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Abstract

.In “charged-current deep inelastic scattering” (CC-DIS), an incoming neutrino scat-

ters off a quark in the nucleus through the exchange of a weak boson and produces

an outgoing charged lepton. However, it can interact with an initial state strange

quark and produce a charm quark, which can decay into a lepton. Thus, a primary

lepton from the first interaction and a secondary lepton from the charm decays can

produce two charged high-energy leptons in the final state. If the charm decays into

a muon, this process is called “charm muon production” (CMP). There is another

sub-dominant process called “neutrino trident production” (NTP) which can produce

two charged leptons and a neutral lepton by exchanging a photon and a weak boson.

For this work, we only analyze the channels in which the outgoing leptons are muons.

The IceCube detector is a 1km3 ice Cherenkov neutrino observatory which has 10

years’ worth of collected data. We look for dimuon signals at IceCube.
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Chapter 1

Introduction

Neutrinos are fundamental Standard Model (SM) particles. They are leptons and

have no net charge. Within the SM framework, they only interact with matter via

the weak force through the exchange of bosons W (charged-currents) and Z (neutral

currents). There are three neutrino flavors namely the electron, muon, and tau neutri-

nos and the corresponding anti-neutrinos. According to the minimal SM, neutrinos

are massless and the theory cannot accommodate neutrino oscillations. However,

with the discovery of neutrino oscillations [1, 2], we now know that the neutrinos are

not massless and SM is an incomplete theory. They are therefore very interesting

particles to study as they have opened the window into physics beyond the Standard

Model (BSM) [3].

The dominant neutrino-nucleon interaction above 100 GeV is Deep Inelastic Scat-

tering (DIS) [4] in which an incoming neutrino scatters off a quark in the nucleon by

exchanging a weak boson, producing an outgoing lepton accompanied by a hadron

shower. Two sub-dominant processes are expected to produce two high energy

charged leptons in the final state. The first one “Charm Muon Production” (CMP) is

a subset of DIS where a charmed meson is produced, which can decay into a charged

lepton [5]. The second one involves the exchange of a weak boson and a photon,

resulting in a final state with two charged leptons and a neutrino, in a process known

as “Neutrino Trident Production” (NTP) [6].
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If an excess of these events is observed above the SM prediction, it can serve as an

indicator of BSM physics [7, 8]. Since IceCube Neutrino Observatory [9] has detected

thousands of high-energy neutrinos above 100 GeV and has collected over 10 years

of data taking [10], it is an excellent candidate for their search. For the purposes

of this work, we consider the channel where the outgoing leptons are muons. Since

muons leave a track-like Cherenkov signature in IceCube [11], our central goal is to

search for double-track events (from two muons or dimuons) and separate them from

single-track events (from a single muon). In this work, we perform this classification

using decision trees [12].

We have divided this thesis into six parts. We introduce the processes: DIS,

NTP, and CMP in the second chapter and motivate the readers to the importance

of the dimuon search as a probe into BSM physics. In the next part, we talk about

the IceCube neutrino observatory and discuss its properties pertinent to our dimuon

analysis. This leads to an explanation of the event topology of a trident/charm

dimuon event against the single muon event in chapter 4. We present the 10-year NTP

and CMP event rate in IceCube. It then leads to the question of how to classify these

2 categories of events. This brings us to the next chapter where we design features

that can tell apart signals from the dominant background. This procedure albeit is

insufficient. We use boosted decision trees (BDT) in chapter 6 that can elevate the

signal/background discrimination capability by pruning the higher-dimensional input

feature space. We also decide on final analysis cuts on the BDT score distributions

based on “Approximate Median Significance” (AMS) [13], where we try to essentially

maximize the Signal/
√
Background. In the final chapter, we give a brief summary of

our work and address possible future research prospects.
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Chapter 2

Physics Background

In this work, we seek to use neutrino-nucleus interactions at the incoming neutrino

energy range of [100GeV − 100TeV] to probe the search for a dimuon signal at the

IceCube detector. In a dimuon signal, these interactions output two muons in the

final state. There are two processes namely the neutrino tridents and charm muon

production events that can produce two muons. In this chapter, we discuss their un-

derlying physics and the Beyond Standard Model (BSM) motivation behind dimuons’

search.

2.1 Deep Inelastic Scattering (DIS)

When a highly energetic neutrino interacts with a nucleus (target), it can resolve its

structure by exchanging a vector boson with a quark in the nucleon [14]. This vector

boson can be a charge or W-boson which forms a charged current interaction (CC)

or a Z-boson which is a neutral current interaction (NC). This is known as ”Deep

Inelastic Scattering” [15] as shown in Fig. (2.1). These interactions are given as

να +N → να +X (NC-DIS)

να +N → lα +X (CC-DIS)

where α = {e, µ, τ} and l is a lepton. In the SM, lepton number conservation neces-

sitates that the outgoing lepton must be of the same flavor as that of the incoming

3



Figure 2.1: Feynman diagram for DIS. If the mediator is a Z-boson, then this repre-
sents NC-DIS and if it is a W-boson, then it is a CC-DIS interaction.

neutrino. In addition, lepton universality [16] states that the cross-section is identical

for all flavors if we take massless leptons. Particularly, we will be looking at only the

channel where the incoming particle is a muon neutrino(anti-neutrino) and thus the

outgoing lepton is a muon. We call this a ‘single-muon’ event. The emission of a

single muon is the dominant process during muon neutrino interaction with matter.

However, there is another process in which the neutrino interaction with an initial

state quark can produce a secondary muon after hadronization.

2.1.1 Charm Muon Production (CMP)

In a charm muon production event [17],

νµ + q1 → µ− + q2 → µ− + µ+ + νµ +X (2.1)

an incoming muon neutrino interacts with a quark q1 in the nucleon and produces

a muon µ− and an outgoing quark q2 at the hard leptonic interaction vertex. This

outgoing quark q2, post hadronization [18] can then decay into a second muon µ+ and

a muon neutrino. Here, X indicates the hadronic shower. This is the largest yield

dimuon process [19, 20] since it is a subset of the CC-DIS. In the case of an incoming

muon anti-neutrino, we take the CP-transform. An incoming tau neutrino also has

the potential to produce dimuons, in which the intermediate tau lepton decays into

4



Figure 2.2: Feynman diagram for CMP: In a CMP event, the incoming neutrino
interacts with the d/s/b quark and produces an outgoing charm quark. The above
diagram is the dominant one out of these three possible interactions due to the maxi-
mum charm-strange quark mixing as determined through the CKM matrix [22]. Due
to hadronization, charm quark outputs a D meson which decays into the secondary
muon. For more information, refer [23].

a muon. However, its corresponding event rate is suppressed due to low tau neutrino

flux [21]. The Feynman diagram for CMP is shown in Fig. (2.2). For every 100

charm decays, 10 times a secondary muon is produced semi-leptonically [5]. Due to

large Lorentz boosts, the angular separation or the “opening angle” between the two

muons is quite small. For an incoming 1PeV neutrino energy, most CMP events have

an angular separation close to 0.02◦ [5]. This suggests that the two muons are almost

collinear. The authors in [5] calculated that in order for a neutrino telescope like

IceCube to detect dimuons, the opening angle must be greater than 0.28◦. However,

there is another sub-dominant process named neutrino tridents that can also produce

dimuons with larger opening angles. This is what we study next.

2.2 Neutrino Trident Production (NTP)

NTP [24] is the creation of two outgoing charged leptons with an accompanying

outgoing neutrino (anti-neutrino) and a recoiling nucleus during the interaction of an
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Figure 2.3: Cross-section σ against incoming neutrino energy Eν : This plot contains
all the possible processes which can produce dimuons. The dominant process of
interest at energies between 10TeV− 1PeV is the νµ+ s → µ+ c, whose cross-section
σ ≈ 0.2pb. This plot is produced for the channels in which the dimuon opening angle
∆θµµ is greater than 0.3◦. Figure from [5].
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incoming neutrino (anti-neutrino) with a nucleus. Since three leptons are produced,

hence the name “trident production”. A trident event follows

να +N → νβ + l−1 + l+2 +X (2.2)

where α, β can be again any of the three leptonic flavors and l−1 , l
+
2 are the oppositely

charged leptons. We will only study the channel where the incoming particle is a muon

neutrino(anti-neutrino) and the outgoing leptons are two muons (µ±) and a muon

neutrino(anti-neutrino). This constitutes a ’double-muon’ or ’dimuon’ event. This

is a subdominant electroweak process [25]. It is subdominant due to the addition of

more vertices since each ’weak’ vertex suppresses the cross section by O(10−5)GeV−2

[26]. The trident Feynman diagrams are illustrated in Fig. (2.4). One can observe

that the hadronic coupling is mediated by a virtual photon. Diagrams (Fig. (2.4-d,e))

have ’on-mass shell’ s-channel W bosons which are activated when the CM energy of

the incoming neutrino and nucleus combined (> 6TeV) is higher than the W boson’s

mass [25]. This increases the trident cross section at higher neutrino energies. In NTP

events, the two muons are produced at the site of primary interaction and depart in

two different directions, thus having trident events with larger opening angles [24].

The authors in [27] determined that for the IceCube to really detect dimuon events,

their angular separation should be close to 8◦. For the IceCube detector, the opening

angle distribution for NTP events is discussed in Sec. (4.4.1).

2.2.1 Differential and Total Cross-Section

There are three different regimes of operation namely ’coherent’, ’diffractive’, and

’inelastic’ where the photon interacts with the entire nucleus, a nucleon, and a quark

respectively [28]. Coherent (N=X) and diffractive(N ̸=X) regimes are elastic on the

nucleus and nucleon, described by nuclear and nucleon form factors respectively [28].

In order to make MC simulations of trident events, we need information about their

differential and total cross-sections. To evaluate them, cross-sections from each regime

7



(a) (b) (c)

(d) (e)

Figure 2.4: Feynman diagrams for NTP. (a),(d),(e) represent the CC-trident events
and (b),(f) are NC-trident events. In (d) and (e), there is an s-channel on-shell W-
boson which decays into a muon and neutrino. These enhance the trident event rate
when Eν ∼ 3 TeV.

must be added together. EPA or Weizsäcker–Williams Approximation [29, 30] is of-

ten employed in this regard. It approximates the virtual photon to be on-shell. This

suggests that these are real photons which simplify the calculations drastically, as

then there is no need to account for the photon’s longitudinal polarization. However,

the authors [24] showed that this technique overestimates the cross-section by roughly

200%. Nonetheless, the kinematics of the outgoing leptons remains unaffected [25].

The differential cross-section is given in [24]. To calculate the same for the inelastic
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Figure 2.5: Total cross-section for single muons and dimuons against incoming neu-
trino energy. In the energy range [10 GeV - 3 TeV], the ordinary CC-DIS cross-section
is roughly 10000 orders of magnitude higher than the trident cross-section. At roughly
3 TeV range, trident cross-section jumps due to the resonance effect from the on-shell
W-boson channels. Beyond 100 TeV, the trident cross-section starts to decrease. Fig-
ure from [24].

regime, both the photon and quark Parton-distribution functions (PDF) are used

[31]. The anti-neutrino cross-sections can also be easily obtained by taking CP trans-

formations. The expression for total cross-section is given in [31]. Now, the total

cross-sections for single muons and dimuons are given in Fig. (2.5). For a particular

neutrino energy Eν , the photon momentum transfer Q-distribution is deduced from

the differential cross-section. Then, the photon energy is sampled from these distri-

butions which is used to simulate the kinematics of outgoing muons. This work was

done by Sourav Sarkar, a PhD student in our group.

Thus, to finally conclude, we will be studying two types of processes that can

produce dimuons in this work-NTP and CMP. But, this begs the question: Why is

their search so important?
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2.3 Beyond Standard Model (BSM) Motivation

0.01 0.1 1 10 102 103

10-3

0.01

0.1

1

mZ ' HGeVL

g '

CCFR

Hg-2LΜ ±2Σ

Z®4Μ�LHC

Figure 2.6: Z
′
boson parameter space. There are three regions here: grey contour with

solid line is excluded by CCFR measurement of NTP using Lµ−Lτ model at 95% CL.
The area between 4GeV < mZ′ < 60GeV is also excluded from the LHC measurement
of Z boson decay to four leptons. The purple parameter space is the current favorable
space for Z

′
boson search as highlighted by muon (g-2) discrepancy. This space is cut

off at 400MeV mass. CCFR’s measurement underscores the importance of looking
for trident events in getting tighter constraints on the parameter space. Figure from
[31].

In Ch. 1, we briefly mentioned how understanding the arcane sector of neutrinos

is crucial to demystify things that cannot be currently explained by SM like the

origin of neutrino masses, matter-antimatter asymmetry, etc. Testing the current

BSM theories in the neutrino sector is the right step in that direction. One such

theory is the “Leptophilic Z
′
model” [8]. It is a BSM scattering process in which an

incoming neutrino interacts with a hadron through the exchange of a BSM mediator

Z
′
. According to this model, one of the possible final output states contains three

leptons (2 charged and one neutral), thus leaving a signature similar to that of a
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neutrino trident event in the SM. If this is true, then it can enhance the event rate.

Thus, dimuon events are a powerful probe into BSM physics. If we find out an excess

of dimuon events above the SM prediction, it can serve as an indicator of BSM theories

like the Z
′
model. It is also an electroweak test of SM. In general, in BSM models,

the W and Z mediators in SM are replaced by vector Z
′
and scalar S

′
bosons.

The CCFR collaboration led by scientists from Chicago, Columbia, Fermilab and

Rochester universities performed neutrino scattering experiments at the former Fermi

National Accelerator Laboratory (FNAL). In one interesting study [32], they put

constraints on the parameter space of mass mZ′ and coupling strength g
′
by probing

BSM theories of trident events as shown in Fig. (2.6). Similar to the leptophilic

model, in the Lµ − Lτ model, there are additional mediators like Z
′
in neutrino-

hadron interactions. They were able to exclude a large area of the mass space of

these mediators. However, CMP events are a dominant background to the trident

search. Since CMP is a subset of CCDIS, its event rate is 100 orders of magnitude

higher than the NTP event rate [23].

Thus, for this study, we investigate dimuons from both NTP and CMP events.

The next question is where we can find dimuon events, especially in the high neu-

trino energy regime. The current collider experiments do not reach neutrino energies

beyond GeV. However, neutrino telescopes like IceCube, Antares, etc. have detected

high-energy neutrinos. In particular, IceCube [9] has 10 years of collected data-taking

and 1km3 detector volume [11], making it an excellent candidate for trident search.

Our task is then to identify dimuon events in the detector and separate them from

the single muons. In the next chapter, we will study the IceCube detector.
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Chapter 3

The IceCube Neutrino Observatory

In this chapter, we will look at the IceCube detector’s topology, ice properties, dig-

ital system and DAQ module, track reconstructions, and trident event simulation.

The guiding principle behind the working of IceCube is the detection of Cherenkov

light from charged particles passing through its volume. IceCube thus detects neu-

trinos indirectly through the Cherenkov effect. We now start by understanding what

Cherenkov radiation is.

3.1 Cherenkov Radiation

Figure 3.1: Geometry of Cherenkov cone emitted at angle θch. Here, t represents the
time.

When a charged particle travels with a speed v faster than the phase [33] velocity

of light in a given medium (ice in our case), Cherenkov radiation is produced (See

Fig. (3.1)). First discovered by Pavel Cherenkov [34] in 1934, this process is similar
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to the creation of a sonic boom when jets travel faster than the speed of sound in

the air. The medium’s atoms are polarized as the charged particle traverses through

it, resulting in the formation of a spherical wavefront as the atoms relax [35]. As

the charged particle’s velocity exceeds the light’s phase velocity in the medium, con-

structive interference of light takes place which leads to a cone-like ’shock-front’ going

away from the particle’s trajectory at an opening angle distribution θch given as

θch = cos−1
(︂ c

vn

)︂
(3.1)

where n is the wavelength-dependent refractive index and c is the speed of light in

vacuum. For ultra-relativistic charged particles (v ≈ c) passing through ice (nice =

1.33), θch ≈ 41◦ [35].

The intensity of Cherenkov light is inversely proportional to its wavelength. This

means that most photons produced are in UV and visible light (blue-green) regions.

A muon emits roughly 250 photons per cm [36]. It has a roughly fixed θch in ice

until it decays. It loses ∼ 0.23 GeV energy per meter [37]. All Cherenkov detectors

employ optical sensors which can detect Cherenkov radiation and based on timing

information of the received radiation and location of the sensors, reconstruct particle

trajectories. We will now analyze one such detector named IceCube.

3.2 The Detector

The IceCube Neutrino Observatory is a Cherenkov detector with ice as an active

medium, situated near the Amundsen-Scott South Pole Station in Antarctica. With

an instrumented volume of 1km3 [10], it has shown great potential in mapping the

sky in the sector of high-energy neutrinos. Its detection of the neutrinos in the energy

range TeV-PeV [38] has been the herald of neutrino astrophysics. For this purpose,

it uses photomultiplier tubes which are a part of Digital Optical Modules (DOMs).

In the following sections, we will understand its working relevant to the search for

dimuon events.
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Figure 3.2: Layout of the IceCube detector. Figure from [10]

3.2.1 Detector

The IceCube detector is composed of two main parts: A km2 surface detector called

IceTop which is an air Cherenkov detector used for observation of cosmic rays and

veto abilities and a km3 sized IceCube In-Ice array which is basically a neutrino and

muon detector as shown in Fig. (3.2). The main instrumented volume is used for the

detection of high-energy neutrinos with an energy threshold of 100 GeV. It also hosts

a densely packed sub-detector called DeepCore which can detect low-energy neutrinos

starting from 10 GeV. In this work, our focus will be only on the In-Ice array.
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3.2.2 In-Ice Array

The main detector at a depth of 1450-2450 m below the surface houses 86 long cables

called strings. Each string hosts 60 DOMs and the detector has a total of 5160 DOMs.

78 out of 86 strings are distributed in a hexagonal pattern with a mean lateral spacing

of 125m. The vertical spacing of two consecutive DOMs on these strings is 17m. The

remainder 8 strings form the DeepCore. DeepCore is optimized for the detection of

low-energy neutrinos, DOMs on these strings are arranged in a regular pattern, and

have a vertical spacing of 7m and a mean lateral spacing of 70m. DOMs in Deepcore

have a higher quantum efficiency (about 35% higher) than the DOMs in the first 78

strings [37].

The lateral spacing has an important implication for our study. Detector top-view

can be seen in Fig. (5.1). Light from dimuons having poor separation will not be

resolvable and will mimic the light distribution of a single muon. If a good quality

dimuon event on the other hand has a separation of the order of inter-string distance

when the dimuons exit the detector, it might be classified as a dimuon event. Another

parameter that can affect the analysis is the scattering and absorption of photons in

ice.

3.2.3 Ice Properties

The ice can be modeled in stratified homogeneous layers with similar optical proper-

ties [39]. However, the presence of impurities (scatters) in these layers can significantly

change their optical behavior. There are two main phenomena of interest: scattering

and absorption. Photons can interact with multiple scatters and get either scattered

or completely absorbed and lost. When it comes to scattering, the effective length

λeff [40] that a photon travels is given as

λeff =
λa

1− ⟨cos θ⟩
(3.2)
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where λa is the absolute scattering length which measures the mean distance traveled

before encountering a scatter and ⟨cos θ⟩ measures the average scattering direction.

Calculations [39] show that ⟨cos θ⟩ ≈ 0.94, indicating largely forward scattering [41].

Similarly, the absorption length is the average length that a photon travels before

getting absorbed. This depends heavily on the debris profile around that photon.

The next question is then how these photons are detected.

3.2.4 Digital Optical Module (DOM)

Figure 3.3: A schematic view of an IceCube Digital Optical Module. Figure from
[37].

DOM as shown in Fig. (3.3) is the data collection and processing repository of

IceCube. It hosts a large 10-inch diameter R7081-02 PMT designed by Hamamatsu

Photonics [42]. Photons that hit the DOM are detected by the PMT. Each PMT
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comprises a photo-cathode, an anode, and 10 dynodes. When a photon hits the

cathode at ground, it transfers its energy to an electron in its material which is

emitted and called a photoelectron (PE). It accelerates towards the dynodes which

are at higher positive potential. When it hits the first dynode, a secondary shower

of electrons is created which accelerates toward the subsequent dynodes. Finally, a

big number of electrons reach the anode at the end. The resulting gain is of the

order of 107 [42]. These electrons constitute an electric current which is a measure of

the intensity of the light. The distribution of voltage produced vs. time is called a

waveform. Investigation of these waveforms helps in particle reconstruction.

3.3 Data Acquisition (DAQ)

The main goal of DAQ [43] is to capture the waveform and timing information of

detected photons with high accuracy. Whenever a photon is detected in a DOM, it

stores a timestamp and waveform information of a given event. This information is

collected over a time window of size 6.4µs.

There are two digitizers on the mainboard namely the Analog Transient Waveform

Digitizer (ATWD) and Fast Analog-to-Digital Converter (FADC). ATWD, stores the

first ∼ 420ns of the hit event by binning the waveform into 128 samples of 3.3ns. This

is called an ’ATWD’ waveform. It has three amplification channels (x 16, x 2, x 0.25)

to cover the dynamic range at the readout. Each channel has a 10-bit resolution and

outputs an integer voltage between 0 and 1024. First, x 16 amplification is applied

to the signal. If the signal is higher than the upper threshold i.e. it overflows the

ATWD, then the next amplification x 2 is used and so on. The purpose of FADC is to

digitize longer waveforms i.e. used for later detection of Cherenkov light. It captures

the information for a time of 6.4µs and has a coarser binning of 256 samples, each of

size 25ns. ATWD and FADC work in conjunction with each other.

If a given DOM detects a signal above the threshold, it then sends this information

to the two nearest-neighbor DOMs above and below on the same string. If any of the
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four also detected a signal in a time window of ±1µs, then the hits are characterized

as Hard Local Coincidence (HLC). If a signal in a DOM only crossed the threshold

and there are no coincident DOMs, then the hits are tagged as Soft Local Coincidence

(SLC). The hits in the case of SLC are digitized as three bins of 25ns each. For more

details on DAQ, the reader can refer [43].

3.4 Event Simulation

In this section, we discuss how the particles are created and propagated through ice,

how photons are propagated and DOMs’ respond to them.

3.4.1 Event Generation

A general-purpose trident event generator was developed by Sourav Sarkar, a Ph.D.

student in our group. It is used to make MC datasets for trident search analysis.

It makes use of the trident cross-section and produces outgoing leptons by drawing

photon energy samples from photon momentum transfer distribution. We also make

use of the CCDIS and CMP event datasets generated by him.

3.4.2 Particle and Photon Propagation and Detector Re-
sponse Simulation

Once the final states of muons are calculated, they are then propagated through

the ice using the program named PROPOSAL (PRopagator with Optimal Precision

and Optimized Speed for All Leptons) [44]. It accounts for the following energy loss

processes of the particles: ionization, Bremsstrahlung, pair-production, and nuclear

interaction. It separates the continuous losses like ionization from the rest of the

”stochastic” losses. In the case of stochastic losses, it keeps track of the type and

location of energy deposit for use during photon propagation. Photons are propagated

via CLSim(CL for the OpenCL heterogeneous platform framework) based on optical

transmission coefficients. If a photon created a pulse in a DOM, the detector response
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is triggered. Detector Response begins by initially looking into which photons hit the

DOM. Then, the DOM’s triggering and digitization process is activated. Eventually,

these hits are combined to give an event that can be used for further analysis.
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Chapter 4

DiMuon Event Topology

In this chapter, we talk about the dimuon signatures at the IceCube detector. We

also discuss key dimuon properties like dimuon classes, opening angle, and energy

asymmetry distributions. We give the SM 10-year event-rate expectations of NTP

and CMP events. Finally, we decide which track reconstruction algorithm to use for

our analysis.

4.1 Particle Signatures at IceCube

Event signatures in the detector are dependent on the nature of the traversing particle.

If it is an electron, it interacts with the ice due to its low mass and loses its energy

rapidly in the form of electromagnetic showers. The signature is a nearly isotropic

spherical distribution of light called a cascade (See Fig. (4.1a)). A cascade has poor

direction resolution. A muon, on the other hand, being heavy can travel through

the entire detector. This leaves a nice track-like signature [45], as shown in Fig.

(4.1b). Tracks have excellent directional reconstruction (angular resolution to less

than a degree [45]) as compared to their cascade counterparts. Finally, a tau neutrino

produces a tau lepton on its interaction with ice which in turn produces a hadronic

shower resulting in a light burst, as tau is less stable than muon. As it decays,

electrons are produced which leave their own shower almost immediately. This often

leaves a short faint cascade. This is the ’double-bang’ characteristic of a tau neutrino.
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(a) An electron cascade (b) A muon track

Figure 4.1: Event topologies for different leptons. Figure from [46].

In an NTP process, there are multiple channels possible depending on the flavor of

outgoing leptons as can be seen in Fig. (2.5). The reason we chose only the channel

where the muons are outgoing leptons is because of their unique track-like signature

with a better directional resolution. It is thus easier to classify single muons from

double muons rather than single electrons(taus) from double electrons(taus) or their

mixture.

4.2 Event Classes

In this section, we discuss various event classes of dimuon events. Before that, we

introduce here two important spatial characteristics of an event namely the track

length and track separation.

4.2.1 Track Length

Track length (dlen) is defined as the length of the track traversed by a muon inside

the detector. For a dimuon event, we present another quantity namely the minimum

track length (dlen,min) which is the smaller track length of the two muons.
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4.2.2 Track Separation

Track Separation (dsep) is defined as the maximum separation between the two muon

tracks. It can be divided into four cases based on the muon’s decay length.

• Case-I: When both the muons decay inside the detector.

• Case-II: When one muon decays inside the detector and one traverses the entire

detector.

• Case-III: When both muons travel through the detector and decay outside it.

• Case-IV: When both muons or one of the two muons decay even before entering

the detector. These events in the simulation are discarded and not considered

for our analysis. Additionally in this case, dlen,min = 0.

We are now in the capacity to discuss the event classes.

4.2.3 Class Definitions

(a) Class-A events (b) Class-B events (c) Class-C events

Figure 4.2: Classes of dimuon events. In class-A events, dimuons have track separa-
tion of atleast 25 m and both track lengths are atleast 200m. Class-B events ensure
that both track lengths are greater than 200m. Lastly, in class-C events, track length
of at least any one of the muons is less than 200 m.

Their properties are discussed in fig. (4.2). Class-C events represent the ‘worst-

quality’ dimuon events in the sense that their light distribution is irresolvable from

that of a single muon. The bulk of all dimuon events belongs to class C. Class-B

events, ensuring that both track lengths are at least 200 m, can be resolved if there
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Figure 4.3: Expected event rate (ER) of the single muon, trident, and charm muon
events in 10 years post Type-1 cuts as discussed in Sec. (5.1).

is sufficient track separation. The ‘best-quality’ events are class-A events. They are

a subset of the class-B events.

4.3 Event Rate

In this section, we look at the expected event rate of CCDIS, NTP, and CMP events

in IceCube for 10 years as a function of true neutrino energy Eν (Fig. (4.3)). We

can see that the NTP event rate is significantly suppressed as compared to CMP.

The expected event rate is discussed in Table (4.1). As a result, in this thesis, we

essentially look for dimuons in the detector which can come from either NTP or CMP.
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Type Total Event Rate (yr−1)

Tridents 9.62

Charm Dimuons 3924.86

Table 4.1: Total number of expected dimuon events in 10 years post Type-1 cuts as
discussed in Sec. (5.1).

4.4 Dimuon Properties

We now study additional dimuon properties important for our analysis.

4.4.1 Opening Angle

The opening angle is the angle between the dimuons at the site of primary vertex

interaction, where they are created. It is evident from Fig. (4.4a) that most dimuon

events have a small opening angle.

4.4.2 Energy Asymmetry

Energy asymmetry Easymm for a dimuon event is given as

Easymm =
|Eµ+ − Eµ− |
Eµ+ + Eµ−

(4.1)

where Eµ+ and Eµ− are the respective energies of µ+ and µ−. We find that the energy

distribution is highly asymmetrical i.e. one of the muons carries most of the parent

neutrino energy.This indicates that the light distribution in a dimuon event will not

necessarily be symmetric around the two muons. Rather, for some class-C events, it

will be almost impossible to classify them as a dimuon event.

4.5 Track Reconstruction

The following track reconstruction algorithms are based on the hypothesis that a

single particle is passing through the detector.

24



0 10 20 30 40
Opening Angle (degrees)

10 5

10 4

10 3

10 2

10 1

No
rm

al
ize

d 
Ev

en
t R

at
e

Trident DiMuons
Charm DiMuons

(a) Normalized Event Rate vs. Opening
Angle

0.0 0.2 0.4 0.6 0.8 1.0
Energy Asymmetry

100

101

No
rm

al
ize

d 
Ev

en
t R

at
e

DiMuons

(b) Normalized Event Rate vs. Energy
Asymmetry

Figure 4.4: Dimuon Properties: We see that the charm dimuons are mostly collinear,
whereas there are trident dimuons with higher opening angle > 20◦. In the energy asym-
metry plot, we see that most of the parent energy is transferred to one of the two muons
and hence, energy asymmetry is high.

4.5.1 LineFit

LineFit [47] is a first-guess analytic algorithm for trajectory reconstruction. It ignores

the optical transmission properties of ice and the geometry of the Cherenkov cone. It

minimizes the difference squared between the positions of hit DOMs and a hypothet-

ical track. Let r⃗0 and v⃗ be the position of the particle at time t0 and velocity vector

at time ti respectively. The particle’s position r⃗ at time ti is therefore r⃗ = r⃗0 + v⃗ti.

If a hit DOM has a position r⃗i at this time, then the minimization procedure gives

r⃗0 = ⟨r⃗i⟩ − v⃗⟨ti⟩

v⃗ =
⟨r⃗iti⟩ − ⟨r⃗i⟩⟨ti⟩
⟨t2i ⟩ − ⟨ti⟩2

where the average ⟨⟩ is carried over all the hit DOMs in that event. These six param-

eters (r⃗0, v⃗) give the complete information about an initial vertex and the direction of

the charged particle. This algorithm assumes magnitude |v⃗| as speed of light for sim-

plicity. It serves as an initial seed for other sophisticated techniques that we discuss

next.
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4.5.2 SPEFit and MPEFit

SpeFit [48] is a non-deterministic algorithm that is based on the maximization of

the likelihood function. It takes into account the time of the first hit in a DOM,

Cherenkov’s cone geometry, and the optical properties of ice and build it into the

likelihood function. The likelihood L is given as

L(x⃗, a⃗) =
∏︂
i

p(xi|a⃗) (4.2)

where p is the probability distribution function of observing xi given input track

parameters a⃗. For a muon, these input parameters are its starting energy, direction,

time, and vertex position. The initial guess from LineFit helps in escaping the multiple

local maxima of L by narrowing the search space and only landing in the global

maximum. For xi, a quantity called time residual is used. Time residual is the

difference between the arrival time of a hit and the time it would have taken for the

light to hit the DOM directly without getting scattered. SPEFit tries to minimize

the time residual for all hits. The probability distribution is provided by the Pandel

function.

This single photo-electron (SPE) method gives an infinite straight track as an

output. MPEFit (Multi Photo-electron Fit) is an extension of SPEFit [48], which

takes into consideration all the photon arrival times and not just the first photon hit.

It also assumes that the first photon hit is most possibly a direct hit with ∼ 0 value

of time residual for that hit. For very bright events which leave a cornucopia of light

in the detector, these algorithms have poor trajectory reconstruction.

4.5.3 Selected Track Reconstruction

In this section, we decide which track reconstruction algorithm to use for our analysis.

For a dimuon event, we evaluate a misreconstruction parameter θmisreco which is the

angle between the average direction of the two true muon tracks and the reconstructed

track. It is plotted in Fig. (4.5b).
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Figure 4.5: In (a), we define θmisreco as the angle between the average direction of dimuons
and the reconstructed track. (b) shows the dimuon event rate against θmisreco for various
track reconstruction algorithms as discussed in sec. (4.5). Both MPEFIT and SPEFit have
similar performance. We choose SPEFit for our analysis.
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Chapter 5

Classification Features for
Signal/Background Discrimination

In this chapter, we begin by cleaning events for our analysis. First, we start with an

existing event sample. After this, we introduce the type-2 and type-3 event and DOM-

based cuts using time and geometry optimization techniques crucial for our analysis.

Finally, we introduce and analyze features that can be used to discriminate dimuons

against single muons, based on the underlying physics and detector properties.

5.1 Type-1 Cuts: MEOWS Sample

For our work, we will use the MEOWS event selection (platinum) [49] to minimize

the background from other track-like events. These events can be cosmic ray muons

from air showers, NC events, CC νe/ντ interactions, or misreconstructed tracks from

νe interactions. This sample consists of high efficiency νµ/νµ̄ CC interactions. It is

a high purity (≥ 99.9% purity) upgoing track sample. To remove the atmospheric

background events, it places an upper zenith θz cut such that cos θz = 0 in the

platinum level selection. For more details, we refer the reader to [49].

5.2 Type-2A Cuts

In this cut category, we consider 4 cuts. The first cut for event selection is that the

event must have at least two hit DOMs. The next cut ensures that only hits with
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charge ≥ 0.25 P.E. threshold are considered. If the DOM did not see a single pulse

above this threshold, the DOM is dropped from the analysis. The penultimate cut

only considers those events which have a total charge of less than 20, 000 P.E., where a

total charge is the sum of charges from all the hit pulses (which pass the charge lower

bound of 0.25 P.E.). Very high neutrino energy events incur large stochastic losses

with a number of hit DOMs of the order of a few hundred. Such events saturate the

detector and we essentially lose the key dimuon properties that we exploit for feature

design. The final cut is based on time residuals which are discussed next.

5.2.1 Time Residual

The time residual tr of a DOM hit is defined as the time difference between the actual

arrival time tact of a photon and expected time texp such that

tr = tact − texp (5.1)

The source of the non-zero value of tr is photon scattering in ice. For a given DOM, we

only consider the hits which have time residuals in the time window of [−500, 2000]ns.

The upper bound of 2µs is set to avoid late hits from after-pulsing (as the name

suggests). In a PMT, after-pulsing is caused due to ionization of residual gases which

accelerate towards the photo-cathode and produce secondary electrons. These hits

are important to remove as they can mimic late light from the second muon in a

dimuon event. It was measured that after-pulse peaks occur at 2µs and 8µs after the

main physics hits [42]. This is the reason for the upper limit.

5.3 Type-2B Cuts

We further optimize our selection for hit DOMs. The rationale for this optimization

is the following: In the case of a dimuon event, when the dimuons are exiting the

detector, one can construct features based on the hit DOMs near the exit, which can

have a higher separation power against single muons. For this, we introduce the next

29



geometry and time-window-based cuts.
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Figure 5.1: Top view of the detector. It has been divided into 4 layers. For geometry
cuts, we select only those hit DOMs which are in layers-1,2,3. The inter-string sepa-
ration is roughly 125 m.

5.3.1 Geometry Cuts

Before we develop any features for classification, we do geometry cuts on each event

for some features. This forms our Level-3 cuts. We only select hit DOMs which belong

to any one of the outer three layers of the detector as shown in Fig. 5.1. The reason

for this is that near the periphery of the detector, the dimuons will have maximum

separation. We suspect that any features which exploit this separation property can

exhibit a good discriminating power against single tracks.
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5.3.2 Time Window Cuts

Geometry cuts alone are not enough. The hit DOMs on the other side of the track

need to be eliminated. For this purpose, we discuss here a time window cut. We

only select those hit DOMs with pulses within a time window of 200 ns outside the

detector and 500 ns inside the detector. Post cuts, we are in a position to design and

develop features which can exploit the detector geometry and the underlying physics

to discern differences between signal (dimuon event) and background (single muon

event). Good feature design albeit has limitations. The actual IceCube data must

agree to MC simulations for that feature. We discuss this next.

5.4 Data for MC Verification

We have looked at 10% of the IceCube data collected between 2011 and 2018. It

corresponds to a lifetime of 0.77years. In the following section, we will describe the

features used for classification and compare Data vs. Monte Carlo (MC) simulation

distributions for the CCDIS events. This comparison will help to eliminate features

which cannot be described by the data ‘well’. To measure this ‘wellness’, we use the

χ2 test given as

χ2 =

Nbins∑︂
i=1

(NMC,i −Ndata,i)
2

σ2
MC,i + σ2

data,i

(5.2)

where Nbins is the total number of histogram bins used in the probability distributions

of MC and data, NMC,i and Ndata,i are the number of MC and data events in the ith

bin and σMC,i =
√︁

NMC,i and σdata,i =
√︁

Ndata,i are the corresponding uncertainties.

This test is a measure of dissimilarity between the two distributions. We will decide

a cut on this value χ2
cut such that features with χ2 > χ2

cut will not be utilized for our

analysis.

5.5 Feature List

We first discuss features based on the number of hit DOMs and strings in the detector.
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5.5.1 Number of Hit DOMs (NHitDOMs)

NHitDOMs is a feature that calculates number of hit DOMs for an event. A DOM is

hit if it passes Level-2 cuts. We expect this value to be higher for dimuons as both

muons will leave light, thus increasing the number of hit DOMs.

5.5.2 Number of Hit Strings (NHitStrings)

NHitStrings is a feature which measures the number of hit strings in the detector.

A string is hit if it has atleast one hit DOM. Analogously to NHitDOMs, this value

should be higher for dimuons events.

5.5.3 DOM-Track Separation

For Class-A events where the max track separation is at least 25m, we expect that the

hit DOMs will have high spatial separation. For this, we construct a quantity called

‘Distance of Closest Approach (DCA)’ which defines the shortest distance between

a hit DOM and the reconstructed track. There will be a list of DCA values for a

given event corresponding to each hit DOM. To aggregate these values, we define the

following features:

• Mean-DCA: The average of all DCA values for an event is reported as ‘Mean-

DCA’.

• Std-DCA: We take the standard deviation of all DCA values for an event.

• Weighted-Mean-DCA: We did not consider the role of total charge seen by a

DOM in the above two features. To take that into account, we construct a

weighted mean d̄
(w)

given as

d̄
(w)

=

Nhits∑︁
i=1

qidi

Nhits∑︁
i=1

qi
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Figure 5.2: Normalized event rate and Data/MC plots: We see that both the features,
Number of Hit DOMs and Hit strings show nice separation between signal and background.

33



0 25 50 75 100 125 150
Mean-DCA (m)

0.000

0.005

0.010

0.015

0.020

0.025
No

rm
al

ize
d 

Ev
en

t R
at

e

CCDIS muon
Dimuons (Class-A)
Dimuons (Class-B)
Dimuons (Class-C)

(a) Normalized Event Rate vs. Mean-DCA

0 25 50 75 100 125 150
Mean DCA (m)

0

250

500

750

1000

1250

1500

1750

2000

Ev
en

t R
at

e

CCDIS muon: 2 = 5.94
Data: IC86.2011-2018 (10%)

(b) Data/MC plot for Mean-DCA
(χ2/dof = 5.94/30)

Figure 5.3: Normalized event rate and Data/MC plots: Both classes A and B have decent
separation beyond MEAN-DCA= 50m.

where qi and di represent the total charge and DCA of a hit DOM respectively.

Nhits is the number of hit DOMs in an event.

• Weighted-Std-DCA: Similarly, we define the weighted standard deviation σ
(w)
d

as

σ
(w)
d =

⌜⃓⃓⃓
⃓⃓⃓⎷

Nhits∑︁
i=1

qi(di − d̄
(w)

)2(︂
Nhits−1
Nhits

)︂Nhits∑︁
i=1

qi

If there is only one hit DOM in an event, then σ
(w)
d = 0.

• Max-DCA: Out of all DCA values, we only consider the one which is the max-

imum for an event. We expect this value to be higher for dimuon events with

high separation. In particular, the hit DOMs near the dimuons’ exit from the

detector will register the maximum value of DCA.

5.5.4 Time Residuals (TR)

We expect higher time residuals for a dimuon event as the light from the second muon

can mimic late light behavior giving rise to a higher value. We again aggregate time
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Figure 5.4: Normalized event rate and Data/MC plots: There isn’t much separation be-
tween any of the dimuon classes and the CCDIS background.
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Figure 5.5: Normalized event rate and Data/MC plots:
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Figure 5.6: Normalized event rate and Data/MC plots:
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Figure 5.7: Normalized event rate and Data/MC plots:
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Figure 5.8: Normalized event rate and Data/MC plots:

residuals corresponding to each pulse with a charge greater than or equal to 0.25 PE

and time residual between [−500, 2000]ns using the following statistics:

• Mean-TR: Here, the average of TR values is reported as ‘Mean-TR’ for an event.

• Std-TR: We take the standard deviation of all TR values for an event.

• Weighted-Mean-TR: We take the mean of all TR values, but each is weighted

by the corresponding charge of the hit. The definition is similar to as mentioned

in Sec.().

• Weighted-Std-TR Similarly, we define the weighted standard deviation of TR

for an event.

• Max-TR Out of all TR values, we only consider the one which is the maximum

for an event. We expect this value to be higher for dimuon events with high

separation. Using Level-2 cuts, we expect higher time residuals coming from

the second muon. The cut removes some of the after-pulsing effects.
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Figure 5.9: Normalized event rate and Data/MC plots:
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Figure 5.10: Normalized event rate and Data/MC plots:

38



0 200 400 600 800 1000
Weighted Mean-TR (ns)

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

No
rm

al
ize

d 
Ev

en
t R

at
e

CCDIS muon
Dimuons (Class-A)
Dimuons (Class-B)
Dimuons (Class-C)

(a) Normalized Event Rate vs. Weighted
Mean-TR

0 200 400 600 800 1000
Weighted Mean-TR (ns)

0

500

1000

1500

2000

2500

3000

Ev
en

t R
at

e

CCDIS muon: 2 = 7.26
Data: IC86.2011-2018 (10%)

(b) Data/MC mismatch plot for Weighted
Mean-TR (χ2/dof = 7.26/20)

Figure 5.11: Normalized event rate and Data/MC plots:
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Figure 5.12: Normalized event rate and Data/MC plots:
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5.5.5 Clustering

In this section, we make use of the Level-2B cuts to get only the DOM hits near the

periphery of the detector. We define here a track frame, different from the detector

coordinate system as displayed in Fig. (5.13). In this track frame denoted by the

primed coordinates, the z
′
axis is along the direction of the reconstructed track. The

x
′ − y

′
plane is perpendicular to the track. For the construction of the track frame,

we refer the readers to Appendix A. We project the hit DOMs onto this plane. For

a dimuon event, there will be two concentrated clusters of hits, one from each muon.

We calculate the centroid point of each cluster and measure the distance between the

two centroids called as “centroid-dist”. This is roughly representative of the track

separation for a dimuon event. We also try to find two clusters and the corresponding

value of centroid-dist for a single muon event. In this scenario, we anticipate a smaller

centroid-dist.

To find the centroid-dist, we use the popular K-means unsupervised clustering

algorithm [50, 51]. It is a simple yet elegant technique to divide a data set into K

distinct clusters. In our case, we try to fit 2 clusters to the projection coordinates of

the hits. The central idea behind this algorithm is to separate the dataset into groups

of similar variance by minimizing a metric known as “within-cluster sum-of-squares

(WSS)”. It tries to identify a centroid that minimises this metric such that

WSS =
K∑︂
i=1

∑︂
x∈Ci

d(x, x̄Ci
)2 (5.3)

where Ci is the ith cluster, d(.) is the Euclidean distance between a data point x

and the cluster centroid x̄Ci
. The algorithm proceeds by initializing random cen-

troids and consequently assigning data points to the closest cluster centroid. For the

initialization, we used the K-Means++ method [52].
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Figure 5.13: Projection Plane of hit DOMs. Here, the un-primed coordinate system is
the detector’s frame. The track coordinate system is given by the primed coordinates.
The track plane is perpendicular to the reconstructed track direction. The hit DOMs
after the Type-2B selection, are projected onto the track plane.

5.5.6 PCA

Principal Component Analysis, or PCA, is a simple, yet elegant dimensionality-

reduction technique that is utilized to decrease the dimensionality of a dataset into

a smaller set of variables that contain the most information about the data. The

trade-off obviously is then the sacrifice of a little accuracy. Nonetheless, it makes the

multi-variate data analysis drastically simpler and faster due to the reduction in the
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Figure 5.14: Normalized event rate and Data/MC plots:
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Figure 5.15: (a) First, the DOMs are projected onto the track plane as discussed in Ap-
pendix A. (b) Then a line that reduces the PCA singular value, is fit to the dataset. This
gives information about the variance in the dataset. We eventually extract this variance to
distinguish between a single and a dimuon track.
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number of variables.

Initially, for a given event, we construct a “projection dataset” which consists of

x
′ − y

′
coordinates of the projected DOMs on the reconstructed track’s plane. Then,

these data points are translated to the origin of the track plane. The central goal of

PCA is to fit a line to this dataset. It gets the best-fit line according to the metric

“PCA-singular value (PCA-SV)” which can be computed as

PCA-SV =

⌜⃓⃓⎷ n∑︂
i=1

d2i (5.4)

where di is the distance of the ith projected DOM onto the fit line from the origin of

the track plane as shown in Fig. (5.15b). Firstly, a random line passing through the

origin is selected. The corresponding PCA-SV is measured. The line is rotated and

PCA-SV is again measured. This procedure is repeated till the line’s rotation through

an angle of 2π. The line which belongs to the maximum PCA-SV is designated as the

PCA-1 axis. The maximum variance of the projection coordinates is along this axis.

The axis perpendicular to PCA-1 is the PCA-2 axis which minimizes the PCA-SV.

The “PCA-variance (PCA-Var)” is computed as

PCA-var =

n∑︁
i=1

d2i

n− 1
(5.5)

where n is the size of the projection dataset. These can be defined for both the

PCA-axes. Finally, for each axis, we define the PCA-variance ratio which is given as

PCA-var-ratio1/2 =
PCA-var1/2

PCA-var1 + PCA-var2
(5.6)

For a dimuon event, if the two clusters are well-separated, the corresponding PCA-SV

is also higher as there are certain DOMs that have higher values of projections. The

corresponding PCA-var and ratio are also therefore higher.

5.5.7 Waveforms (WF)

We look at the waveforms of each DOM within an event. We first find out the peaks

in the waveforms and construct the time difference (TD) between consecutive peaks.
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Figure 5.16: Normalized event rate and Data/MC plots:
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Figure 5.17: Normalized event rate and Data/MC plots:
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Figure 5.18: Normalized event rate and Data/MC plots:
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Figure 5.19: Normalized event rate and Data/MC plots:
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Figure 5.20: Normalized event rate and Data/MC plots:
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Figure 5.21: Normalized event rate and Data/MC plots:
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The idea is that in case of dimuons, we should expect 2 strong peaks with a bigger

time difference. Therefore, it also depends upon the peak strength. Therefore, we set

various peak thresholds and only consider peaks above that threshold. This threshold

helps to get rid of small peaks, not relevant for the feature design. We optimized our

threshold and and calculated it to be 1e-12. Each DOM gives a list of time difference

values. Each event therefore has a list of these values, coming from each DOM. We

aggregate these values using the following statistics:

• Mean-WFTD: Here, we take an average of the waveform time difference (WFTD)

values for the entire event.

• Std-WFTD: We take the standard deviation of all the WFTD values for an

event.

• Max-WFTD: Out of all TD values, we only consider the one which is the max-

imum for an event. We expect this value to be higher for the dimuon events

since they have higher separation. This however can have a later peak due to

after-pulsing. If the digitizer is overloaded, we only take the waveform from the

first gain.

• AUC-WFTD: We take all the time differences for an event and get a normalized

probability distribution of WFTD. We then make a cut and calculate the area

above that cut. The reason for this is that we are interested in finding the total

number of higher TD values in proportion to the total number of TD in that

event. We optimized our cut at 50ns. We tried a few different cuts and retained

a cut of 50ns since this gave the maximum area for the dimuons in comparison

to the single muons.

5.5.8 Track Hits Distribution Smoothness

Track Hits Distribution Smoothness or simply track smoothness is the maximum

relative pulse deviation under the assumption of uniform light distribution along the
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Figure 5.22: Normalized event rate and Data/MC plots:
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Figure 5.23: Normalized event rate and Data/MC plots:
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Figure 5.24: Normalized event rate and Data/MC plots:
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Figure 5.25: Normalized event rate and Data/MC plots:
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Figure 5.26: Normalized event rate and Data/MC plots:

track. It is a measure of stochastic loss along the track. It is defined as

smoothness =
j

n
− lj

n
(5.7)

where index j represents the pulse which has the maximum value of⃓⃓⃓⃓
j

n
− lj

n

⃓⃓⃓⃓
(5.8)

and lj represents the distance of the pulse from the track. The first and the last

pulses are neglected.

5.5.9 Eigenvalue/Sphericity Ratio

Tensor of Inertia (TOI) is a powerful concept in rigid body motion which helps to

determine the principal moments and the corresponding axes. For an event, we

construct the inertia tensor treating the ith hit DOM (at location r⃗i,d wrt the detector

(d) frame) as a particle in the rigid body with its constituent mass replaced by the

total P.E. charge qi. We define the center of gravity COG of the hit DOMs, given as

r⃗COG =

Nhits∑︁
i=1

qir⃗i,d

Q
(5.9)
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where Nhits is the total number of hits and Q =
Nhits∑︁
i=1

qi is the total event charge. For

TOI calculation, we calculate the DOM position r⃗i with respect to r⃗COG and not the

detector’s origin such that

r⃗i = r⃗i,d − r⃗COG (5.10)

The components of TOI denoted by T jk can be constructed using

T jk =

Nhits∑︁
i=1

qi
(︁
δjkr⃗

2
i − rji r

k
i

)︁
Q

(5.11)

where δjk is the Kronecker delta and j, k = {1, 2, 3} represent the indices in x,y,z

directions respectively. We now calculate the TOI eigenvalue ratio (E.R.) whose

expression is

E.R. =
e1

e2 + e3
(5.12)

where e1, e2, and e3 are the principal moments/eigenvalues of TOI. Here, e1 is the

smallest eigenvalue of TOI. E.R. is a measure of the sphericity of an event. For track

reconstruction algorithms, the principal axis ê1 corresponding to e1 is taken as an

initial guess for the track. Consider an ideal dimuon event as shown in Fig. (5.27),

where there is a symmetrical distribution of light around both the muons. The axis ê1

will pass through the average direction of the two muon tracks. As the muons separate

in space, the moment of inertia e1 value measured with respect to ê1 increases. We

normalize e1 by e2 + e3 i.e. the sum of the eigenvalues in the other perpendicular

principal directions. However, we know that the energy asymmetry is non-zero for the

majority of dimuon events and there will be deviations in the expected E.R. value.

5.5.10 Track Hits Separation Length

For a given event, we first sort all the hits in increasing order of their time. We then

take the groups of the first four and the last four hits of the event and calculate their

respective center of gravity COG locations. These 2 locations are projected onto the

reconstructed track. We then define a quantity called “Track Hits Separation Length”
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Figure 5.27: Ideal Dimuon Event: An ideal dimuon event will have zero energy
asymmetry and light distribution is uniform around the two muons. In this case, the
principal axis ê1 passes through the middle of the dimuon tracks.
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Figure 5.28: Normalized event rate and Data/MC plots:

or ‘track hits length’ which is the distance between the projected points on the track.

5.5.11 Charge Based Peak Time Differences

For a dimuon event, there should be two prominent pulse hits in a DOM, coming from

each muon. If one can identify these hits and measure the time difference between

the two peaks, this can generate a time-based feature that might separate dimuons

from a single muon. We consider two types of features here. In the type-1 method,
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Figure 5.29: Normalized event rate and Data/MC plots:

for a given DOM, let t1 be the time of the first pulse and t2 correspond to the time

of the next brightest hit. We construct the charge-based time difference given as

δt = t2 − t1. The rationale behind this construction is that the first hit will likely

be from one of the two muons and the next prominent hint (in terms of P.E.) will

belong to its counterpart. However, it may so happen that the DOM’s first hit did not

originate from the dimuons. In the type-2 method, t1 and t2 are the times of the first

and second prominent hits respectively. The features based on this time difference

are:

• Mean-δt-1/2: For each hit DOM, we calculate δt. Then we take the mean of all

such time differences to get a single value for an event. The suffix 1/2 represents

the method type.

• Std-δt-1/2: We take the standard deviation of all δt values for an event.

• Max-δt-1/2: Out of all δt values, we only consider the one which is maximum

for an event.
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Figure 5.30: Normalized event rate and Data/MC plots:
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Figure 5.31: Normalized event rate and Data/MC plots:
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Figure 5.32: Normalized event rate and Data/MC plots:
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Figure 5.33: Normalized event rate and Data/MC plots:
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Figure 5.34: Normalized event rate and Data/MC plots:
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Figure 5.35: Normalized event rate and Data/MC plots:
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5.6 Type-3 Feature Cuts

Previously, we looked at a total of 32 features. We now use machine learning which

can look into this 32-dimensional space and classify signals from the background.

However, to simplify the analysis, we do not necessarily need all of this information.

There are various things that one can do to remove inconsequential feature informa-

tion. This is part of the ”Feature Engineering”. We have already looked at Data/MC

mismatch metric. We remove features with χ2 > 16 in the data/MC mismatch plots.

This removes 5 features.

In addition, we can remove highly correlated features since they do not contribute

any new information about the signal or background. For this, we construct a correla-

tion matrix that calculates the correlation coefficients among features. This is a very

important step in the pre-processing stage of machine learning. This is another type

of dimensionality reduction technique. We remove features that have a correlation of

greater than 0.97. This forms our type-3 cuts. The correlation coefficients for dimuon

(Class-A) and single muon events can be seen in Figs. (5.36) and (5.37) respectively.

Post type-3 cuts, we remove a total of 6 features. This is part of “Feature Engineer-

ing”. In the next chapter, we discuss our machine learning method to separate the

dimuon signal from the dominant CCDIS background.
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Figure 5.36: Correlation Plot for dimuon events: We can see that PCA-1/2 variance
ratio are highly correlated to PCA-1/2 variance. This makes sense as PCA ratio is
constructed out of variances. So, one can safely remove the variance ratio parameters.
We also see that the PCA-singular values have a high correlation (= 0.98). We remove
PCA-2 singular.
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Figure 5.37: Correlation Plot for single muon background events: The plot is similar
to that of the dimuon correlation matrix. Using our correlation cut of 0.97, this plot
also confirms to remove the PCA-variance ratios.
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Chapter 6

Multi-Variate Analysis

In this chapter, we begin by providing a brief summary of the boosted decision trees

(BDT) and discuss the XGBOOST model architecture [53]. Next, we will discuss the

training, validation, and testing samples and the procedure to reduce overtraining

using the KS test. We then display the BDT probability score distributions for these

samples and compare them against various metrics like ROC-AUC, and precision vs.

recall. Finally, we optimize the cut values of the score distributions, above which one

can find the desired dimuon signal.

6.1 Decision Trees

We saw in the previous chapter that the features that we have designed do not have

enough discrimination power. We now combine these features and use the power

of decision trees to amplify this discrimination. Decision trees [54] belong to the

class of supervised machine-learning algorithms which have a tree-like design. It is

an elegant and powerful method of approximating higher dimensional functions. It

investigates the higher-dimensional space of features and looks for sub-spaces that can

discriminate between signal and background. The way it does this is by partitioning

the input space into regions and optimizing the region size until convergence. This

region is then allocated to our main signal. The excluded region is designated as the

background. However, there can be multiple subspaces that can belong to the signal
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if the features do not have a sufficient separation between the signal and background.

For the purposes of this work, we only study the binary classification trees which will

predict the desired output of a dimuon signal or a CCDIS muon background.

The decision tree algorithm is illustrated in Fig. (6.1). We take our input data at

the root node of a decision tree. Now, the tree is built by making cuts in the feature

space as shown in step 2 (Fig. (6.1b)). In this particular example, selecting a cut on

feature-1 at threshold a gives a completely pure tree node, i.e. the node only consists

of one type of data class. This gives a pure subspace. We can go on building the tree

by making similar cuts and trying to maximize our chances of getting a pure node.

If we get a pure node, we stop in that direction and we get an end leaf node and we

build the tree in the other direction. But this leaves us with a pertinent question:

how does one decide which feature to choose to make the decision and what cut value

to select? One of the metrics to make this decision is called the “information gain”.

It calculates the difference between the entropies of the parent node and daughter

nodes. The entropy S is defined as

S = −
2∑︂

i=1

pi log2 pi (6.1)

where i = {1, 2} stands for the two classes and pi is the probability of ith class in that

particular tree node. The entropy of the root node has the maximum value of S = 1.

For a pure node, S = 0. Now, information gain G is given as

G = Spar −
2∑︂

j=1

αjSdauj (6.2)

where index j runs for the two daughter nodes of a parent, subscripts ‘par’ and

‘dau’ stand for the parent and daughter nodes and αj is the relative daughter weight

(relative to the parent). It is defined as

αj =
Total data points in the jth daughter

Total data points in the parent
(6.3)

Essentially, the algorithm tried different combinations of features and cuts, calcu-

late G, and finally chooses the combination with maximum G. For a more detailed
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Figure 6.1: Flowchart of a decision tree: In a decision tree, the cuts on the features, as
well as the selection of a particular feature for the decision, are chosen by maximizing the
information gain. The orange and green data points represent the two types of classes that
we want to train the decision tree on.
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discussion, we refer the readers to [12, 55, 56]. However, decision trees suffer from

inaccuracy as the tree structure completely changes if one alters the training sam-

ple even slightly and are therefore not robust. To overcome this drawback, boosted

decision trees were introduced [57].

6.2 Boosted Decision Trees (BDTs)

The simple idea behind BDTs is “There is power in cooperation”. Instead of a single

tree, multiple trees are constructed. It is like a series circuit where a new tree learns

from the mistakes of the prior trees which are called “weak learners”. Each new tree

tries to reduce the error or residual in the previous tree. Thus, in the end, we get a

strong learner. One can keep on adding trees to infinity to get a 0 ‘residual’ at the end.

But this leads to ‘overfitting’. This means that when a new sample is evaluated on

this trained BDT, it can have a significant decrease in performance. The BDT model

is thus overfitted to the trained dataset. It is crucial to make a decision on when

to stop adding trees. There are many BDT variants but the current state-of-the-art

BDT algorithm is XGBOOST which we discuss next.

6.2.1 XGBOOST

XGBoost, which stands for Extreme Gradient Boosting [53, 58], is a scalable gradient-

boosted decision tree (GBDT) machine learning algorithm. Among all different types

of decision tree algorithms, XGBOOST is the superior method for regression and

classification type problems. Its architecture is shown in Fig. (6.2). The first step in

XGBOOST is to make an initial prediction. By default, it is set to 0.5. This means

that there is a 0.5 probability that the given event is a dimuon event. Then, the

next step in the construction of the first tree is to calculate the residual which is the

difference between the observed value and the predicted value. In XGBOOST, the

definition of information gain is modified. It is based on a similarity score S [53],
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TREE-1 TREE-2 TREE-k

Dataset X

XGBOOST Output 
Score =

Figure 6.2: XGBoost architecture: k weak learners are combined in series to output
a strong learner. X is the input set of data points with their feature values. θi
represents the residuals from the tree i and fi is the function that is learned on the
residuals from the previous tree i and fed to the input of the next tree i+1. The last
learner minimizes the residuals to as close as 0. The final output score of XGBOOST
is combined from the output of all the individual weak learners.
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given as

S =

(︃∑︁
i

Residuali

)︃2

∑︁
i

pi(1− pi)
(6.4)

Here, i runs for each event in the training sample. The value of S for the root node

in the first tree is simply 0 as the residuals of −0.5 and 0.5 are equal in number. The

gain is the difference between the similarity scores of the daughters and the parent

node. Then, various combinations of features and respective cuts are tried and the

one with maximum G is selected, just like in decision trees. One can add an extra

term λ which is the L2 Ridge regression term [59] to control the tree sensitivity to

observations. Then the next step is to find the leaf output (lo) [53] given by

Leaf Output (lo) =

∑︁
i

Residuali∑︁
i

pi(1− pi) + λ
(6.5)

Thus, each observation in the node is assigned this output. To convert this into

probability, we use the following definition [60]:

XGBoost Probability =
elo

1 + elo
(6.6)

The residuals from the first tree are now fed to the second tree and so on until con-

vergence. Each successive weak learner will try to minimize the residuals of the prior

tree and output a probability for each event. The final probability for an event is

calculated by adding individual probabilities from each learner, scaled by a learning

rate η, whose purpose is to reduce overfitting and underfitting. We use this scoring

system in such a way that an XGBOOST probability of 1 represents the dimuon

signal and 0 corresponds to the single muon background. A comprehensive and com-

parative analysis of the BDT algorithms can be found in the paper [61]. We now

use XGBOOST to perform the classification task for us. Before that, we discuss our

datasets in the next section.
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6.3 Data Sample

In this section, we introduce the training and testing samples and the method used

to scale the features.

6.3.1 Feature Scaling

In the last chapter, the features that we have designed have originated from different

physics principles and detector properties. We can clearly see that the range of values

of one feature is significantly different from the extent of values of other features. This

can drastically affect the performance of XGBOOST as they can create biases in the

learning. To overcome this, feature normalization is performed. We shift and re-scale

the feature values such that they end up ranging between 0 and 1. It is also known

as Min-Max scaling.

6.3.2 Training Sample

Since Class-A events are the best quality events, it is natural to train our model on

class-A events as the signal. This sets a strong discriminant in the search space.

However, since the proportion of dimuon class-A events is very small compared to

the background, the training sample has low signal statistics. It necessitates that

additional Class-A events be created. This is achieved using a resampling technique

developed by Sourav Sarkar, a Ph.D. student in our research group. In this method,

the primary interaction vertex is shifted along the muon trajectory until the event

can satisfy class-A selection criteria. We split the training sample into two in the

ratio 5:1, where the smaller sub-sample serves the purpose of validation. Validation

is performed to determine and validated if our model is overfitted.

6.3.3 Training Sample Weighting

In our sample, the signal proportion was 28% and it was unbalanced. Since there

are more background events, the learning process can be biased towards the single
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muons. To avoid this complication, we assign weights to the training events using

scikit-learn’s class weight function [62]. This makes sure that the lower number of

dimuon events have higher weights and more importance. Weights take their role

during residual minimization. The errors are multiplied by the respective weights and

BDT puts more attention to reducing the higher errors, thus countering the effect of

the higher statistics background subsample. It acts as a compromise between higher

signal weights and a higher quantity of background events.

6.3.4 Testing

The testing sample consists of all classes of trident events, charm dimuon events, and

single muon background events. We now discuss how various hyperparameters are

optimized.

6.4 Hyperparameter Optimization

XGBOOST has a number of hyperparameters like tree depth, number of trees, regu-

larization λ, learning rate, etc. whose values have to be determined for the training

sample to be at the right balance of accuracy and minimal overtraining. To achieve

this, we employ a “Randomized-Search” algorithm with 5-fold cross-validation (CV).

In this method, the training sample is divided into 5 subsets. For each subset, the hy-

perparameters are optimized by randomly probing values from a user-specified range

for each parameter. Then, the overfitting performance is tested using the other sub-

sets. This process is repeated for each subset until convergence. This process outputs

the optimized values of hyperparameters and our model is trained.

The above process can typically take days. To avoid that, we randomized over 60

different combinations of hyperparameters. We found that training our sample on

the XGBOOST model is in particular, most sensitive to the number of trees and each

tree’s depth. Therefore, post hyperparameter values determination, we tried to reduce

over-training by performing a simple grid search over these two hyperparameters.
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To further counter overtraining, we use the Kolmogorov-Smirnov (KS) test [63] to

compare training and validation samples. The null hypothesis that is evaluated with

the KS test is that the training and validation samples are drawn from the same

underlying distribution. It gives a p-value that measures if the two distributions are

identical. The hyper-parameter grid optimization is stopped once the p-values for

signal and background in training and validation are each greater than 0.01. This

value was optimized after analyzing the balance between overfitting and accuracy.

The overtraining reduction process is finally stopped. We now discuss our trained

model’s performance in the next section.

6.5 Model Performance (All Features)

We first show the results by training over the entire 32-feature space.

6.5.1 Training and Validation: XGBOOST Distributions

The BDT probability distributions for training and validation datasets can be seen in

Fig. (6.3). We see that the background score peaks close to 0.06 but not 0. For the

BDT score to be 0 for the background, the leaf output as defined in Eq. (6.5) has to

reach a large negative value. But given the lesser separation in the features between

signal and background, it is not possible to perfectly get a score of 0. Similarly, the

score for the signal does not reach 1. We also see that the p-values for both signal

and background are below the set threshold of 0.01. The model is thus overtrained.

The initial training required a tree depth of 10 and 500 weak learners. We now do a

grid search on the number of trees and tree depth to reduce overtraining. The new

results can be seen in Fig. (6.4). The tree depth and number of trees were finally

optimized to 6 and 250 respectively.
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Figure 6.3: XGBOOST predictions for training and validation: We find that the
model is overtrained as the p-values are less than the decided cut of 0.01. The
bottom plot shows the train/validation ratio in each of the 50 bins. The error bars
are calculated using Gaussian error propagation rules.
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Figure 6.4: New XGBOOST predictions for training and validation: In this trained
model, the p-values are finally above the decided cut of 0.01. This however comes at
the expense of decreased accuracy. The bottom plot shows the train/validation ratio
in each of the 50 bins.
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Hyperparameter Description Values

η Learning Rate: Step size control used in the
final XGBOOST probability calculation

0.0148

Tree Depth Maximum tree depth: Deeper trees are likely
to overfit.

6

λ L2 Regularization term 200

α L1 Regularization term 0

γ Minimum Loss Reduction: A tree is not
pruned in a particular direction if the gain
is less than γ.

0

colsample bytree Ratio of columns for the construction of each
learner.

0.5

scale pos weight It controls the class imbalance in a dataset. 2.5

min child weight A cover of a node is defined by
∑︁
i

pi(1− pi).

If the cover is less than min child weight, the
node is removed.

4

subsample Subsample ratio of the training dataset to be
used for each iteration

0.75

num estimators Number of weak learners 250

Table 6.1: Hyperparameter values obtained after 5-fold cross-validation on the 32-
feature space. Together, they control overfitting. These parameters are described in
detail in the XGBOOST package [58].

6.5.2 Hyperparameter Values

In the training dataset, we removed any events which had missing feature values. The

trained hyperparameter values (with descriptions) for 32 feature-input are highlighted

in Table 6.1.

6.5.3 Receiver-Operating Curve (ROC)

To compare the performance, we use the most popular metric namely the ROC-AUC

curve. It is a performance measurement for the classification problems at various cuts

on the BDT scores. The Receiver-Operating Curve (ROC) is a probability curve. The
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(a) ROC curve with p-values < 0.01
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(b) ROC curve with p-value > 0.01

Figure 6.5: ROC curves: (a) This plot corresponds to the model trained on all 32 features
with only a 5-fold randomized CV and higher overtraining. (b) This plot is for the model
trained on the entire feature space but after additional grid search, which increased the
p-scores in the KS test. However, the AUC decreased to 0.79 from 0.84 for training.

Area under ROC namely AUC represents the extent of separability. It determines a

model’s capability in distinguishing between classes. The higher the AUC, the better

XGBOOST is at predicting dimuon events as signal and CCDIS events as background.

The definitions of true and false positives and negatives are explained in Table 6.2.

Actual Positive Actual Negative

Predicted Positive True Positive (TP) False Positive (FP)

Predicted Negative False Negative (FN) True Negative (TN)

Table 6.2: ROC-AUC Terminology: If an event was a dimuon event and the model
predicted it to be a dimuon, then it is labeled as a true positive (TP). However, if it
predicts it as a background event, then it is a false negative (FN). On the contrary,
if the event was a CCDIS muon and the model predicts it as background, it is a true
negative (TN). Otherwise, it is a false positive (FP).

In the ROC-curve, the true positive rate (TPR) is plotted against the false positive

rate (FPR). These definitions are given as

True Positive Rate =
TP

TP+FN

False Positive Rate =
FP

FP+TN

(6.7)
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TPR measures the proportion of dimuon events identified as signal out of all events

predicted as signal. TPR increases if the number of false negatives decreases and

reaches 1 as FN → 0. Similarly, FPR measures the quantity of CCDIS events iden-

tified as true signal against all background events. The goal is thus to decrease the

FPR. An ideal model will have TPR=1 and FPR=0. This metric can be used ad-

ditionally to determine if the model is overtrained. In Fig. (6.5a), we see that the

training and validation AUC do not match. This further indicates that the model is

overfitted. This plot is in juxtaposition to the Fig. (6.5b) in which we reduced the

tree depth and the number of trees until p-values were higher. The AUC however

plummeted. Thus, it is a tussle between overfitting and model accuracy. We now

look at which features were important in the classification process.

6.5.4 Feature Importance Plot

Since the input space is very large (32 features), the randomized CV with only 60

combinations is not enough. These hyperparameters could correspond to one of sev-

eral local minima in the XGBOOST loss minimization function. To reach the global

minimum, one would need to perform randomized CV on a very high number of com-

binations. Instead, one can do further feature engineering. We can remove features

based on type-3 feature cuts as discussed in Sec. (5.6). Furthermore, one can look

into the feature importance plot which ranks the features based on their importance

in making decisions in BDT. It uses the metric called F-score which is defined as

the number of times a feature is used to split the data over all learners and scaled

by the tree weight. After removing the least important features, we can re-train the

model and search for more possible combinations of hyperparameter values. XGBoost

library provides a built-in method to plot features ordered by F-scores. In Fig. (6.6),

we remove features with F-score less than 261.
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Figure 6.6: Feature Importance Plot: This plot describes the relative importance of
features in terms of the number of times they are selected to make decisions. As part
of feature engineering, we remove the bottom 9 features which have F-score < 261.
This cut is decided based on keeping features that are as important as 1/3rd of the
highest F-score feature.
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Hyperparameter Final Values

η 0.0154

Tree Depth 6

λ 500

α 0

γ 0

colsample bytree 0.9

scale pos weight 5

min child weight 4

subsample 0.75

num estimators 200

Table 6.3: Final hyperparameter values obtained after 5-fold cross-validation on the
17-feature space. Their descriptions are given in Table 6.1. For further information,
refer [58].

6.6 Model Performance post Feature - Engineer-

ing

In this section, we discuss the final model performance post-feature engineering, where

we removed features based on data/MC mismatch, high correlation, and lower F-

score. We retrained our model with 17 features.

The final optimized hyperparameter values can be seen in Table 6.3. In Fig. (6.7),

we can safely say that the model is not overtrained. The p-values are above the safe

threshold limit. The ROC curve is displayed in Fig. (6.8). The AUC for both is

roughly equal, thus pointing out that there is very less overtraining. This is our final

model. We now take the testing sample and run the prediction function obtained by

training the model.
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Figure 6.7: Final XGBOOST predictions for training and validation: In this trained
model, the p-values are way above the decided cut of 0.01. The bottom plot shows
the train/validation ratio in each of the 50 bins.
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Figure 6.8: Final ROC curve for training and validation
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6.6.1 Testing Sample Results

The testing BDT normalized distribution is given in Fig. (6.9). We can see the

discrimination between dimuons and single muons. Both Class-A and Class-B seem

to perform well and they peak close to a score of 0.86. Even Class-C has a separation

power post-BDT cut of 0.6. Even though the model is trained on only class-A events,

it has also learned characteristics of class B. This is not surprising as class-A events

are a subset of class-B and have commonalities. Thus, training on class-A is acting as

a strong discriminant for the entire dimuon dataset. We now look at the ROC curves

for the testing sample in Fig. (6.10). We can see that class-A events have the best

performance with AUC close to 0.86. We now look at another metric to evaluate the

testing performance.

6.6.2 Precision and Recall Curve (PR)

The definitions of precision and recall are given by

Precision =
TP

TP+FP
(6.8)

Recall =
TP

TP+FN
(6.9)

Precision is defined as the proportion of the dimuon predictions that were actually

correct. In other words, if the BDT model classifies a total of 100 dimuon events to

be signal, and 70 of them actually were the signal (and 30 were CCDIS background

muons predicted incorrectly as “positive” by the classifier), then the precision is 70%.

The recall is the proportion of actual dimuon events that were identified by BDT.

If 60 of the dimuon events were identified correctly, then the recall is 60%. The area

under the precision-recall curve (AUC-PR) is particularly useful to evaluate if the

dataset is imbalanced. The higher the AUC-PR, the higher the class separability of

the model. This curve is plotted in Fig. (6.11).
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Figure 6.9: Testing BDT distribution: We test our testing sample which consists of
all classes of dimuon events and single muon background, on our trained model. This
plot is the prediction scores on the events in the testing sample. The class-C events
(the worst quality events) closely mimic the behavior of single muons, as they should.
But, interestingly, they separate out after 0.6 score. This can be attributed to the
fact that some of the class-C dimuon events can have track lengths > 100m and can
somewhat show discrimination power against single muons.
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Figure 6.10: Final ROC curve for the testing sample: In this plot, the events counting
was done based on their actual event weights.
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Figure 6.11: PR curve for the testing sample: In this plot, the events counting was
done based on their actual event weights.
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Figure 6.12: Final BDT distribution: We test our testing sample which consists of
all classes of dimuon events and single muon background, on our trained model. This
plot is the prediction scores on the events in the testing sample.

6.7 Final Selection Cuts

The BDT score exhibits powerful discrimination between signal and background

events. But in order to use this in the event selection scheme, a cut criterion on

the BDT score spectrum must be defined. Event Rate for 10 years as a function of

the BDT score is plotted in Fig. (6.12). We now look at a metric named AMS to

finalize the cut value.
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Figure 6.13: Approximate Median Significance Plot: AMS is maximized at the BDT
cut of 0.74 and attains a value of 0.52 at the peak.

6.7.1 Approximate Median Significance (AMS)

The AMS objective is given as

AMS =

√︄
2

(︃
(NS +NB) ln

(︃
1 +

NS

NB

)︃
−NS

)︃
(6.10)

where NS and NB are the number of signal and background events respectively. AMS

helps to identify a region in which one can find an increased number of signal events.

In the asymptotic limit where NB ≫ NS, AMS goes to NS/
√
NB. The goal is thus to

find a BDT cut tcut which maximises the AMS value. The AMS plot in Fig. (6.13)

underscores that at the BDT cut of tcut = 0.74, AMS is maximized. This plot is made

by comparing all dimuons class-A against the CCDIS background. This becomes our

final analysis cut, after which we say that the events belong to the dimuon class.

6.8 Data/MC BDT Plot for Verification

Now, finally, we must verify whether the data agrees with the CCDIS MC in the

XGBOOST score distributions. We now look at 10% of the IceCube data collected
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Figure 6.14: Data/MC: We see that there is a mismatch corresponding to χ2/dof =
75.87/36. Particularly, after our optimized tcut=0.74, there is disagreement.

between 2011 and 2018. It corresponds to a lifetime of 0.77years. The distributions

are plotted in Fig. (6.14). This concludes our analysis. In the next chapter, we give

a brief summary of our work and discuss future work that we plan to finish.

82



Chapter 7

Conclusions and Future Directions

Neutrino Trident Production (NTP) and Charm Muon Production (CMP) events pro-

duce two charged leptons. CMP process is a subset of Deep Inelastic Scattering(DIS)

in which the charmed meson subsequently decays into a second lepton. The NTP is

a sub-dominant electroweak process in which two charged leptons and a neutrino are

produced. In this thesis, we only study the channel where the two charged leptons

are muons using the IceCube Neutrino Obervatory. Designated as ”DiMuon Events”,

these processes are an important probe of the Beyond Standard Model (BSM) physics.

In the first chapter, we begin by giving a brief introduction and thesis outline.

In chapter 2, we talk about the charged-current deep inelastic scattering (CCDIS)

and discuss the sub-dominant processes namely NTP and CMP in neutrino-nucleus

scattering. We discuss how to simulate muons’ kinematics using the photon momen-

tum transfer distributions obtained through differential cross-sections. We end this

chapter by emphasizing the BSM motivation behind the dimuon search by utilizing

the results from the CCFR experiment.

In the third part of this thesis, we explore the details of the IceCube neutrino

observatory. We then talk about the absorption and scattering of Cherenkov radiation

in ice and how it can affect our analysis. Then, we introduce a critical component of

IceCube - the “Digital Optical Module” which serves the purpose of data collection

and processing. Next, we jumped to the explanation of two types of digitization
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processes and how we select the desired waveform for our study. In an NTP event,

leptons other than muons can be produced like electrons. But the search for NTP

physics through electron cascades can be very hard due to poor directional resolution,

in striking comparison to the track-like signature of a muon. Finally, we sum things

up with a succinct understanding of how an event is simulated.

In the next chapter, we bring forth a discussion on dimuon and single event topolo-

gies, introduce the three dimuon classes based on track separation and track length

inside the detector, and calculate the expected number of dimuon and single muon

events in 10 years. We also evaluate which track reconstruction algorithm to use for

feature design by finding a misreconstruction angle between the average of the two

muon tracks and the reconstructed track. With this, we conclude the first half of the

thesis.

The second half begins with event cleaning based on geometry and time of DOM

hits. Post cleaning, we go on to design features that can discriminate between dimuons

and single muon, based on the detector properties and the dimuon physics. We

broadly classify our features into 3 different categories. In the first group, we construct

features that are based on hit DOMs and their temporal and spatial separation from

the reconstructed track. In the penultimate group, we evaluate the time differences

in the waveform peaks of a DOM with the motivation that the second muon will have

a distinct peak at a later time, and thus for dimuons, we should expect higher time

differences. In the third and last category, we thought of features in which the DOM

coordinates are projected onto the reconstructed track plane. The inspiration behind

this approach is that in case of a dimuon event, one would expect two distinct clusters

of hits. Together, we devise 32 features in total. We also test the MC mismatch with

10% of IceCube data for all the features. Given the large dimensionality of the dataset,

we employ tools from feature engineering to remove features that do not provide any

extra gain or have no discrimination power, or are a poor match with data.

In the final part of the thesis, we utilize machine learning tools to perform the
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classification task. For the purposes of this work, we take the help of gradient-boosted

decision trees to boost the discrimination between dimuons and single muon events.

Specifically, we train the XGBOOST algorithm on our training dataset and validate it

against a validation dataset to check for signs of overfitting. We also removed features

that had the lowest ranks in the feature importance plot. We achieved a ROC-AUC

(Area under the Receiver-Operating curve) score of 0.78 and 0.77 for the signal and

background in the training and validation datasets. We established that the best

quality dimuon events in the testing sample have an AUC score of 0.86. We then

discuss the metric “Approximate Median Significance” to decide on the XGBOOST

score cut, which was optimized to 0.74. We finally test whether MC follows the data

in the score distributions.

For future prospects, the next task in line will be to check the variations of sys-

tematics on the BDT score distribution. We saw that the normalized opening angle

distribution has fewer charm events at higher angles. This would mean that one could

expect a different temporal separation pattern in the DOM hits. Using this informa-

tion, one might be able to distinguish between the tridents and charm muon events.

We leave this work to a future study. Also, one can then look at the 10 years of

IceCube data and compare the number of observed dimuon events against Standard

Model predictions.
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Appendix A: Track Frame
Construction

From the MuEx reconstruction, we have the information about the track vertex co-

ordinates, zenith θ and azimuthal ϕ angles. Note that the reconstructed track has

infinite length and the track vertex is put near the centre of gravity of the hit DOMs.

We define a track frame given by primed coordinates. The z
′
axis is taken in the

trajectory of the track. The unit vector in this direction is given as

ẑ
′
= (A,B,C) = (sin θ cosϕ, sin θ sinϕ, cos θ) (A.1)

We define a track plane perpendicular to z
′̂
at the location of the track vertex r⃗0 =

(x0, y0, z0). Let r⃗ = (x, y, z) be a point on this plane. The equation of the plane is

given by

Ax+By + Cz = Ax0 +By0 + Cz0 (A.2)

Now, we define two perpendicular axes (x̂
′
,ŷ

′
) in this plane. We take another point

r⃗1 on the plane given by

r⃗1 = (0, 0, D) = (0, 0,
Ax0 +By0 + Cz0

C
) (A.3)

The axes can now be specified as

x⃗
′
= (−x0,−y0, D − z0)

y⃗
′
= z⃗

′
× x⃗

′
(A.4)

The unit vectors can be found out as x̂
′
= x⃗

′
/|x⃗

′
| and ŷ

′
= y⃗

′
/|y⃗

′
|, where |.| represents

the magnitude. The specification of the x̂
′ − ŷ

′
plane is completely arbitrary. The
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locations of these axes is irrelevant for the K-Means algorithm as it only takes into

account the distances between the points and is invariant under rotations of x̂
′ − ŷ

′

axes. The track frame is now completely specified with origin at the track vertex

location. The vectors from this origin to the DOMs’ positions r⃗i are projected onto

the x
′ − y

′
plane. These projections x

′′
i and y

′′
i of ith DOM can be obtained as

x
′′

i = (r⃗i − r⃗0) · x̂
′

y
′′

i = (r⃗i − r⃗0) · ŷ
′

(A.5)

This gives the projections onto the track plane. For each event, this forms the dataset

for K-Means clustering.
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