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ABSTRACT 

Lateral–torsional buckling (LTB) is a failure mode that is associated with simultaneous vertical 

displacement and twisting of a beam when subjected to flexural loading. LTB behaviour is 

generally well understood for I-shaped steel beams; however, the LTB behaviour of T-shaped 

steel beams is not as well understood. The aim of this study is to better understand the behaviour 

of T-shaped steel beams in single-curvature with the flange in compression through numerical 

finite element analysis, with a special focus on the moment gradient factor to consider the effect 

of varying moments along the beam axis.  

Eighteen T-shaped beams were selected to represent the entire population cut from standard 

rolled wide-flange shapes in terms of various geometric properties (e.g., flange width and 

thickness, stem depth and thickness, second moment of area about the major and minor axes, and 

minimum slenderness ratio for elastic LTB to occur). Once validated, the finite element model 

was used to determine the elastic LTB behaviour, and consequently the moment gradient factor, 

for three loading scenarios with simply-supported end conditions: constant moment, point load, 

and uniformly distributed load. It was proposed that the CSA S16-14 moment gradient factor for 

doubly- and singly-symmetric I-shaped beams in single-curvature be utilized also for T-shaped 

beams when in single-curvature with the flange in compression for the aforementioned loading 

cases. 

The finite element model was also used to investigate inelastic LTB behaviour. It was 

determined that class 1 and class 2 T-shaped beams were able to achieve the plastic moment 

when they reached the cross-sectional capacity. The class 3 T-shaped beam also reached the 

plastic moment capacity when they reached the cross-sectional capacity; however, it may not be 
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the case for all class 3 sections as they are susceptible to local buckling. Finally, the results were 

compared to CSA Standard S16 and changes were proposed to improve the estimation of the 

inelastic LTB critical moment.  
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CHAPTER 1:  INTRODUCTION 

1.1 Background 

Several limit states need to be taken into account to ensure the overall serviceability and safety of 

steel beams. Serviceability considerations include deflections and vibrations of the beam. Safety 

of steel beams is determined using limit state checks including cross-sectional yielding, local 

buckling, failure in shear, fatigue limit states, and lateral–torsional buckling. Lateral–torsional 

buckling (LTB) is a failure mode in which the beam, with a section at midspan of the beam 

initially positioned as in Figure 1-1 (a), deflects vertically to the position shown in Figure 1-1 (b) 

and then deflects laterally and twists simultaneously, as seen in Figure 1-1 (c).  

 

Figure 1-1: Lateral–Torsional Buckling Deflected Shape for the Midspan of a Beam: (a) Initial 

Position; (b) Position Before Buckling; (c) Position After Buckling 

A beam or girder is susceptible to LTB failure when the major-axis stiffness is larger than the 

minor-axis stiffness. When this structural property holds true, laterally unsupported beams and 

girders may not achieve their flexural cross-sectional capacity and instead fail in LTB. LTB 

failures of beams can occur when the top flange is not adequately braced from lateral movement. 

Once the top flange has been securely attached to an adjacent component (e.g., concrete floor, 

road deck, steel struts, etc.) the beam is less susceptible to LTB.  
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LTB failures can be categorized into one of three categories depending on the slenderness of the 

beam: (1) no LTB with the cross-sectional capacity attainable, (2) inelastic LTB, or (3) elastic 

LTB, as shown in Figure 1-2. 

 

Figure 1-2: LTB Moment Resistance vs Unbraced Length of Beams (after Kabir 2016) 

As implied in Figure 1-2, stocky beams fail one the maximum moment in the beam reaches the 

cross-sectional capacity, beams of intermediate lengths fail in inelastic LTB, and slender beams 

fail in elastic LTB.  

To design beams against LTB failure, various steel standards (e.g., CSA S16, AISC 360, 

Eurocode 3, etc.) follow similar design equations to determine the LTB resistance of steel beams. 

The elastic LTB moment capacity is derived from governing equations (Galambos 1968) and 

adjusted for the specific loading scenario using a moment gradient factor. The inelastic LTB 

moment capacity is approximated using an empirical solution. The cross-sectional capacity is 

determined based on the yield stress of the material and either the cross-sectional plastic modulus 

or elastic modulus, depending on the section classification. 
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1.2 Statement of Problem 

The LTB moment capacity of a beam depends on the moment distribution along the beam caused 

by different loading scenarios. The constant moment loading scenario allows a closed-form 

solution to the governing equations (e.g., the system of differential equations) to determine the 

LTB moment capacity of a beam. In contrast, under other loading scenarios (e.g., point loading, 

uniformly distributed loading), a moment gradient factor is typically used to adjust the elastic 

LTB moment derived under the constant moment condition. The current steel standards specify 

similar moment gradient factors for doubly- and singly-symmetric I-shaped beams; however, 

they are inconsistent when determining the moment gradient factor for T-shaped beams. The 

Canadian and American steel standards (i.e., CSA S16-14 and AISC 360-16) currently specify 

no moment gradient factor, while the European steel code (i.e., Eurocode 1993-1-1) does not 

explicitly specify the moment gradient factor as the elastic LTB moment may be determined 

using structural engineering software or hand calculations. There is currently a lack of research 

on lateral–torsional buckling of T-shaped beams in the elastic and inelastic LTB regions.  

1.3 Objectives and Scope 

The goal of this research is to investigate the LTB behaviour of simply supported (i.e., pin on 

one end and roller on the other end) T-shaped beams and assess the current Canadian steel 

standard considering three loading scenarios: constant moment, point load, and uniformly 

distributed load (UDL) with the flange in compression and no intermediate bracing. The analysis 

is completed using finite element modelling. The following objectives are used to achieve the 

ultimate goal: 

• Investigate the elastic LTB behaviour of T-shaped beams and determine the moment 

gradient factor. 

• Investigate the effect of residual stresses on T-shaped beams susceptible to inelastic LTB. 

• Investigate the inelastic LTB behaviour of T-shaped beams and determine the inelastic 

LTB moments. 

• Assess the current CSA S16’s elastic and inelastic LTB provisions and provide potential 

changes accordingly if needed. 
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1.4 Organization of Thesis 

This thesis is organized into seven chapters. Chapter 2 contains a literature review of three 

design standards—the Canadian, American and European standards—and previous LTB research 

of beams with doubly-symmetric and singly-symmetric cross sections. A detailed explanation 

and validation of the finite element modelling strategies used for this study can be found in 

Chapter 3. Chapter 4 includes the numerical test matrix and subsequent chosen sections for 

numerical investigation purposes to ensure they well represent the majority of T-shaped beams. 

Chapter 5 contains the elastic LTB analysis results, along with an additional validation of the 

model and proposed design recommendations based on the results. The inelastic LTB results and 

design recommendations can be found in Chapter 6. Finally, a summary of the research, along 

with conclusions and recommendations for future work are presented in Chapter 7. The elastic 

and inelastic LTB finite element analysis results, respectively, in tabular and graphical forms can 

be found in Appendices A and B. 
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CHAPTER 2:  LITERATURE REVIEW 

2.1 Introduction 

Lateral–torsional buckling has been studied extensively for doubly- and singly-symmetric I-

shaped beams under single and double curvature bending. However, there is a lack of research 

surrounding the LTB of T-shaped beams, which are typically used as secondary structural 

members (e.g. to support façades). First, a review of the Canadian steel design standard (CSA 

S16-14), American steel design specification (AISC 360-16), and Eurocode (1993-1-1 (2005)) 

are presented. Next, a review of LTB research is conducted to explore prior research on LTB of 

I- and T-shaped beams. Finally, residual stress patterns, which in general tend to be influential 

for inelastic LTB analysis, are discussed in the context of T-shaped beams. 

2.2 Review of Design Standards 

Among the many steel design standards around the world, three are reviewed regarding LTB. 

Although the standards look different at first glance, they produce similar results when 

disregarding the load and resistance factors. This section focuses primarily on LTB of T-shaped 

beams, with references to singly-and doubly-symmetric I-shaped beams or other beams where 

necessary for context. 

Due to the inherent geometry of T-shaped beams (i.e., the presence of only one flange), they are 

expected to act differently depending on whether the flange is in compression or tension. When 

the flange is in compression, the beam should act similarly to I-shaped beams because the 

majority of the stem is in tension and not susceptible to local buckling. The same cannot be said 

when the flange is in tension, since the stem would be in compression and is susceptible to local 

buckling.  

2.2.1 CSA S16-14 

The Canadian standard (CSA S16-14) for the design of steel structures defines the LTB moment 

for doubly-symmetric and singly-symmetric beams (CSA 2014) in §13.6 a) - b) and §13.6 e), 

respectively. This review focuses specifically on the LTB design of beams with T-shaped cross-

sections.  
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In CSA S16-14, the factored resisting moment, 𝑀𝑟, of a beam for the limit state of LTB failure is 

determined based on the relative magnitudes of the critical elastic LTB buckling moment, 𝑀𝑢, 

the yield moment resistance of a singly-symmetric beam including the effects of residual 

stresses, 𝑀𝑦𝑟, and the plastic moment resistance of the beam, 𝑀𝑝. When 𝑀𝑢 > 𝑀𝑦𝑟: 

𝑀𝑟 = 𝜙 [𝑀𝑝 − (𝑀𝑝 − 𝑀𝑦𝑟) (
𝐿 − 𝐿𝑢

𝐿𝑦𝑟 − 𝐿𝑢
)] ≤ 𝜙𝑀𝑝 (2-1) 

S16 specifies that 𝑀𝑝 shall be replaced with 𝑀𝑦 (the yield section moment) for class 3 beams and 

all T-shaped beams with the tip of the stem in compression. 𝑀𝑦𝑟 = 0.7𝑆𝑥𝐹𝑦, where 𝑆𝑥 is the 

smaller of the two elastic section moduli, 𝐹𝑦 is the specified minimum yield stress, and 𝐿𝑦𝑟 is the 

length that leads to 𝑀𝑢 = 𝑀𝑦𝑟. 𝐿𝑢 is the longest unbraced length with which a beam will reach 

the cross-sectional capacity and utilizes 𝑟𝑡, which is the radius of gyration of the compression 

flange plus one-third of the stem area in compression due to major-axis bending. These two 

values can be determined using Equation 2-2 and Equation 2-3. 

𝐿𝑢 = 1.1𝑟𝑡√
𝐸

𝐹𝑦
 (2-2) 

𝑟𝑡 =
𝑏𝑐

√12 (1 +
ℎ𝑐𝑤

3𝑏𝑐𝑡𝑐
)

 (2-3)
 

in which 𝐸 is the elastic modulus of steel, 𝑏𝑐 is the width of the compression flange, ℎ𝑐 is the 

depth of the stem in compression, 𝑤 is the stem thickness, and 𝑡𝑐 is the thickness of the 

compression flange. 

When 𝑀𝑢 ≤ 𝑀𝑦𝑟, 𝑀𝑟 = 𝜙𝑀𝑢 where: 

𝑀𝑢 =
𝜔3𝜋2𝐸𝐼𝑦

2𝐿2
[𝛽𝑥 + √𝛽𝑥

2 + 4 (
𝐺𝐽𝐿2

𝜋2𝐸𝐼𝑦
+

𝐶𝑤

𝐼𝑦
)] (2-4) 
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where 𝛽𝑥 is the asymmetry parameter, 𝐺 is the shear modulus, 𝐽 is St. Venant torsional constant, 

𝐿 is the unbraced length, 𝐼𝑦 is the moment of inertia about the weak axis, and 𝐶𝑤 is the warping 

torsional constant. The moment gradient factor for singly-symmetric sections, 𝜔3, is based on 

the moment gradient factor for doubly-symmetric sections, 𝜔2, and changes based on the 

following criteria: 

• If the beam is under single-curvature bending: 

𝜔3 = 𝜔2 for beams with two flanges 

𝜔3 = 1.0 for beams with T-sections 

• For all other cases: 

𝜔3 = 𝜔2 (0.5 + 2 (
𝐼𝑦𝑐

𝐼𝑦
)

2

) but ≤ 1.0 for beams with T-sections 

The moment gradient factor is used to account for moments that vary over the length of the 

beam, as the shape of the moment diagram affects the LTB moment. The worst-case scenario for 

beams with two flanges is a constant moment. The best-case scenario for beams with two flanges 

is the maximum moment at the support locations and the minimum moment at the midpoint of 

the beam. The moment gradient factor is determined using the quarter-point equation presented 

in Equation 2-5. 

𝜔2 =
4𝑀𝑚𝑎𝑥  

√𝑀𝑚𝑎𝑥
2 + 4𝑀𝑎

2 + 7𝑀𝑏
2 + 4𝑀𝑐

2
≤ 2.5 (2-5) 

in which the maximum moment in the unbraced segment is 𝑀𝑚𝑎𝑥, the moment at the one-quarter 

point is 𝑀𝑎, the moment at midspan is 𝑀𝑏, and the moment at the three-quarter point is 𝑀𝑐. 

CSA S16-14 contains a provision that the section shall not yield under service loads. This thesis 

neglects this provision for comparisons to the standards since the ultimate limit state is being 

investigated; however, this provision can govern the design in many practical cases. CSA S16-14 

also states that when the beam is loaded above or below the cross-section mid-height, a rational 

method of accounting for the destabilizing or stabilizing effect must be used. Additionally, no 

differentiation is made for rolled and welded cross-sections.  
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The moment gradient factor for T-shaped beams in single curvature bending is given as a single 

value. This is unexpected since it implies that T-shaped beams do not act the same way as 

doubly- and singly-symmetric I-shaped beams. 

2.2.2 AISC 360-16 

LTB of beams is covered in section F in the AISC 360-16 (2016). Section F4 includes I-shaped 

members with compact, non-compact or slender flanges and compact or non-compact webs bent 

about their major axis of the cross section, section F5 covers doubly- and singly-symmetric I-

shaped members with slender webs bent about their major axis, and section F9 discusses tees and 

double-angle beams loaded in the plane of symmetry. Compact sections are expected to attain 

the full plastic moment capacity, non-compact sections may buckle locally prior to attaining the 

plastic moment capacity, and slender sections are expected to experience local buckling prior to 

reaching the yield moment. This review focuses on the determination of the nominal moment 

capacity using section F9—tees and double-angles loaded in the plane of symmetry—with an 

emphasis on T-shaped beams with the stem in tension. 

The nominal moment capacity, 𝑀𝑛, of T-shaped beams is the minimum of the plastic moment, 

𝑀𝑝, the elastic LTB moment, 𝑀𝑐𝑟, the inelastic LTB moment 𝑀𝑛,𝐿𝑇𝐵, the moment associated 

with flange local buckling, 𝑀𝑛,𝐹𝐿𝐵, and the moment associated with stem local buckling, 𝑀𝑛,𝑆𝐿𝐵, 

as shown in Equation 2-6.  

𝑀𝑛 = 𝑚𝑖𝑛 {

𝑀𝑝

𝑀𝑐𝑟 𝑜𝑟 𝑀𝑛,𝐿𝑇𝐵

𝑀𝑛,𝐹𝐿𝐵 𝑜𝑟 𝑀𝑛,𝑆𝐿𝐵

 (2-6) 

The LTB moment is determined based on the unbraced length, 𝐿𝑏, the maximum laterally 

unbraced length that would permit the beam to achieve the limit state of yielding, 𝐿𝑝, and the 

maximum laterally unbraced length that would permit the beam to achieve the limit state of 

inelastic LTB, 𝐿𝑟. 𝐿𝑝 and 𝐿𝑟 are defined in Equations 2-7 and 2-8. 

𝐿𝑝 = 1.76𝑟𝑦√
𝐸

𝐹𝑦
 (2-7) 
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𝐿𝑟 = 1.95 (
𝐸

𝐹𝑦
)

√𝐼𝑦𝐽

𝑆𝑥

√2.36 (
𝐹𝑦

𝐸
)

𝑑𝑡𝑆𝑥

𝐽
+ 1 (2-8) 

in which 𝑟𝑦 is the radius of gyration about the y-axis, 𝑆𝑥 is the elastic section modulus, and 𝑑𝑡  is 

the depth of the tee in tension. 

When 𝐿𝑏 ≤ 𝐿𝑝, as long as local buckling is precluded, the beam fails in yielding and the limiting 

moment is determined differently depending on whether the tee stem is in tension or 

compression. If the tee stem is in tension, 𝑀𝑛 = 𝑀𝑝, determined as follows: 

𝑀𝑝 = 𝐹𝑦𝑍𝑥 ≤ 1.6𝑀𝑦 (2-9) 

in which 𝑍𝑥Zx is the plastic section modulus about the x-axis, and 𝑀𝑦 is the yield section 

moment. 𝑀𝑝 is taken as the lesser of the plastic section moment and 1.6𝑀𝑦. The limit of 1.6𝑀𝑦 

prevents early yielding under service loads as per the Commentary (AISC 2016). Many beams 

are limited by 1.6𝑀𝑦 due to the large shape factor arising from the T-shaped cross-section and 

thus will not achieve the ultimate limit state of 𝑀𝑝, but rather fail due to the serviceability limit 

state.  

When 𝐿𝑝 < 𝐿𝑏 ≤ 𝐿𝑟, the beam fails in inelastic LTB with the inelastic LTB moment, 𝑀𝑛,𝐿𝑇𝐵, 

determined using Equation 2-10. 

𝑀𝑛,𝐿𝑇𝐵 = 𝑀𝑝 − (𝑀𝑝 − 𝑀𝑦) (
𝐿𝑏 − 𝐿𝑝

𝐿𝑟 − 𝐿𝑝
) (2-10) 

When 𝐿𝑏 > 𝐿𝑟 the beam fails in elastic LTB, with the elastic LTB moment, 𝑀𝑐𝑟, determined 

using Equations 2-11 and Equation 2-12. 

𝑀𝑐𝑟 =
1.95𝐸

𝐿𝑏
√𝐼𝑦𝐽 (𝐵 + √1 + 𝐵2) (2-11) 
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𝐵 = 2.3 (
𝑑

𝐿𝑏
) √

𝐼𝑦

𝐽
 (2-12) 

It should be noted that AISC 360 does not include the moment gradient factor, 𝐶𝑏, as it is 

implicitly given a value of 1.0; however, if the moment gradient factor were included, 𝐶𝑏 would 

appear as a multiplicative coefficient to the 𝑀𝑐𝑟 equation. The exclusion of the moment gradient 

factor implies that, unlike I-shaped beams, T-shaped and double-angle beams are not affected by 

moments that vary over the length of the unbraced beam segment.  

Even if the flange is in compression, if the flange is classified as compact the limit state of flange 

local buckling does not apply. If the flange is classified as noncompact the moment associated 

with flange local buckling is determined using Equation 2-13 and if the flange is classified as 

slender the moment associated with flange local buckling is determined using Equation 2-14. 

𝑀𝑛,𝐹𝐿𝐵 = [𝑀𝑝 − (𝑀𝑝 − 0.7𝐹𝑦𝑆𝑥𝑐) (
𝜆 − 𝜆𝑝𝑓

𝜆𝑟𝑓 − 𝜆𝑝𝑓
)] ≤ 1.6𝑀𝑦 (2-13) 

𝑀𝑛,𝐹𝐿𝐵 =
0.7𝐸𝑆𝑥𝑐

(
𝑏𝑓

2𝑡𝑓
)

2  (2-14)
 

in which 𝜆 =
𝑏𝑓

2𝑡𝑓
, 𝑏𝑓 is the width of the flange, 𝑡𝑓 is the thickness of the flange, 𝜆𝑝𝑓 is the 

limiting slenderness for a compact flange (𝜆𝑝𝑓 = 0.38√𝐸 𝐹𝑦⁄ ), 𝜆𝑟𝑓 is the limiting slenderness 

for a noncompact flange (𝜆𝑟𝑓 = 1.0√𝐸 𝐹𝑦⁄ ), and 𝑆𝑥𝑐 is the elastic section modulus referred to 

the (compression) flange. It should be noted that 0.7𝑆𝑥𝑐 is larger than 𝑍𝑥 in many T-shaped 

beams.  

𝑀𝑛,𝑆𝐿𝐵 is not applicable when the stem is in tension.  

2.2.3 Eurocode 1993-1-1 

Reductions in cross-sectional capacity arising specifically from the influence of LTB are 

discussed in two sections of the Eurocode (CEN 2005): a general case for members of constant 



11 

 

 

cross-section (Section 6.3.2.2) and a case for rolled I-sections or equivalently sized welded 

sections (Section 6.3.2.3), with the overall LTB design equation in Section 6.3.2.1. Since the 

focus is singly-symmetric T-shaped beams, the general case is discussed. The factored buckling 

resistance of a laterally unrestrained beam, 𝑀𝑏,𝑅𝑑, is determined using Equation 2-15. 

𝑀𝑏,𝑅𝑑 = 𝜒𝐿𝑇𝑊𝑦

𝑓𝑦

𝛾𝑀1
 (2-15) 

in which 𝑊𝑦 is the section modulus, which takes the value of the plastic section modulus, i.e., 

𝑊𝑦 = 𝑊𝑝𝑙,𝑦, for Class 1 or 2 cross sections, or the elastic section modulus, i.e., 𝑊𝑦 = 𝑊𝑒𝑙,𝑦, for 

Class 3 cross sections, 𝑓𝑦 is the yield strength of steel,  𝛾𝑀1 is a resistance factor for member 

instability checks and prescribed a value of 1.0, and 𝜒𝐿𝑇 is the LTB reduction factor defined in 

Equation 2-16. 

𝜒𝐿𝑇 =
1

Φ𝐿𝑇 + √Φ𝐿𝑇
2 − �̅�𝐿𝑇

2

≤ 1.0 (2-16)
 

Φ𝐿𝑇 = 0.5[1 + 𝛼𝐿𝑇(�̅�𝐿𝑇 − 0.2) + �̅�𝐿𝑇
2 ] (2-17) 

�̅�𝐿𝑇 = √
𝑊𝑦𝑓𝑦

𝑀𝑐𝑟
 (2-18) 

where 𝛼𝐿𝑇 is an imperfection factor based on the ratio of cross section depth, 𝑑 , to cross section 

width, 𝑏, the shape of the cross-section, and whether the section is rolled or welded (see Table 

2-1 and Table 2-2), and 𝑀𝑐𝑟 is the elastic critical moment for lateral–torsional buckling and 

includes the effect of moment variation along the beam axis.  
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Table 2-1: EN 1993-1-1 LTB Curves  

Cross-section Limits Buckling curve 

Rolled I-sections 
𝑑/𝑏 ≤ 2 a 

𝑑/𝑏 > 2 b 

Welded I-sections 
𝑑/𝑏 ≤ 2 c 

𝑑/𝑏 > 2 d 

Other cross-sections – d 

 

Table 2-2: LTB Imperfection Factor 

Buckling curve a b c d 

Imperfection Factor, 𝛼𝐿𝑇 0.21 0.34 0.49 0.76 

 

Note that 𝑀𝑐𝑟 is not explicitly defined in the code and the supplementary material (also known as 

the Non-contradictory, Complementary Information, or NCCI) only includes an equation for 

doubly-symmetric sections. Since the NCCI allows designers to calculate 𝑀𝑐𝑟 using any method 

they deem appropriate (i.e., equations and computer programs), the moment gradient factor is 

determined depending on what method is chosen, as it may or may not be included in the 

calculation. For example, if the designer chooses to calculate 𝑀𝑐𝑟 using a similar equation to that 

presented in Equation 2-4 or Equation 2-11 there would be no moment gradient factor included 

in the critical moment calculation. Conversely, if the designer chooses to use LTBeam (a 

software endorsed by the NCCI for the calculation of elastic critical moments) the moment 

gradient factor would be within the reported value since the program calculates the critical 

moment by solving the classic eigenvalues. 

2.3 Review of Numerical and Experimental Studies 

As previously discussed, the design standards differentiate the members’ LTB capacity based on 

the cross-sectional shape. The following studies are also categorized in the same manner: 

doubly-symmetric I shapes, singly-symmetric I shapes, and T shapes, as shown in Figure 2-1.  
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Figure 2-1: Cross-section Shapes for Beams (a) Doubly-Symmetric I-Shape; (b) 

Singly-Symmetric I-Shape; (c) T-Shape 

Figure 2-1 (a) depicts I-shapes that are symmetric about the x- and y-axes, Figure 2-1 (b) depicts 

I-shapes that are symmetric about the y-axis only, and Figure 2-1 (c) depicts T-shapes symmetric 

about the y-axis. 

2.3.1 Lateral–Torsional Buckling of Doubly-Symmetric I-shaped Beams  

LTB of doubly-symmetric beams has been extensively studied beginning in the mid-1900s. It 

was determined that the LTB behaviour could be described using a set of differential equations. 

The differential equations could then be simplified, and solved, for the case of doubly-symmetric 

beams under constant moment. Although this was a large advancement for LTB research, the 

differential equations could not be readily solved for other loading scenarios. This led to the 

introduction of a moment gradient factor to account for moments that varied over the length of 

the beam. 

2.3.1.1 Salvadori (1955) 

The effect of the moment gradient was investigated by Salvadori (1955), who observed that 

beams with a linear, non-zero-slope moment are less susceptible to LTB than beams with a 

constant moment. Based on this work, Equation 2-19 was proposed for the moment gradient 

factor due to linearly varying moment along the beam: 
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𝜔2 = 1.75 + 1.05 (
𝑀1

𝑀2
) + 0.3 (

𝑀1

𝑀2
)

2

≤ 2.3 (2-19) 

where 𝑀1 is the smaller end moment and 𝑀2 is the larger end moment. The ratio between 𝑀1 and 

𝑀2 is negative for beams in single curvature and positive for beams in double curvature. This 

equation is allowed in AISC 360-16 as is and in CSA S16-14 with 2.5 as the upper limit, as long 

as the moment variation within the unbraced segment is linear.  

2.3.1.2 Kirby and Nethercot (1979) 

Due to the limitation of Equation 2-19—a requirement that the moment diagram must be 

linear—Kirby and Nethercot (1979) proposed Equation 2-20, which is purported to be valid for 

an arbitrary bending moment diagram, as one of the earliest quarter-point methods that was used 

for calculating the moment gradient factor. Equation 2-20 was slightly modified by AISC as 

shown in Equation 2-21.  

𝜔2 =
12𝑀𝑚𝑎𝑥

2𝑀𝑚𝑎𝑥 + 3𝑀𝑎 + 4𝑀𝑏 + 3𝑀𝑐
 (2-20) 

𝜔2 =
12.5𝑀𝑚𝑎𝑥

2.5𝑀𝑚𝑎𝑥 + 3𝑀𝑎 + 4𝑀𝑏 + 3𝑀𝑐
 (2-21) 

in which 𝑀𝑎 is the moment at the one-quarter point of the unbraced length, 𝑀𝑏 is the moment at 

the midpoint of the unbraced length, 𝑀𝑐 is the moment at the three-quarter point of the unbraced 

length, and 𝑀𝑚𝑎𝑥 is the maximum moment anywhere along the unbraced length. The use of 

Equation 2-21 is still permitted by AISC 360-16. 

2.3.1.3 Wong and Driver (2010) 

Wong and Driver (2010) determined that the equation specified in AISC 360 (Equation 2-21) 

yielded unconservative results for some common loading cases (e.g., point load at midspan of the 

unbraced segment and concentrated moments at the adjacent braced points). They also stated that 

designers should be aware that quarter-point methods may yield unconservative results when 

there are abrupt changes in the moment diagram. In an attempt to make the predictions more 
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accurate, they proposed a new quarter-point method with a square root function in the 

denominator: 

𝜔2 =
4𝑀𝑚𝑎𝑥

√𝑀𝑚𝑎𝑥
2 + 4𝑀𝑎

2 + 7𝑀𝑏
2 + 4𝑀𝑐

2
≤ 2.5 (2-22) 

Wong and Driver (2010) stated that the upper limit could be increased or removed, as the square 

root method produces good results without the limit; however, the limit was retained due to the 

increased influence of imperfections as the value of 𝜔2 increases. They concluded that the 

proposed equation produced “reasonable and conservative equivalent moment factors, even in 

cases where other methods do not”. They admitted that there were some situations, namely 

concentrated applied moments, which rarely occur in practice, where the quarter point methods 

would not produce suitable results. This equation is currently the only accepted method for non-

linear moment gradients in CSA S16-14 and is permitted by AISC 360-16 according to the 

commentary to the specifications. 

2.3.2 Lateral–Torsional Buckling of Singly-Symmetric I-shaped Beams 

Although singly-symmetric I-shaped beams seem similar to doubly-symmetric I-shaped beams, 

they have different behaviours due to the difference in the flange widths or thicknesses. Similarly 

to doubly-symmetric I-shaped beams, the differential equation for singly-symmetric I-shaped 

beams cannot be solved directly for varying moments (without the involvement of approximate 

solutions) and a moment gradient factor is therefore used to account for varying moments. 

Unless otherwise specified, the following researchers exclude T-shaped beams from their 

respective research programs. 

2.3.2.1 Kitipornchai and Trahair (1980) 

Kitipornchai and Trahair (1980) studied sectional properties specific to singly-symmetric 

sections, including the degree of monosymmetry, 𝜌, an approximation of the degree of 

monosymmetry, and the asymmetry parameter, 𝛽𝑥, defined in Equation 2-23, Equation 2-24, and 

Equation 2-25, respectively.  
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𝜌 =
𝐼𝑦𝐶

𝐼𝑦𝐶 + 𝐼𝑦𝑇
 (2-23) 

𝜌 ≈
𝐼𝑦𝐶

𝐼𝑦

(2-24) 

𝛽𝑥 =
1

𝐼𝑥
{(ℎ − �̅�) [

𝑏𝑡
3𝑡𝑡

12
+ 𝑏𝑡𝑡𝑡(ℎ − �̅�)2 + (ℎ − �̅�)3

𝑤

4
] − �̅� (

𝑏𝑐
3𝑡𝑐

12
+ 𝑏𝑐𝑡𝑐�̅�2 + �̅�3

𝑤

4
)} − 2𝑦𝑜 (2-25) 

𝐼𝑦𝐶 and 𝐼𝑦𝑇 are the moments of inertia of the compression and tension flanges, respectively, 

about the y-axis (axis of symmetry), and the symbols used in the asymmetry parameter can be 

seen in Figure 2-2. Specifically, for a T-section with the flange in tension (see Figure 2-2 (a)), 

𝜌 = 0, and when the flange is in compression, 𝜌 = 1. The value of 𝜌 falls in the range between 0 

and 1 for singly-symmetric sections except for 𝜌 = 0.5, which is for a doubly-symmetric section.  

 

Figure 2-2: Singly-symmetric I-sections with Geometric Dimensions (Koch et al. 2019) 

Kitipornchai and Trahair determined that the asymmetry parameter, 𝛽𝑥, in Equation 2-25 can be 

approximated using Equation 2-26.  

𝛽𝑥 ≈ 0.9ℎ(2𝜌 − 1) [1 − (
𝐼𝑦

𝐼𝑥
)

2

]  (2-26) 
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The authors limited Equation 2-26 to 
𝐼𝑦

𝐼𝑥
≤ 0.5, since the equation tends to overestimate the 

asymmetry parameter outside of the limits.  

2.3.2.2 Helwig, Frank and Yura (1997) 

This paper focused on LTB of singly-symmetric I-shaped beams subjected to loading at the 

mid-height of the beam. It was determined that Equation 2-21 accurately captured the effect of 

the moment gradient on the critical buckling moment for singly-symmetric beams in single 

curvature with the load applied at mid-height of the web. A slight modification to the equation in 

AISC 360 accurately predicted the buckling moment when the beam is in double curvature: 

𝜔2 = [
12.5𝑀𝑚𝑎𝑥

2.5𝑀𝑚𝑎𝑥 + 3𝑀𝑎 + 4𝑀𝑏 + 3𝑀𝑐
] {0.5 + 2 (

𝐼𝑦 𝑡𝑜𝑝

𝐼𝑦
)

2

} ≤ 3.0 (2-27) 

in which 𝐼𝑦 𝑡𝑜𝑝 is the weak-axis moment of inertia of the top flange. The second term, in curly 

brackets, accounts for the effects of reverse-curvature. This research was also limited to 0.1 ≤

𝜌 ≤ 0.9, thus excluding T-shaped beams. 

2.3.2.3 Slein, Jeong and White (2018) 

The aim of this paper was to improve the reliability of the moment gradient factor for 

singly-symmetric beams. Slein et al. (2018) compared AISC 360-16, the American Association 

of State Highway and Transportation Officials (AASHTO) LRFD Bridge Design Specifications, 

and the equation proposed by Wong and Driver (2010) for doubly-symmetric beams. The 

equation proposed by Wong and Driver (2010) is recommended for doubly-symmetric beams in 

single and double curvature and singly-symmetric beams in single curvature. The original 

equation is modified for singly-symmetric beams in double curvature as shown in Equation 2-28. 

𝜔2 =
4 (

𝑀𝑚𝑎𝑥

𝑀𝑐𝑟1
)

√((
𝑀𝑚𝑎𝑥

𝑀𝑐𝑟1
)

2

+ 4 (
𝑀𝐴

𝑀𝑐𝑟1
)

2

+ 7 (
𝑀𝐵

𝑀𝑐𝑟1
)

2

+ 4 (
𝑀𝐶

𝑀𝑐𝑟1
))

 (2-28)
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𝑀𝑐𝑟1 is defined as the elastic critical moment based on uniform bending. Since the beams are 

singly-symmetric it is imperative to ensure the critical moment being calculated is for the flange 

under compression at the point being analyzed. The authors concluded that the equation 

proposed by Wong and Driver (2010) was significantly more accurate for singly-symmetric 

beams in single curvature than the other two methods under consideration. It was also reported 

that the updated equation performed well for singly-symmetric beams in reverse curvature. The 

authors noted that the current equation in the AISC 360-16 (Equation 2-21) produced grossly 

conservative and unconservative results. Equation 2-35 has been proposed for adoption into the 

next AISC 360 code revisions. 

2.3.2.4 Koch, Driver, Li and Manarin (2019) 

Koch et al. (2019) completed an in-depth analysis of the asymmetry parameter for singly-

symmetric I-sections and T-sections. Specifically, they focused on the simplified equations 

initially proposed by Kitipornchai and Trahair (Kitipornchai and Trahair 1980). The authors 

determined that the limits initially proposed could be expanded to 0.1 ≤ ρ ≤ 0.9 with a 

maximum error of 9% in the asymmetry parameter. They also reported that the original 

asymmetry parameter equation (Equation 2-25) should be used for T-sections, as the simplified 

equation (Equation 2-26) leads to inaccuracies. 

2.3.3 Lateral–Torsional Buckling of T-shaped Beams 

There is limited research on LTB of T-shaped beams. The only study located was completed in 

the 1980s and since then there have been significant advancements in the calculation of moment 

gradient factors for doubly- and singly-symmetric I-shaped beams. 

2.3.3.1 Kitipornchai and Wang (1986) 

The energy method was used to investigate the capacities of singly-symmetric T-shaped beams 

undergoing elastic lateral–torsional buckling. Research was focused on the moment gradient 

factor for linear moment distributions. It was determined that results for T-shaped beams with 

the flange in compression provide good correlation with Equation 2-19. In contrast, when the 

stem is in compression, there is poor correlation with Equation 2-19. It is worth noting that the 
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energy method produces solutions that are based on an upper-bound solution, and thus a large 

number of terms are required correctly estimate the results. 

2.3.4 Residual Stress Patterns 

It has been demonstrated in many studies that in general residual stresses play a significant role 

in the inelastic LTB range. There has been significant research completed on doubly- and singly-

symmetric I-shaped beams; however, there have been few studies regarding T-shaped beams. 

T-shaped beams are commonly fabricated by cutting a rolled doubly-symmetric I-shaped beam 

longitudinally or by welding two plates together. Researchers have proposed two residual stress 

patterns for T-shaped beams: one for welded T-shaped beams and one for I-shaped beams cut to 

form a T-shaped beam. 

2.3.4.1 Nagaraja Rao, Estuar and Tall (1964) 

Nagaraja Rao et al. (1964) studied residual stresses in welded shapes made up of flame-cut plates 

using the method of sectioning. The test specimens included individual plates, L-, T-, H-, and 

box-shapes; however, the T-shape is of particular interest here. The plates used for fabricating 

the T-shapes varied from 150mm to 250mm wide and 6mm to 13mm thick. All the T-shapes 

used the same plate width and thickness for both the flange and the stem elements. An idealized 

residual stress pattern for flame-cut plates welded into a T-shape is shown in Figure 2-3.  

 

Figure 2-3: Residual Stress in the Flange (left) and Stem (right) (Nagaraja Rao et al. 1964) 
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The sign convention in Figure 2-3 is tension is positive and compression is negative. The 

reported stress ranges below are the mean of the two sides of the plate and assume that a positive 

value is the same direction as the figure and a negative value is the opposite direction of the 

figure. The study found that the free end of the stem (see 𝜎𝑟𝑒 in Figure 2-3) has residual stresses 

that range from -3% to +37% of the yield stress of the base material, 𝜎𝑟𝑚 varied from +25% to 

+31% the yield stress of the base material, 𝜎𝑟𝑛 varied from -2% to +33% of the yield stress of the 

base material, where 𝜎𝑟𝑛 is at the location specified by the dimension 𝑍7 as there is a 

typographical error in the original figure, and the portion of the stem that was welded to the 

flange (see 𝜎𝑟𝑡 in Figure 2-3) contains residual stresses that can approach +190% of the yield 

stress of the base material. It was reported that the residual stresses varied from +55% to +121% 

of the yield stress in the flange tips (see 𝜎𝑟𝑐1 and 𝜎𝑟𝑐2 in Figure 2-3) and +60% to +160% at the 

middle of the flange (see 𝜎𝑟𝑜 in Figure 2-3). 

2.3.4.2 Kitipornchai and Lee (1986a) 

The authors experimentally studied inelastic column buckling of angle and tee struts. The results 

were compared to theoretical predictions and the Structural Stability Research Council (SSRC) 

column curves. The researchers assumed a residual stress pattern for tee struts, as they did not 

complete any residual stress measurements. These assumptions were then utilized for the 

theoretical predictions. The assumed residual stress distribution is shown in Figure 2-4 where C 

and T represent the compression and tension regions, respectively, and 𝐹𝑌  is the material yield 

stress. The assumed residual stress distribution is half of an idealized residual stress distribution 

for doubly-symmetric I-shaped beams and does not allow for the effect of heat-cutting the web. 
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Figure 2-4: Assumed Residual Stress Distribution for Tee Struts (Kitipornchai and Lee 1986a) 

The experimental load capacities of the struts ranged from 90% to 103% of the theoretical load, 

with a mean of 95%, and a standard deviation for the test-to-predicted ratio of 0.05. This leads to 

a theoretical load that is in reasonable agreement with the experimental load. The same 

researchers also published a related paper more focused on the theoretical buckling load 

comparisons with the column buckling curves (Kitipornchai and Lee 1986b). The assumed 

residual stress distribution was the same for both papers. It is interesting to note that they found 

the experimental loads “are all lower than the inelastic buckling curve, which could be due to the 

interaction between local and overall buckling, or that the residual stresses in the test struts are 

more severe than the assumed values.” 

2.4 Summary 

Extensive research has been conducted on moment gradient factors for doubly- and singly-

symmetric I-shaped beams; however, there is a lack of experimental test data and finite element 

analysis on T-shaped beams. Additional research is required to determine moment gradient 

factors for T-shaped beams. 

There is a need to investigate whether critical inelastic buckling moments are correctly estimated 

by CSA S16 and AISC 360, as there has been no research that discusses T-shaped beams 

exhibiting inelastic LTB.  
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CHAPTER 3:  FINITE ELEMENT MODEL 

3.1 Introduction 

This study investigates the moment gradient distribution factors for the LTB capacity of singly-

symmetric beams through numerical analysis using the general-purpose finite element software 

ABAQUS. Nonlinear static structural analysis with the arc-length method (i.e., Riks analysis) is 

conducted to determine the buckling loads. Both experimental results available from the 

literature and a specialized elastic buckling analysis tool are used to co-validate the FEA model.  

3.2 Finite Element Modelling 

Finite element models require several different aspects to be defined, including material models, 

element type, mesh size, load application, boundary conditions, kinematic constraints, analysis 

options, geometric imperfections, and residual stresses. The following section includes a brief 

discussion of the aforementioned inputs.  

3.2.1 Material Model 

The steel material was assumed as elastic–plastic with a yield stress, 𝐹𝑦, of 345 MPa, a modulus 

of elasticity, 𝐸, of 200 GPa and Poisson’s ratio, 𝜈, of 0.3. Since design standards typically 

neglect the strain-hardening behaviour, no strain hardening was included in the model; however, 

the inclusion of strain hardening may result in increased member capacities. The stress–strain 

relationship contained a slight slope in the yield plateau, increasing to a stress of 350 MPa at a 

strain of 0.2, to ensure no convergence issues arose out of the numerical analysis. The true 

stress–strain curve can be seen in Figure 3-1. The material model differs slightly for the 

validation model since it is based on an actual test, where the flange yield stress is 252 MPa and 

the stem yield stress is 287 MPa. In both cases, the yield plateau was given a slight positive slope 

to ensure numerical stability in the inelastic range. 
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Figure 3-1: Steel Stress–Strain Curve under Uniaxial Tension 

3.2.2 Elements and Mesh 

The LTB analysis of steel beams can be performed in ABAQUS by modeling the beam using 

solid elements or shell elements. Solid elements were avoided as they are particularly 

computationally expensive and not well suited for elements with a thickness-to-length ratio (ℎ/

𝐿) below 0.5, as shown in Figure 3-2. The largest thickness-to-length ratio considered in this 

study is less than 0.05 and thus a thin shell element is the preferred element. 

 

Figure 3-2: Element Selection based on Thickness-to-Length Ratio (Akin 2010) 

Considering square, general-purpose shell elements that are suitable for finite strains, there are 

two shell elements: S4 and S4R. Both S4 and S4R elements have six degrees of freedom at each 

node; however, S4 uses full integration, while S4R uses reduced integration. Since the 
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computational requirements are less for S4R, and little accuracy is lost when reduced integration 

is employed, S4R elements were chosen for the model. 

Quad-dominated mesh elements were used, as the flange and stem are rectangular in shape. A 

mesh sensitivity analysis was completed to determine the optimized mesh density for the study 

of T-shaped beams undergoing LTB. The comparison between the critical moment and the 

number of elements along the cross-section of the beam can be seen in Figure 3-3. 

 

Figure 3-3: Mesh Sensitivity Analysis 

The adequate mesh density that led to the converged critical moment, shown in Figure 3-3, 

utilized six elements over the width of the flange and six elements over the depth of the stem for 

a total of 12 elements in the cross-section.  

3.2.3 Load Application 

Three different types of load conditions are considered in this research. They include constant 

moment (i.e., applying two concentrated moments in the opposite directions at the ends of the 
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beam), point load at midspan, and UDL conditions. The loads are implemented in the finite 

element simulation as follows: 

• constant moment: the moment can be applied in terms of a force couple. However, for 

the T-shaped beams, a concentrated point load is applied horizontally at each of the 

flange tips and another concentrated point load twice as large is applied horizontally at 

the tip of the stem in the opposite direction. A concentrated moment cannot be applied at 

the end of the beam, as it is applied to a single node and creates localized stresses and 

occasionally local buckling at the point of application. 

• point load: instead of applying a single point load at the mid-height and mid-span of the 

beam, 3 x 3 concentrated point loads are applied over a localized square area to avoid 

local buckling or distortion.  

• UDL: equal concentrated point loads are applied at all nodes at the mid-height of the 

stem along the full length of the beam. 

These loading cases were used for both the validation (Section 3.3) and the elastic and inelastic 

LTB analyses (Chapters 5 and 6). 

3.2.4 Boundary Conditions and Constraints 

The boundary conditions for lateral–torsional buckling of simply-supported beams are applied in 

two steps. The first step consists of applying two single-point constraints (i.e., boundary 

conditions), creating a simply-supported, torsionally pinned beam by fixing the centroid of the 

section in the horizontal (U1) and vertical (U2) directions along with the torsional degree of 

freedom (UR3)—the torsional degree of freedom must be constrained so that the beam does not 

rotate about the longitudinal axis at the supports—at both ends of the beam and the longitudinal 

direction (U3) is additionally constrained at the right support. This boundary condition is 

depicted in Figure 3-4 for both I- and T-shaped beams. For I-shaped beams the centroid of the 

section is coincident with the mid-height of the web, while the centroid is significantly closer to 

the flange in T-shaped beams. 
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Figure 3-4: Boundary Conditions 

The second step consists of applying multiple-point constraints through the application of 

kinematic constraints in ABAQUS at each beam end. Kinematic constraints limit the motion of 

groups of nodes to rigid body motion defined by the master node (i.e., the centroid in this case). 

The constraint is applied to specific user-defined degrees of freedom as shown in Figure 3-5 and 

Figure 3-11.  

3.2.4.1 Original Constraints 

Initially the constraints were aimed to guarantee the flange nodes move the same amount in the 

U1 and U2 directions and rotate the same amount in all three rotational directions, and the stem 

was tied together so that those elements act in unison as seen in Figure 3-5. The constraint in the 
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longitudinal direction was released so the nodes along the flange could vary differentially as the 

beam deflects laterally during LTB. This additionally ensures that the beam was free to warp. 

  

Figure 3-5: Original Constraints 

Constraints similar to those shown in Figure 3-5 have been used in prior LTB research (Ji 2019; 

Kabir 2016) and were further investigated here for its validity. The constraints were applied to a 

2.5m long steel beam with a WT500247 section. A very short beam was used to ensure that it 

would develop the fully plastic cross-sectional capacity and not enter the elastic or inelastic LTB 

regions. A 900 kN point load was applied as described in Section 3.2.3. 

The expected vertical force at the supports can be calculated as shown in Equation 3-1.  

𝑉 =
𝑃

2
=

9(100 𝑘𝑁)

2
= 450 × 103 𝑁 = 450 𝑘𝑁 (3-1) 

Using the original constraints, Figure 3-6 depicts the resultant vertical forces at the support 

locations. 
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Figure 3-6: Overall Beam (Forces in N) 

As seen in Figure 3-6, the shear force is correctly calculated as 450 kN at both ends of the beam. 

Next, the resultant nodal forces (i.e., the summation of all nodal forces) along the flange and 

stem at the ends of the beam were determined as shown in Figure 3-7. The resultant horizontal 

and vertical nodal forces along the flange were calculated by summing the horizontal or vertical 

force components at each of the nodes along the edge in the same vertical plane as the beam 

support location. The nodal forces along the stem were similarly determined for the stem nodes 

along the same vertical plane. 
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Figure 3-7: Forces Along the Flange and Stem 

It was determined that the sum of the two vertical nodal forces (see Equation 3-2) was equal to 

the resultant vertical force at the support, as evaluated in Equation 3-1.  

389.3𝑘𝑁 +  60.7𝑘𝑁 =  450𝑘𝑁 (3-2) 

Note that horizontal resultant forces exist in the flange and stem, but the two forces are equal 

(31.8 kN) and opposite. To look into this further, the nodal forces were then separately extracted 

at the centre flange node and the top stem node as seen in Figure 3-8 and Figure 3-9, 

respectively.  



30 

 

 

 

Figure 3-8: Nodal Forces of the Centre Flange Node 

 

Figure 3-9: Nodal Forces of the Top Stem Node 

The horizontal nodal force extracted at the centre node of the flange is again 31.8 kN, confirming 

that all other flange nodes at the beam ends developed no longitudinal stress as expected, while 
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the horizontal force from the node at the top of the stem is only 8.7 kN, a net difference of 23.1 

kN. The nodal forces were then extracted along the entire stem leading to Figure 3-10 

 

Figure 3-10: Distribution of the Stem Nodal Forces 

The values sum to 31.8 kN to the left, which is the same as the overall force shown in Figure 3-7. 

The left figure depicts the force distribution along the stem. A simply-supported, torsionally 

pinned beam should not experience tensile forces at the free ends. This led to a modification of 

the constraints. 

3.2.4.2 Updated Constraints 

To eliminate the tensile nodal forces along the stem, the longitudinal constraint (U3) was 

released by changing the rigid tie constraint to a kinematic coupling constraint. This led to the 

same constraints along the flange and stem (i.e., U1, U2, UR1, UR2, and UR3 coupled); see 
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Figure 3-11. These updated boundary conditions were applied to the same beam as described in 

Section 3.2.4.1, and the same analysis was completed. 

 

Figure 3-11: Updated Constraints 

The vertical reactions at the supports are correctly determined as 450 kN, as seen in Figure 3-12, 

due to a 900 kN point load applied at the mid-span of the beam.  

 

Figure 3-12: Overall Beam Subjected to a Mid-span Point Load with Updated End Constraints 
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The resultant nodal forces were again determined for the flange and stem. Figure 3-13 confirms 

the vertical force is correctly determined as 450 kN, as shown in Equation 3-3, but there are still 

equal and opposite horizontal forces for the flange and stem nodes.  

444 𝑘𝑁 +  6 𝑘𝑁 =  450 𝑘𝑁 (3-3) 

 

 

Figure 3-13: Resultant Forces for the Flange and Stem of the Beam with Updated Constraints 

To better understand where the forces originated from, the forces were extracted at only the 

centre flange node (Figure 3-14) and top stem node (Figure 3-15). 
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Figure 3-14: Nodal Forces of the Centre Flange Node of the Beam with Updated Constraints 

 

Figure 3-15: Nodal Forces of the Top Stem Node of the Beam with Updated Constraints 

Similar to the original constraints, the only horizontal nodal force for the flange acted at the 

centre flange node, but the exclusion of the kinematic coupling constraint of the stem nodes in 



35 

 

 

the longitudinal direction revealed a nodal force at the top stem node that was equal to the nodal 

force at the centre flange node.  

 

Figure 3-16: Stem Nodal Forces with Updated Constraints 

For added confidence, the nodal forces were again extracted at all the nodes. Figure 3-16 

confirms that the only stem nodal force originates from the flange–stem interaction. This is 

acceptable because when all the elements surrounding the flange–stem interaction node are 

selected, there are no horizontal forces produced at the ends of the beam.  

The comparison between the original and updated constraints led to the preferred use of the 

updated constraints, which are further validated later using experimental results.  

3.2.5 Methods of Analysis 

Two types of analysis are available in ABAQUS to determine the elastic critical lateral–torsional 

buckling moment: buckling analysis and Riks analysis. Both are used in this research to 

determine the buckling load. 

3.2.5.1 Buckling Analysis 

Buckling analysis, otherwise known as eigenvalue analysis, was performed to determine the 

buckling shape as well as the buckling load. This is completed using a linear perturbation 



36 

 

 

procedure. These results are used for two purposes: (1) compare the buckling load results to the 

classical solutions (e.g., LTBeam results) for cross-validation, which can be used to validate the 

computational model (presented in Section 5.2.3), and (2) define initial imperfections based on 

buckling shapes when running a static Riks analysis.  

3.2.5.2 Riks Analysis 

Riks analysis is a nonlinear solver based on displacement control with an arc-length algorithm 

and the capability to simulate the post-buckling response. The load–deflection curve derived 

from structural analysis can be used to determine the buckling load for the beam with the 

inclusion of initial geometrical imperfection and residual stresses. The definition of initial 

geometrical imperfection and residual stresses in ABAQUS are elaborated in the following 

sections. 

 

3.2.6 Initial Geometrical Imperfections 

In order to introduce an initial geometrical imperfection to the Riks analysis, a buckling analysis 

was run to determine the beam’s buckled shape and the first positive buckling mode was used to 

apply the imperfection shape. In this study an imperfection of L/1500 was applied, where L is the 

length of the beam. The decision to use L/1500 was based on the competing arguments that were 

made during the creation of the SSRC column buckling curves: (1) The maximum imperfection 

of L/1000 is a reasonable yet conservative value to develop the column buckling curves, (2) the 

geometric imperfection is small enough to be accounted for within the resistance factor, and (3) 

an intermediate position that falls between the two extremes. The SSRC recommended that a 

geometric imperfection of L/1500 be used in the creation of steel column buckling curves since 

the average imperfection of many laboratory columns was approximately L/1500 (Ziemian 

2010). Since the maximum imperfection allowed in the S16-14 is L/1000, the same reasoning 

can be applied to lateral–torsional buckling research and an initial imperfection equal to L/1500 

was applied to the beams analyzed.  

 

The imperfection shape is scaled according to the scaling factor as follows. The buckling 

analysis normalizes the maximum displacement component to a unit displacement (Ellobody et 
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al. 2014) and the scaling factor determines the numerical value of the displacement and is 

applied to every node in the model prior to performing the Riks analysis. It is imperative to 

ensure the model for buckling analysis and the model for Riks analysis are identical, since the 

initial geometrical imperfection is applied at the specific node. 

3.2.7 Residual Stresses 

Residual stresses can be included by defining predefined stress fields in ABAQUS; however, 

they first have to be modified from their original form. Figure 3-17 shows a possible residual 

stress pattern for a T-shaped beam in the dotted line. The residual stress pattern had to be 

modified to be entered into ABAQUS since the stress is applied over the width of an element. If 

a beam is divided into 10 elements over the width and 10 elements over the height of the beam, 

the residual stress can be averaged over the width of each element to obtain the ABAQUS 

residual stress pattern.  

 

Figure 3-17: Original Residual Stress Distribution and ABAQUS Residual Stress Pattern 

Linear residual stress patterns can be averaged over the element width with relative ease. With 

non-linear residual stress patterns, special care has to be taken to ensure the residual stress 

pattern entered into ABAQUS is in equilibrium to ensure no additional unexpected forces are 
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applied to the beam.  The influence of residual stresses on inelastic LTB behaviour is discussed 

in Section 6.2.1. 

3.3 Validation 

The model was validated against LTB tests from Nagoya University (Fukumoto et al. 1980). 

This test programme was selected, as sufficient information was published to develop a detailed 

model. Twenty-five beams were tested for each length—2.6m, 2.0m and 1.5m—for a total of 75 

tests and one load–displacement curve was reported for each length. The beams were tested with 

a vertical point load applied at the midspan of the compression flange. The test beams are 

doubly-symmetric I-shaped beams with dimensions of 200mm (section depth) x 100mm (flange 

width) x 5.5mm (web thickness) x 8mm (flange thickness). The material properties were 

obtained from coupon tests: the modulus of elasticity is 201.7 GPa, the yield stress of the flange 

plates is 252 MPa, and the yield stress of the web plate is 287 MPa. Geometrical imperfections 

corresponding to the 95th percentile of the measured value were applied, as 𝐿/5000, where 𝐿 is 

the beam length. The geometrical imperfection is only one-fifth of the permissible initial 

imperfections. Residual stress measurements were also reported as part of the experimental 

programme, as shown in Figure 3-18.  
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Figure 3-18: Reported Residual Stress Distribution (Fukumoto et al. 1980) 

The mean residual stress pattern was used to convert the reported residual stresses to constant 

stresses over the width of the elements for use in the validation models. 

Numerical results from models using the original and updated constraints were compared to the 

test results. This was necessary, as during the preliminary elastic LTB analysis it was determined 

that the updated constraints did not perform well for constant moments due to the way constant 

moment is applied and they were subsequently revised to the original constraints. As discussed 

in Section 3.2.3, a constant moment is equally applied by use of force couples at the beam ends 

and not by end moments. When end moments are applied, the longitudinal DOF of the stem node 

needs to be rigidly tied. Otherwise, when the force couples are applied at the beam ends, a 

concentrated tensile force applied at the bottom of the stem can cause significant element 

distortion. Thus, the original constraints were implemented for the constant moment condition to 

avoid extreme distortion of the stem locally, without affecting the global behaviour, and the 

updated constraints were implemented for the point load and UDL conditions.  
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3.3.1 Original Constraints 

The numerical model with the original constraints was validated using the three reported load–

deflection curves of Fukumoto et al. (1980). The comparison of the load–deflection curves 

obtained from the experimental tests and the finite element models is shown in Figure 3-5, where 

𝛿𝐻 is the horizontal deflection of the extreme fibre of the top flange, and 𝛿𝑉 is the vertical 

deflection of the centre of the bottom flange at the mid-span of the beam.  

 

Figure 3-19: Comparison of the Load–Deflection Curves from Experiments and Finite Element 

Models with Original Constraints—Point Load 

Table 3-1 shows the comparison of the buckling loads from experiments and finite element 

models with original constraints.  



41 

 

 

Table 3-1: Comparison of the Buckling Loads from Experiments and Finite Element Models 

with Original Constraints: Point Load Condition 

Beam Length Test Result  

(kN) 

FEA Result 

(kN) 

Difference 

(%) 

1560 mm 120 121.1 0.89 

2060 mm 87.5 88.48 1.12 

2660 mm 68.5 62.56 -8.66 

  Mean -2.22 

  Standard Deviation 0.056 

3.3.2 Updated Constraints 

The numerical model with the updated constraints was validated using the three reported load–

deflection curves of Fukumoto et al. (1980). The comparison of the load–deflection curves 

obtained from the experimental tests and the finite element models is shown in Figure 3-11, 

where 𝛿𝐻 and 𝛿𝑉 are the horizontal and vertical displacements as defined in Section 3.3.1.  
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Figure 3-20: Comparison of the Load-Deflection Curves from Experiments and Finite Element 

Models with Updated Constraints—Point Load 

Table 3-2 shows the comparison of the buckling loads from experiments and finite element 

models with updated constraints. 

Table 3-2: Comparison of the Buckling Loads from Experiments and Numerical Models with 

Updated Constraints: Point Load Condition 

Beam Length Test Result  

(kN) 

FEA Result 

(kN) 

Difference 

(%) 

1560 mm 120 119.9 -0.11 

2060 mm 87.5 93.20 6.51 

2660 mm 68.5 64.46 -5.89 

  Mean 0.17 

  Standard Deviation 0.062 
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3.3.3 Validation Discussion 

Figure 3-19 and Figure 3-20 show the comparison of the load–deflection curves obtained from 

the experimental tests and the finite element model. The comparison displays a reasonably good 

correlation between the numerical prediction and experiment measurements. Although the 

validation proved that both constraints provide reasonably good correlation for doubly-

symmetric I-shaped beams, the constraints are extended to T-shaped beams due to the lack of 

experimental data. To ensure accuracy due to the extension, the constraints were thoroughly 

investigated to ensure that the global results correlated well with experimental results, while 

maintaining internal stresses consistent with the defined boundary conditions as explained in 

Section 3.2.4.1 and Section 3.2.4.2. The initial stiffness is either slightly over-estimated or under-

estimated, which may be due to the initial geometric imperfection assumed. The initial 

imperfection corresponding to the 95th percentile was reported as 𝐿/5000 without information on 

the imperfection distribution along the beam. In the numerical analysis, an initial imperfection is 

thus assumed to take the same shape as the first eigen-buckling mode with a maximum lateral 

displacement of 𝐿/5000. Overall, both constraint configurations can reasonably predict the LTB 

behaviour of doubly symmetric I-shaped beams, and thus the original constraints can be used to 

predict the LTB behaviour of T-shaped beams under a constant moment and the updated 

constraints can be used to predict the LTB behaviour of T-shaped beams under a point load and 

UDL as studied in this work. 

 

3.4 Conclusions 

Various aspects of the finite element model for numerical analysis to determine the elastic 

critical moment against LTB are addressed in this chapter. The model validation was completed 

using experimental results for doubly-symmetric I-shaped beam tested by Fukumoto et al. 

(1980). The boundary conditions in the validation model are then applied to T-shaped beams due 

to a lack of corresponding experimental data. To bridge the gap between doubly-symmetric I-

shaped beams and T-shaped beams, the elastic LTB analysis was completed using both the finite 

element model and a freely available software to further validate the model as discussed in 

Chapter 5.  
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CHAPTER 4:  NUMERICAL TEST SECTIONS 

4.1 Introduction 

A comprehensive numerical investigation is performed to study the elastic critical moment of 

T-shaped beams subject to three different load conditions (i.e., point load at midspan, UDL, and 

constant moment). A representative test matrix was determined using a subset of all T-shaped 

beams cut from standard wide-flange shapes (WT-sections) by eliminating sections that had 

similar sectional properties. The chosen sections were then used throughout the entirety of the 

numerical simulations—both in the elastic and inelastic LTB regions.  

 

4.2 Test Matrix 

The WT-sections are selected from the 283 WT-sections available in the AISC online Shapes 

Database (AISC 2017). The AISC online shapes database was chosen because the CISC does not 

have a shapes database that can be downloaded with the necessary sectional properties and there 

are more shapes in the AISC online database than in the CISC Handbook of Steel Construction 

(CISC 2017). This allows for a wider range of sections to be analyzed. Additionally, the AISC 

database provides the metric equivalent shape dimensions and section properties. Of the 283 

WT-sections, 178 are considered potentially susceptible to the failure mode of LTB considering 

the second moment of area about the strong axis (𝐼𝑥) must be greater than the second moment of 

area about the weak axis (𝐼𝑦).  

 

The section candidates susceptible to LTB are first grouped into class 1, 2, and 3 sections based 

on the classification criteria in S16 for elements in flexural compression using a yield stress of 

345 MPa (CSA 2014). Since the flange is the element in compression, only the flange is 

classified. There are 162 class 1 sections, 13 class 2 sections, and three class 3 sections. To 

obtain good coverage, 6% of the class 1 sections, 15% of the class 2 sections and 33% of the 

class 3 sections were chosen for analysis. 

 

The chosen sections vary in depth from 150 to 550mm and 100 to 470mm in width. The stem 

thickness varies from 6 to 77mm and the flange thickness varies from 8 to 115mm. WT-sections 

are selected based on section classes, top flange thickness and width, stem thickness and depth, 
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area moment of inertia, and minimum slenderness ratio for global elastic LTB. There are many 

different slenderness ratios that can be considered using parameters that influence LTB (e.g., 

torsional stiffness, lateral stiffness, etc.); however, in this study the minimum slenderness ratio is 

defined as the minimum ratio between the beam length (𝐿) and the section depth (𝑑), commonly 

referred to as the span-to-depth ratio, for the beam to be susceptible to elastic LTB assuming the 

beam is subjected to a constant moment and including the effect of residual stresses by limiting 

the maximum elastic LTB to 0.7 times the yield moment as per CSA S16 §13.6 e) (2014).  

 

A subset of the sections is selected to cover the range of section properties and minimum 

slenderness ratios for global elastic LTB (referred to as min 𝐿/𝑑 in Table 4-1). This resulted in a 

total of 18 sections. The selected sections, and their geometric properties, are shown in Table 

4-1. 
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Table 4-1: Test Matrix Including Relevant Geometric Properties 

Section 

  

min 

𝑳/𝒅 

 

𝒃𝒇 

(mm) 

𝒕𝒇 

(mm) 

𝒅 

(mm) 

𝒘 

(mm) 

𝑰𝒙 

x106 

(mm4) 

𝒁𝒙 

x103 

(mm3) 

𝑺𝒙 

x103 

(mm3) 

𝑰𝒚 

x106 

(mm4) 

𝑱 

x103 

(mm4) 

𝑪𝒘 

x109 

(mm6) 

𝑰𝒚/𝑰𝒙 

 

 Class 1 Sections  

WT10011 127 102 8 103 6.22 1.37 31.3 17.5 0.708 28.3 0.0103 0.52 

WT265109 244 318 29.2 279 18.3 84.9 695 388 78.3 3200 8.73 0.92 

WT265184 392 325 50.5 302 27.9 153 1240 661 145 16700 43.8 0.95 

WT30570 83 230 22.2 310 13.1 77.4 592 333 22.7 1090 2.57 0.29 

WT305186 292 335 48 335 26.4 199 1420 773 151 13800 44.3 0.76 

WT345274 312 373 63 386 35.1 391 2470 1340 273 35200 143 0.70 

WT345401 407 389 89.9 414 50 637 3970 2100 441 103000 467 0.69 

WT380194 193 386 41.9 401 23.6 318 1840 1020 200 11200 49.4 0.63 

WT420236 181 406 48 447 26.4 483 2520 1410 268 17500 90 0.55 

WT460393 229 437 73.9 505 40.9 1020 4880 2690 516 67800 430 0.51 

WT460688 300 472 115 549 76.7 2140 10100 5520 1030 294000 2600 0.48 

WT500124 46 300 26.2 490 16.5 374 1880 1040 58.7 2910 16.9 0.16 

WT500247 83 310 54.1 518 31 783 3790 2100 134 21900 130 0.17 

WT500488 209 429 89.9 554 50 1550 6980 3840 599 122000 857 0.39 

WT550171 68 401 31 546 18 599 2570 1450 166 5160 37.3 0.28 

 Class 2 Sections  

WT15519 135 165 9.65 155 5.84 4.87 68.8 39.3 3.6 62.4 0.0467 0.74 

WT38073 48 267 17 376 13.2 134 891 492 26.6 783 3.84 0.20 

 Class 3 Sections  

WT26536 53 207 10.9 262 8.89 31.2 292 162 8.07 166 0.408 0.26 
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Figure 4-1 to Figure 4-4 show all the section candidates (denoted as open markers) and the 

sections selected (denoted as closed markers) with section classes differentiated by shapes. These 

plots indicate the selected sections have good coverage of top flange width and thickness, stem 

depth and thickness, second moments of area 𝐼𝑥 and 𝐼𝑦, minimum slenderness ratio for global 

elastic LTB and section depth.  

 

   
Figure 4-1: Section Candidates vs Sections Selected: Top Flange 

 

   
Figure 4-2: Section Candidates vs Sections Selected: Stem 
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Figure 4-3: Section Candidates vs Sections Selected: Second Moment of Area 

 

  
Figure 4-4: Section Candidates vs Sections Selected: Minimum Slenderness Ratio for Global 

Elastic LTB 

 

Figure 4-4 depicts the minimum slenderness ratio for elastic LTB to occur. The minimum 

slenderness ratios—ranging from 35 to 420—are extremely large and would not normally be 

used in design. The slenderness ratio was included in the selection of the test matrix to capture a 

wide variety of sections in the elastic range. The slenderness ratios used for the elastic LTB 
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analysis were calculated by applying a hypothetical moment gradient factor of 1.7 (and rounded 

up to the nearest integer divisible by 5) to ensure all the beams were in the elastic LTB region. It 

was hypothesized that the moment gradient factors would be close to those proposed by Wong 

and Driver (2010); however, the factor was increased beyond the values hypothesized to account 

for values greater than expected. This led to the slenderness ratios shown in Table 4-2. 

Table 4-2: Test Section Beam Slenderness Ratios 

Section 𝐿/𝑑 

WT10011 225 

WT15519 230 

WT26536 90 

WT265109 410 

WT265184 685 

WT30570 140 

WT305186 490 

WT345274 525 

WT345401 680 

WT38073 80 

WT380194 325 

WT420236 305 

WT460393 385 

WT460688 505 

WT500124 80 

WT500247 145 

WT500488 355 

WT550171 115 

 

Slenderness ratios of 5, 10, 20 and 30 were chosen for the analysis of inelastic sections. These 

slenderness ratios are chosen to represent cases that would most likely be used in the design of 

structures and façades.  

4.3 Conclusions 

T-sections were selected by section class, then were selected based on the flange width, flange 

thickness, stem depth, stem thickness, major axis moment of inertia, and minor axis moment of 

inertia. Ultimately, eighteen sections were selected to represent the T-sections listed in the AISC 
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shapes database. The sections are used for the elastic and inelastic LTB analyses to achieve a 

balance between the computational costs associated with modelling and analyzing as well as 

good coverage of the section properties of all possible sections. 
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CHAPTER 5:  ELASTIC LATERAL–TORSIONAL BUCKLING 

5.1 Introduction 

The LTB design equations in both CSA S16 and AISC 360 neglect the moment gradient effect 

by using a moment gradient factor 3 = 1 when determining the critical moment for T-shaped 

beams in single curvature. This inherently conveys that WT-sections do not abide by the same 

LTB principles as W-sections and singly symmetric I-shaped sections because these moment 

gradient factors use a quarter point method, as shown in Equation 5-1. 

ω2 = ω3 =
4𝑀𝑚𝑎𝑥

√𝑀𝑚𝑎𝑥
2 + 4𝑀𝑎

2 + 7𝑀𝑏
2 + 4𝑀𝑐

2
 (5-1) 

where 𝑀𝑎, 𝑀𝑏 and 𝑀𝑐 are the moments at one-quarter, half and three-quarter points of the beam 

segment, respectively, and 𝑀𝑚𝑎𝑥 is the maximum moment along the beam segment. Therefore, 

this chapter addresses the current strength predictions by CSA S16-14 and AISC 360-16 of 

T-shaped beams subject to constant moment, point load, and UDL loading scenarios. The 

numerical test sections discussed in Chapter 4 and slenderness ratios provided in Table 4-2 are 

analyzed in the elastic LTB region using two different software—LTBeam and ABAQUS. 

5.2 LTBeam 

LTBeam is a freely available software (CTICM 2001) that is used to calculate the elastic critical 

moment by solving the classic eigenvalue problem using an iterative dichotomic process without 

considering initial imperfections. This tool has been validated by other analysis tools (e.g., 

ANSYS). With a maximum difference of only 1.48% between LTBeam and ANSYS in 

predicting the elastic critical moments for six T-shaped beams (CTICM 2002). As such, LTBeam 

can be used to predict the elastic critical moment, as stated in the NCCI, which provides 

guidance not given in the Eurocode (Bureau 2008). 

5.2.1 LTBeam Results 

The moment gradient factor, 3, is determined as the ratio of the elastic critical moment of a 

beam subject to a specific loading condition (e.g., point load or UDL) to that of a beam with a 

constant moment. Using, Equation 5-1 proposed by Wong and Driver (2010), the moment 
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gradient factor is 1.26 for a point load condition, as shown in Equation 5-2, and 1.13 for a UDL 

condition, as shown in Equation 5-3.   

3,point load =
4𝑀

√𝑀2 + 4 (
𝑀
2 )

2

+ 7𝑀2 + 4 (
𝑀
2 )

2
= 1.26 (5-2)

 

3,UDL =
4 (

𝑤𝐿2

8 )

√(
𝑤𝐿2

8 )
2

+ 4 (
3𝑤𝐿2

32 )
2

+ 7 (
𝑤𝐿2

8 )
2

+ 4 (
3𝑤𝐿2

32 )
2

= 1.13 (5-3)
 

where 𝑀 is the maximum moment in a beam subject to a point load and 𝑤 is the UDL density 

along the length of the beam, denoted as 𝐿. The elastic critical moments determined using 

LTBeam are utilized to calculate the moment gradient factors, as reported in Table 5-1.   

 

Table 5-1: Moment Gradient Factors Based on Eigenvalue Analysis in LTBeam 

Section 
3 Constant 

Moment 

3  

Point Load 
3 UDL 

WT10011 1.00 1.35 1.13 

WT15519 1.00 1.36 1.13 

WT26536 1.00 1.33 1.11 

WT265109 1.00 1.35 1.13 

WT265184 1.00 1.35 1.13 

WT30570 1.00 1.35 1.12 

WT305186 1.00 1.35 1.13 

WT345274 1.00 1.35 1.13 

WT345401 1.00 1.35 1.13 

WT38073 1.00 1.32 1.11 

WT380194 1.00 1.35 1.13 

WT420236 1.00 1.35 1.13 

WT460393 1.00 1.35 1.13 

WT460688 1.00 1.35 1.13 

WT500124 1.00 1.33 1.11 

WT500247 1.00 1.35 1.12 

WT500488 1.00 1.35 1.13 

WT550171 1.00 1.34 1.12 

Mean  1.35 1.12 

Standard Dev.  0.01 0.01 
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From Table 5-1, it is observed that eigenvalue analysis gives 3 for the point load scenario as 

1.35 and for the UDL scenario as 1.12. Both the point load and UDL scenarios results are tightly 

grouped with very small standard deviations (less than 0.01). 

5.2.2 Comparison to Design Standards 

The 3 value for a point load (3 = 1.35) is 6.3% larger than the value obtained using Equation 

5-1. It should be noted that the 3 value was initially reported as 1.35 for a point load at the 

midspan of the beam with simply supported boundary conditions and calculated using a program 

written in Fortran (Nethercot and Rockey 1971). With the introduction of Equation 5-1 by Wong 

and Driver (2010), the conservatism was deemed an acceptable compromise for the improvement 

of other loading scenarios that previously produced erroneous results. Additionally, 3 = 1.12 for 

a UDL, which is 0.6% smaller than the value obtained using Equation 5-1.  

The ratio of moments determined using LTBeam to the corresponding S16-14 elastic LTB 

moments, including the moment gradient factor for the point load scenario (presented in 

Equation 5-2) and the UDL scenario (presented in Equation 5-3) for each beam are shown in 

Figure 5-1. When the ratio is greater than 1.0, the S16-14 elastic LTB moment is smaller than the 

LTBeam elastic LTB moment and thus deemed conservative for use in design, and when the 

ratio is less than 1.0, the S16-14 elastic LTB moment is larger than the LTBeam elastic LTB 

moment and thus deemed unconservative. The same scale is used for Figure 5-1, Figure 5-3, and 

Figure 5-4 for consistency. 
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Figure 5-1: Comparison of LTBeam Moments to S16-14 Moments Including Proposed Moment 

Gradient Factors 

As seen in Figure 5-1, the S16-14 elastic LTB moments vary from about 0.94 to 1.06 times the 

LTBeam elastic LTB moments with a standard deviation of 0.03. With the inclusion of 𝜔3, 

S16-14 adequately predicts the elastic LTB moment when compared to LTBeam. 

5.2.3 Additional Model Validation 

The initial validation was completed using doubly-symmetric tests (see Section 3.2) and then the 

finite element model was utilized for T-sections, leaving an apparent gap in the validation 

protocol. To bridge this gap, the results from LTBeam were compared to the eigenvalue buckling 

analyses from ABAQUS. The LTBeam and ABAQUS analyses were completed for each section 

with a point load applied at the midspan, mid-height of the beam.  
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Table 5-2: LTBeam vs ABAQUS Buckling Analysis Moment Capacities (Point Load) 

Section 

Slenderness 

Ratio  

(𝐿/𝑑) 

LTBeam 

(kNm) 

ABAQUS Buckling 

(kNm) 

ABAQUS 

Buckling 

LTBeam 

WT10011 225 3.1 3.1 1.01 

WT15519 230 7.1 7.2 1.01 

WT26536 90 27.7 29.2 1.06 

WT265109 410 72.3 72.5 1.00 

WT265184 685 117.9 117.5 1.00 

WT30570 140 61.1 62.5 1.02 

WT305186 490 144.4 144.2 1.00 

WT345274 525 248.7 247.9 1.00 

WT345401 680 388.1 385.6 0.99 

WT38073 80 86.0 91.0 1.06 

WT380194 325 189.8 190.6 1.00 

WT420236 305 262.3 263.4 1.00 

WT460393 385 495.2 494.7 1.00 

WT460688 505 1016.1 1005.6 0.99 

WT500124 80 177.1 185.1 1.05 

WT500247 145 370.6 373.6 1.01 

WT500488 355 697.6 695.6 1.00 

WT550171 115 259.0 267.3 1.03 

 Mean   1.01 

 Standard Dev.   0.02 

 

It can be seen that the critical moments from LTBeam and ABAQUS—using eigenvalue 

buckling—have good correlation, as shown in Table 5-2. ABAQUS produced results that are, on 

average, 1.3% larger than the results of LTBeam, with a standard deviation of 0.02. The analysis 

showed that the ABAQUS buckling critical moments are similar to those from LTBeam and 

provided additional confidence that the ABAQUS model estimates the elastic critical moments 

of T-shaped beams accurately.  

5.3 Finite Element Modelling 

The Riks analysis in ABAQUS provided the load–deflection curve, i.e., the load versus the 

lateral deflection at the mid-height of the stem at the midspan of the beam. To calculate the 

maximum moment, the lateral displacement at the maximum load from the load–deflection curve 
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is used to determine the corresponding moment at that lateral displacement using the moment–

deflection curve.   

 

5.3.1 Load–Deflection Curves 

The load–deflection curve, which is usually employed to determine the LTB critical moment, 

behaves nonlinearly due to the initial geometric imperfection and the nonlinear geometric 

stiffness. The slope of the load–deflection curve is an equivalent (generalized) stiffness to resist 

LTB. For example, if the load–deflection curve starts to soften, the capability to resist LTB starts 

to degrade. A common practice is to define the critical load corresponding to zero slope, and the 

maximum associated moment in the vertical plane is regarded as the critical moment. The 

moment gradient factor, 3, is determined for the point load and UDL scenarios using the 

moments obtained from Riks analysis in ABAQUS.  

 

The load–deflection curves for a WT420236 section and a slenderness ratio (length/height) of 

305 are plotted in Figure 5-2 (a), (b) and (c) for the load scenarios of a constant moment, a point 

load, and a UDL, respectively. The moment–deflection curves for these three load scenarios are 

shown in Figure 5-2 (d). Note that the vertical axis in Figure 5-2 (a) is the constant moment, 

while in Figure 5-2 (b) and (c) the vertical axes are the total load applied. The moment plotted in 

Figure 5-2 (d) is at the midspan of the beam, which, due to symmetry, is the maximum moment 

on the span. The three loading scenarios are included in Figure 5-2 (d) to identify their relative 

effects.  
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.  

Figure 5-2: Load–Deflection Curves for Beams with a WT420236 Section: (a) Constant 

Moment; (b) Point Load; (c) UDL; and (d) Moment–Deflection Curves for all Three Loading 

Scenarios.  

Figure 5-2 does not include the initial imperfections in the lateral displacement. The initial lateral 

deflection for this beam is 91mm (or 0.091m). The initial geometric imperfection accounts for 

17% to 25% of the lateral displacement at the critical state for this section. The initial geometric 

imperfection can account for up to 50% of the lateral displacement in some of the sections 

studied (excluding the beams with a snap-back behaviour, which is discussed below). When the 

load–displacement curves for the beams considered were analyzed, it was found that the slopes 

rarely approached zero (i.e., 100% stiffness loss), even with a large vertical deflection (e.g., 25% 

of the length). In this study, a stiffness loss of 97.5% of the initial stiffness is considered the 

critical state. This point is denoted by the red circles in Figure 5-2 (a), (b) and (c). To determine 

the critical moment, the lateral deflection at the critical load is recorded and the corresponding 

moment at the recorded lateral deflection is the associated critical moment.  
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Two beams (i.e., WT265109 and WT265184) exhibited a so-called “snap-back” behaviour in 

the load–deflection curves, i.e., the deflection starts to decrease with the increase of load after a 

certain deflection. These two beams have the largest ratios of 𝐼𝑦 to 𝐼𝑥 of the sections tested. The 

ratios of 𝐼𝑦 to 𝐼𝑥 are 0.92 and 0.95 for a WT265109 and WT265184 section, respectively and 

the third largest was 0.76. It was observed that the beams exhibited small lateral deflections as 

the ratio of 𝐼𝑦 to 𝐼𝑥 approached 1.0. At the snap-back point, the beam rotates in a swing like 

motion around the axis formed by a straight line through the two support locations. Along with 

the ratio of 𝐼𝑦 to 𝐼𝑥, this swing like motion is due to the internal tension force developed in the 

member because of the vertical deflections which leads to a new equilibrium path and therefore 

the beam no longer experiences LTB. Although many different parameters were varied in an 

effort to remain on the original equilibrium path, the analysis continued to exhibit this snap-back 

behaviour. The results were omitted for the two beams that exhibited this behaviour because 

although the beam has experienced some lateral deflections, LTB has not occurred. Except the 

two beams discussed above, the critical points are determined following the above algorithm 

(i.e., 97.5% stiffness loss).  

 

5.3.2 Analyses and Results 

The maximum stress was below the yield stress at the point of elastic LTB for all the beams that 

experienced LTB. The moment gradient factors based on the Riks analysis in ABAQUS are 

presented in Table 5-3. The mean moment gradient factors are 1.36 and 1.15 for a point load and 

a UDL, respectively. As previously stated, the reference values from Equation 5-1 are 1.26 and 

1.13 (see Equation 5-2 and Equation 5-3 for the specific calculations). Thus, 3 for a point load 

scenario is 5.4% larger, and 3 for a UDL scenario is 0.9% larger than the values from Equation 

5-1. 
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Table 5-3: Moment Gradient Factors Based on an ABAQUS Riks Analysis 

Section 
3 for Constant 

Moment 

3 for  

Point Load 
3 for UDL 

WT10011 1.00 1.21 1.39 

WT15519 1.00 1.23 1.17 

WT26536 1.00 1.59 1.23 

WT265109* - - - 

WT265184* - - - 

WT30570 1.00 1.34 1.12 

WT305186 1.00 1.29 1.07 

WT345274 1.00 1.29 1.08 

WT345401 1.00 1.27 1.06 

WT38073 1.00 1.42 1.14 

WT380194 1.00 1.39 1.13 

WT420236 1.00 1.42 1.15 

WT460393 1.00 1.37 1.15 

WT460688 1.00 1.33 1.26 

WT500124 1.00 1.42 1.16 

WT500247 1.00 1.37 1.13 

WT500488 1.00 1.34 1.09 

WT550171 1.00 1.43 1.14 

Mean  1.36 1.15 

Standard Dev.  0.09 0.08 

     * denotes snap-back behaviour 

 

5.3.3 Comparison to Design Standards 

The ratio of the ABAQUS moments including geometrical imperfections to S16-14 elastic LTB 

moments, including the proposed moment gradient factor for the point load scenario (presented 

in Equation 5-2) and the UDL scenario (presented in Equation 5-3), for each beam are shown in 

Figure 5-3. When the ratio is greater than 1.0, the S16-14 elastic LTB moment is smaller than the 

ABAQUS elastic LTB moment and thus deemed conservative and when the ratio is less than 1.0, 

the S16-14 elastic LTB moment is larger than the ABAQUS elastic LTB moment and thus 

deemed unconservative. The two beams that experienced the snap-back behaviour are labelled 

with an asterisk and thus have no associated values.  
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Figure 5-3: Comparison of Abaqus Results to S16-14 Moments Including 

Proposed Moment Gradient Factors (* denotes snap-back behaviour) 

As seen in Figure 5-3, the ABAQUS elastic LTB moments vary from 0.94 to 1.96 times the 

S16-14 elastic LTB moments. Due to the nature of the load–deflection curves, shown in Section 

5.3.1, the value that signified a significant stiffness loss (in this study 97.5% stiffness loss) 

indicates the level of conservatism in the elastic LTB moment prediction. The ABAQUS analysis 

shows that the CSA S16-14, including the proposed 𝜔3 factor, underestimates the elastic LTB 

moment. Figure 5-4 depicts the same ratio (ABAQUS moment to S16 moment including the 

proposed 𝜔3) as shown in Figure 5-3, but compares the ratio to the slenderness ratio. 
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Figure 5-4: Ratio of Abaqus Results to S16-14 Moments Including Proposed Moment Gradient 

Factors Compared to the Slenderness Ratio 

Figure 5-4 shows that as the slenderness ratio increases, the moment ratio becomes increasingly 

conservative. Beams of these slenderness ratios are impractical and thus the large conservatism is 

not a concern. By addressing the conservatism, there would be minimal to no change in the 

inelastic LTB range because the slenderness ratios for practical beams would appear in the 

uppermost range of inelastic LTB resulting in a minimal contribution from the elastic LTB 

moment. For beams of practical length refer to Chapter 6. 

5.4 Discussion  

There is a larger dispersion in 3 obtained from the Riks analysis in ABAQUS when compared 

to 3 from eigenvalue analysis in LTBeam. This is partly due to the initial geometric 

imperfection considered and the algorithm used to determine the critical point and thus the 

elastic critical moment. Eigenvalue analysis in LTBeam determines the elastic critical moment 
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using the system of equations from the first principles of buckling. Due to the mathematical 

nature, the results are not influenced by other factors. The Riks analysis in ABAQUS uses an 

equilibrium path to determine the elastic critical moment of the beam, in which the effect of 

initial geometric imperfection and non-linear geometry is considered. 

 

The results from eigenvalue analysis and Riks analysis both confirm that the moment gradient 

for T-shaped beams has similar effects to doubly- and singly-symmetric I-shaped beams. The 

beams analyzed would be uneconomical in practice as they are overly slender; however, the 

elastic critical moment is required to calculate the inelastic LTB moment in the design process. 

Further analysis needs to be performed to evaluate the adequacy of Equation 5-1 for inelastic 

LTB, since the elastic LTB moment is used to calculate the inelastic LTB moment. 

 

5.5 Design Recommendations 

S16-14 and AISC 360-16 steel design standards recommend a moment gradient factor of 1.0 for 

T-shaped beams. Both LTBeam and ABAQUS resulted in values that correlate well with the 

equation of Wong and Driver (2010). It is recommended that the Wong and Driver (2010) 

moment gradient values be adopted for T-shaped beams with the flange in compression. The 

updated recommendations can be seen in Table 5-4.  
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Table 5-4: Moment Gradient Factor Recommendations 

Moment Distribution LTBeam ABAQUS 𝜔3 =
4𝑀𝑚𝑎𝑥

√𝑀𝑚𝑎𝑥
2 + 4𝑀𝑎

2 + 7𝑀𝑏
2 + 4𝑀𝑐

2
 

 

1.00 1.00 1.00 

 

1.35 1.36 1.27 

 

1.12 1.15 1.13 

The increase in the moment gradient factors from the value of 1.0 currently used in design, is 

related to a proportional increase in the critical moment for elastic LTB. This allows designers to 

design more efficient T-shaped beams. Although the moment gradient factor captures the effect 

of the moment distribution in the elastic LTB range, the elastic LTB moment is also used to 

calculate the inelastic LTB moment. To ensure that the recommended moment gradient factor 

does not lead to unconservative results in the inelastic LTB range, the inelastic LTB moment is 

determined in the following chapter.   

5.6 Summary 

The current moment gradient factor, 3 = 1, tends to be overly conservative for T-shaped beams 

susceptible to elastic LTB in the CSA S16 and AISC 360 when the top flange is in compression. 

It was observed that the moment gradient factors for T-shaped beams depend on the moment 

distribution and are comparable to the moment gradient factors used for doubly-symmetric and 

singly-symmetric I-shaped beams. The results presented here show that the moment gradient 

factor is 1.36 for a point load at the midspan and 1.15 for UDL.   
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CHAPTER 6:  INELASTIC LATERAL–TORSIONAL BUCKLING 

6.1 Introduction 

The majority of T-shaped beams used in practice are not susceptible to elastic LTB and instead 

need to be checked for either inelastic LTB or cross-sectional moment capacity. CSA S16 and 

AISC 360 use similar equations to determine the inelastic LTB moment capacity; however, the 

standards have different cross-sectional capacities for T-shaped beams. This chapter aims to 

study the inelastic LTB behaviour of T-shaped beams.  

Prior to analyzing T-shaped beams in the inelastic LTB region, a study was completed to 

determine the effect of residual stresses in the inelastic LTB region for T-shaped beams. 

Residual stresses are introduced into beams during the fabrication phase through cutting and/or 

welding of the beam. In the aforementioned I-shaped beams, residual stresses are expected to 

affect the LTB moment significantly in the inelastic range, particularly for the beams with LTB 

moments between 0.6 and 0.85 times the cross-sectional capacity. Residual stresses are not as 

influential below the ratio of 0.6, as the beam is expected to fail in elastic LTB and above the 

ratio of 0.85 the beam approaches the cross-sectional capacity and is minimally affected by 

residual stresses. However, the effect of residual stresses on the inelastic LTB capacity of T-

shaped beams remains unclear and thus are clarified in this chapter.  

6.2 Finite Element Modelling 

6.2.1 Effect of Residual Stresses 

A study was undertaken to determine the effect of residual stresses on the LTB critical moment 

considering the following three cases: 

1. Without residual stresses 

2. With residual stresses, assuming the residual stress model proposed by Kitipornchai and 

Lee (1986a) (see Section 2.3.4.2) 

3. With residual stresses, assuming the residual stress model proposed by Nagarajao Rao et 

al. (1964) (see Section 2.3.4.1) 
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The two residual stress patterns studied have similar residual stress distributions in the flange, 

although the peak residual stress values are significantly different. The distributions are vastly 

different in the stem. Figure 6-1 (a) shows the residual stress pattern proposed by Kitipornchai 

and Lee (1986a), where the tip of the stem is in compression then reverses into tension as it 

approaches the flange. On the other hand, the residual stress pattern shown in Figure 6-1(b), 

proposed by Nagarajao Rao et al. (1964), begins in compression, then oscillates between tension 

and compression. Nagarajao Rao et al. (1964) presented measured residual stress distributions 

for varying sized T-shaped beams. The residual stress pattern of the beam that was closest in size 

to the mean size of the selected sections was utilized for this analysis. 

 

Figure 6-1: Residual Stress Patterns: (a) Kitipornchai and Lee (1986a); (b) Nagarajao Rao et al. 

(1964) 

Based on doubly- and singly-symmetric I-shaped beams, residual stresses are expected to play a 

significant role when the ratio of the LTB moment to the cross-sectional moment ranges from 0.6 

to 0.85. This range is supported by the data presented for an IPE 200 section in Figure 6-2.  
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Figure 6-2: Finite Element Analysis Results for IPE 220 Section with and without Residual 

Stresses Compared to Eurocode LTB Design Curve (Vila Real et al. 2004) 

As shown in Figure 6-2, the addition of residual stresses decreases the ratio of the LTB moment 

to the cross-sectional capacity (𝑀𝑏,𝑟𝑑/𝑀𝑝𝑙,𝑟𝑑) most significantly between the ratios of about 0.6 

to 0.85 for the IPE 220 section with varying non-dimensional slenderness (�̅�𝐿𝑇) studied by Vila 

Real et al. (2004). To determine the effect of residual stresses in T-shaped beams, it is assumed 

that the same range applies. Thus, the selected T-shaped beams of different slenderness ratios, 

where the ratio of the LTB moment to the cross-sectional capacity ranges from 0.6 to 0.85, were 

studied. The sections analyzed along with the slenderness ratio, defined as the ratio of length to 

section depth, the section classification and the LTB moment are summarized in Table 6-1. 
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Table 6-1: Inelastic LTB Moment Comparison for Beams with Various Residual Stress Patterns 

and Subjected to Three Loading Scenarios 

Section 

(Slenderness Ratio) 

[Section Class] 

Loading 
𝑀𝑟

𝑀𝑝
 

No Residual 

Stress  

(kNm) 

Kitipornchai & 

Lee 

(kNm) 

Nagaraja Rao et 

al. 

(kNm) 

WT30570 
(30) 

[Class 1] 

Constant Moment 0.81 201.6 196.7 200.0 

Point Load 0.85 206.0 208.2 203.4 

UDL 0.84 202.1 211.2 200.9 

WT38073 
(20) 

[Class 2] 

Constant Moment 0.80 287.1 290.0 292.9 

Point Load 0.84 309.6 313.7 306.5 

UDL 0.82 302.5 318.7 302.5 

WT38073 
(30) 

[Class 2] 

Constant Moment 0.65 236.2 237.1 243.0 

Point Load 0.72 302.5 310.9 312.1 

UDL 0.68 284.0 262.1 286.0 

WT500124 
(20) 

[Class 1] 

Constant Moment 0.79 617.2 627.1 625.9 

Point Load 0.83 654.2 662.6 647.7 

UDL 0.81 639.2 670.2 636.8 

WT500124 
(30) 

[Class 1] 

Constant Moment 0.65 456.5 454.4 466.1 

Point Load 0.72 618.9 628.4 630.6 

UDL 0.68 535.0 529.1 543.5 

WT500247 
(30) 

[Class 1] 

Constant Moment 0.80 1264.3 1186.7 1220.9 

Point Load 0.85 1310.9 1361.9 1326.5 

UDL 0.83 1286.7 1317.2 1286.6 

WT550171 
(30) 

[Class 1] 

Constant Moment 0.77 855.5 856.2 860.8 

Point Load 0.81 887.5 900.4 881.3 

UDL 0.79 870.7 916.1 871.2 

 

Comparing the results from the models with the residual stress patterns provided by Kitipornchai 

and Lee (1986a) and Nagaraja Rao et al. (1964) to the results from the models neglecting 

residual stresses, it was found that inclusion of residual stresses produced, on average, equal 

inelastic LTB moments (see Table 6-1). Specifically, the inelastic LTB moments after 

considering the residual stress patterns provided by Kitipornchai and Lee (1986a) varied from 

0.92 to 1.05 times (mean value of 1.01) the inelastic LTB moments when neglecting residual 

stresses; the inelastic LTB moments after considering the residual stress patterns provided by 
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Nagaraja Rao et al. (1964) varied from 0.97 to 1.03 times (mean value of 1.00) the inelastic LTB 

moment when neglecting residual stresses. This outcome is different than the effect of residual 

stresses on singly- and doubly-symmetric I-shaped beams. The apparently negligible effect of 

residual stresses on the inelastic LTB capacity of T-shaped beams with the flange in compression 

is rationalized in the following discussion. 

When a T-shaped beam is loaded in single curvature with the flange in compression, the stem is 

in tension due to flexural loading. Additionally, the centroid of the cross-section is located much 

closer to the flange than the bottom of the stem. This leads to significantly larger strains at the 

bottom of the stem than in the flange. Referring to Figure 6-1, there are compressive residual 

stresses at the bottom of the stem for both residual stress patterns. Since the bottom of the stem is 

the farthest point from the centroid, this is where the largest applied tensile strain is located due 

to the effects of loading. Since the bottom of the stem is initially in compression due to the 

presence of residual stresses, yielding of the stem tip is initially delayed. Additionally, due to the 

close proximity of the flange to the centroidal axis, only small strains develop in the flanges 

under the applied moment. Whereas doubly-symmetric sections tend to lose stiffness rapidly 

through early yielding of the compression flange in regions where compressive residual stresses 

were present, yielding generally does not occur in the flange of a T-section until the moment is 

very large. 

Since the location of the neutral axis is different for each section, not all sections behave the 

same. Even identical beams subjected to different residual stress patterns experience stiffness 

loss at different rates in the flange and stem. Consequently, no single residual stress pattern 

always leads to the lowest LTB moment. It should also be noted that when residual stresses are 

introduced into ABAQUS, the analysis attempts to resolve the stresses and thus the results may 

vary slightly from the expected results. Considering the beam of a slenderness ratio of 20 with a 

WT500124 section and subjected to a UDL, at the maximum LTB moment the strain along the 

stem and flange at the middle of the beam can be seen in Figure 6-3. 
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Figure 6-3: Strains at the midspan of a WT500124 Beam with a Slenderness of 20 in the Stem 

and Flange at Maximum Moment 

The WT500124 section with a slenderness of 20 experienced the largest to smallest strains at 

the tip of the stem, and consequently the smallest to largest LTB moment, under the Nagaraja 

Rao et al. residual stress pattern, no residual stress, and Kitipornchai and Lee residual stress 

pattern, respectively.  

Since the LTB moments obtained using models that neglect residual stresses are, on average, 

equal to the inelastic LTB moments obtained using models that include residual stresses, the 

following analysis is completed neglecting residual stresses.  

6.2.2 Analyses and Results 

The beams were analyzed for four slenderness ratios—5, 10, 20 and 30—and three loading 

configurations—constant moment, point load and UDL. An example of the load–deflection 

curves for a WT500124 beam and a slenderness ratio of 30 can be seen in Figure 6-4. In Figure 

6-4 (a) the vertical axis is the applied moment, the vertical axis in Figure 6-4 (b) and (c) is the 
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total applied load, and the vertical axis in Figure 6-4 (d) is the moment at the midspan of the 

beam. 

  

Figure 6-4: Load–Deflection Curves of a Beam with WT500124 and Slenderness Ratio = 30: 

(a) Constant Moment; (b) Point Load; (c) UDL; and (d) Moment Deflection Curves for all Three 

Loading Scenarios. 

It can be seen that the beam under constant moment loading does not experience a decrease in 

the moment capacity, while the beams under point load and UDL configurations do. As the 

constant moment load–deflection curve reached the peak, the analysis’ step size becomes 

increasingly smaller and the numerical analysis terminates once the pre-defined increment is 

exceeded (i.e., an increment less than one-hundred-thousandth). Although the constant moment 

loading scenario does not experience a decrease in the moment capacity, the beam experiences 

greater than 99% stiffness loss, which can be attributed to the critical LTB load.  
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6.2.3 Comparison to Design Standards 

The critical moment was determined through finite element analysis for each of the beams with 

various sections and slenderness ratios considered. The ratio between the ABAQUS results and 

the corresponding moments as specified by CSA S16-14 are summarized in Figure 6-5. The 

vertical axis does not include the proposed moment gradient factors from Chapter 5 in CSA 

S16-14 results. The horizontal axis is the T-sections tested, where all loading scenarios and 

slenderness ratios for each T-section are grouped together. The average of ABAQUS numerical 

test results to the proposed equation is 1.09 with a standard deviation of 0.22. 

   

Figure 6-5: Ratio of the ABAQUS Moment to the CSA S16 Moment 

As seen in Figure 6-5 the CSA S16 standard reasonably estimates the critical moment of 

T-shaped beams. The one section that is considerably underestimated is the class 3 section, as it 

reaches the plastic moment capacity prior to local buckling occurring.  
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Figure 6-6 to Figure 6-8 and Figure 6-10 to Figure 6-12 depict the LTB curves for WT500124 

and WT26536 sections in comparison with the CSA S16 standard and AISC 360 specification 

including the limitation of 1.6𝑀𝑦 and without the limitation (labelled “AISC 360 (Mp)” in the 

following graphs) along with the CSA S16 equation including the proposed changes described in 

Section 6.3 (labelled “Proposed” in the following graphs). The square boxes represent the 

ABAQUS results with the four leftmost boxes representing the inelastic LTB results and the 

rightmost point representing elastic LTB (see Chapter 5). The left kink is the transition point 

from the cross-sectional capacity to inelastic LTB and the right kink in the curve is the transition 

point from inelastic LTB to elastic LTB. Similar curves for the remaining sections can be seen in 

Appendix B.2. 

 

Figure 6-6: Lateral–Torsional Buckling Curve for Beams with a WT500124 Section Subjected 

to a Constant Moment 
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Figure 6-7: Lateral–Torsional Buckling Curve for Beams with a WT500124 Section Subjected 

to a Point Load 
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Figure 6-8: Lateral–Torsional Buckling Curve for Beams with a WT500124 Section Subjected 

to a UDL 

It can be seen that the beam is able to achieve the plastic moment capacity and, in some cases, 

slightly surpasses the plastic moment capacity when LTB does not occur (i.e., very stocky 

sections). The plastic moment capacity is slightly surpassed in the finite element models because 

the model’s material property included a yield plateau to a final stress of 350 MPa, and due to 

the model definition, there is a small material overlap at the flange-stem junction.  

Figure 6-7 shows that when subjected to a point load, the beam with the second smallest 

slenderness ratio, a slenderness ratio of 10, reached the expected cross-sectional capacity of the 

beam, while the beam with the smallest slenderness ratio, a slenderness ratio of 5, was not able to 

reach the cross-sectional capacity. This is due to the beam experiencing distortion through the 

elements at the midpoint of the beam. As seen in Figure 6-9, the elements are distorted in the 
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region of high stress (represented in red) at the bottom of the stem. In order to identify the 

distortion, the deformations in Figure 6-9 have been amplified five times. 

 

Figure 6-9: Magnified Midpoint of a WT500124 Beam with a Slenderness Ratio of 5 Subjected 

to a Point Load at the Instant of LTB Depicting Element Distortion 

In an attempt to mitigate the distortion, the beams were analyzed with a finer mesh; however, the 

distortion was still present, and the moment was unchanged. Stem buckling can be ruled out 

because the majority of the stem is in tension due to the location of the neutral axis. The stem 

shear strength was checked to determine that the stem had sufficient capacity. There is little 

guidance in S16 for stems of flexural T-shaped beams so the AISC equation was used to 

calculate the shear strength of the stem (AISC 2016; CSA 2014). The shear force from the 

ABAQUS models that experienced this phenomenon ranged from 0.3 to 0.4 times the stem 

capacity calculated by the AISC method. Since the distortion only occurred in the point load 

models at the location of the applied load and within the tension region, it was concluded that the 

distortion was predominantly a localized effect—due to the large applied load. Although it was 

expected that the beam with a slenderness ratio of 5 have more capacity than a beam with a 

slenderness ratio of 10 when both beams are subjected to a point load, the moments were deemed 

within an acceptable range for the analysis. 
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The LTB curves for a WT26536 section (Class 3 flange) can be seen in Figure 6-10 to Figure 

6-12. 

 

Figure 6-10: Lateral–Torsional Buckling Curve for Beams with a WT26536 Section Subjected 

to a Constant Moment 



77 

 

 

 

Figure 6-11: WT26536 Lateral–Torsional Buckling Curve for Beams with a WT26536 

Section Subjected to a Point Load 
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Figure 6-12: WT26536 Lateral–Torsional Buckling Curve for Beams with a WT26536 

Section Subjected to a UDL 

The WT26536 section (a class 3 section) subjected to a point load experienced a similar effect 

where the smallest slenderness ratio considered, a slenderness ratio of 5, resulted in a slightly 

smaller maximum moment than beam with the second smallest slenderness ratio (i.e., 10) 

considered. This is once again due to the distortion as shown in Figure 6-9. It was unexpected 

that a class 3 section was able to reach the plastic moment capacity, and thus discussed further in 

relation to the CSA S16 and AISC 360 codes in Section 6.2.3.1 and Section 6.2.3.2, respectively. 

6.2.3.1 CSA S16 

The WT500124 beam is classified as a class 1 section in the CSA S16. A class 1 section is 

expected to achieve the plastic moment capacity (shown as a dotted line in Figure 6-6 to Figure 
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6-8) if the beam fails by cross-sectional capacity and not LTB. Figure 6-6 to Figure 6-8 also 

show that the CSA S16 reasonably estimates the capacity of the beam in the inelastic range.  

It can also be seen that the WT26536 section is able to reach the plastic moment even though it 

is classified as a class 3 section. Rearranging the equations slightly, class 3 section limits as 

defined in the CSA S16 for flange elements are shown in Equation 6-1, where 𝑏𝑓 is the width of 

the flange, 𝑡𝑓 is the thickness of the flange and 𝑓𝑦 is the minimum specified yield stress. If the 

resulting value is above the upper bound of 200, it is classified as a class 4 section. Conversely, 

if the value is below the lower bound of 170 it falls into a classification of a class 1 or 2 with 

further limits delineating the bounds between class 1 and class 2 sections. 

170 ≤
𝑏𝑓

2𝑡𝑓
∗ √𝑓𝑦 ≤ 200 (6-1) 

For a WT26536 section, the middle term in Equation 6-1 is 176. This leads to the beam being 

classified as a class 3 section. In CSA S16, the maximum moment for class 3 sections is limited 

to the yield moment because even though class 3 sections may reach the plastic moment 

capacity, they are susceptible to local buckling. Although the section classifications have defined 

limits to classify the sections, it is an estimation used to provide guidance on the behaviour of the 

beam section and this beam specifically did not experience local buckling.  

6.2.3.2 AISC 360 

As seen in Figure 6-6 to Figure 6-8 the AISC 360 underestimates the WT500124 beam’s 

inelastic LTB moment capacity. The underestimation is due to limiting the maximum moment to 

the minimum of the plastic moment or 1.6 times the yield moment, a limit used to represent the 

serviceability limit state. The ultimate limit state is accurately represented when the limit is 

neglected. By limiting the maximum moment, the capacity in the inelastic range is also under-

estimated since the inelastic range is determined based on a relationship between the elastic LTB 

moment and the cross-sectional moment capacity.  
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Conversely, the WT26536 section is classified as a noncompact section. Rearranging the AISC 

360 equations for flanges of unstiffened T-sections, the noncompact section limits as defined in 

the AISC 360 are shown in Equation 6-2. 

0.38 ≤
𝑏𝑓

2𝑡𝑓

√
𝑓𝑦

𝐸
≤ 1.0 (6-2) 

For a WT26536 section, the middle term in Equation 6-2 is 0.39. This places the section on the 

boundary of compact and noncompact. In the AISC 360, the flange local buckling limit state is 

determined through a relationship of the plastic and yield moment as shown in Equation 2-13. 

This allows for a reasonable estimate of the LTB moment for class 3 sections. 

6.3 Discussion and Design Recommendations 

CSA S16 underestimates the inelastic LTB moment and AISC 360 underestimates both the 

cross-sectional capacity—when the limit of 1.6𝑀𝑦 is included, since this factor is meant to 

address the serviceability of the beam and not the ultimate limit state—and the inelastic LTB 

moment. The underestimation of the inelastic LTB moment in both standards is due to a 

combination of the moment gradient factor being neglected and the assumption that the inelastic 

LTB curve is linear. All sections that reached the cross-sectional capacity of the beam were 

limited by the plastic moment capacity; however, this may not be the case for all class 3 sections, 

as they are susceptible to local buckling.  

The moment capacity of class 3 sections is limited by the onset of yielding in the extreme fibre at 

the tip of the stem; however, local buckling will not occur until the top of the flange reaches the 

yield strain. This is not accurately represented for T-shaped beams by the use of 𝑆𝑥 to determine 

the cross-sectional moment capacity. To more accurately represent that local buckling can occur 

when yielding occurs in the top flange, a modified section modulus, denoted by 𝑆𝑥
′ , can be 

calculated for the case where the extreme fibre of the flange reaches the yield strain in 

compression, and the coexistent partial yielding of the stem in tension is accounted for. The 

cross-sectional moment capacity corresponding to the onset of yielding in the top flange, 𝑀𝑦
′ , 

along with a pictorial representation of the stresses and strains at 𝑀𝑦
′  can be seen in Figure 6-13. 
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Figure 6-13: Pictorial Representation of 𝑀𝑦
′  and 𝑆𝑥

′   

Special care should be taken to determine if the neutral axis is located in the flange or stem, as 

either is possible with standard T-shaped beams. It was determined that the ratio of 𝑆𝑥
′  to 𝑍𝑥 

ranged from 0.90 to 0.98, with a mean value of 0.95 and a standard deviation of 0.023 for the 

beams considered.  

The following changes are proposed to more accurately calculate the LTB moment when T-

shaped beams are in single curvature with the flange in compression: 

• 𝜔3 =
4𝑀𝑚𝑎𝑥

√𝑀𝑚𝑎𝑥
2 +4𝑀𝑎

2+7𝑀𝑏
2+4𝑀𝑐

2
  ; 

• for class 3 sections, 𝑀𝑦
′  is taken as 0.9𝑍𝑥𝐹𝑦 to account for the possibility of local 

buckling occurring in the flange when it reaches the yield stress. 

Figure 6-14 depicts the ratio of ABAQUS moments to the inelastic LTB moment and cross-

sectional capacity. With the inclusion of the proposed changes, the average of ABAQUS 

numerical test results to the proposed equation is 1.05 with a standard deviation of 0.10. 
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Figure 6-14: Ratio of ABAQUS Moments to Proposed Equation Moments 

The points above a value of 1.0 indicate that the capacities are underestimated (conservative) and 

those below a value of 1.0 are overestimated (unconservative) using the proposed equation. It 

can be seen that the capacity of the class 3 section is still underestimated; however, in lieu of an 

additional study focused on the yield moment for class 3 T-shaped beams 𝑀𝑦
′  was conservatively 

estimated at 0.9𝑍𝑥𝐹𝑦.  There are other values that are underestimated that can be attributed to a 

non-linear relationship (the inelastic LTB curve) being approximated as a linear one between the 

elastic LTB curve and development of the full cross-sectional moment capacity. 

Considering the 12 scenarios analyzed for each beam section, the proposed changes involving 

the cross-sectional capacity and the moment gradient factor improved the inelastic LTB 

estimation from a mean underestimation of 9% to a mean underestimation of 5% with a 

maximum improvement of 11% for class 1 and 2 sections and a maximum improvement of 62% 

for the class 3 section.  
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6.4 Summary 

CSA S16 slightly underestimates the inelastic LTB capacity for T-shaped beams when the top 

flange is in compression. It was observed that class 1 and class 2 sections were able to reach the 

plastic moment capacity and the class 3 section was also able to reach the plastic moment 

capacity prior to local buckling occurring in the flange. It was shown that by introducing the 

proposed moment gradient factor shown in Equation 5-1, there is a mean underestimation of 5% 

with a standard deviation of 0.11 for beams that fail due to inelastic LTB or cross-sectional 

moment.   
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CHAPTER 7:  CONCLUSIONS AND RECOMMENDATIONS 

7.1 Summary 

The primary objective of this research was to investigate the LTB behaviour of T-shaped beams 

in single curvature with the flange in compression and compare the numerical analysis results to 

the CSA S16 design standard. The numerical study was completed using ABAQUS, a 

commercially available finite element program. Both the elastic and inelastic LTB behaviours 

were investigated through the research program. 

A finite element model was created in ABAQUS and the model was validated using doubly-

symmetric LTB tests by Fukumoto et al. (1980). Due to the lack of experimental tests, the model 

was modified for the LTB analysis of T-shaped beams. A numerical test matrix was created to 

determine the test sections for T-shaped beams. The test sections consisted of fifteen class 1 

sections, two class 2 sections and one class 3 sections for a total of eighteen T-shaped sections. 

The numerical studies included elastic and inelastic LTB analyses of beams subjected to three 

loading scenarios: constant moment, point load and UDL. 

The T-shaped beams were initially analyzed in the elastic LTB region using LTBeam and 

ABAQUS. The LTBeam results were used to co-validate the ABAQUS results as LTBeam had 

been validated by the program authors. This additionally allowed further validation of the 

ABAQUS results. Both LTBeam and ABAQUS results were used to determine the moment 

gradient factor for T-shaped beams.  

A study was undertaken to determine the effect of residual stresses on T-shaped beams in single 

curvature with the flange in compression. It is widely accepted that residual stresses affect the 

critical buckling load in the inelastic region for I-shaped beams; however, the effect is unknown 

for T-shaped beams. Following the study, T-shaped beams were analyzed in the inelastic LTB 

region to determine the critical buckling moment.  

Finally, the results of the numerical analyses were used to propose modifications to the current 

S16 design provisions for T-shaped beams. 
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7.2 Conclusions 

The following conclusions can be made for T-shaped beams in single-curvature with the flange 

in compression and the load applied at the mid-height of the stem: 

• T-shaped beams susceptible to elastic LTB are extremely slender and unlikely to occur 

in practical applications. 

• The elastic LTB moment was affected by the loading scenario. Therefore, the moment 

gradient factor is applicable to T-shaped beams in single-curvature with the flange in 

compression, when calculating the elastic LTB moment. 

• Modifications were proposed for the current CSA S16 standard to include the moment 

gradient factor to calculate the elastic LTB moment. 

• It was determined that based on the two residual stress patterns studied for T-shaped 

beams, the inclusion or exclusion of residual stresses did not significantly impact the 

LTB critical moments. 

• All the sections tested were able to achieve the plastic moment capacity without 

exhibiting local buckling, and followed the inelastic LTB trend decreasing to the elastic 

LTB moment.  

• Modifications were proposed for the CSA S16 provisions to include the moment 

gradient factor proposed by Wong and Driver (2010). 

• Modifications were proposed to increase the cross-sectional moment capacity for class 3 

sections to 0.9𝑍𝑥𝐹𝑦. 

7.3 Recommendations for Future Work 

Although this study contained a comprehensive analysis of T-shaped beams in single-curvature 

with the flange in compression in the elastic and inelastic lateral–torsional buckling regions, 

future investigations can further improve the understanding of T-shaped beams. The following 

investigations are recommended: 

• Perform large-scale experimental tests to confirm the results of the numerical analysis. 

• Further investigate possible loading scenarios (i.e., maximum moment at one beam end 

and no moment on the other beam end which corresponds to 𝜔3 = 1.75) to ensure the 
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moment gradient factor proposed by Wong and Driver (2010) is applicable for common 

single-curvature loading scenarios with the flange in compression. 

• Further investigate class 3 sections in single curvature with the flange in compression to 

determine the cross-sectional capacity. 

• Investigate the lateral–torsional buckling behaviour of T-shaped beams in single 

curvature with the stem in compression. 

• Investigate the lateral–torsional buckling behaviour of T-shaped beams in double 

curvature. 

• Investigate the influence of the load-height for T-shaped beams in single and double 

curvature. 
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APPENDIX A: ELASTIC LATERAL–TORSIONAL BUCKLING RESULTS 

A.1: Tabular Results 

Table A-1: Comparison of LTB Moment: Constant Moment 

Section L/d 
S16 including 𝜔3 

(kNm) 

LTBeam 

(kNm) 

ABAQUS 

(kNm) 

WT10011 225 2.3 2.3 3.2 

WT15519 230 5.3 5.3 10.2 

WT26536 90 20.8 20.9 21.2 

WT265109 410 54.6 53.5 - 

WT265184 685 90.7 87.3 - 

WT30570 140 46.3 45.3 52.0 

WT305186 490 110.7 106.9 194.1 

WT345274 525 191.8 184.2 303.4 

WT345401 680 304.2 287.6 474.1 

WT38073 80 65.0 65.1 67.1 

WT380194 325 143.9 140.4 205.2 

WT420236 305 199.5 194.2 248.7 

WT460393 385 381.6 366.9 451.8 

WT460688 505 789.3 753.3 918.2 

WT500124 80 134.0 133.3 125.7 

WT500247 145 284.6 275.4 268.0 

WT500488 355 542.4 517.0 583.4 

WT550171 115 194.6 192.9 205.5 
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Table A-2: Comparison of LTB Moment: Point Load 

Section L/d 
S16 including 𝜔3 

(kNm) 

LTBeam 

(kNm) 

ABAQUS 

(kNm) 

WT10011 225 3.0 3.1 3.7 

WT15519 230 6.8 7.1 12.5 

WT26536 90 26.4 27.7 33.8 

WT265109 410 69.0 72.3 - 

WT265184 685 114.7 117.9 - 

WT30570 140 58.5 61.1 69.7 

WT305186 490 140.0 144.4 251.0 

WT345274 525 242.6 248.7 392.3 

WT345401 680 384.9 388.1 602.5 

WT38073 80 82.3 86.0 95.1 

WT380194 325 182.1 189.8 284.3 

WT420236 305 252.3 262.3 352.6 

WT460393 385 482.7 495.2 617.2 

WT460688 505 998.5 1016.1 1225.7 

WT500124 80 169.5 177.1 178.3 

WT500247 145 360.0 370.6 366.6 

WT500488 355 686.1 697.6 783.8 

WT550171 115 246.2 259.0 294.0 
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Table A-3: Comparison of LTB Moment: UDL 

Section L/d 
S16 including 𝜔3 

(kNm) 

LTBeam 

(kNm) 

ABAQUS 

(kNm) 

WT10011 225 2.6 2.6 4.5 

WT15519 230 6.0 6.0 11.9 

WT26536 90 23.6 23.1 26.0 

WT265109 410 61.7 60.4 - 

WT265184 685 102.56 98.5 - 

WT30570 140 52.3 51.0 58.1 

WT305186 490 125.2 120.6 206.8 

WT345274 525 216.9 207.7 327.5 

WT345401 680 344.1 324.3 502.8 

WT38073 80 73.6 72.0 76.8 

WT380194 325 162.8 158.4 232.4 

WT420236 305 225.6 219.0 286.4 

WT460393 385 431.5 413.7 519.6 

WT460688 505 892.7 849.1 1152.8 

WT500124 80 151.6 148.1 146.5 

WT500247 145 321.9 309.6 304.1 

WT500488 355 613.4 582.8 636.0 

WT550171 115 220.1 216.2 234.7 
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A.2: Graphical Results 

The ABAQUS load–deflection curves for all the beam sections can be found in Figure A-1 to 

Figure A-18.  

 

Figure A-1: Load Deflection Curves for Beams with a WT11011 Section: (a) Constant 

Moment; (b) Point Load; (c) UDL; and (d) Moment Deflection Curves for all Three Loading 

Scenarios. 
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Figure A-2: Load Deflection Curves for Beams with a WT15519 Section: (a) Constant 

Moment; (b) Point Load; (c) UDL; and (d) Moment Deflection Curves for all Three Loading 

Scenarios. 
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Figure A-3: Load Deflection Curves for Beams with a WT26536 Section: (a) Constant 

Moment; (b) Point Load; (c) UDL; and (d) Moment Deflection Curves for all Three Loading 

Scenarios. 
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Figure A-4: Load Deflection Curves for Beams with a WT265109 Section: (a) Constant 

Moment; (b) Point Load; (c) UDL; and (d) Moment Deflection Curves for all Three Loading 

Scenarios. 
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Figure A-5: Load Deflection Curves for Beams with a WT265184 Section: (a) Constant 

Moment; (b) Point Load; (c) UDL; and (d) Moment Deflection Curves for all Three Loading 

Scenarios. 
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Figure A-6: Load Deflection Curves for Beams with a WT30570 Section: (a) Constant 

Moment; (b) Point Load; (c) UDL; and (d) Moment Deflection Curves for all Three Loading 

Scenarios. 
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Figure A-7: Load Deflection Curves for Beams with a WT305186 Section: (a) Constant 

Moment; (b) Point Load; (c) UDL; and (d) Moment Deflection Curves for all Three Loading 

Scenarios. 
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Figure A-8: Load Deflection Curves for Beams with a WT345274 Section: (a) Constant 

Moment; (b) Point Load; (c) UDL; and (d) Moment Deflection Curves for all Three Loading 

Scenarios. 
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Figure A-9: Load Deflection Curves for Beams with a WT345401 Section: (a) Constant 

Moment; (b) Point Load; (c) UDL; and (d) Moment Deflection Curves for all Three Loading 

Scenarios. 
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Figure A-10: Load Deflection Curves for Beams with a WT38073 Section: (a) Constant 

Moment; (b) Point Load; (c) UDL; and (d) Moment Deflection Curves for all Three Loading 

Scenarios. 
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Figure A-11: Load Deflection Curves for Beams with a WT380194 Section: (a) Constant 

Moment; (b) Point Load; (c) UDL; and (d) Moment Deflection Curves for all Three Loading 

Scenarios. 
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Figure A-12: Load Deflection Curves for Beams with a WT420236 Section: (a) Constant 

Moment; (b) Point Load; (c) UDL; and (d) Moment Deflection Curves for all Three Loading 

Scenarios. 
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Figure A-13: Load Deflection Curves for Beams with a WT460393 Section: (a) Constant 

Moment; (b) Point Load; (c) UDL; and (d) Moment Deflection Curves for all Three Loading 

Scenarios. 
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Figure A-14: Load Deflection Curves for Beams with a WT460688 Section: (a) Constant 

Moment; (b) Point Load; (c) UDL; and (d) Moment Deflection Curves for all Three Loading 

Scenarios. 



107 

 

 

 

Figure A-15: Load Deflection Curves for Beams with a WT500124 Section: (a) Constant 

Moment; (b) Point Load; (c) UDL; and (d) Moment Deflection Curves for all Three Loading 

Scenarios. 
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Figure A-16: Load Deflection Curves for Beams with a WT500247 Section: (a) Constant 

Moment; (b) Point Load; (c) UDL; and (d) Moment Deflection Curves for all Three Loading 

Scenarios. 
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Figure A-17: Load Deflection Curves for Beams with a WT500488 Section: (a) Constant 

Moment; (b) Point Load; (c) UDL; and (d) Moment Deflection Curves for all Three Loading 

Scenarios. 
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Figure A-18: Load Deflection Curves for Beams with a WT550171 Section: (a) Constant 

Moment; (b) Point Load; (c) UDL; and (d) Moment Deflection Curves for all Three Loading 

Scenarios. 
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APPENDIX B: INELASTIC LATERAL–TORSIONAL BUCKLING RESULTS 

B.1: Tabular Results 

The following are tables outlining the entirety of the test data: 

Table B-1: ABAQUS Moments: Slenderness Ratio = 5 

Section 
𝑀𝑝 

(kNm) 

Constant Moment 

(kNm) 

Point Load 

(kNm) 

UDL 

(kNm) 

WT10011 10.8 10.5 11.0 10.8 

WT15519 23.7 22.8 23.3 23.6 

WT26536 100.7 99.1 101.0 101.3 

WT265109 239.8 229.8 238.7 238.0 

WT265184 427.8 411.7 427.8 427.7 

WT30570 204.2 201.7 205.4 206.8 

WT305186 489.9 475.6 487.2 493.0 

WT345274 852.2 820.3 838.6 860.2 

WT345401 1369.7 1307.7 1350.7 1388.7 

WT38073 307.4 299.3 297.2 308.2 

WT380194 634.8 609.4 608.4 629.9 

WT420236 869.4 842.8 834.2 872.0 

WT460393 1683.6 1622.6 1602.6 1691.8 

WT460688 3484.5 3344.0 3344.4 3535.9 

WT500124 648.6 633.2 611.6 651.7 

WT500247 1307.6 1283.0 1241.6 1316.1 

WT500488 2408.1 2324.0 2278.7 2429.1 

WT550171 886.7 866.2 823.5 890.9 
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Table B-2: ABAQUS Moments: Slenderness Ratio = 10 

Section 
𝑀𝑝 

(kNm) 

Constant Moment 

(kNm) 

Point Load 

(kNm) 

UDL 

(kNm) 

WT10011 10.8 10.5 11.0 10.6 

WT15519 23.7 22.8 23.9 23.1 

WT26536 100.7 98.0 103.4 99.9 

WT265109 239.8 229.6 243.1 233.3 

WT265184 427.8 411.2 436.8 418.8 

WT30570 204.2 201.6 210.9 203.5 

WT305186 489.9 471.8 502.8 483.2 

WT345274 852.2 820.2 875.6 843.3 

WT345401 1369.7 1307.2 1412.8 1359.2 

WT38073 307.4 298.3 312.9 304.1 

WT380194 634.8 609.1 640.0 617.8 

WT420236 869.4 842.5 883.6 855.5 

WT460393 1683.6 1622.1 1710.0 1660.1 

WT460688 3484.5 3343.4 3573.8 3471.4 

WT500124 648.6 626.0 657.4 642.5 

WT500247 1307.6 1272.0 1329.1 1296.4 

WT500488 2408.1 2323.5 2450.0 2385.3 

WT550171 886.7 866.4 895.6 877.2 
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Table B-3: ABAQUS Moments: Slenderness Ratio = 20 

Section 
𝑀𝑝 

(kNm) 

Constant Moment 

(kNm) 

Point Load 

(kNm) 

UDL 

(kNm) 

WT10011 10.8 10.5 10.8 10.5 

WT15519 23.7 21.7 23.4 22.8 

WT26536 100.7 98.0 101.9 99.5 

WT265109 239.8 229.6 238.6 231.1 

WT265184 427.8 411.2 428.3 414.8 

WT30570 204.2 201.7 207.6 202.4 

WT305186 489.9 471.6 494.0 478.9 

WT345274 852.2 746.2 861.9 836.1 

WT345401 1369.7 1306.9 1390.5 1347.6 

WT38073 307.4 287.1 309.6 302.5 

WT380194 634.8 609.0 631.3 612.6 

WT420236 869.4 842.5 873.9 848.2 

WT460393 1683.6 1623.7 1694.9 1646.7 

WT460688 3484.5 3417.7 3543.0 3444.5 

WT500124 648.6 617.2 654.2 639.2 

WT500247 1307.6 1269.4 1320.3 1288.7 

WT500488 2408.1 2354.7 2434.0 2367.1 

WT550171 886.7 862.2 893.5 872.0 
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Table B-4: ABAQUS Moments: Slenderness Ratio = 30 

Section 
𝑀𝑝 

(kNm) 

Constant Moment 

(kNm) 

Point Load 

(kNm) 

UDL 

(kNm) 

WT10011 10.8 10.5 10.7 10.5 

WT15519 23.7 22.7 23.1 22.7 

WT26536 100.7 98.6 101.2 99.4 

WT265109 239.8 228.2 236.3 230.5 

WT265184 427.8 411.2 424.1 413.6 

WT30570 204.2 201.6 206.0 202.1 

WT305186 489.9 443.4 489.4 477.6 

WT345274 852.2 829.9 854.2 833.9 

WT345401 1369.7 1339.6 1377.6 1344.2 

WT38073 307.4 236.2 302.5 284.0 

WT380194 634.8 609.1 625.9 611.1 

WT420236 869.4 842.7 866.6 846.1 

WT460393 1683.6 1624.1 1681.1 1642.8 

WT460688 3484.5 3418.8 3514.8 3436.9 

WT500124 648.6 456.5 618.9 535.0 

WT500247 1307.6 1264.3 1310.9 1286.7 

WT500488 2408.1 2342.4 2415.0 2361.9 

WT550171 886.7 855.5 887.5 870.7 
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B.2: Graphical Results 

B.2a: Constant Moment Loading Scenario 

 

Figure B- 1: Lateral–Torsional Buckling Curve for Beams with a WT10011 Section Subjected 

to a Constant Moment  
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Figure B- 2: Lateral–Torsional Buckling Curve for Beams with a WT15519 Section Subjected 

to a Constant Moment  
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Figure B- 3: Lateral–Torsional Buckling Curve for Beams with a WT265109 Section Subjected 

to a Constant Moment  
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Figure B- 4: Lateral–Torsional Buckling Curve for Beams with a WT265184 Section Subjected 

to a Constant Moment  
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Figure B- 5: Lateral–Torsional Buckling Curve for Beams with a WT26536 Section Subjected 

to a Constant Moment  
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Figure B- 6: Lateral–Torsional Buckling Curve for Beams with a WT305186 Section Subjected 

to a Constant Moment  

 



121 

 

 

 

Figure B- 7: Lateral–Torsional Buckling Curve for Beams with a WT30570 Section Subjected 

to a Constant Moment  
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Figure B- 8: Lateral–Torsional Buckling Curve for Beams with a WT345274 Section Subjected 

to a Constant Moment  



123 

 

 

 

Figure B- 9: Lateral–Torsional Buckling Curve for Beams with a WT345401 Section Subjected 

to a Constant Moment  
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Figure B- 10: Lateral–Torsional Buckling Curve for Beams with a WT380194 Section 

Subjected to a Constant Moment  
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Figure B- 11: Lateral–Torsional Buckling Curve for Beams with a WT38073 Section Subjected 

to a Constant Moment  

 



126 

 

 

 

Figure B- 12: Lateral–Torsional Buckling Curve for Beams with a WT420236 Section 

Subjected to a Constant Moment  
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Figure B- 13: Lateral–Torsional Buckling Curve for Beams with a WT460393 Section 

Subjected to a Constant Moment  
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Figure B- 14: Lateral–Torsional Buckling Curve for Beams with a WT460688 Section 

Subjected to a Constant Moment  
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Figure B- 15: Lateral–Torsional Buckling Curve for Beams with a WT500124 Section 

Subjected to a Constant Moment  
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Figure B- 16: Lateral–Torsional Buckling Curve for Beams with a WT500247 Section 

Subjected to a Constant Moment  
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Figure B- 17: Lateral–Torsional Buckling Curve for Beams with a WT500488 Section 

Subjected to a Constant Moment  
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Figure B- 18: Lateral–Torsional Buckling Curve for Beams with a WT550171 Section 

Subjected to a Constant Moment  
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B.2b: Point Load Loading Scenario 

 

 

Figure B- 19: Lateral–Torsional Buckling Curve for Beams with a WT10011 Section Subjected 

to a Point Load  
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Figure B- 20: Lateral–Torsional Buckling Curve for Beams with a WT15519 Section Subjected 

to a Point Load  
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Figure B- 21: Lateral–Torsional Buckling Curve for Beams with a WT265109 Section 

Subjected to a Point Load  
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Figure B- 22: Lateral–Torsional Buckling Curve for Beams with a WT265184 Section 

Subjected to a Point Load  
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Figure B- 23: Lateral–Torsional Buckling Curve for Beams with a WT26536 Section Subjected 

to a Point Load  
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Figure B- 24: Lateral–Torsional Buckling Curve for Beams with a WT305186 Section 

Subjected to a Point Load  
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Figure B- 25: Lateral–Torsional Buckling Curve for Beams with a WT30570 Section Subjected 

to a Point Load  
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Figure B- 26: Lateral–Torsional Buckling Curve for Beams with a WT345274 Section 

Subjected to a Point Load  



141 

 

 

 

Figure B- 27: Lateral–Torsional Buckling Curve for Beams with a WT345401 Section 

Subjected to a Point Load  
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Figure B- 28: Lateral–Torsional Buckling Curve for Beams with a WT380194 Section 

Subjected to a Point Load  
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Figure B- 29: Lateral–Torsional Buckling Curve for Beams with a WT38073 Section Subjected 

to a Point Load  
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Figure B- 30: Lateral–Torsional Buckling Curve for Beams with a WT420236 Section 

Subjected to a Point Load  
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Figure B- 31: Lateral–Torsional Buckling Curve for Beams with a WT460393 Section 

Subjected to a Point Load  
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Figure B- 32: Lateral–Torsional Buckling Curve for Beams with a WT460688 Section 

Subjected to a Point Load  
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Figure B- 33: Lateral–Torsional Buckling Curve for Beams with a WT500124 Section 

Subjected to a Point Load  
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Figure B- 34: Lateral–Torsional Buckling Curve for Beams with a WT500247 Section 

Subjected to a Point Load  
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Figure B- 35: Lateral–Torsional Buckling Curve for Beams with a WT500488 Section 

Subjected to a Point Load  
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Figure B- 36: Lateral–Torsional Buckling Curve for Beams with a WT550171 Section 

Subjected to a Point Load  

  



151 

 

 

B.2c: UDL Loading Scenario 

 

Figure B- 37: Lateral–Torsional Buckling Curve for Beams with a WT10011 Section Subjected 

to a UDL 
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Figure B- 38: Lateral–Torsional Buckling Curve for Beams with a WT15519 Section Subjected 

to a UDL 
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Figure B- 39: Lateral–Torsional Buckling Curve for Beams with a WT265109 Section 

Subjected to a UDL 
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Figure B- 40: Lateral–Torsional Buckling Curve for Beams with a WT26536 Section Subjected 

to a UDL 
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Figure B- 41: Lateral–Torsional Buckling Curve for Beams with a WT265184 Section 

Subjected to a UDL 
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Figure B- 42: Lateral–Torsional Buckling Curve for Beams with a WT305186 Section 

Subjected to a UDL 
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Figure B- 43: Lateral–Torsional Buckling Curve for Beams with a WT30570 Section Subjected 

to a UDL 
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Figure B- 44: Lateral–Torsional Buckling Curve for Beams with a WT345274 Section 

Subjected to a UDL 
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Figure B- 45: Lateral–Torsional Buckling Curve for Beams with a WT345401 Section 

Subjected to a UDL 
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Figure B- 46: Lateral–Torsional Buckling Curve for Beams with a WT38073 Section Subjected 

to a UDL 
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Figure B- 47: Lateral–Torsional Buckling Curve for Beams with a WT380194 Section 

Subjected to a UDL 
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Figure B- 48: Lateral–Torsional Buckling Curve for Beams with a WT420236 Section 

Subjected to a UDL 
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Figure B- 49: Lateral–Torsional Buckling Curve for Beams with a WT460393 Section 

Subjected to a UDL 
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Figure B- 50: Lateral–Torsional Buckling Curve for Beams with a WT460688 Section 

Subjected to a UDL 
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Figure B- 51: Lateral–Torsional Buckling Curve for Beams with a WT500124 Section 

Subjected to a UDL 
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Figure B- 52: Lateral–Torsional Buckling Curve for Beams with a WT500247 Section 

Subjected to a UDL 
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Figure B- 53: Lateral–Torsional Buckling Curve for Beams with a WT500488 Section 

Subjected to a UDL 
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Figure B- 54: Lateral–Torsional Buckling Curve for Beams with a WT550171 Section 

Subjected to a UDL 

 

 


