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Abstract 

In the present work, available direct and indirect methods for isobaric liquid 

heat capacity estimation are evaluated relative to experimental data. The study 

focuses on identification of systemic and random deviations between specific 

calculation approaches and experimental data, based on characterization method 

so that their preferred range of use in process simulators can be identified. The 

roles for new elemental composition based predictive heat capacity correlations in 

particular are explored. In order to implement these element-based heat capacity 

correlations into commercial chemical engineering process simulator software, the 

number of atoms per unit mass, must either be available from experimental 

measurement, or be estimated from available property data with little deviation 

because both heat capacity correlations are sensitive to this value.  
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1   Introduction 

1.1   Unconventional Heavy Oil Reserves Overview 

Conventional and unconventional oil are among the main world energy 

sources. The techniques used for producing or extracting unconventional oil are 

more complex and energy intensive than those needed for conventional oil [1]. 

New techniques such as steam injection for the oil sand industries have been 

developed to increase the efficiency of unconventional oil production [2]. 

According to OPEC, the largest proven oil reserves including non-conventional 

oil deposits are in Venezuela (20% of global reserves), Saudi Arabia (18%), 

Canada (13%) and Iran (9%) [3]. The scale of the unconventional resources 

dwarfs conventional and more readily produced resources. For example, Canada’s 

oil sands deposits contain estimated 1.7 to 2.5 trillion barrels of heavy oil in place 

[4]. However, using present technologies and estimated economy conditions, only 

about 10% (173 billion bbl) can be recovered [4]. What makes Canada’s non-

conventional oil resource use grow quickly compared to other oil fields in the 

world is the political stability and the size of the Canadian resource. The 

unconventional resources are also diverse. Over 95% of Canadian oil reserves 

comprise 15 separate oil sand deposits located in the province of Alberta (OSAs). 

The three main deposits are the Athabasca Wabiskaw-McMurray (commonly 

referred to as the Athabasca Oil Sands), the Cold Lake Clearwater, and the Peace 

River Bluesky-Gething deposit which occupy an area of 142,000 km
2
.  
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Production methods also vary by location. For the Athabasca oil sands deposit, 

80% is expected to be produced by in situ methods and the other 20 % by open-pit 

mining [5]. In situ bitumen production is currently performed using Steam-

Assisted Gravity Drainage (SAGD) a process developed by Roger Butler in 1970 

[5]. Other production methods are at various stages of development and 

implementation. Thus while these resources are lumped together as 

unconventional, they are diverse in nature, present in diverse geological 

environments, and subject to diverse production methods. These resources also 

pose numerous challenges with respect to technology development and the 

environment more broadly. 

1.2    Characterization of Bitumen and Heavy Oil 

Thermophysical property knowledge of heavy oil, bitumen and their fractions 

not only helps to improve existing technologies. It also helps identify innovative 

methods for extraction or that recover more oil from reserves, and in particular 

those approaches that are economically viable because property knowledge is 

used to populate process and property models. Three types of property knowledge 

and models underly process development: 

1. Transport properties and models (e.g.: viscosity, mass and thermal diffusivity) 

2. Equilibrium phase behavior properties and models (PVT phase diagrams, phase 

density, phase compositions, solubilities, …) 

3. Energy measurements and models ( heat capacity, enthalpies of  mixing, 

vaporization, …) 
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Since characteristics and properties of heavy oil are dependent on the level of 

solvent or water washing arising in situ or ex situ, bacterial degradation of the 

resource, thermophysical properties are expected to differ with the locality, and 

the depth of reservoirs. Thermophysical properties of produced fluids are also 

expected to diverge based on production method and surface facilities employed 

for separation, transport and refining. Since collecting data for all possible heavy 

oil, their fractions and various mixtures is impossible, predictive models that 

permit interpolation and more importantly extrapolation are essential. Typically, 

these models comprise correlations that are built upon oil characterization. 

Measured composition or property data comprise input paramters for these 

models.  

Conventional hydrocarbon mixtures and their fractions can be categorized as 

well-defined and ill-defined mixtures. In each case, there is a distinct approach for 

their characterization. A well-defined mixture is a mixture with a known set of 

molecules present or a mixture defined as a petroleum cut with a  narrow spread 

of possible molecular structures. Physical properties of such mixtures can be 

obtained from properties of the model components/homologous groups (light n-

paraffins, iso-paraffins, olefins, naphthenics, monoaromatics and polyaromatics) 

by their specific simple mixing rules. Moreover, for well-defined mixtures, 

specialized structure-property correlations for pure compounds can be used [5]. 

The compositions of ill-defined petroleum fluids or fractions is not known. 

Boiling point (Tb) based fractionation and bulk property measurements 

incorporating specific gravity (SG), viscosity, refractive index, carbon-to-
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hydrogen weight (CH) ratio, or average molar mass of the whole fluid and its 

fractions are used to characterize them. Fluid properties are then identified in 

terms of the number of pseudo-components (e.g.: boiling ranges) and generalized 

empirical correlations in terms of Tb. Specific gravity is then used for estimation 

of various properties required for thermodynamic calculations, such as molar 

mass, critical constants, acentric factor, etc [5]. 

For fractions with unknown distillation data (M > 300 g∙mol
-1

),  bulk 

measurements such as molar mass or viscosity may be used together with specific 

gravity to estimate basic parameters and physical properties. If specific gravity is 

not available, refractive index or CH ratio may be employed as an alternate 

characterization parameter. For fluids possessing a large mass fraction of non-

distillable material, this approach becomes less appropriate and modeling of such 

fluids becomes more empirical, often requiring introduction of fluid specific or 

reservoir related tuning parameters. Use of these fluid specific models beyond 

there narrow scope of development (in another reservoir or at out of scope 

conditions within the same reservoir) is not advised. 

Conventional characterization methods and estimation techniques developed 

for light oils and well-defined oils do not work for heavy oils and bitumen. Heavy 

oils contain complex mixtures of hydrocarbon compounds with a broad 

distribution of molecular sizes and unknown molecular structures. Up to 50% of 

the heavy oil fluid can be non-distillable. These non-distillable fractions comprise 

large aromatic, O, N, S and heavy metals containing and frequently 

multifuncitional  compounds, and are typically polar. Compositions, molar mass 
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ranges (from hundreds to thousands of g∙mol
-1

) and molecular structures of the 

constituents are uncertain and expected to be very complex. Some sub-fractions 

originated from solubility classes (SARA) or from chromatography are also 

complex. Measured bulk properties may exhibit hysteresis (depending on the 

nature of the property). Additionally, since heavy oil fractions are thermally 

unstable at temperatures higher than 250 – 300 
o
C, property data are not 

measurable in a precise manner. Thus, heavy oil, bitumen and their fractions are 

classified as ill-defined materials and use of correlations for constant-pressure 

liquid heat capacity such as the Lee-Kesler correlation [6] which rely on SG, 

measured under conditions where bitumen and heavy oil are semi solid, and Tb, 

recorded under conditions where bitumen and heavy oil are chemically reactive, 

or extrapolated from some other property are likely to be unreliable or subject to 

significant systematic error. Extending correlation and measurement techniques to 

include accurate representation of ill-defined hydrocarbon fluids is a significant 

undertaking. The key is to find robust and easily measurable properties that are 

available for both well-defined and ill-defined fluids alike and that correlate with 

properties of interest. In this work, the focus is on constant pressure heat capacity.  

Not the development of a correlation but on the implementation issues arising in 

process simulation, as this introduced some surprising challenges and pitfalls. 

 

1.3    Heat Capacity Predictive Correlations  

A series of predictive correlations for constant pressure heat capacity of 

crystalline organic solids, liquids and ideal gases were recently reported [7-
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10]. Their primary application is to predict the thermal behavior of ill -defined 

hydrocarbons, where elemental analysis is one of a few certain composition 

characteristics available that bridge the gap between well-defined and ill-

defined hydrocarbon mixtures. Examples include, boiling cuts or solubility 

classes such as asphaltenes or maltenes, where no models or only primitive and 

imprecise models are available for estimating heat capacity. However, the 

precision and accuracy of these correlations has warranted further evaluation, 

including applications arising in light orwell-defined hydrocarbon mixtures, 

where for example indirect calculation approaches for the heat capacity of 

liquids (ideal gas heat capacity + an equation of state based departure 

functions [11]) or direct correlations (such as the Lee-Kesler correlation [6]) 

are currently implemented in process simulators. Each of these approaches for 

predicting liquid heat capacity have advantages and disadvantages, and possess 

different input data requirements. Identification of hierarchies and the best 

niches for diverse combinations of methods is challenging, as is conveying this 

complexity to users.  

1.4    Process Simulation Software  

Commercial chemical engineering software is used to design and optimize 

chemical processing systems in industries as diverse as oil and gas processing, 

petrochemicals, bitumen processing, refining, etc. The software is used to model 

mass and energy flows within equipment and processes, and to size equipment. 

Thermodynamic and transport properties are computed iteratively and have a 

significant impact on outcomes. Accurate correlations with reliable inputs are 
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needed to obtain process or equipment designs that work in the field. These may 

be based on standard correlations, look up tables or artificial neural networks.  
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2   Literature Review  

2.1    Constant Pressure Liquid Heat Capacity 

Constant-pressure liquid heat capacity, defined as Equation 2-1. [12]: 

    
  

  
   2-1 

 

is one of the characteristic thermophysical properties of fluids. In general, heat 

capacity is directly related to temperature derivatives of basic thermodynamic 

functions. Heat capacity values and trends with temperature are widely used in 

engineering for writing energy balances, in thermodynamics for calculating 

entropy and enthalpy values, and in thermochemistry for obtaining reaction 

enthalpies, which are also functions of temperature. Heat capacity knowledge is 

also needed for evaluating temperature effects for phase and reaction equilibria 

[13]. Unexpected variation in apparent heat capacity helps detect phase transitions 

and changes in the structure of solutions. Heat capacity may also be applied for 

calculating the temperature derivative of vapor pressure and can be used to 

extrapolate of vapor pressure [14].   

For well-defined hydrocarbon mixtures, the heat capacity of the mixture, 

remote from the critical point for all components, Tr < 0.95, approaches a simple 

summation for  neighboring members of a homologous series [15]: 

  ∑     

 

   

  2-2 

 

where    is the mole or mass fraction and    is the heat capacity of component 

i per mole or mass of component, respectively in a mixture with n components. 
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Three different terms for liquid heat capacity are normally used: 

    : Enthalpy changes with regard to temperature at constant pressure  

    : Enthalpy variation of a saturated liquid with temperature  

       : Required energy for changing the temperature while keeping 

the liquid in a saturated state 

The relationship among these three heat capacity definitions is:  

     
    
  

            (
  

  
  ] (

  

  
)
  

            
  

  
     

2-3 

 

All three definitions of liquid heat capacity have similar values except at high 

reduced temperature where the values diverge. Normally either     or     is 

estimated while        is the property measured experimentally [16]. 

 

2.2 Liquid Heat Capacity Estimation 

Methods and techniques for measuring or estimating liquid heat capacity 

depend on the type of liquid, whether it is pure or a mixture, defined or ill-

defined, below or above boiling point, etc. There are published experimental 

liquid heat capacity data for many pure hydrocarbons and homologous series [13]. 

There are several techniques for estimating liquid heat capacity directly. They 

were categorized into four general groups by Reid et al. [16]: theoretical, group 

contribution, corresponding states, and Watson thermodynamic cycle [17]. Some 

of these techniques are reviewed here. Liquid heat capacity can also be calculated 
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indirectly using the ideal gas heat capacity and a departure function [28]. This 

latter approach is the default one, for example,  in chemical process simulators. 

 

 

2.2.1    Group Contribution Methods 

These methods assume that molecules  are composed of interchangeable 

fragments or groups. Each group contributes to the total molar heat capacity, 

irrespective of the molecule in which it is found. Interaction among groups are 

ignored. Johnson and Huang [18] published a liquid phase heat capacity 

prediction model based on atomic contributions. Chueh and Swanson [19] 

published an equation for predicting    values based on more complex 

constituent groups. The error for this method is 2 to 3 %, within a limited 

temperature range (0.7< Tr <0.95). Missenard proposed a method based on other 

structural groups with temperature sensitive values with a limited range of 

application compositionally (i.e.: it cannot be applied for components with double 

bonds), and thermally (the temperature range is limited to the range between the 

freezing point ~ 0.4 Tr and Tr< 0.75) and the error is  5 % [16]. Newer methods, 

sometimes called second-order additive schemes [20, 21], which account for 

dissimilar contributions, have been developed. In these methods what an atom is 

bonded to is considered. An example for these methods is that of Ruzicka and 

Domalski [22-24]. This type of method allows equation development for 
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estimating liquid heat capacity in the range from the melting point to the boiling 

point. The general form of this method is: 

           
 

   
  (

 

   
)
 

  2-4 

 

Where R is gas constant and T is the temperature in K. The following are 

equations for A, B, and D parameters: 

   ∑           

 

   

                  ∑    

 

   

                         

  ∑    

 

   

 

2-5 

Where ni is the number of groups of type i, k is the total number of different 

kinds of molecular groups. ai, bi, and di are available for 114 various groups listed 

in [16]. Liquid heat capacity at higher temperatures is not covered by this method.  

Good knowledge of the molecular structure of components is necessary for 

applying these techniques for estimating liquid heat capacity. Therefore, group 

contribution methods are not applicable for ill-defined hydrocarbon, such as 

bitumen and heavy oil. 

2.2.2   Corresponding State Methods   

According to van der Waals, the theorem of Corresponding State Principle 

(CSP) mentions that all fluids, when compared at the same reduced temperature 

and reduced pressure have almost the same compressibility factor and the 
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deviation from ideal gas behavior are almost the same [25]. Accordingly, methods 

for predicting liquid heat capacity have been developed: 

     
  (   )

   
  (   )

   
 2-6 

where (   )
   

 is the simple fluid contribution, (   )
   

 is the deviation 

function,   
  is the ideal gas heat capacity,    is the liquid heat capacity, and   is 

the acentric factor. Utilizing these values, the heat capacity departure function 

      
   can be estimated.  

Several equations were developed by Lee and Kesler [6, 28] based on 

Corresponding State Methods. In this method the accuracy of Johnson-Grayson 

enthalpy correlation had been investigated particularly for high pressure condition 

and those near critical region. The same relationship was used for the heat 

capacity estimation of the liquids. Promising results were published for the 

analytical form of the Lee-Kesler heat capacity departure function for liquid 

hydrocarbon heat capacity calculations [28]. The improved correlation for heat 

capacity of liquid for petroleum fraction is widely used for hand calculations [6]. 

Normal boiling point and specific gravity, which are generally more available 

properties, are used in this correlation to characterize petroleum fraction for 

       : 

             
  2-7 

                                     

 
                   

    
 

2-8 
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2-9 
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Where Tr is reduced temperature (T/Tpc); Tpc is pseudo-critical temperature in 

degree Rankine; K is Watson characterization factor and spgr is specific gravity 

60 F/60 F. The errors for this correlation are discussed in Chapter 4.  

Based on the theorem of CSP, Watson [17] developed a two parameter 

correlation for thermodynamic properties of liquids. Later, Reid and Sobel [29] 

expanded the Watson equation for heat capacity to a three-parameter correlation 

with the critical compressibility as the third correlating parameter to calculate heat 

capacity around a critical region. Moreover, a modified method of Watson [17] 

was developed by Chueh and Swanson [19] 

Tyagi [25] observed that expressing the term          in the Reid and Sobel 

equations and the Chueh and Swanson equations as a function of reduced 

temperature and reduced pressure would yield more accurate value for saturated 

liquid heat capacity. He then proposed an analytical procedure utilizing the 

enthalpy departure function from the ideal state suggested by Lee and Edmister 

[30] and Stevens and Thodos [31] to predict the values of         and 

 
  

  ⁄      . He introduced three methods among which Method 1 seemed to be 

more promising and described below: 
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where     is the enthalpy of saturated liquid. The following generalized 

equation is for isothermal enthalpy difference for pure hydrocarbon described by 

Lee and Edmister [30]: 
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where Ais are the generalized constants: A1=6.32873; A2=-8.45167; A3=-

6.90287; A4=1.87895; A5=-0.33448; A6=-0.018706; A7=-0.2286517; A8=0.18940; 

A9=-0.002584; A10=8.7015; A11=-11.201; A12=-0.05044; A13=0.002255                     

Differentiating Equation 2-12 with respect to temperature gives  

         
  

  
            

        
 

             
          

  

                 
   

    

 

2-13 

A group contribution method suggested by Rihani and Doraiswamy [32] is 

used for calculating ideal gas heat capacity,   
 , in the above method: 

  
                      2-14 
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where   
          is the ideal gas heat capacity of a compound,   

         

is the ideal gas heat capacity of a group, and a, b, c, and d are the characteristics of 

that particular group and the values for different groups are tabulated by Rihani 

and Doraiswamy [32]. The summation in Equation 2-32 is over all groups in the 

compound. One can calculate saturated liquid heat capacity by substituting 

Equation 2-15 and 2-13 in Equation2-11. The limitation for this approach is, it is 

good for Tr between 0.4 and 1 and Pr value between saturation pressure and 10.      

Tyagi [25] also suggested two other methods (details on them can be found in 

[25]); however, method 1 is slightly superior among others since it proved to be 

more accurate around critical point. Tyagi’s method can be used in a reduced 

temperature range of 0.4 to 1 for various organic compounds. There are no 

graphical computations as in the previous Reid-Sobel method, so no additional 

error is introduced. The relative deviation for this method from the experimental 

data is reported to be less than 3%, while for the Reid-Sorel method, the average 

error is more than 10% for the compounds with Zc less than 0.23. Furthermore, 

the error of 8.7% was observed using the Reid-Sobel method for all the 

compounds the Tyagi method was tested for at reduced temperature range of 0.7-

0.95. It should be emphasized that the enthalpy departure function used in this 

method was developed for pure components. As a result, this approach may not be 

suitable for ill-defined hydrocarbons and mixtures.  
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Application of thermodynamic models based on the CSP to predict liquid heat 

capacity of ill-defined hydrocarbons is also challenging, since the critical 

properties are not available, the mean molar mass is not known, and the heat 

capacity of ill-defined hydrocarbon in the ideal gas state, the reference state for 

such calculations, is unknown. Typically, the molecular structure is required for 

application of the methods for estimating these properties, and also in addition, 

the range of estimated values diverges as molecular mass increases, even in the 

case of pure n-alkanes [45]. 

2.2.3    Indirect Methods 

As it is mentioned, in the indirect method the departure function can be 

calculated based on an equation of state and the ideal gas heat capacity of the 

mixture can be estimated from the existing correlations; i.e Equation 2-31. 

Bessieres et al [14] conducted a coparisson in which, a departure function, 

estimating the heat capacity of real gasses [16], was applied to predict heat 

capacity (Cp) of heavy distillation cuts. Equations of state are needed to get 

derivatives in the following equation: 

          
     ∫  
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)
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where R is the gas constant and   
  is the ideal gas heat capacity. 

Almost all models applied in that study showed that the prediction accuracy 

decreased as the distillation cut’s mean molecular mass (boiling point) increased. 
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Additionally, it was observed that those equations of state with parameter fitted on 

vapor pressure of high molecular mass of compounds were more reliable in 

estimating heat capacity of heavy distillation cuts. Consequently, Bessieres et al. 

[14] proposed that an adjustment of equations of state parameters to heavy 

compounds properties enhances the accuracy of heat capacity estimates. 

 

2.2.4    Estimation of Isobaric Liquid Heat Capacity in Simulation 

Software 

 

Prediction of thermodynamic properties can be performed by different process 

simulators; amongst these thermodynamic properties is the isobaric liquid heat 

capacity. One of those simulators is VMGSim developed by Virtual Materials 

Group Inc [46]. It has different approaches for calculation of the isobaric liquid 

heat capacity in terms of defined or ill-defined materials. For defined materials, 

the isobaric liquid heat capacity is calculated from the departure function method 

based on a selected property package. In the case of ill-defined materials, defined 

as pseudo-components in VMGSim, the ideal gas heat capacity is first calculated 

with the use of pseudo-component user-defined specific gravity and average 

boiling point by an ideal gas heat capacity estimation method, like the Lee-Kesler 

correlation described in section 2-2-2; then, the isobaric liquid heat capacity is 

calculated by the same method used for well-defined materials; i.e. EOS based 

departure function plus ideal gas heat capacity (Equation 2-33) described in 

section 2.2.3.  
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2.2.5   Heat Capacity Prediction Based on Elemental Composition    

Laštovka and Shaw [10] developed a correlation for ideal gas heat capacity, 

which is based on the assumption that the ideal gas heat capacity of large 

molecules is primarily a function of the number of vibrations per mass of the 

molecule. With a direct relationship between the numbers of vibration modes per 

mass of a molecule and the number of atoms per mass of the molecule for large 

molecules, a similarity variable can be defined as: 

 

2-17 

Where    is the stoichiometric coefficient for element i in a compound 

consisting of N atoms, n is the number of elements in the compound, Mi is the 

molar mass of chemical element i (in mol.g
-1

), xi is the mole fraction of element i 

in the compound, and wi is the mass fraction of element i. 

Based on this similarity variable concept, Dadgostar and Shaw [7] developed a 

predictive correlation for the isobaric specific heat capacity of liquids applicable 

for pure organic compounds and ill-defined mixture such as heavy oil, bitumen, 

and boiling cuts. This correlation employs temperature and similarity variable as 

inputs, along with six universal coefficients: 

                  
              

     2-18 

For T > 200 K: 
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Six universal coefficients appearing in Equation 2-18 and 2-19 are reported in 

Table 2-1:  

Table 2-1: Universal coefficients for Dadgostar-Shaw 

correlation 

Coefficient Value 

    -0.3416 

    2.2671 

    0.1064 

    -0.3874 

    -9.8231E-05 

    4.182E-04 

 

The advantage of this correlation over others is the fact that only elemental 

composition of a liquid is required and the structural information is shown to be 

of the secondary importance. The correlation was examined using a test data set 

including liquid organic compounds and the average absolute deviation was 

calculated to be 0.067 J/g/K. The correlation was also used for ill-defined 

hydrocarbon liquids, and their heat capacity was estimated to within 6 and 2.8% 

in the temperature range of 325 to more than 500 K.  

In order to compare these new correlations with other widely used methods for 

calculating liquid phase heat capacity, Virtual Material Group Inc. published a 

report [47] comparing five different ideal gas heat capacity estimation methods 
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either direct or indirect. For the direct methods the Lee-Kesler correlation for 

ideal gases [28], Lastovka-Shaw, Twu-Black [95], and API [96] were used and for 

the indirect method the Dadgostar-Shaw correlation for liquids was used to 

estimate liquid heat capacity and the heat capacity residual value was estimated 

by different property packages. Five different assays in VMGSim wre 

characterized in order to estimate their ideal gas heat capacity. The α which is a 

required input for the both Lastovka -Shaw and Dadgostar-Shaw correlation was 

estimated based on API method described in the following section. Accordingly, 

the average relative deviation of the Dadgostar-Shaw correlation was between 9 to 

10 % for the low boiling point pseudo-components to almost 16% for high boiling 

point compounds with the Advanced Peng-Robinson property package.  

 

2.3    Elemental Analysis Based on API Approach  

 

For implementing the Dadgostar-Shaw correlation in simulator software, 

Virtual Material Group suggested a way for estimating chemical formulae which 

can be further used for calculating the similarity variable. In this approach based 

on MW and API gravity of a pseudo-component, if the component has specific 

gravity lower than 0.85 (35
o
API) at 15  , it is considered as a paraffin-type 

component and a typical alkane formula is used. If the specific gravity is greater 

than 0.85 (35
o
API), the formula is calculated from the percentage of S, N and C/H 

ratio which are functions of the API gravity of the pseudo-component [15] as 

shown in Table 2-2. The other approach implemented in the VMGsim software is 



21 

 

so-called “content curve”, where the formulas are calculated based on the 

elemental curves added in the Content Curves tab, and the α can be calculated 

accordingly. 

 

Table 2-2: Elemental percentages of liquid hydrocarbons based on degree of API 

[15] 

Gravity 

(Degree of 

API) 

Sulfur 

(Percentages by 

weight) 

Inerts 

(Percentages by 

weight) 

Carbon-to-

hydrogen weight 

ratio 

0 2.95 1.15 8.80 

5 2.35 1.00 8.55 

10 1.80 0.95 8.06 

15 1.35 0.85 7.69 

20 1.00 0.75 7.65 

25 0.70 0.70 7.17 

30 0.40 0.63 6.79 

35 0.30 0.60 6.50 
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2.4    Artificial Neural Network 

 

Artificial Neural Networks (ANN) as presented by McCulloch and Pitts [48] 

are created from an approach for developing intelligent systems by modeling the 

biological structure and functions of human brain which has neurons and axons 

[49,50]. ANNs are collections of small individual processing units named neurons 

(nodes) and the information is passed through the neurons by interconnections 

(axons) [50]. The network is typically consists of three layers: input layer, some 

hidden layers, and output layer [51].  

A single input neuron, shown in Figure 2-1, consists of 5 terms which are all 

connected to each other by Equation 2-20. 

 

 

 

Figure 2-1: Single input neuron(node) schematic structure 

 

              2-20 

     Where   is the input,   is the weight connecting the input to the neuron,   

is the transfer function,   is the biased term and   is the output. Figure 2-2 

illustrates a neuron with multiple inputs represented by Equation 2-21.  

 

θ   
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Figure 2-2: Multiple input neuron schematic structure 

 

                          2-21 

 

A neural network with one hidden layer is shown in Figure 2-3. 

 

 

 

 

 

 

Figure 2-3: A neural network schematic structure 

The relationship of inputs and outputs can be represented by a network with 

biases more easily than a network without biases. There are various transfer 

   

θ 

  

Ѡ2    

   

Input layer Hidden layer Output layer 
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functions which can be either linear or non-linear; however, storing non-linear 

relationships between the input and output can be performed by non-linear 

transfer functions [50].  

Developing a neural network consists of a main stage named training. In the 

training step the inputs are introduced to the network together with the desired 

outputs. At this stage, weight terms are adjusted in a way that the desired output 

can be resulted. The training stage stops when the satisfactory values for the 

weights are found and the network uses these weights to make decision, to 

recognize pattern, or to define associations in the test data set [49]. There are 

several learning algorithms (training function) which can be used to train a 

network, such as the ones suggested by Haykin [52] or Neocleous [53]; however, 

the most widely used is the back propagations (BP) and its variants [54, 55]. The 

training of all patterns of a training data set is called an epoch. The training set has 

to cover all the collections of input–output examples. BP training is a gradient 

descent algorithm. It attempts to improve the performance of the neural network 

by reducing the total error by varying the weights along their gradients. 

Artificial intelligent systems are considered as a technology which can be 

applied to solve complex and non-linear problems [49]. Nowadays, ANN are used 

to estimate thermodynamic properties of compounds where it is complex and 

difficult to predict the properties using analytical equations [56-59]. The 

advantages of ANN compared to conventional methods are simplicity, speed, and 

ability to learn from examples.  
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In this work, ANN will be applied to forecast elemental composition which is 

a required input for the recent elemental composition based correlations. With the 

ANN model, simulator software would be able to implement element base 

correlations for estimating liquid heat capacity with high accuracy; that is why, 

application of an artificial forecasting system which is able to estimate the 

property with acceptable error is examined. 

2.5    Data Regression for Coefficients Calculations 

 

The most frequently used method in data fitting is the least squares method. In 

the Least Squares approach, the sum of the squares of the residuals from the 

equation application is minimized. The residuals are the difference between the 

observed value and the value predicted by a fitting model [60]. Independent 

variables in this method can be either single or multiple, and the output of the 

least squares regression is an equation which is a function of the independent 

variables and some universal coefficients [61]. A simple regression and least 

squares method cannot be utilized when there are substantial uncertainties in the 

independent variables.  

The least squares methods are divided into two categories in terms of linearity; 

linear and non-linear least squares. The regression is called linear when the model 

includes linear combination of the coefficients; on the other hand, i.e. it is called 

non-linear when the derivative of model with respect to each coefficient is neither 

constant nor dependent only on the value of the independent variables [60,61]. 

Other categories for the least squares method include multiple least square and 
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partial least square. When the independents variables are few in the number, are 

not collinear, and have a well-understood relationship to the dependent variables, 

multiple linear regression (MLR) can be a good way to develop a model. 

However, if any of these three conditions is not met, Partial Least Square (PLS) is 

used to develop a predictive model. It is important to say that understanding the 

underlying relationship between independent and dependent variables is not a 

goal of PLS, i.e. the factors which have negligible effect on the response are not 

considered by applying the PLS method [62].  

2.6    Objectives    

 

Both group contribution based models and corresponding state based models 

are not applicable to estimate liquid heat capacity for ill-defined hydrocarbons. 

An element based correlation (Dadgostar-Shaw) which is a function of α, based 

on elemental analysis, and temperature was developed to estimate heat capacity of 

ill-defined liquids directly. Liquid phase heat capacity can also be estimated 

indirectly from an element based ideal gas correlation [10] + a departure function 

(indirectly). The dissonance between the values obtained by indirect and direct 

calculation of liquid phase heat capacity, observed during the implementation of 

the elemental analysis based heat capacity correlations in VMGSIM, was 

surprising and led to the inception of this project. The principal objectives of this 

project are to determine the source of the dissonance and to resolve it. A case 

study approach is adopted where the test fluids may be described on a molecular 

basis, an element basis, or a refinery (boiling range) basis, and where the impacts 
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of elemental composition estimation methods, such as the API method, and 

departure functions may be evaluated.  
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3   Experiments  

3.1    Methodology 

Differential Scanning Calorimetric (DSC) was used in this study to measure 

the heat capacity of compounds experimentally. It should be emphasized that this 

method requires careful calibration before each experiment to yield accurate and 

reliable data.  

3.1.1    Technical Review 

Differential Scanning Calorimetric is a well-known thermal analysis technique, 

which is applied in a wide temperature range in various areas of research, quality 

inspection and development. The DSC device works based on measuring the 

difference in the heat flow rate to the sample cell and reference cell while they are 

subjected to a controlled temperature program. DSC can easily examine heat 

capacity, heat of transition, kinetic data, and glass transition and purity of a 

sample. Moreover, DSC curves can be examined to identify substances, to 

construct a phase diagram and to measure degree of crystallinity [63].  

There are two different types of DSC with the same use: the heat flux DSC and 

the power compensation DSC. The DSC, which is utilized in this study, is a heat 

flux calorimeter. In this type of DSC, while both reference and sample cells are 

heated by the same furnace at a given heating rate, the deferential heat flow 

between two cells is measured, which is proportional to the difference in 

temperature of the cells. [64]. In the power compensation DSC, the reference and 

sample cells seat on two separated furnaces located inside a single heat sink. The 
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power input to these two furnaces is controlled so that temperatures of the cells 

are kept identical throughout a given temperature program. The measured signal 

is the power input difference between the furnaces. [65].  

3.1.2    Principle 

The measured signals in the DSC are the temperature difference and the 

differential heat flow rate. The relation between temperature difference and 

differential heat flow rate in real DSCs can be derived based on some 

assumptions. Steady-state and non-steady-state processes occur in the heat flux 

DSC. In the steady-state process, it was postulated that there is a constant heat 

flow rate, only one thermal resistance is applied with no interaction between 

sample and reference cells, only the heat capacities of the sample and reference 

cells are considered, and there is no heat loss to the surrounding [66].  

The Biot-Fourier equation for heat conduction (steady-state), together with the 

formulation in absolute values is as follows [63]:  

| ̅|

 
       |      | 3-1 

where  , A, λ, and T are heat flow rate, cross section area, thermal 

conductivity, and temperature, respectively. In other words, the heat flux value, 

 /A, is proportional to the gradient of the temperature while the thermal 

conductivity, λ, is the proportionality factor. 

Equation 3-1 can be rewritten as follows for the sample, S, and reference, R: 

   
 
       

       

  
 3-2 
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3-3 

where subscript F stands for furnace and Δl is distance between the measured 

temperature point and the furnace. In the case of absolute thermal symmetry, 

TS=TR and A is identical so that  FS= FR.  

TS increases by  TS if a constant heat flow rate   <0 is produced in the sample, 

accordingly, temperature differences, TF-TS, and the heat flow rate     decreases. 

Due to the balance, the steady state will reach again, so the change of  FS (  FS) 

must be equal to  r:  
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Since there is no change on the reference side, we have: 

                  3-5 

And, 

                   3-6 

Consequently: 
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In this model, K is one of the properties given by the DSC manufacture and 

belongs to heat conduction path between the furnace and the samples. It leads to a 

direct proportionality between the measured   and the measurement signal ΔT. 

The constant heat consumption conditions can be obtained in monitoring 

operations when the sample and the reference sample have different “heat 

capacities”. A higher amount of heat will always go into the sample whose heat 

capacity is greater, in order that the steady-state heating rate is constant. With the 
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heat capacity of the sample higher than heat capacity of the reference (Cp,S > Cp,R) 

the following equation is applied for the difference between the heat flow rates to 

the sample and reference:  

                3-8 

The above approximation could not be assumed if there is no steady state 

during sample transitions or reactions, moreover, the      might change with 

temperature, but these changes are in many cases quite slow and do not affect the 

steady-state condition considerably, i.e. so called quasi steady state. In this case, 

the following equation can be used: 

                          3-9 

Or,  

  (           )           3-10 

Where   is the average heating rate.  

Equation 3-10 is the basic equation to measure the sample heat capacity (Cp,S) 

using a heat flus DSC. Practically, the asymmetry of the device should be checked 

first by a zero line ΔT0 that is recorded with both crucibles empty and subtracted 

from the measured curves.  

In the non-steady state process, except for the ΔT which is not constant in time, 

other assumptions can be used as for the steady-state process. In this case, the 

equation for the sample heat capacity is as follows: 

    
   

  
           3-11 
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Where     is the heat flow rate from the furnace to the sample,   (t) is the 

time dependent heat flow rate produced inside the sample (reaction, transition).   

With ΔT=TS-TR , Equation 3-10 becomes: 
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For the reference sample we have (     by definition):  
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By subtracting two balance equations, the following is obtained:  
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We have the following expressions for the heat flow rates     and    :  
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Where     and     are the global heat resistances between the furnace and the 

samples and the furnace and the reference, respectively. If there is a thermal 

symmetry    =     = R, thus, Equation 3-14 becomes: 
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The asymmetry of the measuring system is taken into account by the second 

term as the difference between heat capacities of the sample and the reference 

cells. The contribution of the thermal inertia of the system is considered in the 

third term when a measured signal ΔT(t) appears. Similarly to the charging or 

discharging a capacitor of capacity Cp, a time constant   can be defined for the 

heat flow rates in the same way:   
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Where R is the effective thermal resistance to the charging or discharging the 

heat capacity (    ). With ΔT changing in time, with this resistance and with the 

heating rate defined as dTR/dt = ß, as the reference sample is usually in a steady-

state heating mode, the following equation results from Equation 3-17: 

       
     

 
                 

 

 
  
      

  
 

3-19 

The temperature dependence of thermal resistance R and heat capacities 

                 is reflected by the second term. This causes the temperature 

dependence of the measured curve even without any thermal effect in the sample. 

The third term in Equation 3-19 should be considered when the signal    

measured in time is to be assigned to the heat flow rate by which it is created. The 

time constant ( ) and thermal resistance (R) must be measured by calibration. 

The following equation can be used for the overall heat of reaction or transition 

(Qr) which are produced or consumed in the sample. 

    ∫        
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Where t1 and t2 are the beginning and end of the peak, respectively. Inserting 

Equation 3-19 into 3-20, we have: 

     
 

 
[∫          ∫            
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For the partial integration of the peak between t1 and t
*
: 

     
 

 
[∫          ∫            
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The partial integration of peaks is important for kinetic evaluation and to 

specify the purity of a sample [63]. 

3.1.3    Application 

Differential Scanning Calorimetry is the most widely applied thermal 

technique which can be used in the study of oxidative stability, liquid crystals, 

food science, drug analysis, polymers, etc. With the use of DSC output signals, 

the heat flow rate as a function of temperature and any other derived quantity, 

such as the heat of reaction or transformation, or changes in heat capacity of a 

sample can be studied to figure out the properties of a substance.   

Different types of DSC and thermal analysis instrumentation are offered by 

different instrument manufactures, such as Setaram Instrumentation, Netzsch 

Instruments, TA Instruments, PerkinElmer Instruments and Mettler Toledo, 

depending on the research to be conducted. The DSC utilized in this study is 

Setaram TG – DSC 111, which is a heat-flux DSC [67 – 71].   

3.2      Setaram TG-DSC 111 Description  

 

The TG – DSC 111 thermo-analyzer from Setaram is made up of the CS 32 

processing unit and the assembly coupling the B111 microbalance to the DSC 111 

calorimeter as seen in Figure 3-1.  

The CS 32 controller mainly includes a power supply card, a CPU card, an 

amplification card for calorimetric signal, a balance card, and a temperature 

acquisition card for temperature regulation, a temperature acquisition card for 

temperature measurement.   
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The B111 electronic microbalance is a beam balance connected to a torsion 

band located between two springs under load. Variation in mass is measured by 

current variation which has a proportional relationship to the force of 

electromagnetic equilibrium. A potential difference proportional to the 

equilibrium current is magnified and is ready for digital use in the CS 32 

controller. 

 

                                                                  

        a) Calorimeter                b) Electronic Microbalance            c) Processing unit  

 

 

Figure 3-1: TG-DSC 11 apparatus 

 

The DSC 111 calorimeter includes a junction box, a calorimetric transducer, 

and pre amplification and amplification cards for the DSC signal. The 
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calorimetric transducer has two sintered alumina tubes with the inner diameter of 

7 mm parallel to each other. The tubes are open from both sides and only the 

centre has sensitive elements. On the front panel of the working chamber, there 

are two pipes (inlet and outlet) for the refrigerant cooling the calorimeter. A 

schematic view of the DSC instrument is shown in Figure 3-2. 

 

 

Figure 3-2: Schematic view of the experimental set-up: TG-DSC 111 Setaram [69]. 

 

The central area in each tube is a sensitive part of the calorimeter. The center 

of the calorimetric block includes two cavities in which thermocouple-carrying 

heat-flux transducers are positioned around the central part of the tubes. The heat 

exchange between the furnace and the cell takes place only through the 

thermocouple-carrying heat-flux transducers and, as a result, can be monitored 

precisely. The close-to-symmetrical arrangement of the transducer almost cancels 
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the signal coming from the two heat-flux transducers being located in oppositions, 

when the two samples are themselves alike irrespective of the thermal state of the 

calorimeter. Thus, the working signal includes the passive component in the 

properties of an active sample set in one of the tubes and of a “reference” placed 

in the other tubes plus a small asymmetry correction determined by proper 

calibration.  

 

3.3      Calibration  

 

In contrast to adiabatic calorimetry, DSC/DTA instruments are not absolute 

measuring instruments; heat and heat flow rate are measured dynamically and 

always yield relative values that must be turned to the absolute values. The setting 

of the instrument parameter and the sample studied have a strong influence in 

DSC measurements. It is essential to examine all experimental parameter and to 

calibrate the device before conducting experiments. The definition of calibration 

is the measuring of a quantitatively defined relationship between a value of a 

quantity indicated by the measuring device and the actual value. In DSC the 

quantities of interest are temperature and heat flow rate. Two calibrations must be 

carefully conducted: one is the calibration verified by the manufacture and the 

other is necessary to check the reproducibility, accuracy and precision of the 

measurement and conducted before each single experiment. Device asymmetry 

and any other non-linearities should be fixed by this calibration [73]. 
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The group “Calibration of Scanning Calorimeters” of the German Society of 

Thermal Analysis (GEFTA) [71-73] suggested several types of calibration for a 

DSC calorimeter. According to their recommendation, the temperature calibration 

to ITS 90 was conducted using indium (NIST standard reference material 2232), 

tin (NIST SRM 2220), lead (NIST standard reference material 1059c) and 

aluminum (NIST standard reference material 854). Energy calibration was carried 

out in the factory applying the Joule effect method and examined by measuring 

the heat of fusion of naphthalene, which was a basic reference material for the 

heat of fusion measurements suggested by International Confederation for 

Thermal Analysis and Calorimetry ICTAC [75]. The accuracy was within 2% if 

compared with the literature value [74,76,77]. Heat capacity Cp (heat flux) 

calibration was conducted using synthetic sapphire, which was a basic reference 

material according to NIST (SRM 720) and ICTAC, and naphthalene, a secondary 

reference material for Cp measurements suggested by ICTAC [75]. The 

uncertainty of Cp measurements was obtained to be less than 2 % (0.02 J/g/K) in 

the temperature range from 300 K to 560 K.   

Another calibration, different from the general calibration mentioned above, 

was performed before each experiment for checking the consistency and accuracy 

of the measured data and for correcting it by adding an offset value. For this 

calibration, two different masses of synthetic sapphire were used; one as a 

reference material and one as a sample, and the final heat capacity of the second 

sample was compared to the literature values [78].  
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3.4      Heat Capacity Calculation  

 

The three-step procedure was applied for DSC measurements to measure heat 

capacity values. The measuring cell was empty in the first run (run 1), then filled 

with the reference material (run 2) (synthetic sapphire) and the measured sample 

(run 3) in the second and third runs, respectively. The reference cell was empty 

during all runs and each runs was repeated three times for the higher accuracy. As 

mentioned above, run 2 was divided into two sub-runs with sapphire of two 

different masses to ensure the accuracy of the measurements. 

The heat capacity of a sample is calculated using the procedure utilizing the 

following output results from DSC: heat flow in J/s, temperature in Kelvin, and 

time in seconds. The equation can be expressed as [79]: 

)(**)( TCp
Mass

Mass

HFHF

HFHF
TCp Sapphire

Sample

Sapphire

BlankSapphire

Blanksample

Sample



  

3-23 

Where HFblank is the heat flow from run 1 (empty sample cell), HFsapphire is the 

heat flow from run 2 (sample cell with sapphire of MassSapphire), and HFsample is the 

heat flow from run 3 (sample cell with a sample to be studied with MassSample). 

The value for Cpsapphire is obtained from Equation 3-24 named the Archer equation 

[78]:  

gTfTeTdcTTbTaCpsapphire  23456  3-24 

For temperatures higher than 20  , the Archer values are listed in Table 3-1.  
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Table 3-1: Coefficient for the Archer equation at temperatures higher than 20   

Coefficient Value 

  1.197441280319*10
-17

 

  -2.5923466515291*10
-14

 

  1.3104884522373*10
-11

 

  1.1963323706663*10
-8

 

  -1.8121828407681*10
-5

 

  9.2237456478216*10
-3

 

g -0.73178005598711 
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4   On Transferring New Constant Pressure Heat Capacity 

Computation Methods to Engineering Practice 

4.1      Introduction 

Constant pressure heat capacity was measured experimentally for a number of 

model hydrocarbon mixtures and then compared with the estimated liquid heat 

capacity predicted by Dadgostar-Shaw correlation [7], Lee-Kesler correlation [6], 

and ideal gas heat capacity based correlations plus equation of state based 

departure function [11]. 

4.2      Experimental Procedure and Set up Condition 

Experimental isobaric liquid heat capacity data were measured using a 

differential scanning calorimeter, TG-DSC 111. The measurements were carried 

out with a heating rate of 20 K/min, appeared to be the best scanning rate with 

smaller noises at the final signal. The isothermal period was 60 minutes at the 

beginning and the end of each experiment as presented in Figure 4-1. It was 

proven that for liquids the difference between isobaric heat capacity and 

saturation heat capacity is negligible as long as the upper temperature limit of the 

measurements is less than boiling point of the mixture (about 0.9 Tb) [79]. Thus, 

the temperature range in this work was from 293 K to 0.9 Tb in order to avoid 

artifacts introduced by sample vaporization. The sample material was enclosed in 

a recyclable crucible made of stainless steel with volume of 100 mm
3
. The 
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crucible was sealed with a nickel ring and a stainless steel lid. This sealed crucible 

withstands an internal pressure up to 20 bar.   

 

 

 

 

 

 

Figure 4-1: Experimental step example 

 

A possible impact of sample vaporization was further reduced by performing a 

trial experiment with water to find the volume of the crucible which should be 

filled with the sample. The result, illustrated in Figure 4-2, showed that depending 

on the sample density, just 10 mm
3
 of total volume should be left empty and 

filling less or more than that might cause error in the measurement. Crucibles 

were weighed prior to and after each experiment. No mass loss of the samples 

occurred. Another trial experiment with the reference material was performed to 

see if there is a need of having constant flow of inert gas during an experiment or 

not. The result showed that having purge gas flow causes more error in the final 

results as it is shown in Figure 4-3. Accordingly, although it is suggested to have a 

constant flow of purge gas during an experiment in Setaram TG – DSC 111, it is 

better not to have any inert gas flow through the calorimeter tubes during the 

experiment.  

20 °C 

60 min 

60 min 

0.9 Tb 

20 °C/min 
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According to the DSC device instruction manual, the systematic error with 

DSC measurement is around +/- 0.05 J.K
-1

.g
-1

, so that this amount of error with 

the experimental result is anticipated. 

 

 

Figure ‎4-2: Water isobaric liquid heat capacity: ▲, Data from literature [46]; ∆, 

Experimental data for the sample mass of 89.30 mg; □, Experimental data for the 

sample mass of 54 mg; with 0.05 J.K
-1

.g
-1

 experimental error 
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Figure 4-3: Water isobaric liquid heat capacity:  ▄ , data from literature [46];   ●  , 

experimental data for the sample mass 89.30 mg with inert gas;  ∆  ,experimental 

data for the sample mass 89.30 mg without inert gas; with 0.05 J.K
-1

.g
-1

 

experimental error 

 

4.3      Sample Preparation  

Four liquid mixtures were prepared: n-alkanes only (Mixture 1), a mixture of 

aromatic and n-alkane constituents (Mixture 2), a mixture of naphthenic and n-

alkane constituents (Mixture 3), and a mixture of naphthenic and aromatic 

constituents (Mixture 4). The compositions of these mixtures are listed in Table 4-

1. SARTORIUS CP225D balance with an accuracy of 0.01 mg was utilized to 

prepare the samples. Some properties of the mixtures are listed in Table 4-2. 
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Table  shows the mass and the temperature range of DSC experiments for each 

studied sample.   

 

 Table 4-1: The composition of model hydrocarbon mixtures 

 
Mixture 1   Mixture 2  Mixture 3  Mixture 4  

Composition Weight1    Purity Composition Weight Purity Composition Weight Purity Composition Weight Purity 

Nonane 2.430 99%  1,2,4-

TMB2 

2.646  98% Trans-decalin 2.602 99% Trans-decalin 3.498 99% 

Decane 2.431   99%  Decane 2.615  99% Decane 2.617 99% Durene 1.749 98.5% 

Undecane 2.434  99%  Undecane 2.610  99% Undecane 2.609 99% 1,2,4-TMB 3.499 98% 

1- Units are in gram 

2- 1,2,4-Trimethylbenzene  

 

 

 

Table 4-2: Some properties of the model mixtures  

   Sample 

 Density
1
 at 

15    

 

 

 

at  15 

  Tb
1
  

MW 

Similarity 

variable  kg.m
-3

   K  

Mixture 1  734.05      440-

445 

 141.35 0.2252 

Mixture 2  775.31       450-

455 

 137.95 0.1874 

Mixture 3  779.64        455-

460 

 145.21 0.2173 

Mixture 4  880.20        450-

455 

 129.67 0.1868 

1. Values obtained by simulating the mixtures using the mixing rulls method 

in VMGSim[46].  
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Table 4-3: The temperature range and the mass of sample for 

each mixture used in DSC experiments 

   Sample 

 Sample 

mass 

  Temperatures 

range  

 

         mg                   

 Mixture 1  71.40                    20 – 150  

 Mixture 2  73.39                    20 – 150  

 Mixture 3  70.97                    20 - 160      

 Mixture 4  79.31                    20 - 160      

 

4.4      Available Methods to Predict Similarity Variable 

Both the liquid and ideal gas element base correlations [7, 10] are simple and 

predictive, and, hence, suitable for inclusion in process simulators. 

Implementation was expected to be straightforward. For compounds or mixtures 

comprising constituents defined on a molecular basis, elemental compositions of 

streams are readily calculated. For mixtures defined on other bases, the API 

method [15] described in Section 2.3 can be applied to obtain elemental 

composition, or elemental analysis can be conducted experimentally and included 

in the input data set. In practice, Virtual Material Group took an approach based 

on the API method to estimate similarity variable (α) [47] The experimental α 

data for the broad range of compounds comprising n-alkenes, n-alkynes, 

naphthenics, aromatics, and C10H10 isomers, shown in Table 4-4, are compared to 

the API-based calculated alpha in this work, and the results are shown in Figure 4-

4. It is obvious that the deviation of the API method is large and positive leading 

to Cp values predicted by the elemental based correlations to be overestimated.  
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Table 4-4 : The compounds used for calculating the API method deviation in α 

estimation 

Compound 

Chemical 

Formula Density(kg.m
-3

) MW 

Actual α 

(mol.g
-1

) 

API 

method 

α(mol.g
-1

)  

1-heptene C7H14 701.3 

98.18

7 0.2141 0.2300 

1-octene C8H16 719.1 112.2 0.2141 0.2280 

1-nonene C9C18 733.3 126.2 0.2141 0.2264 

1-decene C10H20 744.4 140.3 0.2141 0.2252 

1-undecene C11H22 753.7 154.3 0.2141 0.2242 

1-dodecene C12H24 762.5 168.3 0.2141 0.2234 

1-tridecene C13H26 769.4 182.3 0.2141 0.2227 

1-tetradecene C14H28 774.4 196.4 0.2141 0.2220 

1-pentadecene C15H30 779.7 210.4 0.2141 0.2215 

1-

ethylcyclopentene C7H12 802.2 96.17 0.1977 0.2300 

1,2-

dimethylcyclohexe

ne C8H14 829.1 110.2 0.1998 0.2280 

1-

butylcyclopentene C9H16 811.1 124.2 0.2014 0.2264 

1-butylcyclohexene C10H18 828.2 138.2 0.2027 0.2252 

1-

hexylcyclopentene C11H20 819.5 152.3 0.2037 0.2242 

      

1-

heptylcyclopentene C12H22 822.8 166.3 0.2046 0.2234 

1-

heptylcyclohexene C13H24 884.7 180.3 0.2054 0.1970 

1-

nonylcyclopentene C14H26 827.7 194.4 0.2060 0.2221 

1-

decylcyclopentene C15H28 829.7 208.4 0.2065 0.2215 

1-heptyne C7H12 736.2 96.17 0.1977 0.2299 

1-octyne C8H14 750.9 110.2 0.1998 0.2280 

1-nonyne C9H16 759.9 124.2 0.2014 0.2264 

1-decyne C10H18 768.8 138.2 0.2027 0.2252 

1-undecyne C11H20 775.9 152.3 0.2037 0.2242 

1-dodecyne C12H22 781.9 166.3 0.2046 0.2233 

1-tridecyne C13H24 787.6 180.3 0.2054 0.2227 

1-tetradecyne C14H26 793.8 194.4 0.2060 0.2221 

1-pentadecyne C15H28 795.9 208.4 0.2065 0.2215 

ethylcyclopentane C7H14 770.9 98.19 0.2141 0.2300 

ethylcyclohexane C8H16 791.8 112.2 0.2141 0.2280 

butylcyclopentane C9H18 788.2 126.2 0.2141 0.2264 
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Compound 

Chemical 

Formula Density(kg.m
-3

) MW 

Actual α 

(mol.g
-1

) 

API 

method 

α(mol.g
-1

) 
cyclodecane C10H20 860.4 140.3 0.2141 0.2022 

cycloundecane C11H22 865.3 154.3 0.2141 0.2013 

cyclododecane C12H24 866.5 168.3 0.2141 0.2013 

cyclotridecane C13H26 864.8 182.3 0.2141 0.2013 

cyclotetradecane C14H28 863.6 196.4 0.2141 0.2013 

cyclopentadecane C15H30 870.0 210.4 0.2141 0.2003 

cyclodecane C10H20 860.4 140.3 0.2141 0.2252 

1-

cyclopentylpentane C10H20 794.8 140.3 0.2141 0.2252 

2-methyl-2-nonene C10H20 748.5 140.3 0.2141 0.2252 

isobutylcyclohexan

e C10H20 798.8 140.3 0.2141 0.2252 

cis-1,2-

diethylcyclohexane C10H20 814.8 140.3 0.2141 0.2252 

2-octene,2,6-

dimethyl C10H20 756.3 140.3 0.2141 0.2252 

ethylcyclooctane C10H20 841.6 140.3 0.2141 0.2252 

2,3,4,4-

tetramethyl-1-

hexene C10H20 800.4 140.3 0.2141 0.2252 
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Figure 4-4: The deviation of the API procedure in estimating α for different 

families: ■ , n-alkyne; ▲ , C10H20 isomers;  ∆ , Aromatic; □ , n-alkene; ○ , 

Naphthenic  

4.5      Experimental Heat Capacity for the Model Mixtures 

The data from the second type of calibration with sapphire described in Section 

3.3 were used to calculate the offset values using “fminunc” syntax in Matlab 

R2012 [80] to obtain the optimized heat capacity value. Fminunc finds a 

minimum of a problem specified by         . Equation 4-1 is the optimization 

equation which should be solved to find the offset value.  

       ∑[                  ]

 

   

 

4-1 

where       is the actual value,      is the experimental value, i is the number 

of data points, and x is the offset value. By using “fminunc”, the x value can be 
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calculated which will be further used to optimized the experimental data obtained 

for heat capacity of the hydrocarbon mixtures. 

The calibration results for each mixture are shown in Figure 4-5. Corrected 

experimental data for heat capacity of each studied mixture are illustrated in 

Figure 4-6 to 4-9 along with ideal mixture heat capacity calculated by Equation 2-

2 utilizing compound’s liquid heat capacity obtained from literature [82]. 

Consequently, since there is a systematic error with DSC measurement around +/- 

0.05 J.K
-1

.g
-1

, the experimental data for the mixture has high compatibility with 

ideal mixture heat capacity in which the liquid Cp for the single component 

obtained from literature. In the Figure 4-9 the data for the ideal mixture obtained 

from the literature is illustrated above 350 K, since under this temperature, durene 

is solid. 
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                                     (a)                                                                        (b) 

 

                                    (c)                                                                        (d) 

Figure 4-5: Sapphire heat capacity obtained from:  —  , literature data using 

the Archer equation;  − −   , Experimental data without offset ; . . . , Optimized 

data using offset for a) Mixture 1, b) Mixture 2, c) Mixture 3, and d) Mixture 4. 
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Figure 4-6: Liquid heat capacity for Mixture 1: — , …, Literature data 

calculated for ideal mixture (component liquid Cp obtained from NIST [82]) 
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Figure 4-7: Liquid heat capacity for Mixture 2: — , …, Literature data 

calculated for ideal mixture (component liquid Cp obtained from NIST [82]) 
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Figure 4-8: Liquid heat capacity for Mixture 3: — , Optimized experimental 

data…, Literature data calculated for ideal mixture (component liquid Cp obtained 

from NIST [82]) 
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Figure 4-9: Liquid heat capacity for Mixture 4: — , …, Literature data 

calculated for ideal mixture (component liquid Cp values were obtained from 

NIST [82]) 

 

4.6      Comparisons Among Available Methods for Predicting Isobaric 

Liquid Heat Capacity 

The diversity of methods to calculate isobaric liquid heat capacity is 

challenging as shown in Chapter 2. To identify the hierarchies and the best 

niches for the combination of these methods, a comparision with experimental 

data has been done for the prepared mixtures.  

Hydrocarbon fluids can be characterized on a molecular or refinery basis, so-

called “known compound” and “petroleum cut” terms in simulator software, i.e. 

VMGSim. “Known compounds” are those known in terms of thermophysical 
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properties, i.e critical properties and structures. In this work their ideal gas heat 

capacity value is predicted by means of a group contribution method [32]. 

“Petroleum cuts” are those which are not known and should be defined by their 

boiling temperature range, density, or other easy-to-measure properties and their 

ideal gas heat capacity value is estimated by Lee-Kesler [6] correlation.  

With these two methods of composition identification, the element based 

correlations described in Chapter 2.2.4 add two direct calculation options and four 

indirect calculation options for liquid phase Cp calculation per equation of state. 

Each of these approaches along with the conventional approaches for predicting 

liquid heat capacity described in Chapter 2 has advantages and disadvantages, and 

possesses different input data requirements as illustrated in Figure 4-10, where D-

S is the Dadgostar-Shaw correlation [7], L-S IG Cp is the Lastovka-Shaw ideal 

gas heat capacity correlation [10], IG is the ideal gas, and EOS is any equation of 

state. 
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Figure 4-10: Computational matrix for the possible direct and indirect 

approaches for calculating isobaric liquid heat capacity of liquids 

 

The widely used methods chosen to be compared are described as follows: 

1) IGCp +APR based departure function (known compounds) 

According to the corresponding state theory [25],  the difference between ideal 

gas heat capacity and liquid heat capacity can be calculated by a departure 

function based on an equation of state (EOS). In this work, ideal gas heat capacity 

(IGCp) is estimated by means of the group contribution method [32] developed for 

structurally known compounds. The Advanced Peng-Robinson (APR), Equation 

4-2, is chosen to derive the departure function defined in Equation 4-5. 
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4-5 

where R is the universal gas constant, κ is a term related to the acentric factor 

and Tc and Pc are the critical temperature and pressure respectively.  

2) IGCp +APR based departure function (Petroleum cut) 

As it is mentioned above, petroleum cut refers to those compounds which are 

not known in terms of either structure or critical properties. The correlation used 

to estimate the ideal gas heat capacity is based on the method developed by Lee-

Kesler [28]. The sample is considered as an unknown compound, and the critical 

properties used to calculate the APR departure function are also estimated from 

the correlations. 

3) L-S + APR based departure function (Known compound and actual α) 

In this method, the IGCp is estimated by Lastovka-Shaw correlation (L-S) [10] 

and the sample is treated as a known compound, similarly to method 1. 
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4) L-S  + APR based departure function (Petroleum cut) 

It is the same as method 3, but the sample is treated as an unknown compound 

similarly to method 2. 

5) D-S (Actual α) 

In this method, the heat capacity of a sample is estimated by Dadgostar-Shaw 

(D-S) correlation [7] and the actual value is used for α. 

6) D-S (API base α) 

This is the same as method 5, but the α is estimated by the API approach [15]. 

7) L-S  +APR based departure function (Known compound and API base α) 

This is the same as method 3, but the α is estimated by the API approach [15]. 

8) L-K Cp 

In this method, the liquid heat capacity is predicted by Lee-Kesler (L-K) 

correlation [6]. 

The experimental and computed results are reported in Figures 4-11 to 4-14 for 

all the prepared samples. The mean absolute percentage error (MAPE) between 

the experimental and computed values is shown in Table 4-5. 
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Figure 4-11: Isobaric liquid heat capacity of Mixture 1 calculated by various 

methods: —, Experimental data with the error of 0.02 J.K
-1

.g
-1

 shown as a shaded 

area; - - , IGCp+APR base departure function (known compound);  ▲ , 

IGCp+APR base departure function (petroleum cut); □, Lastovka-Shaw 

IGCp+APR base departure function (known compound); ▬, Lastovka-Shaw 

IGCp+APR base departure function (petroleum cut);  ∆, Dadgostar-Shaw Cp 

(Actual α); . . ., Dadgostar_Shaw Cp (API base α);  ○  , Lastovka-Shaw IGCp (API 

base alpha)+APR base departure function; _ . _ , Lee-Kesler Cp     
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Figure 4-12: Isobaric liquid heat capacity of Mixture 2 calculated by various 

methods: —, Experimental data with the error of 0.02 J.K
-1

.g
-1

 shown as a shaded 

area; - - , IGCp+APR base departure function (known compound);  ▲ , 

IGCp+APR base departure function (petroleum cut); □, Lastovka-Shaw 

IGCp+APR base departure function (known compound); ▬, Lastovka-Shaw 

IGCp+APR base departure function (petroleum cut);  ∆, Dadgostar-Shaw Cp 

(Actual α); . . ., Dadgostar_Shaw Cp (API base alpha);  ○  , Lastovka-Shaw IGCp 

(API base α) +APR base departure function; _ . _ , Lee-Kesler Cp     
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Figure 4-13: Isobaric liquid heat capacity of Mixture 3 calculated by various 

methods: —, Experimental data with the error of 0.02 J.K
-1

.g
-1

 shown as a shaded 

area; - - , IGCp+APR base departure function (known compound);  ▲ , 

IGCp+APR base departure function (petroleum cut); □, Lastovka-Shaw 

IGCp+APR base departure function (known compound); ▬, Lastovka-Shaw 

IGCp+APR base departure function (petroleum cut);  ∆, Dadgostar-Shaw Cp 

(Actual α); . . ., Dadgostar_Shaw Cp (API base alpha);  ○  , Lastovka-Shaw IGCp 

(API base α) +APR base departure function; _ . _ , Lee-Kesler Cp     
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Figure 4-14: Isobaric liquid heat capacity of Mixture 4 calculated by various 

methods: —, Experimental data with the error of 0.02 J.K
-1

.g
-1

 shown as a shaded 

area; - - , IGCp+APR base departure function (known compound);  ▲ , 

IGCp+APR base departure function (petroleum cut); □, Lastovka-Shaw 

IGCp+APR base departure function (known compound); ▬, Lastovka-Shaw 

IGCp+APR base departure function (petroleum cut);  ∆, Dadgostar-Shaw Cp 

(Actual α); . . ., Dadgostar_Shaw Cp (API base alpha);  ○  , Lastovka-Shaw IGCp 

(API base α) +APR base departure function; _ . _ , Lee-Kesler Cp     
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Table 4-5: Deviation of liquid phase constant pressure heat capacity computational approaches 

from experimental data for mixtures 1-4 

 

 

 

    MAPE    

L–S IG Cp 

(API based 

based DF 

(known 

compounds) 

D–S Cp 

(API 

 

L-K Cp       IG Cp + 

APR based 

DF (known 

compounds) 

L-S IG Cp 

+APR based 

DF (petroleum 

cut) 

L-S IG Cp 

+APR based 

DF (known 

compounds) 

IG Cp + 

APR based 

DF 

(petroleum 

cut) 

D-S 

Cp 

(know

n α) 

Mixture 1 1.91 0.43 3.67 0.50 2.46 1.91 1.49 0.43 

Mixture 2 8.57 6.31 3.35 0.49 1.25 0.76 2.07 2.69 

Mixture 3 4.47 3.71 10.89 3.35 2.62 2.89 2.53 4.10 

Mixture 4 7.86 16.89 20.1 0.92 2.22 2.24 1.27 13.24 

 

4.7      Conclusion and Recommendation  

The element base correlations add four indirect computational options for 

liquid phase Cp calculation per equation of state, and two direct calculation 

options. Each of these computational variants has advantages and disadvantages 

and different input data requirements. Figure 4-11to 4-14 confirms that selecting a 

wrong method for predicting liquid heat capacity can lead to 0.2 J.K
-1

g
-1

 or higher 

deviations from the actual values, so, defining a potential application for each 

method is a necessity. For known compounds with known critical properties, 

estimated ideal gas heat capacity by correlation (group contribution method), and 

APR based departure functions shows the most precise and accurate result in 

predicting constant-pressure heat capacity for liquids as it is illustrated for four 
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prepared mixtures; however, for ill-defined material the Dadgostar-Shaw 

correlation has the highest accuracy and precision compared to existing 

correlations.  

Estimated Cp by the Dadgostar-Shaw correlation is sensitive to similarity 

variable, since having a deviation of 0.001 in estimating similarity variable would 

cause a deviation of 0.004 (J.K
-1

.g
-1

) in predicted Cp value. It is shown in Figure 

4-4 that the deviation in estimated values of α by the API procedure is large; 

consequently, element based heat capacity computational approaches must 

currently have the experimental elemental analysis as a required input and 

developing a precise and accurate correlation for estimating similarity variable is 

in the scope of the next chapter. 
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5   Development of a Predictive Correlation for the Composition 

Similarity Variable for Organic Compounds 

5.1      Introduction  

In the previous chapters it was mentioned that in order to implement the 

element based heat capacity correlations in commercial chemical engineering 

process simulator software, similarity variables must be either computed from 

experimental elemental analysis measurements, or estimated from available 

property data with little deviation. Elemental compositions of ill-defined 

hydrocarbons are frequently estimated using the API approach [15]. It was shown 

in Chapter 4 that this approach systematically overestimates the values of the 

similarity variable and hence overestimates heat capacity values irrespective of 

the phase state; the deviation can exceed 0.2 J/g/K or 20 % for representative 

cases.  

The sensitivity of the Dadgostar-Shaw correlation to α values is shown in 

Figure 5.1 (a-c) for the range of anticipated α values. For large n-alkanes, with the 

empirical formula CH2, α = 0.215 molg
-1

, for large aromatic compounds, the 

empirical formula approaches C, and α = 0.085 molg
-1

. So, based on the heat 

capacity of midpoint in this range, α = 0.15 molg
-1

, relative and absolute 

deviations for Cp values at fixed temperature range from +25 to -35% and +0.4 to 

-0.6 JK
-1

g
-1 

 respectively. This range approximates the maximum uncertainty for 

this correlation.  
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                                                                             (a) 

 

                                      (b)                                                          (c)  

Figure 5-1: a) Cp predicted by the D-S correlation for: — , alpha=0.15 molg
-

1
;- - -, alpha=0.085 molg

-1
; ▬  , alpha= 0.215 molg

-1
. Absolute (b) and relative 

(c) deviations from Cp values predicted using alpha = 0.15 molg
-1

:  - - -, for 

alpha=0.085 molg
-1

 and ▬ alpha=0.215 molg
-1

.  
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The objective in this chapter is to reduce the uncertainty of heat capacity 

calculations for compounds or mixtures where the elemental analysis is not 

available, by correlating other known or calculated thermophysical properties to 

α.  

5.2      Correlation Development to Predict Similarity Variable  

5.2.1      Dependence of Similarity Variable on Physical Properties 

As a starting point for the development of a correlation for α, as a function of 

physical properties, the relationships between α and physical properties [density at 

25  , molar mass and boiling temperature at 1.01 bar] are shown in Figure 5-2 (a-

c) respectively for 154 organic liquid compounds, shown in Table 5-1, comprising 

n-alkane, n-alkene, n-alkyne, naphthenic, aromatic, and heteroatom containing 

compounds. Data are obtained from the NIST chemistry web-book [81]. Density, 

molar mass and boiling temperature are selected among other physical properties, 

since they are the most available characterization factors for the oil cuts and other 

ill-defined hydrocarbon compounds. 
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Table 5-1: Property database used for similarity variable correlation 
1
  

Compound Formula Data Base  Molar 

mass
1
, 

g/mol 

α, molg
-

1
 

Tb 
1
at  

1 atm / 

K 

Density
1 

at 25 , 

kg.m
-3

 

Family Sam

ple 

No. 

Indene C9H8 Training Set  116.2 0.1464 454.0 991.8 Aromatic 1 

Indane C9H10 Training Set  118.2 0.1609 450.0 958.2 Aromatic 2 

1,2,3-Trimethylbenzene C9H12 Training Set  120.2 0.1749 449.2 890.5 Aromatic 3 

1,2,3,4-

Tetramethylbenzene 

C10H14 Training Set  134.2 0.1790 478.1 900.9 Aromatic 4 

1-Methylnaphthalene C11H10 Training Set  142.2 0.1478 515.0 1016.4 Aromatic 5 

Ethylene, 1,1-diphenyl- C14H12 Training Set  180.2 0.1443 543.7 1019.5 Aromatic 6 

1,2-Dihydroanthracene C14H12 Training Set  180.2 0.1443 606.0 1138 Aromatic 7 

1,2,3,5-Tetraethylbenzene C14H22 Training Set  190.3 0.1893 521.7 876.5 Aromatic 8 

Cyclohexene, 1-octyl- C14H26 Training Set  194.3 0.2060 530.5 838.6 Aromatic 9 

1-ethylcyclopentene C7H12 Training Set  96.17 0.1978 379.3 793.24 Aromatic 10 

1,2-dimethylcyclohexene C8H14 Training Set  110.2 0.1998 409.7 820.1 Aromatic 11 

dihydro-1,6-dimethyl-4-

(1-

methylethyl)naphthalene 

C15H20 Training Set  200.3 0.1749 562.0 936.8 Aromatic 12 

cyclopentene, 4-butyl- C9H16 Training Set  124.2 0.2015 427.0 836.0 Aromatic 13 

Cyclohexene, 3-methyl-6-

(1-methylethyl)- 

C10H18 Training Set  138.2 0.2027 438.0 820.4 Aromatic 14 

1-butylcyclohexene C10H18 Training Set  138.2 0.2027 453.7 820.1 Aromatic 15 

Benzene, (1-

methylundecyl)- 

C18H30 Training Set  246.4 0.1950 576.7 851.6 Aromatic 16 

1-hexylcyclopentene C11H20 Training Set  152.3 0.2038 478.0 808.4 Aromatic 17 

Benzene, (1-pentylhexyl)- C17H28 Training Set  232.4 0.1938 580.0 962.0 Aromatic 18 

Benzene, m-bis(1-

methylbutyl) 

C16H26 Training Set  218.4 0.1925 553.0 945.0 Aromatic 19 

n-decylbenzene C16H26 Training Set  218.4 0.1925 571.0 852.1 Aromatic 20 

Phenanthrene, 2-dodecyl- C26H34 Training Set  346.6 0.1733 746.7 962.0 Aromatic 21 

Benzene, (3-

octylundecyl)- 

C25H44 Training Set  344.6 0.2004 671.6 852.6 Aromatic 22 

1H-Indene, 2-hexadecyl-

2,3-dihydro- 

C25H42 Training Set  342.6 0.1958 674.0 879.7 Aromatic 23 

1,1-Diphenyldodecane C24H34 Training Set  322.5 0.1800 672.0 924.6 Aromatic 24 

Phenanthrene, 9-nonyl- C23H28 Training Set  304.5 0.1676 708.0 1109 Aromatic 25 

Pentadecane, 2-methyl-2-

phenyl- 

C22H38 Training Set  302.5 0.1985 638.0 858.4 Aromatic 26 

Naphthalene, 2-butyl-3-

hexyl- 

C20H28 Training Set  268.4 0.1790 642.1 930.0 Aromatic 27 

2-dodecylnaphthalene C22H32 Training Set  296.5 0.1823 706.0 912.4 Aromatic 28 

Naphthalene, 1,2,3,4-

tetrahydro-1-nonyl- 

C19H30 Training Set  258.5 0.1898 633.0 991.0 Aromatic 29 

          

1H-Indene, 2-butyl-1-

hexyl-2,3-dihydro- 

C19H30 Training Set  258.5 0.1898 610.7 893.0 Aromatic 30 

1-heptylcyclopentene C12H22 Training Set  166.3 0.2047 491.9 816.4 Aromatic 31 

1-heptylcyclohexene C13H24 Training Set  180.3 0.2054 507.0 875.0 Aromatic 32 

1-decylcyclopentene C15H28 Training Set  2084 0.2066 536.0 825.9 Aromatic 33 

1,2-diphenyl-1-butene C16H16 Training Set  208.3 0.1537 590.0 1008 Aromatic 34 

2,6-

Diisopropylnaphthalene 

C16H20 Training Set  212.3 0.1697 597.0 1048 Aromatic 

 

 

35 
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Compound Formula Data Base  Molar 

mass, 

g/mol 

α, molg
-

1
 

Tb at 1 

atm / K 

Density 

at 25 , 

kg.m
-3

 

Family Sam

ple 

No. 

Benzene, 1,1'-

pentylidenebis- 

C17H20 Training Set  224.3 0.1650 597.0 1048 Aromatic 36 

Naphthalene, 1,2,3,4-

tetrahydro-1-octyl- 

C18H28 Training Set  244.4 0.1884 580.9 962.7 Aromatic 37 

Benzene, (1-hexylheptyl)-  C19H32 Training Set  260.5 0.1960 621.0 911.8 Aromatic 38 

Naphthalene, 1,4-

dimethyl-5-octyl- 

C20H28 Training Set  268.4 0.1790 594.8 850.5 Aromatic 39 

1,6-Heptadiene C7H12 Training Set  96.17 0.1978 362.6 705.4 n-alkene 40 

1,5-Hexadiene, 2-methyl- C7H12 Training Set  96.17 0.1978 361.2 716.9 n-alkene 41 

2,3-Pentadiene, 2,4-

dimethyl- 

C7H12 Training Set  110.2 0.1978 356.1 701.3 n-alkene 42 

1,3-Pentadiene, 2,4-

dimethyl- 

C7H12 Training Set  96.17 0.1978 366.7 732.5 n-alkene 43 

1-heptene C7H14 Training Set  98.19 0.2141 366.8 692.8 n-alkene 44 

1,4-Heptadiene, 3-methyl- C8H14 Training Set  182.3 0.1998 378.2 725.1 n-alkene 45 

2,4-Hexadiene, 2,5-

dimethyl- 

C8H14 Training Set  110.2 0.1998 408.4 757.8 n-alkene 46 

1-octene C8H16 Training Set  112.2 0.2141 394.4 710.9 n-alkene 47 

1-nonene C9H18 Training Set  126.2 0.2141 420.0 725.4 n-alkene 48 

1,9-Decadiene C10H18 Training Set  138.2 0.2027 437.6 749.8 n-alkene 49 

1-decene C10H20 Training Set  140.3 0.2141 443.7 737.0 n-alkene 50 

1-undecene C11H22 Training Set  154.3 0.2141 465.8 746.6 n-alkene 51 

1-dodecene C12H24 Training Set  168.3 0.2141 486.5 754.8 n-alkene 52 

1-tridecene C13H26 Training Set  182.3 0.2141 505.9 761.9 n-alkene 53 

2-methyl-2-tridecene C14H28 Training Set  196.4 0.2141 513.0 769.4 n-alkene 54 

1-tetradecene C14H28 Training Set  196.4 0.2141 524.3 768.2 n-alkene 55 

3-methyl-1-tetradecene C15H30 Training Set  210.4 0.2141 529.0 770.4 n-alkene 56 

1-Pentadecene C15H30 Training Set  210.4 0.2141 541.6 772.7 n-alkene 57 

1-Pentadecene, 2-methyl- C16H32 Training Set  224.4 0.2141 545.0 780.9 n-alkene 58 

2-Methyl-1-octadecene C19H38 Training Set  266.5 0.2141 602.0 908.0 n-alkene 59 

2-methyl-2-nonadecene C20H40 Training Set  280.5 0.2141 619.5 796.1 n-alkene 60 

7-hexyl-7-pentadecene C21H42 Training Set  294.6 0.2141 639.0 937.0 n-alkene 61 

8-heptyl-7-pentadecene C22H44 Training Set  308.6 0.2141 639.0 801.0 n-alkene 62 

9-octyl-8-heptadecene C25H50 Training Set  350.7 0.2141 649.0 805.6 n-alkene 63 

1-hexacosene C26H52 Training Set  364.7 0.2141 671.0 982.0 n-alkene 64 

          

10-nonyl-7-nonadecene  C28H56 Training Set  392.8 0.2141 722.5 975.0 n-alkene 65 

1-Undecene, 2-methyl- C12H24 Training Set  168.3 0.2141 478.0 758.5 n-alkene 66 

1-Nonene, 2,4,6,8-

tetramethyl 

C13H26 Training Set  168.3 0.2141 470.0 764.0 n-alkene 67 

1-Decene, 2-methyl- C11H22 Training Set  96.17 0.2141 458.0 750.7 n-alkene 68 

1-heptyne C7H12 Training Set  96.17 0.1978 372.9 728.7 n-alkyne 69 

1-octyne C8H14 Training Set  110.2 0.1910 399.4 742.0 n-alkyne 70 

1-nonyne C9H16 Training Set  124.2 0.2015 424.0 753.3 n-alkyne 71 

1-decyne C10H18 Training Set  138.2 0.2027 446.8 764.6 n-alkyne 72 

1-undecyne C11H20 Training Set  152.3 0.2038 477.0 770.3 n-alkyne 73 

2,9-Dimethyl-5-decyne C12H21 Training Set  166.3 0.2047 482.0 778.2 n-alkyne 74 

1-dodecyne C12H22 Training Set  166.3 0.2047 505.0 777.3 n-alkyne 75 

1-tetradecyne C14H26 Training Set  194.4 0.2060 525.6 849.0 n-alkyne 76 

1-pentadecyne C15H28 Training Set  208.4 0.20662 553.1 828.0 n-alkyne 77 

2,6,6-trimethyl-3,3-

diisopropyl-4-heptyne 

C16H30 Training Set  222.4 0.2070 489.8 818.3 n-alkyne 78 

3-heptadecyne C17H32 Training Set  236.4 0.2075 573.0 881.0 n-alkyne 79 
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Compound Formula Data Base  Molar 

mass, 

g/mol 

α, molg
-

1
 

Tb at 1 

atm / K 

Density 

at 25 , 

kg.m
-3

 

Family Sam

ple 

No. 

3-octadecyne C18H34 Training Set  250.5 0.2078 599.2 801.6 n-alkyne 80 

1-nonadecyne C19H36 Training Set  264.5 0.2082 605.4 909.0 n-alkyne 81 

Heptane C7H16 Training Set  100.2 0.2298 371.5 679.6 n-alkane 82 

Hexane, 2-methyl- C7H16 Training Set  100.2 0.2298 363.1 674.5 n-alkane 83 

n-Decane C10H22 Training Set  142.3 0.2251 447.3 726.6 n-alkane 84 

Octane, 2,6-dimethyl- C10H22 Training Set  142.3 0.2252 431.5 725.3 n-alkane 85 

n-Undecane C11H24 Training Set  156.3 0.2242 469.0 736.8 n-alkane 86 

Nonane, 3,7-dimethyl- C11H24 Training Set  156.3 0.2233 449.4 769.0 n-alkane 87 

Tridecane C13H28 Training Set  184.4 0.2215 508.6 752.9 n-alkane 88 

2,4-dimethyl-4-(1,1-

dimethylethyl)heptane 

C13H28 Training Set  184.4 0.2227 479.9 793.1 n-alkane 89 

Pentadecane C15H32 Training Set  212.4 0.2215 543.8 765.1 n-alkane 90 

Dodecane, 2,6,11-

trimethyl- 

C15H32 Training Set  212.4 0.2215 520.6 826.0 n-alkane 91 

5,5-Dibutylnonane C17H36 Training Set  240.5 0.2207 535.0 777.7 n-alkane 92 

Octadecane, 2,6-dimethyl- C20H42 Training Set  282.6 0.2110 598.2 909.0 n-alkane 93 

Eicosane, 2,4-dimethyl- C22H46 Training Set  310.6 0.2192 605.3 789.8 n-alkane 94 

Decane, 2,4-dimethyl- C12H26 Training Set  170.3 0.2233 473.2 744.6 n-alkane 95 

ethylcyclopentane C7H14 Training Set  98.19 0.2141 376.6 762.3 naphthenic 96 

ethylcyclohexane C8H16 Training Set  112.2 0.2141 404.9 784.3 naphthenic 97 

butylcyclopentane C9H18 Training Set  126.2 0.2141 429.3 780.9 naphthenic 98 

1,1'-Bicyclopentyl C10H18 Training Set  138.2 0.2027 463.6 861.0 naphthenic 99 

Naphthalene, decahydro-2-

methyl- 

C11H20 Training Set  152.3 0.2038 475.0 886.0 naphthenic 100 

cycloundecane C11H22 Training Set  154.3 0.2141 456.8 804.0 naphthenic 101 

1,1,3-

Tricyclohexylpropane 

C21H38 Training Set  290.5 0.2033 656.0 935.0 naphthenic 102 

Cyclopentane, 1,1'-[4-(3-

cyclopentylpropyl)-1,7-

heptanediyl]bis-  

C25H46 Training Set   346.6 0.2050 684.9 885.4 naphthenic 103 

1-butyl-2,2,6-

trimethylcyclohexane 

C13H26 Training Set  182.3 0.2141 491.0 846.0 naphthenic 104 

Butyldecalin C14H26 Training Set  194.4 0.2060 537.1 872.7 naphthenic 105 

Cyclohexane, (3-

cyclopentylpropyl)- 

C14H26 Training Set  194.4 0.2060 543.6 864.3 naphthenic 106 

Octane, 2-cyclohexyl- C14H28 Training Set  196.4 0.2141 528.6 820.1 naphthenic 

 

107 

2-Isopropylbicyclohexyl C15H28 Training Set  208.4 0.2066 553.3 894.5 naphthenic 108 

Cyclohexane, 1,1'-(1-

methylethylidene)bis- 

C15H28 Training Set  208.4 0.2066 559.4 903.8 naphthenic 109 

2,6,6,9-

tetramethylcycloundecane 

C15H30 Training Set  210.4 0.2141 514.0 820.0 naphthenic 110 

1,1'-Bicyclohexyl, 2-butyl- C16H30 Training Set  222.4 0.2070 568.5 882.1 naphthenic 111 

1,1-dicyclohexylbutane C16H30 Training Set  222.4 0.2070 566.0 885.9 naphthenic 112 

1,5-dicyclohexylpentane C17H32 Training Set  236.4 0.2075 598.0 866.3 naphthenic 113 

Cyclohexane, 1,1'-(1,2-

ethanediyl)bis- 

C14H26 Training Set  194.4 0.2060 545.8 872.4 naphthenic 114 

1,1-dicyclohexylheptane C19H36 Training Set  264.5 0.2082 620.9 885.5 naphthenic 115 

Naphthalene, decahydro-

2,6-dimethyl-3-octyl-  

C20H38 Training Set  278.5 0.2085 624.8 866.0 naphthenic 116 

Heptane, 1,1-

dicyclohexyl- 

C19H36 Training Set  264.5 0.2082 620.9 885.5 naphthenic 117 
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Compound Formula Data Base  Molar 

mass, 

g/mol 

α, molg
-

1
 

Tb at 1 

atm / K 

Density 

at 25 , 

kg.m
-3

 

Family Sam

ple 

No. 

1H-Indene, 5-butyl-6-

hexyloctahydro- 

C19H36 Training Set  264.5 0.2082 606.5 866.0 naphthenic 118 

Chrysene, octadecahydro- C18H30 Training Set  246.45 0.1950 645.4 977.7 naphthenic 119 

Cyclohexane, (1,2-

dimethylbutyl)- 

C12H24 Training Set  168.35 0.2141 479.7 831.1 naphthenic 120 

Cyclohexane, (1-

octylnonyl)-  

C23H46 Training Set  322.65 0.2141 645.3 830.9 naphthenic 121 

1-Fluoronaphthalene C10H7F Training Set  146.2 0.1232 484.5 1131.5 heteroatom 122 

1,3-butanedione, 4,4,4-

trifluoro-1-phenyl- 

C10H7F3

O2 

Training Set  216.2 0.1018 517.0 1540 heteroatom 123 

4-Phenyl-3-butyn-2-one C10H8O Training Set  144.2 0.1319 522.0 1023.3 heteroatom 124 

Dibenzothiophene, 

1,2,3,4-tetrahydro- 

C12H12S Training Set  188.3 0.1329 594.7 1143 heteroatom 125 

pyridine C5H5N Training Set  79.10 0.1391 388.4 978.2 heteroatom 126 

2-methyl-6-phenylpyridine C12H11N Training Set  169.2 0.1419 548.3 1085 heteroatom 127 

(1-

methylethylidene)cyclohex

ane 

C9H16 Training Set  124.2 0.2015 434.1 832 heteroatom 128 

Styrene C8H8 Test/Comp. 

Set 

 104.1 0.1537 418.4 901.7 Aromatic 129 

1,2-dimethylbenzene C8H10 Test/Comp. 

Set 

 106.2 0.1697 417.5 875.7 Aromatic 130 

3,3'-Dimethylbiphenyl C14H14 Test/Comp. 

Set 

 182.3 0.1537 562.7 994.9 Aromatic 131 

Naphthalene, 1-butyl- C14H16 Test/Comp. 

Set 

 184.3 0.1629 560.7 971.5 Aromatic 132 

Naphthalene, 1,6-

dimethyl-4-(1-

methylethyl)- 

C15H18 Test/Comp. 

Set 

 198.3 0.1665 575.0 974.2 Aromatic 133 

1,2-diphenyl-1-butene C16H16 Test/Comp. 

Set 

 208.3 0.1537 590.0 1008 Aromatic 134 

          

2-Heptene, 4-methyl-, (E)- C8H16 Test/Comp. 

Set 

 112.2 0.2141 398.2 740 n-alkene 135 

1-Pentene, 2,3-dimethyl- C7H14 Test/Comp. 

Set 

 98.19 0.2141 357.4 700.7 n-alkene 136 

1-Hexene, 3,5,5-trimethyl- C9H18 Test/Comp. 

Set 

 126.2 0.2141 394.5 719.6 n-alkene 137 

2,3-Dimethyl-2-octene C10H20 Test/Comp. 

Set 

 140.3 0.2141 442.0 757.3 n-alkene 138 

1-Decene, 2-methyl- C11H22 Test/Comp. 

Set 

 154.3 0.2141 458.0 750.7 n-alkene 139 

4-Octyne C8H14 Test/Comp. 

Set 

 110.2 0.1998 406.6 747.3 n-alkyne 140 

2,7-dimethyl-4-octyne C10H18 Test/Comp. 

Set 

 138.2 0.2027 432.0 758.3 n-alkyne 141 

3,3-dimethyl-4-nonyne C11H20 Test/Comp. 

Set 

 152.3 0.2038 451.0 762.5 n-alkyne 142 

3,3-dimethyl-4-decyne C12H22 Test/Comp. 

Set 

 166.3 0.2047 474.6 769.9 n-alkyne 143 

Hexane, 2,5-dimethyl- C8H18 Test/Comp. 

Set 

 114.2 0.2280 382.2 690.01 n-alkane 144 
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Compound Formula Data Base  Molar 

mass, 

g/mol 

α, molg
-

1
 

Tb at 1 

atm / K 

Density 

at 25 , 

kg.m
-3

 

Family Sam

ple 

No. 

Hexane, 2,3,5-trimethyl- C9H20 Test/Comp. 

Set 

 128.3 0.2264 404.0 718.0 n-alkane 145 

Octane, 3,3-dimethyl- C10H22 Test/Comp. 

Set 

 142.3 0.2252 433.5 735.2 n-alkane 146 

Nonane, 2,7-dimethyl C11H24 Test/Comp. 

Set 

 156.3 0.2242 449.5 774 n-alkane 147 

Cyclopentane, propyl- C8H16 Test/Comp. 

Set 

 112.2 0.2141 404.0 772.4 naphthenic 148 

1,1,4-

Trimethylcyclohexane    

C9H18 Test/Comp. 

Set 

 126.2 0.2141 407.6 767.6 naphthenic 149 

Cyclooctane, ethyl- C10H20 Test/Comp. 

Set 

 140.3 0.2141 463.1 833.5 naphthenic 150 

1-butyl-1-methyl-

cyclohexane 

C11H22 Test/Comp. 

Set 

 154.3 0.2141 464.7 809.9 naphthenic 151 

quinoline C9H7N Test/Comp. 

Set 

 129.2 0.1317 510.2 1090 heteroatom 

 

152 

nicotine C10H14N2 Test/Comp. 

Set 

 162.2 0.1604 523.2 1005 heteroatom 153 

chroman C9H10O Test/Comp. 

Set 

 134.2 0.1492 488.7 1060 heteroatom 154 

1 The property values are taken from the NIST Webbook [82] 
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               (a)                                                        (b)  

 

(c) 

Figure 5-2: Dependence of α on: a) Tb, b) MW, c) density . 

 

Figure 5-2 confirms that α has more specific trend with density compared to 

boiling temperature and molecular weight. Consequently, density appears to be a 

robust basis for the development of a correlation but not adequate, since α does 

not have a well understood relation to the density. Molecular weight and boiling 
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temperature showed the same trend, so having both as independent variables is 

not necessary. Least square method is needed to be applied in order to find a 

linear correlation as a function of density and either molecular weight or boiling 

temperature.  

5.2.2      Similarity Variable Prediction by Correlation 

As it is mentioned before, one of the categories for the least square method is 

multiple linear regressions (MLR). It can be applied to develop a correlation when 

independent variables are few in the number, are not collinear, and have a well 

understood relationship to the dependent variable; otherwise, partial least square 

can be a better method to develop a model. 

It is illustrated in Figure 5-2 that   does not have any specific trend with 

molecular weight and boiling temperature, while the trend between   and density 

is obvious; however, the scatter is large. In order to find any collinearity between 

density and either molecular weight or boiling temperature, the r value [82], linear 

correlation coefficient, is calculated using Equation 5-1 and the results are 0.5311, 

0.3436, 0.9389; for {Density at 25  and MW}, {Density at 25  and Tb}, and 

{MW and Tb}, respectively.   

   
 ∑     ∑   ∑  

√  ∑     ∑   √  ∑     ∑   
 

5-1 

where x and y are two variables and n is the number of available data. The 

range of values for r is between -1 and +1 which relates to negative and positive 

linear correlation, respectively [82]. The r value for the independent variable 
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shows how close these variables are collinear. Independent variables are called 

collinear when the r value is higher than 0.05 [83]. 

The trend of changes for density, MW, and Tb values for 154 organic liquid 

compounds, Table 5-1, is illustrated in Figure 5-3 versus sample number which is 

1 to 154: 

 

Figure 5-3: Changes of MW, Tb, and density versus sample number 

It can be seen from Figure 5-3 and the r value that MW and Tb are strongly 

collinear, and there is a collinearity between density and MW/Tb. Accordingly, 

PLS would be the best method to develop a linear model to estimate similarity 

variable as a function of density at 25 C and either MW or Tb.  
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5.2.3      Similarity Variable Database  

Liquids from Table 5-1 used to develop the similarity variable correlation were 

distributed into three data sets: a training data set comprising 128 organic liquid 

compounds (including paraffins, naphthenes, aromatics, sulphur/oxygen/nitrogen 

derivatives) used to regress correlation coefficients, a test data set comprising 26 

organic compounds (including paraffins, naphthenes, aromatics, 

sulphur/oxygen/nitrogen derivatives) used to evaluate the predictive character of 

the correlation, and a comparison data set comprises 4 similarity variable values 

for four prepared mixtures in chapter 4, used to evaluate the relative performance 

of the correlation vis-à-vis the API procedure. In total, 154 compound with 

density ranging from 670 to 1200 kg.m
-3

 and molar mass ranging from 79 to 400 

g/mol were used to cover the wide range of properties. The training data set 

density range was from 701 to 1134 kg.m
-3

 and the molar mass was from 97 to 

393 g/mol. The test data set density range was from 690 to 1090 kg.m
-3

 and the 

molar mass was from 98 to 209 g/mol. 

5.2.4      Results   

To obtain the correlation, the MATLAB R2012a [80] was used for programing 

a PLS method to find the linear predictive correlation over the training data set 

presented in Table 5-1. The possible combinations of inputs were {Density and 

MW}, {Density and Tb}, and {Density and Tb and MW}. All the combinations 

were examined and the root mean square error (RMSE) and the bias of the models 

are shown in Table 5-2. 
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Table 5-2: The RMSE for different combinations of inputs 

 RMSE                     Bias 

MW and Density 0.011               3.77*10
-17

 

MW and Tb 0.020               1.73*10
-17

 

Density and Tb 0.012               1.14*10
-16

 

MW, Tb, and Density 0.011               4.37*10
-17

 

 

Among two-variable correlations, the combination of {Density and MW} was 

shown to work better than {Density and Tb}. Although the same deviation 

occurred for {Density, MW, and Tb} and {Density and MW } as the inputs, 

having the input as just {Density and MW} makes the model less complicated. 

Moreover, since there is not much difference between {Density and MW} and 

{Density and Tb} as the inputs, both models have been developed so that if the 

MW is not available one can estimate the α value by having Tb. The correlation 

with different input required are as follows: 

                 5-2 

                 5-3 

Where   is similarity variable,   is density at 25   (kg.m-
3
), MW is the 

molecular weight, Tb is boling temperature for the single compound and average 

boling temperature for the mixture (K),    and    are the universal coefficients 

with values shown in Table 5-3: 
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Table 5-3: Universal coefficient for the Equation 5-2 and 5-3 

   0.3412    0.3192 

   -1.8586*10
-4

    -1.9645*10
-4

 

   1.2283*10
-4

    9.0678*10
-5

 

 

The quality of models is illustrated in Figure 5-4 to 5-7 using training and test 

data sets. In this way, the uncertainty of the estimated heat capacities is reduced 

from the maximum noted in section 5.1 (+20 to 
–
35 %; +0.4 to -0.6 J.K

-1.
g

-1
). to 

+0.025 to -0.025 J.K
-1.

g
-1

 using a simple and simple to implement correlation.  
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Figure 5-4: The quality of the model (Equation 5-2) over the training data set 

 

Figure 5-5: The quality of the model (Equation 5-2) over the test data set 
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Figure 5-6: The absolute residual of the model (Equation 5-2) over the training 

data set 

 

Figure 5-7: The absolute residual of the model (Equation 5-2) over the test data 

set 



82 

 

 

Figure 5-8: The quality of the model (Equation 5-3) over the test data set 

 

Figure 5-9: The absolute residual of the model (Equation 5-3) over the test data 

set 
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5.3    Artificial Neural Network Model 

5.3.1    Network design 

Another possible method to develop a model to predict α is Artificial Neural 

Network, since there is no well-defined relationship between α and the properties 

mentioned above. The ANN is applied to see if a model can be developed with 

higher precision and accuracy. The possible input variables are molecular weight, 

average boiling temperature, and density at 25  . According to the complexity of 

the problem, the back propagation learning algorithm has been used in a network 

with one hidden layer and feed forward algorithm. Variants of the algorithm, 

which should be specified, are the required inputs, number of nodes in the hidden 

layer, training (learning) function and the transfer function. In order to train a 

neural network the data set, Table 5-1, comprising 154 organic liquid compounds 

are used, where 70, 15, and 15 % of the data are used as the training, test, and 

validation data sets by the network, respectively. The error is calculated as the 

mean square error (MSE): 

    
 

 
∑        

 

 

   

 
5-4 

 

Where ti is the target value, and    is the desired output value.  

For studying required inputs to train the neural network, five configurations 

of inputs were considered and the results are compared. Levenberg-Marquardt 

back propagation (trainlm) [84,85] is used as the training algorithm, and Verhulst 
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logistic sigmoid [86] (logsig) is used as the transfer function, while the hidden 

layer size is selected to be 8. The results for MSE for each configuration are 

shown in Table 5-4. According to the results, having all three terms as the 

required inputs (Tb, MW, and density) yields the least error; however, there is not 

much difference between a and d. Since fewer required inputs make the process 

less complex, density and MW are taken into account as the inputs. 

 

Table 5-4: Error evaluation for different input configurations 

                         Inputs                               MSE                 Bias               

                a) Density and MW            9.07E-05          -4.2E-05 

                b) Density and Tb                   9.52E-05           -5.9E10-4 

                c) MW and Tb                    2.66E-04           3.6E-04 

                d) Density, MW and Tb          7.35E-05           -6.4E-05 

 

                e) Density                                1.91e-04            1.9E04  

 

The size of hidden layer is defined by the number of nodes used in that layer. 

For finding an optimum size of the hidden layer, a neural network is performed 

for four different sizes and the performance is evaluated. Levenberg-Marquardt 

back propagation (trainlm) and logistic sigmoid (logsig) are used as the training 
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algorithm and the transfer function, respectively. The inputs of the ANN are 

density and MW. The results for MSE for each size are presented in Table 5-5. 

Table 5-5: Error evaluation for different hidden layer sizes 

           size                          MSE                    Bias 

          a) 4                    1.2526e-04         -5.9E-05 

          b) 5                    8.3918e-05        -1.7E-05 

          c) 6                    7.9552e-05         2.3E-04 

          d) 7                     8.1637e-05        9.3E-05 

          e) 8                     8.3107e-05        1.0E-03 

           f) 9                     9.4921e-05        1.8E-04 

           g) 10                   8.9158e-05       -2.0E-03 

 

The number of hidden neurons can be selected as five. Increasing the number 

of neurons to more than five will result in an over trained network as it is shown 

in the Figure 5-10 and 5-11. Therefore, results of the predicted values from the 

neural network will deviate from the real values as it is shown in Figure 5-10 and 

5-11 for the training, validation, test, and all data sets.  
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Figure 5-10: ANN regression graph with hidden layer size of 5  

 

Figure 5-11: ANN regression graph with a hidden layer size of 6 
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Variants of the training (learning) algorithms used in the study are scaled 

conjugate gradient (SCG) [87], Polak–Ribiere conjugate gradient (CGP)[88], and 

Levenberg–Marquardt (LM) [84]. The conjugate gradient is an iterative method 

for the numerical solution of specific systems of nonlinear equations; it can be 

used to sparse systems that are too large to be examined by direct methods. In 

mathematics and computing, the LM algorithm is a numerical solution to the 

minimization problems, mostly nonlinear, over the parameters of the function. 

Minimizing a function arises especially in the least squares curve fitting and 

nonlinear programming. The same procedure as above is performed for the 

evaluation of each algorithm and the results are compared. The best algorithm 

which has minimum errors is the LM algorithm, as it is noted in Table 5-6. 

Table 5-6: Error evaluation for trained ANN with different training algorithms  

                      algorithm                                    MSE                Bias 

                       a) SCG                                    1.27E-04          1.0E-03 

                       b) CGP                                    1.26E-04         -1.0E-03 

                        c) LM                                     8.37E-05          2.8E-5 

 

 

Variants of the transfer function used in the study are Linear transfer function 

(purelin) [89], Log-Sigmoid transfer function (logsig) [90], Radial basis function 

(radbas) [91], and Triangular basis function (tribas) [92]. Transfer functions 

compute a layer's output from its net input. The purelin has a linear form while the 
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logsig function is a mathematical function having an "S" shape. The radbas is a 

real valued function whose value relates only on the distance from some other 

point. The tribas is a function which has a triangular form. The minimum error is 

resulted from tribas transfer function, as it is presented in Table 5-7. 

 

 

Based on the above mentioned results, the following parameters of the ANN 

developed for estimating the similarity variable were selected. The ANN is 

trained based on the back propagation learning algorithm in feet-forward single 

hidden layer network. As it is mentioned, there are two (number of variant), five 

and one (number of output) neurons on input layer, hidden layer and output layer, 

respectively. One selected hidden layer, the corresponding nodes, Levenberg–

Marquardt (LM) training algorithm and the Triangular basis (tribas) transfer 

function have been investigated through the trial and error mechanism. For all the 

Table 5-7: Error evaluation for trained ANN with different transfer functions  

                    transfer function         MSE                 Bias 

                      a) purelin               1.27E-04          8.2E-05 

                      b) logsig                 8.94E-05         1.2E-05 

                      c) radbas                 8.82E-05        -4.4E-05 

                      d) tribas                   8.22E-05       -5.7E-05 



89 

 

procedures mentioned above a computer program has been performed under 

MATLAB and the associated code is presented in Appendix A. 

The model evaluation is illustrated in Figure 5-12 which shows the 

performance of the trained ANN for the training, validation, test, and all data sets 

by plotting the predicted values (output) versus real values (target). As it is 

shown, the overall regression coefficient (R) is 0.9315 which proves the accuracy 

of the ANN. 

 

Figure 5-12: The evaluation of the ANN developed to predict α 
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5.4     Comparison  

The Root Mean Square Deviation (RMSD) is a widely used method for 

measuring the difference between predicted values by a model and real values. 

The difference between real and predicted values are called residual when the 

RMSD is applied over the training data set that was used for developing a model, 

and are called prediction error when it is applied over the test data set. RMSD, 

Equation 5-5, is a good method for comparing predicting deviation of different 

models [93,94]. Also, to show the model tendency to over or under estimatetion 

the bias value is calculated based on Equation 5-6: 

      √
∑       ̂  
 
   

 
 

5-5 

     [∑      ̂ ]     
5-6 

 

Where  ̂  is the predicted value,and    is the real value for n different points from 

the training data set. Also, to show the model tendency to over or under 

estimatetion the bias value is calculated by Equation 5-6: 

The RMSD values for the model developed with the use of PLS and ANN are 

listed in Table 5-8. 

 

 

 

 

 

Table 5-8: RMSD and Bias value for Equation 5-2, 5-3 and 

ANN models over the training data set 

                     RMSD                        Bias 

Equation 5-2                     0.011                3.77*10
-17

                 

Equation 5-3                     0.012                1.14*10
-16

                 

ANN                     0.011                5.84*10
-10
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The result for the test data set comprising 26 organic liquid compounds, 

Table 5-1, (including paraffins, naphthenes, aromatics, sulphur/oxygen/nitrogen 

derivatives) are compared and the RMSD value as the prediction error is shown in 

Table 5-9. 

 

 

 

 

 

The models developed by PLS, ANN and API are applied to predict the 

similarity variable of the sample mixtures (Table 4-1) prepared in Chapter 4 for 

the experiments. In this comparison the heat capacity values predicted by 

Dadgostar-Shaw equation by the similarity variable estimated by API, PLS and 

ANN are illustrated in Figure 5-13. 

Table 5-9: RMSD  and Bias value for PLS, ANN, 

and API models for the test data set 

                    RMSD          Bias 

Equation 5-2                    0.014      -0.0018 

Equation 5-3                    0.013      -0.0027 

ANN                    0.011         0.004 

API                    0.020        -0.016 
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                                                                          (a) 

 

                                                                                  (b) 
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                                                                             (c) 

 

                                                                (d) 

Figure 5-13: Experimental Cp,   , and Cp predicted by the Dadgostar-Shaw 

correlation with similarity variable estimated by; - -, API procedure; . . ., ANN;   

▬, PLS (Equation 5-2); ∆ , PLS( Equation 5-3) and  ― , actual α  for  mixtures  

a) 1, b) 2, c) 3, d) 4 (see Table 4-1 for compositions).  
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The mean absolute percentage error (MAPE) between the Dadgostar-Shaw 

correlation final results using experimental and computed values for α is shown in 

Table 5-8. 

Table 5-8: The mean absolute percentage error (MAPE) between the predicted 

and experimental heat capacities based on different methods for calculating α 

 

 

 

Dadgostar-Shaw correlation 

API α Equation 

5-2 

Equation 

5-3       

     ANN      Actual α 

Mixture 1 0.43 0.51 1.28 1.24       0.43 

Mixture 2 6.31 3.25 1.88 2.19       2.69 

Mixture 3 3.71 2.26 1.11 1.36       4.10 

Mixture 4 16.89 12.12 14.75     12.89     13.24 

                 Lastovka-Shaw correlation + APR based departure function for 

petroleum cut 

Mixture 1 2.61                   2.43             3.49                  3.49         2.61 

Mixture 2                     3.75                      3.10             1.61                  3.21         4.11 

Mixture 3                     4.12                      4.00 1.79                  5.14         4.11  

Mixture 4                      10.00                  7.97 15.50                6.93         2.21 
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5.5 Conclusion  

Two approaches are developed for estimation of similarity variable. One is 

correlative and based on partial least square fits to functions of density and MW, 

and density and boiling point. The other approach is based on an Artificial Neural 

Net with density and MW as the required inputs. Both approaches provide better 

performance than the API based method described in Chapter 2 with respect to the 

absolute error and the bias of estimates.  The estimated heat capacity values of the 

mixtures based on various methods for estimating   illustrate that both ANN, and 

PLS approaches yield nearly equivalent outcomes. The advantage of a correlation 

over an ANN is, it is also practical for hand calculation. 

Since the difference between the performance of PLS and ANN with {density 

and Tb} and {density and MW} as the required inputs is not great, in cases where 

the MW value is not available, one can calculate the   value based on PLS and 

ANN with Tb and density as the required inputs. 
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6   Overall Conclusion and Future Work 

6.1    Conclusion and Recommendation 

The following conclusion can be drawn: 

1. There are many available methods for calculating isobaric liquid heat 

capacity, and each has some advantages and disadvantages and different 

required inputs. It was shown in this work that choosing a wrong method 

can result in a deviation of +/- 0.4 J.K
-1

.g
-1

 in estimated liquid Cp which 

can have both capital and operating cost consequences for processes 

designed using them.  

2. For known compounds and molecularly defined mixtures, the best method 

for calculating isobaric Cp of liquids is the ideal gas heat capacity plus an 

equation of state based departure function. For petroleum cuts with known 

critical properties, the ideal gas Cp estimation by Lastovka-Shaw 

correlation is more accurate than the Lee-Kesler correlation. These 

methods cannot be used for ill-defined fluids, since the critical properties 

are not known. For ill-defined fluids, two methods are available to 

estimate liquid Cp: the Lee-Kesler correlation and the Dadgostar-Shaw 

correlation. The Dadgostar-Shaw correlation is more accurate and precise, 

and substantially so in almost all cases.  

 

3. The similarity variable α must be estimated in order to implement the 

element based correlations (both the Dadgostar-Shaw and Lastovka-Shaw 

correlations) into process simulation software. The API based α estimation 
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technique is shown to be poor. Large and biased errors arise, leading to 

significant over estimation of liquid phase heat capacities. 

 

4. Two approaches were developed for estimating α value. One is a 

correlation based on partial least square and the other one is a trained 

neural network. Both methods show  better  performance than the API 

based method, from a deaviation and a bias perspective. The outcomes 

from the PLS and ANN approaches are nearly equivalent. 

 

6.2    Future Work 

 

1. Modifying the code in VMGSIM to accommodate the correlations for α. 

 

2. providing a decision tree to users of the element based and other 

correlations for liquid phase heat capacity to ensure the best option is 

selected. 
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Appendix A: Matlab Code for the PLS based Correlation and 

trained ANN 

This Appendix presents the MATLAB code for all the programs developed in 

the partial least square based correlation and trained artificial neural net 

PLS based Correlation 

Datap = xlsread('sep data.xlsx','Sheet1','C2:F155'); 
  
alpha=Datap(:,4)'; 
Density=Datap(:,2)';  
MW=Datap(:,1)'; 
Tb=Datap(:,3)'; 
  
Xc=[Density']; 
yc=alpha'; 
  
comp=1; 
  
[XL,yl,XS,YS,beta,PCTVAR,MSE,stats] = plsregress(Xc,yc,comp); 
yfit = [ones(size(Xc,1),1) Xc]*beta; 
  

 
figure(2) 
plot(yc,yfit,'o') 
  
TSS = sum((yc-mean(yc)).^2); 
RSS = sum((yc-yfit).^2); 
Rsquared = 1 - RSS/TSS; 
  

 
figure(5) 
plot(yc) 
hold on 
plot(yfit,'r') 
legend('Real Output','Predicted Output') 
  
n=length(alpha); 
RMESP=sqrt(sumsqr(yfit-yc)/n) 
coe=corr(yfit,yc) 
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Trained ANN 

Datap = xlsread('API Elemental Analysis for Mixtures.xlsx','Training data set','AM5:AP158'); 
Datat= xlsread('API Elemental Analysis for Mixtures.xlsx','Sin fitet curve','D38:F41'); 
Datat1= xlsread('API Elemental Analysis for Mixtures.xlsx','Sin fitet curve','D10:E35'); 
  
Densityt=Datat(:,2)'; 
MWt=Datat(:,1)'; 
Tbt=Datat(:,3)'; 
Densityt1=Datat1(:,2)'; 
MWt1=Datat1(:,1)'; 
alpha=Datap(:,2)'; 
Density=Datap(:,3)';  
MW=Datap(:,1)'; 
Tb=Datap(:,4)'; 
  
Test1=[MWt;Densityt]; 
Test2=[MWt1;Densityt1]; 
inputs=[MW;Density]; 
targets=[alpha]; 
  

  
hiddenLayerSize = 5; 
net = fitnet(hiddenLayerSize); 
  
net.inputs{1}.processFcns = {'removeconstantrows','mapminmax'}; 
net.outputs{2}.processFcns = {'removeconstantrows','mapminmax'}; 
  
net.divideFcn = 'dividerand';  % Divide data randomly 
net.divideMode = 'sample';  % Divide up every sample 
net.divideParam.trainRatio = 70/100; 
net.divideParam.valRatio = 15/100; 
net.divideParam.testRatio = 15/100; 
  
net.trainFcn = 'trainlm';   
net.layers{1}.transferFcn = 'tribas'; 
  
net.performFcn = 'mse';  % Mean squared error 
  
net.plotFcns = {'plotperform','plottrainstate','ploterrhist', ... 
  'plotregression', 'tribas'}; 
  
 [net,tr]=train(net,inputs,targets);  
  
outputs = net(inputs); 
errors = gsubtract(targets,outputs); 
performance = perform(net,targets,outputs); 
  
trainTargets = targets .* tr.trainMask{1}; 
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valTargets = targets  .* tr.valMask{1}; 
testTargets = targets  .* tr.testMask{1}; 
trainPerformance = perform(net,trainTargets,outputs) 
valPerformance = perform(net,valTargets,outputs) 
testPerformance = perform(net,testTargets,outputs); 
  
view(net) 
  

  

  
i=[1:length(targets)]  
j=[1:length(MWt)] 
  
output=sim(net,inputs(:,i)) 
OPT=sim(net,Test1(:,j)) 
targets(:,i) 
  

  

  

  
MAE=sum(abs(targets-output))/length(targets) 
MSE=sum((targets-output).^2)/length(targets) 
  
TSS = sum((targets-mean(targets)).^2); 
RSS = sum((targets-output).^2); 
Rsquared = 1 - RSS/TSS; 
  
n=length(alpha); 
RMESP=sqrt(sumsqr(output-targets)/n) 
 

 

 


