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Abstract  

Atomistic-level study of void behavior in metallic materials is a difficult task for continuum-

based methods. In contrast, MD method serves as an ideal tool for real-time computer simulation 

of all kinds of atomistic phenomena. More and more researchers become aware of this and a few 

have pioneered in the area of nanovoid simulation. Many problems were nicely addressed, yet 

not every stone has been turned. Particularly, we provided new understanding to the ―shear 

impossibility‖ debate in light of our MD investigation. In this work, molecular dynamics 

simulation is applied to uncover mechanisms regarding the nucleation, growth and coalescence 

of nanovoids. 

Molecular dynamics results are examined by using the ―relative displacement‖ of atoms. In 

doing so, the homogenous elastic deformation has been excluded. The ―relatively farthest-

travelled‖ (RFT) atoms characterize the onset of interfacial debonding and void growth due to 

dislocation formation. Our results indicate that the initiation of interfacial debonding is due to the 

high surface stress in an initially dislocation-free matrix. Through this approach, we also justified 

the feasibility of void growth induced by shear loops/curves. At a smaller scale, the formation 

and emission of shear loops/curves contributes to the local mass transport. At a larger scale, a 

new mechanism of void growth via frustum-like dislocation structure is revealed. A 

phenomenological description of void growth via frustum-like dislocation structure is also 

proposed. As for the shape effect, the simulation results reveal that the initial void geometry has 

substantial impact on the stress response during void growth, especially for a specimen with a 

relatively large initial porosity. During void coalescence, the void shape combination is found 

more influential than the intervoid ligament distance (ILD) on the strength and damage 

development. The critical stress to trigger the dislocation emission is found in line with the 
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Lubarda model. The dislocation density calculated from simulation is qualitatively consistent 

with the experimental measurement. For densely-arranged pores, the diamond-array-pore sample 

exhibits a superior stress response at the same initial porosity. The onset of plasticity is 

investigated for differently-structured nanoporous samples, which could shed light on the novel 

designs of nanoporous structure with enhanced structural integrity.  

Main contributions of this work can be summarized as follows. First, we show that the shape 

and the arrangement of nanovoids have a great impact on the mechanical performance of 

nanoporous metals. Secondly, the ―relative displacement‖ is employed to visualize atom 

movement during interfacial debonding and dislocation formation. Thirdly, the ―shear 

impossibility‖ debate is preliminarily settled. Fourthly, the Lubarda model for critical stress to 

trigger dislocation emission is extended to the case of nanoporous geometry.    
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Chapter 1: Introduction 

1.1. Background 

Void behavior in metallic materials is a vital and active topic. It is of great interest in 

industrial situations such as ductile tearing of gas pipelines over hundreds of meters, crack 

propagation in large nuclear vessels, or ductile tearing of aircraft fuselage [1].  

Due to heterogeneity, metals sometimes fail prematurely through ductile fracture. The pre-

existing second-phase particles and inclusions in metal alloy offer sites where damage can 

nucleate in the form of microvoids. Void initiation from the second-phase particles or other 

impurities is the first stage of void evolution. Large second-phase particles can determine the 

moment and location of ductile fracture, but they are not essential to the fracture process itself 

[2]. On the contrary, smaller particles appeared to govern the fracture process [2]. The size of 

these small particles, as so-referred in the early work of Broek [2], is in the range of a few 

hundred nanometers. With continued deformation, nucleation of damage will proceed, 

accompanied by the growth of the existing voids. At a certain stage of deformation, the 

interaction of neighbouring voids triggers void coalescence which eventually leads to the 

formation of cracking and failure in the form of ductile fracture [3]. In the micro- and macro-

level, this type of failure mode has been extensively studied. However, mechanistic models 

regarding nucleation, growth and coalescence of nanovoids are under continuous development 

and not yet fully satisfying, partly owing to the difficulty in a real-time experimental observation 

at nano-scale.  

Nanovoids inside the metal material can stem from a number of sources such as radiation 

damage [4] or void initiation during the propagation of crack tip under stress [5]. It is of great 
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scientific significance to understand the behavior of nanovoids inside the metallic materials, not 

only to prevent structural damage but also to pave the way towards novel functional designs. For 

instance, nano-porous, nano-crystalline or nano-layered structures have been proposed to be 

radiation tolerant media as a new design concept due to the fact that their nano-sized pores, grain 

boundaries or interfaces could act like a sink to store or absorb radiation-induced damages [6, 7]. 

Besides, nanoporous metals are emerging as strong versatile candidates with great potentials in 

other diverse applications. The inner morphology of nanoporous materials, which is the very 

feature to distinguish them from traditional bulk materials, can be tailored for different needs. 

For example, bi-continuous nanoporous metals foam, whose inner morphology reassembles a 

forest of nanowires, exhibit a high specific strength. Their high surface-to-volume ratio can 

provide more active area for reactant molecules and improve the electron mobility with solid 

ligaments [8-10]. Other possible applications and advantages include electrochemical sensor, 

energy conversion/storage system [8, 11, 12], exceptional mechanical properties with light 

weight [6, 13]. 

1.2. Literature Review 

1.2.1. Experimental Observations 

Void can be nucleated by the debonding or cracking of second-phase particles or inclusions 

from matrix material as shown in Figure 1.1. Void nucleation is strongly related to the size and 

shape of second-phase particles. Large micrometer particles are prone to cracking at lower 

strains, while smaller sub-micron particles are prone to debonding [14]. Nucleation mechanisms 

are proposed to be either stress- or strain-controlled. The stress-controlled mechanisms state that 

the dispersoid/matrix decohesion occurs once the interfacial strength exceeds a critical level 
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which depends on the properties of dispersoid and matrix. For strain-controlled mechanisms, the 

debonding of dispersoid is considered related to dislocation kinetics [15]. Although dislocation 

pile-ups could form by particles, yet giant pile-up will not occur [2]. The mere presence of 

dislocation loops around particles without high stresses and strains is insufficient for void 

initiation [2]. These void nucleation models are typically continuum-based, capturing averaged 

nucleation process of dispersoid/matrix system. Shortcoming or not, calibration of specific 

parameters in these models are often inevitable [3].  

 

Figure 1.1: Decohesion of second-phase particle in high-strength Al alloys [16] (Reprinted with 

permission from Liu et al. 2003. Copyright 2003, Taylor & Francis).  

In a continuum view, void growth is the most understood stage of ductile fracture, which is 

assumed a continuum process not like void nucleation or coalescence [17]. Voids are typically 

assumed cylindrical, elliptical, spherical or ellipsoidal and change shape during growth. The void 

growth rate and shape evolution are intrinsically linked as void shape induces anisotropicity, 

altering stress state and growth rate in a non-linear fashion [3]. Understanding void growth under 

extreme high strain rate could contribute to the design analysis of structures potentially 
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sustaining explosive or projectile impacts [18]. The dislocation emission has been proposed to be 

a primary cause of the void growth under high strain rate [18]. Dislocation activity around 

growing void was reported by Meyers and Aimone [19] as shown in Figure 1.2. During a spall 

test, void will evolve into octahedral shape as seen in Figure 1.3 [20]. 

 

Figure 1.2: Void growth with surrounding slips [19] (Reprinted with permission from Meyers 

and Aimone 1983. Copyright 1983, Elsevier). 

 

Figure 1.3: Octahedral void formed in a spall test [20] (Reprinted with permission from Stevens 

1972. Copyright 1972, AIP Publishing LLC). 
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Compared with void growth, void coalescence in a continuum view is a sudden and rapid 

phenomenon where voids link up to form cracks that propagate throughout the material. Void 

coalescence relates to many factors such as initial porosity, void size, void shape, spacing and 

material hardening [3]. Recent experiment with fully 3D array of drilled artificial microvoids 

demonstrated that intervoid distance could keep decreasing during coalescence between 

centroids of voids (see Figure 1.4) [21]. Inspection of fracture surfaces indicates that the 

coalescence involves secondary populations of smaller voids [22-24]. These smaller voids 

nucleate between larger microvoids and interlink to cause rapid failure by compromising the 

integrity of ligament and hastening its collapse [3]. The role played by these secondary voids on 

ductile fracture can no longer be ignored and has since become an active subject of research [25]. 

Besides, these smaller secondary voids are more readily to model with the current computational 

power for atomistic simulation.  

  

Figure 1.4: Fractograph (f) and 3D visualization from tomographic reconstructions (a-e) of void 

coalescence [21] (Reprinted with permission from Hosokawa et al. 2013. Copyright 2013 

Elsevier). 

(f) 
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1.2.2. Molecular Dynamics Simulation 

 

Figure 1.5: Void growth and interaction of shear loops [26] (Reprinted with permission 

from Traiviratana et al. 2013. Copyright 2013, Elsevier). 

Regarding void nucleation from composites, molecular dynamics simulation does not 

require pre-defined quantities or assumptions about the interface unlike a number of other 

numerical approaches. The initial interfacial bonding is directly achieved through relaxation run 

of the system including atoms comprising the interface until the system reaching an equilibrium 

state. Regarding the MD work for composite materials, the reported simulations focused 

extensively on the debonding of planar or nanocrystalline composites. Gall et al. [27] 

investigated the planar atomic interface of the aluminum-silicon system. They observed that the 



7 

 

interfacial fracture occurs at the positions where the local displacement of interface atoms creates 

a rippled structure in the absence of vacancies, dislocations, impurities and other defects. Ward 

et al. [28] showed that Al-Si nanocrystalline thin films fail primarily along the Al/Si interface at 

high local tensile stress. Tomar and Zhou [29] analyzed the tensile deformation of 

nanocrystalline α-Fe2O3+FCC-Al composites via MD simulation. They also concluded that the 

strength of the composite is strongly affected by interfaces between the phases, and the interface 

effect is strongest for smallest grains. Agreement with experimental observation was reached 

only for the grain sizes above a critical value. For small grains, interfacial stresses are important 

for predicting the strength of the composite. Further, they suggested that dislocation emission 

plays a secondary role for small grains. For large grains, dislocations contribute significantly to 

the deformation. Noreyan et al. [30] found that the critical shear stress of Al/Si interface is 

significantly lower than the tensile critical stresses and the fracture by shear is only confined in 

Al phase near the Al/Si interface. The MD simulation of Dongare et al. [31] showed that voids 

nucleate from the Al-Si interface, which is attributed to mechanical separation and sliding at the 

Al/Si interface rather than the dislocation pile-up. Shadlou and Wegner [32] recently investigated 

the effect of nano-structural shape on the mechanical response of SiC/Cu nanocomposites. They 

found that the spherical shape leads to superior mechanical properties. To sum up, the nano-

particles in the above research are all sized below 10nm. The size effect of nano-particles, which 

is essential to the nanoworld [33-36], has not been reported to our best knowledge. More 

importantly, no study has linked the individual motion of atom to the onset of debonding and 

correlates the dislocation emission to the subsequent debonding. Not to mention clarifying what 

roles have the accumulated stress and plastic strain played in the interfacial debonding of 

nanoparticles. With rising capability of computational resources, it is now feasible to simulate 
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larger spherical nanoparticles up to, for example, 30 nm in diameter. Based on the knowledge 

from the planar and nanocrystalline composites, the objective of the present work is to examine 

the process of interfacial debonding of spherical silicon nanoparticle from an initially defect-free 

and dislocation-free copper matrix. The role of interfacial stress and dislocation emission in 

interfacial debonding, subsequent growth and coalescence of the nucleated void will be 

investigated. Based on a new interpretation of MD results, the material transport during the 

interfacial debonding and void growth will be highlighted for a better understanding of damage 

mechanism.  

 

Figure 1.6: Void coalescence and generated dislocations [37] (Reprinted with permission 

from Potirniche et al. 2006. Copyright 2006, Elsevier). 

The void growth and coalescence mechanisms in face-centered cubic metals have been 

widely studied by atomistic simulations. Traiviratana, et al. [26] carried out MD simulation in 

monocrystalline and bicrystalline copper and confirmed that the emission of shear dislocation 

loop is the primary mechanism of void growth (see Figure 1.5). The work of Bringa, et al. [38] 

applied MD method to investigate the effect of loading orientation in nanocrystalline FCC 
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copper. Marian, et al. [39] applied the quasi-continuum method to study the void expansion of 

FCC aluminum and indicated that dislocation emission is the primary mechanism. Potirniche et 

al. [37] employed the MD method to study growth and coalescence of circular nanovoids in 

single crystal nickel (see Figure 1.6). Their results reflected the size-scale dependence of the 

nanovoids. Tang et al. [40] investigated growth and coalescence of circular void in single-crystal 

magnesium.  

It has been acknowledged that the initial void shape has a considerable influence on void 

growth, coalescence and material softening [41-43]. Some detailed studies regarding the effect of 

initial void shape via FE method have been carried out in [42-44]. They concluded that the effect 

of void shape can be substantial on the porosity evolution and influential on the stress-strain 

relation. Indeed, some analytical models such as the Gologanu–Leblond–Devaux model [45] 

model or its more sophisticated variants [41, 46, 47] have already included the influence of void 

shape phenomenologically. However, in MD simulations, most authors adopted circular or 

spherical void shape as a geometric simplification. The effect of initial void shape on the 

dislocation-void interaction and void has not yet been addressed via MD simulation in the 

literature. Though the FE approach is capable of modeling the void growth with different initial 

geometry, the applied phenomenological material model generally cannot capture the 

dislocation-void interaction. Moreover, the intervoid ligament is only allowed to neck down to a 

point but never fracture due to the limitation of the FE method. 

1.2.3. Theoretical Understanding 

The first stage is void nucleation. Gurson [48] proposed that nucleation of voids can be 

expressed in terms of equivalent plastic strain based on Gurland’s measurements [49]. Following 
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Gurson’s work, Chu and Needleman [50] formulated the stress- or strain-controlled nucleation 

model by using normal distributions, respectively  
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where   ̇          is time derivative of the porosity due to void nucleation, nf  is the volume 

fraction of void-nucleating particles, y  is the yield stress, n  
is the critical interface stress [51-

53], p  is the equivalent plastic strain, N  or N  is the nucleation burst stress or strain where 

maximum number of voids are nucleated according to the normal distribution and Ns  is the 

standard deviation.  

 

Figure 1.7: (a) Void growth via prismatic dislocation loop. (b) Void growth via shear dislocation 

loops [18] (Reprinted with permission from Lubarda et al. 2004. Copyright 2004, Elsevier). 
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The second stage is void growth. The focus here is the void growth under high strain rate, of 

which dislocation emission is suggested to be a primary cause [18]. Ashby [54] suggested that 

geometrically necessary dislocations are responsible for the compatible deformation between 

multiple solid phases in addition to statistically-stored dislocations. Regarding void growth, two 

geometrically necessary dislocations are proposed: prismatic and shear loops (see Figure 1.7) 

[18]. The void growth increment due to these dislocations is given by [55] 

pl elV V V    ,                                                   (1.3) 

which consists of two parts: the plastic growth (mass transferred) due to the formation of 

dislocation loops and the elastic growth due to the elastic deformation caused by existing 

dislocation loops. For prismatic dislocation loops, the plastic growth is straightforwardly 2b , 

where   is the radius of the loop and b  is magnitude of the Burgers vector. For shear 

dislocation loop, the plastic growth is more complicated and not yet well-understood (still a 

debate). Bulatov et al. [56], who claimed the impossibility of the shear loop to grow the void, 

emphasized the mass conservation over the loop surface as 

pl d ( )d
loop loop

V S     b S b n ,                                              (1.4) 

where plV  is the incremental void growth induced by the dislocation loop, b  is the Burgers 

vector of the dislocation loop, n is the norm of the loop plane and dS  is the differential element 

of the surface. However, the original equation for material removed [57] is expressed in terms of 

a differential volume element over an arbitrary surface A: 

                   
dV A  b n .                                                          (1.5) 
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As defined in [57], ―any surface A bounded by loop C could be used for the operation‖. Indeed, 

Figure 4-2 in the text book [57] clearly shows that a pure edge dislocation could be generated by 

different possible cuts. This idea can be easily extended to a shear loop. One side of the surface 

cut A is displaced by b  relatively and the material on both side of the cut are rejoined afterwards 

[57, 58]. The inner product b n  therefore highly depends on the shape of surface A. In the 

comments of Bulatov et al. [56], the flat area encircled by the loop C was chosen as this surface 

A. It is only under this premise that their asserted condition 0 b n  [56] is valid. In other words, 

Burgers vector b and n will not be perpendicular to each other everywhere if the surface A is not 

a flat one. Besides, the plastic void growth (mass transfer) is not invariant with respect to 

arbitrary surface cut for an incomplete loop. To determine the possible shape of the surface A, 

other information is required. Such information could, for example, come from atomistic 

simulations. We shall clarify this ―shear impossibility‖ debate in Chapter 6 and Chapter 7. Apart 

from plastic deformation, the displacement due to the introduction of an arbitrary dislocation 

loop is given as the Volterra formula [59] 

, ,( ) ( ) d ( )i j klmn m ik lj n
S

u C b G n S  x x x x ,                                      (1.6) 

where ijklC  is the elastic tensor, 
mb  is the Burgers vector, ( )kpG x  is the Green function, nn  is the 

normal vector of the slip area S. However, solving such an equation in the presence of a nearby 

void is nontrivial. Ahn et al. [55] studied the elastic interaction between a prismatic loop and a 

void. Ohr [60] solved the displacement field around a circular shear loop. However, the elastic 

void growth due to the presence of a shear dislocation loop was not reported to our best 

knowledge.  
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The third is void coalescence. Tvergaard and Needleman [61] proposed a phenomenological 

coalescence model to identify the onset of coalescence by relying on a critical porosity. In this 

approach, the accumulated porosity shifts to a faster increase, once reaching the specified critical 

porosity. The resulting effective porosity reads  
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where cf  is the critical porosity, ff  is the porosity at failure when all material strength vanishes,  

and *

uf is equal to 1/q1 with no physical significance. The most widely-used GTN (Gurson-

Tvergaard-Needleman) model adopts the critical porosity and porosity at failure as 0.15 and 

0.25, respectively. The parameter q1 can be assumed 1.25 for example [62]. Nowadays, it is a 

universal consensus that critical porosity is not a just material constant but a function of the 

initial porosity, void shape, stress state and material properties [44, 63, 64].  

1.3. Outline of Problems 

Atomistic-level study of void behavior in metallic materials is a difficult task for continuum-

based methods. In contrast, MD method serves as an ideal tool for real-time computer simulation 

of all kinds of atomistic phenomena. More and more researchers become aware of this and a few 

have pioneered in the area of nanovoid simulation. Many problems were nicely addressed, yet 

not every stone has been turned. Of a great significance is perhaps the debate whether the shear 

dislocation loop can grow the nanovoid or not. Surprisingly, this rather fundamental debate is 

still unsettled, despite extensive simulation efforts in this field over a decade. This debate, started 

between two groups of high-profile researchers, is utterly important since it is essential to the 
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role dislocations played in the void growth and would help improve continuum models once 

clarified. Besides, the mass transfer pattern, which is crucial to void growth, was commonly 

overlooked in the post-processing of MD results. In addition, the role of initial void geometry 

remains unclear in the nanovoid behavior, which has been extensively focused for microvoid 

through continuum-based methods. For a single void, ellipticity could bring considerable 

influence to stress response as suggested by continuum-based studies. For multiple nanovoids or 

even nanoporous case, this geometry effect could be more general, i.e., the arrangement of 

certain amount of voids or pores, and still remains unclear unsurprisingly. All these problems are 

of both scientific and engineering significance to solve in our current research.    

1.4. Objectives of Research   

The objective of this research is to provide more critical insights into the mechanical 

behavior of nanovoid in metals by primarily performing MD simulation to deepen our 

understanding to the following major issues: 

1. The void nucleation from bi-material interface and subsequent growth at atomic level, 

2. The debate of ―shear impossibility‖ and mass transport during void growth, 

3. The effect of initial shape of nanovoids on the void growth, coalescence and stress response of 

material and 

4. The dislocation mechanism and stress response in novelly-designed nanoporous structure.  

Some secondary objectives are to examine the effect of constraint in MD simulation, 

compute the elastic void growth due to the presence of a shear loop, probe the possible shape of 
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surface cut to create a shear loop and extend the Lubarda model to a fully 3D case for 

nanoporous structure.  

1.5. Thesis Structure   

The thesis consists of the following chapters. After the brief introduction of the thesis work 

in Chapter 1, Chapter 2 reveals the void initiation mechanism in a nano-inclusion embedded, 

initially dislocation-free matrix. Chapter 3 reflects the role of void shape on nanovoid growth. 

Chapter 4 investigates the impact of thermo-mechanical constraints on nanovoid growth. Chapter 

5 concerns the nanovoid growth mechanism via shear dislocation formation. Chapter 6 

theoretically calculates the nanovoid growth due to shear loop formation. Chapter 7 deals with 

the influence of ellipticity on nanovoid coalescence. Chapter 8 explores the structural integrity of 

differently-arranged, nanoporous structure by using both MD simulation and finite element 

method. Chapter 9 presents the conclusions and recommendation for future work.       
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Chapter 2: Void Initiation from Nano-Inclusion

 

2.1. Introduction 

It is of great importance to understand the interfacial debonding and related material fracture 

at the bi-material interfaces in order to model the mechanical response of a broad range of 

engineering composite materials [27]. For example, the silicon or aluminum-oxide inclusions are 

found to be fatigue crack nucleation sites in Al-Si casting [65]. Void initiation from the second-

phase particles or other impurities is the first stage of void evolution during damage 

accumulation. Large second-phase particles can determine the moment and location of ductile 

fracture, but they are not essential to the fracture process itself [2]. On the contrary, smaller 

particles appeared to govern the fracture process [2]. The size of these small particles, as so-

referred in the early work of Broek [2], is already in the range of a few hundred nanometers. On 

the other hand, nanoparticle composites have shown their potential in many aspects. 

Nanoparticle reinforcements have been explored for enhanced strength and ductility [66-68]. 

Nanoparticle-loaded nanocomposite is emerging as a promising candidate for superior energy 

storage [69-72]. Also, functionalized nanoparticles are ideal catalysts due to their higher surface-

to-volume ratio [73-76]. Understanding the fundamental mechanical behavior of nanoparticle 

composite would thus help to improve the design in terms of structure integrity.  

2.2. Simulation Methodology  

The MD simulations are performed by the Large-scale Atomic/Molecular Massively 

Parallel Simulator (LAMMPS) [77] from Sandia National Labs. The atomistic interaction is 

                                                 
 A version of this chapter has been published. Reprinted with permission from Cui, Y.; Chen Z. Void initiation from 

interfacial debonding of spherical silicon particles inside a silicon-copper nanocomposite: A molecular dynamics 

study. Modell. Simul. Mater. Sci. Eng. 2017, 25, 025007. Copyright 2017 IOP Publishing Ltd. 
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modeled by the modified embedded atom method (MEAM) [78, 79]. The total energy E of a 

system is approximated as the sum of the atomic energies: 

,                              

(2.1)

 

where Fi is the embedding function,  is the background electron density at the site of atom , 

 is the pair potential between atoms,  is the sublimation energy and parameter  

depends on the element type of atom  [79]. The background electron density  takes the form 

[79] 

 ,                                            

(2.2)

 

where  is the composition-dependent electron density scaling,  is the average weighting 

factors, , , and  are zeroth and higher-order densities given in [79]. Unlike 

embedded atom method (EAM), the electron densities in MEAM depend on the displacement 

vector rather than only the scalar distance between atoms. 

It is crucial that the atomistic potential chosen must accurately reproduce pertinent features 

of the resulted energy curves, such as the unstable stacking fault energy [80]. The unstable 

stacking fault energy is an important parameter of the barrier for partial dislocation nucleation 

[81]. Jelinek et al. [79] improved the previously proposed MEAM parameters [27] in an effort to 

achieve better agreement with the generalized stacking fault energy curves. Their new MEAM 

potentials were validated towards density functional theory (DFT), classical MD (CMD) and 

experimental data in crucial aspects such as the formation energies of defects, equilibrium 
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volumes and elastic moduli [79]. Therefore the Cu-Cu, Si-Si and Cu-Si interactions in our 

simulation are modeled by their MEAM potentials.  

As a physical simplification of periodically-arranged second-phase particles inside matrix 

material, periodic cubic simulation box is created to represent uniformly-distributed particles 

inside an infinite matrix. The particle is generated by removing the copper atoms from a desired 

region and refilling it with silicon atoms. Energy minimization using a conjugate gradient 

algorithm is performed to attain the minimum energy configuration especially for the interface, 

followed by the relaxation step to reach an equilibrium-state configuration. The relaxation is 

performed at 300K with zero outside stress via the Nose-Hoover thermostat and barostat [82, 

83]. Equilibrium run is important to ensure a good initial bonding of the interface. The adopted 

equilibrium duration is 20 ps [28] by considering tradeoff between the validity and computation 

cost. Based on the relaxed configuration, a load of fixed engineering tensile strain is applied in 

the z-direction with strain-confined lateral boundaries. Both the software ATOMEYE [84] and 

ATOMVIEWER [85] are employed in post-processing the MD data to identify the dislocation 

network and Burgers vectors. ATOMVIEWER combines the modified Nye-tensor method and 

the dislocation line extraction method to derive Burgers vectors and dislocation network without 

constructing Burgers circuits explicitly [85].   

2.3. Results and Discussions   

2.3.1. Energies of Cu-Si Interface for Planar Configuration   

The surface energies here are evaluated in a similar way as in Ref. [28]. The major 

difference in this work is the elimination of the fixed end in the loading direction. In an effort to 

reproduce an identical boundary condition as will be applied in the later spherical-particle 
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simulation, the periodicity is not only applied in the lateral directions as in [28] but also in the 

loading direction for the planar configuration. The advantage of doing so is the elimination of the 

unknown energy associated with the fixed end, while the disadvantage is the introduction of the 

additional interface. The total clean surface energy for the Cu-Si system per unit area is [28] 

                                                        (2.3) 

The total energy  is the sum of the bulk Cu and bulk Si energies and surface energies for 

each block with sufficient separation between the surfaces. The bulk cohesive energies are 

, , where  is the number of copper atoms and  is the cohesive 

energy per atom. The energy of as-created interfaces for the Cu-Si system per unit area is [28]  

                                                          (2.4) 

The total energy  here refers to the one right after the equilibrium run to form the interface. 

Once the periodicity in the loading direction is applied, the number of interfaces becomes two as 

seen in Figure 2.1a. In order to determine the fracture energy, one needs to eliminate the energy 

of the still bonded interface due to the periodicity in the loading direction. Once the specimen is 

loaded to fracture, only one interface in Figure 2.1a will break and thus leaves the bonding 

energy of the remaining interface as unknown. Our strategy is to create another periodic 

geometry with one more repeat in the loading direction as seen in Figure 2.1b. Due to the 

periodicity, this new geometry with four interfaces is physically identical to the two-interface 

one up till the point of fracture. The total energies for these two geometries, at the point of 

fracture, are 
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                                                   (2.5) 

                                                 (2.6) 

where  is the unit area energy of the still bonded interface. The total energy  and the 

cohesive energy like are of different values in Eqs. (2.5,2.6) for the two specimens. The 

fractured surface energy  can thus be determined by solving Eqs. (2.5,2.6).  

                             

        (a) Two interfaces due to periodicity           (b) Four interfaces due to periodicity 

Figure 2.1: Two periodic planar geometries with sizes of 11.57 nm × 11.57 nm × 11.57 nm for 

(a) and 23.14 nm × 11.57 nm × 11.57 nm for (b). The geometries (a) and (b) are essentially 

identical due to periodicity. 

Based on the fractured energy and the as-fabricated interface energy, the work of fracture for 

the actual separated interfaces can be calculated as 

                                                               (2.7) 

The Griffith work of fracture associated with the perfect cleavage fracture can be calculated as 

                                                              (2.8) 
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Given these two fracture work, the ―toughness enhancement factor‖ can be thus defined as [28] 

                                                               (2.9) 

Table 2.1: Interface and Fracture Energies for the Cu-Si Interface 

  (eV/Å
2
)  (eV/Å

2
) ( eV/Å

2
) 
 
( eV/Å

2
) 
 
( eV/Å

2
)  

0.4277 0.3938 0.3598 0.0679 0.0340 2.0 

It is worth noting that the ―toughness enhancement factor‖ calculated in Table 2.1 is very 

close to that in [28] (T=2.2) for the interface with the same crystallographic orientation. The 

surface fracture with  is characterized as ―ductile‖ and these ―ductile‖ interfaces were 

further categorized into two types of failure: those fail after or before dislocation emission [28]. 

Although the (1 0 0) interface tends to debond after dislocation emission for the one dimensional 

planar configuration [28], it remains unclear for the case of a spherical particle inside matrix as 

the preferred slip plane of FCC metal is not in the (1 0 0) direction. Thus, there could be the 

competition of the break of atomic bond at the (1 0 0) interface due to the maximum interface 

stress there and that due to the dislocation emission with preferred slip type {111}. This 

competition determines which one would trigger the interfacial debonding of the spherical 

particle from an initially dislocation-free matrix.  

2.3.2. The Particle-Matrix Case 

As illustrated in Figure 2.2, the periodic simulation box in all three dimensions is employed 

to represent the copper nanocomposite with uniformly-distributed silicon nanoparticles. Different 

simulation specimens including varying simulation-box size and different volume fraction of Si 

nanoparticle are also tested. The volume fraction of the spherical particles varies from 0.15625% 
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to 10%. The largest simulation box contains a spherical particle of 30 nm in diameter with a total 

of 11.9 million atoms in the system.  

 

Figure 2.2: Cubic simulation box halved showing Silicon spherical particle (gray) embedded 

inside Copper matrix (yellow). 

 

Figure 2.3: The stress-strain relation, void volume fraction under a simulation size of 26.03 nm 

× 26.03 nm × 26.03 nm with a spherical particle of 7.5 nm in diameter embedded under a strain 

rate of 2×10
9 
s

-1
. 

Figure 2.3 shows the average stress and void volume fraction versus strain for the primary 

simulation case. The ultimate strength of the composite material is reached after initiation of 
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both events of interfacial debonding and the dislocation emission. It appears that dislocation 

emission has little impact on the onset of interfacial debonding from an initially dislocation-free 

matrix, but plays an important role in the subsequent debonding and growth of the nucleated 

void. After the ultimate strength, the continuing decrease of the load-carrying capacity is due to 

the fast-rising void volume fraction and dislocation population. At the end of loading, the 

average stress stabilizes at a level below 1 GPa. Calculation of the volume fraction of nucleated 

voids from interfacial debonding is a non-trivial issue. The first step is the recognition of 

different-type atoms on each side of the interface. However, the interfacial debonding will leave 

a few silicon atoms ―glued‖ on the nucleated void surface comprised of copper atoms. These 

atoms should therefore be excluded from the recognized particle surface. The second step is to 

apply the Delaunay triangulation method [86] to: (1) surface copper atoms to calculate the 

hollow volume inside the matrix, and (2) surface silicon atoms to calculate the current particle 

volume. The difference of these two volumes gives the volume of nucleated void. At higher 

strain with excessive void growth, the recognition method could be rather time-consuming due to 

the increasing number of surface atoms. An alternative approach would be counting those voided 

volumes inside the meshed simulation box with lattice-sized volumetric elements. In Figure 2.3, 

the volume fraction of nucleated voids starts to increase rapidly after the onset of dislocation 

emission. From the start of rapid void growth till a strain of 0.13, the void gains more volume 

than the total volume increase of the simulation box. This implies that the tightened atomic 

bonds during elastic deformation in some region have been relaxed. The void volume increasing 

rate is gradually approaching that of the simulation box. This is mainly due to the strain-confined 

lateral boundary condition, which is analogous to a plane strain dynamic loading, such as that in 

a spall test. 
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2.3.2.1. Initial Debonding During the Elastic Regime 

     

(a) ɛ=0.062                                       (b) ɛ=0.064 

 

                                                                 (c) ɛ=0.066 

Figure 2.4: Relative displacement (magnitude) during the interfacial debonding. The formula to 

compute relative displacement (magnitude) can be found in the Appendix. The cutting plane is 

yoz plane. The unit of color bar is Å. 

Particle 

Matrix 
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In this subsection, the localized material transport within the strain range from 0.060 to 

0.066 will be further investigated. A better understanding of material transport during the 

interfacial debonding will help us build an insightful mechanism of this vital event. Atomic 

displacement can be calculated in terms of the difference between the current and initial 

positions of atoms. Since periodic boundary condition is involved, attention should be paid to the 

situation when atoms are crossing the periodic boundary and re-entering in the other side. The 

displacement for those atoms should be the difference between their initial position and their 

periodic image of the current position. This straightforward subtraction for the atomic 

displacement depends on the selection of the coordinate origin. However, the ―relative 

displacement‖ field, as proposed in Ref. [87], is independent of the choice of the coordinate 

origin as long as it is attached on the stretched simulation box. Once the homogenous elastic 

deformation is excluded by using this relative displacement, the remainder is the deformation 

due to the presence of silicon particle. The magnitude of this relative displacement field during 

interfacial debonding is plotted Figure 2.4. It can provide a general picture of relative atomic 

motions during the onset of interfacial debonding. 

The initial bonding of interface is achieved by equilibrium run under zero stress. A test has 

been performed to ensure that the debonding strain is insensitive to the equilibrium duration 

applied. Atoms of highest magnitude of relative displacement are found at both the upper and 

lower sides of the Cu-Si interface. The local decohesion initiates on the part of interfacial 

circumference facing the loading direction. This is consistent with experimental observations 

under normal tensile loading [16]. The incipient interfacial debonding in Figures 2.4a-c occurs at 

both upper and lower sides of the interface. Due to the initial perfect bonding between silicon 

particle and the copper matrix, the silicon particle has also been stretched and deformed 
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elastically in Figure 2.4a. Heterogeneous deformation builds up inside Si particle during the 

debonding process in Figures 2.4a-c. This elastic deformation of Si particle has not been 

recovered until significant interfacial separation. No fracture or void nucleation has been 

observed inside the silicon particle. It is worth noting that the relative displacement in Figure 2.4 

is evaluated with respect to the same origin attached on the box for both matrix and particle since 

there has not been a translation of the particle with respect to the simulation box. 

    

Figure 2.5: Local normal stress at different location inside a spherical shell of matrix covering 

the particle. The spherical shell has been divided into 12 zones (numbered from 1 to 12) 

longitudinally and the projection of individual zone onto the xoy plane is an annulus. 

Figure 2.5 shows the local normal stresses in thin, annular matrix layers around the particle 

at different strains. The stress tensor at the atomic scale is measured by the virial stress [88]. The 

average normal stress is then calculated as the average over each divided annular zone. This 

atomic ―normal stress‖ distribution is not defined on the spherical interface but on a spherical 
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shell. Therefore, this normal stress could decrease to a small value but not necessarily zero for 

the debonded zone. Noreyan et al. [30] showed that shear stress could only induce sliding at the 

aluminum-silicon interface but not interfacial debonding. Hence, the current attention is only 

paid to the relation between the normal stress and interfacial debonding. Prior to debonding, the 

normal stresses at zones 1 and 12 keep rising and thus deteriorate the bonding there. At ɛ=0.06, 

right before the interfacial debonding, the normal stresses at upper and lower zones 1 and 12 

have already been lowered slightly. The higher normal stresses at the upper and lower regions 

trigger the local decohesion indicated by a significant decrease in the normal stresses. At 

ɛ=0.066, the interfacial debonding has spread from zone 1 to zone 4 (lower side) and also from 

zone 12 to zone 10 (upper side). 

The stress field of a plate with embedded disc is given in [89] under uniaxial tension. For 

arbitrary biaxial loading, the solution can be easily extended by superposition.  

              (2.10) 

                           (2.11) 

                                        (2.12) 

                                                                              (2.13) 

                                                               (2.14) 
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                                                                    (2.15) 

where  is the remote stress in the direction of the uniaxial-strain loading, ( ) is the ratio 

of the stress in the lateral direction over that in the loading direction,  is the radius of the 

particle,  is the shear modulus for the particle,  is the shear modulus for the matrix and 

 
is for the plane strain case. The normal stress at the interface becomes   

                            (2.16) 

It has a maximum value at  and  (the upper and lower loading directions) and 

a minimum value at 90  (the lateral direction). As seen in Figure 2.5, the maximum and 

minimum locations of the black curve for the perfectly-bonded particle are consistent with the 

prediction of Eq. (2.16). This could be taken as a form of validation of MD simulation towards 

the elasticity theory for inclusion problem.  

The magnitude field of relative displacement in Figure 2.4 cannot capture the direction of 

atomic motion. Fortunately, atomic information such as displacement vector of individual atom, 

which seems experimentally inaccessible, can be readily acquired from MD simulation. As 

plotted in Figure 2.6, the displacement vector of the specific atoms may provide more insights 

into the interfacial debonding. 
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(a) ɛ=0.062                                                (b) ɛ=0.064                                           

 

(c) ɛ=0.066 

Figure 2.6: Movement of the Relatively-farthest travelled (RFT) copper atoms (in yellow) near 

the Cu-Si interface. Snapshot has been projected onto the yoz plane. The critical length is set as 

2.0 Å to identify the RFT atoms. The blue atoms represent silicon particle atoms. 

Although interfacial debonding has already occurred in Figure 2.6a, the RFT copper atoms 

are rather scattered and so are their displacement vectors. In Figure 2.6b, the RFT copper atom 



30 

 

with the longest displacement arrow is not found at either of the two debonding sites. This 

implies that the interfacial debonding is not a local event at the atomic scale. Rather, interfacial 

debonding should be attributed to a cluster of atoms with higher-than-average displacements. 

Figures 2.6a-c illustrate the competition between the two debonding sites. Initially, RFT atoms 

appear first at the upper side. In Figure 2.6b, the lower side has started gaining more RFT atoms 

than the upper side. Finally in Figure 2.6c, the number of RFT atoms at lower side remarkably 

surpasses that at the upper side. More importantly, the displacement arrows at the lower side 

shift into a highly-ordered alignment. These two facts lead to a larger separation at the lower side 

than the upper side, as shown in Figure 2.4c. 

2.3.2.2. The Subsequent Debonding and Void Growth after Dislocation Emission 

The dislocation emission begins at the strain of 0.074. The gray dislocation lines on the 

interface are induced by the mismatch between the lattices of the two materials, as shown in 

Figure 2.7a. They appear and continue to evolve from the beginning of loading. The onset of 

dislocation emission is recognized only at the time when the dislocation curves protrude out of Si 

particle like the blue one in Figure 2.7a. The newly-formed dislocation structure facilitates not 

only the growth of the nucleated void but also the subsequent debonding. Next, we will study the 

evolution of the dislocation network and the corresponding relative displacement.  

The subsequent development of the dislocation structure inside the matrix is somehow 

similar to the case of a pre-existing void inside an FCC metal. Shear dislocation curves emitted 

from the nucleated void grow and glide on four slip planes to form a frustum-like structure at the 

upper region, as shown in Figure 2.7b. Secondary dislocation structures form subsequently at the 

lower and lateral sides in Figure 2.7b. This frustum-like structure of dislocations growing from 
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the particle is highly asymmetric. The asymmetric dislocation structure here could be associated 

with the irregular shape of the nucleated void. Similar to the pre-existing void case [87], the 

frustum-like dislocation structure here also induces the local material transport. Those red RFT 

atoms illustrate the material transport related to the dislocation emission. As demonstrated in 

Ref. [87], shear curves are capable of inducing local material transport. In Figure 2.7b, the 

appearance of red atoms inside the upper frustum-like structure of dislocations indicates that 

material can move away from the particle surface with the aid of dislocation structure. In the 

absence of frustum-like structure shown in Figure 2.7a, the nucleated void grows elastically.  

 

(a) ɛ=0.076                                                           (b) ɛ=0.088 

Figure 2.7: Dislocation network and RFT atoms after dislocation emission. Blue atoms represent 

particle-matrix/void-matrix interface/surface, while the blue and green rendered lines represent 

dislocation lines. The critical length is set as 2.0 Å to identify the RFT atoms. 

The stress component of image field due to a perfectly-bonded particle on a nearby 

dislocation can be calculated from [90]  
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                               (2.17) 

                                            (2.18) 

                             (2.19) 

where  and the constants are given as [90] 

                                                                      (2.20) 

                                                                  (2.21) 

                                                 (2.22) 

Thus, the Peach-Koehler force exerted by the perfectly-bonded particle on the dislocation can be 

computed by [57] 

                                                                (2.23) 

Rewriting Eq. (2.23) by using the stress components, we have  

                                       (2.24) 

The corresponding shear stress along the slip plane of dislocation by applying the remote stress 
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                             (2.25) 

Once substituting the stress components ,  and  as given by Eqs. (2.10-2.12) into Eq. 

(2.25), Eq. (2.25) can be rewritten as   

                                                               (2.26) 

where the rather lengthy function  can be easily determined through using Eqs. (2.10-

2.12). Lubarda et al. [18, 91] defined the critical stress for dislocation emission as once the 

remote stress balances the attraction force from the inclusion as 

                                                                  (2.27) 

By assuming the dislocation site is near but not falls on the interface, the critical remote stress 

can be derived as  

                                              (2.28) 

This predefined dislocation position is given in [18]. It is proposed that the dislocation will likely 

be emitted from void once the equilibrium distance is less than the dislocation core width . 

Therefore, the remote stress is required to balance the attractive force exerted by the 

inclusion/void at . Once setting  for the inner particle, Eq. (2.28) is 

reduced to the critical stress for dislocation emission with an embedded void. Thus, Eq. (2.28) 

becomes a simply generalized version for either a perfect-bonded particle or a void inside the 

matrix. In our calculation, the shear moduli are G1=48 GPa for copper and G1=47 GPa for silicon 

[92], b=0.255 nm is the magnitude of the dislocation Burgers vector for copper, the Poisson’s 
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ratios are =0.34 for copper and =0.27 [93] for silicon, the stress ratio k is found to be 0.65 

for the concerned strains and the core cutoff parameter  is set as 1 [18].  

 

Figure 2.8: Critical stresses by Lubarda model compared with MD results. 

Figure 2.8 shows the onset stress for dislocation emission of MD simulation compared with 

the critical stress predicted by the generalized Lubarda model. The filled circle points are the 

particles of different volume fraction but inside a same-sized simulation box and the filled square 

points are those of the same volume fraction but inside different-sized simulation box from 13.01 

nm to 52.06 nm in its length. Both the two groups result in a variation of the particle size. In 

general, the dislocations are emitted after the interfacial decohesion if the matrix is initially 
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dislocation-free. For particles with smaller size, their onset stresses for dislocation emission are 

close to the prediction by assuming a perfectly-boned particle. For particles with larger size up to 

30 nm in diameter, their onset stresses for dislocation emission are close to the prediction by 

assuming an embedded void. The wider separation at the interface for larger particles could be 

the reason for its more void-like behavior for triggering the dislocation emission.   

 

                          (a) ɛ=0.076                                                                  (b) ɛ=0.088  

Figure 2.9: Relative displacement (magnitude) after dislocation emission. The coordinate origin 

for matrix is attached on the simulation box. The coordinate origin for the particle is its center. 

The cutting plane is yoz plane. Snapshots are plotted by ATOMEYE. The unit of color bar is Å. 

Although the initiation of interfacial debonding is trigged by the normal stress at interface 

(without initial dislocations inside matrix), dislocation emission also contributes to the 

subsequent debonding as seen in Figures 2.9a and b. The excessive interfacial separation at the 
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lower side of particle facilitates the void nucleation. However, the interfacial debonding at the 

upper side is gradually healed from Figure 2.9a to Figure 2.9b. This healing process can be 

understood as follows. The interatomic force, for atoms being small distance apart but not far 

away, could enable them to rejoin. Of course, the premise is that the wider separation at the 

lower side has eased the local stress at the upper side. The break of symmetry for interfacial 

debonding, started in Figure 2.4c, has since been enhanced. The interfacial separation at the 

lower side causes not only the healing of upper separation but also the translation of the particle 

with respect to the simulation box. To single-phase material transport, any origin as long as 

attached on the simulation box will result in the same relative displacement [87]. However, it is a 

different scenario when there is a translation of a second-phase particle. The relative 

displacement inside the particle should now be separately evaluated by using the particle center 

as the origin to eliminate the effect of this rigid-body translation. The mild change of 

displacement field inside the Si particle indicates that the elastic deformation gradually recovers. 

The outside load can barely be transmitted from the matrix to particle due to severe separation 

between the particle and matrix at the lower side. For the copper matrix, dislocation lines cause 

strong discontinuity in the relative displacement field as seen in Figure 2.9b. The formed 

dislocation structure, mainly shear curves, facilitates the mass transfer and therefore grows the 

nucleated void. It is the formation of dislocations, rather than the conservative motion of 

dislocation loops that helps transfer the mass. The mass transfer caused by the motion of a 

dislocation loop is given in [57] 

               ∮          
 

                                                (2.29)    
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The triple product in Eq. (2.29) is zero when the motion is a pure slip, i.e. the three vectors , 

 and  are in a same plane.  

      

(a) ɛ=0.056 

                    

(b) ɛ=0.04                             (c) ɛ=0.056 

Figure 2.10: Interfacial debonding with pre-existing dislocations inside matrix. Dislocation 

network is shown in (a), where blue atoms represent particle-matrix/void-matrix. 

interface/surface, the blue and green rendered lines represent dislocation lines and the red atoms 

show the stacking fault area. The cutting plots (b) and (c) show the interfacial debonding. 

b

r dl
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Neither the conservative motion of a shear loop as seen in Figure 2.10 nor that of a prismatic 

loop can cause mass transfer. Figure 2.10a specifically shows the case when there are pre-

existing dislocations before the major tensile loading. Given all the other simulation 

specifications the same, we first preload the specimen with 0.08 tensile strain and then compress 

it back with the same amount of strain. The dislocation structure formed during this preloading 

and certainly will not disappear after the compressive load. Then, equilibrium run of 50 ps is 

applied to bond the interface again and removes the residual stress. The new tensile loading is 

then applied on this unstrained specimen with pre-existing dislocations. With new tensile load up 

to a strain of 0.04, interfacial debonding (see Figures 2.10b and c) now not only starts earlier but 

also aligns at a near 45⁰ (or 135⁰) angle to the loading direction under the influence of pre-

existing dislocations. This angle, close to that of the slip system in FCC metal, clearly indicates 

the influence of pre-existing dislocations (see in Figure 2.10a) on the onset of interfacial 

debonding.    

2.3.3. The Size Effect 

The scope of the MD simulation could be limited by two key factors: length scale and time 

scale. As for the length scale, various testing techniques have demonstrated that the decreasing 

sample size could substantially increases the stress response of the testing material [33-36]. In 

addition to the characteristic size of nanoparticle, the volume fraction of particle is also 

important to the particle-matrix geometry. The first to be examined is the effect of particle 

volume fraction on the stress response, which is achieved by fixing the size of the cubic 

simulation box. The second to be examined is the effect of intrinsic simulation size on the stress 

response, which is through fixing the volume fraction of particles.   
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2.3.3.1. Different Volume Fraction Vfr of Particle inside a Same-Sized Simulation Box 

 

Figure 2.11: Average stress in the loading direction with different volume fraction of particle. 

Figure 2.11 shows the average stress curve under different volume fractions of particles with 

the same box size. The strain of interfacial debonding (onset) clearly depends on volume fraction 

of particles. Larger particles nucleate voids at lower strains. This observation is consistent with 

both established experimental and theoretical studies [94-96]. The critical stress required for 

dislocation emission is also inversely related to the particle size. This relation is the same as 

observed in the simulations with pre-existing voids [97]. Recent experiment shows that the local 

volume fraction of second-phase particles can strongly promote damage formation and lower the 

yield stress as well [98]. The 10%-particle case exhibits considerable difference than the other 

two curves. Due to its much larger lateral spacing, the interfacial debonding, despite a yet small 

nucleated void, can effectively influence the overall stress-strain relation and create a local 

minimum at ɛ=0.057 in Figure 2.11. The local normal stress around the matrix layer surrounding 
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the particle in Figure 2.12 indicates that the maximum at ɛ=0.057 is the lowest among the five 

different strain cases. Before ɛ=0.057, the interfacial bonding is strong at zones 4 and 9. 

However, a shift of these strong bonding sites occurs at ɛ=0.057. From ɛ=0.057 to ɛ=0.059, the 

strong bonding sites have shifted to zones 5 and 8. The recovered interfacial bonding at these 

new sites thus regains the load-carrying capacity of the composite. The strong recovery from this 

local minimum is also due to the relatively slow growth of void volume fraction. 

 

Figure 2.12: Local normal stress at different location inside a spherical shell of matrix covering 

the particle for Vfr=10% case. Same zones are divided here as in Figure 2.5. 
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Figure 2.13: Nucleated void volume fraction under different particle volume fraction. 

In Figure 2.13, very limited void growth is seen from ɛ=0.057 to the onset strain of 

dislocation emission (marked by the green quadrilateral arrow). Shortly after, the rapid buildup 

of dislocation structure accelerates the void growth and lowers the average stress. This stress 

drop during debonding process has also been predicted using the cohesive-zone method [99]. In 

that study, the primary case with 13% volume fraction shows a considerable sudden drop of 

stress during debonding, and the increasing particle volume fraction further enhances the stress 

drop [99]. This positive correlation is also true to our MD simulation. The only difference is that, 

in the present simulation, the sudden stress drop is not related to the dislocation emission. 

However, dislocation emission does contribute to the interfacial debonding in the lateral 

direction for the Vfr=10% specimen up to ɛ=0.09. The sliced snapshot showing a full debonding 
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can be found in the inset of Figure 2.11. Four cleavages are created from the dislocation emission 

sites. The total debonding is only inside the yoz plane, and helped by the spacing created by 

dislocation emission. However, the particle still partly bonds to the matrix if viewed by the xoz 

plane.  

All ultimate strengths of the three cases are reached after both the onset of interfacial 

debonding and dislocation emission. The rising volume fraction of particles dramatically lowers 

the ultimate strength of the composite. However, the average stress of the 10% particle case 

retains a higher load-carrying capacity at the end of loading. Since the final void volume 

fractions are very close among the three cases, the higher final stress of the 10%-particle 

specimen is mainly attributed to its thicker intervoid ligament as well as the shape of void. The 

shape of nucleated void from the 10%-particle specimen appears close to a sphere, while the 

nucleated voids from the other two specimens are severely elongated in the lateral directions. 

For the two specimens with smaller particle volume fractions, observable void growth only 

appears after dislocation emission. The void volume created by debonding before dislocation 

emission is only significant for the Vfr=10% specimen. It has been stabilized at a certain porosity 

level until dislocation emission occurs. Up to ɛ=0.15, the three specimens result in a very close 

volume fraction of the nucleated voids. This can be attributed to the strain-confined lateral 

boundary condition. 
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          (a) Vfr=0.15625%                         (b) Vfr=1.25%                               (c) Vfr=10% 

Figure 2.14: Growth and coalescence of the nucleated void under different particle volume 

fraction (ɛ=0.2 and cutting plane is yoz plane). Snapshots are plotted by ATOMVIEWER [100]. 

The cutting plane is the yoz plane at the box center. The modified bond-angle distribution (BAD) 

method, originally introduced by Ackland and Jones [101] is applied to color the atoms. Red 

atoms here are not RFT atoms. 

Light blue atoms, with less than 10 neighbours, are classified as the free surfaces which 

apply to the atoms on both surfaces of the silicon particle and nucleated void. The red atoms, 

with 12 neighbours and only three straight bonds, represent the stacking fault atoms (They are 

not RFT atoms here). Dark blue atoms are the regular, face-centered-cubic atoms. The 

dislocation lines and large number of disordered atoms help grow the void towards its periodic 

neighbors in the lateral directions. The present MD simulation illustrates that second-phase 

particles can induce void nucleation, growth and coalescence, the same as described by the 

classical ductile fracture theory, despite the applied ultra-high strain rate. In Figure 2.14, a 

prominent feature is the different shapes of the nucleated voids. The Vfr=0.156% specimen leads 

to the most elongated void in the lateral direction. In contrast, the Vfr=10% specimen results in a 
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sphere-like void. Hence, the volume fraction plays a dominant role in the shape evolution of the 

nucleated void from interfacial debonding. The difference in final stress level can be attributed to 

the difference in the final void shape given that their porosities are quite close. Indeed, 

investigation of void shape effect clearly demonstrates that voids elongated in the transverse 

direction of loading will significantly lower the load-carrying capacity [97, 102].  

2.3.3.2. Different Simulation Box Size Vbox with Particle Volume Fraction Vfr=10% 

As the effect of particle volume fraction has been studied, the further attention will be paid 

to the particle size effect while keeping volume fraction the same. As the Vfr=10% specimen 

implies that relatively large particles (clustering effect) can enhance the impact of interfacial 

debonding on the stress-strain curve, it is then of great interest to investigate the size effect while 

keeping Vfr as large as 10%.  

 

Figure 2.15: Average stress in the loading direction with different-sized simulation box. 
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As Figure 2.15 shows, the inverse relation between the debonding strain and the particle size 

also holds here. The critical stress to trigger dislocation emission is also inversely related to the 

particle size. The debonding strain and dislocation emission stress are inversely related to both 

volume fraction of particles and the side length of the simulation box. However, the debonding 

strain appears more strongly related to the volume fraction than the simulation size. A higher 

volume fraction plays a stronger role in promoting interfacial debonding than the overall size of 

the nanocomposite. Among the three cases with 10% volume fraction of particle, the stress-strain 

curve of the largest size becomes more flat during debonding process. The reason is its earlier 

dislocation emission compared with the other two specimens. As shown in Figure 2.16, the 

earlier dislocation emission of the 52.06 nm specimen facilitates the growth of the nucleated 

void. Thus, the resulted higher porosity lowers the otherwise higher stress response recovered 

from the local minimum in Figure 2.15. 

 

Figure 2.16: Nucleated void volume fraction with different-sized simulation box. 
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Due to high volume fraction of particles, all three specimens in Figure 2.16 have already 

nucleated voids with an observable volume fraction before dislocation emission. Once 

dislocation structures start to build, the porosity accumulation will shift into a faster pace. In all 

three cases, a similar porosity level is approached at the end of loading due to the strain-confined 

lateral boundaries.   

 

               (a)                         (b)                                                    (c) 

Figure 2.17: Growth of the nucleated void with different simulation box size at ɛ=0.19. The 

cutting plane is xoz plane. The simulation boxes are with three different lengths, namely, 

13.01nm, 26.02 nm and 52.06 nm in (a-c). Snapshots are colored in the same way as Figure 2.14. 

For the 13.01 nm specimen, the similar re-bonding of particle-matrix interface on the lower 

side can be seen in Figure 2.17a. For the 26.02 nm specimen, a 3D shape of nucleated void can 

be envisaged by combining Figure 2.17b with Figure 2.14c. The particle appearing totally 



47 

 

debonded from matrix in Figure 2.14c is actually still weakly attached if viewed in the xoz plane 

as shown in Figure 2.17b. The nucleated void from the smallest simulation size evolves into an 

octahedral shape. For the two larger simulation sizes, both nucleated voids evolve into a more 

spherical shape. The final void shape relates to the dislocation lines (represented by those red 

atoms) as shown in Figure 2.17. Despite the similar porosity level among the three cases at the 

end of loading, the relatively high remaining stress of the 13.01 nm specimen is due to the lower 

density of disordered atoms at the intervoid ligament and its smaller intrinsic length.    

2.3.4. The Strain Rate Effect 

 

Figure 2.18: Average stress in the loading direction under different strain rate. 

The strain rate determines the time scale of the simulation for a given tensile strain. The 

achievable strain rate by MD simulation is comparable to that of a ballistic loading or a laser 
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spall test. The dependence of stress response on strain rate could be stronger for the void-

embedded specimen compared with the void-free case [103]. The present simulations have 

shown a similar size dependence of dislocation emission between the particle-embedded and 

void-embedded specimen [97]. Hence, it is of great importance to also examine the strain rate 

effect regarding the particle-embedded specimens.  

 

Figure 2.19: Nucleated void volume fraction under different strain rate. 
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delayed by applying a strain rate of 2×10
10

s
-1

. The even larger difference lies in its pattern of 

dislocation emission. Large dislocation structures are absent under a strain rate of 2×10
10

s
-1

, 

which delays the growth of nucleated void in Figure 2.19. Compared with the  ̇  2×10
9
s

-1
 case, 

the  ̇  2×10
8
s

-1 
case retains a higher stress level near the end of loading. The higher stress 

response of the  ̇  2×10
10

s
-1

 case could also be attributed to its low porosity level throughout the 

loading.  

 

              (a)  ̇  2e8 s
-1 

       
             

         (b)  ̇  2e9 s
-1

          
                     

(c)  ̇  2e10 s
-1

 

Figure 2.20: Growth of the nucleated void under different strain rate at ɛ=0.19 (The cutting 

plane is xoz plane). Snapshots are colored in the same way as Figure 2.14. 

For all three cases, the rapid growth of nucleated void is associated with dislocation 

emission. Similar frustum-like dislocation structures have been observed for both the  ̇=2×10
8
s

-1 

and
  ̇  2×10

9
s

-1 
cases shortly after dislocation emission. For reference, the strain rate of 2×10

8
s

-1 

for a void-embedded specimen also results in a frustum-like dislocation structure [87]. Similar 

mechanism of material transport via these dislocation structures is responsible for the rapid void 

growth. The dislocation emission of the  ̇  2×10
10

s
-1 

case features the simultaneous generation 

of large population of disordered atoms. In Figure 2.20c, these disordered atoms and defects give 
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birth to some secondary small voids. The very different pattern of dislocations could be 

responsible for its much lower porosity during the loading.   

2.4. Conclusions 

MEAM potential is employed to perform the MD simulation of interfacial debonding of 

silicon particles from copper matrix. Inside an initially dislocation-free matrix, the onset of 

interfacial debonding is triggered by the normal stress at the interface. However, the pre-existing 

dislocations could considerably affect the onset of interfacial debonding. Very similar to a 

normal tensile test [16], the simulated local decohesion initiates on the part of interfacial 

circumference facing the loading direction. Although the ―toughness enhancement factor‖ 

indicates that the (1 0 0) silicon-copper interface is strongly ―ductile‖, the simulation of 

spherical-particle-embedded geometry suggests that the higher normal stress at the ―polar‖ area 

of the silicon particle is responsible for the initial decohesion if there has been no initial 

dislocation inside matrix. In terms of atomic motion, interfacial debonding features a cluster of 

atoms with higher-than-average displacement. The displacement vectors of atoms at the primary 

debonding site form highly-ordered alignment. The Lubarda model to evaluate the critical stress 

for dislocation emission for void-embedded matrix has been straightforwardly generalized to a 

perfectly-bonded particle case. For particles with smaller size, their onset stresses for dislocation 

emission are close to the prediction by assuming a perfectly-boned particle. For particles with 

larger size up to 30 nm in diameter, their onset stresses for dislocation emission are close to the 

prediction by assuming an embedded void. In the subsequent development of dislocation 

network, the gradually less regular shape of void nucleated from debonding causes an 

asymmetric dislocation structure. The frustum-like dislocation structure emitted from the 

nucleated void induces the local material transport in a way similar to the pre-existing void case. 
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Although the initiation of interfacial debonding is trigged by the normal stress at the interface 

with the initial-dislocation-free assumption, dislocation emission also contributes to the 

subsequent debonding in the lateral direction. The dislocation lines and the large number of 

disordered atoms help grow the void towards its periodic neighbours in the lateral directions, and 

thus promote void coalescence. As for the size effect, larger particles lower the onset strains for 

both interfacial debonding and dislocation emission. Compared with the simulation size, the 

volume fraction plays a stronger role in lowering the onset strain of decohesion. A stress drop is 

observed for relatively large particles during the interfacial debonding. This stress drop has also 

been predicted by using strain-gradient plasticity theory with cohesive-zone method [99]. As for 

that strain rate effect, the decreasing strain rate tends to lower the onset strain for decohesion and 

the dislocation emission.  
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Chapter 3: The Influence of Initial Void Shape on the Void Growth

 

3.1. Introduction 

Nanovoids inside the metal material can stem from a number of sources such as radiation 

damage [4] or void initiation during the propagation of crack under stress [5]. It is of scientific 

significance to understand the behavior of these voids inside the metallic film as it relates to the 

structure integrity and perhaps novel designing. For instance, nanostructures containing thin 

Cu/Nb multilayer films have been proposed to be radiation tolerant media as a new design 

concept due to the fact that their interface could act like sink to store radiation induced damages. 

As for the microelectronic device, the failure of the aluminum or copper based thin films causes 

a major reliability concern [104]. A major driving force of this failure comes from the 

thermomechanical stress induced by the difference in thermal expansion between the layers 

[105]. A better understanding of the defect formation and stress evolution in the metallic films 

also contributes to the enhanced reliability in the mechanical aspects of microelectronic devices 

[106]. Vella et al. [107] investigated the mechanical properties of nanostructured thin films with 

multilayered CuNb, FeB and FeTi. In their work, the increased nano-voiding is found to decrease 

the hardness of the film. As they stated, the multilayer interface itself is not expected to affect the 

movement of atoms on either side of the interface. Therefore it seems reasonable to simplify the 

simulation geometry to an only one-layer case. Gungor et al. [106, 108] studied the void growth 

inside the ductile FCC metallic thin films under tensile loading. Their simulations suggest that 

the evolution of void morphology is accompanied by blunting due to dislocation emission. The 

                                                 
 A version of this chapter has been published. Reprinted with permission from Cui, Y.; Chen Z. Molecular 

dynamics modeling on the role of initial void geometry in a thin aluminum film under uniaxial tension. Modell. 

Simul. Mater. Sci. Eng. 2015, 23, 085011. Copyright 2016 IOP Publishing Ltd. 
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step pattern formation on the film surface reveals a possible mechanism of interfacial 

delamination for encapsulated metallic thin films used in microelectronics. Kolluri et al. [109] 

reported an analysis of void nucleation mechanism inside strained ultrathin films of FCC metals. 

They concluded that the nucleation of nanovoid inside the ultrathin film is due to the emission 

and propagation of multiple dislocation half-loop and the formation and clustering of vacancies 

due to dislocation interactions and gliding of jogged dislocations. It is therefore meaningful to 

carry out simulation to further investigate the situation with specifically-shaped void inside thin 

metallic film and its pertinent pattern of dislocation emission and growth mechanism.      

The dislocation emission has been proposed to be a primary cause of the void growth under 

high strain rate [18]. The understanding of void growth under extreme high strain rate 

contributes to the design analysis of structures potentially sustained explosive or projectile 

impacts [18]. Recently, Feng et al. [5] observed via transmission electron microscopy (TEM) the 

nucleation and growth of the void of tens of nanometer to propagate the crack. Besides, 

dislocation emission and migration are spotted to accumulate ahead of the crack tip regions in 

their study. Lubarda, et al. [18] revealed that the dislocation emission could be the primary cause 

of void expansion and proposed critical stress for dislocation emission under high strain rate. 

Their early work focused on the biaxial tension case. Later, Lubarda [91] generalized their 

original work to the cases under combined loading. The newly proposed dislocation emission 

angle is no longer confined to a 45 degree from the void surface. Instead, the minimum critical 

stress is physically obtained by minimizing the critical stress with respect to the two angular 

variables. Several of these theoretically proposed mechanisms such as the dislocation emission 

angle and critical stress, are supported by the later MD simulations [26, 38, 39].  



54 

 

As a theoretic approach, it is feasible to first simplify the problem to the case with only 

matrix material. Future attention could be paid to the void initiation in the presence of second 

phase inclusion. In this work, the simulation is confined to the pre-existing void case. The shape 

of embedded elliptical void varies from ―x-elongated‖ to ―y-elongated‖ by altering the aspect 

ratio. The initial porosity fraction is controlled by cutting different size of void out of a fixed 

simulation box. The ILD, known to be important for the void coalescence, is set fixed or unfixed 

in creating the void geometries. This work will shed some light on better understanding the role 

of the void geometry. 

3.2. Simulation Methodology  

The Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) is utilized in 

the simulation. The atomistic interaction is modeled by the embedded atom method (EAM) 

[110]. It is crucial that the EAM potential chosen for atomistic simulations must accurately 

reproduce pertinent features of the resulted energy curves, such as the unstable stacking fault 

energy [80]. The unstable stacking fault energy is an important parameter of the barrier for 

partial dislocation nucleation [81]. Simulation with qualified EAM potential is able to reflect 

dislocation nucleation and interaction phenomena [111]. Mishin, et al. [112, 113] reported the 

EAM potentials for aluminum and copper, respectively. These potentials demonstrated accurate 

intrinsic and unstable stacking fault energy and have been extensively applied in MD simulations 

[26, 38, 39, 111, 114]. Hence, EAM potential for aluminum [112] is selected to carry out the 

simulation. 

As for the computational geometry, a periodic void-embedded simulation box is selected to 

represent a cluster of uniformly distributed voids. The 3-D simulation box with a thin thickness 
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in z-direction is employed. The atoms inside the void are removed to create a specifically-shaped 

embedded hole. Energy minimization using a conjugate gradient algorithm is first performed to 

attain the minimum energy configuration, followed by the relaxation step to reach an equilibrium 

state configuration. Based on that, the load of fixed engineering tensile strain is applied in the x 

direction and with strain-confined lateral boundary. The MD simulation is performed with the 

isothermal-isobaric ensemble under room temperature via the Nose-Hoover thermostat [82, 83], 

representing a system in thermal contact with a bath of constant temperature. According to 

LAMMPS user manual, the Nose-Hoover thermostat could bring the undesirable oscillation of 

pressure and/or temperature to the atomic system. Therefore, a proper drag force is applied upon 

the thermostat to damp this oscillation.  

The software ATOMVIEWER [85] is applied in the post-processing of the LAMMPS 

outputs. ATOMVIEWER is a visualization and analysis tool for molecular dynamics 

simulations, which is capable of featuring the detection and characterization of dislocations and 

their Burgers vectors. It utilizes a novel way to identify dislocations and Burgers vectors by the 

decomposition of dislocation density tensor [85].  

3.3. Results and Discussion 

Elliptical void of different aspect ratio and initial porosity is embedded in a periodical 

simulation box. The 3D simulation geometry with a central void cut throughout its z direction 

represents a physical model of sheet tensile specimen containing penetrating holes. During the 

simulation, uniaxial load is applied at both ends of x-direction. The x-y aspect ratio of the 

elliptical void varies from 2 to 1/2. The stress-strain relation is monitored during the growth of 

the void under applied tractions. The vertical ILDs are allowed to change in subsection 3.3.2 but 

will be fixed in subsection 3.3.3. 
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3.3.1. Effect of the z-Direction Thickness 

 

Figure 3.1: Stress-strain relation with 5% initial porosity under different z-direction thickness. 

To limit the influence of the z-direction thickness on our simulation results, we first 

perform an analysis upon the simulation cells with varying z-direction thickness. The z-direction 

thickness is increased from 8 lattice constants of aluminum (3.24 nm) to 64 lattice constants 

(25.92 nm), while fixing the size in the other two directions. The resulted atom numbers increase 

from around 2 million up to 16 million. The strain rate is chosen as 2e9 s
-1

, which is within the 

commonly adopted range [26, 37, 40]. 
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                       (a) 8                                                                    (b) 16                

                   

                       (c) 32                                                                (d) 64  

Figure 3.2: The early stage of dislocation emission (stacking fault atoms in red are made visible 

and the dislocation lines are in dark blue or gray, while the stacking fault atoms are in red) under 

different z-direction thickness (thickness in (a-d) is in the unit of lattice constant of aluminum). 



58 

 

               

                      (a) 8                                                             (b) 16                

               

                      (c) 32                                                         (d) 64  

Figure 3.3: The dislocation structure (stacking fault atoms are made invisible) at the ultimate 

strength point under different z-direction thickness (thickness in (a-d) is in the unit of lattice 

constant of aluminum). 
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The stress-strain relation depicted in Figure 3.1 reveals little difference before a strain 

around 0.075. Given this fact, it is not surprising to find that the onset strain of dislocation 

emission is almost unaffected by the change of the z-direction thickness. However, the stress-

strain curves diverge after the ultimate strength. As the z-direction thickness is doubled, the 

corresponding stress response gradually converges and shows less dependence on the thickness. 

In this sense, a thickness of 32 seems good enough to limit the influence of the thickness. Next, 

the newly formed dislocations at the early stage are shown in Figure 3.2. Except for the thinnest 

case, the other three cases exhibit similar activated slip system. There appears to be enough 

spacing for the dislocation loop to develop and detach from the void surface in the last two cases. 

At the ultimate strength, more complicated dislocation structures are formed out of the 

interaction between the dislocations in Figure 3.3. Similar features in Figure 3.3c and d such as 

the shape of dislocation loops and the congregation of the dislocations around the ―polar‖ areas 

of the voids suggest that a thickness of 32 would be a fair trade-off. For a comprehensive 

consideration of the stress-strain relation and dislocation pattern, a thickness of 32 is therefore 

selected and will be used below.  

3.3.2. The Cases with Unfixed Intervoid Ligament Distance 

The pertinent void geometries are illustrated in Figure 3.4 and detailed in Table 3.1. The 

uniaxial load is applied corresponding to a constant engineering strain of the square simulation 

box in the x-direction. The initial porosity is chosen as either 5% or 1%. Apparently, changing 

the void aspect ratio while fixing the initial void fraction inside a square simulation box leads to 

varying vertical ILDs. Among all the void shapes, the vertical ILD of the ―y-elongated‖ elliptical 

void is the shortest. The terms ―x-elongated‖ and ―y-elongated‖ stand for ―elliptical shape with 
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its major axe lying in the horizontal direction‖ and ―elliptical shape with its major axe lying in 

the vertical direction‖, respectively. 

     

                   (a) x-elongated                           (b) Circular                             (c) y-elongated 

Figure 3.4: Three void shape cases with 5% initial porosity.  

Table 3.1: Geometry Specifications for Virtual Specimens 1-6 

Specimen L (nm) 

Thickness 

(nm) 

Aspect ratio 

a1/a2 

Initial 

porosity 

Void’s major 

diameter (nm) 

1 104 12.96 2 5% 36.9 

2 104 12.96 1 5% 26.1 

3 104 12.96 0.5 5% 36.9 

4 104 12.96 2 1% 16.5 

5 104 12.96 1 1% 11.7 

6 104 12.96 0.5 1% 16.5 

 

3.3.2.1. The Cases with 5% Initial Void Volume Fraction 
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                             (a) x-elongated                       (b) Circular                (c) y-elongated 

Figure 3.5: The early stage of dislocation emission.  

 

(a) =0.056 

 

           (b) 0.058                       (c) 0.06                         (d) 0.062                            (e) 0.064 

Figure 3.6: Gliding of a part of the initially formed dislocation lines (x-elongated void). 


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           (a) x-elongated                      (b) Circular                      (c) y-elongated 

Figure 3.7: The dislocation structure at the ultimate strength. 

              

                          (a) x-elongated                                                    (b) Circular                 

 

                                                    (c) y-elongated 

Figure 3.8: The void shape and dislocation structure at 0.2 strain of 5% initial porosity.  
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The early stage of dislocation emission refers to the snapshot by ATOMVIEWER taken very 

shortly after the onset of dislocation emission, which is determined by having non-zero 

dislocation number in the dislocation network output file of ATOMVIEWER. Very little trace of 

dislocation emission can be spotted prior to this early stage. In Figure 3.5, the light blue atoms 

identify the void surface and the red stacking fault atoms are bounded by the dislocation lines 

(colored in dark blue). The slip system of type {111} is activated. The dislocation lines start at 

the four sites on the void surface and their location are subject to the void shape. In Figure 3.9, 

the y-elongated void starts its dislocation emission at a much lower strain than the other two 

shapes. As the x-y aspect ratio of the void changes from 2 to 0.5, the distance between the two 

dislocation emission sites at the upper and lower surface of the void are narrowed. No immediate 

plastic deformation is found at the moment of the emission of dislocations. Hence, the horizontal 

expansions of the voids in Figure 3.5 are so far elastic. The dislocation structures at the ultimate 

strength are shown in Figure 3.7. Under this strain, the dislocation lines are not restricted at the 

initial dislocation sites. Four sets of dislocation loops with comparable size to the void are 

formed by connecting the initial dislocation sites to near the equator of the void. Taking the x-

elongated shape for example, the mechanism of forming this structure is through the gliding of 

the dislocation lines as illustrated in Figure 3.6. On the upper void surface in Figure 3.6a, the 

dislocation loop at the left and its stacking fault atoms inside start to glide in the arrow direction. 

From Figure 3.6b to Figure 3.6e, this dislocation group grows and moves, leaving visible trace 

behind on the void surface. The rest of the initially emitted dislocation lines stay around its initial 

position. Given those two sets of dislocation lines, the glided ones connect back to its 

―birthplace‖ (either directly or passing the periodical boundary indirectly) to form larger ring-

like narrow loops at the four corners. It is the similar case for the other two void shapes which 
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also develop such a dislocation structure (Figure 3.7). The void shape affects the distance 

between the dislocation lines and therefore promotes or limits the dislocation interaction at the 

sites. For the y-elongated void, the dislocation sites at the ―polar‖ area of the void have merged 

into one and led to localized plastic deformation there due to the vicinity of its initial dislocation 

sites. For the other two void shapes, the two dislocation sites at the upper and lower void surface 

are still separated. As the emission and interaction continues, the dislocations spread across the 

whole simulation cell as in Figure 3.8. The x-elongated void tends to retain its shape while the y-

elongated void tends to extrude in its ―polar‖ area.  

  

Figure 3.9: Stress-strain relation under 5% initial porosity.  

Both Pardoen and Hutchinson [44] and Tvergaard [43] have reported FE investigations of 

void shape effect in ductile metals. In Tvergaard’s work, a trivial difference in stress response 

between the x-elongated, circular and y-elongated voids was found during the strain hardening 
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period with void aspect ratios varying from 3 to 1/3. In Pardoen and Hutchinson’s work, a 

slightly bigger difference in stress response is observed under uniaxial load with void aspect 

ratios varying from 6 to 1/6. An insufficiency of the FE method is the incorporation of the 

phenomenological material model, which is inherently inadequate to reflect the dislocation 

mechanism arising at the atomic level. The previous figures have shown diverse dislocation 

patterns with respects to different void shapes. Hence, it is not surprising that the MD results 

bring some new insight into the influence of the void shape on the stress response. Indeed, the 

ultimate tensile strengths differ remarkably for the three void shapes in Figure 3.9, which is not 

case for the FE simulation. As the void shape changes from x-elongated to y-elongated, the 

apparent elastic stiffness, the onset strain of dislocation emission and the ultimate tensile strength 

are all lowered. In Figure 3.9, the stress response is not immediately deteriorated at the onset of 

dislocation emission. Yet the slopes of the stress-strain curves diminish right after the emerging 

of dislocations, especially for the y-elongated shape. All the curves drop quickly after the 

ultimate strength point but remain at a level around 1-2 GPa, implying that the material still 

maintains a certain load carrying capacity. The stress response of the x-elongated void and 

circular void are quite close at the end of loading, while it is the lowest for the y-elongated one. 

During loading, the dislocation structure grows to reach the periodical boundary of the 

simulation cell (in x and y direction) at the strain of around 0.09 for the x-elongated shape, 0.08 

for the circular and 0.07 for the y-elongated shape. Below these strains, the void is free from the 

dislocation interaction of its periodical neighbors. In Figure 3.9, the differences between the 

curves tend to narrow from the strain of around 0.08, especially for the x-elongated and circular 

voids, when the void becomes no longer isolated from its neighbors.  

3.3.2.2. The Cases with 1% Initial Void Volume Fraction 
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             (a) x-elongated                            (b) Circular                    (c) y-elongated 

Figure 3.10: The early stage of dislocation emission (magnified).  

                 

                             (a) x-elongated                                                   (b) Circular                
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                                              (c) y-elongated 

Figure 3.11: The dislocation structure at the ultimate strength. 

 

 

Figure 3.12: Dislocation kinks (inside the left black circle) and jogs (inside the right black 

circle) near the surface of the y-elongated void (green arrow is the Burgers vector). 
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                                (a) x-elongated                                              (b) Circular              

 

                                                    (c) y-elongated 

Figure 3.13: The void shape and dislocation structure at 0.2 strain of 1% initial porosity.  

Next is the 1% initial porosity case. The void shape still determines the initiation position of 

dislocations on the void surface in the same way. Yet, the distance between the dislocation sites 

is shortened proportionally corresponding to the size of the void. Similarly, the gliding of the 

dislocation lines away from its initiation position is still responsible for changing dislocation 

structure from Figure 3.10 to Figure 3.11. Due to a shortened distance between the dislocation 
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initiation sites, even the upper dislocation sites of the circular shape have merged into one and 

led to a stronger dislocation interaction there. A distinctive feature in Figure 3.11b is that a larger 

dislocation loop in the left of the circular case is formed by directly connecting the dislocation 

sites from the upper and lower ―polar‖ area of the void. There are no longer four sets of loops at 

the four corner of the void like that in Figure 3.7b but just three due to the interaction between 

the dislocation loops. This is also true for Figure 3.11c. During the evolution of the dislocation 

structure, some typical dislocation interactions such as the dislocation kinks and jogs are spotted 

in Figure 3.12. Compared to the cases with 5% initial porosity, the discrepancy is that the 

distortions of the void shapes are not only noticeable for the y-elongated shape but also for the 

circular shape and even the x-elongated shape. A plausible explanation is that there is more 

spacing for the initially smaller void to grow inside the size-fixed simulation box.    

  

Figure 3.14: Stress-strain relation with 1% initial porosity.  
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Even though the initial porosity is lowered to 1%, the stress-strain curves in Figure 3.14 still 

suggest a strong influence of the initial void shape. From the very beginning to the ultimate 

strength point, the difference among the stress curves gradually widens. Following the drop after 

the ultimate strength, the discrepancy between the x-elongated void and the circular void narrows 

and yields nearly the same value at the end of loading. However, the stress response of the y-

elongated void decreases to a much lower value and yet the specimens still possess a certain load 

carrying capacity at the end.  

3.3.3. The Cases with Fixed ILDs 

It has been reported that ILD plays an important role in determining the onset of void 

coalescence [115]. The coalescence of neighboring voids is the direct consequence of the 

consumption of the intervoid ligament vertical to the loading direction. The changing ILDs, as a 

consequence of the changing void shape, may play a certain role in affecting the material 

response. Therefore, the aim of this subsection is to assess the void shape effect while excluding 

the influence of ILDs. In order to keep the same initial void volume fraction as well as the same 

ILD, it is inevitable to alter the aspect ratio of the simulation box. The y-elongated void here is 

still embedded in a square simulation box. As a consequence, the circular void has to be 

embedded in a rectangular box with an x-y aspect ratio of 2 and thus double the total number of 

atoms from 8 million to 16 million. We know from the previous simulation cases that the x-

elongated void has the highest stress response and thus is the safest in terms of its load carrying 

capacity. As a result, the x-elongated shape is here excluded to save the computation cost. Once 

ILDs are fixed, the primary consequence of changing the shape is the altering of the aspect ratio 

and the ―polar‖ curvature of the void in Figure 3.15. The lenticular void is created to yield both 

the same initial porosity and the same ILD. The initial void shape is not smooth in real 
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engineering materials. It may contain sharp tips. Yet for the sake of simplicity, void is often 

treated as smooth in modeling. The comparison between the y-elongated void and the lenticular 

void serves the very purpose to evaluate the influence of the initial shape irregularity on the 

dislocation emission and mechanical response of the material. More information regarding the 

three specimens is detailed in Table 3.2.  

 

               (a) Circular                     (b) y-elongated          (c) Lenticular  

Figure 3.15: Specimens 7, 8, 9 with fixed ILD. 

Table 3.2: Geometry Specifications for Virtual Specimens 7-9 

Specimen L (nm) 

Thickness 

(nm) 

Aspect ratio 

a1/a2 

Initial 

porosity 

Void’s major 

diameter 

(nm) 

7 104 12.96 1 2.5% 26.1 

8 104 12.96 0.5 2.5% 26.1 

 9 104 12.96 0.55  2.5% 26.1 
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                         (a) Circular                              (b) y-elongated                     (c) Lenticular  

Figure 3.16: The early stage of dislocation emission. 

                  

                     (a) Circular                                                       (b) y-elongated      
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                                                                       (c) Lenticular  

Figure 3.17: The dislocation structure at the ultimate strength. 

 

                          (a) 0.15 strain                                                          (b) 0.2 strain 

Figure 3.18: The way of void expansion in specimen 7 (The snapshots are only truncated 

horizontally).  
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                           (a) y-elongated                                                     (c) Lenticular  

Figure 3.19: The evolved void geometry of specimen 8 and 9 at 0.2 strain. 

Under the fixed ILD, the void shape again alters the position of the dislocation initiation 

sites in a similar way as in Figure 3.16. Only one initial dislocation site is observed at either tip 

of the lenticular void, which makes its total initial dislocation sites halved compared with the 

other shapes. The dislocation lines are found gathering at the tips of the lenticular void once 

emerging. At the ultimate strength point in Figure 3.17, the dislocation sites at the ―polar‖ area of 

the voids all merge into one, which differs from the cases with 5% initial void volume fraction. 

As for the void deformation, two cleavages have been formed at the tips of the lenticular void. 

As the loading process continued, the circular void exhibits a distinctive way to grow its volume 

(see Figure 3.18). The matrix material moves away along the traces with high concentration of 

the disordered atoms and defects to grow the void. The disordered atoms and defects in Figure 

3.18 are identified by the configuration of its nearest neighbor atoms [100]. However, this 

phenomenon cannot be found in Figure 3.19 and the void growth of the other two shapes is far 
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less than that in specimen 7. In Figure 3.19b, the cleavages from the tips of the lenticular void 

further extrude to consume the intervoid ligaments which may suggest an early void coalescence. 

 

Figure 3.20: Stress-strain relation of specimen 2, 7, 8 and 9. 

Given the same initial void volume fraction and ILD, the void shape still highly affects the 

stress-strain response of the specimens in Figure 3.20. The dislocation emission from the 

lenticular void is the earliest, which suggests that bigger ―polar‖ curvature of the void promotes 

the dislocation initiation. The increase of the initial void volume fraction tends to postpone the 

dislocation emission by comparing the two circular voids. The y-elongated and lenticular voids 

result in a considerable deterioration of the ultimate stress compared with that of the circular 

void of 2.5% initial porosity. Unlike the continuum theory, there is no geometrical singularity at 

the atomic level. The tips of lenticular void are of finite width in the MD geometry. As a result, 

the ―singularity‖ at the lenticular void tips has very limited influence on the stress response of the 
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specimen in Figure 3.20. In this sense, a less smooth void shape could be readily approximated 

by an elliptical shape in modeling. The stress response of specimen 7 is about the highest before 

the strain of around 0.1 due to the fact that it is circular and has halved initial porosity of 

specimen 2. However, since the specimen 7 has a distinctive way to excessively grow the void 

volume after a strain of 0.1, the corresponding stress response is significantly lowered.  

3.3.4. Comparison with the Analytical Model 

During the post-processing of MD simulations, we have identified the onset of dislocation 

emission by checking the dislocation network file output by ATOMVIEWER. Based on that, the 

MD results could be compared with the theoretically predicted critical stress for the dislocation 

emission. Lubarda, et al. [18] obtained the critical stress required to trigger dislocation emission 

by balancing the remote stress to the dislocation attraction force from the void. Later, Lubarda 

[91] extended the original model to account for combined loading cases. His analytical model 

utilized a cylindrical void geometry embedded in an infinitely large material. Similar to his early 

work, the critical stress for the initiation of dislocation emission is determined by balancing the 

applied stress to the image force on the dislocation exerted by the void surface. As shown in 

Figure 3.21, the equilibrium distance  from the surface of the void is set equal to the 

dislocation core cut-off radius  [116] and  is set equal to the magnitude of the dislocation 

Burgers vector [91]. The resulted critical stress is still associated with the angles  and  as 

illustrated in Figure 3.21. Therefore, the actual minimum critical stress requires to be determined 

through the minimization with respect to  and . The critical stress  takes the 

form as in [91] 



0 0

 

  ( , )cr cr   
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                         (3.1) 

      

(3.2) 

                                                 (3.3) 

                                                   (3.4) 

Where 

 is the shear modulus, and G=25. 5 GPa [117] for aluminum, 

 is the magnitude of the dislocation Burgers vector, and b=0.286 nm [118] for aluminum,  

 is Poisson’s ratio, and is set as 0.33; and other geometry quantities are as illustrated in 

Figure 3.21. 

 

Figure 3.21: Illustration of the void-dislocation geometry from Ref. [91] (Reprinted with 

permission from Lubarda. Copyright 2011, Elsevier). 
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Figure 3.22: The critical stresses for dislocation emission predicted by MD are compared to the 

minimum critical stress predicted analytically [91]. The hollow, horizontally half-filled, filled 

scattered and vertically half-filled symbols are the MD results with 1%, 2.5%, 5%, 20% initial 

porosity, respectively. The integer right to the individual symbol inside the legend is the 

corresponding specimen number. Geometric mean radius 
 
is used for the non-circular 

voids. A scale break is introduced horizontally to accommodate the largest void size.  

Table 3.3: Geometry Specifications for Virtual Specimens 10-12  

Specimen L (nm) 

Thickness 

(nm) 

Aspect ratio 

a1/a2 

Initial 

porosity 

Void’s major 

diameter (nm) 

10 207 12.96 2 20% 148.0 

11 207 12.96 1 20% 104.6 

 12 207 12.96 0.5  20% 148.0 
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For the voids with same area, a bigger x-y aspect ratio leads to a larger critical stress. Our 

simulated dislocation cutting angle  for the circular void appears smaller than that of the 

theoretically predicted value 89º [91]. In Figure 3.22, the tendency of the critical stress predicted 

by MD is in fair agreement with the prediction of the Lubarda model. Three much larger 

specimens as detailed in Table 3.3 are dedicated to better examining the influence of void size. 

The diameter of the circular void inside specimen 11 is 104.6 nm and the major diameter of the 

elliptical voids reaches 148.0 nm. The critical stress required by this largest circular void to 

initiate dislocation agrees well with the limiting value predicted by the Lubarda model for large 

voids. More importantly, our MD simulation reveals that the shape of large submicron voids 

continues to play a role in the dislocation initiation stress. The same applies to the ultimate 

tensile stress obtained by the simulation. The corresponding dislocation emission pattern and 

evolution is quite similar to the previous cases, except for now more spacing available for the 

dislocation line to migrate. The minor discrepancy between the theoretical critical stress and our 

simulated value could be attributed to two points. First, the critical stress of void under an 

applied strain rate of 2×10
8
 s

-1
 is slightly lower (not displayed). It implies that the difference 

between the simulated results and the Lubarda model could be smaller if a lower strain rate is 

used. Second, the interaction among dislocations, which is neglected in the analytical model, 

may hinder or facilitate the emission so as to bring uncertainty to the threshold stress level [91]. 

3.4. Conclusion 

The influence of initial void geometry on void growth under uniaxial load is studied. 

Dislocation emission is found to be the precursor of both the stress deterioration and the void 

growth under the considered strain rate. The following conclusions are drawn for the pertinent 

simulation conditions. 


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1. Large open-ring structure composed by dislocation loops is formed by the gliding of the 

dislocation lines. During the evolution of the dislocation structure, some typical dislocation 

interactions such as kink and jog are spotted before the ultimate strength is reached. The traces 

with high concentration of disordered atoms and defects facilitate the void expansion. 

2. Initial void shape substantially affects the stress-strain response. The y-elongated void 

leads to considerable deterioration of the ultimate strength. Initial void shape not only alters the 

sites of the dislocation emission, but also determines the stress threshold for dislocation 

emission. The influence of initial porosity is intertwined with the influence of the initial void 

shape on the stress-strain relation. For circular void and y-elongated void, their stress-strain 

responses are relatively close to each other at the high strain range. The MD approach 

demonstrates a stronger effect of the void shape on stress-strain relation than that predicted by 

the FE approach.   

3. The MD results are consistent with the Lubarda model in predicting the critical stress to 

trigger the dislocation emission. The x-elongated void tends to elevate the critical stress for the 

dislocation emission, while the y-elongated void shape does the opposite.  

4. Under a fixed intervoid ligament distance, the shape of the void still plays an important 

role in affecting the critical stress for the dislocation initiation, the position of dislocation sites 

and the stress-strain relation. The singularity at the tips of the lenticular void considerably lowers 

the critical stress for dislocation emission but has very limited influence on the stress-strain 

relation.  
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Chapter 4: The Impact of Thermo-Mechanical Constraints on the 

Void Growth

 

4.1. Introduction 

Voids of nano-size inside the metal materials stem from a number of sources such as 

radiation damage [4]. These nanovoids are very suitable for MD simulation due to their small 

size. Molecular dynamics has proven to possess a great potential in uncovering the fundamental 

mechanisms of nanovoid development. Over the years, quite a number of atomistic simulations 

have been dedicated to the understanding of the growth mechanism of nanovoids. Traiviratana et 

al. [26] performed the MD simulation to study the void growth in both monocrystalline and 

bicrystalline copper. The emission and reaction of dislocation by the presence of the void are 

well detailed in their work. Zhao et al. [119] modeled the growth of nano-sized, cylindrical void 

under uniaxial-stress state with the NPT ensemble. Zhao et al. [120] studied the effect of multi-

axial stress state on the nano-porous, single-crystalline copper. Their simulation revealed 

quadrangular-prismatic dislocation loops formed near the void under the hydrostatic loading and 

a dislocation structure of square-frustum under the uniaxial tension. Bringa et al. [38] studied the 

effect of loading orientation and nanocrystalline on the void initiation and growth. They 

confirmed the mechanism of void nucleation and growth by dislocations. Bhatia et al. [103] 

investigated the nanovoid growth in single-crystal aluminum under the NVT ensemble. They 

found that the growth rate of the nanovoid is insensitive to the initial lattice orientation. 

Dislocations are found closely related to the void growth. Recently, Farkas et al. [121] applied 

both Nose-Hoover thermostat and barostat to study the mechanical response of nanoporous gold. 

                                                 

 A version of this chapter of this thesis is submitted as Cui, Y.; Chen, Z. Void growth via atomistic simulation: will the 
formation of shear loops still grow a void under different thermo-mechanical constraints?  
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Of all the aforementioned papers, different mechanical and thermal constraints have been 

involved in the MD simulation of nanovoids inside metal material. Despite the short duration due 

to ultra-high strain rates, mechanical constraints on lateral boundaries could also affect the 

behavior of a nano-specimen. Laser shock test of a 250-nm nickel sample measures a shock 

velocity of 6.28 nm/ps and a shock wave rise time 5.5 ps for the free surface velocity [122]. This 

implies that the speed of shock wave may allow the lateral relaxation of a specimen of tens of 

nanometers during, for example, a 1000ps simulation time. For an MD simulation of tensile 

testing with free lateral boundaries, nano-specimens undergo contraction in the lateral directions 

[123]. A periodic representation of nano-structure inherently involves the use of mechanical 

constraint, and thereby, creates a difference in the predicted void growth. In light of this concern, 

a comparison of mechanical/thermal constraint will help to elucidate the difference they caused 

and thus could guild the selection of the mechanical/thermal constraint with respect to particular 

situation. This issue has been a general concern regarding the mechanical aspect of molecular 

dynamics simulation. For instance, the effect of stress control has been studied for the 

mechanical testing of polymers via molecular dynamics [124]. However, similar work has not 

yet been reported for void growth in metals. In addition to the comparison of mechanical and 

thermal constraints, another perspective of this chapter is the role dislocations played in the void 

growth. Lubarda et al. [18] has demonstrated that both prismatic loop and shear loop can grow 

the void under median to high strain rate. Void growth mechanism via prismatic loop is a classic, 

textbook understanding [57]. Despite the debate over the years, a recent MD simulation has 

proved the feasibility of void growth mechanism via shear loop [87]. This simulation is 

performed without thermostat and barostat activated along with unchanged simulation size and 

strain rate in loading [87]. To further explore the universality of this mechanism, new 
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simulations are performed and examined in the present study with different mechanical 

constraints, thermal constraints, sizes of simulation box and strain rates. Our focus is on the mass 

transport during the burst of void growth from the onset of dislocation emission.  

This chapter is organized as follows. First is a brief description of the methodology to 

perform the mechanical and thermal constraints in molecular dynamics simulation. Second is the 

comparison of different mechanical constraints with thermostat activated under a temperature of 

0.1K. The main purpose of selecting this low temperature is to avoid thermal activation and 

thermo-mechanical interaction. Third is the comparison of different mechanical constraints 

without temperature control under an initial temperature of 300K. Through using the software 

ATOMVIEWER [85], void growth pattern would be characterized by the RFT atoms inside the 

dislocation network. Our simulation results are dedicated to examining the difference in void 

growth caused by the stress/temperature control and mass transport via shear loops/curves.  

4.2. The MD Simulation Technique       

The temperature and stress control are sometimes essential as a lot of experimental 

measurements are performed at specific temperature and/or stress state rather than constant 

energy. Nosé [83] extended the canonical ensemble MD method to the NPT ensemble by 

advancing the constant pressure MD method of Andersen [125]. Martyna et al. [126] rewrote the 

Hamiltonian and the equations of motion for the Nosé-Hoover NPT method and introduce a fully 

flexible simulation cell with a modular invariant of momentum to the barostat. The software 

LAMMPS [77] implements the equations of Martyna et al. [126] and Shinoda et al. [127] to form 

the equations of motion for the NVT and NPT ensembles
1
. The applied time integration schemes 

                                                 
1 See the fix nvt command in the LAMMPS manual (Jun 28, 2014 version) 
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closely follow the time-reversible, measure-preserving Verlet and rRESPA integrators, as 

derived by Tuckerman et al. [128]. If no thermostat or barostat is active, the simulation will be 

run under NVE ensemble. The NVE integration updates the position and velocity for atoms at 

each time step, which creates a system trajectory consistent with the microcanonical ensemble
2
. 

The deformation in the loading direction is imposed by stretching the simulation box and 

remapping all the coordinates of atoms. For the tensile loading of uniaxial strain, the two non-

loading lateral boundaries of the simulation box are fixed. For the tensile loading of uniaxial 

stress, the loading dimension is decoupled from the other two directions in performing the stress 

control. The microcanonical (NVE) and canonical (NVT) ensembles are employed to achieve the 

uniaxial-strain state while the isoenthalpic-isobaric (NPH) and the isothermal-isobaric (NPT) 

ensembles are for the uniaxial-stress simulations. These simulations are further divided into two 

categories: with or without the use of thermostat under different temperatures. The dynamic 

simulations under NVE and NPH ensembles are run without thermostat and start at T=300K. The 

simulations under the NVT and NPT ensembles at near zero Kelvin are designed to eliminate 

thermal activation and thermo-mechanical interaction. It should be noted that the barostat and the 

volume/length control are only applied to non-loading directions.  

 

Figure 4.1: Initial configuration of simulation box (26×26×26 nm) and central spherical void 

(r=3.5 nm) inside (only atoms representing the surface of void are shown). 

                                                 
2 See the fix nve command in the LAMMPS manual (Jun 28, 2014 version) 



85 

 

The Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) is used in our 

simulations. Atomic interaction is modeled by the embedded atom method (EAM) [110]. Mishin 

et al. [112, 113] reported the EAM potentials for aluminum and copper, respectively. These 

potentials demonstrated accurate intrinsic and unstable stacking fault energy such that they have 

been extensively applied in MD simulations [26, 38, 97, 102, 103, 111, 114]. Hence, this EAM 

potential for copper [113] is chosen to carry out all the simulations here. The void-embedded 

geometry is created by removing the atoms within a spherical region inside the cubic simulation 

box as shown in Figure 4.1. The total atom number is approximately 1.5 million. The initial void 

volume fraction is 1%. The boundaries of the simulation box are made periodic for all the three 

directions. A fixed time step of 1fs is applied in the simulation. Energy minimization is first 

performed by using a conjugate gradient algorithm to attain a minimum energy configuration, 

followed by a relaxation step to reach an equilibrium-state configuration under the designed 

temperature. The uniaxial load with a strain rate of 2e8 s
-1

 is applied at both ends in the x 

direction. The two lateral directions are decoupled with the loading direction in using the 

barostat for the NPH and NPT cases. For the NVT and NPT ensemble cases, the temperature is 

constrained to 0.1 K during the loading process through the Nosé-Hoover thermostat. For the 

NVE and NPH cases, the initial temperature for dynamic run is 300K. The MD post-processing 

software ATOMVIEWER [85] is employed in post-processing the MD data to identify the 

dislocation network and Burgers vectors. It combines the modified Nye-tensor method and the 

dislocation line extraction method to derive Burgers vectors and dislocation network without 

constructing Burgers circuits explicitly [85]. We refer to the work of
 
Begau et al. [85] for details. 

With the help of the MD software ATOMVIEWER, the computation of the overall dislocation 

density becomes feasible.  
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4.3. Results and Discussions      

4.3.1. Simulations with Temperature Control  

At some point during the loading, a direct visualization of the dislocation network would 

become difficult once the dislocation forest spreads all over the whole simulation box. It is then 

more convenient to characterize the dislocation curves by their density. The dislocation density 

by definition is the length summation of the entire dislocation population divided by the 

containing volume. The software ATOMVIEWER outputs the dislocation network files which 

contain the number of dislocations and the node information for each dislocation segment. The 

dislocation density could then be obtained by summing up the distance between the nodes 

belonging to each dislocation segment and dividing it by the current system volume. Attention 

has been paid to prevent misconnecting the nodes due to the periodicity of the simulation box in 

finding the length of individual dislocation segment. In Figure 4.2a, the strain for the onset of 

dislocation emission is 0.052 for the uniaxial-strain case by applying the NVT ensemble and 

0.078 for the uniaxial-stress case by applying the NPT ensemble. The dislocation initiation is 

then defined as the moment when dislocation number calculated by the software 

ATOMVIEWER is first found non-zero. In Figure 4.2a, both the dislocation density curves have 

a burst of increase shortly after the onset of dislocation emission. The uniaxial-strain curve keeps 

climbing despite a little fluctuation. After reaching the peak value, it develops a mild decline to 

the end of loading. The uniaxial-stress curve declines sharply by around a half after reaching its 

peak value and regains a mild growth at some points later towards the end of loading. This 

difference between the dislocation density curves comes from the different spacing in the lateral 

directions. Additional simulation with constant system volume under NVT ensembles results in a 

very similar dislocation density evolution compared with the uniaxial-stress case (not shown for 
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brevity). This implies that it is not the barostat itself but the confined spacing in the lateral 

directions that causes the difference. Due to less spacing in the non-loading lateral boundaries, 

more dislocation annihilations happen so as to lower the entire dislocation population of the 

uniaxial-stress case. However, both two curves show a certain saturation tendency. Neither 

significant increase nor decrease is found at a higher strain range. The pertinent theoretical 

models for the dislocation density evolution (Schall et al., 1999; Malygin, 1990) also predict a 

saturation feature after a burst of growth. In this sense, both cases are qualitatively consistent 

with these models. Quantitatively, our calculated total dislocation density agrees with that from a 

recent MD simulation (~10
17

m
-2

) [129].  

 

(a) Dislocaiton density                                                           
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                                                         (b) Void growth                                                            

Figure 4.2: The dislocation density and the corresponding void growth.  

The void is recognized by identifying the atoms belonged to its surface and the Delaunay 

triangulation method [86] is applied to calculate the void volume through the recognized nodes. 

This void volume calculation method has been validated in a quasi 2D case as it is then 

alternatively feasible to directly measure the void size through image processing. Marked by the 

dislocation emission, the void growth can be divided into two regimes: elastic and inelastic 

regimes. Rapid void growth of both regimes starts shortly after the onset of dislocation emission. 

The correlation between the dislocation density and the void growth is clear: the burst of 

dislocation density results in a rapid void growth. During the rapid void growth, the void gain 
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more volume than the total volume increase of the simulation box. This implies that the tightened 

atomic bonds due to the elastic deformation have been relaxed in some certain region. The 

material transport pattern during the rapid growth of the void will be investigated later. For the 

uniaxial-stress case, its peak void volume fraction is merely 15% its initial value. By 

comparison, the void growth under uniaxial strain is as high as over 15 times its initial size. The 

pace of void growth under uniaxial strain gradually approaches the pace of volume increase of 

the simulation box. From the standpoint of strain gradient plasticity theory, Wu et al. [130] 

suggested that void with radius under 10nm as embedded in an infinitely large material would 

stop growing. A fact is that the MD simulation box is periodic and its size could not be deemed 

as infinitely large with respect to the void. Since the plastic deformation is volume-preserving, 

the excessive increase of the system volume under the uniaxial strain case inevitably leads to the 

excessive growth of the nanovoid. By comparison, the uniaxial-stress case results in no forcible 

increase of the simulation box volume and ends up with nearly no void growth. Although our 

simulation condition does not totally resemble that in Wu et al. [130] our result at least explains 

that the excessive void growth under the uniaxial-strain case is due to the excessive increase of 

system volume. The need to dissipate the mechanical energy, once the dislocation motion begins, 

induces a fluctuation to the system temperature under the NPT and NVT ensembles. Rather than 

explicitly rescaling the velocity of the atoms, the Nose-Hoover thermostat acts like an imaginary 

heat bath [83]. It efficiently regulates the system back to 0.1K while still allows a short 

temperature rise and fall due to a too fast mechanical energy buildup.  



90 

 

                    

        (a) Uniaxial strain (ɛ=5.86%)                              (b) Uniaxial stress (ɛ=8%) 

Figure 4.3: The dislocation emission angles of the uniaxial strain. Red atoms here are stacking 

fault atoms while the light blue atoms represent the void surface. Gray and blue rendered lines 

represent dislocation lines.  

Table 4.1: Dislocation Angles Compared with the Lubarda Model  

 Uniaxial strain Analytical k=1.047  

cr  94⁰ 87⁰ 

cr  55⁰ 49⁰ 

Lubarda [91] proposed a theoretical model for dislocation emission from void under a 

combined loading case. The minimum critical stress is obtained by minimizing the critical stress 

with respect to two angular variables. In the meantime, these two emission angles, denoted by   

and  , have also been determined during the minimization process as detailed in Ref. [91] . With 

the temperature regulated to 0.1K, the early dislocation emission as shown in Figure 4.3 exhibits 

relatively high order of symmetry. This very regular shape of dislocation emission under low 
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temperature makes it feasible to measure the pertinent emission angles. Axes and auxiliary lines 

have been added onto the original dislocation snapshots to measure the emission angles. For the 

uniaxial-stress case, the cutting angle   is approximately zero as seen from Figure 4.3b. Uniaxial 

strain implies a triaxial stress state to the system. In order to calculate the two emission angles 

according to Lubarda [91], the corresponding stress state must first be determined. In Figure 

4.3a, the projection of the stress onto the [0 1 1] and [1 0 0] directions approximates a combined 

in-plane stress state with a ratio of k=1.047 under the corresponding strain. Nevertheless, the 

ratio k only has a relatively limited impact on the two dislocation emission angles as predicted by 

the Lubarda model. By comparison, the simulation with lateral directions under NPT ensemble 

produces a uniaxial stress state as it efficiently keeps a zero stress on the lateral boundaries. In 

Table 4.1, a good agreement of the dislocation emission angles can be found between the 

theoretical model and our simulation results for the uniaxial-strain case. However, it is not the 

same scenario for the uniaxial-stress case. Its emission angle ϕ simply cannot be measured under 

a same viewing angle.  

An important measurement to investigate the material transport is perhaps the displacement 

field. In continuum theory, this displacement field is calculated by relating the deformed 

configuration to the initial configuration at each material point. At atomic level, the concept of 

material points embody as individual atoms inside the lattice structure. This atomic displacement 

field, like the one in continuum theory, could be quantified through comparing the current 

positions of the atoms to their initial positions. Such calculated displacement field would contain 

both the elastic and plastic deformation and also be subject to the established coordinates. Hence, 

the idea of ―relative displacement‖ is created to exclude this homogeneous elastic deformation 

due to the stretch (see Appendix). The reason not to seek the decomposition of the strain tensor is 
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that the displacement field in atomic scale is already not smooth and may contain strong 

discontinuity once dislocations emerge. The strain field, as the derivative of the displacement 

field, would then be rather difficult to obtain. As a compromise, the relative displacement readily 

reflects the inelastic and heterogeneous deformation. The RFT atoms are defined once the 

relative displacement of some certain atoms exceeds a critical level. These atoms represent a part 

of the material with strong inelastic/heterogeneous deformation. The atom IDs dumped by 

LAMMPS are employed to link the current atom positions to their initial positions. In order to 

examine the relevance between the dislocation network and the material transport at atomic 

level, the software ATOMVIEWER is employed. It is capable of separately displaying both 

high-resolution 3D-rendered entities of dislocations and those RFT atoms at the same time. This 

composite plot can be seen in Figures 4.4d, e, and f, for example.  

After the onset of dislocation emission, small tetrahedron-like structures form at the four 

corners of the void. In Figure 4.4a, shear dislocation curves start to emerge from between these 

tetrahedron-like structures. Gradually, intersection lines are created by the interaction among the 

shear curves. Two frustum-like structures then form along the loading direction in a quite 

symmetric fashion. Even with simulation box doubled, there is still no sign of these shear 

dislocation curves turning into prismatic loops. The reaction mechanism of in-plane dislocation 

loops could be found in the work of Traiviratana et al. [26] and Bringa et al. [38]. Our focus here 

is then how the dislocation structures induce the material transport and help to grow the void.     
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            (a) ɛ=5.86%                                (b) ɛ=5.92%                            (c) ɛ=5.98%                  

                       

              (d) ɛ=5.86%                               (e) ɛ=5.92%                           (f) ɛ=5.98% 

Figure 4.4: The dislocation structure and the RFT atoms (in red) for the uniaxial-strain case 

(NVT). The RFT atoms are made invisible in (d-f). Light blue atoms in (a-c) represent void 

surface. The red and blue rendered lines represent dislocation lines. The stacking faults areas are 

colored in gray. The critical length is set at 1.0 Å to identify the RFT atoms. 

During the elastic regime, the void growth is due to the stretch of the atomic bonds. After 

the onset of dislocation emission, the dominating growth pattern is still elastic. The RFT atoms 

are few in number and only found near the void surface facing the loading direction. It is then 

until about a strain of 5.86% that a rapid growth of the void is discovered in Figure 4.2b. At this 

strain, the shear loops and frustum-like structures emerge. In Figure 4.4d, the RFT atoms in red 
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are partly caused by the elastic deformation since the dislocation structures are still in the 

incipient stage. The number of identified RFT atoms in Figure 4.4d is fewer than those in Figures 

4.4e and f. Furthermore, the maximum magnitude of the relative displacement in Figure 4.4d is 

only about one-fourth of that in Figure 4.4e. The rapid void growth is accompanied by the rapid 

extension of the shear curve front and the development of frustum-like structures. If the critical 

length rises from 1.0Ǻ to 3.0Ǻ, the identified RFT atoms will gather around the shear-loop 

planes attaching at the void surface. The detailed mechanism is that shear loops on the slip plane 

help to move the material away from the void surface. The forming of the larger frustum-like 

structure further facilitates the void growth. After the strain 5.98%, the dislocation structures 

start to interact with those from the periodic neighbors and make the correlation between the 

dislocation and void growth hard to observe.  

Compared to the uniaxial-strain case, the uniaxial-stress state induces quite different slip 

systems in Figure 4.5a. Sixteen dislocation emission sites emerge on the void surface. Unlike the 

uniaxial-strain case, the emission angles under the uniaxial-stress are not in line with the 

theoretical prediction. The emitted dislocation curves in Figures 4.5a-c keep spreading and 

enlarging their stacking fault areas. Noticeably, a newly formed frustum-like structure facing the 

loading direction can be observed in Figure 4.5c. In Figure 4.5c, there is also another frustum-

like structure at the lower side of x direction (view blocked) similar to the upper one. These two 

newly-formed frustum-like structures are less symmetric compared to those of the uniaxial-strain 

case. This difference in the dislocation buildup between the uniaxial-strain and uniaxial-stress 

cases is caused by the difference between their system volumes. The uniaxial-strain case 

increases the system volume much higher than that of the uniaxial-stress case. Additional 

simulation with constant system volume under NVT ensemble results in a triaxial stress state but 
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a very similar dislocation structure compared with the uniaxial-stress case (not shown for 

brevity). The discrepancy in both the dislocation development and the system volume eventually 

lead to the discrepancy in the void growth for the two cases. 

             

          (a) ɛ=8.04%                        (b) ɛ=8.08%                                        (c) ɛ=8.12% 

             

         (d) ɛ=8.04%                        (e) ɛ=8.08%                                     (f) ɛ=8.12% 

Figure 4.5: The dislocation structure and the RFT atoms (in red) for the uniaxial-stress case 

(NPT). The RFT atoms are made invisible in (d-f). Light blue atoms in (a-f) represent the void 

surface. The red and blue rendered lines represent dislocation lines. The stacking faults areas are 

colored in gray. The critical length is set as 1.0 Å to identify the RFT atoms. 
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The rapid void growth for the uniaxial-stress case begins at a strain of 8% as shown in 

Figure 4.2b. The RFT atoms in Figure 4.5d are only inside the enclosing dislocation structures 

facing the loading direction. In Figure 4.5f, the newly formed frustum-like structure not only 

contains more RFT atoms but also results in a much higher maximum magnitude of the relative 

displacement. The strongest atomic material transport still happens near the dislocation curves 

attached to the void surface. The contributors of the material transport are still the multiple shear 

curves on the corresponding slip planes.  

In Figure 4.6, the anisotropic growth of the voids is displayed. Under the elastic regime, 

voids under both the two cases elongate mostly in the loading direction. Once entering the 

inelastic regime, the uniaxial-strain case exhibits a much faster pace of elongation in all the 

directions. It is worth noting that the rapid growth of the void under the uniaxial stress from 

strain 0.08 to 0.082 is due to the sudden length increase in both the loading and the lateral 

directions in Figure 4.6. In most of the time, the uniaxial-stress case results in void growing in 

the loading direction and contraction in the lateral directions. The final 3D void shapes at the end 

of loading are shown inside Figure 4.6. For the uniaxial-strain case, the void evolves into an 

octahedron shape. Put the stress response aside, the evolved void shape under the uniaxial stress 

is similar to the common observation in a normal tensile test: an elongated ellipsoid in the 

loading direction. The elongation of this void in the loading direction and the shrinkage in the 

lateral directions could be explained by the same change in aspect ratio of the simulation box.  
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Figure 4.6: Shape evolution of the void by its size in all the three directions for both the 

uniaxial-strain and uniaxial-stress cases under a temperature of 0.1K. 

4.3.2. Dynamic Simulations without Temperature Control  

A thermostat has been applied in the previous subsection to regulate the system temperature 

to 0.1K. Additional simulations (not shown) without the use of a thermostat started at the same 

temperature 0.1K have also been conducted, respectively, for both the uniaxial-strain/uniaxial-

stress cases. The temperature rises, only after the dislocation buildup, to about 100K at the end of 

loading. The overall difference is trivial regarding the void growth, dislocation evolution and 

even the stress-strain relation. Hence, these results are not shown for brevity. As substitute, the 

simulation cases in the present subsection are run under an initial temperature of 300K. 

Particularly, the temperature control in the previous subsection only serves as an imaginary 

situation to exclude the thermal activation and thermo-mechanical interaction. For a more 
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realistic situation under T=300K, removal of the temperature control appears to be more physical 

although the discrepancy is rather insignificant. Hence, the simulations in this subsection are run 

under an initial temperature of 300K and without applying the thermostat.   
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                                                         (b) Void growth                                                            

Figure 4.7: The dislocation density and the corresponding void growth with initial temperature 

300K and no thermostat applied. 
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Without the temperature control, the correlation between the dislocation density and the void 

growth is still clear for the dynamic situation: the burst of dislocation density results in a rapid 

void growth. The magnitude and the saturation feature of the dislocation density curve are close 

to that under a temperature of 0.1K. For the uniaxial-strain case under T=300K, the formation of 

its dislocation structure is less symmetric and less regular than that under T=0.1K. The sudden 

growth of its dislocation density is therefore less smooth than that under T=0.1K. For the 

uniaxial-strain case under NVE ensemble, its system temperature elevates to about 453K at the 

end of loading only after a strain of 7%. The sudden temperature rise of the uniaxial-strain case 

under NVE ensemble is very similar to that reported in Bringa et al. [38]. The need to dissipate 

the mechanical energy during the dislocation development elevates the temperature. For the 

uniaxial-stress case under NPH ensemble, the temperature elevates to about 394K at the end of 

loading only after a strain of 7.54%. The void growth under uniaxial strain is about 16 times its 

initial size. The void growth pace of the uniaxial-strain case still approaches the pace of volume 

increase of the simulation box under higher strain. By comparison, the peak void volume fraction 

under uniaxial stress is merely 9% its initial value, which is even smaller than the corresponding 

case under T=0.1K. Another prominent feature is the decrease of the void volume fraction as 

highlighted inside Figure 4.7b. The range of this declining is from 7.68% to 7.92% in strain. For 

further investigation, the halved void surfaces at the strain of 7.68% and 7.92% are plotted in a 

combined way in Figure 4.8. The dark blue atoms indicate the current void surface at the strain 

7.68% while the dark red atoms indicate the current void surface at the strain 7.92%. Atoms in a 

certain color cover the others only when they are ―outside‖. Bearing this in mind, Figure 4.8 

implies that the shrinkage area (in dark blue) is larger than the growth area (in dark red) on the 

void surface. This decrease of void size is also affected by the dislocation network as the 
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shrinkage and growth regions are related to dislocation structures attached on void surface. Until 

this strain range, the dislocation interaction between the central void and its periodic neighbors 

has created an interconnected dislocation complex through the periodic boundaries. The major 

material transport is then not only restricted to the inside of dislocation structures facing the 

loading direction. The newly developed dislocation structures towards the lateral directions help 

to impose the shrinkage of the simulation box in lateral directions onto the void surface.  

                      

            (a) z direction outward                                       (b) z direction inward 

Figure 4.8: The surface growth and shrinkage for the uniaxial-stress case. The halved void 

surfaces combining two different strains have been plotted in a combined way. The dark blue 

atoms represent the void surface at the strain 7.68% while the dark red atoms represent those at 

the strain 7.92%. Dark red area indicates growth area while the dark blue area indicates the 

opposite. 

 

               (a) ɛ=4.64%                       (b) ɛ=4.72%                                (c) ɛ=4.84%  
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                (d) ɛ=4.64%                        (e) ɛ=4.72%                             (f) ɛ=4.84% 

Figure 4.9: The dislocation structure and the RFT atoms (in red) for the uniaxial-strain case 

(NVE) under an initial temperature of 300K. The RFT atoms are made invisible in (d-f). Light 

blue atoms in (a-c) represent void surface. The rendered lines in blue, red and gray represent 

dislocation lines. The stacking faults areas are colored in gray. The critical length is set at 1.0 Å 

to identify the RFT atoms. 

The development of dislocation structures with an initial temperature of 300K is quite 

different from those under a temperature of 0.1K for the uniaxial-strain case. No tetrahedron-like 

structure forms at the four corners of the void at the very beginning. In Figure 4.9a, highly 

asymmetric dislocation structures composed of shear dislocation curves extrude from the void 

surface. Two prism-like structures form along the y direction in Figure 4.9b. These structures are 

soon replaced by more complicated structures through the interaction between the dislocation 

curves. Two structures with opening angle, which appear to be variants of the frustum shape, 

form along the loading direction in Figure 4.9c. Notably, a large extruding shear loop is spotted 

in Figure 4.9c towards the [-1 1 0] direction in the lower side. Under an initial temperature of 

300K, the rapid void growth starts earlier (4.7% in strain) after the dislocation emission (4.5% in 
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strain) than that controlled at a temperature of 0.1K (5.9% and 5.2% in strain, respectively). The 

RFT atoms in Figure 4.9e are found inside the prism-like structure towards the lateral directions, 

which is different from that shown in Figures 4.5d-f. The large extruding shear loop in Figure 

4.9f affects the material transport at one side of its loop plane. However, the void growth pace of 

the uniaxial-strain case in Figure 4.7b is found slower than that in Figure 4.2b. The formation of 

the larger and more regular frustum-like dislocation structures in Figure 4.4 for the low-

temperature uniaxial-strain case appear responsible for the difference in the void growth pace. 

Once the dislocations interact with those from the periodic voids, the correlation between the 

dislocation structure and void growth becomes even more difficult to capture, and therefore, 

would be the focus of the future work. 

The slip systems of the uniaxial-stress case under an initial temperature of 300K are neither 

similar to the uniaxial-strain case under same temperature, nor to the uniaxial-stress case under 

T=0.1K. Only two shear loops emit from the void surface in Figure 4.10. The rapid void growth 

for this case starts at a strain of about 7.3% as shown in Figure 4.7b. Figure 4.10 illustrates how 

the transition of void growth happens with the emergence of the shear loops. With initially 

T=300K, the RFT atoms are much more scattered than those in Figure 4.5 under T=0.1K. In 

addition, the same conclusion can be drawn when comparing Figure 4.9 with Figure 4.4. Given 

this highly-scattered pattern of atomic material transport, the strain field derived from the MD 

data may not be as reliable as the RFT atoms. This is the exact reason why the so-called RFT 

atoms are adopted as a better measurement for material transport in atomic level. 



103 

 

        

            (a) ɛ=7.28%                           (b) ɛ=7.32%                             (c) ɛ=7.4% 

   

              (d) ɛ=7.28%                    (e) ɛ=7.32%                             (f) ɛ=7.4% 

Figure 4.10: The dislocation structure and the RFT atoms (in red) for the uniaxial-stress case 

(NPH). The RFT atoms are made invisible in (d-f). Light blue atoms represent the void surface. 

The blue lines represent dislocation lines. The stacking faults areas are colored in gray. The 

critical length is set at 1.0 Å to identify the RFT atoms. 

Figure 4.10f demonstrates that a single shear loop, even not forming a dislocation structure, 

is still capable of affecting the local material transport and hence influences the void growth. It 
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should be noted that the material transport via shear loops does not violate mass conservation. 

Based on Hirth [57], the surface cut to create a dislocation loop is not necessary its loop plane, 

and hence does not contradict our observation here.  
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Figure 4.11: Shape evolution of the void by its size in all three directions for both the uniaxial-

strain and uniaxial-stress cases under an initial temperature of 300K. 

Compared with Figure 4.6, less difference among the void size in its three directions is 

found for the uniaxial-strain cases in Figure 4.11. Under the elastic regime, voids of both cases 

elongate mostly in the loading direction. Once entering the inelastic regime, the uniaxial-strain 

case still exhibits a much faster pace of elongation in the loading direction. But this pace is not as 

rapid as that in Figure 4.6 due to the difference in the dislocation structure between the two 

uniaxial-strain cases with different simulation temperature. It appears that the shear curves grow 

the void surface more efficiently once they form a large frustum-like structure. The simultaneous 

void growth in all the three directions of the uniaxial-stress case within a short range in Figure 
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4.11 appears weaker, resulting in a lower increase of the corresponding void volume fraction 

than that in Figure 4.6. The final void shapes at the end of loading are shown inside Figure 4.11. 

The much higher simulation temperature results in a deviation of the void shape from the 

octahedron shape for the uniaxial-strain case. For the uniaxial-stress case, the void still evolves 

into a prolate ellipsoid along the loading direction.  

4.3.3. Miscellaneous Factors in Simulation  

Other factors may influence the simulation results. Here we only focus on the simulation 

case at 0.1K without barostat to evaluate the effects of different equilibration duration, 

simulation size and strain rate. If not mentioned, the typical simulation parameters are 20ps for 

equilibration, 26.03nm for the initial length of cubic simulation box and 2×10
8
 s

-1
 for the strain 

rate.  
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Figure 4.12: The void volume fraction with different equilibration durations. 
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To ensure that the MD simulation is not sensitive to the selected duration for equilibrating 

the system before dynamic loading, additional dynamic simulations are first run upon the 

configuration equilibrated with different durations. Figure 4.12 along with Figure 4.2b 

demonstrates that void growth simulation is insensitive to the applied equilibration duration. The 

strain at the onset of dislocation emission is almost independent of the duration. Difference is 

also trivial in terms of the formed dislocation structure. More importantly, the equilibration 

duration has no impact on the material transport pattern inside the frustum-like dislocation 

structures.   
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Figure 4.13: The void volume evolution with different sizes of simulation box.  

Next focus is the size of the simulation box. Given the void size unchanged, the box size 

determines the distance between the central void and the periodic boundary. A too small 

simulation box may hinder the growth of dislocation structures as they reach the periodic 

boundary too soon. To assess the influence of periodic boundary on void growth, simulations 

with a half-sized simulation box and a double-sized simulation box will be examined.    
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(a) lbox=13.01nm (Vfr=8%)   (b) lbox=26.03nm (Vfr=1%)   (c) lbox=52.06nm (Vfr=0.125%) 

Figure 4.14: Material transport visualized by the RFT atoms with different sizes of simulation 

box. Light blue atoms in (a-c) represent the void surface (almost invisible in (b) and (c)). The red 

and blue lines represent dislocation lines. The stacking fault areas are colored in light gray. The 

critical length is set at 2.0 Å to identify the RFT atoms. The strains in (a-c) are 6.7%, 5.9% and 

5.8%, respectively. The snapshots are not proportional to their actual sizes. Equilibration 

duration in (b) is 3 ns. 
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First of all, void growth depends heavily on the relative spacing among the voids. In Figure 

4.13, the final void inside the double-sized simulation box is about 20 times that inside the half-

sized simulation box. The onset of dislocation is strongly delayed in the case of half-sized 

simulation box. The frustum-like dislocation structure fails to form as shown in Figure 4.14a. 

Despite the partly-grown dislocation structure, the RFT atoms are still induced by the shear 

dislocation curves at the upper corner of the simulation box, as shown in Figure 4.14a. For 

simulation box size 26.03 and 52.06 nm, both the onset strain (4.8% and 4.7%) and the 

dislocation structure formed are quite similar. Red RFT atoms are seen inside the upper and 

lower frustum-like structures in Figures 4.14b and c. The RFT atoms fill up the inner shear 

curves. The dislocation structure and related mass transport become insensitive to the simulation 

size once the initial void volume fraction decreases below about 1%.  
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Figure 4.15: The void volume evolution at different strain rates. 

For a given final strain of the tensile test, the strain rate determines the time duration of the 

simulation. The achievable strain rate by MD simulation is in the range of a ballistic loading or a 
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spall test. Dislocation nucleation can be sensitive to strain rate for a voided specimen in a certain 

strain rate range [103]. Thus, three additional cases with strain rates from 2×10
6
s

-1 
to 2×10

9
s

-1 

were simulated to examine the difference in the predicted dislocation structure and mass 

transport.  

 

       (a)  ̇ =2×10
6
s

-1
                           (b)  ̇=2×10

7
 s

-1
                             (c)  ̇=2×10

9
 s

-1
 

Figure 4.16: Material transport visualized by the RFT atoms with different strain rates. Light 

blue atoms in (a-c) represent void surface (almost invisible). The red and blue lines represent 

dislocation lines. The stacking faults areas are colored in gray. The critical length is set at 2.0 Å 

to identify the RFT atoms. The strains in (a-c) are 5.09%, 5.1% and 7.4%, respectively. The case 

of  ̇=2×10
8
 s

-1
 is shown in Figure 4.14b. 

The dislocation structure of  ̇=2×10
9
 s

-1 
has the most regular and symmetric shape among 

the four strain rate cases. This is attributed to its short duration of only 50 ps. With much longer 

durations such as 80 ns for the  ̇=2×10
6
s

-1
 case, any small heterogeneity in atomic motion would 

be magnified and thus results in a highly irregular, asymmetric dislocation structure. The onset 
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strains at dislocation emission are almost the same (4.75% and 4.76%) for the cases  ̇=2×10
6
s

-1
 

and  ̇=2×10
7
s

-1
. Even their void volume curves coincide when the burst of void growth occurs at 

ɛ=5.1% as seen in Figure 4.15. A higher strain rate results in a lower void growth rate. Last but 

not least, the red RFT atoms in Figures 4.16a-c and Figure 4.14b demonstrate that mass transport 

within the dislocation structures exhibits similar pattern at different strain rates.  

4.4. Conclusions 

The mechanical constraint in molecular dynamics simulation has considerable influence on 

the dislocation emission, void size and shape evolution. The main conclusions can be drawn as 

follows: 

1. Under the uniaxial-strain loading with NVT ensemble applied, frustum-like dislocation 

structures consisting of shear dislocation curves are formed. The identified dislocation emission 

angles of the NVT case are close to those predicted by the Lubarda model. Under the uniaxial-

stress loading with NPT ensemble applied, the resulted slip systems are quite different from the 

NVT case. The identified emission angles under the uniaxial-stress considerably deviate from the 

Lubarda model. The difference in dislocation pattern for these two cases stems from the different 

system volume caused by either strain or stress-confined lateral boundaries. The respective 

uniaxial-strain/uniaxial-stress simulations under T0= 300K (with NVE and NPH ensembles) 

result in highly asymmetric/scattered dislocation pattern, which is mainly influenced by the 

higher simulation temperature. The calculated dislocation densities agree qualitatively with the 

theoretical models [131, 131] in terms of the saturation feature under the increasing strain. 

Quantitatively, they agree with that from a recent MD simulation (~10
17

m
-2

) [129].  
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2. Compared to the uniaxial-strain cases, the void growth under uniaxial-stress state is very 

limited. The different way to constrain the lateral boundaries is responsible for the difference in 

void shape evolution. The final void shape of the uniaxial-strain case is close to an octahedron 

shape. The final void shape under the uniaxial-stress case is a prolate ellipsoid along the loading 

direction, which resembles that observed in a normal tensile test despite the high strain rate 

applied. The void growth simulated here might somehow provide hints on the correlation 

between the dislocation and void growth under an engineering strain rate. 

3. During the transition of void growth from elastic to inelastic fashion, the material 

transport away from the void is induced by shear dislocation loops/curves. The material transport 

via shear dislocation curves/loops is not only possible but also favorable near their loop plane. 

Whether or not forming larger dislocation structures, the shear curves/loops are capable of 

inducing the local material transport. The highly-symmetric large dislocation structures formed 

under low temperature results in a more rapid void growth compared with their counterparts, i.e., 

more scattered and asymmetric dislocation structures under a much higher initial temperature.  

4. The simulation box size greatly influences void volume evolution. Larger spacing, which 

allows for a full development of dislocation structures, remarkably accelerates void growth. For 

simulations with void volume fractions below 1%, the emitted dislocation structure becomes 

insensitive to the simulation size. Lower strain rates induce more irregular and asymmetric 

dislocation structures. The mass transport via frustum-like dislocation structure preserves despite 

the simulation box size or strain rate. 
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Chapter 5: Void Growth via Shear Loop Emission

 

5.1. Introduction 

Dislocation emission is considered as the primary cause of void growth under high strain 

rate [18]. Lubarda et al. [18] proposed two mechanisms regarding the dislocation-related void 

growth. One of these geometrically necessary dislocations is the prismatic loop and the other is 

the shear loop. The shear dislocation loop, by definition, has its Burgers vector inside the loop 

plane. In contrast, Burgers vector of a prismatic dislocation loop is not in the loop plane. Bulatov 

et al. [56] later claimed the impossibility of mass transport via shear loop. Our attention is 

initially only paid to the general correlation between the dislocation structure and void growth. 

However, what has been observed in our simulation clearly backs the mass transport via shear 

loops/curves. The MD data has been investigated through the so-called ―relative displacement‖, 

which is a newly-invented idea to exclude the homogenous elastic deformation. The gathered 

evidence clearly demonstrates that void growth via shear loops is true for the situation 

concerned. Such evidence, however, may raise further questions. Why it is the opposite for the 

related theoretical understanding [56]? What might have been overlooked in asserting the ―shear 

impossibility‖? To answer these questions, new theoretic understanding must be established 

based on a better interpretation of the MD results. Once the ―shear feasibility‖ justified, the 

further task would be constructing a phenomenological model in order to describe the pattern of 

void growth via shear loops/curves in a large scale. As is well known, impurities such as voids 

inside the bulk material could trigger dislocations. Nanovoids inside the metal material can stem 

from a number of sources such as radiation damage [4]. These nanovoids, due to their small size, 

                                                 
 A version of this chapter has been published. Reprinted with permission from Cui, Y.; Chen Z. Material transport 

via the emission of shear loops during void growth: A molecular dynamics study. J. Appl. Phys. 2016, 119, 225102. 

Copyright 2016 IOP Publishing Ltd. 
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are very suitable for MD simulation. Seppälä et al. [132] studied the effect of stress triaxiality on 

the void growth and pointed out that the dislocations from the void surface are responsible for 

carrying material away. Traiviratana et al. [26] performed the MD simulation to study the void 

growth in both monocrystalline and bicrystalline copper. The emission and reaction of the 

dislocation by the presence of the void are detailed in their work. Their results also supported the 

idea of void expansion by shear loop formation. Zhao et al. [120] studied the effect of multi-axial 

stress state on the nano-porous single crystalline copper. In their simulation, quadrangular-

prismatic dislocation loops form under hydrostatic loading, while square-frustum dislocation 

structures appear under uniaxial loading. Bringa et al. [38] studied the effect of loading 

orientation and nanocrystalline on the void initiation and growth. Their simulation confirmed the 

mechanism of void nucleation and growth by dislocations. Rodriguez-Nieva et al. [129] recently 

performed the MD simulation of nano-porous gold under high strain rates. Their pores behave 

like isolated void at lower strain. The velocity of dislocations is found to rise at first and then 

reduce dramatically due to the dislocation interactions. Of all the above papers, dislocations are 

found to be closely related to void growth/shrinkage. However, the direct mass transport pattern 

and its relevance with the dislocations have not been fully clarified. This highlights our 

aforementioned effort to uncover the dislocation-related void growth mechanism based on a 

better interpretation of the MD results.  

This chapter is organized as follow. First is the study of a basic case with a spherical void 

under an initial temperature of 0.1K. Second, the case of an irregular-shaped void will be 

examined to reflect the effect of initial void shape. Additionally, a simulation under room 

temperature will help to elucidate the influence of initial temperature. Third, the feasibility of 
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mass transport via shear loop/curve will be clarified. Fourth, a new phenomenological 

description of how the dislocation network grows the void will be proposed.  

5.2. The Molecular Dynamics Simulation Methodology 

 

Figure 5.1: Initial configuration of simulation box (26×26×26 nm) and central spherical void 

(r=3.5 nm) inside (only atoms on the surface of void are shown). 

The NVE integration updates the position and velocity for atoms at each time step, which 

creates a system trajectory consistent with the microcanonical ensemble. The applied time 

integration schemes closely follow the time-reversible measure-preserving Verlet and rRESPA 

integrators as derived by Tuckerman et al. [128]. The Large-scale Atomic/Molecular Massively 

Parallel Simulator (LAMMPS) is used in the simulation. Atomic interaction is modeled by the 

EAM potential [110]. It is crucial that the EAM potential chosen for atomistic simulations must 

accurately reproduce the pertinent features of the resulted energy curves such as the unstable 

stacking fault energy [80]. Mishin, et al. [112, 113] reported the EAM potentials for aluminum 

and copper, respectively. These potentials demonstrated accurate pertinent features of the 
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resulted energy such that they have been extensively applied in MD simulations [26, 38, 102, 

114]. Hence, this EAM potential for copper [113] is chosen to carry out the simulations here. 

The void-embedded geometry is created by removing the atoms of a spherical region inside 

the cubic simulation box as shown in Figure 5.1. The total atom number is approximately 1.5 

million. The initial void volume fraction is always 1%. The boundaries of the simulation box are 

made periodic for all the three directions. A fixed time step of 1 fs is applied in the simulation. 

Energy minimization is first performed by using a conjugate gradient algorithm to attain a 

minimum energy configuration, followed by a relaxation step at 0.1 K to reach an equilibrium-

state configuration. The uniaxial load with a strain rate of 2e8 s
-1

 is then applied at both ends in 

the x direction. The software ATOMVIEWER [85] is employed in post-processing the MD data 

to identify the dislocation network and Burgers vectors. It combines the modified Nye-tensor 

method and the dislocation line extraction method to derive Burgers vectors and dislocation 

network without constructing Burgers circuits explicitly [85]. We refer to the work of Begau et 

al.
 
[85] for details.  

5.3. Material Transport Observation: Void Growth and Material Transport 

5.3.1. The Basic Case 

A direct visualization of the dislocation network becomes difficult once the dislocation 

forest spreads all over the whole simulation box. It is then more convenient to characterize the 

dislocation curves by their density. The dislocation density by definition is the length summation 

of the entire dislocation population divided by the containing volume. The software 

ATOMVIEWER outputs the dislocation network file, which contains the number of dislocations 

and the node information for each dislocation. The dislocation density could then be obtained by 
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summing up the distance between the nodes belonging to each dislocation segment and dividing 

it by the current system volume. In finding the length of individual dislocation segment, attention 

has been paid to prevent misconnecting the nodes due to the periodicity of the simulation box. 

Quantitatively, the calculated total dislocation density agrees with that of a recent MD simulation 

[129] (~10
17

m
-2

). Similar to Seppälä at el. [132], the 3D void is recognized by identifying the 

atoms belonged to its surface. Then, the Delaunay triangulation method [86] is applied to 

calculate the void volume through the recognized nodes. This volume calculation method has 

been validated under a quasi 2D case as it is then alternatively feasible to measure the void size 

through image processing. 
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Figure 5.2: The correlation of void growth and the dislocation density. Engineering strain is 

used. 

Figure 5.2 illustrates the general correlation between the dislocation and the void growth. 

Marked by the dislocation emission, the void growth can be divided into two regimes: elastic and 
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inelastic. During the elastic regime, the void growth is caused by stretching the lattice. Even after 

the onset of dislocation emission, the dominating growth pattern is still elastic. This can be seen 

from the void volume fraction curve in Figure 5.2 and also from the material transport pattern in 

Figure 5.3b. Only at some point after the onset of dislocation emission will the void growth 

become highly inelastic. This burst of void growth starts at the strain 0.058, accompanied with a 

sharp increase of the dislocation density. During the burst of void growth, the void gains more 

volume than the total volume gained by the simulation box. This implies that the tightened 

atomic bonds in some region have been relaxed. The volume increase rate of void gradually 

approaches that of the simulation box. From the standpoint of strain gradient plasticity theory, 

Wu et al. [130] suggested that a void with radius under 10nm as embedded in an infinite large 

material would stop growing. One fact is that the simulation box is periodic and its size could not 

be deemed as infinitely large compared with the void. Since the plastic deformation is volume-

preserving, the significant increase of the simulation box volume inevitably leads to the 

significant growth of the nanovoid.  

 In the next few subsections, we will further investigate the localized material transport 

within the strain range from 0.05 to 0.06. This strain range is chosen based on two 

considerations: 1) the transition of the void growth pattern is within this range; and 2) the 

dislocation structure will start to reach the periodic boundaries and interact with those from its 

periodic neighbors afterwards. The re-entering dislocations as periodic images make the situation 

much more complicated, which is then out of the scope of this study.  

5.3.1.1. The End of the Elastic Regime 
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            (a) Displacement by MD                                      (b) Relative displacement by MD 

Figure 5.3: The Displacement field (magnitude) by MD simulation and the relative displacement 

field (magnitude) by MD simulation at the strain 0.05 (right before the dislocation emission). All 

the colored scale bars are in the unit of Å. The cutting plane is the xoz plane at the simulation 

box center. 

Atomic displacement can be calculated by the difference between the current position and 

the initial position of atoms. This type of atomic displacement in Figure 5.3a depends on the 

selection of the coordinate origin. However, the ―relative displacement‖ field in Figure 5.3b does 

not depend on the choice of the coordinate origin as long as the origin being attached on the 

stretching simulation box (see Appendix). Once the homogenous elastic deformation is excluded 

by using the relative displacement, the remains are the deformation (both elastic and inelastic) 

due to the presence of the void. At this strain, a number of disordered atoms are seen near the 

dislocation sites prior to the event of dislocation emission. However, these disordered atoms do 

not affect the relative mass transport in Figure 5.3b. Figure 5.3 indicates that (1) the elastic 

displacement from the MD simulation is close to that predicted by the elasticity theory and (2) 
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the material transport at the end of the elastic regime is dramatically different from that under the 

influence of dislocation network, which will be shown later.  

5.3.1.2. The Beginning of the Inelastic Regime 

     

                            (a) Strain=5.2%                                            (b) Strain=5.8% 

Figure 5.4: The relative displacement field (magnitude) by MD simulation at the strain 0.052 

(the onset of dislocation emission) and 0.058. All the color bars are in the unit of Å. The cutting 

plane is the xoz plane at the box center. 

The dislocation emission starts at the strain 0.052, which marks the beginning of the plastic 

regime. At the strain 0.052, the dislocation lines form small-scale structures at the four corners 

on the void surface. From the strain 0.052 to 0.058, these small-scale structures undergo virtually 

no change. Therefore, only Figure 5.5a is shown for brevity. These incipient dislocation 

structures have limited impact on the mass transport pattern. Figures 5.4a and b differ from 

Figure 5.3b only at the ―polar areas‖ on the void surface where the dislocation structures at the 
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corners help move the atoms away from the void. From Figure 5.4a to Figure 5.4b, there is only 

a minor increase in the maximum relative displacement. The majority of atoms stay at lattice 

points and therefore results in a slow void growth in Figure 5.2.  

5.3.1.3. A Burst of Void Growth during the Growing of Dislocation Structure 

                                

      (a) Strain=5.8%               (b) Strain=5.92%                                 (c) Strain=6%  

Figure 5.5: The rapid development of dislocation structure before it meets the periodic 

boundary. Blue atoms represent void surface while the red and blue rendered lines represent 

dislocation lines. The stacking faults areas are colored in gray. 

Figure 5.5 illustrates the three stages of the dislocation network development before it 

reaches the periodic boundaries. This rapid development of dislocation network in a large scale 

takes place during the strain from 0.058 to 0.06. The detached shear loop has been spotted during 

the growth of the dislocation network.  
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  (a) critd =1.0 Å (ε=5.92%)         (b) critd =2.0 Å (ε=5.92%)           (c) critd =3.0 Å (ε=5.92%)    

 

         (d) critd =1.0 Å (ε=6%)            (e) critd =2.0 Å (ε=6%)               (f) critd =3.0 Å (ε=6%)        

Figure 5.6: The ―relatively farthest-travelled‖ atoms (in red) inside the dislocation network at 

the strain of 5.92% and 6%. Blue atoms in (c) represent void surface while the red and blue 

rendered lines represent dislocation lines. The stacking faults areas are colored in gray. Three 

different critical lengths, namely dcrit= 1.0, 2.0, and 3.0 Å, are used to identify the ―relatively 

farthest-travelled‖ atoms. 
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Figure 5.7: Number of the relatively farthest-travelled atoms identified by different critical 

length under different strains. 

As summarized in Figure 5.7, the number of the relatively farthest-travelled atoms decreases 

with the increasing critical length. Very little difference lies between the strains 5.6% and 5.8% 

regarding the number of the relatively farthest-travelled atoms. This suggests that the transition 

of overall mass transport pattern from the ―elastic‖ to ―plastic‖ fashion starts from around the 

strain of 5.8%. As the critical length rises from 1.0Ǻ to 3.0Ǻ, the identified relatively farthest-

travelled atoms tend to gather near the loop plane and the void surface as seen from Figure 5.6a 

to Figure 5.6c. The frustum-like dislocation structures are the consequence of the continuing 

extension of front dislocation curves and the interaction among the dislocation curves. Large 

pieces of material glide away from the void surface with the help of these frustum-like structures 

of dislocations. The detailed mechanism is that shear loops/curves help move the material away 

from the void surface. Indeed, the shape of the relatively farthest-travelled atoms fits the shape of 

the dislocation curves like those in Figures 5.6a and b. Some shear loops are observed to detach 

and glide away from the void surface. Whether forming complete loops or not, MD simulation 
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suggests that shear dislocation curves could induce the material transport. So far, the correlation 

between the mass transport pattern and the dislocation structure has been revealed from the MD 

data. Still, more cutting-plane plots help to clarify the observed material transport pattern.  

 

                    (a) Displacement by MD (ε=5.92%)    (b) Relative displacement by MD (ε=5.92%) 

 

(c) Displacement by MD (ε=6%)    (d) Relative displacement by MD (ε=6%)   
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 (e) Relative displacement by FE (ε=6%)  

Figure 5.8: Displacement field (magnitude) and relative displacement field (magnitude) by the 

MD method plus the relative displacement field (magnitude) by the finite element (FE) 

simulation at the strain of 5.92% and 6%. All the color bars are in the unit of Å. White dotted 

lines indicate the slip planes. 

From Figure 5.3b to Figures 5.8a and c, it is evidenced that the emerging slip planes have 

gradually caused the discontinuity of the displacement field. From Figure 5.4b to Figures 5.8b 

and d, the atoms with measurable relative displacement are all inside the area between the slip 

planes as indicated by the dotted lines. By comparison, the FE result in Figure 5.8e shows a 

completely different relative displacement field. The maximum relative displacement predicted 

by the elasticity theory in Figure 5.8e locates at the void surface along the x direction. This 

feature is also shared by the MD case before the dislocation emission as seen in Figure 5.3b. 

After the dislocation emission, it is another story. Not only is the maximum relative displacement 

by MD much larger than that by FE, but also the locations of the maximums are completely 
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different. Figure 5.8d has this location along the z direction while Figure 5.8e has it along the x 

direction. To be comparable, the finite element solution only applies the elastic model and with 

identical 3D geometry and boundary constraints. The temperature till the strain of 0.06 is still 

around 0.1K and therefore thermal expansion has no contribution. Thus, we can conclude that the 

relative displacement is truly due to the presence of dislocation structures consisting of shear 

loops/curves.      

5.3.2. Additional Cases 

                           

(a) Dislocation network only 
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(b) Relatively farthest travelled atoms inside the dislocation network 

Figure 5.9: The cases of an irregular-shaped void with an initial system temperature 0.1 K. Here 

we show (a) the dislocation network alone with void surface depicted by light blue atoms and (b) 

the ―relatively farthest-travelled‖ atoms inside the dislocation network at the strain 0.046. The 

critical length to identify the relatively farthest-travelled atoms is 1.0 Å. The rendered blue lines 

represent dislocation lines. The stacking faults areas are colored in light gray in (a). 

The spherical void in the aforementioned simulation is with an ideal initial shape. In reality, 

the initial void shape can considerably deviate from the spherical shape. The initial shape of 

nanovoid was reported to considerably affect the formed dislocation structure [97]. The objective 

of this subsection is to examine whether or not the aforementioned findings are still true to some 

more general situations. Here the irregularly-shaped void, generated by a similar method for 
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surface roughness [133], is still with 1% initial void volume fraction. A different dislocation 

network is seen in Figure 5.9 for the void with irregular initial shape. The small incipient 

dislocation structures like those in Figure 5.5a are absent. Although the shear loops on the four 

main slip planes do not emit and grow in a very simultaneous fashion from, they still form a 

frustum-like structure at the upper side of the loading direction. In Figure 5.9b, the majority of 

the relatively farthest-travelled atoms are still inside the frustum-like dislocation structure. The 

farthest extending shear curve is the one first emitted from the void surface. Even at the time 

when the frustum-like structure has not been formed, the first-emitted shear curve still induced 

the local material transport. Therefore, the main contributors to grow the void as observed are the 

shear loops/curves. The forming of the frustum-like dislocation structure further facilitates this 

process.  

 

 (a) Irregular initial shape    (b) Displacement by MD                (c) Relative displacement by MD 

Figure 5.10: Displacement field (magnitude) and relative displacement field (magnitude) by the 

MD method at the strain 0.046 with an irregular initial void. All the color bars are in the unit of 

Å. White dotted lines indicate the slip planes. 
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Due to the absence of small incipient dislocation structures as those in Figure 5.5a, the 

maximum relative displacements in Figure 5.10c are only near the attaching points of the shear 

curves. Without a symmetric dislocation structure at the lower half (the positive x direction), the 

relative displacement field there is similar to an elastic growth as in Figure 5.3b. This clearly 

highlights the role of the dislocation structure which, in this case, only exists at the upper half 

(the negative x direction) in Figure 5.10c. 

All the aforementioned simulations are conducted with an initial temperature of 0.1K. To 

further investigate the influence of the initial temperature, the third case runs under an initial 

temperature of 300K. As shown in Figure 5.11a, the overall dislocation network under higher 

temperature still resembles that under lower temperature. Two large dislocation structures are 

also formed by the emission and interaction of shear loops/curves along the loading direction. 

Again, the relatively farthest-travelled atoms are inside these two dislocation structures. The 

detailed mechanism is still the local material transport via the shear loops/curves. The initial 

temperature has not considerably altered the mechanism about void growth. However, there is 

some minor difference caused by the elevated temperature. The mass transport in a higher 

temperature as shown in Figure 5.11 becomes scattered at some certain locations. The transition 

of mass transport pattern from low temperature to high temperature has been reported for a 

stretched nanowire [134]. In their study, the mass transport under 10K is through the step-wise 

glides while that under 700K features high density of disordered atoms. Therefore, once 

temperature becomes much higher than 300K, atomic mass transport pattern could be altered 

considerably.   
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(a) Dislocation network only 

 

                     (b) Relatively farthest-travelled atoms inside the dislocation network 

Figure 5.11: The case of spherical void with initial temperature of 300K. Here shows (a) the 
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dislocation network alone with void surface depicted by light blue atoms and (b) the ―relatively 

farthest-travelled‖ atoms inside the dislocation network at the strain 0.0488. The critical length to 

identify the relatively farthest-travelled atoms is 1.0 Å. The rendered red and blue lines represent 

dislocation lines. The stacking faults areas are colored in gray. 

5.4. Theoretical Considerations 

5.4.1. Material Transport Equation for the Prismatic Loop 

 

Figure 5.12: Forming of prismatic loop with quadrangular-prism slip surface. The figure is 

reproduced [56] (Reprinted with permission from Bulatov et al. 2010. Copyright 2010, Elsevier). 

Lubarda et al. [18] proposed two mechanisms regarding void growth via dislocations. One is 

via prismatic loop and the other is via shear loop. The former one is relatively easy to 
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understand. Bulatov et al. [56], who claimed the impossibility of the shear loop to grow the void, 

emphasized the mass conservation as 

d ( )d
Surface Surface

V S     b S b n                                           (5.1) 

where  

V  is the incremental void growth induced by the dislocation loop, 

b  is the Burgers vector of the dislocation loop, 

n  is the norm of the loop plane and 

dS  is the differential element of the surface. 

The slip surface of the prismatic loop in the work of Lubarda et al. [18], following the 

standard definition [135], is cylindrical. Bulatov et al. [56] later extended the idea of a cylindrical 

slip surface to a quadrangular-prism slip surface as shown in Figure 5.12. They cited the MD 

work of Rudd et al. [136]
 
to support this new understanding. This illustrated that MD simulation 

can be a powerful tool to improve the theoretical understanding of mass transport. It then seems 

reasonable to employ MD simulation to justify the role of shear loops in growing the void. Our 

understanding to the shear-loop growth mechanism is not limited to the observation phase. In the 

subsection, theoretical understanding regarding the mass transport will be presented.   
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5.4.2. Feasibility of Material Transport via Shear Loop Emission 

 

Figure 5.13: A zoomed-in snapshot of Figure 5.6 with cutting plane [0 1 -1] at the box center. 

The red atoms still represent the relatively farthest-travelled atoms while the other atoms are in 

green. Only a small fraction of the void is shown. The blue filled circle is the rendered shear loop 

front. 

First and foremost, Eq. (5.1) is inadequate to deny the feasibility of material transport via 

shear loops. It is true that if Eq. (5.1) is performed on the loop face, V  would be zero at the 

normal-plane direction due to the fact that its Burgers vector is in the loop plane. However, this 

alone cannot derive the impossibility of void growth via the shear loop. The reason is as follow. 

For one thing, Eq. (5.1) just rules out the possibility of material transfer in the normal direction 

of the shear loop plane. The original definition in the textbook [57] allows the integral domain to 

be an arbitrary shape other than the flat face encircled by the loop, which would result in some 

nonzero b n . For another, Eq. (5.1) is without any consideration of the possible and probable 

interaction among the adjacent planes parallel to the shear loop plane. To better understand that, 

a zoom-in atomic plot is shown in Figure 5.13. The presence of the shear loop/curve in Figure 
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5.13 does induce the mass transport. These red atoms moving away from the void surface result 

in the growth of nanovoid.  

 

Figure 5.14: Analytical solution of displacement field caused by a circular shear loop. Here 

shows the contour plot of u1 in the unit of Burgers vector at the plane x2=0 for a circular shear 

dislocation loop, reproduced from Ohr [60] (Reprinted with permission from Ohr 1972. 

Copyright 1972, Taylor & Francis). The circular shear loop is inside the plane x3=0 and the 

Burgers vector is in the x1 direction. Here involves different convention for the Burgers vector. 

Second, elastic deformation due to formation of a shear loop could also contribute to the 

growth of nanovoid. This is still true even the surface in Eq. (5.1) has been taken as the loop 

plane. Elasticity theory is required to evaluate the material deformation for this case. Although 

classical elastic theory may fail at the dislocation core, modifications [137] to this approach can 

still lead to a physical solution. In a classical approach, Ohr [60] has applied Green’s function 

method to derive the analytical expression for the displacement field around a circular shear loop 

x1 
x2 

x3 

R Shear loop 
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in an infinite isotropic medium. For brevity, the exact solution is omitted. For illustration, only u1 

of the solution [60]
 
is shown in Figure 5.14. For one thing, the shear loop leads to nonzero 

displacement in certain region above the loop plane in Figure 5.14. For another, the displacement 

caused by the formation of shear loop approaches zero once sufficiently away from the shear 

loop. This is physically sound since the far-field displacement should be unaffected by the shear 

loop. For an isolated shear loop, the surrounding medium could be divided into two regions: one 

is the nearby region with nonzero displacement caused by the shear loop and the other is the 

unaffected far-field region. We denote u(x,y,z) as the magnitude of the displacement field caused 

by the presence of the shear loop. It comprises two parts: one is the displacement on the surface 

bounding the loop [57]
 
(not necessary the loop plane), the other is the elastic deformation due to 

the presence of the loop. The nearby region with mass transport can therefore be defined as the 

volumetric set Vu={(x,y,z)| u(x,y,z) >0}. Figure 5.15a is only a schematic of how this material 

transport region may look like. Out of this region, there should be no material transport caused 

by the shear loop. For the case with a nearby void overlapped with the material transport region 

Vu, certain area on the void surface would have nonzero displacement induced by the shear loop. 

It is only a rough description since the presence of the void to this displacement solution has not 

yet been addressed. This effective area on the void surface with shear-loop-induced displacement 

can be identified by the set operation Vu∩Svoid, which is the shaded area on void surface in 

Figure 5.15b. The incremental void growth by the shear loop can therefore be defined as   

      
                      ∫        

        
                                             (5.2) 

where u and n are the corresponding displacement vector and unit normal vector on the area 

Vu∩Svoid. As shown in Figure 5.14, this induced displacement u  could be more significant once 
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near the shear loop/curve. As an inference, the void surface area near the attached shear loop 

should gain more growth. This point is true, for example, in Figure 5.6c. The contribution to the 

void growth of attached shear loops would be more significant than that of a detached shear loop 

far away from the void. 

  

(a) Shear loop without void                                                

 

(b) Shear loop (curve) attached on the void surface 

Figure 5.15: Schematic material transport via the emission/formation of a shear dislocation 

loop/curve. 

5.4.3. A Phenomenological Description of Void Growth by Dislocation Emission 

As the previous subsection has clarified the feasibility of void growth via shear loop/curve 

emission, our attention here is paid to the larger-scale void growth by the dislocation structure 
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containing multiple and complex-shape shear dislocation curves. Our objective here is to find a 

phenomenological description for this larger-scale material transport near the void surface. 

 

Figure 5.16: Three-dimensional schematic diagram of material transport via a square-frustum 

like structure consisting of dislocation loops/curves on the slip plane. Symmetry only applies for 

the spherical void case. The loading direction here is assumed vertical. 

As shown previously in Figure 5.6, shear loops can interact and form frustum-like structure 

along the loading direction. For irregular void shape, there could be only one of this kind 

frustum-like dislocation structures as illustrated in Figure 5.9. Figure 5.16 is a 3D illustration of 

the material transport via this square-frustum structure formed by multiple shear loops/curves. 

Layers of material are transported away from the void via this dislocation structure. Figure 5.17 

illustrates the void growth mechanism in 2D with both initial and current positions shown. The 
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slip planes host multiple moving dislocation curves. The idealized surface ABCD in Figure 5.16 

represents a layer of material transported away from the void by the shear dislocation curves. To 

simplify the situation, we take the assumption that the surface normal vector at the point A is 

parallel to the loading direction. One can find relevance between Figures 5.17a and b to Figure 

5.17c, which was theorized by Lubarda et al. [18]. They too proposed that the larger-scale 

material transport happens between the loop planes with simultaneously-emitted shear 

loops/curves. The difference between our MD observation and their description is the opening 

angle between the two slip planes. This angle is nonzero in our observation.   

 

                 (a) With cutting plane [0 1 -1]                 (b) With cutting plane [0 0 1] (xoy plane)  
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(c) Void growth by shear loops reproduced from Lubarda et al. [18] (Reprinted with permission 

from Lubarda et al. 2004. Copyright 2004, Elsevier) 

Figure 5.17: Two-dimensional schematic diagram of material. Different cutting plane at the box 

center has been chosen in (a) and (b). Here view angle of (a) corresponds to Figure 5.13, and (b) 

corresponds to Figure 5.8d. 

Next is a mathematical description of the proposed material transport despite some 

inevitable approximations. In Figure 5.17a, points P0 and P are the initial and current positions of 

the cutting point on the void surface, respectively. Point A is the current position of the atom on 

the moved layer, while point A0 is its initial position. Since the dislocation is emitted from the 

void surface, the distance AP0 represents how far this dislocation (not the atom) has travelled. We 

denote the displacement of an arbitrary point on the surface as 𝐛̃ and the unit normal vector as n . 

According to Figure 5.13, the material transport away from the void is approximated as 

                 

    𝑠  ∫ 𝐛̃   𝐒  
 𝐴𝐵𝐶𝐷

∫ 𝐛̃     
 𝐴𝐵𝐶𝐷

                                     (5.3) 
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At a first thought, shear loops/curves should grow the void in a different way compared with 

the prismatic loop. However, some similarity in mass transport holds between the two once 

regarding large structure. It is interesting that Eq. (5.1), though not true to deny the void growth 

by shear loop, can be referenced here for the material transport through the large dislocation 

structure formed by shear loops/curves. This approach has also been adopted by Ahn [55] et al. 

to formulate the mass transport via multiple prismatic loops. Take Figure 5.13 for example, the 

Burgers vector at the shear curve front does have a normal component parallel to the loading 

direction. The major difference between Eq. (5.1) and Eq. (5.3) lies in that the Burgers vector for 

the latter one is no longer parallel to the mass transport direction. The mass conservation in Eq. 

(5.3) implies the assumption of the volume preservation on the moved material. The surface 

ABCD in Figure 5.16a is not flat and we only know that  

     𝐛̃  𝐛  
                                                        

(5.4) 

Here  is the curve enclosing the surface ABCD. Vector  is assumed to take the 

direction as indicated in Figure 5.17a. Next, a local orthogonal coordinate system [ 1e , 2e , n] is 

defined on the curved surface, where n is the local unit normal vector of the surface. The two 

vectors 1e  and 2e  are two orthogonal in-plane unit vectors as shown in Figure 5.16. We rewrite 𝐛̃ 

as 

            
𝐛̃   𝐞𝟏 + 𝑔𝐞𝟐 +  𝐛     

                                             
(5.5)

 

Eq. (5.5) simply satisfies 𝐛̃    𝐛    on both the inner surface and the enclosing curve 

ABCD. Since 

                                                                  
(5.6) 

                                                                  
(5.7) 

on ABCDL

ABCDL b

1 0 e n

2 0 e n
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We immediately obtain the incremental void growth as 

    𝑠  ∫ 𝐛̃     
 𝐴𝐵𝐶𝐷

 1 2 ( ) d ( )d = cos d

ABCD ABCD ABCDS S S

f g S S S        e e b n n n b n b

     

(5.8) 

It is more comfortable to think b n  as an average on the surface in deriving Eq. (5.8). The 

surface ABCD is not necessary a flat one in Eq. (5.8). The angle between the vectors b  and n  is 

denoted as   and satisfies        as shown in Figure 5.17a. Here   and   are two angles 

for the dislocation emission geometry [91]. A non-zero   can cause the layer to move away 

from the void. In this sense, the void growth has been related to the geometry of the dislocation 

structure. Next, further approximations will be taken to derive a simpler relation. First, the 

curved surface is approximated to be a flat one  

                                                    

 

(5.9) 

From Figure 5.17a, the segment AB  could be related to both the segment 0AP  and 

dislocation emission angles as  

0 02( sin sin )AB r AP  
                                             

(5.10) 

A dimensionless parameter 0 0AP r 

 

is defined to better characterize the relative motion 

of the dislocation with respect to the void size. Eq. (5.10) then becomes  

2 2

04 cos (sin sin )disV r      b
                                  

(5.11) 

Eq. (5.11) reveals that the incremental growth of the void depends on the geometry of 

dislocation structure, especially the dislocation emission angles. These angles are shown in 

Figure 5.17a and are identified from MD results. Since a number of approximations have been 

applied to derive Eq. (5.11), it is then necessary to compare Eq. (5.11) with the direct MD 

2
cosdisV AB  b
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observation in Figure 5.2. The first step is to identify the parameters in Eq. (5.11) from the MD 

data. At the strain 0.0592, the average magnitude of Burgers vector at the shear loop/curve front 

is identified as 1.06 Å. The travel distance of the shear loop front 0AP is measured as about 62 

Å. With an initial void radius of 34.8 Å, the dimensionless parameter   becomes 1.782. The two 

angular parameters   and   are measured 94.3º and 49.2º, respectively. By substituting all these 

parameters, the incremental void volume fraction for the spherical void is found to be 0.0020 

(doubled due to symmetry) by using Eq. (5.11). In Figure 5.2, this incremental increase in void 

volume fraction is 0.0024 from the strain 0.058 to 0.0592. This 20% deviation could stem from 

those aforementioned approximations.     

5.5. Conclusions 

The feasibility of void growth via shear loop/curves has been proved true from the MD 

simulation. Whether forming larger structures or not, shear loops/curves can induce material 

transport. A shear loop/curve close to the void surface is more readily to induce the surface 

growth of the void. Large frustum-like structures are formed by the emission and interaction of 

multiple shear loops/curves. For a spherical initial void, symmetric frustum-like structures are 

formed along the loading direction. For an irregular initial void, only one frustum-like 

dislocation structure is formed. The shear loops/curves, whether emitted in a simultaneous or 

sequential fashion, are capable of inducing/affecting the local material transport. The forming of 

larger dislocation structures further facilitates the void growth. The observed frustum-like 

structure features an opening angle, which is different from the one proposed by Lubarda et al. 

[18]. The proposed phenomenological model for void growth by frustum-like structures achieves 

relatively good agreement compared with that from a direct measurement of MD results. 
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Chapter 6: Theoretical Calculations of Void Growth due to Shear 

Loops 

As a step forward from the previous chapter, this chapter is dedicated to computing the exact 

elastic void growth due to a nearby shear loop and exploring the possible shape of the surface cut 

to form such a shear loop. The shear dislocation loop, by definition, has its Burgers vector inside 

the loop plane [135]. In contrast, Burgers vector of a prismatic dislocation loop is not in the loop 

plane [135]. The mass transport associated with a shear dislocation loop near a void is a 

nontrivial issue. Understanding of this issue can be achieved from two perspectives. First, in 

order to create the dislocation loop [57], the amount of mass that needs to be removed from or 

inserted into the bulk material can be examined. Dislocation loops/curves are prone to form and 

emit from void surface under loading. The creation of dislocation by removing or inserting 

material also introduces some displacement to the surrounding medium. This displacement 

causes another part of mass transport. By using a point force as a test probe, this displacement 

can be determined through the work done on certain surface bounding the dislocation loop [57]. 

For a shear loop, the second part of mass transport can be found in the work of Ohr [60]. This 

deformation induced by the shear loop, while is negligible for a microvoid, could be influential 

for a nanovoid.  

We start with a brief review of the first kind of mass transport in the literature. Bulatov et al. 

[56] has employed the mass conservation to formulate the mass transport, based on the mass 

removed from or inserted into the bulk material to create a dislocation loop. However, what 

might have been overlooked is the definition of this bounding surface A with mass transport on it 

(see Figure 6.1). Although Figure 6.1 is originally generated to represent a general dislocation 
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loop [57], what showed in the figure is closer to, if not exactly a shear loop since its Burgers 

vector b  appears in the loop plane. Figure 6.1 comes from the same reference [57] cited by 

Bulatov et al. [56]. To assert the ―shear impossibility‖, they formulated the following equation 

[56] 

d
Surface

V A   b n                                                    (6.1) 

where n is the unit normal of the infinitesimal area dA of an arbitrary, curved surface bounding 

the shear loop, ΔV is the mass transported. However, the original equation for material removed 

[57] is expressed in terms of a differential volume element  

                 
dV A  b n                                                             (6.2) 

  

Figure 6.1: Closed dislocation loop C and its bounding surface A from [57] (Reprinted with 

permission from Hirth Copyright 1982, Hirth). The close loop is denoted as C, the normal of 

surface A is n, the segment vector of loop is d dll  and the motion of dislocation loop is r .  

Figure 6.1 is the schematic corresponding to Eq. (6.2) [57]. As defined in [57], ―any surface A 

bounded by loop C could be used for the operation‖. Indeed, Figure 4-2 in the text book [57] 
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clearly shows that a pure edge dislocation could be generated by different possible cuts. This 

idea can be easily extended to a shear loop. One side of the surface cut A is displaced by b  

relatively and the material on both side of the cut are rejoined afterwards [57, 58]. The inner 

product b n  therefore highly depends on the shape of surface A. In the comments of Bulatov et 

al. [56], the flat area encircled by the loop C was chosen as this surface A. It is only under this 

premise that their asserted condition 0 b n  [56] is valid and so is the ―shear impossibility‖. 

Clearly, Burgers vector b and n are not perpendicular to each other everywhere at least in Figure 

6.1. As a result, Eq. (6.2) should be nonzero on most part of surface A. This indicates that Eq. 

(6.1) cannot be used to claim ―shear impossibility‖. Further, the integral form in Eq. (6.1) is not 

suitable to evaluate the local mass transport. Even if Eq. (6.1) does equal zero when symmetry in 

Figure 6.1 is employed, it only implies that the removed and inserted material volumes are the 

same. However, local mass transport is still true for specific locations on the surface as described 

by Eq. (6.2). Indeed, the integral to evaluate local mass transport should be operated on a small 

surface element. The integral is not invariant with respect to arbitrary surface cut for an 

incomplete dislocation loop. As long as the surface A is not presumed as the flat one encircled by 

loop C, there would be local mass transport. To determine the exact shape of the surface A, other 

information is required. Such information could, for example, come from molecular dynamics 

simulations. The mere overall mass conservation of Eq. (6.1), with a presumption of a flat 

surface A appears to be inadequate to disprove the void growth via shear loops/curves.    

Next, we distinguish the mass transport caused by the formation of a shear loop and that by 

the motion of a shear loop. The mass transport caused by the motion of a dislocation loop is 

given as [57] 
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     ∮          
 

                                                      (6.3)    

Notably, here the integral is operated on the loop curve. If the motion is a pure slip, Eq. (6.3) is 

indeed zero for a shear dislocation loop since the three vectors b , r  and dl  are in the same 

plane. The motion other than a pure slip, as long as the projection area of the loop in the 

direction of Burgers vector is nonzero, should result in mass transport [57].  

Second to be considered is the displacement caused by the presence of a shear loop. This 

part is true even if the bounding surface A is taken as the flat one encircled by the loop as shown 

in Figure 6.1. The presence of a shear loop introduces a strong lattice structure discontinuity to 

the surrounding material. Although the classical elasticity may fail at the dislocation core, 

modifications [137] to this approach can still lead to a solution of physical significance. A simple 

example of displacement field induced by an edge dislocation can be found in [59]. Similarly, 

but more sophisticatedly, the displacement field due to the presence of a shear loop could be 

obtained by the Green’s function method [60]. Through integration treatment, the analytical 

solution loop
u  of a shear loop as shown in Figure 6.2 can be obtained as [60] 
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where 2 2

1 2x x R   , 3x R   , R  is the radius of shear loop, b  is the magnitude of Burgers 

vector, v  is Poisson’s ratio and the function n

mI  is defined as [60] 

1
0

( , ) ( ) ( )exp( )n n

m mI t J t J t t dt   


                                            (6.7) 

where mJ  is the mth order Bessel function of the first kind. One can refer to Figure 2 in Ohr [60] 

for a better understanding. This elastic deformation is negligible for a microvoid since its b/R is 

extremely small. Nonetheless, for a small nanovoid adjacent to multiple emitted shear 

loops/curves, the elastic deformation induced by shear loops/curves could be a contributor. Such 

situation can be found, for instance, in the neutron-irradiated metals. Both nanovoids and 

dislocations can be formed in the metal due to irradiation. In the work of Shimomura and 

Mukouda [138], nanovoids of about 3 nm in diameter were observed inside the irradiated copper. 

In Figure 2 of Ohr [60], the influence of the shear loop extends to a relatively large area 

compared with its radius. To a rather nearby nanovoid, the void surface would be distorted by the 

shear loop and therefore develop a growth or shrinkage. Hence, an important focus of this 

chapter is to extend the elastic solution [60] to the case with a nearby nanovoid. The solution of 

the elasticity problem can be obtained by the superposition of the displacement field loop
u caused 

by the shear loop and the image field void
u  due to presence of the void. This method has been 

adopted by Wolfer and Drugan [139] to deal with the interaction between a prismatic loop and a 

void. The lack of symmetry of the elasticity problem here makes it difficult to pursue any 

analytical solution. As an alternative, the image field is solved by the finite element method to 

satisfy the traction-free boundary condition on the void surface. Once void
u is solved, the total 

displacement field could be expressed as 
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loop void u u u                                                                 (6.8) 

 

Figure 6.2: Schematic of the corresponding geometry. The center of the circular shear loop 

with a radius of R coincides with the coordinate origin. The spherical void of a same radius R is 

centered at the coordinates (1.1R, 0, 1.05R). The ratio b/R is set as 0.1. 

The corresponding strain field can be easily obtained through the displacement field caused 

by the shear loop. Next, the stress tensor 
loop

σ  caused by the shear loop can be found through 

applying Hooke’s law. Consequently, the boundary loading condition of the image field can be 

determined. The combined stress, caused by both the shear loop and the image field due to the 

presence of the nanovoid, must satisfy the traction-free boundary conditions on the void surface: 

0void loop   σ n σ n                                                  (6.9) 

where n is the normal vector on the void surface. The geometry configuration is shown in Figure 

6.2. Finite element calculation has been performed by modeling this geometry after a mesh 



148 

 

convergence test. The Young’s modulus and Poisson’s ratio are set to be 120 GPa and 0.33, 

respectively. For brevity, only the magnitude of total displacement u is displayed in Figure 6.3.  

 

Figure 6.3: Deformed slice plot of the magnitude of total displacement u with the cutting 

plane at x2=0. Growth of the nanovoid towards the shear loop can be clearly seen (Deformation 

has been magnified by a scale factor of 2). The color bar is in the unit of R. 

The white crescent shows the difference between the current profile and the initial profile of 

the nanovoid, which is displayed as a grey circle. It is worth noting that the magnitude of 

displacement of a single shear loop without a nearby void should be symmetric with respect to 

the plane x3=0. Yet, the presence of the nearby void affects the displacement field and breaks this 

symmetry. The volume increase of nanovoid can be calculated by 

 V d
void

void
S

S   u n                                                    (6.10) 

x3 

x1 
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The integral in Eq. (6.10) is directly defined on the void surface and, so is the unit normal 

vector n . The volume increase calculated by Eq. (6.10) is 0.062 in the unit of R
3
. Hence, the 

ratio of increase V Vvoid void  is found to be 0.015. Since the solution is only for a complete shear 

loop [60], the modeled shear loop is assumed to be close but not attached to the void surface. 

Compared with the image field, the displacement field by the shear loop contributes more to the 

void growth.   

The two parts of possible mass transport induced by a shear loop have now been obtained. 

Once the shear loop forms, its contribution to the nearby nanovoid growth would consist of these 

two parts if it moves by pure slip. As mentioned, the bounding surface A can take any arbitrary 

shape. This shape is crucial to the mass transport. The exact shape of this surface A is out of the 

scope of a pure theoretical understanding. The first part of mass transport to the void growth is 

irreversible. The second part depends on the distance between the shear loop and the void 

surface.  

Last but not least, atomistic simulation is examined to explore the probable shape of the 

surface A bounding the material transferred induced by shear loop. Recent atomistic simulations 

demonstrated that the local mass transport via shear loop is true through visualizing the ―relative 

farthest-travelled (RFT)‖ atoms [87]. Those RFT atoms are identified by their relative atomic 

displacement [87]. This relative atomic displacement not only excludes the homogeneous 

deformation of the simulation box, but also is independent of the origin of the reference 

coordinate system. In the present report, we take a further step to use the incremental relative 

displacement to explore the probable shape of the surface A in Figure 6.1. The details of the 

atomistic simulation could be found in [87] for the primary case. The formation of the major 

frustum-like dislocation structure starts after the strain of 5.8% as shown in Figure 6.4a. The total 
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atomic deformation compromises four parts: the homogeneous elastic deformation due to stretch, 

the heterogeneous elastic deformation due to the presence of void, the elastic deformation due to 

dislocations and the plastic deformation due to dislocations. Since the first one can be readily 

excluded by using ―relative atomic displacement‖, the remaining task is to highlight the plastic 

deformation due to the shear dislocation curves. The original ―relative atomic displacement‖ 

applied the initial unstrained configuration as reference [87] and considered the difference 

between the current and referential atomic configuration. Given that the incremental elastic 

deformation due to the presence of void is small in the elastic region during the simulation [87], 

this second part of deformation could be made insignificant once only considering the 

incremental deformation from ɛ=5.8% to ɛ=5.92%. Since the incipient Pyramid-shape 

dislocations at the four corner of void remains unchanged, the incremental deformation also 

eliminates the deformation due to these pre-existing minor dislocations. Therefore, the remaining 

significant parts are only the deformations due to the shear dislocation curves. Figure 6.4c shows 

the incremental RFT atoms by taking Figure 6.4a as the referential atomic configuration. Figure 

6.4d is the sliced snapshot with its cutting plane in the direction [0 1 1].  Figure 6.4d could shed 

some light on how the surface bounding the material transferred by shear curves/loops may look 

like. It is interesting to compare the shape in Figure 6.4d with the surface A in Figure 6.1 

conceived by Hirth and Lothe [57]. In general, an increase of the dislocation density has been 

observed in atomistic simulations [87]. This implies that population growth of the shear 

loops/curves could magnify their contributions to the nanovoid growth. Indeed, rapid void 

growth is found triggered by a burst of increase in dislocation density [87]. The burst of void 

growth happens exactly at the strain range as in Figure 6.4.   
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  (a)Dislocations (ɛ=5.8%) (b)Dislocations (ɛ=5.92%) (c) Incremental RFT atoms (ɛ=5.92%) 

 

 (d) Incremental RFT atoms (ɛ=5.92%) to approximate the material transport domain induced by 

shear curves 

Figure 6.4: Incremental material transport from ɛ=5.8% to ɛ=5.92% during the emission of eight 

sets of shear curves/loops. The light blue atoms represent the current void surface while the red 

atoms are the incremental RFT atoms. The rendered blue and red curves are dislocation curves. 

The critical magnitude of displacement to identify the incremental RFT atoms is 1.02 Å, which is 

the averaged magnitude of Burgers vectors belonging to the eight front shear curves. Snapshots 

Probable shape 

of the cut 
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are plotted by software ATOMVIEWER .Loading is applied in x direction. Figure (d) shows a 

cutting view of (c). 

Evidence and explanation for void growth via shear dislocation curve/loop can also be found 

in Refs. [18, 26]. Nevertheless, it should be emphasized that the formed pattern of dislocation 

structure is subject to the simulation conditions such as loading pattern or lattice orientation.  
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Chapter 7: The Influence of Ellipticity to the Void Coalescence

 

7.1. Introduction 

The initiation and evolution of small voids limit the formability and ductility of aluminum 

and its alloys. These voids grow and coalesce during the continued applied loading, causing 

localized coalescence and fracture. A famous constitutive model was proposed by Gurson [48] to 

account for the void’s role in characterizing material damage. Tvergaard [140] introduced 

adjustment parameters to further calibrate the Gurson relation based on micromechanical studies 

on periodically distributed voids. So far, these models or their variants have been widely 

incorporated in finite element simulations and analytical calculations. Most of the constitutive 

models for porous metals are derived by the unit cell modeling. However, the voids in a real 

engineering material are not likely to be uniformly distributed. In order to capture the softening 

response of the porous metals with higher accuracy, it is physically necessary to characterize the 

heterogeneity of the void distribution. Indeed, heuristic study on the effect of void interacting in 

porous metals has been carried out via the FE method or the analytical approach by many 

researchers. Ohno and Hutchinson [141] concluded from their model, which embedding an 

excess of voids within a disk-shaped cluster with a uniform background distribution to an elastic-

plastic solid, that non-uniform distribution of the voids lowers the ductility. Later, this 

conclusion was supported by Becker [142], who used a distribution of initial porosity from 

experiments to perform the finite element simulation. Magnusen et al. [143] examined the 

specimen with random or uniform distributions of macroscopic holes and developed an 

                                                 
 A version of this chapter has been published. Reprinted with permission from Cui, Y.; Chen Z. Molecular 

dynamics simulation of the influence of elliptical void interaction on the tensile behavior of aluminum. Comput. 

Mater. Sci. 2015, 108,103-113. Copyright 2015 Elsevier. 
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algorithm in modeling. Benson [144] applied an Eulerian finite element program to study the 

dynamic response of OFHC copper and 4340 steel by assuming an arbitrary random distribution 

of six voids with fixed total porosity. Later, Benson [145] studied the void clustering effect by 

modeling a discrete set of randomly distributed clusters. He found that the ultimate stress is a 

constant with the changing fracture strain and with the void cluster diameter. Horstemeyer et al. 

[115] employed the micromechanical FE method to quantify the coalescence effect based on 

temperature and different spatial arrangement of voids. He also proposed a critical ILD to define 

void coalescence. Chen et al. [146, 147] applied the FE-damage percolation model to study the 

damage evolution in the forming of aluminum alloy sheets. This damage percolation model 

adopted elliptical void shapes and employed measured particle distribution to characterize the 

void cluster initiated by second phase particles. Toi et al. [148] carried out a 2D mesoscale 

simulation to analyze the elasticity, yield stress and void-linking fracture via meshless method. 

Bilger et al. [149] paid attention to the specific role of the porosity fluctuations inside the 

representative volume element. Their results indicated the porosity fluctuations can have a strong 

effect on the overall yield surface of porous materials. Gărăjeu et al. [150] focused on the 

influence of small fluctuations of porosity on the effective properties of porous materials. They 

concluded that deviations of uniform distribution result in weakening the macroscopic load 

carrying capacity of the porous materials. The experimental research [151] using drilled-hole 

samples revealed different failure and strain pattern depending on the configuration of the 

microvoids and also highlighted the importance of void spacing and void orientation. Bandstra 

and Koss [152] examined the sensitivity of void growth and coalescence to the intervoid spacing, 

strain hardening and multiaxial stress state. They concluded that the growth of voids within the 
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cluster is accelerated. The work of the above researchers demonstrates the important role of the 

void interaction in the damage progression ranging from the microscale to the macroscale.  

As for nanovoids, evidence suggests that dislocation-void interaction plays an important role 

in the void evolution in metals [18, 39, 40, 153-156]. Lubarda [91] extended his early work [18] 

to a more generalized dislocation-void interaction model under combined loading. The minimum 

critical stress is physically obtained by minimizing the critical stress with respect to the two 

angular variables. Both the dislocation emission angle and critical stress predicted in [18] were 

supported by MD simulations [26, 38-40]. So far, the void growth and coalescence mechanisms 

in face-centered cubic metals have been widely studied by the MD simulation. Potirniche et al. 

[37] employed the MD method to study growth and coalescence of circular nanovoids in single 

crystal nickel. Their results reflected the size-scale dependence of the nanovoids. Traiviratana et 

al. [26] performed the MD simulation in monocrystalline and bicrystalline copper. The emission 

of dislocation is confirmed to be the primary mechanism of void growth. Bringa et al. [38] 

applied the MD method to investigate the effect of loading orientation and nanocrystalline in 

FCC copper. Marian et al. [39] used the quasi-continuum method to study the void expansion in 

FCC aluminum and indicated that dislocation emission is the primary mechanism. However, the 

investigation of the role of void interaction including the intervoid spacing and void shape 

combination has not been reported. Therefore, efforts are made here to elucidate and examine the 

role of void interaction in the material response of the FCC aluminum.  

The void interaction simulation regards the voids of elliptical shape. The elliptical void, as a 

generalized treatment of the initial void geometry, highlights the role of the void shape. The 

pertinent intervoid geometries [157] are depicted in Figure 7.1. For the empirical approach, void 

coalescence occurs through shear band development between the neighboring elliptical voids 
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when the ILD satisfies the criterion with regards to the void geometry [157]. As illustrated in 

Figure 7.2, the critical ILD is larger than zero for the empirical criterion as a simplification to the 

physical problem. However, the void coalescence process, as observed both in MD simulations 

and experiments, is likely to be a continued process. Therefore, a task of chapter is to investigate 

the continued process of void coalescence under the interaction of elliptical void via MD 

simulation.  

 

Figure 7.1: Schematic of idealized void interaction geometry reproduced from [157]: (a) oblate-

oblate combination; (b) prolate-prolate combination. 

 

Figure 7.2: Schematic of the empirical criterion for void coalescence (the critical ILD is larger 

than zero). 
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In this work, a 3D simulation box with a thin z-direction thickness is employed. As shown in 

Figure 7.3, it has doubled length in y-direction based on the fact that void coalescence occurs 

perpendicular to the uniaxial loading direction. The simulation box can be viewed as the 

combination of the upper and lower square unit cells. The resulted void distribution in the 

simulation box is no longer uniform. A benefit of this ―2D‖ simulation geometry is that it allows 

us to have a clear view of the material transport in the high strain regime when the primary 

growth of the voids prevails. Chang et al. [158] suggested that the yield stress simulated by MD 

in 2D is very close to that in 3D at 0K. Nevertheless, the extension towards a cubic 3D 

simulation geometry would be helpful in that it provides spacing space in the third direction for 

the motion of dislocations and the formation of complete dislocation loops. Some dislocation 

mechanisms like the prismatic loop emission induced by inclusions are more physically suitable 

for 3D simulations. For a spherical void in a cubic MD geometry, many authors [26, 38, 103, 

154, 159-162] have contributed to uncovering the void-related material behavior over the years.  

7.2. Simulation Methodology  

We used the Large-scale Atomic/Molecular Massively parallel simulator (LAMMPS) in the 

simulations. Software ATOMEYE [84] is applied in post-processing. The interaction between 

the atoms is modeled by the embedded atom method [110]. It is of great importance that the 

EAM potential chosen for atomistic simulations must accurately reproduce pertinent features of 

the resulted energy curves, such as the unstable stacking fault energy [80]. The unstable stacking 

fault energy is a crucial parameter of the barrier for partial dislocation nucleation [81]. The 

accurate characterization of the dislocation nucleation and interaction relies on a qualified EAM 

potential. Mishin et al. [112, 113] reported the EAM potentials for aluminum and copper. These 

potentials demonstrated accurate intrinsic and unstable stacking fault energy such that they have 
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been extensively applied in MD simulations [26, 38, 111, 114, 156, 163]. Hence, the EAM 

potential for aluminum [112] is chosen in this work to carry out the simulations. 

A periodic voids-embedded simulation box is used to represent non-uniformly distributed 

voids. The atoms inside the voids are removed to create specifically-shaped embedded holes. 

Energy minimization via a conjugate gradient algorithm is first performed to attain the minimum 

energy configuration, followed by the relaxation step to reach an equilibrium state configuration. 

Based on that, the engineering tensile strain is applied as the load. All MD simulations are 

performed with the isothermal-isobaric ensemble under room temperature via the Nose-Hoover 

thermostat [82], representing a system in thermal contact with a bath of constant temperature. 

According to LAMMPS user manual, the Nose-Hoover thermostat could bring the undesirable 

oscillation of pressure and/or temperature to the simulated system. Therefore, a proper drag force 

is forced upon the thermostat to damp this oscillation. In simulation, the drag force applied is 

determined through extensive tests such that its ability to damp the oscillation saturates.  

7.3. Results and Discussions 

As shown in Figure 7.3, the representative computation geometry contains two elliptical 

voids. As indicated by the dash lines, the rectangular simulation geometry is the combination of 

the upper and lower squares. Therefore, the resulted void distribution is non-uniform. For each 

elliptical void, the major axis is two times the minor axis. The individual void is either placed 

horizontally or vertically. The upper void to the lower void combination varies from oblate-

oblate, to oblate-prolate and to prolate-prolate. For each void shape combination case, the initial 

ILD, as denoted by ILD0, increases from 1a2, as the most non-uniformly distributed case, to 2a2 

and to 4a2. These nine specimens are listed in Table 7.1 for additional details. In our simulation, 
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uniaxial tension is applied upon the simulation box at both ends of the x-direction. The size of 

the simulation box corresponds to 512, 1024 and 8 atomic planes of Al in the x, y and z 

directions, respectively.  

 

Figure 7.3: Simulation Geometry containing two non-uniformly distributed elliptical voids 

(Periodicity are applied on all the three dimensions). 

Table 7.1: Details about the Computation Geometry 

Void shape combinations (upper-lower) 

Oblate-oblate Oblate-prolate Prolate-prolate 

Specimen ILD0 

1 1a2 

2 2a2 

3 4a2 
 

Specimen ILD0 

4 1a2 

5 2a2 

6 4a2 
 

Specimen ILD0 

7 1a2 

8 2a2 

9 4a2 
 

The dimensions of each specimen 

Simulation box size (nm) 

Width 103.7 

Height 207.6 

Thickness 1.62 
 

Void size (nm) 

a1 11.7 

a2 5.85 

  
 

Initial porosity 

0.02 

Total atom number 

2,055,264 
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7.3.1. The Onset of Dislocation Emission Compared with the Lubarda Model 

Special attention was paid to identify the onset of dislocation emission from the void surface 

with different initial void geometry during the post-processing of MD results. On one hand, the 

onset of dislocation emission marks the beginning of the inelastic deformation and the rapid 

growth regime of the void. On the other hand, the validity of the MD method could be examined 

readily by comparing the predicted critical stress with those given in the literature. Lubarda [91] 

extended his original model [18] to account for combined loading cases. In his model, the critical 

stress for the initiation of dislocation emission is determined by balancing the applied stress to 

the image force on the dislocation exerted by the void surface. The equilibrium distance  in 

Figure 7.4 is set equal to the dislocation core cut-off radius 
 
[116], where  is set equal to 

the magnitude of dislocation [91]. The critical stress is formulated with respect to the two 

angular variables, namely,  and  [91]. 

                            (7.1) 

       

(7.2) 

                                             (7.3) 

                                                   (7.4) 

Where 



0 0

 

4 2 2

0 0

2 2 2 2

0 0

2( )sinsin 2( )

2 (1 ) ( )sin
cr

r r RGb R

v h R r R r

 


 

 
  

  

2 2 2

0

2 2 2

0 0

3 2 cos 4( ) sin 2( ) 3 2 sin 4( ) cos 2( ) sin 2( )
r R R

h
R r r

         
      

                 
      

2 2 2

0 0 02 cosr R R    

sin( ) sinR r   



161 

 

 is the shear modulus, and G=25. 5 GPa [117] for aluminum, 

 is the magnitude of dislocation, and b=0.286 nm [118] for aluminum,  

 is Poisson’s ratio, and is set as 0.33; and other geometry quantities are as illustrated in 

Figure 7.4. 

 

Figure 7.4: The void-dislocation geometry under uniaxial tension reproduced from [91] 

(Reprinted with permission from Lubarda. Copyright 2011, Elsevier). 

The simulated critical stresses by MD method are compared to the minimum value predicted 

by Eq. (7.1). The minimum critical stress is determined by minimizing the function 

with respect to the two angular variables. 

G

b

v

( , )cr cr   
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Figure 7.5: The centrosysmmetry parameter coloring (CPC) plots indicating the onset of 

dislocation emission for each specimen. 

Strain=0.051 

Strain=0.0

51 

Strain=0.032 Strain=0.032 

Strain=0.051 Strain=0.036 Strain=0.036 

Strain=0.06 Strain=0.036 Strain=0.036 

(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 
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CPC figures are plotted for the nine specimens to spot the disordered atoms. The CPC 

highlights the atoms according to the distances from its twelve nearest neighbors. The 

centrosymmetry parameter ranging from low to high identifies the atoms in the bulk lattice, 

partial dislocation, stacking faults and free surface, respectively. In Figure 7.5, the nine CPC 

plots, corresponding to the onset point of the dislocation emission, are listed with different void 

shape combinations and different ILD0. The light blue lines in the figures indicate the dislocation 

lines emitted from voids. From a 3D view and noticing the periodicity, these sets of lines 

represent the slipped areas bounded by dislocation lines. The angle between the slip planes and 

the x-y plane is 45°. These slip planes consist of close-packed atoms in FCC metal and thus are 

common directions for dislocations [135]. It can be concluded from the nine plots that the 

dislocation emission, as a localized event, is strongly affected by the void shape and is also 

influenced by the ILD0 to some degree. For the largest ILD0 cases as in Figures 7.5g-i, the 

dislocation emission patterns from the voids are free from the influence of the nearest neighbor. 

The number of dislocation sites emitted from the oblate void surface is four as shown in Figure 

7.5(g), while the number of dislocation sites on the prolate void surface is either three or four as 

shown in Figures 7.5h and i. However, when it comes to the three cases with the smallest ILD0, 

the void shape determines whether dislocation emission would be inhibited or promoted. For 

Figure 7.5a, i.e. oblate-oblate combination with the smallest ILD0, the two dislocation emission 

sites, supposed to be on the intervoid side, are disturbed and no long resemble the ―regular‖ 

pattern for the oblate void like that in Figure 7.5g. In subsequent CPC plots following Figure 

7.5a, which are not displayed for brevity, the disturbed dislocation lines quickly interlink to form 

a cleavage and lead to an imminent void coalescence. For Figure 7.5b and its subsequent CPC 

plots, the rapid dislocation emission from the prolate void largely inhibits that from the intervoid 
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side of the oblate void. Later, the cleavage forms and develops into coalescence path without 

dislocation emission from the intervoid side of the oblate void. For Figure 7.5c, the scenario is 

different. The short ILD0 promotes the dislocation emission from the intervoid side of both the 

prolate voids. No matter what the paired void shape is, the prolate void triggers the dislocation 

emission much earlier than the oblate void. Therefore, the onset of dislocation emission of the 

two-void system as a whole is mainly determined by its prolate member. Although the pattern of 

the dislocation emission is subject to the influence from a near neighbor, the onset of the 

dislocation emission does not appear so. As a result, the conclusion could be generalized that the 

onset of the dislocation emission of a cluster of multiple elliptical voids is mainly determined by 

the ones whose major axis is perpendicular to the uniaxial loading direction.  

 

Figure 7.6: The critical stress by MD simulation compared to the minimum critical [91]. 

Geometric mean radius  is used for the elliptical void. 
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The high nucleation stress acquired in Figure 7.6 can be attributed to the size effect and the 

high strain rate applied. Various testing techniques have demonstrated that the decreasing sample 

size could substantially increases the stress response of the testing material [33-36, 164-166]. 

Although periodicity is imposed at all three dimensions in the present study, the computation 

geometry is essentially of submicron size. Furthermore, the high strain rate (2e9 s
-1

) applied in 

the present work, though within the commonly adopted range [26, 40], is another contributor to 

the high stress response. On the other hand, the spallation testing by laser driven shocks [167] 

suggests that such a high stress as shown in Figure 7.6 is not unrealistic in aluminum at high 

strain rates. Cuq-Lelandais et al. [167] measured a spall strength ranging from 1.5 GPa to 3.6 

GPa with the applied strain rate increased from 1e6 s
-1

 to 1e8 s
-1

. As for MD simulations 

regarding bicrystal interfaces in aluminum [111, 114], the tensile stress required to nucleate 

dislocation is within the range of 4.28-5.92 GPa. By comparison, the stresses required for 

dislocation initiation due to the presence of elliptical void are in the range of 2.04-3.92 GPa as in 

Figure 7.6. It should be noted that in our simulation all the elliptical voids are of the same size 

. The minimum critical stress predicted by the Lubarda model for this void size 

should be 0.88 G, as plotted in Figure 7.6. In Figure 7.6, the critical stresses obtained by MD, 

especially the oblate-prolate and prolate-prolate cases, yield good agreement with the prediction 

by the Lubarda model. The simulated critical stresses by MD with different void shape 

combinations are plotted against the ILD0. A weak dependence of the critical stress on ILD0 can 

be found. In general, the void shape dominates the critical stress. The oblate void requires a 

larger critical stress to trigger the dislocation emission, while the prolate void requires a 

considerably lower critical stress. In terms of void shape combination, the oblate-oblate 

combination results in the highest critical stress, while there is little difference between the 

28.9R b 
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oblate-prolate and the prolate-prolate cases. By minimizing the critical stress, the Lubarda model 

also identifies the critical emission angle  to be 89° for the void size concerned. Figure 7.5 

indicates that the void shape also affects the angle of the dislocation emission. For the prolate 

voids, the dislocation emission angle is relatively close to 89°. In contrast, the dislocation 

emission angle from the oblate void is much smaller. 

7.3.2. The Overall Stress Response 

For the nine cases as a whole, the dislocation emission marks the beginning of the strain 

hardening region until the stress reaches the ultimate tensile strength in Figure 7.7 and Figure 

7.8. The CPC plots of these nine cases illustrate the general process of dislocation development, 

i.e. the dislocations first emit from void surface and then propagate, partly annihilate and finally 

interact into a network-like structure. After reaching the ultimate strength, the accumulation of 

dislocations is the main cause of the deterioration of stress response. The annihilation of a certain 

portion of dislocations then recovers the stress to a certain level. Unfortunately, the accumulation 

of dislocations would regain its dominance over the annihilation such that the stress drops again. 

The decrease of stress is more closely linked to the dislocation development rather than the void 

coalescence as marked by the filled color points in the corresponding figures. Although the 

simulation box adopts periodical boundaries, the two-void system could be viewed as ―isolated‖ 

from the neighboring voids before the strain of 0.1 as the dislocation lines have not yet reached 

the simulation boundary in the CPC plots. We will refer to this ―isolated‖ range in the following 

context.  

 

 




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                          (a) ILD0=1a2                                                                                 (b) ILD0=2a2 

 

                                   (c) ILD0=4a2 

Figure 7.7: Strain-stress curves to reflect the influence of void shape combination. 

In Figure 7.7, the stress curves are organized in order to reflect the role of void shape 

combination under different ILD0. The oblate-oblate cases result in the highest ultimate strength 

and retain a relatively high stress level at the end of loading. It is reasonable for the stress curve 

of the oblate-prolate cases to go between the other two cases within the ―isolated‖ region under 

the strain of 0.1. Similar to the dominance of the prolate void on the dislocation emission in the 

previous subsection, the prolate void is also dominant in stress response such that the oblate-

prolate cases are closer to the prolate-prolate cases in their stress-strain curves.  
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                         (a) Oblate-oblate                                                   (b) Oblate-prolate 

 

(c) Prolate-prolate 

Figure 7.8: Strain-stress curves to reflect the influence of ILD0. 

In Figure 7.8, the stress curves are organized in order to reflect the role of the ligament 

distance under varying void shape combinations. In Figure 7.8c, it is predictable that the case of 

ILD0=4a2, as the least non-uniformly distributed case, has a higher ultimate stress. Yet, for the 

other two figures, the influence of ILD0 on the stress response is much weaker than that of the 

void shape. The ultimate strengths appear nearly independent of the ILD0. This weak dependence 

of the ILD0 was first discovered by Benson [145], who applied Eulerian FE method to study the 

effect of the cluster diameter (similar to ILD) on the ultimate stress.  
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7.3.3. The Porosity Accumulation and Void Shape Evolution 

Void growth is one of the principal mechanisms in ductile fracture. From the standpoint of 

strain gradient plasticity theory, Wu et al. [130] suggested that void with radius of 10nm would 

stop growing in the maraging steel material. For those MD investigations with porosity 

accumulation reported [37, 154], voids of radius ranging from 0.5-5 nm show continued growth 

up to 3-10 times its initial size depending on the applied strain and other influential factors. 

However, this discrepancy is plausible given the difference between the two approaches. The 

loading in MD simulation is usually strain-controlled with high strain rate, while the dynamic 

loading in the work of Wu et al. [130] is stress-controlled. As a piece of work based on 

continuum theory, Wu et al. [130] wisely reflected the length scale effect by comparing the 

characteristic length associated with thermal diffusion. In the MD approach, the size scale effect 

comes from characterizing the lattice atoms with their interactions described by the EAM 

potential. Thus the different way to reflect the length scale effect is also a contributor to the 

different void growth patterns under high strain regime.  

It has been acknowledged by the FE investigation that the initial void shape plays an 

important role in the porosity accumulation during the loading [43, 47]. Their researches indicate 

that the prolate void considerably elevates the porosity level compared to the oblate void, which 

is qualitatively consistent with our MD simulation. However, the discrepancy induced by the 

initial void shapes is relatively weaker compared to the FE results. The advantage of MD 

simulation is its ability to capture the dislocation behavior induced by the presence of nanovoids 

and dislocation-void interaction on void growth. The inelastic deformation follows the onset of 

dislocation emission and the rapid void growth occurs shortly after.  
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                                 (a) ILD0=1a2                                                                                (b) ILD0=2a2 

 

                            (c) ILD0=4a2 

Figure 7.9: Porosity evolution reflecting the influence of void shape combination. 

Figures 7.9a-c reveal that the prolate void shape tends to raise the porosity level of the two-

void system. It is reasonable for the oblate-prolate case to be bounded by the other two cases, 

since it contains both oblate and prolate voids. However, it depends on ILD0 whether the oblate-

prolate combination is close to the oblate-oblate or the prolate-prolate case. From Figure 7.9a to 

Figure 7.9c, the oblate-prolate curve gradually shifts from about the average of the other two 

cases to nearly the same as the prolate-prolate case. This feature could be explained by the 

weakening of the clustering effect. When the ILD0 is small, the void interaction is dominant and 
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thus makes the oblate-prolate combination about the average of the other two cases. However, as 

ILD0 gets larger and larger, the growth of the prolate void becomes dominant over the weakened 

clustering effect. Also, the symmetric development of the dislocation pattern of the prolate-

prolate combination with ILD0=4a2 reduces the potential porosity increase compared to the 

highly asymmetric dislocation in the case with ILD0=2a2 (see Figure 7.10c).  

 

(a) Oblate-oblate                         (b) Oblate-prolate 

 

(c) Prolate-prolate 

Figure 7.10: Porosity evolution to reflect the influence of ILD0. 

 

0.0 0.1 0.2 0.3 0.4
0.00

0.05

0.10

0.15

0.20

0.25
 ILD=1*a

2

 ILD=2*a
2

 ILD=4*a
2

Coalescence point

P
o

ro
s
it
y

Strain

0.0 0.1 0.2 0.3 0.4
0.00

0.05

0.10

0.15

0.20

0.25

 ILD=1*a
2

 ILD=2*a
2

 ILD=4*a
2

Coalescence point

P
o

ro
s
it
y

Strain

0.0 0.1 0.2 0.3 0.4
0.00

0.05

0.10

0.15

0.20

0.25

0.30

 ILD=1*a
2

 ILD=2*a
2

 ILD=4*a
2

Coalescence point

P
o

ro
s
it
y

Strain

ILD0=4a2 
ILD0=2a2 

 

 

 

Void growth 

Void growth 



172 

 

Except for the prolate-prolate case with ILD0=2a2, the porosity accumulation proceeds 

without a sudden change induced by the void coalescence. Although ILD0 has a minimal 

influence on the stress-strain curves as shown in Figures 7.8a-c, Figures 7.10a-c reveal that ILD0 

induces a notable difference during the porosity accumulations. In Figures 7.10a and b, a larger 

ILD0 results in a higher porosity level. One reason is that the void easily gains more volume 

away from its nearest neighbor because of more spacing. It appears that the competition of 

gaining size in the intervoid area leads to the retarded local accumulation of the porosity there. 

However, Figure 7.10c is an exception. The porosity curve of the case ILD0=2a2, rather than the 

case ILD0=4a2, turns out to be the largest one after its coalescence point. Yet, we could find an 

explanation in the corresponding CPC plots. The CPC plot of the case ILD0=2a2 at its 

coalescence point exhibits a quite asymmetric dislocation pattern (see the left subfigure in Figure 

7.10c), which links the upper prolate void through the upper-right corner of the periodic 

simulation box to the lower-left part of the lower prolate void. In contrast, the CPC plot of the 

case ILD0=4a2 at the same strain shows a more symmetric dislocation pattern (see the right 

subfigure in Figure 7.10c). The asymmetric dislocation pattern of the case ILD0=2a2 means the 

potential growth path of the upper and lower void is along the diagonal direction. Just as the void 

tends to grow more away from its nearest neighbor, the diagonal growth pattern provides more 

spacing such that the porosity accumulation is accelerated. Recalling Figure 7.8c, the stress 

response of this case is also considerably reduced after the coalescence point because of this 

asymmetric dislocation pattern.  
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Figure 7.11: The void shape evolution of each specimen.  

 

(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 
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Figure 7.12: The gliding of the material along the dislocations to grow the void. 

The shape of the nanovoid evolves during the continued deformation. We draw the void 

shape every 0.04 strain in Figure 7.11 according to the CPC plots. The individual void growth 

pattern, no matter which void shape combination it belongs to, is strongly influenced by its initial 

shape. For the oblate shape, double cleavages form at the dislocation emission site on the surface 

of the side away from its neighbor. For the prolate void, only one cleavage initiates on each side 

of the void surface due to the contiguity of the dislocation emission sites (see Figure 7.5f). 

However, for all the void shape combinations, only one cleavage forms at the intervoid area. 

Once the dominant cleavage initiates at the intervoid area, the other potential cleavage is 

inhibited at the incubation stage for the oblate void. Another notable feature in Figure 7.11 is that 

the individual void tends to grow away from its nearest neighbor because of more spacing 

available. By comparison, there is considerably less void growth at the middle line of the two-

void system, where far less disordered atoms are found. The overlapped void shape contours in 

Figures 7.11a, d and g indicate that some part of the voided area could undergo shrinkage rather 

than expansion during the deformation. The growth of the nanovoids is found tightly associated 

with dislocations. Figure 7.12 illustrates a typical way of material transport by gliding along the 

lines with high density of dislocations. In the dislocation-free area on the void surface, the local 

void shape is found preserved during void growth.  
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Figure 7.13: The shrinkage of the ILD during the deformation. 

The ILD shrinkage curves of the specimens are plotted versus the increasing strain in Figure 

7.13. Apart from the oblate-oblate void combination with ILD0=2a2 and ILD0=4a2, the onset of 

dislocation reduces the ILD immediately. For all the cases, the ILD shrinks faster in the initial 

period than near the coalescence. During the inelastic regime, the ILD shrinkage pace is subject 

to its initial value. For the smallest ILD0 cases, the intervoid ligaments fracture shortly once they 

begin to shrink. As for the void shape influence, the oblate-oblate combination postpones the 

interlinkage of the voids, while there is relatively small difference between the oblate-prolate and 

the prolate-prolate cases. This finding can be explained by Figures 7.5d and g that the oblate void 

induces a dislocation emission pattern away from the ligament area and lack of immediate 

intervoid interaction once the ILD0 is bigger than 1a2. For the larger ILD0, the neighboring 

nanovoids keep expanding with a very thin and yet not fractured intervoid ligament, as illustrated 

in both the left and right CPC plots in Figure 7.10c. For the MD simulation of void coalescence 

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

4a
2

1a
2In

te
rv

o
id

 l
ig

a
m

e
n

t 
d

is
ta

n
c
e

Strain

 Oblate-Oblate

 Oblate-Prolate

 Prolate-Prolate

 Onset of dislcoation

2a
2



176 

 

in 3D, larger ILD0 also results in a delayed intervoid ligament fracture before the complete void 

coalescence [136]. 

 

Figure 7.14: The effect of ILD0 and void shape combination on the coalescence porosity. 

The coalescence porosity, at which the intervoid ligament completely breaks, increases as 

the ILD0 increases, as shown in Figure 7.14. With more spacing separating the neighboring two 

voids, it takes a larger strain for the coalescence to take place and therefore results in higher 

critical coalescence porosity. As shown in Figure 7.13, the retarded intervoid ligament fracture 

due to the large ILD0 enables porosity accumulation to proceed to a higher level. In literature, a 

critical value of porosity is often used to predict the onset of void coalescence [3]. The results in 

Figure 7.14 reveal that this criterion for coalescence appears acceptable with certain ILD0. 

However, the critical porosity, as a macroscopic indicator, is not enough to determine the 

coalescence point for ILD0=2a2. The shape of void and the combination of different void shapes 

must be taken into consideration.   
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7.4. Conclusions 

The dislocation emission and dislocation-void interaction have been studied by means of 

MD simulation to investigate the influence of the interaction between elliptical voids. 

Computation geometries with different void shape combinations and void spacings are applied in 

the simulation. The material response, porosity accumulation and void shape evolution are 

monitored during the continued loading. The main conclusions are drawn below. 

1. The onset strain of dislocation emission is mainly determined by the initial void shape. 

The prolate void within the two-void system effectively reduces the strain required to trigger 

dislocation emission. The pattern of emitted dislocations is not only subject to the initial void 

shape but also ILD0. The dislocation emission of the oblate void is prone to be inhibited and 

disturbed at the side facing its neighbor, while it is the opposite for the prolate void.  

2. Given the same ILD0, the void shape combination highly affects the stress response 

throughout the loading period. In contrast, given the same void shape combination, ILD0 has just 

limited influence on the ultimate stress.  

3. The void shape combination has significant influence on the porosity accumulation as 

well as void shape evolution. The CPC plots reveal that the asymmetric dislocation leads to 

asymmetric void growth, which effectively elevates the porosity level because of more spacing 

and could be more influential than ILD0. As for the void shape evolution, one typical pattern is 

the material transport along the lines with high density of dislocations. The initial void shape 

results in different cleavage pattern growing away from its nearest neighbor. The ILD shrinks 

faster in the initial stage and void coalescence could be considerably delayed by increasing the 

ILD0. The coalescence porosity appears to be an acceptable criterion with the ILD0 under some 
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certain simulation condition concerned here. Notably, the conclusion drawn here is restricted to 

the cases of ILD0 comparable to the initial void size. It is likely that ILD may play a critical role 

when dealing with very thin ILD0 or thin post-loading ILD. Take Figure 7.7 for example, the 

ligaments become infinitesimally thin right before the coalescence points as marked in solid 

circles on the curves. Of all the nine stress curves, five decrease while the rest four increase 

before the complete fracture of the ligament. This implies that the corresponding stress state is 

also an influential factor when it comes to the case of very thin post-loading ILD. Hence, future 

systematic investigation on the void geometry with very thin ILD would be helpful to further 

explore the mechanism regarding void coalescence.  
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Chapter 8: Simulation of Nanoporous Metal with Pores Mimicking 

Crystalline Arrays

 

8.1. Introduction 

Nanoporous materials, as a type of topological, functional nanomaterials, are emerging as 

strong versatile candidates with great potential in diverse applications. The inner morphology of 

nanoporous materials, which is the very feature to distinguish them from traditional bulk 

materials, can be tailored for different needs. For example, bi-continuous nanoporous metal 

foam, whose inner morphology reassembles a forest of nanowires, exhibit a high specific 

strength. The scaling law of its ligament size echoes the dogma in nanoscience ―the smaller, the 

stronger‖. Their high surface-to-volume ratio can provide more active area for reactant 

molecules and improve the electron mobility with solid ligaments [8-10]. Other possible 

applications and advantages include electrochemical sensor, energy conversion/storage system 

[8, 11, 12], exceptional mechanical properties with light weight [6, 13] and radiation resistance 

[6]. Extensive research achievements have been accumulated over the decade for bi-continuous 

nanoporous metal, from experimental investigation to atomistic simulation [121, 168-171]. Some 

recent works have focused on stress analysis of ordered nanoporous geometries such as 

diamond-lattice-arranged ball-and-stick structure [172] or gyroid structure [173] and compared 

them with disordered structures. These ideal inner structures help to examine the optimization of 

stress response and shed light on the novel design of nanoporous structure. Yet, the current 

fabrication technique limits the realistic design to only a few types of highly-ordered structures 

                                                 

 A version of this chapter of this thesis is submitted as Cui, Y.; Chen, Z. Simulation of nanoporous metals under 

compression with pores mimicking crystalline arrays: Towards stronger designs.  
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such as those mimicking typical crystalline arrays [174]. The crystalline-arrays-mimicking 

nanoporous structures are therefore our focus in this report.  

Although the synthesis of ordered nanoporous metals and its rational design can be 

challenged by the physical need to minimize surface area in metal [174], a few advanced 

strategies have been invented to design and tailor pore structures of nanoporous metals [175-

178]. The template-based synthesis of ordered nanoporous materials involves key steps such as 

template-choosing, target precursors-filling and template-removing [174]. Various nanoporous 

metals including Au, Pt, Ni, Cu, Co and Ag have been fabricated via the approach of hard 

template-based synthesis [179]. The structured pores arrangement is attributed to the self-

assembly of the crystal template, which can be repeated both on the surface and throughout the 

bulk [180]. Through the self-assembly technique, nanopores have been structured into 

hexagonally close-packed, face-centered cubic (also referred as cubic close-packed) and body-

centered cubic arrays [181, 182]. Apart from these structures, crystalline array such as the 

diamond structure is one of the most desirable structures to produce photonic crystal since its 

three-dimensional, complete photonic band gap could efficiently diffract light [183]. Indeed, 

nanoporous metals with highly-ordered array and narrow pore-size distribution are of particular 

interest for a wide range of important potential applications [174]. Promisingly, the self-

assembly of patchy particles into diamond structures through molecular mimicry has been 

suggested feasible [184]. Among all the potential advantages of tailored nanoporous structure, 

the focus in this chapter would be the mechanical performance. Even not for load-carrying duty, 

the structural integrity of nanoporous metal is important since the otherwise altered inner 

morphology during its service could affect, for instance, its photonic and catalytic properties. 

During loading, the onset of plasticity is crucial since it has a great impact in the stress response 
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of material and triggers dislocation emission. The yield behavior is utterly important here for two 

reasons. First, despite being a brittle material macroscopically, the bi-continuous, nanoporous 

metal features concentrated plastic deformation at ligaments [185, 186]. In fact, the yield stress 

of bi-continuous, nanoporous metal has been extensively focused and highlighted in both 

experimental and simulation studies [13, 121, 168, 170, 187, 188]. Second, the mechanical test 

of crystalline-arrays-mimicking nanoporous metal has not yet been reported to our best 

knowledge. At the very least, nanoporous metals [129, 162] with random distribution of pores 

have demonstrated the essential role of geometrically necessary dislocations and we have no 

reason to presumably ignore their effect here. For the crystalline-arrays-mimicking nanopores, 

this should rather be a focus to examine. The active sites for dislocation emission such as surface 

steps and defects also play an important role in catalytic activity of nanoporous metals [121, 

189]. Since atomistic simulations of bi-continuous nanoporous metal have shown consistent 

agreement towards experiment in terms of the mechanical behavior [121, 170, 190], it is then 

feasible to study the property of new type of orderly-structured nanoporous material.  

8.2. Simulation Specifications 

Among various metals that can produce nanoporous structure, Cu is here selected as the 

model material to carry out the atomistic simulation. The Large-scale Atomic/Molecular 

Massively Parallel Simulator (LAMMPS) is employed. The Mishin embedded-atom-method 

potential for copper [113] is employed. The simulation box is first filled with FCC copper atoms. 

The nanoporous structure is then created by removing atoms within spherical regions arranged in 

either diamond, BCC, FCC or HCP crystalline array. The resulted porosity is shown in Table 8.1, 

which is close to the estimated porosity (≈78%) of real samples [180]. The pore size of different 

crystalline arrays is made the same (8.315 nm in radius) for all samples. Restricted by the pore 
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size, the overall size of different sample can only be made close but not the same. The difference 

is rather insignificant since boundaries of the simulation box are periodic for all the three 

directions. Once the sample is created, energy minimization is performed by using a conjugate 

gradient algorithm to attain a minimum energy configuration, followed by a relaxation step of 

100 ps at 10 K to reach an equilibrium-state configuration. As shown in Table 8.1, the 

equilibrated sample size is slightly smaller than its as-created size. During the dynamic run, the 

uniaxial compressive load at a strain rate of 1×10
8
 s

-1
 is applied at both ends in the z direction 

with strain-confined lateral boundaries.  

                          

                                  (a) Diamond array                                    (b) BCC array                         

                                                

                                 (c) FCC array                                            (d) HCP array 

Figure 8.1: Nanoporous copper sample for atomistic simulation and finite element simulation 
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Table 8.1: Geometry of Nanoporous Copper Samples for Atomistic Simulation 

Pore 

Arrays 

Initial 

porosity 

Surface/volume 

ratio (nm
-1
) 

As-created sample 

size (nm) 

Equilibrated sample 

size (nm) 

Diamond 77.3% 1.093 52.78×52.78×52.78 52.68×52.67×52.67 

BCC 77.4% 1.785 54.95×54.95×54.95 54.58×54.58×54.58 

FCC 77.6% 1.983 46.27×46.27×46.27 45.94×45.94×45.94 

HCP 77.5% 1.973 52.78×54.59×51.33 52.17×54.25×50.97 

8.3. Results and Discussions 

8.3.1. The Overall Stress Response 
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Figure 8.2: Stress-strain relation for different crystalline arrays of pores with the same initial 

porosity. Colored arrows indicate the start of dislocation emission correspondingly for each 

sample. 
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The stress response of nanoporous metal under compression includes three stages: an almost 

linear elastic regime, a plastic yielding regime and a densification regime [170]. Only the first 

two stages will be focused here. In Figure 8.2, the diamond-array-pore sample resulted in a 

superb peak stress. Its yield stress, at which dislocation emission starts, is about 8 times that of 

the HCP-array-pore sample. Even the BCC-array-pore sample is considerably stronger than the 

two samples with close-packed pores. As is well known, the high stress of diamond is not only 

due to its atomic lattice arrangement but also highly associated with its strong covalent bonds. 

Diamond lattice-mimicked macro-structure is not necessarily granted with high strength. For 

example, the compressive stress of diamond-oriented cellular metal lattices is found weaker than 

that of square-oriented ones [191]. Therefore, size effect is involved in the higher-than-expected 

stress response of diamond-array-pore sample. Elastic moduli of the four samples do not vary 

much. A strong ―yield drop‖ is observed for the diamond-array-pore sample and a weak one for 

the BCC-array-pore sample. The yield stresses of the four samples, at which dislocation emission 

starts, have dramatic difference, which in turn affect the subsequent stress response. 

Understanding of this difference is non-trivial for the ordered nanoporous material. Unlike 

ligament size for the bi-continuous nanoporous structure, the characteristic length here appears 

neither easy to define nor readily to measure. Due to higher porosities than packing factors, pores 

of the four samples already overlap with their 1st neighbors. Thus, the inter-pore ligament 

toward the first neighbor is already below zero, which is certainly not a good indicator for length 

scale. One alternative is perhaps the averaged inter-pore distance over a number of neighboring 

pores. For example, the averaged inter-pore distance with up to 5th neighbors measures 5.88 nm 

for the diamond array pores and 10.78 nm for the HCP array pores. It is true that the shorter one 
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leads to a much higher yield stress, yet this distance is not a rigorous length scale as it concerns 

the number of neighbors in averaging.   

8.3.2. The Onset of Dislocation Emission and the Comparison of Yield Stresses 

As summarized by Farkas et al. [121], the highly concentrated plastic deformation is the 

origin of the macroscopic brittle behavior for nanoporous metal such as nanoporous Au foam 

[185, 186]. Indeed, yield behavior and its scaling law of bi-continuous nanoporous have been hot 

topics over the decade [13, 121, 168, 170, 187, 188]. Predicting yield stress can also help ensure 

an unaltered inner morphology which is important for photonic or catalytic function, given that 

elastic deformation below the yield level is totally recoverable. Another realistic consideration is 

the size limit imposed by MD simulation, which only allows us to capture the localized ductile 

behavior instead of macroscopic brittle behavior [121].  

Next, we examine the atomistic snapshots for dislocation emission. Figure 8.3 shows the 

first ever dislocation emitted from each porous sample. The {1 1 1} slip planes with possible 

twelve slip systems are activated as the primary dislocations for all the samples. This should be 

distinguished from the initial surface misfit due to narrow overlapping of pores. The prevailing 

pattern among all the four samples is that the emission of Shockley partial dislocation starts near 

the intersection of pore surfaces. This is the location where attractions from the two adjacent 

pore surfaces lessen as they are partly canceled by each other. For the diamond-array-pore 

sample, this position resembles the ligament in the bi-continuous porous structure, which is 

known to incubate the localized dislocation emission [121, 170, 190]. For the other three 

samples, those positions appear difficult to resemble either ligaments or nodes of the bi-

continuous counterpart. For stress response, dislocation emission determines the yield stress and 
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the slope of stress curve is reduced immediately. The onset of dislocation emission marks the 

start of plastic region among samples and is essential to the ensuing stress response. To better 

understand this event, a theoretical understanding for simulation results would certainly be 

helpful.   

    

                (a)                                   (b)                              (c)                                (d) 

Figure 8.3: Dislocation emissions at the yield point of four samples via atomistic simulation. 

The post-processing software ATOMVIEWER [85] is employed. Figures (a), (b), (c) and (d) 

belong to the diamond, BCC, FCC and HCP array of pores, respectively.  From up to down show 

firstly the snapshots with full atoms (bulk atoms in dark blue), secondly the cutting views with 
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only surface atoms left (in light blue) and thirdly the local magnification (blue rendered curves 

are Shockley partial dislocations and red atoms represent stacking fault). The corresponding 

strains are 6.24% for (a), 2.80% for (b), 1.40% for (c) and 1.05% for (d). 

For dislocation emission from an isolated void, Lubarda et al. [18, 91] formulated analytical 

solution for the critical stress and was since widely compared and backed by atomistic 

simulations [38, 97, 102, 159, 192]. The Lubarda model [18] assumes an infinite-long (in the 

third direction) dislocation emitted from a 2D circular hole. The key feature of the model is 

perhaps the introduction of the core cutoff distance w=ρb, where ρ is typically within the range 

from 1 to 2. Obviously, the original Lubarda model cannot be directly applied since here involve 

(1) 3D finite-length dislocation and (2) 3D complex porous geometry. With the finite-length 

dislocation and the extreme void-void interaction, analytical elastic solution appears impossible. 

Alternatively, we resort to the mixed analytical/numerical approach. In short, the image stress 

from pore surfaces is numerically computed based on the analytical solution for dislocations. The 

exact dislocation configuration, identical geometries and same periodic boundary conditions to 

the atomistic simulation will be used in the theoretical calculation hereafter. Otherwise, there 

would be a difference in the overall stress by applying symmetric boundary conditions instead of 

periodic boundary conditions, as noted by Roschning and Huber [172]. Similar to pre-defined 

dislocation geometry as assumed in the original Lubarda model [18], the theoretical calculation 

here adopts the pre-defined dislocation geometry directly from atomistic simulation. After all, 

the current theoretical focus is to comprehend why dislocation emits at the observed locations, 

not to probe those locations from scratch.  
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Figure 8.4: 3D Schematic of incipient curved dislocation for the theoretical calculation. 

Figure 8.4 illustrates the 3D dislocation geometry for the theoretical calculation. Following 

the original Lubarda model, the dislocation is assumed to emit at a cutoff distance w away from 

the pore surfaces. Additionally, we also assume that the incipient dislocation is of w in length. 

This certainly makes sense since at atomic scale neither could dislocation be infinite close to 

pore surface nor be infinite short. Those first-ever-appeared dislocations in Figure 8.3 are already 

longer than w in length. To proceed, we first approximate the dislocation curve as arc by 

identifying its corresponding radius and circle center. Then, the arc length decreases as we shrink 

the radius of the circle. Meanwhile, two end points with w away from pore surfaces can be 

determined for any radius. The finalized arc is with such a radius that not only the inner arc is w 

in length but also its two ends are w away from pore surfaces like that depicted in Figure 8.4. 

The slip area S is formed via parallel move of the intersected curves. The finalized dislocation 

geometries along with Burger vectors measured from atomistic simulations are listed in Table 

8.2. Due to the definition of the Burgers vector, the dislocation geometry from atomistic 
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simulation has been mapped back to the undeformed configuration although the difference 

should be trivial since the deformations at the moment are still small.    

Table 8.2: Finalized Dislocation Geometries for the Theoretical Calculation. The Burgers 

Vector b is in the Unit of Lattice Constant. The Parameter ρ is Set as 1 in w=ρb 

 

Two end points of the arc: (x1, y1, z1) and (x2, y2, 

z2) (Å) 

Circle Center of arc (Å) b 

Diamond 145.728, 169.252, 

189.201 

145.252, 170.028, 

188.041 

92.316, 117.866, 176.417 [1 -1 2]/6 

BCC 488.954, 528.842, 

423.791 

489.553, 529.442, 

422.604 

1252.02,-110.636, 484.374 [1 1 -2]/6 

FCC 394.146, 300.732, 

329.316 

393.760, 299.953, 

330.510 

410.789, 285.460, 329.139 [1 1 -2]/6 

HCP 286.505, 327.896, 

259.309 

286.915, 327.050, 

260.448 

334.011, 365.919, 272.941 [1 -1 2]/6 

Once the dislocation geometry is identified, the stress due to dislocation can be evaluated. 

We refer to Mura [59] for formulating the stress induced by dislocation. The stress due to 

dislocation can thus be obtained from the elastic distortion [59] 

,( ) ( ) d ( ) δ( )dis

ij ijkl pqmn kp ql m n k l
S

C C G b n S b n      
 x x x x S x ,                      (8.1)

                  
 

where ijklC  is the elastic tensor, b  is the Burgers vector, ( )kpG x  is the Green function, n  is the 

normal vector of the slip area S and δ( )S x  is the one-dimensional Dirac delta function in the 

normal direction of S. In practice, the sign of this surface norm is made compatible with the 

compressive loading. The function , ( )pqmn ip qjC G x
 
can be deduced from Mura [59]. 
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  (8.2) 

The elastic constants applied in calculation are E=120 GPa and v=0.33 for bulk copper. For 

a complete loop, Eq. (8.1) can be converted into a line integral since the subtraction of plastic 

distortion leads to the Einstein permutation operator and enables the use of Stokes theorem. 

Unfortunately, the dislocations involved here are not complete loops and thus Eq. (8.1) cannot be 

readily converted into such a line integral. This fact also makes the nonsingular dislocation 

theory with stress expressed in line integral [193] not readily applicable here. In this sense, the 

cutoff distance can be viewed as an alternative approach to avoid the singularity regarding 

|    | on the denominator in Eq. (8.2). This form of singularity makes the point-to-surface 

distance better than the point-to-curve distance as the cutoff in a 3D situation (see Figure 8.4). 

The analytical expression ( )dis

ij x  is evaluated by numerical surface integration for every point 

on all the pore surfaces. The numerical integration approach has been validated towards the 

analytical solution [60] for the case of a circular shear loop. Based on 
dis

σ , we can thus 

numerically find the image stress 
image

σ  via the finite element approach by imposing a zero 

traction on all the pore surfaces as 

0dis image   σ n σ n .                                               (8.3) 

Here n  represents the unit normal vector of pore surface. Since Eq. (8.3) only involves the 

surface stress, which is at least w away from the dislocation, the term δ( )k lb n S x  in Eq. (8.1) 

can be omitted. Following Lubarda et al. [18], dislocation emission occurs when the gliding 



191 

 

Peach-Koehler force of the external load balances that of the image stress. The Peach-Koehler 

(P-K) force on the line element of dislocation [57], in a general form, is
 

d ( ) d  F b σ l ,                                                          (8.4) 

where dl  is the directed differential line element of the dislocation. By using the unit radial 

vector re  at the arc center, the total gliding force of the extremely short arc due to the image 

force is approximated as  

( ) dimage

image r
L

F     b σ l e .                                             (8.5) 

The dislocation emission is assumed to occur once the gliding force imageF  due to the image stress 

image
σ  is balanced with the gliding force externalF  due to the externally applied load [18]    

( ) dexternal r
L

F     b σ l e .                                                   (8.6)

 

Here σ* is the stress field due to external load with traction-free condition on inner boundaries. 

The implementation of the above mixed analytical/numerical approach is nontrivial, which 

involves the lengthy summation over dummy indices, creating the complex geometries and 

refining the local mesh for convergence, yet the key here is how to solve Eqs. (8.5,8.6) for the 

critical external load to induce plasticity. Fortunately, Eq. (8.6) is shown to be monotonically 

increasing with the applied external load. Thus, the critical external load is determined by 

gradually increasing the strain (the same fashion as in the atomistic simulation) until its resulted 

gliding force is within a relative error of 1×10-4 towards that of the image stress. At this critical 

external load, the averaged surface stress can be calculated as  

d
z

z
A

A  


  σ S ,                                                     (8.7) 
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where zA is the actual surface area normal to the applied load and zA  is the nominal one. The 

nominal area is applied here since the stress from atomistic simulation is averaged over the 

nominal volume. As seen in Table 8.3, the predicted critical stresses qualitatively agree with the 

atomistic simulations: both rows are in a descending order from the diamond array pores to the 

HCP array pores. However, the gliding forces due to the image stress on the dislocation segment 

are not in such a descending order. For diamond array pores, a lower local gliding force is 

induced given the even higher external load. This could be somehow associated with the stress 

concentration effect as geometrical narrowing and sharper corners are overwhelmingly spotted 

for the FCC and HCP array pores in Figure 8.3. The actual curved dislocations are very close to, 

but not necessarily an arc, which could be a source of discrepancy between the atomistic 

simulation and theoretical calculation.  

Table 8.3: The Critical Stresses for Dislocation Emission Predicted by Classical Dislocation 

Theory Compared with those by Atomistic Simulation. The Gliding P-K Force due to 

Image Stress is Balanced by that due to External Load 

 Diamond BCC FCC HCP 

The gliding P-K force due to image stress (pN) 22.57 34.90 39.92 29.88 

Theoretical critical stresses  
 (MPa) 605.4 507.5 314.4 117.3 

Critical stresses by atomistic simulation (MPa) 735.0 278.2 127.5 95.3 

It is obvious that the integrand in Eq. (8.6) can be converted to 
 b σ n , which is the shear 

component projected in the Burgers vector’s direction. Actually, one can integrate 
 b σ n  for 

the work done to derive the Peach-Koehler force in the first place [57].  
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                                (a) Diamond pores                                            (b) BCC pores                       

 

                       (c) FCC pores                                                 (d) HCP pores 

Figure 8.5: Magnitude of the shear component 
 b σ n on the slip planes by finite element 

simulation, where 


σ  is the stress field induced by remote stress and n  is the unit normal vector 

of slip plane. The z-direction remote stresses in (a-d) are all controlled to 117.3MPa, same to the 

critical stress that initiates dislocation emission for the HCP-array-pore sample. The solid black 

curves inside represent the dislocation segments. 

Figure 8.5 shows this shear component computed by finite element method. The applied 

external stress 117.3MPa to each pore sample in Figure 8.5 is only high enough to trigger 

dislocation emission for the HCP-array-pore sample according to Table 8.3. The ratio of the 

maximum shear component (though on the different slip planes) versus the remote stress is the 
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highest for the HCP-array-pore sample while the lowest for the BCC-array-pore sample. In a 

sense, this ratio reflects the effective local stress concentration on corresponding slip planes. 

Besides, the distribution is also quite different from sample to sample. The Diamond-array-pore 

sample has its dislocation segment away from local maximum shear position while the FCC-

array-pore sample has its dislocation segment near the local maximum position. Relative to the 

P-K force of the image stress, the higher the P-K force from this shear component is, the more 

likely the dislocation emission will be. With this in mind, it appears that the considerable 

discrepancy in this shear component (magnitude & distribution) from external load is more 

dominant in determining the yield stress level than the image stress. 

8.3.3. Evolution of Dislocations, Hardening and Early Densification   

To investigate the ensuing dislocation evolution, the same cutting planes as Figure 8.3 are 

used and the same locations for dislocation initiation are circled in Figures 8.6d, g and j to 

distinguish among multiple dislocations. Figures 8.6a and d correspond to the peak stress point 

for the diamond-array-pore and BCC-array-pore samples, while Figures 8.6b and e are at the 

local minimal stresses after falling from the peak stress. Figure 8.6g corresponds to the local 

maxima after the dislocation emission in its stress response for the FCC-array-pore sample. For 

comparison, the same strain as in Figure 8.6g is used for Figure 8.6j. Figures 8.6c, f, i and l show 

the final morphology at the end of loading for all four samples. A half of the final strain 7.8% is 

adopted in Figures 8.6h and k to view the changing dislocation network. 
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Figure 8.6: Ensuing evolution of dislocation network. Blue, pink, red and green rendered curves 

present Shockley partial, Frank partial, stair-rod partial and perfect dislocations, respectively. 
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Red atoms represent stacking fault atoms while blue atoms represent surface atoms. Diamond-

array-pore specimen in (a-c) is strained to 6.36%, 7.14% and 15.6%, respectively. BCC-array-

pore specimen in (d-f) is strained to 3.83%, 5.30% and 15.6%, respectively. FCC-array-pore 

specimen in (g-i) is strained to 2.80%, 7.80% and 15.6%, respectively. HCP-array-pore specimen 

in (j-l) is strained to 2.80%, 7.80% and 15.6%, respectively. 

In Figure 8.6, Shockley partial dislocations are observed primarily for all four samples. Both 

the diamond-array-pore and BCC-array-pore samples have a rapid growth in dislocation 

population at the beginning of plasticity, similar to the single-void cases [38, 87, 97, 102]. As 

seen in Figures 8.6a and d, only the previous incipient dislocation curve of the diamond-array-

pore has grown in size and even reacted. By comparison, the dislocation population of the other 

three samples increases at a relatively lower rate after the onset of plasticity and there appears no 

growth of those incipient dislocations in Figures 8.6g and j. Instead, newly-born dislocations 

thrive at some other locations. Dislocation reaction is spotted for the diamond-array-pore sample. 

The relative spacious node (an analogy to the bi-continuous counterpart) of its geometry may 

have facilitated such dislocation reaction. The Shockley partial and Frank partial in the inset of 

Figure 8.6a are forming a perfect dislocation. The reaction of Shockley partial and Frank partial 

to form a perfect dislocation is [49] 

 

3
[1 1̅ 1] 

 

6
[2̅ 1̅ 1] 

 

2
[0 1̅ 1],                                               (8.8) 

where a is the lattice constant. The energy criterion does not specify the direction of this reaction 

since apparently     +     =     . The intersection of the stacking fault ribbons in the two 

different slip planes forms a stair-rod partial dislocation as seen in the inset of Figure 8.6b. The 

observed obtuse angle between the two intersected slip planes is related to the resultant vector of 
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the reaction [135]. Since the Burgers vector of the stair-rod partial does not lie in either of the 

two intersected planes, it cannot glide along these planes and thus becomes sessile [135]. This 

sessile arrangement of such dislocations acts as a strong barrier to further gliding. Similar stair-

rod partial is also spotted in Figure 8.6l as the joint of intersected planes stops the lower slip 

plane from moving upward. The formation of sessile stair-rod partial could be a reason for the 

stress to recover from the local minima as in Figure 8.6b, since it can harden the material by 

acting as a barrier to free movement of dislocations [135]. As seen from Figure 8.6, dislocations 

are continuously emitted and absorbed by surfaces of the four nanoporous samples, which results 

in constantly-changing dislocation networks.  

Ruestes et al. [170] reported a significant hardening behavior of bi-continuous Au 

nanoporous foam: an initial power law of 0.5 at the low-strain regime and a later power law of 

1.5 at the high-strain regime. However, for randomly-distributed nanopores with a lower porosity 

(~4%), atomistic simulation [162] showed an extremely short period of hardening right after the 

yield point, which is similar to the single-void cases. It then appears interesting to examine our 

case here, which features orderly-arranged pores yet with high porosity comparable to that of the 

bi-continuous nanoporous foam. The simple Taylor hardening law reads [194] 

1/2

dC K G b     
                                                 

 (8.9) 

where C is a constant, K is a related coefficient, G is the shear modulus of copper, b is the 

magnitude of Burgers vector and ρd is the density of generated primary dislocations after 

dislocation emission. Since our primary dislocations are Shockley partials, b=1.48Å is chosen. 

Typically, K is about 0.25 for a bulk dislocation densities around 10
16

m
-2

 [162, 195]. Since 

nanoporous metal with extreme high porosity is involved along with an ultra-high strain rate 
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applied in the atomistic simulation, we prefer to leave K here as a fitting parameter. Following 

the Ludwik's equation, the constant C in Eq. (8.9) is set as the yield stress to impose the 

continuity. Figure 8.7 shows the simulated hardening behavior versus the Taylor hardening law 

for the samples (except for diamond-array-pore sample). 
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(b) BCC-array pores 
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(c) FCC-array pores 
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(d) HCP-array pores 

Figure 8.7: Flow stress versus accumulated dislocation density since dislocation emission. Since 

the strain increment is even, wider horizontal gap between points indicates faster-pace increase 

in the dislocation density. 
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Overall, the calculated dislocation density here is close to that reported for the bi-continuous 

one (~5×10
16

 m
-2

 at 0.2 compressive strain) [170], but lower than that for the case with sparsely-

distributed voids (~1×10
17

m
-2

 at 0.2 compressive strain) [162]. For the diamond-array-pore 

sample, it only shows a hardening within an extreme short range right after onset of plasticity, 

similar to the case with sparsely-distributed random voids [162]. The stress recovered from the 

local minima around 100 MPa in Figure 8.7a can be attributed to the formation of stair-rod 

partial as seen in Figure 8.6b. For the BCC-array-pore sample, the fitted K is 0.0088, which is 

much smaller than the value 0.25 for bulk materials. Figure 8.7b along with Figure 8.2 show a 

slightly longer strain hardening for the BCC-array pores compared with diamond-array pores. 

However, a stronger strain hardening effect is observed beyond a dislocation density of 5×10
15 

m
-2

 in Figure 8.7b. For the rest two samples, the fitted K equals 0.0523 and 0.0784 respectively, 

which is considerably smaller than the value 0.25 for bulk materials. Their hardening effect is 

throughout the loading period since the onset of plasticity. This difference among four samples 

might be explained by the spacing at nodes (an analogy to the bi-continuous counterpart). The 

close-packing feature of FCC and HCP structure reduces the spacing at nodes and thus limits the 

dislocation motion (also some contribution from formed sessile dislocations). The diamond 

structure, with a much smaller packing factor, leaves more spacing at nodes and is thus much 

harder to limit dislocation motion. The BCC structure, as a non-close-packing structure but with 

considerably higher packing factor, is in between the two.  

Under compression, significant densification (~40%) was observed at a strain of 0.7 for 

nanoporous Au foams by atomistic simulation [170], similar to the classical understanding for 

porous foam [196]. Although the applied maximum strain here is relatively small (primarily to 

capture the yield behavior), early densification is yet observable in Figure 8.8. Porosity of the 
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strained sample is calculated by first meshing the simulation box into small grids (close in size to 

the lattice constant) and then counting the voided volume [192, 197]. Due to the strain-confined 

lateral boundaries, the decrease rate of pore volume fraction here (~4%) over a span of 0.15 

strain is about twice higher than that using a barostat (~4%) over a span of 0.3 strain [121]. 

Figures 8.6c, f, i and l show that pores become oblate at the end of loading, yet without 

collapsing. In Figure 8.8, no strong correlation is found between the dislocation emission and 

porosity level, different from the single-void case [192]. It is speculated that mass transfer is 

restrained due to the missing large dislocation structure as observed in [192], which cannot be 

formed at nodes due to limited spacing. Conservative motion instead of formation of dislocations 

will not contribute to the void shrinkage [57]. Although the generated dislocation networks are 

very different from the bi-continuous counterpart, crystalline-array-mimicking nanoporous metal 

still has its early densification in a similar linear fashion (see Figure 8.8). 
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Figure 8.8: The decrease of porosity due to compression. Porosities after relaxation run is 

slightly smaller than the as-created values. 
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8.4. Concluding Remarks  

The pore arrangement of nanoporous metal can be tailored to largely enhance stress 

response and improve structural integrity. Both the atomistic simulation and the theoretical 

calculation show that the inner structure can dramatically affect the yield stress. As a first 

attempt, our theoretical calculation adopted the dislocation configuration directly from atomistic 

simulation, analogous to the pre-defined dislocation configuration in the original Lubarda model. 

The current effort is focused on why dislocation emits on the observed locations, not to probe 

those locations from scratch. The cutoff distance could be replaced by using nonsingular 

dislocation theory with a core width to be determined, yet some adaption is needed for 

incomplete loops. The gliding component of P-K force due to image stress alone cannot explain 

the sequence of yield stresses for different samples. It appears that shear component due to 

remote stress, which leads to the gliding component of its P-K force is more influential to this 

sequence of yield stresses. Primary dislocations of all samples are Shockley partials. We 

observed the reaction of the Shockley and Frank partials to form a perfect dislocation, though the 

energy criterion does not specify its direction. Besides, the sessile stair-rod partials are formed by 

the intersection of the stacking fault ribbons of different slip planes. The sessile arrangement of 

such dislocations could be a reason for the stress to recover from the local minima for the 

diamond-array case. The calculated dislocation density here is closer to that in the bi-continuous 

nanoporous case than that in the sparsely-distributed-voids case. This difference among four 

samples appears to be related to the spacing at nodes (analogous to the bi-continuous 

counterpart). The hardening effect is found decreasing from the highest packing-factor cases 

(FCC and HCP array) to the lowest packing-factor case (diamond array). In all samples, pores 

become oblate at the end of loading, yet without collapsing. No strong correlation is established 
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between the dislocation emission and porosity level, which is different from the single-void 

cases. Crystalline-array-mimicking nanoporous metal, though inner morphology and dislocation 

networks dissimilar to its bi-continuous counterpart, still has its early densification in a similar 

linear fashion.  

Our attention so far is paid to the orderly-arranged nanoporous structures, which either has 

been fabricated or theoretically feasible to fabricate through self-assembly of template. Yet, more 

flexibility in the design could be offered given the rise of novel synthesis technique in the 

foreseeable future, which may further improve the performance of designed nanoporous 

structures.  
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Chapter 9: Conclusions and Future Perspectives 

9.1. Conclusions 

Our simulations helped uncover several formerly unclear mechanisms regarding the 

nucleation, growth and coalescence of nanovoids. In particular, we believe that the ―shear 

impossibility‖ debate was at least preliminarily settled in light of our MD investigation. This new 

understanding also has potential in improving the existing dislocation-based constitutive models. 

For void nucleation, although the ―toughness enhancement factor‖ indicates that the (1 0 0) 

silicon-copper interface is strongly ―ductile‖, the simulation of spherical-particle-embedded 

geometry suggests that the higher normal stress at the ―polar‖ area of the silicon particle is 

responsible for the initial decohesion in an initially dislocation-free matrix. In terms of atomic 

motion, interfacial debonding features a cluster of atoms with higher-than-average displacement, 

whose displacement vectors form a highly-ordered alignment. The Lubarda model to evaluate 

the critical stress for dislocation emission for void-embedded matrix has been straightforwardly 

generalized to a perfectly-bonded particle case. For smaller particles, the critical stress for 

dislocation emission is closer to that assuming a perfectly-boned particle, while that for larger 

particles is closer to that assuming an embedded void. 

For void growth, initial void shape is found greatly influential to the stress-strain response. 

The transversely-elongated void deteriorates the ultimate strength most. Initial void shape not 

only alters the sites of the dislocation emission, but also determines the stress threshold for 

dislocation emission. The influence of initial porosity is intertwined with the influence of the 

initial void shape on the stress-strain relation. Our MD results demonstrate a stronger effect of 

the void shape on stress-strain relation than that predicted by the FE approach.  
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The mechanical constraint in molecular dynamics simulation has considerable influence on 

the dislocation emission, void size and shape evolution. The difference in dislocation pattern for 

these two cases stems from the different system volume caused by either strain or stress-confined 

lateral boundaries. Compared with the uniaxial-strain cases, the void growth under uniaxial-

stress state is very limited. The different way to constrain the lateral boundaries is responsible for 

the difference in void shape evolution.  

During the transition of void growth from elastic to inelastic fashion, the material transport 

away from the void is induced by shear dislocation loops/curves. The material transport via shear 

dislocation curves/loops is not only possible but also favorable near their loop plane. Whether or 

not forming larger dislocation structures, the shear curves/loops are capable of inducing the local 

material transport. The feasibility of void growth via shear loop/curves has been proved true 

from the MD simulation. The shear loops/curves, whether emitted in a simultaneous or 

sequential fashion, are capable of inducing/affecting the local material transport. The forming of 

larger dislocation structures further facilitates the void growth. The observed frustum-like 

structure features an opening angle, which is different from the one proposed by Lubarda et al. 

[18]. The proposed phenomenological model for void growth by frustum-like structures achieves 

relatively good agreement compared with that from a direct measurement of MD results. This 

new understanding is believed not only to settle the ―shear impossibility‖ debate but also to help 

improve the dislocation-based constitutive models.   

For void coalescence, the onset strain of dislocation emission is found mainly determined 

by the initial ellipticity. The transversely-elongated void within the two-void system effectively 

reduces the strain required to trigger dislocation emission. The pattern of emitted dislocations is 

not only subject to the initial void shape but also intervoid distance. The void shape combination 
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has significant influence on the porosity accumulation as well as void shape evolution. As for the 

void shape evolution, one typical pattern is the material transport along the lines with high 

density of defects. The coalescence porosity appears to be an acceptable criterion for void 

coalescence.  

The pore arrangement of nanoporous metal can be tailored to largely enhance stress 

response and improve structural integrity. Both the atomistic simulation and the theoretical 

calculation show that the inner structure can dramatically affect the yield stress. As a first 

attempt, our theoretical calculation here adopted the dislocation configuration directly from 

atomistic simulation, analogous to the pre-defined dislocation configuration in the original 

Lubarda model. The gliding component of P-K force due to image stress alone cannot explain 

the sequence of yield stresses for different samples. It appears that shear component due to 

remote stress is more influential to this sequence of yield stresses. The calculated dislocation 

density here is closer to the bi-continuous nanoporous case than the sparsely-distributed-voids 

case. This difference among different samples appears related to the spacing at nodes (analogous 

to the bi-continuous counterpart). The hardening effect is found decreasing from the highest 

packing-factor cases (FCC and HCP array) to the lowest packing-factor case (diamond array).  

Main contributions of this work can be summarized as follows. First, we show that both the 

shape and the arrangement of nanovoids have a great impact on the mechanical performance of 

nanoporous metals. Secondly, the ―relative displacement‖ is employed to visualize atom 

movement during interfacial debonding and dislocation formation. Thirdly, the ―shear 

impossibility‖ debate is preliminarily settled. Fourthly, the Lubarda model for critical stress to 

trigger dislocation emission is extended to the case of nanoporous geometry. 
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9.2. Future Perspectives 

9.2.1. Critical Stress for Dislocation Emission  

Modeling the yield stress with the presence of voids in metal is of great importance not only 

to the structural integrity of defected structures but also to the novel design of nanoporous 

structures. Currently, the Lubarda model [18, 91] is being widely used to evaluate the critical 

stress for dislocation emission. Despite being heuristic and concise, it contains several limitations. 

First, it assumes a cylindrical circular void in order to adopt the stress-function approach. In 

reality, bulk material can contain spherical or even ellipsoidal voids. Thus, novel analytical 

approach is required for a fully 3D case regarding the ellipticity of void. Second, the matrix 

material is assumed isotropic in the Lubarda model. Hence, anisotropy should be introduced to 

deal with anisotropic materials. Third, void is assumed isolated in the Lubarda model, which 

makes the model unable to accommodate void clusters or nanoporous structure where void 

interactions play an important role. Sophisticated modifications to the model could therefore be 

introduced in the future although it appears nontrivial.      

9.2.2. Void Shape Effect with More Considerations  

The void shape effect, which has been extensively studied by classical methods such as 

finite element simulation, is recently getting more and more attention in MD simulations. Those 

factors such as grain orientation, polycrystalline matrix, void orientation and alignment, multi-

axis loading and large-scale clustering effect could all have combined influence with void shape 

effect and deserve further investigations.   

9.2.3. Void Growth due to Dislocation Loops 
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Despite over a decade’s study on dislocation-induced void growth, there is still a great need 

to deepen our understanding in this vital topic. The plastic void growth, which is caused by the 

introduction of dislocation loops or their non-conservative motion, is more important since it is 

unrecoverable. Several aspects can be considered in the future. First, further MD effort would 

help to explore the exact shape of the surface cut to create a shear loop, since it concerns the 

mass transferred and is inaccessible to continuum approaches. Second, we currently only observe 

the ―spontaneous‖ formation of dislocation loops from void surface during the dynamic run. As a 

step forward, the ―classical‖ cut-and-paste operation to create an arbitrary dislocation loop [57] 

could be examined by running MD simulation in the same fashion. In doing so, the simulation 

would be rather ―quasi-static‖, whose insights could be valid regardless of strain rate. The third 

to be considered is the mass transfer during continuous formation of multiple dislocation loops.  

9.2.4. Bridging the Gap between MD Results and Continuum Damage Models  

The time scale (depends on strain rate applied) and the size scale are the two major concerns. 

For the time scale, MD simulation can readily provide insights to explosive or projectile impact 

problems. As suggested by MD insights, continuum damage models for the high-strain-rate 

regime could incorporate a stronger role of void shape effect. In general, the strain rate (beyond 

1×10
6
s

-1
) applied in classical MD approach is much higher than that in normal tensile tests. We 

are aware of some adapted methods in developing such as the one constructing the potential 

energy landscape [198]. Some interesting observation in our simulation might have already 

suggested viable, ―effective‖ approaches. For example, the final void shape by imposing 

uniaxial-strain is close to the observation under a spall test, while that by imposing uniaxial-

stress resembles the observation under a normal tensile test. This might provide hints on how to 

carry out ―effective‖ MD simulation under specifically-imposed constraints to mimic that under 
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normal strain rates and explore relevant mechanisms. As for size scale, MD approach nowadays 

can readily simulate large submicron voids. Void of this size are typically found in irradiated 

materials as well as those secondary voids in ductile fracture. Microvoids are currently out of the 

scope of direct MD simulation. However, multi-scale approach which combines full-atom 

modeling and continuum modeling can be explored under such a situation. The key is perhaps a 

physically efficient transition between the multi-scaled zones, especially for capturing the 

migration of dislocations. For nanoporous metals, MD simulation appears an ideal tool for 

localized plastic deformation involving a number of pores. However, it is not yet capable of 

capturing the overall brittle behavior of bi-continuous nanoporous structure. The required 

simulation size to achieve this, which might go beyond micrometers, needs to be further explored.      

9.2.5. Modeling Designed Nanoporous Structures  

Our attention so far is paid to the orderly-arranged nanoporous structures, which either has 

been fabricated or theoretically feasible to fabricate through self-assembly of template. Yet, more 

flexibility in the design could be offered given the rise of novel synthesis technique in the 

foreseeable future, which may further improve the performance of designed nanoporous 

structures. In the generalized Lubarda model for the critical yield stress, the cutoff distance could 

be replaced by using nonsingular dislocation theory with a core width to be determined. Yet, 

some adaption is needed for incomplete loops. Besides, the current effort in Chapter 8 is only 

aimed to comprehend why dislocation emits on the observed locations, not to probe those 

locations from scratch. The future effort could be made to simplify the semi-analytical approach 

and enable probing these possible locations solely from analytical calculations.   
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Appendix A: The Relative Displacement 

1. The Uniaxial Strain Case  

In this appendix, the ―relatively farthest-travelled atoms‖ will be defined. The simulation 

box being stretched as shown in Figure A.1 is with strain-confined lateral boundaries. The 

material transport described by the current and initial frames for the homogeneous elastic 

solution is given as 

1

10

l
x x

l
  , y y  , z z                                                      (A1) 

 

Figure A.1. Schematic of the simulation box under uniaxial stretching 

Here the current configuration is denoted by the Cartesian coordinates ( x , y , z ), while 

the initial configuration is denoted by the Cartesian coordinates (x, y, z). The box length in the x 

direction is increased from 
10l  to 

1l , while the box lengths in the lateral directions are fixed. 

Equation (A1) automatically satisfies the stress equilibrium equation and the boundary 

constraints under an imaginary void-free condition. The corresponding elastic solution with a 
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central void inside will certainly be different. However, the difference is found insignificant once 

away from the void surface as shown in Figure 5.8e. Now we denote the current configuration of 

the atoms dumped by LAMMPS as ( x , y , z ) and the initial configuration as (x, y, z). The 

magnitude of the ―relative displacement‖ of any individual atom could be defined as the 

deviation from its homogeneous elastic displacement as 

   
2

2 21

10

l
d x x y y z z

l

 
        

 

                                      (A2) 

A notable feature of Eq. (A2) is that this relative displacement d does not depend on the 

origin of the coordinates. The dumped file of LAMMPS sets this origin at the corner of the 

simulation box. To calculate the ―absolute‖ atomic displacement as in Figure 5.3a, the 

coordinates ( x , y , z ) are converted with respect to the box center O'  as shown in Figure A.1. 

However, the magnitude of the ―relative displacement‖ under this new origin O'  is still 

unchanged since  

2 22

10 3 31 1 2 2

102 2 2 2 2 2

l l ll l l l
d x x y y z z d

l

              
                            

              

        (A3) 

As implied by Eq. (A3), any origin as long as attached on the simulation box will result in 

the same ―relative displacement‖. The IDs of the atoms are employed to relate the current 

configuration to the initial configuration. Thus, the ―relatively farthest-travelled atoms‖ are 

identified once their ―relative displacement‖ (magnitude) are bigger than the critical length 
critd . 

In this way, the set of the ―relatively farthest-travelled atoms‖ can be identified by their IDs as  

 ( )ID critID d ID d                                                        (A4) 
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2. The Uniaxial Stress Case  

Above is for the uniaxial-strain case. As for the uniaxial-stress case, Eq. (A1) should be 

replaced with 

1 xx x
E

 
   

 
, 1 xv

y y
E

 
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 
, 1 xv

z z
E

 
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 
                           (A5) 

Here 
x  is the normal stress component in the x direction, E is the Young’s modulus and v  

is the Poisson ratio. Due to the fact that it is the box dimensions rather than the stresses are 

directly dumped at each time step, this homogeneous deformation could be expressed more 

conveniently as  

  1

10

l
x x

l
  , 2

20

l
y y

l
  , 3

30

l
z z

l
                                               (A6) 

The x-direction length is increased from 
10l  to 

1l  
while the y-direction and z-direction 

lengths shrink from 
20l  and 

30l to 
2l  and 

3l . Hence, the magnitude of relative displacement of any 

individual atom becomes 

2 2 2

31 2

10 20 30

ll l
d x x y y z z

l l l

     
            

     

                                 (A7) 

Again, any origin as long as attached on the simulation box will make no difference to the 

magnitude of this relative displacement. In a continuum view, the strain corresponding to the 

relative displacement is the one whose trace excludes the dilatation of the simulation box. The 

relative displacement is a compromise to avoid taking derivative of the displacement field 

containing strong discontinuity.  
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