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ABSTRACT

The use of flexible composite pipe for the high pressure applications in the oil and
gas industry provides the opportunity to overcome many of the problems associated with
traditional stee] or rigid fibreglass pipelines. The plastic and fibre-reinforced materials
employed provide superior chemical resistance to that of steel structures, while and
independent, multilayered construction allows structural flexibility. However, design and
analysis of such a system is considerably more complex than that of any mono-material
construction. Several different models have been developed to deal with the interaction
between the individual components.

Global models utilize equations of compatibility, equilibrium and constitutive
relations for the composite material to determine growth and rotation (or axial force and
torque) developed through internal pressure. A number of simplifying assumptions
necessary for these models allow consideration of unidirectional fibre tension only and
preclude the modelling of individual components with respect to secondary stresses.
These additional stresses are caused by localized bending and have, through
experimentation, been shown to cause premature failure of the pipe under internal
pressure.

In this thesis, secondary stresses have been studied in detail using finite element
analysis. A greater understanding of the factors causing secondary stresses has been

achieved and methods of reducing the stress levels have been developed.



ACKNOWLEDGEMENTS

I would like to thank my thesis supervisor, Dr. D.R. Budney, for his continual
support and counsel throughout this thesis.

I would also like to thank Mr. Don Wolfe and Composite Technologies Inc. for
providing me with the opportunity to work on such an interesting and challenging
project, and the support through good times and bad. This project has been supported
by Composite Technologies Inc.

Sam Bouey, Roland Freiheit, Kevin Gartner, Jim Lim and Russell Agnew all
helped me immeasurably. They gave me endless technical help and personal support,
without which I could not have succeeded.

The assistance of Mark Ackerman in keeping the computer system running despite
my ability to frequently overload it is very much appreciated.

I would like to acknowledge my parents Bill and Leslie who were always able to
reorient me when I wandered.

And to Rob, Matt, Steve, Chris and the rest who regularly ensured that 1 never
suffered from overwork, I owe my sanity.

I would also like to thank Tone, who kept me motivated despite the distance.



TABLE OF CONTENTS

CHAPTER 1
INTRODUCTION . ..ttt ittt et e e i 1
CHAPTER 2
PRIMARY LOADING . ... . ittt e it e i e s o 3
2.1 INrodUCHON . v v v vt e et e ittt i e e 3
2.2 Pipe Description . ... v vv v it e 3
2.3 Loading Conditions . . .. ... v it 4
2.4 Single Radius Model .. ... 5
2.4.1 INroduction . . . . .ot 5
2.4.2  Strip Stress for the Unrestrained Case . . ............... 5
2.4.3 Contact Pressure for the Unrestrained Case . ............ 6
2.4.4 Contact Pressure for the General Case . . . . ............. 7
2.4.5 Contact Pressure for the Fully Restrained Case ........... 10
2.5 Multiple Radius Model . ... ... .o 10
2.5.1 Introduction . . . . v v v i o e 10
2.5.2 Material Properties for the Multiple Radius Model .. ....... 12
2.5.3 Development of Strip Stress, Torque and Axial Loads . ...... 12
2.5.4 Strip Displacements Due to Pipe Deformations . .......... 14
2.5.5 Systemof Equations . ............ooiiinn 19
2.6 Inherent Limitations to the Global Model . . . ... ... .......... 21
CHAPTER 3
SECONDARY STRESSES . . .. ... it ittt 28
3.1 Description of Secondary Stresses . ... ..... ... 28
3.1.1 Introduction . . ..ottt e 28
3.1.2 InnerHooplayer ...........coiuiininnnnnnn. 28
3.1.3 Observations and Causes of Secondary Stresses . .......... 29

3.1.4 Bridge Regions . .. ... covv ettt .. 29



3.2 Critical Stress Regions . . . ... .. it 30

3.2.1 Introduction . ... ..t ittt e e e 30
3.2.2 Longitudinal Bridge . ............ . i, 30
3.23 CrossBridge ... ... v ittt e 31
3.3 Modelling of Critical Stress Regions . . . .................. 31
3.3.1 Introduction . . . vt e e e e 31
3.3.2 Helical Approximation . .......... ...ttt 32
3.3.3 Material Properties . ... ... ... 32
3.3.4 Model Geometries . . . . ..o vttt e 33
3.3.5 Boundary Conditions . ............. ... .. ... 34
3.3.5. Model L2 . ... ... . . i e 34
3.3.5.1 Model L1 .. ... . . . . e 36
3.3.6 Failure Criteria . . . . v v v vt oottt i 36
3.3.7 Mesh Refinement . .. ....... 0o 37
34 Analysis .. ... e 37
CHAPTER 4
RESULTS . .ottt ittt e ettt it e e 4]
4.1 IntroduCton . . . v v v vttt e e e e 41
4.2 Analysis of Reference Model ... ....... ... ... ...t 42
4.2.1 Model L1 . ... . e 42
422 Model L2 ... . e e 44
4.2.3 DIiSCUSSION & & v v vt oot et ettt et s 45
43 CrossBridge Width . . .. .. ... . . i 47
4.3.1 ModelL2 ... i e s 47
432 Model LI ... . e 48
4.3.3 DISCUSSION .« v o v ettt e e e e e e 48
44 CrossBridge Angle . . .. ... i 48
441 Model L2 ... ... i i e 48
442 Model Ll ... ...t i i e e e e 49

4.4.3 DISCUSSION & & v v v v v v e vt e v oo e v oo a o asanasonsnan 49



4.5 Percentage of Woven Fabric . ....... ... ... 49

4.5.1 Model L1 . . ittt 49

452 Model L2 .. i i e 50

4.53 DISCUSSION .+ . v v v v v e v it 50

4.6 Longitudinal Bridge . . .. ... co v 51

4.6.1 Model L1 . ... it i e e e 51

4.6.2 DISCUSSION © « o v v v v e oo e oo it am e nes s s s aeaeann 51

4.7 Comparison with 100% Unidirectional Composite . . ........... 52

4.7.1 Model L1 . ..ottt t i it e i 52

472 Moadel L2 . . e e e e 53

473 DISCUSSION . o v v vt et e et b et e et e e e 54

4.8 Experimental Results . .. ... .o i 55
CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS ... ................ 90

5.1 COnClUSIONS  « v v v v e e et e e e e e e e e 90

5.2 RecommENndations . . o o v v v e v v v ettt 92

REFERENCES . . . .o e et i e e i e it 93

APPENDIX 1

CYLINDRICAL APPROXIMATION ... ... ... . i 95
APPENDIX 2
MATERIAL PROPERTIES ... ... . .. it iiinii e 98
APPENDIX 3
CONTACT SURFACE PRESSURE GRADIENTS . ................ 104
APPENDIX 4
FAILURE CRITERIA ... .. ... . i e 111
APPENDIX 5

MESH REFINEMENT . . ... . e i e 114



Figure 1.1
Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5
Figure 2.6
Figure 2.7
Figure 2.8
Figure 2.9

Figure 2.10

Figure 2.11
Figure 3.1
Figure 3.2
Figure 3.3
Figure 4.1

Figure 4.2

Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6
Figure 4.7
Figure 4.8
Figure 4.9
Figure 4.10

LIST OF FIGURES

Schematic of Flexible Composite Pipe . . . . . ............. 2
Radial Equilibrium of Hoop and Helix Structures . . . ........ 22
Axial Equilibrium of Hoop and Helix Structures . .. ........ 22
One Pitch of Pipe Mapped ontoa Plane . . . .. ... ......... 23
Axial and Radial Deflections . .......... ... ... 23
Circumferential and Radial Deflections . ................ 24
Schematic of Multiple Radius Model .. ................ 24
Composite Strip Coordinate System . . . ................ 25
Schematic of Contact Pressures . . . .. . ... ..o 25
Radial Equilibrium of One Layer . . ... ................ 26
Axial and Rotational Equilibrium in One Layer . ... ........ 26
Axial Growth and Radial Deflection . .................. 27
Schematic of Inner and Outer Hoop Layers . ............. 38
Sketch of Model L2, Showing Displacement Constraints . . . ... 39
Sketch of Model L1, Showing Displacement Constraints . .. ... 40

Longitudinal Stress in Unidirectional Composite, Model L1, with Bridges

Identified . ........ ... 0 56
Longitudinal Stress in Woven Fabric Composite, Model L1, with

Bridges Identified . .......... ... . 57
Transverse Stress in Unidirectional Composite (psi), Model L1 .. 58
Transverse Stress in Woven Fabric Composite (psi), Model L1 .. 58
Radial Stress in Unidirectional Composite (psi), Model L1 . . ... 59
Radial Stress in Woven Fabric Composite (psi), Model L1 ... .. 59
Shear Stress Sty in Unidirectional Composite (psi), Model L1 ... 60
Shear Stress Stz in Woven Fabric Composite (psi), Model L1 ... 60
Tsai-Wu Parameters in Unidirectional Composite, Model L1 . . .. 6l
Tsai-Wu Parameters in Woven Fabric Composite, Model L1 . .. . 6l



Figure 4.11

Figure 4.12

Figure 4.13

Figure 4.14
Figure 4.15

Figure 4.16
Figure 4.17
Figure 4.18

Figure 4.19
Figure 4.20
Figure 4.21

Figure 4.22
Figure 4.23
Figure 4.24

Figure 4.25

Figure 4.26
Figure 4.27

Figure 4.28
Figure 4.29
Figure 4.30

Longitudinal Stress in Unidirectional Composite, Model L2, Bridge

Regions Identified 62

Longitudinal Stress in Unidirectional Composite 'T, Model L2,

..............................

Bridge Regions Identified . ........ ..o 63
Longitudinal Stress in Woven Fabric Composite, Model L2, Bridge

Regions Identified . .. ... ..o 64
Transverse Stress in Unidirectional Composite (psi), Model L2 . . 65

Transverse Stress in Unidirectional Composite (psi), Model L2, T

SECHOM + v v vt v et ettt e 65
Transverse Stress in Woven Fabric Composite (psi), Model L2 .. 66
Radial Stress in Unidirectional Composite (psi), Model L2 . . . .. 66
Radial Stress in Unidirectional Composite (psi), Model L2, T

SECHOM &« o v v v v e vttt e e e e et 67
Radial Stress in Woven Fabric Composite (psi), Model L2 . . . .. 67
Shear Stress S, in Unidirectional Composite (psi), Model L2 . . . 68
Shear Stress S,p in Unidirectional Composite, Model L2, T

SECHIOM « v v ot et et e e e 68
Shear Stress S,y in Woven Fabric Composite, Model L2 . . . ... 69
Shear Stress Sy in Unidirectional Composite (psi), Model L2 . . . 69
Shear Stress S;z in Unidirectional Composite, Model L2, T

SBCLOM & o o o e e e et e e e 70
Shear Stress S in Woven Fabric Composite (psi), Model L2, View

of Top of Bottom Layer of Fabric . ................... 70
Tsai-Wu Parameters in Unidirectional Composite, Model L2 . . . . 71

Tsai-Wu Parameters in Unidirectional Composite (psi), Model L2,

*T* Section 71

Tsai-Wu Parameters in Woven Fabric Composite, Model L2 . ... 72

----------------------------------

Tsai-Wu Parameters in Woven Fabric Composite, Model L2 . /)

Maximum Shear Stress S, as a Function of Cross Bridge Width,

Model L2



Figure 4.31

Figure 4.32

Figure 4.3%

Figure 4.34

Figure 4.35

Figure 4.36

Figure 4.37

Figure 4.38

Figure 4.39

Figure 4.40

Figure 4.41

Figure 4.42

Figure 4.43

Figure 4.44

Figure 4.45

Maximum Longitudinal Stress as a Function of Cross Bridge Width,
Model L2
Maximum Transverse Stress as a Function of Cross Bridge Width,
Model L2
Maximum Radial Stress as a Function of Cross Bridge Width, Model

852 I 74
Maximum Shear Stress Sg as a Function of Cross Bridge Width,

Model L2
Maximum Tsai-Wu Parameter as a Function of Cross Bridge Width,
Model L2
Maximum Tsai-Wu Parameter as a Function of Cross Bridge Width,

Model L1 . ...t ittt e 76
Maximum Longitudinal Stress as a Function of Cross Bridge Angle,

Model L2
Maximum Transverse Stress as a Function of Cross Bridge Angle,
Model L2
Maximum Radial Stress as a Function of Cross Bridge Angle, Model

| O 2 I 78
Maximum Shear Stress S, as a Function of Cross Bridge Angle,

Model L2

Maximum Shear Stress Sy as a Function of Cross Bridge Angle,

73

...................................

74

-----------------------------------

75

...................................

75

71

...................................

77

...................................

78

...................................

Model L2 . . e e 79
Maximum Tsai-Wu Parameter as a Function of Cross Bridge Angle,
MOdel L2 . . e 79

Maximum Tsai-Wu Parameter as a Function of Cross Bridge Angle,
Model L1 ..ottt e i it e e i e it e et 80
Maximum Longitudinal Stress as a Function of Percentage of Woven
Fabric, Model L1
Maximum Transverse Stress as a Function of Percentage of Woven

Fabric, Model L1

81

..............................

------------------------------



Figure 4.46

Figure 4.47

Figure 4.48

Figure 4.49

Figure 4.50

Figure 4.51

Figure 4.52

Figure 4.53

Figure 4.54

Figure 4.55

Figure 4.56

Figure 4.57

Figure 4.58

Figure 4.59

Figure A3.1
Figure A3.2

Maximum Radial Stress as a Function of Percentage of Woven Fabric,

Model L1
Maximum Shear Stress Sz as a Function of Percentage of Woven

...................................

Fabric, Model L1 . .. .. oo
Maximum Tsai-Wu Parameter as a Function of Percentage of Woven
Fabric, Model L1 .. . ... . i
Maximum Longitudina! Stress as a Function of Percentage of Woven
Fabric, Model L2 . . ... vttt it
Maximum Transverse Stress as a Function of Percentage of Woven
Fabric, Model L2 . .. ..o i
Maximum Radial Stress as a Function of Percentage of Woven Fabric,
Model L2 & . ot e e e e e
Maximum Shear Stress S, as a Function of Percentage of Woven
Fabric, Model L2 . . ... v i it
Maximum Shear Stress S;z as a Function of Percentage of Woven
Fabric, Model L2 . .. .. i ittt
Maximum Tsai-Wu Parameter as a Function of Percentage of Woven
Fabric, Model L2 . .. ... o i
Maximum Longitudinal Stress as a Function of Longitudinal Bridge
Width, Model L1 ... ..o i
Maximum Transverse Stress as a Function of Longitudinal Bridge
Width, Model L1 . ... oo e

Maximum Radial Stress as a Function of Longitudinal Bridge Width,
Model L1
Maximum Shear Stress Sqz as a Function of Longitudinal Bridge
Width, Model 1.1
Maximum Tsai-Wu Parameter as a Function of Longitudinal Bridge
Width, Model L1
Comprehensive Model
Contact Pressure at Contact Surface of Layer 2 of Comprehensive

-----------------------------------

------------------------------

-------------------------------

-------------------------------------

82

82

83

84

84

85

85

86

86

87

87

88

88



Figure A3.3
Figure A3.4
Figure A3.5
Figure A3.6
Figure A3.7
Figure A3.8
Figure AS.1
Figure A5.2
Figure A5.3
Figure AS5.4
Figure AS5.5
Figure AS5.6
Figure AS5.7

Figure AS.8

Figure AS5.9

Graph of Contact Pressure at A-A of Contact Surface of Layer 2 0of
Comprehensive Model ... ... ... 108
Graph of Contact Pressure at B-B of Contact Surface of Layer 2 of
Comprehensive Model . .. ... ... oo e 108
Radial Displacement of Contact Surface Layer 1 of Comprehensive
Model . . e 109

Radial Displacement of Contact Surface of Layer 1, Model L1 .. 109
Two Layer Cross Bridge Finite Element Model . . .......... 110
Graph of Contact Pressure of Two Layer Cross Bridge Finite Element
MOEl . . e e 110
Variation of Maximum Longitudinal Stress with Mesh Refinement,
Model L1 . . . e 116
Variation of Maximum Transverse Stress with Mesh Refinement,
Model L1 . . . e 116
Variation of Maximum Radial Stress with Mesh Refinement, Model
) 5% S 117
Variation of Maximum Shear Stress Sy, with Mesh Refinement,
Model L1 . . e e 117
Variation of Maximum Tsai-Wu Parameter with Mesh Refinement 118
Final Mesh Density of Model L1 . .. .................. 119
Variation of Maximum Longitudinal Stress with Mesh Refinement,
Model L2 ... e e e 120
Variation of Maximum Transverse Stress with Mesh Refinement,
Model L2 .ttt e e 120
Variation of Maximum Radial Stress with Mesh Refinement, Model
L2 ot e e e e e 121

Figure A5.10 Variation of Maximum Shear Stress S;z with Mesh Refinement,

Model L2 & oot ettt e e e e e 121

Figure AS5.11 Variation of Maximum Shear Stress Sgp with Mesh Refinement,

MOGEl L2 . ot i e e e e e e e 122



Figure AS5.12 Variation of Maximum Tsai-Wu Parameter with Mesh Refinement,

Model L2 o vttt e e
Figure AS5.13 Final Mesh Density of Model L2 . . . o oo oo i i i

122



Table 4.1
Table 4.2
Table 4.3
Table 4.4

Table 4.5

Table A2.1

Table A2.2
Table A2.3

LIST OF TABLES

Summary of Analysis . .. ...... ... . i 42
Maximum Stresses and Tsai-Wu Failure Parameters for Model L1 44
Maximum Stresses and Tsai-Wu Failure Parameters for Model L2 45

Comparison of Reference Model with 100% Unidirectional

Composite, Model L1 . . ... .. ... i 53
Comparison of Reference Model with 100% Unidirectional

Composite, Model L2 . . . .. ... ... . i 54
Constituent Material Properties . . .. .......... ..., 99
Unidirectionally Reinforced Material Properties . .. ......... 102

Woven Fabric Reinforced Material Properties . . .. ......... 103



LIST OF SYMBOLS

a fibre radius
b resin cylinder radius
C fibre volume radius

Cxy, Cxz, Cyz constants used in Tsai-Wu failure criterion interaction terms

C radial gap between structural layers

Ey radial tensile modulus of composite

E, longitudinal tensile modulus of composite

F, second rank tensor of Tsai-Wu failure criterion

F; fourth rank tensor of Tsai-Wu failure criterion

F,,, Fi3, F53  interaction terms of Tsai-Wu failure criterion
F, axial force developed by one layer

F; external axial force required for equilibrium

G shear modulus

K bulk modulus

L initial strip length of one pitch
dL change in strip length

P internal pressure

P. contact pressure

Ap, pressure drop through a layer

r radius of layer

T, original radius of layer (pipe radius)
T, effective radius of composite strip
dr radial strain

R strength of composite in direction 12
S strength of composite in direction 13
t thickness of layer

t. thickness of helix layers

t, thickness of hoop layers

T strength of composite in direction 23



N

dz

torque developed by one layer

external torque required for equilibrium
radial displacement of layer i

strength of composite in direction 1
definition of a point on a curve
strength of composite in direction 2
length of one pitch

change in pitch length

strength of composite in direction 3

volume fraction of percentage of composite material in structural layers
volume fraction of percentage of composite material in helix layers
volume fraction of percentage of composite material in hoop layers
rotation per unit length of pipe

longitudinal strain of composite strip

longitudinal strain of composite strips in helix structure
Jongitudinal strain of composite strips in hoop structure

axial strain of pipe

circumferential strain of pipe

helix angle of strips relative to axis of pipe

helix angle of helix strips relative to axis of pipe

helix angle of hoop strips relative to axis of pipe

radius of curvature of helical composite strip

Poisson’s ratio

longitudinal stress in composite strip

longitudinal stress in composite strip in helix structure

longitudinal stress in composite strip in hoop structure

angle of rotation of composite strip



CHAPTER 1
INTRODUCTION

Flexible pipe has been employed in various forms for some time. Reinforced garden
hose and hydraulic tubing are two common examples of helically wound, continuously
constructed piping.

Large diameter, high pressure flexible tubing using steel as the structural material
is widely used as risers for offshore oil platforms. However, this high pressure product
develops large axial deformations which would be unsuitable for buried onshore use.
Because of this, and the prohibitive price associated with materials and construction, this
product has not been used for the onshore oil and gas industry.

A novel design has been developed employing mostly unidirectionally fibre-
reinforced polymeric strips as the main load bearing members (Figure 1.1). The pipe
is composed of a number of layers, each consisting of alternating independent fibre-
reinforced composite strips and elastomeric polymer strips. The elastomeric strips are
non-load bearing components, but perform two essential functions. Applied in each layer
before the composite strips, they act as a mold during filament winding, maintaining
alignment for the composite strips. Being low-modulus, they also allow limited and
uniform movement between the composite strips, necessary for bending flexibility of the
structure. The internal liner is a non-load bearing member, acting only as a bladder to
contain the transported fluid. The cover is also non-structural, serving to protect the
inner layers from external debris.

As the dominant loading in each composite strip is longitudinal, with relatively minor
secondary stresses, the strongly anisotropic nature of unidirectionally reinforced materials
allows efficient design of the structure. However, the unidirectional material is not
effective for transverse or shear loading and additional transverse reinforcement is
required in some layers that experience high secondary stresses. The purpose of this

study is to model the secondary stresses and tc design a composite structure able to

withstand them.



Composite Strips
Elastomeric Strips \

Helix Structure ‘ Hoop Structure

Figure 1.1  Schematic of Fiexible Composite Pipe



CHAPTER 2
PRIMARY LOADING

2.1 Introduction

In order to fully understand the primary stresses that develop in the structural layers of
the pipe, global models have been developed. These models deal simplistically with the
stresses that develop in each composite strip in response to internal pressure and are used
to predict the performance of the pipe in terms of axial force and torque (or growth and
rotation for an axially and torsionally unrestrained pipe) that develop when internal
pressure is applied. In the global models, Jongitudinal stresses are assumed uniform
through the thickness of the composite strips in a layer, while radial stresses are assumed
uniform throughout each layer. Given these assumptions, which are adequate for cases
when significant transverse loading does not develop (for example, given low internal
pressure), the global models have provided reasonably accurate predictions of pipe
performance with regards to elongation and rotation of the pipe. However when
transverse loading occurs (as internal pressure increases and contact pressures between

successive layers increase), the additional stress levels in the composite strips can be

significantly above those predicted.
2.2 Pipe Description

The four structural layers of the pipe can be seen in Figure 1.1. Each of the four layers
is separated from the adjacent layers by a thin polyethylene film to allow relative
movement. In actuality, the innermost layer is more complex than that shown in Figure
1.1, but this simple representation is used in the global models. The two innermost
layers comprise the Hoop structure, which is wound at a high angle, allowing it to
withstand large hoop loads. The Helix structure consists of the two outer layers, wound

at a low angle to withstand axial loads. The following global model includes only the



composite strips. The elastomeric strips, the liner and the cover are non-structural

members and are not included.

2.3  Loading Conditions

Development of the pipe models requires consideration of numerous different
loading conditions. Internal pressure applied to a specimen with one or both ends axially
and rotationally unrestrained will result in axial growth and rotation, whereas if applied
to specimen with full axial and rotational constraints at both ends, will result in an axial
load and torque. This is significant when considering the deformation; the contact
pressure between successive layers is considerably altered by variations in boundary
conditions.

Restraint conditions applied in the laboratory are a combination of axial and
rotational restraints applied to the ends of the specimen. In the fully restrained scenario,
which consists of axial and rotational constraints at both ends, axial loading and torque
are functions of internal pressure. In the unrestrained situation, axial growth and rotation
are permitted, and are the parameters measured during the experiment or predicted by
the global model.

In service, the pipe will be connected to flanges at both ends and buried,
preventing any deformation, and will act as a fully restrained pipe. Given these
conditions, the most realistic laboratory experiment would involve fully restrained
specimens. However, as the pipe is normally bent during field use, lateral movement,
which is essentially identical to axial elongation in this scenario, is impossible to restrict.
Because of this, the test specimens are considered torsionally restrained and axially
unrestrained.

Generally, pipe is designed to have zero axial growth and zero rotation, even
under unrestrained conditions. Applying full constraints to this pipe would cause no axial
load or torque. However, a perfecily axially and rotationally neutral pipe is difficult to
manufacture, and even though it may be so designed, some deviation from the ideal is

unavoidable.



The following analysis considers the case of the unrestrained condition, with some
description of the restrained case. This is adequate to demonstrate the major components

of the global model and the limitations with regard to secondary loading.

2.4  Single Radius Model
24.1 Introduction

The Single Radius Model (She, 1993) was the first attempt to predict pipe
performance. This model is composed of four independent layers as is shown in Figure
1.1. However, it is assumed that the total thickness of all layers is very small relative
to the radius of the pipe. In accordance with this assumption, any variation in radius
between the layers is insignificant and all layers are assigned the same radius value. This
greatly simplifies the equilibrium and deformation analyses by allowing axial symmetry
in the model. In developing radial and axial equilibrium equations, the Hoop structure
and the Helix structure (comprising two layers each) are treated as separate entities with
the Hoop layers applying a single contact pressure on the Helix layers.

This requires that the two hoop layers must have identical geometries, as must the
two helix layers. That is, the fhicknesses t, and the percentages of composite material
o in each layer must be identical, while the wrap angles ¢ must be identical but of
opposite hand for each of the two layers in each structure.

The following discussion shows the development of the equations of the simple

model and will explain the inherent limitations.
2.4.2 Strip Stress for the Unrestrained Case

From the free body diagram of Figure 2.1 showing radius r, internal pressure p

and contact pressure p,, radial equilibrium within the Hoop structure can be expressed

as



2r(p-p,) = 4toaooL’sin2¢o 2.0

where t is the layer thickness of each Hoop layer, « is the fraction of structural material
in the layer, o, is the longitudinal stress in the composite strips and ¢ is the wind angle.
The subscript ,, refers to the Hoop structure.

The Hoop strip stress can then be expressed as

__epor 2.2)

o, = n
. .
20t sin‘d,

Similarly, with internal pressure p = p, and zero external pressure, the Helix strip

stress can be expressed as

r
6, = ___pc._— . (2.3)
4 inl
2t,0. sin°},

where the subscript . refers to the Helix structure.

It can be seen that the equations for stress assume a uniform pressure drop for the

entire layer, and that the stress does not vary through the thickness.
243 Contact Pressure for the Unrestrained Case

Given the stress in each of the layers, the contact pressure between layers can be
determined by considering the axial loads acting on the pipe. For an unrestrained

specimen under internal pressure, the axial force equilibrium (see Figure 2.2) is
F, = nr¥p = 4nrt,e 0, cos’d, + 4nrt,a,0; cos’d, . (2.4)

When Equation 2.4 is combined with Equations 2.2 and 2.3, the contact pressure

between the Hoop and Helix layers for an unrestrained pipe is found to be



l —
2 7°re, 2.5)

Pe pcotztb‘—cotztbo .

As this is the contact pressure for an unrestrained specimen, pipe deformations
are permitted. Thus this contact pressure will generally not be the same as that for a
fully restrained pipe. With axial restraints, the axial strain is identically zero for all
layers, and in the single radius model, circumferential strain will also be identical for all
layers. The contact pressure for the restrained case can be developed from the general

case, which follows.
2.4.4 Contact Pressure for the General Case

Radial and axial deformations of the pipe are now considered separately. Figure
2.3 shows one pitch of one strip, before deformation, mapped onto a plane with
circumference 2, wrap angle &, strip length L and pitch length z. Figure 2.4 shows

the effects of a change in axial length.

The initial length of the strip is

L=-% (2.6)

cosd '

From Figure 2.4, the deflection of the composite strip is related to axial

deformation of the pipe through

dL = dzcosd .
Given the longitudinal strain of the composite strip ¢, = dL/L,

dL el € z

dz - = -
cos¢p cosdp  cosd cosd

and



where ¢, is the axia! strain of the pipe, or
€, = €05’} . @

Figure 2.5 shows the effect of circumferential change only. The strain in the

composite strip is related to circumferential strain through

dL = (2ndr)sing .

Given that

it follows that

dL _ (2ndr)sin®}p
L 2nr

or
€, = €sin’d . (2.8)

where ¢, is the circumferential strain of the pipe.

Combining equations 2.7 and 2.8, and assuming small strains, the total strain in

the composite strip is thus

€, = €,cos’d + ggsin’d . (2.9)



Given Equations 2.2 and 2.3 for the stresses in the Hoop and Helix layers, the

strains can be written as

O, __ P ., 2.10)

L
o 2t Esin“d,

and

g = — . @.11)
* 2t Egsin’d,

Knowing that both ¢, and ¢ are common for both the hoop and helix structures,
Equation 2.9 can be rewritten as

(2.12)

2 .2
€ €,c08°h, *+ €SIN ¢,

Lo

and

ecos’d, + €gsin’d, (2.13)

€re

Inserting Equations 2.10 and 2.11 into Equations 2.12 and 2.13, the axial and

circumferential strains of the pipe ¢, and ¢, can be determined.

(p-p,)rsin’d, prsin’d,
2t a Esin’d  2t.a E sin’d (2.14)

o o0 ¢ 0 e e e 4

€ =
cos’¢ sin’d, - cos¢ sin’d,

p reos?d, (p-preos’d,

2t o E sin’¢ 2t o E sin’¢ (2.15)

e e e [4 0 0 0 0

cos? sin’p, - cos’dsin’d,

By setting the numerator of Equation 2.12 to zero, and solving for the design
variables, an axially neutral pipe can be developed. This is also used in the next section

as the basis for fully restrained pipes with no axial elongation.



24.5 Contact Pressure for the Fully Restrained Case

The contact pressure for a fully restrained pipe can be calculated by setting the

axial strain ¢, in Equation 2.12 to zero and solving for p.:

p - psin’dt o E, (2.16)
sin‘¢p t a E, + sin'dt,aE,

Because Equations 2.2 and 2.3 for the strip stress are valid for any loading
conditions, the stresses in the Hoop and Helix layers for a fully restrained pipe can be

determined given the above contact pressure, for the general case, to be

rsin®$p E
0, = —— P d’o.o‘ 2.17)
2(sin"¢ta E, + sin ¢,,a,E,)
rsin’$ E
o, = — prsin‘e, .'4 . (2.18)
2(sin’¢pt,x E, + sin ¢t E,)

It can be shown that the contact pressures and the stresses are the same for an
unrestrained pipe with zero axial growth as for a restrained pipe with zero axial load

(She, 1993).

2.5 Multiple Radius Model
2.5.1 Introduction

This model incorporates several modifications to the single radius model (Budney,
1994). Most significant is the specification of individual radii r, for each structural layer
as can be seen in the schematic of Figure 2.6. Accordingly, each layer is assumed to
act as a thin walled member with thickness t;, as opposed to the entire structure, as was
the case in the single radius model. A radial clearance, or gap c;, has also been

introduced between structural layers to account for observed and measured performance
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of test specimens. This gap represents a few different factors. The first and most
obvious is the radial spuce between layers. The second is the compression of the
polyethylene film which is applied between the layers. Being non-structural, this
material was not included in the previous model, but affects the pipe performance and
must be accounted for. Lastly, small resin-rich peaks of thermoset matrix material
creating irregular surfaces will compress from radial loading, effectively behaving as an
additional radial gap. Modifications made to account for these factors greatly complicate
the solution, but provide a much more realistic model.

The dimensions of the multiple radius model are defined as in Figure 2.6. The
internal radius of the structure is r, while 1y, 1, 13 and r, represent the mid-thickness
radii of layers 1 to 4. The thicknesses t, to , are the thickness values for each layer, and
¢,, ¢, and c, represent the initial, as-manufactured radial gap between layers. These are
estimated from experience and from the comparisons of predicted and measured
performance.

The helix angles ¢, to ¢,, measured relative to the axial direction of the pipe,
represent the helix angles of layers 1 to 4.

Within each of the four structural layers, discrete helical strips of unidirectional
composite material are separated by strips of low modulus, elastomeric polymer. Though
these elastomeric strips are non load-bearing, they are used in order to maintain uniform
separation of the composite strips during operation and to aid manufacturing by serving
as a mold, guiding the placement of the composite. The constants a, to a, represent the
volime fraction of composite within each layer, the remainder being occupied by the
elastomeric polymer. The values of o are typically in the order of 75%.

The multiple radius model, because of its complexity, requires the solution of a
system of equations to solve for the strip stress, axial load and torque. These include
equations of compatibility and equilibrium, and constitutive relations.

Design of the pipe according to the multiple radius model is an iterative process.
The strip stress, torque and axial loads, and radial displacement must all be determined

in the process of formulating the required equations.

11



2.5.2 Material Properties for the Multiple Radius Model

The material properties are now defined for the load-bearing composite material.
The elastomeric components do not contribute to the structural performance of the global
model and are ignored.

Consider Figure 2.7, a representation of a composite strip, wound around the pipe
at a helix angle of ¢. The radial direction is represented by R, the fibre direction by L
(the longitudinal direction of the strip) and the strip transverse direction by T. The
material properties used in the model are elastic moduli in two directions, and Poisson’s
ratio in one plane. The nomenclature is E; (the longitudinal modulus), Ey (the radial
modulus) and v (Poisson’s ratio governing transverse contraction due to longitudinal

tension).

2.5.3 Development of Strip Stress, Torque and Axial Loads

An important concept used in the global model is that of contact pressures
between layers, as illustrated in Figure 2.8. With internal pressure p, the contact
pressure between the layers decreases by Ap; through each layer i. Thus, the internal
pressure acting on layer 4 is then the pipe internal pressure less the pressure drops
occurring through each of layers 1, 2 and 3.

Given the pressures acting on each layer, the stress in those layers can also be
defined. Consider Figure 2.9, a sketch of the first layer. Once again assuming that each
layer is thin compared to the pipe radius, and that the stress is uniform through the
thickness of the layer, hoop equilibrium can be used to determine the stress in each strip
of the layer. This is similar to that developed for the single radius model, but is
calculated for each individual layer instead of for the Hoop and Helix structures. The

stress is

12



L 2.19)

T 2 o t;sin’d,
where Ap;, = Di+1 - P

From the stress in the structural layers, the axial load and torque acting at each
end of the pipe can be determined. This assumes that the pipe ends are capped, meaning
that the strips are fixed at the ends, as in an end connection. In order to determine the
torque developed, consider the free body diagram of Figure 2.10.

The torque T,; in each layer i is

T, =0, (@nratcos,)sing; - r;

where 27T,at,cosd; is the projection of the cross sectional area of the composite strips of

one layer, or

3
nriAp, (2.20)

b tand,

Summing the torque of all layers, the net or external torque Tg is

3 3
nr, Ap, . nr,Ap, . ‘ttr33Ap3

T owm,  ung,  tand (2.21)
+ 7"42(p - Apl - Apz - Apg)
tand, '

This is the general case. If the pipe is torsionally unrestrained, there is no

external torque, and Equation 2.19 is set to zero.
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The axial load is determined in a similar fashion. Once again consider Figure

2.11. The axial load Fy; acting on each layer is

=2 . 2
F,_‘ 2nrta, * 0, c08 b,

Then,

2
_ InriAp, 2.22)

¢

Once again summing the loads of internal pressure and all four layers, the net or
external axial load Fy; is

2nrlAp, _ 2nrAp, _ 21\:r32Ap3 i 2nri(p - Ap, - Ap, - Ap,
tan’d, tan’¢, tan’¢, tan’d,

Fp =pnr? -

(2.23)

This is valid for the general case. With unrestrained ends, F is equal to zero.
The torque and axial load developed due to internal pressure have thus been

developed. The deformations of the pipe are now determined.

2.5.4 Strip Displacements Due to Pipe Deformations

The displacements of the strips are considered in terms of radial, circumferential
and axial displacements.

Radial displacement is caused by two factors: Poisson’s ratio contraction and
radial compression. These cause changes in the radius of each layer. Radial
displacement is also caused by axial and circumferential displacements, relating to
elongation and relative rotation respectively. Each of these factors will be studied as
follows.

With regards to radial deformation due to strip stress, there are two factors.

Thicknesses of the strips are altered when radial loads are applied, the resulting contact
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pressures compressing the layers. Poisson’s ratio contraction from strip tension will
further reduce the difference between radius values of adjacent structural layers. Radial

compression and Poisson’s ratio contraction are related to strip stress by

9r _ 2ur% (2.24)

Now consider the relationship between axial growth and radial displacement (see
Figure 2.11). In this case, an elongation of the pipe will cause a radial contraction of
the pipe. A single strip, of radius r, wound at an angle ¢ with a pitch z, grows axially
an amount dz, this growth corresponding to a radial deformation of 2xdr.

With regards to original dimensions,

2nr

and

2nr (2.25)

Assuming small deformations,

_dz -
tan = l..26
¢ 2ndr ( )

Relating Equations 2.23 and 2.24,

dz
2ntand

L]

- -dz 2nr
2ntand  ztand

and
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az r

dr = -— . (2.27)
z  tan’}
Thus, in the case of two strips,
r r
dr, - dr, = -9 (-2 2y (2.28)

z tan’p, tan’d,

where dr, - dr, is the relative displacement of the strips and dz/z is the unit change in
length.

Now consider the relationship between rotation and radial displacement as
represented in see Figure 2.12). As with axial growth, a rotation of one end of the pipe
relative to the other will cause a radial expansion or contraction. A single strip of radius
r, wound at an angle ¢ with a pitch z, expands radially an amount dr. The strip length
remains unchanged, as does the length of the pipe, but the circumference of the enclosed
area will change and the length of the strip no longer corresponds to one pitch. Given
the rotation per unit length B, one end will rotate and cause an overlap of angle Bz
relative to the other end.

In order to determine the overlap, the original and deformed circumferences are

equated.

2nr = 2n +Pz) (r+dr)

Ignoring higher order elements,

2ndr = -Bzr

_ (2.29)
dr = “Bzr

2n
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Given that

tan¢ = Zn_r,
4
14 (2.30)
tan¢

which can be substituted into Equation 2.27. Then

2
dar = -B_L_ (2.31)
tand
For two adjacent layers,
;2 ;2
dr,~dr, = -B(—— - —=) 2.32)
tan

¢, tand,

Thus, Equations 2.26 and 2.29 relate radial displacement of adjacent layers (dr, -
dr,) to rotation (B) and axial growth (dz).
Next, consider the effects of strip strain. If there is no axial strain, as defined

earlier for the case of purely radial and circumferential deformations, Equation 2.9 can

be reduced to

€, = €sin’d (2.33)
Given that

e, = % (2.34)
L

the circumferential strain, eg can be written as

€L .
€, = (2.35)
 sin%

or
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€, = (2.36)
°  Esin’
or
€, = —2PT (2.37)
E, atsin’¢

Defining the radial displacement u = dr, and noting that

Equations 2.33 and 2.34 can be used to define u in terms of strip stress or internal

pressure,
_ OLr
g 2.38)
2
) A (2.39)
E, atsind

All of the fundamental equations necessary to determine the deformation of the

pipe have now been developed. At this point, they are assembled to allow solution.
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2.5.5 System of Equations

If layer 1 has stress o, and pressure drop Ap, and layer 2 has stress o, and

pressure drop Ap,, the relative radial displacement between layers 1 and 2 is

u, - u, = o oL (2.40)
' % Esin’p, Egsin’d,
or
Ap.r? Ap,r?
u - U = P P (2.41)

= — =
E,a tsin’g, E,a.t,sin ¢,

Combining these radial displacements with the effects of axial elongation and

rotation, the compatibility equation is developed:

€=U ~ U

n I
= Apy———— - AP
'Ejapsinth, Ejuptsin‘d, 2.42)
2 2
_dzl h ) B n_n
z | tan’¢ tang,  tand,

where ¢, is the radial gap between layers 1 and 2. This equation is developed in an

identical manner for each of the remaining layers of the pipe.
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Equilibrium equations for the pipe are also developed, setting torsional and axial

loads to zero:

3 3 3
nr, Ap, . nr,Ap, . nr;Ap,

tng,  tand, s (2.43)
. nrg(p - Ap] - Apz - Ap3) -0
tand,

21tr12Apl _ 21tr22Ap2 ) 21tr32Ap3

e, 'y, ', (2.44)
_ 2nrl(p - Ap, - Ap, - Ap,
tan’,

prrt -

= 0.

Using an iterative method to solve these compatibility and equilibrium equations,
the *performance’ of the pipe can be determined on the basis of axial elongation and
rotation. This is significant when knowledge of the behaviour of the pipe under service
conditions is required.

Another output of the above solution is the pressure drop through each layer.
Although not an output for pipe performance, the pressure drop through a layer is
significant when the secondary stresses are determined. Assumed to be constant within
each layer for the global model, in reality, the pressure drops vary throughout the layer
and cause stress gradients in the composite strips.

The above equations can also be used to determine the absolute radial
displacement of each layer for an unrestrained pipe. This value is used later in this study
as one of the boundary conditions for the finite element model used. For a restrained
pipe, the displacements 6 and dz/z are set to zero, and the torque Ty and axial load Fr
needed for equilibrium are then calculated. Laboratory tests of bent pipe are modelled

as torsionally restrained and axially unrestrained pipes.
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2.6 Inherent Limitations to the Global Model

It should be noted that there are a number of limitations to the models defined
thus far. The major limitation, with regards to secondary stresses, is that neither the
single radius or multiple radius model models defines how many composite and
elastomeric strips are incorporated into each layer. Thus the width of each composite
and elastomeric strip, values important for later determination of secondary stresses, are
also not defined. The required number of strips is determined by manufacturing
constraints, and analysis of secondary stresses, using the results generated in this thesis.

Also, non-uniformity of strip stress and contact pressures will be shown to cause
secondary bending of the composite strips. These two factors are not considered in the
global model.

Notwithstanding the above limitations of the global model, it has been shown

through testing to effectively model the elongation and rotation of the pipe when

subjected to internal pressure.
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Figure 2.1  Radial Equilibrium of Hoop and Helix Structures

Figure 2.2  Axial Equilibrium of Hoop and Helix Structures
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Figure 2.4  Axial and Radial Deflections
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Figure 2.5  Circumferential and Radial Deflections

Figure 2.6  Schematic of Multiple Radius Model
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Figure 2.7  Composite Strip Coordinate S¥stem
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Figure 2.8  Schematic of Contact Pressures
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Figure 2.9  Radial Equilibrium of One Layer

Figure 2.10 Axial and Rotational Equilibrium in One Layer
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CHAPTER 3
SECONDARY STRESSES

3.1 Description of Secondary Stresses
3.1.1 Introduction

As has been explained in the previous chapter, the global models deal
simplistically with the stresses caused by internal pressure. Consequently, when
irregularities in contact pressures caused by the presence of nonstructural components
within each layer are taken into account, it is found that additional stresses are induced
by bending. These are referred to as secondary stresses. These include transverse
tensile and shear stresses, stresses for which the unidirectionally reinforced material is
not ideally suited.

Experimental evidence of secondary stresses was found during high pressure burst
tests. Upon examination of burst specimens, it was found that the composite strips in
the innermost layer near the failure site suffered severe longitudinal cracking and cross-
fibre shearing. These observations indicated secondary loading of the composite strips
not accounted for by the global model. The causes of these secondary effects can be

understood by a thorough examination of the innermost layer itself.

3.1.2 Inner Hoop Layer

Given that the elastomeric strips and the liner are low modulus and non-structural,
it is essential that there be no path from the pressurized fluid to the exterior of the pipe
consisting only of elastomer and liner. That is, there must be an overlapping mechanism
by which the liner and elastomeric strips are completely contained by composite strips.
This mechanism has been introduced into the innermost layer. Consider Figure 3.1, a
schematic of the inner and outer hoop. Note that the elastomeric strips have not been

included, leaving empty regions between the composite strips. It can been seen that the
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inner most layer has been separated into two interlocking layers and that there is no
radial path through the layer consisting only of elastomeric strips. In this thesis, the two
individual layers of the inner hoop are desigrniated layer 1 and layer 2. The protuberance

of the "T’-strip serves to retain the position of the strips relative to each other when

bending of the pipe occurs.
3.1.3 Observations and Causes of Secondary Stresses

As mentioned above, several observations were made upon completion of burst
testing of pipe specimens. Upon comparison of several specimens, it was clear that there
was a common mode of failure. There was significant damage to the inner hoop (layers
1 and 2) and a subsequent rupture path existed through the remainder of the structural
layers. There was limited damage to the outer hoop, while there was only a shifting of
elastomers in the helix layers. Before failure, strain gauge data indicated that the inner

hoop structure experienced the highest levels of strain of all the layers. Visual analysis

substantiated these readings.
Though some details of the inner hoop failures differed between specimens, there

was one common factor. All failures appeared to involve, to some degree, bending and
shearing of composite strips into the regions occupied by elastomer above them. This
indicated loss of radial support of elastomeric strips that had been pushed out of position,
requiring the composite strips to bridge the gap left by the elastomer. This occurred in
the hoop structure wherever an elastomeric strip crossed a composite strip. This region
was generically referred to as a bridge region. This behaviour was observed to occur
most frequently in the inner hoop structure, to a limited degree in the outer hoop, and

not at all in the helix layers.
3.1.4 Bridge Regions

There are two distinct bridge regions within the hoop structure. Both are apparent

from Figure 3.1. Given internal pressure, layer 1 strips will be forced into the region
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occupied by the elastomer above them and will experience transverse bending and shear.
For the purpose of this thesis, it is assumed that the elastomeric strips provide no radial
support to the strips beneath them. This region is referred to as the longitudinal-bridge,
as the bridge follows the longitudinal axis of the strip.

However, the constraints of the outer hoop also affect the inner hoop layers. As
can be seen in Figure 3.1, the elastomeric strip of the outer hoop creates additional
bridge regions into which the strips of layers 1 and 2 are forced. There is bending in
this region and, as layers 1 and 2 are not orthogonal, additional out-of-plane bending and
shear occurs. These regions are referred to as cross-bridges because the elastomer
crosses over the composite strip at some angle.

The following study will include a detailed analysis of these two bridge regions.

3.2  Critical Stress Regions
3.2.1 Introduction

Analysis of the secondary stresses must take into account the behaviour of all of
the strips involved. As stated above, the most significant secondary loading occurs
within layers 1 and 2. Thus this investigation will include these strips of the inner hoop
structure, with the effects of the outer layers accounted for by the use of appropriate

boundary conditions.
3.2.2 Longitudinal Bridge

Consider the longitudinal-bridge affecting the layer 1 strips. In addition to the
longitudinal stresses induced by internal pressure, the strip experiences bending arc:u
the longitudinal axis. This introduces transverse-tensile stresses at the top of the strip
and transverse-compressive at the bottom. Because of the radial constraints of the layer
2 strips, shear also occurs along the bridge. Thus the strip experiences transverse-tensile
stress and shear stresses, both of which depend largely on the strength of the matrix

material in a unidirectional material.
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3.2.3 Cross Bridge

Next consider the cross bridge, with the greatest effect experienced in the strips
of layer 2. Under internal pressure, the inner hoop 2 strip, in addition to experiencing
longitudinal stress, expands into the elastomeric regions of the outer hoop. This bending
results in additional longitudinal tensile and shear stresses.

The analysis of the inner hoop 2 cross bridges is complicated by the fact that the
strips may not be subjected to a uniform internal pressure. The composite and
elastomeric strips of layer 1 transfer the pressure to layer 2 in different ways. In contrast
to the elastomer of the outer layers, the elastomer of layer 1 is fully contained by the
composite strips of layers 1 and 2 and simply transmits the internal pressure. The
composite strips of layer 1, however, are stressed longitudinally and therefore transfer
a lower pressure to the next layer. These two effects result in non-uniform longitudinal
stress distribution and secondary stresses in the layer 2 strips. This non-uniformity must

be accounted for by the use of appropriate boundary conditions for the analysis.

3.3  Modelling of Critical Stress Regions

3.3.1 Introduction

It is clear that an extremely complex phenomenon is occurring. The
unidirectional materia experiences secondary loading for which it is not suited. In order
to understand the effects and possible solutions to this phenomenon, and as it is not
known which of the bridge regions experiences the greatest stresses, the two bridge

regions within the inner hoop are considered.
Given the complexities of the system, it was decided to use finite element methods

to model the bridge regions. As the ANSYS finite element package had the capability

to use composite materials and was readily available, it was deemed suitable for the

purposes of the following analysis.
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A finite element model of each of the two bridge regions has been constructed.
Geometric complexity and limited computer resources prevented a more encompassing
model.

3.3.2 Helical Approximation

In order to simplify modelling of the structure, the helical geometry of the
composite strips has been approximated by a purely cylindrical model, with an effective
radius taking into account the helical angle. However, the radius of the helical strips at
any point on their path is much larger than the radius of the pipe. The effective strip

radius r, is related to the true pipe radius r, and the wrap angle ¢ through the equation

;o= o 3.1)

sin’¢

Development of this equation is described in Appendix 1. This effective radius,
along with the original layer thicknesses and strip dimensions is used to determine the
geometry of the model in a purely cylindrical orientation.

The only difference between the helical and cylindrical models of a composite
strip is the slight twist that the cylindrical model does not account for. However, the
relationship between any two layers is not changed by making this assumption, and the

twist is thus neglected for this study.

3.3.3 Material Properties

Characterization of the material properties of the composite forms being used
involves a combination of experimental testing and theoretical approximations. There
were two composite forms used, both of which use a DOW Derekane vinyl ester resin
as matrix and continuous E-glass fibre as the reinforcing material. Each composite strip
combined a unidirectionally-reinforced core with layers of a woven fabric-reinforced

composite at the top and bottom. The woven fabric consists of E-glass yarns woven
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together to produce a cloth-like tape. The glass is woven in a 0°-90° orientation and has
roughly the same number of yarns per inch in both the longitudinal and transverse
directions. The woven fabric was added to improve the transverse properties of the
composite, and it will be shown that this fabric adds transverse tensile and shear strength
without seriously diminishing the longitudinal strength of the composite strip.
Appendix 2 details the material properties used in the finite element model.
Non-linear material properties have not been considered to date. While the
properties of unidirectional composite material are very linear in the direction of the
fibres, transverse and shear loading may cause non-linear deformations in the materiai.
However, consideration of non-linear properties involves a complex analytical or

numerical solution. The goal of this study was thus limited to investigation in the elastic

region.
3.34 Model Geometries

The element type used was a 8 node 3-D layered structural solid, numbered 46
of the ANSYS library. This element was chosen because it supported the Tsai-Wu
failure criterion as well as anisotropic material properties. Though it also supported
internal layering, several elements were instead built up to provide the required
thickness.

The geometry of the models was carerally determined to provide the most realistic
scenario while minimizing computational requirements. From observations, it was clear
that massive structural failure was occurring in both layers 1 and 2. Thus, both of these
layers were considered. While a model encompassing both layers was desirable,
computational capacity limited this to a very simple model. A more effective solution
was to generate two separate models, one for each layer. Performing this double
analysis ensured that both layers of the inner hoop were adequately studied. The two
models along with the displacement constraints, shown in Figures 3.2 and 3.3, have been
designated Model L1 and Model L2 respectively, representing layers one and two.

Comparing the sizes of Models L1 and L2 and the comprehensive model
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highlights the computing requirements of both types of models. While Models L1 and
L2 consisted of approximately 5000 elements, the comprehensive model included about
14000 elements.

3.3.5 Boundary Conditions

The boundary conditions were carefully selected to provide the most realistic
loading scenario while minimizing computational requirements. For loading and
constraint determination, an internal pressure of 7000 psi was utilized. This represented
a typical burst pressure for pipe specimens previously tested.

Some of the boundary conditions applied to the two models were generated
through use of a comprehensive finite element model encompassing both layers of the
inner hoop. This model was used to determine the pattern of contact pressures acting
between layers 1 and 2. The comprehensive model was not used extensively, as use of
the facilities required to complete the large analysis was very limited.

The comprehensive model generated about 40000 degrees of freedom. The two
smaller models generated only about 17000 degrees of freedom, a significant reduction
in the computing resources required.

The contact pressures at the contact surface, determined with this comprehensive
model were then approximated by pressure gradients and applied to the contact surface
of Model L2. Appendix 3 details the process by which the applied pressure gradients

were determined.

3.3.5.i Model L2

The circumferential and axial constraints were identical for the models of both
layers. Circumferential constraints were applied to both ends of all strips, inducing a
Jongitudinal stress in the fibre direction as radial expansion occurs. Axial constraints
were applied to two nodes of the central strip. The locations of these two nodes were

selected as having low displacement in the axial direction, so as to minimize stress
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concentrations about those points. The displacement constraints for Model L2 are as
shown in Figure 3.2.

The key to modelling the bridge regions was the development of the radial
constraints. While applying a nominal radial displacement to induce the correct
longitudinal stress, variations in radial displacement must be permitted in order to
simulate the deformations occurring at the bridges.

The radial constraints for Model L2 consisted of a fixed radial displacement
constraint applied to the outer surface of layer 2. This constraint simulated the radial
displacement of the outer hoop at a given internal pressure, and was determined through
use of the global model. For an internal pressure of 7000 psi, a nominal longitudinal
stress of 43160 psi was determined by the global model to be experienced in the strip.
This was related to a fixed radial displacement through

o,
dr = =2
E,

where r,, was the radius at the outer surface of layer 2.

It was assumed that the elastomer of the outer hoop provides no radial support;
the radial constraints were applied to inner hoop 2 in the region of outer hoop composite
only, with no constraints applied in the region of outer hoop elastomer. Because the
outer hoop crosses the inner hoop at some angle, this region of radial constraint was set
at the appropriate angle between these two layers in an actual pipe. In order to maintain
equilibrium, the circumferential ends of the composite strips were also formed at this
angle.

Internal pressure was applied to Model L2 in two ways. Where internal pressure
acted on this layer directly, a value of 7000 psi was applied. This included the inner
surface as well as the surface overtop of the layer 1 elastomer, where it was assumed that
the elastomer, being completely contained, simply transmits radial pressure to the
composite above it. Where layer 1 contacted layer 2, a pressure gradient was applied

which was determined through limited use of the comprehensive model as noted above.
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3.3.5.ii Model L1

The radial constraints were determined in a different manner for Model L1I.
Figure 3.3 shows the displacement constraints applied to Model L1. Because the effects
of the longitudinal bridge and the cross bridge are cumulative as they act on inner hoop
1, a uniform radial displacement field cannot be applied to Model L1 as it was to Model
L2. Some allowance must be given to the radial expansion of layer 1 into the cross
bridge region. In order to apply the appropriate displacement field at the contact surface
between layers 1 and 2, pressure gradients were applied to the outer surface instead of
radial displacement constraints. The pressure gradients have been manipulated to give
the contact surface of Model L1 a displacement field identical to that of Model L2.
Appendix 2 details the development of the displacement fields.

The internal pressure of 7000 psi applied to Model L1 was applied to the inner

surface.

3.3.6 Failure Criteria

In order to compare the effects of material and geometric variations of the model,
a number of possible failure criteria are available. In this study, two such criteria were
employed. Appendix 4 details the development of the two failure criteria used. The
Maximum Stress Theory (Nahas, 1986), by considering the component stresses, indicates
the dominant mode of failure, but does not allow for interaction between the stresses and
is thus not a reliable indicator of point of failure. The Tsai-Wu Criterion (Tsai and Wu,
1971) includes interaction between the stresses but does not indicate mode of failure.
Both failure criteria will be used in the following analysis, as shown below.

The constants required for the Tsai-Wu Criterion include the material strengths
as detailed in Appendix 3 along with interaction factors approximated as detailed in

Appendix 4.
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3.3.7 Mesh Refinement

Given the geometry, the material properties, the loads, and the boundary
conditions, the appropriate mesh refinement was determined. This was accomplished for
each of the two models by performing the analysis with three different meshes, each
more refined than the last.

Appendix 5 details the process by which the final mesh density was determined

for each model and shows the final mesh generated for each model.

3.4  Analysis

The goal of this study was to understand the nature of the stresses occurring
within the composite strips and how small design changes affect the magnitudes of the
stresses. When analyzing the results of the finite element model, both of the previously
explained failure criteria were used.

The analysis consisted of three components.

First, a strip of each of layers 1 and 2 were modelled given typical design
parameters. These two models were then compared to each other in order to determine
the critical layer in future pipe design considerations.

Subsequently, several design parameters were altered slightly and the results were
compared to the reference model. This allowed determination of the effects of small
changes on component stresses.

Additionaily, in order to determine the effectiveness of the transverse
reinforcement, the layers of woven fabric were eliminated, creating completely

unidirectional composite strips. These were also compared to the reference models.
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CHAPTER 4
RESULTS

4.1 Introduction

Two critical stress regions were modelled. Based on a typical pipe design, the
initial analysis details the locations and nature of the stresses in each bridge region
developed under internal pressure, and shows the strengths and weaknesses of the present
design with regards to these stresses. Output of the finite element analysis in the form
of stress distribution plots are included with this section to clarify the explanations.

Given this analysis, slight parametric variations were then introduced in order to
determine the effects of variations of the critical variables on the composite stresses. The
most significant design variables included the width of the longitudinal bridge (width of
layer 2 elastomer), the width of the cross bridge (width of outer hoop elastomer), the
percentage of woven fabric and the angle of the cross bridge. All of these parameters
had the potential to significantly alter the stress states occurring in the bridge regions.
Study of these parametric variations allowed greater understanding of the sensitivity of
the design. Included with this section are graphs of component stresses as functions of
the modified parameter.

Finally, in order to demonstrate the effectiveness of the woven fabric, both
models L1 and L2 were analyzed with 100% unidirectional composite and compared with
the reference model.

The analyses performed are summarized in Table 4.1.

As many of the companies for whom this project holds relevance are American,
and who use imperical units more often than metric, the results of this thesis are

presented in imperical units.

41



Table 4.1 Summary of Analysis

II Model L1 | Model L2
—

i. Reference design i. Reference design

ii. Cross bridge width ii. Cross bridge width

ili. Cross bridge angle iii. Cross bridge angle

iv. Percentage of woven fabric iv. Percentage of woven fabric

v. Longitudinal bridge width

vi. 100% unidirectional composite v. 100% unidirectional composite

The results of the above analyses are presented in terms of component stresses
(averaged at the nodes) and Tsai-Wu parameters. Because nodal stress averaging is
invalid at the boundaries between material types, the results are given separately for the
unidirectional and woven fabric composites. Model L2 results for the unidirectional
material are further subdivided into ihe unidirectional 'core’ of the main section of the
strip, and the unidirectional 'T" section. These two regions experience different levels
of stress and are considered separately.

In terms of both failure criteria, failure of the pipe is considered to have occurred
when any single component (unidirectional or woven fabric layers) exceeds the respective
criteria. Though the pipe may still be able to withstand internal pressure, the long term

capacity may be seriously damaged at this point.

4.2  Analysis of Reference Model
4.2.1 Model L1

Layer 1 experienced significant radial expansion into the longitudinal bridge
region and subsequent bending about the longitudinal axis of the pipe. This deformation
can be understood by consideration of Figure 3.1.

As there was increased radial expansion in this region, the longitudinal stress was
higher than nominal at the top surface. Figures 4.1 and 4.2. display the longitudinal

stress distribution for the unidirectional and woven fabric composites respectively. The
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difference between the minimum and maximum stresses should be noted.

Bending of the strip about the longitudinal axis caused high transverse tensile
stresses at the top and high transverse compressive stresses at the bottom of the strip, as
was to be expected with this deformation. Figures 4.3 and 4.4 show the stress
distribution for thc two composites. As the transverse strength of the unidirectional
material is only 4,870 psi, it can be seen that the transverse strength has been exceeded
at this pressure.

The radial stresses acting at the edges of the longitudinal bridge were also
significant. Figures 4.5 and 4.6 show the distribution of radial stress, showing that in
some places, these values are significantly higher than the internal pressure.

Shear stress S was highest along the edges of the bridge as shown in Figures
4.7 and 4.8. Given shear strengths of 9,700 psi and 20,100 psi for the unidirectional and
woven fabric respectively, these shear stresses were significant in the unidirectional
material.

The two additional shear stresses S,, and S, were both lower than 500 psi and
were neglected in the study of Model L1. This was not unexpected, as there is no
loading to cause shear in these planes.

The Tsai-Wu parameters for the two materials are shown in Figures 4.9 and 4.10.
As expected considering the component stresses, the highest value for the unidirectional
material was in the centre of the bridge, where bending caused high transverse tensile
stresses. In the woven fabric, which had high transverse strength, the highest value is
found at the edges of the bridge, where the radial stress and shear stress Sz were both
high.

Because the normal compressive material strengths are much higher than the
tensile strengths, compressive stresses were not considered significant for most cases,

apart from radial stresses.
The maximum stresses and Tsai-Wu parameters for Model L1 are summarized

in Table 4.2, along with the component strengths.
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Table 4.2 Maximum Stresses and Tsai-Wu Failure Parameters for Model L1

Stress Component Maximum Stresses (psi) Material Strengths (psi)
Unidirectional | Woven [ Unidirectional Woven
| Fabric Fabric
Longitudinal Stress 57789 26485 125000 36000
Transverse Stress 5306 15829 4870 36000
Radial Stress -10312 -14000 -18700 -18700
Shear Stress STR 4175 4225 9700 20100
Tsai Wu Parameter .882 .838 1 1

4.2.2 Model L2

In contrast to Model L1, the composite strip of Model L2 experienced bending
about the transverse axis, accompanied by radial expansion into the cross bridge region.
This manifested itself in higher longitudinal and radial normal stresses and higher shear
stress S, g.

The distribution of longitudinal stress in Model L2 is shown in Figures 4.11 to
4.13. The longitudinal stress increased in the region of the cross bridge for all three
components as shown. Considering Figures 4.11 and 4. 12, it can be seen that there was
a significant difference in the longitudinal stress through the thickness of the strip. This
indicates that some error may be introduced into the global model, which assumes
uniform stress through the thickness of the strip, in accordance with thin cylinder theory.

The transverse stresses within Model L2 were not as significant as those in Model
L1. Figures 4.14 to 4.16 display the transverse stresses in each component. Figure 4.16
is viewed from the bottom of the strip to show the high stresses developed at the inner
radius.

Once again, there were also high radial stresses at the edge of the cross bridge.
Figures 4.17 to 4.19 show the stress distribution.

Because of the orientation of the cross bridge, the shear stress Sy was much
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higher in Model L2 than Model L1. The high shear stresses were found at the edges of

the bridge, as can be seen in Figures 4.20 to 4.22.
The shear stress Sz, though much lower than in Model L1, was not insignificant.

The stress distribution is shown in Figures 4.23 to 4.25.
The Tsai-Wu failure parameters are shown in Figures 4,26 t0 4.29. The bottom
layer of the woven fabric has been displayed independently in Figure 4.29, to show the

high values at the edge of the strip.
The maximum stresses and Tsai-Wu parameters experienced in Model L2 are

summarized in Table 4.3, along with the appropriate material strengths.

Table 4.3 Maximum Stresses and Tsai-Wu Failure Parameters for Model L2

ey

Material Strengths (psi) T

Maximum Stresses (psi)

Stress Component Unidirectional Woven | Unidirectional | Woven
Fabric Fabric
. Core T
Longitudinal Stress | 47128 | 52880 28419 125000 36000
Transverse Stress 1760 1983 5057 4870 36000
Radial Stress -8326 | -6900 -11586 -18700 -18700
Shear Stress Siy 1863 2056 1917 20100 20100
Shear Stress Sy 1390 1106 1650 9700 20100
Tsai Wu Parameter | .211 297 784 1 1

4.2.3 Discussion

It can be seen that Model L1 experienced higher stresses than Model L2. This
is especially noticeable in the transverse stress and the shear stress Sgg. This was due

to the transverse bending of layer 1 that occurred in the longitudinal bridge region, which

was to be expected.
It should be noted that while the maximum transverse stress in the unidirectional
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composite in Model L1 reached 5306 psi and the transverse strength for this material was
only 4870 psi, the Tsai-Wu failure parameters for this region was only 0.882. This low
value is due to finite element discretization. While the nodal stresses are extrapolated
to the surface of the element, the Tsai-Wu parameters are determined from the stresses
at the integration points of the element. When bending of the element occurs,
introducing tensile stress at the top and compressive stresses at the bottom, the stress at
the centre of the element is significantly reduced from that at the surfaces. Thus the
Tsai-Wu criteria gives au artificiaily low value. Despite this discrepancy, the Tsai-Wu
criteria can be used to compare the results between similar models, given the parametric
analysis.

The extremely high value of the transverse stress in the unidirectional composite
revealed a discrepancy between the finite element model and experimental work. The
finite element model predicted failure before 7000 psi, while several pipe specimens
subjected to short term pressure tests burst at pressures greater than 7000 psi. There are
two explanations for this difference. First of all, the transverse stress in the
unidirectional composite would cause transverse failure in the unidirectional material,
which does not necessitate failure of the strip. Given the shear strength of the woven
fabric, the structure could withstand a greater load before failure.

Another reason for the difference is due to the assumption that the elastomeric
strips forming the bridges provide no radial support. In reality, as contact pressure
between layers is increased, the elastomeric material is effectiveiy confined, providing
limited radial support for short term loading, increasing the short term pressure capacity.
Essentially, the bridge deformations would not be as severe as if there were no elastomer
present. However, for long term situations, this radial support may not be dependable,
as the elastomer may creep under load and eventually lose pressure-transmitting

capability.

46



4.3 Cross Bridge Width

The width of the cross bridge is a function of the width of the outer hoop
elastomer. This dimension is determined through design and manufacturing limitations.
A certain percentage of elastomeric material is required in each layer, roughly 20-30%,
in order to maintain structural flexibility. The elastomeric strips should be narrow
enough to prevent severe damage at the cross bridge sites but not so narrow as to cause
instability during manufacture. Generally, strips that are narrower than they are thick
are undesirable.

Because layer 2 was directly affected by the cross bridge, this layer is considered

first.
4.3.1 Model .

As was notco - section 4.2, Fayer 2 experienced radial expansion in the region
of the cross bridge, causing high lorgitudinal stresses at the centre of the bridge, and
high radial and shear stresses at the edges.

As was to be expected, increases in the width of the cross bridge exacerbated the
problems of high stresses. This was noticeable mostly with shear stress S, along the
edges of the bridge. For the variations considered, a 40% change in cross bridge width
caused close to a 100% increase in shear stress, as can be seen in Figure 4.30.

The longitudinal and transverse stresses increased only slightly as the cross bridge
width increased, in both the unidirectional and woven fabric material, as shown in
Figares 4.31 and 4.32. The radial stress, however, increased significantly in the woven
fabric as can be seen in Figure 4.33. This high radial stress occurred at the edge of the
bridge.

The shear stress Sty also increased slightly as bridge width increased as seen in
Figure 4.34. The end result can be seen in Figure 4.35 in which the Maximum Tsai-Wu
parameter is plotted against cross bridge width. A 40% change in cross bridge width

caused a roughly 40% increase in this value.
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4.3.2 Model L1

Layer 1 strips are insulated from the severe effects of the cross bridge by layer
2. This resulted in negligible changes in all stresses when the cross bridge width was

altered. The plot of Tsai-Wu criteria demonstrates this in Figure 4.36.

4.3.3 Discussion

Variations in cross bridge width had a greater impact on layer 2 than on layer 1.
The increase in shear stress S, was the greatest factor, directly affecting the Tsai-Wu
parameters. As would be expected, increasing the width of the cross bridge increased

all the component stresses.

4.4 Cross Bridge Angle

The cross bridge angle is not a direct design variable, rather the result of the
choices of wrap angle for the inner and outer hoop structures. The affect of the cross
bridge angle was studied to determine the effect of angle changes on the shear stresses

acting along the edge of the bridge. Once again, Model L2 is considered first.

44.1 Model L2

As cross bridge angle increased, approaching 90°, there was a general decrease
in stress levels in layer 2.

The exception to this was the longitudinal stress in the woven fabric, which
increased slightly, as can be seen in Figure 4.37. All other normal and shear stresses,
shown in Figures 4.38 to 4.41, experienced small but noticeable decreases with
increasing angle. The exception is the radial stress in the woven fabric which decreased
dramatically as the angle increased.

Figure 4.42 shows the maximum Tsai-Wu parameters, which decreased the most
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in she woven fabric, about 20% as the angle increased 30°. The Tsai-Wu parameters in

the other components experienced a less significant change.

4.4.2 Model L1

As with the effects of varying cross bridge width, changes in cross bridge angle
caused only negligible differences in layer 1 stresses. Figure 4.43 shows the Maximum

Tsai-Wu parameters for this parametric change, demonstrating minimal variation.

4.4.3 Discussion

As stated above, variations in cross bridge angle caused small changes only in
layer 2. Layer 1 was not affected significantly by this parameter. It can be concluded

that the parameter has little direct impact on the component stresses.

4.5 Percentage of Woven Fabric

The volume fraction of woven fabric was varied from 30 to 50% of the composite
strip. The thicknesses at top and bottom were equal, and the total thickness of the strip
was kept constant. The thickness of the fabric was varied, changing the thickness of the

unidirectional layer.
4.5.1 Model L1

Increases in the amount of woven fabric did not greatly affect the longitudinal
stresses in the unidirectional or the woven fabric composites, as can be seen in Figure
4.44. However, as more fabric was added, with higher transverse modulus, the
transverse stress was greatly reduced in the unidirectional composite, and slightly

increased in the woven fabric, as is shown in Figure 4.45.
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The remaining stresses are not changed as significantly, as is shown in Figures
4.46 and 4.47, but given that the transverse stress in the unidirectional material is close
to the strength of the material, any decreases in this stress clearly improves the
performance of the corposite strip, as shown with the maximum Tsai-Wu parameters in
Figure 4.47.

4.5.2 Model L2

The effects of the percentage of woven fabric are not as significant in layer 2 as
they are in layer 1. In general, there is a slight increase in most stresses as the amount
of fabric increases. This is due to the reduced effective longitudinal modulus of the strip
allowing greater longitudinal strain and greater expansion into the cross bridge region.

Figures 4.49 to 4.53 show the variations in stress as the amount of woven fabric
changes. Figure 4.54 shows that there is little change in maximum Tsai-Wu parameter

for this layer.

4.5.3 Discussion

It has been shown that a certain amount of woven fabric is critical in layer 1.
High transverse and shear stresses demand a material with high transverse strength and
shear strength Srg, located at the top and bottom of the strip, and this can be achieved
with woven fabric. By increasing the amount of woven fabric, the transverse stress in
the unidirectional material is reduced, while increasing the stress in the woven fabric
only slightly. However, this must be balanced with the fact that large amounts of woven
fabric sutiaually reduce the longitudinal modulus of the strip, and may affect the
elongation and rotation of the pipe.

Woven fabric is not as critical in layer 2 and in fact according to this study,
causes greater cross bridge effects due to the reduced longitudinz] modulus. Given that
the unidirectional and woven fabric have similar shear strengths in plane LR, additional

woven fabric will not increase the strength of layer 2 in the cross bridge region.
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However, it must also be noted that the transverse stresses acting in the unidirectional
material are not insignificant. As stress acting in this direction tends to cause matrix-

related creep, some transverse reinforcement is still necessary.

4.6 Longitudinal Bridge

The width of the longitudinal bridge is a function of the width of the layer 2
elastomer. As with the outer hoop elastomer, this dimension is dictated by design and
manufacturing considerations. A~ additional factor is the amount of overlap generated
between layer 1 and 2 strips, which is dependent on the widths of the composite and
elastomeric strips. As this dimension decreases, the possibility increases that bending
of the pipe will lead to severe shifting of the strips relative to each other and loss of this
overlap.

The width of the longitudinal bridge does not directly affect the secondary s*resscs

in layer 2. Thus only Model L1 is considered in this study.

4.6.1 Model L1

As was to be expected, a wider longitudinal bridge alloweu greater radial
expansion, causing greater Stresses. Figures 4.55 to 4.58 show that all significant
stresses increased dramatically as the bridge width was increased. Once again, because
of the low transverse strength of the unidirectional material, the changes in maximum
Tsai-Wu parameters are most significant in the unidirectional material as is seen in

Figure 4.59.

4.6.2 Discussion

As noted above. transverse stresses are critical in the unidirectional material, and
as the bridge width was increased, these stresses became even more severe. It is clear

when considering the Tsai-Wu values thai any significant increase in longitudinal bridge
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width will cause problems related to transverse stresses in the unidirectional material.
It should be noted that longitudinal cracking of the unidirectional material may not cause
immediate failure. The presence of these cracks does not seriously affect the longitudinal
strength of the material. However, once the transverse strength is exceeded, the
possibility of further radial expansion is increased, which may lead to longitudinal

failure.
4.7 Comparison with 100% Unidirectional Composite

In order to demonstsaie the benefits of wove.. fabric in the composite, both

Models 1.1 and L2 have been analyzed as completely unidirectional components.

4.7.1 Mo.dct L1

The woven fabric of layer | provided transverse and shear strength in the
longitudinal bridge region. When this fabric was removed and replaced with
unidirectional material, the stresses were not dramatically altered, but given the much
lower transverse strengths of the unidirectional material (4870 psi as compared to 36000
psi), the maximum Tsai-Wu parameters were much higher for the compiclciy
unidirectional composite. The stresses in the two models were tabulated in Table 4.4.
The data was divided into the 'core’ material and the 'surface’ material. The woven

fahric was alse included.
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Table 4.4 Comparison of Reference Model with 100% Unidirectional Composite, Model

Ll

Stress Component

Unidirectional/
Woven Composite
Stresses (psi)

100% Unidirectional
Composite
Stresses (psi)

Core Surface Core Surface
' Composite Type Uni Fabric Uni Uni '
Longitudinal Stress 58406 26610 57589 57569
Transverse Stress 5275 15605 5249 1 5_0_7 ]
Radial Stress 191 -13796 - 9105 o }é:s_‘__
Shear Stress Sry 4115 4173 3694 3176
Tsai-Wu Parameter .877 .828 .868 2.653

4.7.2 Model L2

The introduction of woven fabric into layer 2 did not benefit the composite as it
did in layer 1. In fact, with the reduced longitudinal modulus and greater radial

expansion, the woven fabric reduces the short term effectiveness of the layer 2 composite

strip. The stress¢s developed in the strip were compared with those of a completely

unidirectional material and the results are tabulated in Table 4.5. The composite has

been divided into the core of the main strip, the surface layers where woven fabric

occurs in the unidirectional/fabric composite, and the unidirectional "T".
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Table 4.5 Comparison of Reference Model with 100% Unidirectional Composite, Model

L2
Stress Stress in Unidirectional/ Stress in Unidirectional
‘Component Woven Composite (psi) Composite (psi)
Location Core T Surface Core T Surface
Composite Type Uni Uni Fabric Uni Uni Uni
I____—______________————T————r——-———i
Longitudinal 47128 52880 28419 46850 52299 48828
Stress
Transverse 1763 1983 5057 1053 937 3177
Stress
Radial Stress -8326 -6900 -11586 -8053 -6881 -9714
Shear Stress Sz 1863 1917 1917 1503 1354 1593
Shear Stress Sqx 1390 1650 1650 1394 730 1398
Tsai-Wu 211 .297 .784 .062 070 71
Parameter
4.7.3 Discussion

It can be seen that for layer 1, removal of the transverse reinforcement would be
catastrophic. The transverse loading was far too extreme for the 100% unidirectional
composite. If woven fabric were removed, a significant reduction in the width of the
longitudinal bridge would be required in order to reduce the transverse loading.

However, the woven fabric seems to worsen the situation of layer 2. As the
secondary loading largely consists of increased longitudinal stress and shear stress Sy,
the woven fabric adds little by way of transverse strength and actually decreases the
longitudinal strength and modulus of the composite. This would seem to indicate
removal of the woven fabric is in order. However, one must consider the loading at the
surface of the strip. With a transverse stress of almost 2200 psi, and a maximum Tsai-
Wu parameter of 0.7, the long term transverse strength of the composite must be
retained. Considering this, removal of the woven fabric may improve short term strength

of the composite, but greatly reduce the long term capacity.
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4.8 Experimental Results

Though experimentation was not a significant part of this thesis, prototype testing
was performed simultaneously, with preliminary results from this study used for
optimization. The following explains three successive prototype tests which demonstrate

the effectiveness of the finite element analysis.

Initial finite element modelling determined that there were high transverse and
shear stresses occurring at the top and bottom surfaces of Layer 1 in the longitudinal
bridge region. This led to the reduction of bridge widths and the introduction of woven
fabric into layer 1. Subsequent testing demonstrated the benefits of these improvements
as is explained below.

Initial tests were performed on a pipe designated P1 with large bridge widths and
purely unidirectional material. Designed with the global model to burst at 7000 psi
internal pressure, it burst at 5000 psi internal pressure, at ambient temperature. A
subsequent iteration P2 which reduced the bridge widths and introduced woven fabric
into Layer 1 was designed to burst at 9000 psi internal pressure and burst at 8375 psi in
a short term test at ambient temperature. This clearly demonstrated the benefits of these
initial improvements. A later iteration P3 was designed for a lower short term pressure
capacity of 7500 psi but higher long term capacity with additional fabric in Layer 2.
Subjected to short term loading, this prototype burst at 7300 psi internal pressure, but
the subsequent prototype contained pressure for over 1000 hours at 6300 psi. This
demonstrated the long term high pressure capacity of the pipe. (Bouey and Freiheit,
1995)

It can be seen that improvements, based on finite element analysis and
supplemented by visual analysis and documentation of failure modes, were able to

significantly improve the pressure capacity of the pipe.
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Figure 4.1 Longitudinal Stress in Unidirectional Composite (psi), Model L1,
with Bridge Regions Identified
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57



-4045
-3009
-1974
-938.093
97.556
1133
2169
3205
4240
5276

Figure 4.3  Transverse Stress in Unidirectional Composite (psi),
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Figure 4.4  Transverse Stress in Woven Fabric Composite (psi),
Model L1
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Figure 4.5  Radial Stress in Unidirectional Composite (psi),

Model L1
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Figure 4.6  Radial Stress in Woven Fabric Composite (psi),

Model L1
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Figure 4.7  Shear Stress Sy in Unidirectional Composite (psi),
Model L1
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Figure 4.8  Shear Stress Sy in Woven Fabric Composite (psi),
Model L1
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Figure 4.9  Tsai-Wu Parameters in Unidirectional Composite

Model L1
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Figure 4.10 Tsai-Wu Parameters in Woven Fabric Composite

Mode! L1
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Figure 4.11 Longitudinal Stress in Unidirectional Composite (psi), Model L2

with Cross Bridge Region Identified
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Figure 4.13 Longitudinal Stress in Woven Fabric Composite (psi), Model L2,
with Cross Bridge Region Identified
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Eigure 4.14 Transverse Stress in Unidirectional Composite (psi),
Model L2
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Figure 4.15 Transverse Stress in Unidirectional Composite (psi),
Model L2, 'T’ Section
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Figure 4,16 Transverse Stress in Wovci: Fabric Composite (psi),

Model L2
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Figure 4.17 Radial Stress in Unidirectional Composite (psi),

Model L2
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Figure 4.18 Radial Stress ¥ Unidirectiorzl Composite (psi),
Model L2, " deeds
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Figure 4.19 Radial Stress in Woven Fabric Composite (psi),
Model L2
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Figure 4.20 Shear Stress S, in Unidirectional Composite (psi),

Model L2

-2056
-1599
-114:
-685.381
-228.46
228.46
685.381
1142
1599
2056

Figure 4.21  Shear Stress Sz in Unidirectional Composite
Model LZ, 'T" Section
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Figure 4.22  Shear Stress S, in Woven Fabric Composite
Model L2
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Figure 4.23  Shear Stress Sy in Uridirectional Composite (psi),
Model L2
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Figure 4.25 Shear Stress Sy in Woven Fabric Composite (psi),
Model L2, View of Top of Bottom Layer of Fabric
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Figure 4.26 Tsai-Wu Parameters in Unidirectional Composite
Model L2
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Figure 4.27 Tsai-Wu Parameters in Unidirectional Composite (psi),
Model L2, 'T" Section
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Figure 4.28 Tsai-Wu Parameters in Woven Fabrié Composit.e

Model L2
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Fizure 4.29 Tsai-Wu Parameters in Woven Fabric Composite,

Model L2
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Figure 4.30 Maximum Shear Stress S_r as a Function of Cross Bridge Width, Model L2
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Figure 4.31 Maximum Longitudinal Stress as a Function of Cross Bridge Width, Model L2
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Figure 4.32 Maximum Transverse Stress as a Function of Cross Bridge Width, Mode! L2
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Figure 4.33 Maximum Radial Stress as a Function of Cross Bridge Width, Model L2
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Figure 4.34 Maximum Shear Stress Str as a Function of Cross Bridge Width, Modet L2
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Figure 4.35 Maximum Tsai-Wu Parameter as a Function of

Cross Bridge Width, Model L2
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Figure 4.36 Maximum Tsai-Wu Parameter as a Function of

Cross Bridge Width, Model L1
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Figure 4.38 Maximum Transverse Stress as a Function of Cross Bridge Angle, Model L.2
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Figure 4.40 Maximum Shear Stress S.r as a Function of Cross Bridge Angle, Model L2
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Figure 4.41 Maximum Shear Stress Sir as a Function of Cross Bridge Angle, Model L2
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CHAPTER 5
CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

The two critical layers of a muitilayer composite pipe have been studied.
Geometric configurations and composite forms have been analyzed using the finite
element method and parametric analysis. A greater understanding has been developed
of the stresses caused by internal pressure and secondary bending, and the effects of
design variables on these stresses.

Layers 1 and 2 were subjected to secon-'ary bending in the regions where
elastomeric strips of other layers provided little radial support. This secondary loading
induced normal and shear stresses in the composite materials for which unidirectional
material is not ideally suited. Layers of woven fabric material provided transverse and
shear strength in the locations where the unidirectional composite was particularly
vulnerable, while the unidirectional core provided great longitudinal strength.

The following summarizes the significant results of the parametric study.

Typical Design
Layer 1 experienced high transverse and radial stresses and shear stress Sry.

Layer 2 experienced high radial stresses and shear stress S;x. The Tsai-Wu parameter

was highest in Layer 1. Thus Layer 1 is the critical layer.
Variation in Cross Bridge Width

Variations in cross bridge width had negligible effect on Layer 1, while in Layer

2, shear stress S,y increased as the bridge width increased.
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Variation in Cross Bridge Angle

Variations in cross bridge angle had negligible effect on Layer 1, while in Layer

2, all stresses decreased slightly as the angle approached 90°.

Variation in Percentage of Woven Fabric
In Layer 1, there was a decrease in stresses in the unidirectional material as the
amount of woven fabric was increased. In Layer 2, there was a slight increase in

stresses as the amount of woven fabric was increased.

Variation in Longitudinal Bridge Width

As the longitudinal bridge width increased, there was a significant increase in all

stresses in Layer 1.

It was seen that the woven fabric was of greatest use in layer 1, where loading
caused high transverse and shear S, stresses at the top and bottom of the strip. It was
shown that the woven fabric was essential to layer 1 and that if all other factors are kept
constant, a higher proportion of woven fabric may improve the performance of layer 1.
However, this may not be practically possible as the introduction of woven fabric
decreases the longitudinal modulus of the strip and greatly affects the performance of the
pipe in terms of axial growth and rotation.

The benefits of layers of woven fabric were not as positive for layer 2 as for layer
1. There was less significant transverse loading and the woven fabric would seem to
decrease the longitudinal strength of the composite. But given the not insignificant
transverse loading in the bridge region, the presence of the woven fabric served to
maintain long term strength of the composite. In this case, a reduction of the thickness
of the woven fabric composite is a possible method of slightly increasing the strength of
layer 2.

As has been known since the initial prototype testing and finite element analysis,
the width of the outer hoop and layer 2 elastomers must be minimized. Layer 2 is not

as sensitive to the width of the cross bridge as layer 1 is to the width of the longitudinal
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bridge, but both bridges must remain small. The angle at which the outer hoop Crosses
the inner hoop does not largely affect the stresses in lavers 1 or 2. Generally, larger

angles are better, but the difference is not significant.

5.2 Recommendations

There are other factors, siot studied in this analysis, which may serve to minimize
the effects of secondary bending. For example, the percentage o of composite material
has not been studied in detail. A higher value would permit smaller bridge widths while
maintaining composite strength. This would provide a greater pressure capacity of the
pipe.

Reliability of the vesults of the finite element model would be greatly improved
with a better knowledge of the material properties of the composite materials. A
vigourous testing program to determine the material properties would allow a more
accurate prediction of the point of failure of the pipe.

Visco-elastic behaviour of the composite materials should also be investigated.
The long term life of the pipe is dependent on the ability of the materials to retain their
strength over long periods of time. Any long term study will require knowledge of the
visco-elastic nature of the out-of-plane composite material properties.

It was found in this study that changes in the cross bridge angle had little effect
on the stresses in the composite. Knowing this, the finite element model could be further
simplified by using a cross bridge angle of 90°. By taking advantage of the subsequent
planes of symmetry which were not available at any other angle, this would lead to a
reduction of the number of elements required. This may permit the generation of a

simplified comprehensive model which could be used with smaller computing facilities.
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APPENDIX 1
CYLINDRICAL APPROXIMATION

In order to simplify the helical geometry, the helical strips have been
approximated by a cylinder with an equivalent radius 1, The radius at a point is
determined through differential geometry as follows (Stoker, 1969).

The curvature of a curve in space « is defined as

/ "
X = .}. = _LX__X__X—j- (Al.l)
r

X'
where r, is the pipe radius and X is the definition of a point on the curve. The definition

of a helix in cartesian coordinates with wrap angle ¢, angle of rotation © and with the

axis of the cylinder in the z-direction, as in Figure 2.7, is
X = r,cosBi + r sin6j + Br cotdk (A1.2)

The first and second derivatives are

! _ . hy ¢ .
X rsini + rcosfj + r cotdk

n _ 8o . *
X r,cosOi - r sin6j

The numerator of equation Al.1 is thus

X' x X" = [(—rocotd>)(—rosin6)]i' + [(rocotd))(—rocosd))]f
+[(-r sinB)(-r sin6) - (r,cosB)(~r cosO)}k
= risinBeotdi - rocosOeotdy” + ri(sin?® + cos?B)k
or
X x X" = r sinBcotdi - r FcosBeotdy” + r,7k (A1.3)
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with the magnitude being

1
X7 % K7 = [risintbcol + ricostBeoly + ril?

1
[ricot?d(sin’® + cos?@) + ri?

1
ré(cot?d + 1)?

]

or

1
X! x X"| = rj(cot’p + 1)? (AL4)
The denominator of equation Al.1is

1
2. 2 2 2
[(r’sin®® + ricos?® + ricot?d) 2P

X’
(ALS)

3
2

ricottd + 1)

thus the curvature at a point is

(NI

ricot’p + 1)

Viw

rl(cot?d + 1)

or

22
=00 1 (AL.6)
r‘
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and the effective strip radius is

p oo o (AL7)

* sin’p

This radius is used in the generation of the model to approximate the behaviour
of the helix. It should be noted that the axis of the rectangular cross section of the strip
corresponds with the axis of the radius of curvature of the strip. That is, bending about

the minor axis of the strip causes a change in strip radius.
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A2.1 Introduction

APPENDIX 2
MATERIAL PROPERTIES

Use of a finite element model requires a detailed characterization of the materials

being used. The stress-strain relationship for the 3-dimensional case is

-
] | L
E
v
€22 -
E,
v
3| -2
< > = E3
€12 0
€13 0
0
Fs) |

Vi
El

1

E,

V32

E,

Vi3

El
]
E2
1
E3

0

0

1
G12

0

0

0

1
GIB

0

]
on

T » (A3.1)

a
023

In the general orthotropic case this involves 12 elastic constants. There are six

Poisson’s ratios, 3 tensile moduli and 3 shear moduli. Determination of these properties

for the materials in use involves a rigorous experimental or analytical process. As noted

above, two fibre-resin systems were employed in the composite strips. Layers of glass

fibre fabric reinforced vinyl ester surrounded an inner core of unidirectional glass fibre-

reinforced vinyl ester. The elastic constants are determined for each as follows.
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A2.2 Constituent Material Properties

The properties of the constituent materials, that is, the vinyl ester resin and the

glass fibres, are shown in Table A2.1.

Table A2.1 Constituent Material Properties

Derekane Vinyl Ester Resin
Modulus (ksi) 490
Strength (ksi) i1.5

v .35
G,, (ksi) 181
K., (ksi) 544

E-Glass Fibres
Modulus (ksi) 10,500
Strength (ksi) 550,000

v 2
Gy (ksi) 4,375
K; (ksi) 5,833

The shear moduli and the bulk moduli of the above isotropic materials have been

determined using the equations

G-_E (A3.2)
2(1+v)
k-_2E (A3.3)
3(1 - 2v)
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A2.3 Composite Material Properties

Because composite materials are generally used as thin laminates and less often
as thick components, most of the material property data available is oriented towards
characterization of laminates. This means that the out of plane properties, namely v,
and G,; for the unidirectional material are not readily available. Thus for this analysis,

these values have been estimated using the theoretical approximations as is explained

below.
A2.3.1  Unidirectional Composite Material Properties

The unidirectional material is transversely isotropic about the 1-direction (the fibre

direction), and the following relationships can be applied,

E, = E
Vip = Vp5 (A3.4)
G1,=Gy5
With the elastic relationships
El
Vo 'E"lz
2 (A3.5)
E,
Vg = ‘E"’zs

only E,, E,, v, #33, Gjp and Gy need be determined in order to completely characterize
the unidirectional material. Most of these properties are supplied by DOW, the
manufacturer of the vinyl ester resin. However as noted above, the out of plane
properties v,; and G,; are not supplied. To determine these we employ the composite
cylinders model (Hashin and Rosin, 1964) as well as additional approximations by Hill
(1964) and Hashin (1966). This analysis uses constituent properties to determine the
composite elastic properties. It is based on a model of a fibre encased by a cylinder of

resin, assuming the ratio a/b to be constant for all fibres in the composite, a and b being
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the fibre and resin radii respectively.

The Poisson’s ratio vy, is estimated as:

_ Ky - Gyy - 4v%,Gpy Ky [y, (A3.6)
23 o
Ky + Gy + 411Gy Ky [Ey,

v

where Ky, is the plane strain bulk modulus and is calculated as:

K. =k +2n
= 4 ——
+ ¢ — (A3.7)
[k, - k, + (G, - G + 1-¢)
3 4
(km §Gm)

where ¢ = (a/b)? is the fibre volume fraction.

The transverse shear modulus can be approximated by

c

Gy = G, |1 + G (A3.8)

7 8 -
_Im (K +1G)H)0K + =G)!
Gf—G ("'3'")( " 3"')

m

Given the above approximations, the material properties of the unidirectional

material are summarized in Table A2.2. The strengths are also added, having been

obtained by the manufacturer.
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Table A2.2  Unidirectionally Reinforced Material Properties

|| Property I Value
.

E, 5,500,000 psi

E, = E; 1,490,000 psi

Vi, = Vi3 3

Vy3 .56

G, = Gis 590,000 psi

Gy 320,000 psi

oy / 0y 125,000 / 87,700 psi
oy = Oy | O = 0y 4,870 / 18,700 psi
0)2 = 013 20,100 psi

023 9,700 psi

A2.3.2  Woven Fabric Material Properties

The woven fabric must also be characterized. Given the infinite range of fibre
forms that are available with different yarn sizes, types of weave, number of yarns in
each direction, and tightness of the weave, it is much more difficult to characterize
woven fabric composites than unidirectional composites. Because of this, some typical
values have been assumed, and some approximations have been made in order to
characterize the material (Sims, 1987; Lu, 1989; Craig, 1988; Whitcomb, 1991).

The woven fabric is assumed transversely isotropic about the 2-axis. The woven

fabric material properties have been summarized in Table A2.3.
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Table A2.3 Woven Fabric Reinforced Material Properties

|| Property | Value
L ———————————————

E =E 2,320,000 psi

E, 1,490,000 psi

iz = Vp 3

V12 15

Gy; = Gy 590,000 psi

Gy, 590,000 psi

oy = Oyl 0y = Ox 36,000 / 36,000 psi
0y, | 03 4,870 / 18,700 psi
013 = 0n 20,100

012 20,000
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APPENDIX 3
CONTACT SURFACE PRESSURE GRADIENTS

A comprehensive finite element model was . =d to determine the characteristics
of the contact pressures acting between layers 1 and 2. This model was not used
extensively for the entire study because of limited access to the necessary computing
facilities. However, the contact pressure patterns found between the layers in this model

were used to replace the presence of the additional composite strips in the simplified

model.
The comprehensive model was generated as shown in Figure A3.1 in which the

contact surfaces are clearly identifiable. Considering only the portion of the surface of
the layer 2 strip which contacts the layer 1 strip, Figure A3.2 shows the radial stress in
this area. The effect of the cross bridge is easily visible, as are the regions where outer
hoop composite strips restrain radial expansion.

Figures A3.3 and A3.4 are graphs of the radial stress on this surface at two Cross
sections: in the centre of the cross bridge region at A-A and in one of the restrained
regions at B-B as is shown in Figures A3.1 and A3.2. It is clear that the surface
pressures underneath the cross bridge at A-A are noticeably less than those found
elsewhere. These two pressure gradients were approximated, as shown by the linear
representation in Figures A3.2 and A3.3, and were applied directly to the contact
surfaces of Model L2. The sudden increase in contact pressure at the edge of the strip
was not modelled in Model L2. The high levels of radial stress were inconsistent with
visual observation which did not indicate any type of compressive failure at the strip
edges.

Figure A3.5 shows the radial displacement of the contact surface of the layer 1
strip of the comprehensive model. This displacement field was then emulated in Model
L1 by application of a pressure field. Figure A3.6 shows the displacements of the
contact surface of Model L1, having had a pressure gradient applied to it. It can be seen

that these displacement fields closely match those of Figure A3.5. The pressure field
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which was applied to Model L1 was modified for each parametric variation, in order to
give the identical displacements for the contact surface. It was assumed that the
displacements of this surface would remain constant regardless of parametric variations
in layer 1. This is not strictly true, as modifications to any one layer will affect the
deformations of all layers; however, for the parametric analysis of this study, this factor
was kept constant in order to evaluate the effects of other variations on each layer
individually.

The above procedure was applied to Models L1 and L2 for all parametric
variations in longitudinal bridge width, cross bridge angle and percentage of woven
fabric. However, the effect of variations in cross bridge width on the contact pressures
were studied further as is explained below.

To determine how the contact pressures under the cross bridge were affected by
the cross bridge width, another two-layer finite element model was generated,
experiencing cross bridge constra'nts as in Model L2, as is shown in Figure A3.7. Using
this model, the cross bridge width was varied and the subsequent change in contact
pressures between layers 1 and 2 was determined. Figure A3.8 shows a graph of the
contact pressure along the centre of the strip. The edge and centre of the cross bridge
are indicated. It can be seen that the contact pressures generally increased slightly as the
width increased. However, this was not constant along the entire length of the strip.
Given this non-constant relationship and the fact that the changes in contact pressure were
less than 4%, the contact pressures were not altered for the study of cross bridge width.

However, the radial expansion in the region of the cross bridge was altered as the
cross bridge width increased. In order to determine the magnitude of this affect, Model
12 was run with variations in cross bridge width. The displacement field of the Model
L2 contact surface was determined for each case and the changes were noted. These
changes were then applied to the contact surface of Model L1. This allowed indirect
determination of the effects of variations in cross bridge width on the layer 1 stresses.

In summary, as the cross bridge width increased, the changes in contact pressure
between layers 1 and 2 were negligible but the changes in radial displacement of layer

1 were not and were applied to Model L1 for this study.
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Figure A3.2 Contact Pressure at Contact Surface of Layer 2 of Comprehensive Model

107



Contact Pressures on Layer 2 Strip
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Figure A3.3 Graph of Contact Pressure at A-A of Contact Surface of Layer 2 of

Comprehensive Model
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Figure A3.4 Graph of Contact Pressure at B-B of Contact Surface of Layer 2 of

Comprehensive Model
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Figure A3.6 Radial Displacement of Contact Surface of Layer 1, Model L1
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APPENDIX 4
FAILURE CRITERIA

Ad4.1 Introduction

In order to compare the effects of material and geometric variations to be applied
to the model, » number of possible failure criteria are available. In this study, two such
criteria are used. The Maximum Stress Criterion indicates the dominant mode of failure
through identification of significant component stresses, while the Tsai-Wu criterion
employs interaction factors to predict an ultimate failure point.

In both failure criteria, the material strengths are related to the principal directions
of the composite. For the unidirectional and woven fabric composites in use, these

directions correspond to the orthotropic material properties of each.

A4.2 Maximum Stress Failure Criterion

The basic Maximum Stress Criterion (Reddy and Reddy, 1991) is often used for
isotropic materials and in situations where loading is generally unidirectional. It is easy
to use and simply requires that each component Stress is less than the strength in thal

direction.

o, = R
G5 =8
°2'4=T

where X.,Y,...T are the strengths corresponding to the stresses oj and thi

subscripts 1 and ¢ designate tensile or compressive values.
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This criterion can also be written in polynomial form:

(0, - Xplo, + X)(o, - Yp(op * Yoo, - Zp(o5 + Zg)
x(a, - R)(o, + R0, - S)(os + o - Dlog * 7H=0
The limitation of this criterion is that it does not allow for interaction between the
stresses. ‘That is, failure is not indicated until at least one of the stresses exceeds the
strength in that direction; the presence of additional stresses does not affect this result.
notwithstanding this limitation, one benefit of this criterion is that it indicates the
dominant mode of failure. This is directly applicable to experimental observations of
composite materials when it is often clear that the specimen failed in tension as opposed

to shear or vice-versa.
A4.3 Tsai-Wu Failure Criterion

An alternate theory for the failure of anisotropic materials has been proposed by
Tsai and Wu (Tsai and Wu, 1971). Though several have been proposed (Nahas, 1986),
that proposed by Tsai and Wu is the most general and has been found to correspond well
with experimental data (Graff, 1991). While not indicating the mode of failure, this
criterion allows for interaction between the stresses and by doing this, is a much more
realistic analytical tool. Like many advanced failure theories it starts with the general

assumption that there exists a failure surface in stress-space in the form:
f(o,) = Fo, + Fj0,0; = 1

where f(g,) is designated the Tsai-Wu parameter, i,j,k = 1,2...6 and F; and F;
are second and fourth rank tensors respectively. F; has been written in abbreviated form
with F, (i = 1,2,...6) representing the 6 component strengths of the symmetric second

order strength tensor. Similarly, Fj, with 36 components, represents the fourth order

tensor having 81 components.
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The resultant matrices are related to engineering constants and strengths in the

following manner:

-

(1 _
XT XC
1 _ 1
YT YC
Fi=11 _1
ZT ZC
0
0
0
xl Crr Cz2 9 0 o
’XC \[X’IXCY‘IYC ﬁ,XCZ,ZC
C
S —E— 0 0 0
e \/Y1ycz7zc
1 0 0 0
F,.j= Z1Zc
1o o
RZ
LI
SZ
1
L T

where Cyy, Cxz, and Cy; are constants. The interaction terms F,;, F}3, F,; relating the
normal stresses have been proposed by Tsai (Tsai, 1978). Several tests, such as a biaxial
planar tensile test, have been proposed in order to determine the parameters; however,
such testing is significantly more complex than current prototype testing. Tsai found that
by setting Cxy = Cx, = Gy, = -1/2, a good match with experimental data was found.

This estimate was used for this study.
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APPENDIX 5
MESH REFINEMENT

AS.1 Introduction

The two models generated, L1 and L2, were optimized with regards to mesh
refinement. The optimal mesh was determined by performing an analysis using three

different meshes for each model.

A5.2 Model L1

The woven fabric layers were modelled with two elements through the thickness
while the unidirectional was modelled with three elements through the thickness. The
additional element for the unidirectional was added because this layer experienced a high
level of transverse bending about the axis of the strip. This bending introduced high
stresses at the outside edges of the unidirectional layer and stresses close to zero at the
centre. When the centroidal stresses were calculated for the Tsai Wu failure criteria, an
artificially low Tsai-Wu failure criteria resulted that did not reflect the high stresses at
the surface. By increasing the number of elements through the thickness, this factor was
minimized. The number of elements through the thickness was limited to three because
of computational limitations.

As noted above, given the limited number of elements permitted through the
thickness of the layer, three meshes were generated for this model, and the stresses from
each were compared. Figures A5.1 to AS.5 show the variation of stress with mesh
refinement, for the woven fabric and unidirectional layers. It can be seen that in each
case, there is little variation from the second model to the third. Thus, for Model L1,

the moderate mesh was adopted for further study. Figure A5.6 shows Model L1 with

the final mesh.
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AS5.3 Model L2

Both the woven fabric and the unidirectional material of this layer were modelled
with two elements through the thickness. A third element was deemed unnecessary for
the unidirectional layer of this model as the stresses due to transverse bending were
minimal. The 'T" section received additional elements through the thickness because of
a stress concentration at the junction with the main part of the strip.

Once again, three meshes were generated. Figures AS.7 to AS.2 show the
variation in stresses due to mesh refinement. There is a larger difference between
meshes 2 and three in this case, notably regarding the shear stresses. However, as the
stresses are converging, and because the stresses are relatively low compared to the
strengths in this direction, the moderate mesh was adopted once again. Figure A5.13

shows Model L2 with the final mesh.
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Figure A5.6 Final Mesh Density of Model L1
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Figure A5.13 Final Mesh Density of Model L2
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