Load Master virtual appliance 

First we had to download KEMP LoadMaster virtual appliance from the 
official website  

Figure 49: Downloading KEMP Load Master 

OpenStack - Service Orchestration with Openstack 
 Implement Tenant Firewall and Load-balance service orchestration 



Capstone Project Report 

Then we followed the steps below to install and activate your 30 Day No 
Obligation Trial Download 

Step 1) Import the image into your virtualization environment. 

Step 2) To activate your LoadMaster you will need a KEMP ID.  Which 
we had to create because initially we didn’t have a KEMP ID. 

Then we had to import LoadMaster-VLM-7.1-32a-88-Oracle-
VirtualBox.ova file into our VirtualBox Environment and choose 
parameters for our Virtual Machine: 

 

Figure 50: Importing KEMP  Load Master virtual appliance  

OpenStack - Service Orchestration with Openstack 
 Implement Tenant Firewall and Load-balance service orchestration 



Capstone Project Report 

KEMP Virtual Appliance Configuration 

In order to have KEMP VLM reachable on particular IP address we are 
going to configure static IP address on the interface. Configurator starts 
up right after we logged into the system using command line interface. 

Figure 51: KEMP CLI GUI  

On the figure below we can see that the system is asking us to provide IP 
address for the virtual appliance. 

Figure 52: KEMP VLM IP address configuration  

OpenStack - Service Orchestration with Openstack 
 Implement Tenant Firewall and Load-balance service orchestration 



Capstone Project Report 

On the figure below we had to provide default gateway and DNS server 
addresses. 

Figure 53: KEMP VLM default gateway and dos address set up 

after we have configured IP address and default gateway and DNS the 
system gives us a message that we now can continue from WEB GUI. 

Figure 54: KEMP System status  

OpenStack - Service Orchestration with Openstack 
 Implement Tenant Firewall and Load-balance service orchestration 



Capstone Project Report 

5.7.1 Configuring LoadBalancer 

In order to use KEMP Load Balancer product we had to activate it. 
Firstly we will have to select a License Method we choose offline 
licensing because we still have to configure the system itself. Then we 
have to click on link, which says: “Click here to obtain your license” 

Figure 55: KEMP Load Master activation request page 

Then we will be referred to the kemp website to submit our personal info 
and access code in order to obtain a new license for the product. On the 
next step we will get an e-mail with confirmation including the license 
key. 

Figure 56: KEMP Licensing process  

OpenStack - Service Orchestration with Openstack 
 Implement Tenant Firewall and Load-balance service orchestration 



Capstone Project Report 

Then we can paste new license key into our virtual appliance: 

Figure 57: KEMP License Key installation 

Then we got a message that license has been successfully activated till 
March 21st 2016: 

Figure 58: KEMP License installed  

OpenStack - Service Orchestration with Openstack 
 Implement Tenant Firewall and Load-balance service orchestration 



Capstone Project Report 

After setting up a new password for KEMP we got finally into System 
Status page. 

Figure 59: KEMP System status  

OpenStack - Service Orchestration with Openstack 
 Implement Tenant Firewall and Load-balance service orchestration 



Capstone Project Report 

KEMP Virtual Service configuration 

Figure 60: KEMP Virtual Service configuration 

Settings we made to configure virtual interface: 

Alternate address is optional and used to give secondary IP for 
basically the same virtual interface 

Service type we chose is HTTP/HTTPS because that’s the service we 
are going to use on WebServer side, that’s a service that we will care 
about while implementing load balancing 

OpenStack - Service Orchestration with Openstack 
 Implement Tenant Firewall and Load-balance service orchestration 



Capstone Project Report 

Persistence Method we chose for this project is Super HTTP and is 
used to choose a logic of load balancing process. Super HTTP method is 
recommended by LoadMaster to be used with HTTP service that we are 
actually working on within our project. The way it works is by creating 
fingerprint of the client’s browser, after user already used one browser to 
access the Web Site, so loadMaster will bind Real Server to the user’s 
browser, and will forward a packet from/to that Real Server from/to that 
user’s browser afterwards. 

Timeout for persistence method we chose has a value of 900, that is a 
time which system keeps in memory information about persistence 
method to the particular client’s browser. 

NAT: The Use Address for Server NAT option allows us to hide the Real 
Servers IP address and use the one we used for Virtual Service as a 
source IP address instead. 

Add real servers to the our configuration using their IP addresses and 
port numbers actually binds our virtual ip address to the real HTTP 
Servers in our topology. So the traffic will be load balanced between real 
Web Servers. 

Source 61: KEMP Load Master Documentation, Feb 2015 

OpenStack - Service Orchestration with Openstack 
 Implement Tenant Firewall and Load-balance service orchestration 



Capstone Project Report 

Finally after whole configuration we made we got this page that says 
that our Real Servers a reachable and that Virtual IP and Backup Virtual 
IP addresses are up and running. 

Figure 62: KEMP LoadMaster - Virtual services page 

5.8. Checking overall connectivity 

First step to check reachability of our Brocade Vyatta vRouter from the 
Internet I have decided to use my personal server with Ubuntu Server 
14.04 located in Kazakhstan. For remote access I used vnc connection: 

Figure 63: Remote Machine vnc access 

OpenStack - Service Orchestration with Openstack 
 Implement Tenant Firewall and Load-balance service orchestration 



Capstone Project Report 

On the figure below we can see how I have checked Public IP address of 
my external http client using command: wget http://ipinfo.io/ip -qO - 

which gave me IP: 5.34.29.19 as my public IP address 

Figure 64: Remote Machine access 

To prove that I have logged in on the same machine from my laptop I 
have established SSH session and performed the same command: 

OpenStack - Service Orchestration with Openstack 
 Implement Tenant Firewall and Load-balance service orchestration 

http://ipinfo.io/ip


Capstone Project Report 

On the Figure below we can clearly see that IP address allocated by SSH 
while adding key to the list of known hosts is exactly the same as from 
public web service from http://ipinfo.io  

Also date shown here displays as current Date, time and  
time zone: ALMT which states for the city of Almaty, Kazakhstan 

Figure 65: Remote Machine access via SSH 

OpenStack - Service Orchestration with Openstack 
 Implement Tenant Firewall and Load-balance service orchestration 

http://ipinfo.io


Capstone Project Report 

According to WhatsMyIPaddress.com at that time IP address: 5.34.29.19 
has been activated at Almaty city, Kazakhstan. Also you can see, date on 
the figure below is exactly the same as on the figure above 

 

Figure 66: Verifying public IP address of the External http client 

And I got the same respond, that means I am logged in on the same 
external machine. 

OpenStack - Service Orchestration with Openstack 
 Implement Tenant Firewall and Load-balance service orchestration 

http://whatsmyipaddress.com


Capstone Project Report 

6. LAB EXPERIMENT DEMO WITH RESULTS  

6.1 Configuring Firewall rules using REST API  

from the outside http client 

Before firewall rule 100 has been changed, tenant-1 was reachable from 
tenant-2 and vice versa, our intention is to change rule 100 from the 
outside of our network so tenant-2 and tenant-1 will be not reachable for 
each other. 

First we would like to check reachability from both tenants: 

 
from tenant-1: 

Figure 67: Checking tenant-2 reachability from tenant-1 

OpenStack - Service Orchestration with Openstack 
 Implement Tenant Firewall and Load-balance service orchestration 



Capstone Project Report 

And from tenant-2: 

Figure 68: Checking tenant-1 reachability from tenant-2 

OpenStack - Service Orchestration with Openstack 
 Implement Tenant Firewall and Load-balance service orchestration 



Capstone Project Report 

HTTP Client in this case will be my personal server located in Almaty 
city, Kazakhstan with computer name “userv”. To access our vRouter 
using RESTfull API we need to have public address reachable from the 
Internet, in our case because Public IP is always may be changed we are 
using DynamicDNS host name, which we have configured previously. 

In order to access vRouter configuration mode from the outside we will 
have to first send HTTP request to start the session on vRouter by the 
following command on http client: 

curl -k -s -i -u vyatta:vyatta -H "content-length:0" -H "Accept: 
application/json" -X POST https://kupch.dyndns.org/rest/conf 

Figure 69: Restfull API query/respond to vRouter 

OpenStack - Service Orchestration with Openstack 
 Implement Tenant Firewall and Load-balance service orchestration 

_____________

https://kupch.dyndns.org/rest/conf


Capstone Project Report 

Then we will need to get session ID: 

curl -k -s -i -u vyatta:vyatta -H "content-length:0" -H "Accept: 
application/json" -X GET https://kupch.dyndns.org/rest/conf 

Figure 70: Restfull API session ID query/respond to vRouter 

OpenStack - Service Orchestration with Openstack 
 Implement Tenant Firewall and Load-balance service orchestration 

https://kupch.dyndns.org/rest/conf


Capstone Project Report 

After we got session ID (221E2BB065458408 ) now we can use it in 
order to initiate a command on vRouter i.e change firewall rule 100, in 
order to drop icmp traffic from address tenant-2( ip: 92.168.95.100) to 
tenant-1 (ip: 192.168.111.17) 

curl -k -s -i -u vyatta:vyatta -H "content-length:0" -H "Accept: 
application/json" -X PUT https://kupch.dyndns.org/rest/conf/
221E2BB065458408/set/firewall/name/network_firewall/rule/100/
action/drop 

Figure 71: RESTfull API Firewall rule action set up on vRouter 

OpenStack - Service Orchestration with Openstack 
 Implement Tenant Firewall and Load-balance service orchestration 

https://kupch.dyndns.org/rest/conf/221E2BB065458408/set/firewall/name/network_firewall/rule/100/action/drop


Capstone Project Report 

Then we have to commit our changes, so router will actually activate 
changes we made for firewall rule 100: 

curl -k -s -i -u vyatta:vyatta -H "content-length:0" -H "Accept: 
application/json" -X POST https://kupch.dyndns.org/rest/conf/
221E2BB065458408/commit 

Figure 72: RESTfull API commit firewall changes on vRouter 

OpenStack - Service Orchestration with Openstack 
 Implement Tenant Firewall and Load-balance service orchestration 

https://kupch.dyndns.org/rest/conf/221E2BB065458408/commit


Capstone Project Report 

Now we have to test our changes by pinging tenant-1 from tenant-2: 

Figure 73: Checking reachability btw tenants 

Apparently we got 100% packet loss, because now firewall is dropping 
all ICMP packets coming from ip:192.168.95.100 to ip:192.168.111.17 

Now we would like to get everything back, so both tenants will be 
reachable from each other, thus we can use same session ID, because 
router has never been rebooted yet, and still have all sessions active. 

OpenStack - Service Orchestration with Openstack 
 Implement Tenant Firewall and Load-balance service orchestration 



Capstone Project Report 

First we have to set rule 100 for action:accept in order to permit 
forwarding ICMP traffic from ip:192.168.95.100 to ip:192.168.111.17  
Secondly we commit changes. 

curl -k -s -i -u vyatta:vyatta -H "content-length:0" -H "Accept: 
application/json" -X PUT https://kupch.dyndns.org/rest/conf/
221E2BB065458408/set/firewall/name/network_firewall/rule/100/
action/accept 

curl -k -s -i -u vyatta:vyatta -H "content-length:0" -H "Accept: 
application/json" -X POST https://kupch.dyndns.org/rest/conf/
221E2BB065458408/commit 

Figure 74: RESTfull API applying changes on vRouter 

OpenStack - Service Orchestration with Openstack 
 Implement Tenant Firewall and Load-balance service orchestration 



Capstone Project Report 

6.2  Checking connectivity between tenant-1 and tenant-2 

From now on ICMP traffic is permitted and we can have a look on our 
statistics, which says, that there is 40% packet loss, it’s because before 
we committed changes, router was dropping ICMP traffic from tenant-2 
to tenant-2, but after we committed changes, ping command started 
working, thus 31 packets out of 51 has been eventually received 
correctly and 20 has been dropped at the beginning, when rule100 was 
set to action:drop. 

Figure 75: connectivity between tenant-1 and tenant-2 

OpenStack - Service Orchestration with Openstack 
 Implement Tenant Firewall and Load-balance service orchestration 



Capstone Project Report 

 
6.3 Installing HTTP Server application on both Servers 

To install HTTP service on both servers I executed this command in 
terminal of both servers:  
 
sudo apt-get install apache2 

Figure 76: HTTP Service installation on both tenants 

OpenStack - Service Orchestration with Openstack 
 Implement Tenant Firewall and Load-balance service orchestration 



Capstone Project Report 

After that I have changed default index.html page for both servers, so we 
know which server responded on out http request. 

1. we use this command in order to rename default index.html page to 
index.html.bak just in case for backup: 
sudo mv /var/www/html/index.html /var/www/html/index.html.bak 

2. then we create our new index.html using following command: 
 sudo nano /var/www/html/index.html 
 
with the following content for tenant-2 

Figure 77: HTTP Service configuration on tenants-2 

OpenStack - Service Orchestration with Openstack 
 Implement Tenant Firewall and Load-balance service orchestration 



Capstone Project Report 

and with the following content for tenant-1 

Figure 78: HTTP Service configuration on tenants-1 

This string returns current time on the server: 
<script> 
document.getElementById("demo").innerHTML = Date(); 
</script> 

OpenStack - Service Orchestration with Openstack 
 Implement Tenant Firewall and Load-balance service orchestration 



Capstone Project Report 

6.4 Enabling LoadBalancer LB interfaces 

Figure 79: Functioning Real Servers on KEMP VLM  

Both Real WebServers are up and running  

6.5 Verification LB functionality from http client  

I used Firefox and Safari browsers in order to access the same ip 
address, but eventually my 2 requests has been load-balanced and 
redistributed between 2 Web Servers, thus I got different content on the 
same address, from 2 browsers even from one http client. 

Figure 80: Verification LB functionality from http client 

OpenStack - Service Orchestration with Openstack 
 Implement Tenant Firewall and Load-balance service orchestration 



Capstone Project Report 

7 SUMMARY AND CONCLUSION  

In this project we achieved all the results we intended to get as the 
output. Load-balancing on the edge of cloud infrastructure and physical 
network, which can be replaced with physical datacenter, has been 
realized using KEMP Virtual Load balancer and Brocade’s virtual 
Router product called Vyatta vRouter. Firewall rules has been managed 
by the http client located in the Internet using REST API.  

 
Deployment and functionality of private cloud infrastructure has been 
demonstrated as well as implementation of Network Functions 
Virtualization (NFV) components, which made actual virtual network 
possible. Although NFV made a role of the bridge between physical and 
virtualized network areas. This hybrid network model can be further 
used in Enterprise data centres for example by ISP which can on top of it 
manage multiple services distribution as for inside users and or for 
public. 

  
Management and deployment of this whole mechanism became so 
convenient and as simple as one click in the web browser. Instance 
deployment in the cloud environment has been realized by using Heat 
component for Openstack, which provides orchestration service.  This 
service gives user the ability to deploy and configure instance with just 
one click. Using orchestration template, Heat component further runs all 
the necessary steps, while not granting user all the rights for our cloud 
environment administration we still give enough authority to deliver 
reasonable service with all the possible security still in place. Further 
user may use our services for various application deployment. Before it 
wasn’t a case because ISP for example couldn’t delegate such rights to 
the user as of a security risk existence. For example if user would have 
such an access to the higher level then he/she could bring everything 
down so easy, so there is a security risk for the provider’s size, that’s 
why we needed an actual IT specialist on provider’s side, that we trust 
and who could get carry that level of responsibility and who has that 

OpenStack - Service Orchestration with Openstack 
 Implement Tenant Firewall and Load-balance service orchestration 



Capstone Project Report 

level of education that gives him enough knowledge to administer such a 
service for us, with automated services on the other hand, like 
orchestration component for Openstack now users can do that without 
having a real chance of bringing the providers infrastructure down, then 
there is no need in IT specialist that you need to deploy an instance in 
the cloud, thus for example ISP can save some financial resources, and 
spend those in a more efficient way by investing in the cloud 
environment deployment and support. In modern data centres we may 
find several benefits for IT Specialists, such as flexibility and 
manageability by using virtualization centralized control, short time for 
deployment projects became extremely crucial in our fast-paced day-to-
day reality. Our system should be able to expand really fast, when 
scalability and expenses still matters a lot, this is where virtualization is 
helping us not only achieve those goals but even decrease overall 
environmental consumption. Better throughput plus better resource 
utilization made virtual model even more competitive, so we cannot 
imagine modern data centre activity without it.  

OpenStack - Service Orchestration with Openstack 
 Implement Tenant Firewall and Load-balance service orchestration 



Capstone Project Report 

Bibliography & References:  

Books 

• OpenStack Installation Guide for Ubuntu 14.04, Kilo 
• Openstack OPS Manual 
• KEMP VLM Installation Guide 
• Brocade Vyatta Quick Start Guide 
• Brocade Vyatta vRouter Plugin Deployment Guide 
• Brocade Vyatta vRouter Remote Access api 2.0 Reference Guide 
• Virtualization: A Beginner’s Guide by Danielle Rust 
• Virtualization Essentials by Matthew Portnoy 

White Papers 

• Broade Vyatta Network Functions Virtualization and Cloud 
Networking 

• Using Virtualization to Improve Data Center Efficiency 

Web Links 

https://www.mirantis.com/products/mirantis-openstack-software/
openstack-deployment-fuel/  

http://www.vmware.com/ca/en/virtualization/how-it-works 

http:/ /www.brocade.com/downloads/documents/data_sheets/
product_data_sheets/brocade-vyatta-5400vrouter-ds.pdf  

http://openstack-cloud-mylearning.blogspot.ca/2015/02/openstack-juno-
devstack-installation.html 

http://kemptechnologies.com/loadmaster-documentation/ 

https://support.kemptechnologies.com/hc/en-us/articles/204373265-
KEMP-LoadMaster-Product-Overview#_Toc431473707  

OpenStack - Service Orchestration with Openstack 
 Implement Tenant Firewall and Load-balance service orchestration 

http://kemptechnologies.com/loadmaster-documentation/


Capstone Project Report 

http://docs.openstack.org/developer/heat/template_guide/hot_guide.html 

http://openstackcookbook.com/ 

http://www.clipartpanda.com/categories/server-20clipart 

https://www.sdxcentral.com/resources/nfv/whats-network-functions-
virtualization-nfv/

OpenStack - Service Orchestration with Openstack 
 Implement Tenant Firewall and Load-balance service orchestration 

http://docs.openstack.org/developer/heat/template_guide/hot_guide.html
http://openstackcookbook.com/

