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Abstract 

Diversity plays an important role in mitigating the effects of fading and improves the sys­

tem performance during signal transmission over fading channels. Selection diversity is 

widely employed in receivers due to its economical and practical designs. In dual selection 

diversity combining, the receiver chooses one diversity branch with larger amplitude from 

two branches. The diversity switching rate is useful in evaluating receiver outages due to 

switching transients. Moreover, the diversity switching rate provides useful information in 

the design of phase estimation in coherent demodulation. Power is also a concern in mobile 

terminals since switching branches consumes power. In this thesis, analytical solutions for 

switching rates are derived for a dual selection combiner operating on: correlated Rayleigh 

and Rician fading channels in a noise-free environment; independent and identically dis­

tributed (i.i.d.) K-fi and a-fx fading channels in the absence of noise; and independent 

Rayleigh and Rician fading channels with consideration of noise. 
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Chapter 1 

INTRODUCTION 

The 21^ century witnesses the dramatically increasing demands of wireless technology, 

which makes the workforce and the individual more mobile. Human beings benefit a lot 

from wireless products, such as cellular phones, personal digital assistant (PDA), Global 

Positioning System (GPS), etc. Current wireless systems give people easy access to mul­

timedia, such as voice, video and television when they are walking on the streets, driving 

on the highways and even traveling around the world. The fundamental requirement of 

the wireless technology is to provide high data rate. Meanwhile, limited spectral resources 

and exponentially growing population create many unsolved problems which make future 

wireless communications both challenging and intriguing. For instance, designing receiver 

systems to combat fading, which affects the quality of mobile service, arouses my research 

interest. 

This chapter is organized as follows. Section 1.1 introduces the multipath fading en­

vironment and the system models adopted in this thesis. In Section 1.2, dual selection 

diversity combining scheme is presented. Section 1.3 outlines my thesis and summarizes 

the contributions. 
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1.1 Multipath Fading 

In wireless transmission environments, the signal may take many paths from the transmitter 

to the receiver, including reflections and refractions caused by the local terrain features. 

Fig. 1.1 shows the multipath propagation of a signal from the transmitter to the mobile 

terminal in a wireless environment and a line-of-sight (LOS) path is present. In typical 

urban propagation environments, the transmitted signal undergoes much scattering before 

arriving at the receiver. At the receiver, the multiple replicas of the transmitted signal can 

add constructively and destructively. Thus, the received signal is a complex combination of 

variations of the received signal envelope, frequency and phase. The resultant signal fades 

rapidly and is characterized as short-term fading, which is considered in this thesis. 

The relative motion between the mobile terminal and the base station causes frequency 

shift of the received signal. This frequency shift is due to the Doppler effect, which is di­

rectly proportional to mobile speed. As the result of the Doppler shift, the bandwidth of the 

received signal is expanded. This phenomenon as well as the bandwidth of fading channel 

leads to the different types of fading. When the signal bandwidth is less than the chan­

nel coherence bandwidth, all frequencies in the transmitted signal have the same gain and 

phase shift due to multipath fading. This kind of channel introduces very little distortion 

of the desired signal, and this is known as flat fading. When the signal bandwidth is larger 

than the channel coherence bandwidth, the frequency components experience significantly 

different phase shifts and the signal amplitude varies as a function of frequency. This is 

known as frequency selective fading. In this thesis, we only consider flat fading. 

1.1.1 Homogeneous Scattering Environment 

Statistical models are commonly used to characterize the fading channels. We assume that 

the transmitted signals are vertically polarized and the signal propagation environment is 

2 
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Fig. 1.1. The multipath propagation of a signal from the transmitter to the receiver in a 

typical wireless environment where a LOS component exists. 

modeled as two-dimensional (2-D) [1]. The received band-pass signal can be expressed in 

the quadrature form as [1, eq. (2.10)] 

z(t) = gi(t)cos2nfct - gQ(t )sm2nfct (1.1) 

where 
N 

Sl^) = X CnCOS(j)n(t) 
n=l 

N 
SQ(t) = X C„sin0n(f) 

n=\ 

(1.2a) 

(1.2b) 



are the inphase and quadrature components, fc is the carreir frequency, Cn is the amplitude 

of the nth path, and <j)n(t) is the random phase. For sufficient large N, the central-limit 

theorem leads gi(t) and gg(0 t o approximate Gaussian random processes. 

Let E(-) denote the expectation, and the autocorrelation function of the received signal 

z(t) is defined as 

«DZZ(T) = E[z(t)z(t + x)]/2 

= ^gigi(T)cos2nfcT:-^gQ8l(^)sin27TfcT. (1.3) 

where 

^gQgM = %,gQ(-'c) (L 4 b) 

and T is the time delay. With 2-D isotropic scattering and an omnidirectional receiver 

antenna, (1.4a) can be evaluated as 

<s>gl8M = YJo{2nfDT) (L5) 

where Q.z is the average received signal power, /o(") is the zero-order Bessel function of 

the first kind and fo is the maximum Doppler frequency defined as 

fD = T (1-6) 

Ac 

where v is mobile speed and Xc is the wavelength of the carrier. The crosscorrelation, 

(1.4b), becomes zero, which means that the inphase and quadrature components are uncor­

rected Gaussian random processes. 

The power spectral density (PSD) function of z(t) is the Fourier transform of its auto­

correlation function given by 

SM) = " ' , ' =, I/-AI < A- 0.7) 



The nth spectral moment of the inphase and quadrature components, bn, n = 0, 1, 2, 

can be obtained from the PSD as 

rfc+fD 

Ifc-fD 

Substituting (1.7) into (1.8) yields 

bn = (2*)" [fe+ArSa(f)(f-fc)ndf. (1.8) 
Jfr-fn 

b0{2nfD)nh%5;A;^:n
l) neven 

K={ (1.9) 
rc odd, 

where Z7o = Oa7»7(0) 

1.1.1.1 Rayleigh Fading 

The received signal envelope can be written in complex form as 

z{t)=gi(t) + jgQ{t) = r{t)4B<!\ (1.10) 

where r(t) and 9 (t) are the envelope and the phase of z(t), respectively, and j2 = — 1. Under 

2-D isotropic scattering conditions, gj(t) and ggt/) are mutually independent identically 

distributed Gaussian random variables (RVs) at any time instant t with 

% / ] = E [ g d = 0 (1.11) 

Var[g7]=Var[se]=*o d-12) 

where Var[-] denotes variance. Then, r has the Rayleigh distribution with probability den­

sity function (PDF) given by 

/ s(r) = ^ e x p ( - £ ) , r > 0 . (1.13) 

The average power in r is M[R2] = 2bo. Fig. 1.2 shows a typical Rayleigh fading envelope 

generated by the fading channel simulator [2], whose statistical quality was documented 

according to the methods described in [3]. 



0.1 0.15 
Time (sec) 

0.25 

Fig. 1.2. Rayleigh fading signal envelope (mobile speed 40 km/h, carrier frequency 1.9 

GHz, b0 = l). 

1.1.1.2 Rician Fading 

In the case where gj(t) and gQ(t) are mutually independent identically distributed Gaus­

sian RVs with non-zero means, mgI and mgQ, respectively, i.e. there exists a specular or a 

LOS component, the fading is no longer described by the Rayleigh distribution. We again 

assume that gi(t) and gg(0 n a v e identical variance bo. Then the magnitude of the received 

complex envelope has a Rician distribution with PDF given by 

T I 1 -\~ Ct 
fR{r) = — exp 

bo 
hi — 

2&o J \po 
r > 0 (1.14) 



where 

a2 = ml+m2sQ d-15) 

is the power in the LOS component, and IQ(-) is the zero-order modified Bessel function 

of the first kind [4]. The Rice factor, K, is defined as the ratio of the power in the LOS 

component to the power in the scattering component given by 

a2 

K=—. (1.16) 
2bQ 

Then (1.14) can be written as 

AM = £ « P ( - ! ; - * H ^ ) . r~° (U?) 

Setting K — 0 yields Rayleigh fading since /o(0) = 1. 

1.1.2 Non-Homogeneous Scattering Environment 

1.1.2.1 K-n Fading 

Recently, [5] has proposed the K-JX distribution as a fading model which describes the short 

term signal variation of a fading signal in the presence of LOS components. The K-\X dis­

tribution is more realistic than other traditional distributions, such as Rayleigh, Rician and 

Nakagami-m distributions, since its derivation is completely based on a non-homogeneous 

scattering environment. The K-/J, distribution is a general physical fading model which 

includes Rayleigh, Rician, and Nakagami-m fading models as special cases. This fading 

model considers clusters of multipath waves propagating over a non-homogeneous environ­

ment and the received envelope, R, can be modeled in terms of the in-phase and quadrature 

components as 

«=iif t+ft)2+ift+ ? t)
2 (i.i8) 

V k=i jt=i 
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where Xu and Y^ are mutually independent zero-mean Gaussian random processes with 

E[A^] = EjY^2] = a2, pk and q^ are the means of the inphase and quadrature components 

of the multipath waves of cluster k, respectively, and k is the number of multipath clusters. 

Then K is defined as the ratio between the total power in the LOS components and the total 

power in the scattering components [6] 

„2 
K 

2na2 (1.19) 

where 

a2=l(pl + 4)-

The K-fA, distribution is also known as the generalized Rician distribution (see Appendix 

A). 

The PDF of the K-jX distribution is given by [5] 

fw) -71=1—;— v?) 
rK^rexp(^K') x r / 

x exp -M(1 + « )Q : 
/ / x - l 2jl^K(\ + K)r- (1.20) 

where 

r=^E[R2] = V2n(72 + a2 

is the rms (root mean square) value of R, K > 0, and fx > 0 is the real extension of integer 

n. 

1.1.2.2 a-/A, Fading 

Another useful fading model that has been reported recently is the a-/i model. The deriva­

tion of (X-]X fading model is based on considering clusters of multipath waves propagating 

in a non-homogeneous environment, and it is actually a version of the generalized Gamma 

distribution [7]. 

8 



The received Ct-jJ. fading signal envelope including n multipath clusters is given in [8] 

*"=£(**+#) (1.21) 
k=\ 

where a > 0 is the power parameter, and X^ and 1& are mutually independent zero-mean 

Gaussian random processes with Var[Z ]̂ = Var[I^] = a1. The corresponding PDF of the 

a-fx distribution is given in [8] 

f^ = -kiWexvV^) (L22) 

where }X > 0 is a real extension of the integer n, given by inverse of the normalized variance 

ofRa 

E2 [Ra] 
Var[Ra]' 

and 

is the a-root mean value of Ra. 

1.2 Dual Selection Diversity Combining 

There are several combining techniques used to improve the signal quality, such as selection 

combining (SC), switch-and-stay combining (SSC), maximal ratio combining (MRC) and 

equal gain combining (EGC). Selection combining diversity is the simplest technique of 

all and widely employed in receiver designs to mitigate the effects of deep fading. The 

principle of selection combining diversity is that the probability of multiple received signals 

being in deep fades simultaneously is much smaller than that of a single branch being in a 

deep fade, and the power of the resulting signal is strengthened. In dual selection combining 

diversity, the receiver chooses one diversity branch with larger signal amplitude from two 

9 



received fading branches. The output signal envelope from the selection diversity combiner 

at time t can be expressed as 

r(t)=max{ri(t),r2{t)} (1.23) 

where r\(t) is the received signal at antenna 1 and r2(t) is the received signal at antenna 2 

at time t. Fig. 1.3 shows the resulting signal from the selection diversity combiner. It is 

observed that the output signal designated by the solid line has shallower fades than either 

branch 1 designated by the dash-dotted line or branch 2 shown by a dashed line has, and 

the power in the output signal is much stronger than that in either branch. 

1.3 Thesis Outline and Contributions 

The remainder of this thesis is organized as follows. In Chapter 2, we introduce the most 

important concept, level crossing rate (LCR), behind the switching rate of selection diver­

sity combining. The idea of the switching rate arises from the concept of LCR. 

In Chapter 3, an analytical solution for the switching rate of a correlated dual branch se­

lection diversity combiner in Rayleigh and Rician fading is derived in the absence of noise. 

Balanced and unbalanced branches are considered. Numerical results are also presented 

for a space-diversity system with horizontally spaced omnidirectional antennas at a mobile 

station. 

In Chapter 4, a closed-form expression for the switching rate of a dual branch selec­

tion diversity combiner operating on K-JX and a-\x distributed fading channels is derived. 

Independent and identical distributed (i.i.d.) K-\I as well as a-\i fading channels without 

noise are adopted. The switching rates for dual i.i.d. Rayleigh, Rician and Nakagami-m 

fading channels are special cases of the switching rate for dual i.i.d. K-\x fading channels. 

Similarly, the general switching rates for dual a-\x fading channels also include special 

10 



cases such as Rayleigh and Nakagami-m fading channels. 

To this point in the thesis, we have only considered noise-free conditions in the deriva­

tion of the switching rates. In real wireless communication systems, however, noise is 

unavoidable and it degrades the quality of the received signal. In Chapter 5, the impact of 

noise on the switching rate of a dual branch selection diversity combiner is examined. A 

closed-form solution is derived for i.i.d. and independent and non-identically distributed 

(i.n.d.) fading channels. The switching rate in noisy fading channels is compared to that 

in noise-free conditions. At high signal-to-noise ratio (SNR), the switching rate in noisy 

fading channels converges to that in a noise-free environment, as expected. 

In the last chapter, we present a summary of this thesis and draw some conclusions. 

11 
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Fig. 1.3. Output signal envelope from a dual selection diversity combining system oper­

ating on i.i.d. Rayleigh fading branches (mobile speed 40 km/h, carrier frequency 1.9 

GHz, b0 = l). 
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Chapter 2 

Level Crossing Rate and Switching Rate 

The principle behind the concept of the switching rate is the level crossing rate (LCR). 

From Fig. 1.2, one can see the rapid fluctuations of a fading signal. The rate at which 

the time-varying amplitude of the faded signal crosses a threshold, or the level crossing 

rate, provides useful information for wireless system design engineers. This rate is random 

and, thus, its full characteristic would be given by the PDF of the level crossing rate. Yet, 

all that is known theoretically is the average level crossing rate, which is the first moment 

of the level crossing rate distribution. Therefore, the switching rate of selection diversity 

combining derived in this thesis is also the first moment of the switching rate distribution. 

2.1 Level Crossing Rate 

The level crossing rate at a threshold, Rth, is defined as the rate at which the fading signal 

amplitude crosses level, Rth, in a positive-going or negative-going direction. There is a 

large body of literature on the level crossing rate because of its practical importance. Let 

r denote derivative with respect to time, t, of r and the average level crossing rate, NRth, is 

given by [9] 
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NRlh= I rf(r = Rth,r)df (2.1) 
Jo 

where f(r,r) is the joint probability density function (JPDF) of r and r. (2.1) is a general 

expression that can be applied to any random process. 

The JPDF f(r, r) for a sine wave plus narrow-band Gaussian noise has been derived by 

Rice [l.eq. (2.91)] 

\/BbQ J-n 

x exP \ -7^r- \B{r2-2racosd + a2) + (b0r + biasmG)2} I (2.2) 
t 2Bbo J 

where a is defined in (1.15) and B = Z?ô 2 — b\ and bn is given in (1.8). For 2-D isotropic 

scattering, (2.2) can be evaluated as [1, eq. (2.97)] 

1 f f2 \ r ( j^ + a ,2 
ra 

= / W •/( ' )• (2.3) 

Apparently, it follows that r and r are independent from the above result. Substituting (2.3) 

into (2.1) gives the average LCR of Rician fading [1, eq. (2.99)] 

NR = ^2n(K+l)fD p exp [-K- (K +1 )p2] 70 {lpv^+1)) (2.4) 

where 

P = | ^ (2-5) 
vrms 

and 7?rmi = ^/Qz is the rms value of envelope. For Rayleigh fading, K = 0, (2.4) simplifies 

to 

A^M = \/27r/D P exp ( - p 2 ) . (2.6) 

Fig. 2.1 shows plots of the normalized average envelope LCR as a function of p and K. 

When K — 0, it specialized to the normalized average envelope LCR for Rayleigh fading. 
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Fig. 2.1. Normalized average envelope LCR. 

2.2 Switching Rate of Dual Selection Diversity Combining 

2.2.1 Motivation 

In dual selection combining diversity system, the combiner selects one diversity branch 

with larger signal envelope from two available branches. The switching rate of the diversity 

combining is required for evaluating receiver outages due to switching transients. That is, 

execution of switching antennas causes a transient in the receiver circuits, and the transient 

will corrupt any data signal present at the same time. If the receiver switches too often, 

much of the desired data can be lost due to the fact that each switching transient corrupts 
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the receiver filters [10], which is illustrated in Fig. 2.2. Also importantly, the switching rate 

provides useful information in the design of phase estimation in coherent demodulation 

receivers for system engineers. A coherent receiver needs to dwell on the received signal 

for some time in order to establish an accurate phase estimate for fading compensation. If 

the receiver encounters a very fast switching rate, there will not be adequate time for the 

receiver to produce an accurate phase estimate. Whether branch selection is implemented 

on a symbol, multiple symbol, block or frame basis is determined by the switching rate 

for accurate phase estimates [10], [11]. Power consumption is also a concern in battery-

powered mobile terminals since the operation of switching branches consumes power [12]. 

2.2.2 Derivation of Switching Rate 

We consider two diversity branches with fading processes Ri(t) and /?2(0- Form a n e w 

random process 

Z(t)=R1(t)-R2(t). (2.7) 

Note that a zero-crossing from Z(t) < 0 to Z(t) > 0 corresponds to a state where R\(t) 

is greater than /?2(0 following a state where ^ ( O is greater than Ri(t). This enables the 

receiver to switch from antenna two to antenna one. In the same manner, a zero-crossing 

from Z(t) > 0 to Z{t) < 0 leads to the receiver switching from antenna one to antenna 

two. Therefore, positive zero-crossings of Z(t) correspond to the receiver switching from 

antenna two to antenna one, and negative zero-crossings of Z(t) correspond to the receiver 

switching from antenna one to antenna two. Fig. 2.3 illustrates the branch switchings of 

dual selection diversity combining in dual i.i.d. Rayleigh fading. It is straightforward to 

observe when the switching occurs. 

Let Z(t), Ri(t) and ^ ( O denote derivatives with respect to time, t, of Z(t), R\(t) and 

R2(t), respectively. The selection combining switching rate, Rfw, equals the sum of the 
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Fig. 2.2. Illustration of the switching transient in dual selection diversity combining 

system. 

zero-crossing rates in both the negative-going and positive-going directions given by [10] 

Wzz(z = 0,z)dz+ zfZz(z = 0,z)dz (2.8) 
-oo JO 

where f(z,z) is the JPDF of z and t For time-continuous signals, the negative-going and 

positive-going crossing rates are identical due to physical symmetry. Thus, (2.8) can be 

further simplified as 

Rs
s
c
w = 2[zfzt(z = 0,z)dz. (2.9) 

Eq. (2.9) is a general expression for switching rate of dual selection diversity combining 
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Fig. 2.3. Illustration of the branch switchings of selection diversity combining in dual 

i.i.d. Rayleigh fading. 

applied to any fading scenario. 
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Chapter 3 

Switching Rates of Dual Branch 

Selection Diversity in Correlated 

Doppler Fading 

Published literature on selection diversity switching rate is rare. References [11] and [13] 

examined the switching rate of a selection diversity receiver where M out of N independent 

diversity branches are combined, and references [10] and [14] studied the switching rate of 

dual selection diversity combining. Both of them, however, considered only independent 

diversity branches. Reference [12] examined a parameter called the "switching rate", which 

is different from the switching rate studied in this paper. The so-called "switching rate" in 

[ 12] applies to a particular discrete time implementation of selection combining or switched 

diversity, while the switching rate in this thesis considers the continuous time scenario, as 

also examined in [10], [11], [13] and [14]. References [15], [16] and [17] examined the 

average LCR of the output signal from a dual diversity combiner in correlated Rayleigh 

and Rician fading channels, but did not examine the switching rate. 

In practical communication systems, the fading signals received at the different anten-
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nas may be correlated. If space diversity is used at a mobile station, the average LCR will 

be affected by the angle between the direction of vehicle motion and the axis of the antenna 

array [15]. In this chapter, we consider restricted space applications, where the correlation 

between the two fading branches must be taken into account. A closed-form expression for 

the selection diversity switching rate is derived for dual correlated fading channels in the 

absence of noise. Both balanced and unbalanced Rayleigh and Rician fading channels are 

considered. Numerical results are presented for a space-diversity system with horizontally 

spaced omnidirectional antennas at a mobile terminal. 

3.1 Dual Correlated Rayleigh Fading Channels 

3.1.1 System Model 

The state-of-the-art theory on switching rates presently considers only the noiseless chan­

nels [10], [11]. Chapter 5 will investigate the case with noise. In a noise-free Rayleigh fad­

ing channel, the normalized received complex signal envelope at the ith antenna (i = 1,2) 

is modeled as [16] 

Si{t) = ^ e ^ \ Rt>0 (3.1) 

where t denotes time, St(t) is a zero-mean complex Gaussian random process with unit 

variance, R{(t) has a Rayleigh distribution with average power £2, = K[Rf] and the phase 

€>,(/) is uniformly distributed on (0, 2n\. 

3.1.2 Derivation of Analytical Expressions for Switching Rate 

Define @12 = &2 - ®i • Then 

r27l r<x> 

/zz(<U) = / 0 JQ /zz«101 2fen-r2 = O,r1,012)dr1d012 (3.2) 

20 



where /zzR1©12fe
z>ri'^i2) ls m e JPDF of Z, Z, i?i and ©12. Define the four-dimensional 

transformation 

Z = Z (3.3a) 

R2 = Ri-Z 

612 = 612. 

The Jacobian of the transformation (3.3) is given by [18] 

J(Z,RuR2,Ql2) = 

dz 
dz 

Hz 
dz 
dz 

d&n 
dz 

dz 
5̂ 7 
dRi 
~d~R^ 

dz 
dRi 

d&n 
dRi 

dz 

dRi 
~5T2 

dz 
dR2 

d&n 
dR2 

dz 
'd&u 

dRx 

d®n 

dz 
d&n 
d&n 

d&n 

where denotes determinant. Combining (3.3) and (3.4) yields 

J(Z,RuR2,Ql2) = 

1 0 0 0 

0 1 0 0 

0 1 - 1 0 

0 0 0 1 

= - 1 . 

Now, we obtain 

(3.3b) 

(3.3c) 

(3.3d) 

(3.4) 

(3.5) 

/zR1i?2012fe
ri,r2,0i2) - \j(Z,Ri,R2,el2)\fzRlzQl2(z,n,n -r2,0i2) 

= /zfl1Z012(z> rl> rl-7-2,012)- (3-6) 

Since Z = R\ — R2 — 0 is required, (3.6) can be written as 

fiR^&n(iir\,r2 = ru6n)= fZRlZQl2(z,n,0, 012). (3.7) 
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Substituting (3.7) into (3.2) gives 

/zz(0,i) = / o Jo fzRlR2el2(z,n,r2 = ruel2)dridei2 (3.8) 

where fzRlR2en(z,ri:r2,9l2) is the JPDF of Z, Rh R2 and 0 1 2 . 

Combining the identity fzRlR2@n{z,ri,r2, Bi2)=fi\RlR2e12(i\
rur2,^//^e^Oi,^, ©12) 

with (2.9) and (3.8) yields 

'*fz\RiRi&„(z\rhr2 = rhen)dz 
(3.9) 

Rsw = 2Jo Jo JQ zfzlRlR2Qn{z\rhr2 = rh612)dz 

x fRiR2®n(n,r2 = ru 0i2)drid0i2. 

Next, we will find the expressions for f(z\ri,r2 — ri,di2) and f(ri,r2 = ri,6\2), respec­

tively. 

The JPDF ofRi,R2,el2 is given by [16] 

2r\r2 
fRlR2®n{r\-,r2,6\2) 

Q,xa2n(l-\pn\
2) 

x exp 
1- IP12P 

where 

Pl2(x)=E[St{t)S2(t + T)] 

is the crosscorrelation coefficient between S\ and S2, and 

Pl2=Pl2(0) . 

N o w / z i ^ ^ G n ^ l n , ^ , ^ ^ ) is given by [15] 

fz\R,R2@n(z\n,r2,9i2) 
1 

V^rd^(ri7^0i2) 
r z-w(n , r2 ,0 i2) ] 2 

2cr2(n,r2 ,0i2) x exp < — -

where m[r\, r2,6i2), 62(r\, r2, &i2) can be obtained in the following. 

(3.10) 

(3.11) 
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From (3.1), the derivative of Ri with respect to time can be written as 

Ri = V ^ R e \Si e~J@i (3.12) 

where Re[-] denotes real part. The expectation of Ri conditioned on S = [Si, S2] is given 

by [16] 

E [Ri\S] = V ^ R e [E[5,-|S] e'-10'} . (3.13) 

Then one has 

E[2 |S]=E[#i |S] -E[ /* 2 |S] . (3.14) 

Combining (3.13) and (B-4) with (3.14) and after some algebraic manipulations yields 

m(rhr2,0i2)=E[Z\S] 

_(r1+r2)Re[p*2pi2] 

I-IP12P 

1-IP12I2 

The conditional variance and covariance of Ri and i?2 can be obtained as 

Var [Rt\S] = G,-Var [S,-|S] 

Cov Rl,&2 = v ^ i ^ R e I Cov Si,S2 

It follows that 

Var Ri —R2 = Var [Ri |S] + Var [R2\S] - 2Cov 

= QiVar [Si |S] + &2Var [S2|S] 

- 2 v / ^ 1 ^ 2 R e | c o v SUS2 

Combining (B-3) with (3.17) yields 

JOu 

Ri,Ri 

M 2 

CT2(n,r2,0i2)=Var R1-R2 

Q l + ° 2 ^ , |Pl2 
Pll + 

1-|P12|2 

VAO^Re 
I-IP12I2 

(3.15) 

(3.16) 

(3.17) 

(3.18) 
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Then 

f 
Jo 

2/Uki , r2 = n , 0 i 2 ) d z = 7== exp 
0 \/27T 

m(n,r2 = r 1,612) 
H ierfc 

m2(n,r2 = n,6i2) 
2d-2(ri,r2 = ri,0i2)_ 

m(ri,r2 = ri ,9i2) 

\ /2o-(n,r2 = r i ,0i2) 
(3.19) 

where (3.19) is obtained using [4, eq. (3.462.5)] and erfc(-) is the complementary error 

function [4, p. 888 ]. Combining (3.10), (3.11) with (3.9) yields an exact expression for the 

switching rate. 

Considering the case p\2 = p\2 = p\2 = 0, the two Rayleigh fading channels become 

independent. Then (3.9) can be simplified as 

V2^i^2 nS 
A c :X/D- (3.20) 

sw ( Q i + a 2 ) ' 

When Qi = Q2, the two branches are independent and identically distributed. Otherwise, 

the two branches are independent and non-identically distributed. The switching rates given 

by (3.20) for dual selection diversity for both i.i.d. and i.n.d. cases agree with results 

previously reported in [10]. 

3.2 Dual Correlated Rician Fading Channels 

3.2.1 System Model 

In a noise-free Rician fading channel, the received complex signal envelope at the ith an­

tenna is modeled as [17] 

Si(t)=Ri(t)ei*'®=Xi(t) + jYi{t) (3.21) 

where 

Xi = RiCosQj 

24 



and 

Y{ = RisinQi 

are independent Gaussian Random Variables (RVs) andXi, X2, Y\ and Y2 are jointly Gaus­

sian RVs with 

E[Xi]=mXi, E[Yi}=mYl 

and 

Vax[Xi]=Var[YA = a?. 

Then Rj(t) has a Rician distribution with Rice factor 

Kt = 
m2

x. + m\ 

2(7, 2
 -

3.2.2 Derivation of Analytical Expressions for Switching Rate 

The JPDF of RuR2,@i and 6 2 is given by [17] 

fRiR2eie2(n,r2,di,62) = 

=exp 
(r —m) rb J(r —m) 

(3.22) 
(27r)2A/det(b) 

where r = [rjcosSi r i s ing r2cos02 r2sm02]r> a n d mean vector m and covariance matrix b 

are given in Appendix C. 

The corresponding PDF of f(z\n,r2,6\, 62) is given by [17] 

fz\RlR2Ql@2(z\rhr2,eh62) = 

x exp 
[z-m(r)Y 

2d2(r) 
(3.23) 

y/2no2(r) 

where R = [^jcos©! Rism&i R2cosQ2 R2sinQ2]
T, m(R) = E[Z|R] and cr2(R) = Var[Z|R] 

can be obtained by 

m(R) = mi (R) - rh2(R) (3.24a) 
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a2(R) = <T2(R) + d2(R)-2<72
2(R) (3.24b) 

where m ;(R), of (R) and o/y(R) are given in [17, (6a)-(6c)] 

rhi(R) = E [Xt |R] cos0 ; + E [£• |R] sin©,- (3.25a) 

of (R) =Var [Z(-|R] cos20 ( + Var $ | R ] sin20; 

+ Cov{il-,J-|R}sin20,- (3.25b) 

a$(R) = Cov{ii,^/|R}cos0,-cos0]/- + Cov{ii,y/|R}cos0l-sin0i/-

+ Cov{^,X ;|R}sin0 ;cos07- + Cov{F;-,y/|R}sin0isin07-. (3.25c) 

Combining the results in Appendix C with (3.25), one can get the quantities o2(R) and 

m(R). 

Then the exact expression for the switching rate is 

p27t rill r°° 

Rfw = 2 / / R+(rl,r2 = rhdl,d2)f(rur2 = rl,dl,d2)dr1ddld62 (3.26) 
JO JO JO 

where 

R+(n,r2 = n,6i,92)= / zf(z\n,r2 = n,6i,62)dz 
Jo 
&(ri,r2 = n,6i,62) 

+ 

2n 
m(n,r2 = n,6i,92) 

exp 

erfc 

m2(n,r2 = ri,eue2) 

_ '2G2(n,r2 = n,eh92)_ 
m(ri,r2 = n, 61,62) 

V2a(rur2 = rl,e1,92) 
(3.27) 

Considering the case p\2 = f>\2 = p\2 = 0, (3.26) yields the same results given in [10, Table 

I] for Rician fading, as required. 

3.3 Numerical Results 

Numerical examples are presented for a space diversity system with horizontally spaced 

omnidirectional antennas at the mobile station under a 2-D isotropic scattering environment 
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[16] 

P H ( T ) =J0(2nfDz) (3.28) 

PI2 (T) = Jo 2n\ (fDt)2 +[j)- 2 /bT-cosa 

(3.29) 

pn = -2(rc/b)2 (3.30) 

p12 = Jo[2njj (3.31) 

P12 = 2nfDJx ( 2K- J cosa (3.32) 

P12 = (2^/D) 2 
i(2rc£) ( d\ , ' 

j ^ c o s 2 a - T o ( 2 ^ y I cos a 
2TTJ V ^ / 

(3.33) 

where /„(•) is the nz/l order Bessel function of the first kind, d is the antenna spacing, A 

is the carrier wavelength, and 0 < a < ^ is the angle between the antenna axis and the 

direction of vehicle motion. The antenna configuration is illustrated in Fig. 3.1. 

In the numerical results, the switching rate is normalized by the Doppler frequency and 

we define ca = o^/oi- Overall, Figs. 3.2 - 3.7 show that the switching rate for correlated 

dual diversity branches can be either greater or lesser than that for the case of indepen­

dent diversity branches, depending on the angle a and the antenna spacing. It is observed 

that the switching rate of dual correlated branches converges to the switching rate of dual 

independent branches as j —> °°, as expected. 

Fig. 3.2 gives a comparison of normalized switching rates of dual selection combining 

for balanced correlated Rayleigh fading diversity branches for different values of the an­

tenna angle, a, with the normalized switching rate of dual i.i.d. fading. Fig. 3.3 shows a 

comparison of normalized switching rates of dual selection combining for unbalanced cor­

related Rayleigh fading diversity branches for different values of a with dual i.n.d. fading. 

Comparing the results in Fig. 3.3 with those in Fig. 3.2, one sees that a large unbalance 
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Antenna 1 Antenna 2 

Fig. 3.1. The antenna configuration. 

between the antennas causes the switching rate to be smaller; this is true for both the inde­

pendent case and the correlated case because the antenna with the greater power becomes 

preferred. Furthermore, the switching rate for a = f is close to the switching rate for inde­

pendent diversity branches and the antennas appear more "uncorrelated" because they are 

not in the same direction. Fig. 3.3 further indicates that in the case of large unbalance, with 

correlated diversity branches, the switching rates also vacillate around the switching rate 

for independent diversity branches. 

For correlated Rician fading scenarios, the normalized switching rates are affected by 
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the antenna angle, a, the antenna spacing, the Rice factors, Kit and the scatter powers, 

(jj. For simplicity, one considers the case my1 = niY2 = 0. Fig. 3.4 gives a comparison 

of normalized switching rates of dual selection combining for balanced correlated Rician 

fading branches with different values of the antenna angle, a, and dual i.i.d. fading. As 

the Rice factor Kt increases, the normalized switching rate decreases. Fig. 3.5 gives a 

comparison of normalized switching rates of dual selection combining for correlated Rician 

fading branches with equal Rice factors for different values of the antenna angle, a, and 

dual independent fading. One sees that a large unbalance between the antennas leads the 

switching rate to be smaller because the antenna with the greater power is preferred for 

both independent and correlated fadings. Fig. 3.6 shows a comparison of normalized 

switching rates of dual selection combining for correlated Rician fading branches with 

equal scatter powers for different values of the antenna angle, a, and dual independent 

fading. The normalized switching rates have large vacillations for correlated Rician fading. 

Fig. 3.7 shows a comparison of normalized switching rates of dual selection combining for 

correlated Rician fading branches with unequal scatter powers and unequal Rice factors for 

different values of the antenna angle, a, and dual independent fading. The switching rate 

for a = f is generally closest to the switching rate for independent diversity branches. 
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Fig. 3.2. Comparison of normalized switching rates of dual selection combining for 

balanced correlated Rayleigh fading branches with different values of the antenna 

angle, a, and dual i.i.d. fading (Q\ =Q>2 = 0.5). 
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Fig. 3.3. Comparison of normalized switching rates of dual selection combining for 

unbalanced correlated Rayleigh fading branches with different values of the antenna 

angle, a, and dual i.n.d. fading (Q,\ = 0.1, Q.2 = 0.9). 
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Fig. 3.4. Comparison of normalized switching rates of dual selection combining for 

balanced correlated Rician fading branches with different values of the antenna angle, 

a, and dual i.i.d. fading (o\ = 02). 
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Fig. 3.5. Comparison of normalized switching rates of dual selection combining for 

correlated Rician fading branches with equal Rice factors for different values of the 

antenna angle, a, and dual independent fading. 
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Fig. 3.6. Comparison of normalized switching rates of dual selection combining for 

correlated Rician fading branches with equal scatter powers for different values of the 

antenna angle, a, and dual independent fading (K\ = 1, Ki = 5, <Ti = a-i). 
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Fig. 3.7. Comparison of normalized switching rates of dual selection combining for corre­

lated Rician fading branches with unequal scatter powers and unequal Rice factors for 

different values of the antenna angle, a, and dual independent fading (K\ = 1, K2 = 5, 

ca = 1/3). 
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Chapter 4 

Switching Rates of Two-Branch 

Selection Diversity in K-/JL and a-fi 

Distributed Fading 

The K-fX distribution proposed by [5] provides a better fit to field measurements than Ri-

cian and Nakagami-m and it describes the small scale variation of a fading signal with the 

existence of a LOS path. When fx = 1, the K-pL distribution becomes the Rician distribution 

with K as the Rice factor. Furthermore, if K = 0, the K-/A distribution is equivalent to the 

Rayleigh distribution [6]. Reference [5] has shown that the K-JX distribution is exactly the 

same as the Nakagami-m distribution as K —> 0. Moreover, the K-/x distribution fully de­

scribes the characteristics of the fading signal in terms of measurable physical parameters. 

The a-{X distribution is considering non-linearity of the propagation medium and clus­

ters of multipath waves, which also provides a good fit to field measurement data [7]. By 

setting a = 2, the a-fx distribution is specialized to the Nakagami-m distribution. Further­

more, by setting fj. = 1, the Rayleigh distribution is obtained. 

References [6] examined the level crossing rate and average fade duration of the K-JX 
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fading signal, while [8] examined the level crossing rate and fade durations for diversity 

systems of the a-jx fading channels. Both, however, did not study the switching rate of 

selection diversity combining. In this chapter, an analytical expression for the switching 

rate is derived for dual selection diversity combining. Dual i.i.d. K-JI and a-fx fading 

channels are adopted, and numerical results are presented. 

4.1 Dual K-JI Fading Channels 

The definition of conditional probability density function is given by [18] 

fzz(z,z)=fzlz(z\z)fz(z). (4.1) 

One can simplify (2.9) using (4.1) 

poo 

Rfw = 2fz(0)JQ zfz[z(z\z = 0)dz. (4.2) 

Reference [6] has shown that the fading envelope Ri(t) is independent of derivative process 

Ri(t). It follows that the fading processes Z(t) and Z(t) are also independent, that is, 

f(z\z) — f(z) and (4.2) specializes to 

poo 

Rfw = 2fz(0) tfz(z)dz. (4.3) 
Jo 

In order to evaluate (4.3), fz(z = 0) is required. Define the two-dimensional transformation 

Z = Ri-R2 (4.4a) 

Ri=Ri. (4.4b) 

The Jacobian of (4.4) is J = 1. Using the fact that R\ and i?2 are independent gives 

fzRi (z, n) = fRxRl (n ,n-z)= IRX (n )/*2 (n - z). (4.5) 
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Then one has 
y»00 

/z(0)= / /ZRl(z = 0,n)dri 
Jo 

= / /tfi(n)/*2(n)dri. 

When the two fading branches are i.i.d., (4.6) specializes to 

Using the relation [4, (8.406.1)] 

/z(0) = / [fR(r)]zdr. 
Jo 

In(z)=rnUjz), 

(1.20) can be written as 

©' 
x exp -M(l + K)^)2 f C % 1 [ ^ v / K ( l + K 

Substituting (4.9) into (4.7) yields the quantity /z(0) 

MO) = 
r° 4/i2(l + K ) ^ + 1 /r\2ju 
/o r2^^1exp(2iUK:) W 

x exp dr 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

_ 2 3 / 2 ~ 2 y i u( l + K) T{2pc - 1/2) 
rexp(2,UK:) r2(ju) 

x 3F3(V--,IA,2IA--;H,LI,2H-1;2IXK) 

where [4, (6.633.5)] is used to obtain the integral result and the integration requires fj, > | ; 

otherwise the integral (4.10) can be evaluated by numerical integration. The expression for 

(4.10) 
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3F3 (/x - 2,M,2jU - |;/x,/i,2/i - 1;2JUK:) can be simplified using [4, (9.14.1)] 

3̂ 3 {li--,H,2n--;n,n,2n-l',2nK 

= y (M-2MM)jfc(2/̂ -2)t(2/iK:)t 

= y (M-|M2M-2)^(2M^ 
£ 0 (n)k(2n-l)k k\ 

= 2F2I fi--,2n--in,2n-l;2iJ.Kj (4.11) 

where 

(a)k = a(a + \)...(a + k-l) = I ^ ± ^ 

is the Pochhammer symbol [4]. Now, (4.10) can be written as 

2 3 / 2 - 2 M ^ ( 1 + K) T(2H - 1/2) 
/z(0) rexp(2fXK) T2(^i) 

x 2F2(n--,2fi--;n,2^-U2^K). (4.12) 

The integral in (4.3) is given by [6] 

r*fm* r t o-v( 
./0 ^0 V27T<72 \ 

CTZ 
\/27r 

where [4, 3.461.3] is used and 0% is given by [6] 

' & 

. H 
dz 

(4.13) 

4 = 2al = 4n2a2fl 

Combining (4.12) and (4.13) with (4.7) yields an analytical expression for the switching 

rate normalized by the maximum Doppler frequency 

Rfw/fn =22(1^)V^exp(-2MK) r ( 2^2 (^
1

)
/ 2 ) 

x 2*2 ( ^--,2^--;II,2H-U2^K). (4.14) 
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Considering /U = 1, and replacing K with the Rice factor K, one can simplify (4.14) to 

obtain the normalized switching rate for dual i.i.d. Rician fading channels as 

RSsw/fo = ^ e x p ( - 2 £ ) 2F2 Q , | l , l ; 2 / ^ ) . (4.15) 

Eq. (4.15) agrees with the result given in [10, Table I]. Setting K = 0 and using the 

fact, 2F2(-, S •: -;0) = 1, yields the normalized switching rate for dual i.i.d. Rayleigh fading 

channels as 

Rfw/fD = ^ . (4.16) 

Eq. (4.16) agrees with the result given in [10, Table I]. As K —» 0, replacing \i with 

Nakagami parameter, m, one can write (4.14) as 

Rfw/fD = V^25^T^H^. (4.17) 

Eq. (4.17) is the normalized switching rate for dual i.i.d. Nakagami-m fading channels and 

it agrees with the result given in [10, Table I]. Note that /i > \ is required to validate (4.14), 

which is satisfied by m > \ [10]. While (4.15), (4.16) and (4.17) have been reported in [10], 

(4.14) is a new unifying result that is more general than previous results and includes them 

as special cases. 

4.2 Dual a-\i Fading Channels 

In this section, we will derive the closed-form expression for the switching rate of selection 

diversity combining in dual a-jj. fading channels. Eq. (2.9) can be written as 

nOO /»00 

Rfw = 2i Jo ^WO^'Odndz. (4.18) 

Combining the identity fzRiR2 (z, n, r2) = fz\RlR2 (i\ n, r2)fRlR2 (n, r2) and the fact Z = i?i -

R2 = 0 with (4.18) yields 

Rfw = 2J J zfz\RlR2(i\rhr2 = r1)fRlR2(r1,r2 = n)drldz. (4.19) 
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One has the expression for f±\RxRz (z|ri, r2 — n) given at [8] 

.2 
fzlRlR2(ih,r2 = n) = - ^ e x p ^ I (4.20) 

where 

/ 2-ai r 2-a 2 \ 

Note that a^ depends on R\ and R2. Then (4.19) becomes 

/ ^ = 2 / -^ /* 1 / j 2 ( r i , /^ = r1)dr1. (4.21) 

Since i?i is independent of R2, we have 

/J?1*2(/-i,r2 = ri)=/ i ?1(ri)/ /j2(ri). (4.22) 

Here, we consider dual i.i.d. fading signals, i.e. f^ (n) = fR2(r2). Substituting (1.22) and 

(4.22) into (4.21) yields an exact normalized switching rate for dual a-fx fading signals 

„sc ,* o CTZ r«2M2MriaM~1 ( 2^r\\, R™/fD =2vki ^ O i ) e x p ( " ^ ) d r i 

2 5 / 2 " 2 ^ r f2M4) (4-23) 
r2(M) V ̂  2, 

where [4, (3.478.1)] is used to obtain the integral result and the integration requires jU > | ; 

otherwise the integral (4.21) can be evaluated by numerical integration. It is noted that 

(4.23) depends only on the parameter [i, and (4.23) can be obtained by setting K = 0 in 

(4.14). Replacing [X with Nakagami parameter m yields 

o5/2-2m HZ / i \ 

which is the normalized switching rate for dual i.i.d. Nakagami-m fading channels in agree­

ment with (4.17). As a second special case, one obtains (4.16) by setting \i = 1 in (4.23). 
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4.3 Numerical Results 

A closed-form expression for the switching rate of dual selection combining in dual i.i.d. 

general K-fi and a-pL fading channels has been derived. Sample numerical results are 

presented by specializing K and pi in the K-pL distribution and pi in the a-pi distribution. 

Fig. 4.1 gives the normalized switching rates of dual selection combining in i.i.d. K-pi 

fading branches with fixed values of parameter, pi. In general, the normalized switching 

rates decrease as the parameter, K, increases. When jx = 0.5, the normalized switching 

rate decreases exponentially, which is expected since 2 ^ 2 ( 0 , 0 . 5 ; 0 . 5 , 0 ; K : ) = 1 in (4.14). 

When pi = 0.8, 1, and 4, the normalized switching rates are almost invariant for K > 1.5. 

Fig. 4.2 gives the normalized switching rates of dual selection combining in i.i.d. K-pi 

fading branches with fixed values of parameter, K. When K — 0, the result is exactly the 

same as the normalized switching rate for dual i.i.d. Nakagami-m fading channels. When 

K = 1, 2, 3, and 5, the normalized switching rates have their minima at pi = 0.5, and they 

are invariant as pi becomes larger. Fig. 4.3 shows a comparison of theoretical and simulated 

normalized switching rates of dual selection combining in i.i.d. K-pi fading branches for 

[1 = 2. There is excellent agreement between the simulation results and the theoretical 

results. Fig. 4.4 shows a comparison of theoretical and simulated normalized switching 

rates of dual selection combining in i.i.d. a-pi fading branches. As expected, the result is 

the same as the normalized switching rate for dual i.i.d. K-pi fading branches with K = 0. It 

again is observed that the simulation results have excellent agreement with the theoretical 

results. 
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Fig. 4.1. Normalized switching rates of dual selection combining in i.i.d. K-JX fading 

branches with fixed values of parameter, jx. 
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Fig. 4.2. Normalized switching rates of dual selection combining in i.i.d. K-ji fading 

branches with fixed values of parameter, K. 
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Chapter 5 

Switching Rates of Dual Selection 

Diversity in Noisy Fading Channels 

So far, we have only considered fading channels in the absence of noise. In practical com­

munication systems, the transmitted signal is contaminated with noise, which is random 

and unpredictable. Noise is generally divided into two categories, external noise and inter­

nal noise. External noise includes interference from nearby channels, human-made noise, 

automobile ignition, lightning and so on. Such noise can be minimized or even eliminated 

with proper techniques. On the other hand, internal noise results from the thermal motion 

of electrons, random emission and diffusion of charged carriers in electronic circuits. With 

proper techniques, the effects of internal noise can be reduced, but can never be elimi­

nated [19]. 

Noise is unavoidable and it degrades the quality of signals and systems. Branch switch­

ing in selection diversity is affected by noise. Therefore, it is essential to investigate the 

behavior of the switching rate in noisy fading channels. Yet, no published literature ex­

amines diversity switching rate in noisy fading channels. Reference [20] examined the 

inphase zero crossing rate, inphase rate of maxima, phase zero crossing rate, and the in-
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staneous frequency zero crossing rate of selection diversity combining in noisy Rayleigh 

fading channels, but did not examine the switching rate. In this paper, an analytical expres­

sion for the switching rate is derived for dual selection diversity combining in the presence 

of noise. Both i.i.d. and i.n.d. cases are considered, and numerical results are presented. 

5.1 System Model 

We consider the following system model. The received lowpass complex signal envelope 

at the ith antenna (i = 1,2), si(t), is bandlimited by a receiver filter with a bandwidth of 

Bw Hz greater than or equal to the maximum Doppler frequency and corrupted by additive 

complex noise, n,-(f), to yield 

Ci(t) = si(t)+ni(t) (5.1) 

where si(t) is a complex Gaussian random process representing channel gain, n,(r) is a 

zero-mean complex Gaussian random process representing additive noise and si(t) and 

rii(t) are mutually independent. In the case of Rayleigh fading, s, is zero-mean whereas in 

the case of Rician fading, it is non-zero mean. The noise «,• is bandlimited with bandwidth 

Bw Hz, and has a two-sided power spectral density of N0/2 watts/Hz. The resulting total 

power of tii is N0BW watts. Note that (5.1) can be written in complex form as 

ci(t)=xi(t)+jyi(t) = ri(ty
e<V (5.2) 

where xt(t) and yt(t) are inphase and quadrature components, respectively and r,-(f) and 

6i(t) are the envelope and the phase of ci(t), respectively. Fig. 5.1 shows the PSD of the 

received signal ci{t) [21]. 

The autocorrelation function of the received complex envelope c,-(f) is defined as 
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Fig. 5.1. Power spectral desity of received signal envelope and bandlimited Gaussian 

noise for a 2-D isotropic fading channel with an omnidirectional antenna (after [21, 

Fig. 1]). 

and its power spectral density is given as SCiCi(f). The nth spectral moment of c,-(f), bi>n, 

n = 0, 1, 2, • • •, is given by [20, eq. (5)] 

bUn = (2*)» f_JnSCiCi{fW = ^ ^ (5.3) 
T = 0 

Let 2of be the power in si. For a 2-D isotropic scattering environment, the values of 

bs o and b; 2 are given by [20] 

ho = of + 
2 , N0BW (5.4a) 
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bv = 27?a?fi+**^. (5.4b) 

5.2 Rician Fading Channels 

In the case where si(t) in (5.1) is a complex Gaussian random process with non-zero mean, 

i.e. there exists a specular or a LOS component, Xj(t) and v,-(f) in (5.2) are also Gaussian 

random processes with non-zero means, mXi and myi, respectively. We assume that xi(t) and 

yi(t) are uncorrected and have identical variance bitQ. Then the magnitude of the received 

complex signal envelope has a Rician distribution given by [1, eq. (2.45)] 

where 
2 ? 2 

a,- = mt. + rrc,. 
1 xi yi 

is the power in the LOS component. The Rice factor, Ki, is the ratio of the power in the 

LOS component to the power in the scattering component given by 

Define the SNR, yj, as 
a? + 2o-,2 

Yi = ^N~R^- ( 5 / 7 ) 

In the case where two fading channels are independent, the expression for dual selection 

diversity switching rate is given by (4.3) 

Rfw = 2fz(0) Tifzim (5.8) 
Jo 

where 

/ z ( 0 ) = / fRl(r)fR2(r)dr. (5.9) 
JO 
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Putting (5.5) into (5.9) gives 

~ T ^ I + ^ f )-KiPi-K2p2 2 \af o* 
/z(0) = f -J-jftfto* \-r (\ + h 

x /0 f ^ - f r V ^ l /o ( ^ ^ 2 K 2 \ dr. (5.10) 

When the scattering components are statistically identical, i.e. C\ — a2 = o and the 

Rice factors are the same, i.e. K\=K2 — K, (5.10) can be solved in closed-form. One has 

^ ( 0 ) = iT^f j3 2 exp ~?{^)~2KP x / o ( ^ / 3 V ^ ) d r . (5.11) 

Using (4.8) and [4, (6.631.1)], (5.11) can be evaluated as 

/z(0) = 
o o 

lip 

r/32exp —r 
J8 2K$ x4{J—pV2K)dr 

^ exV(-2PK)3F3d,l,l;l,l,U2KP (5.12) 

and using [4, (9.14.1)], (5.12) can be further simplified as 

/2(0) = ^exp(-2W£(MW|efff 
1\ ^ 

v^exP(-2i3^yiiMl)iW)! 

^ e x p ( - 2 / 3 A 0 2F2(\\-,l,l-2K$ (5.13) 

Since the noise ni is independent of si, independence between r; and r; holds. Then 

from (2.7), i has a Gaussian distribution with zero-mean because r\ and r2 are independent 

zero-mean Gaussian processes [10]. The PDF of r, is given by [1] 

1 
Utfi) = 

Then, one obtains the PDF of Z as 

\/2nhK 
=exp I — 2bt,2 

(5.14) 

Mi) = 
2%G; 

exp - 2a} 
(5.15) 
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where 

o"i = 6 1 , 2 + 62,2 

= 2n2fUaf 
3\ jb 

1 

ft 
+ CT2

2 ' + 1 fo) VA 

(5.16) 

Substituting (5.15) into the integral in (5.8) yields 

z 
z/z(z)dz = 

0 JO lllGi 
exp 

" 2 < 
dz 

2?r 
(5.17) 

where [4, (3.461.3)] is used. Combining (5.17) and (5.13) with (5.8) yields an exact ex­

pression for the switching rate of dual selection diversity in noisy Rician fading channels. 

For dual i.i.d. diversity branches, the switching rate normalized by fp is simplified as 

2Ky 
Rfw/fo = n-yj-

2{Y+K+l) exp 

2Ky 

Y+K+l 

X2F2{1232'hU
Y + K+l h(%)<K+l)-1 (5.18) 

It is observed that the normalized switching rate of dual selection diversity in noisy i.i.d. 

Rician fading channels depends on the Rice factor, the signal-to-noise ratio, and the ratio 

of the bandwidth of the receiver filter to the maximum Doppler frequency. At large values 

of SNR, (5.18) becomes 

lim Rfw/fD 

lim %A — r-exp I — 
Y-- V 2 + 2^/7 + 2/y P l 

2K 

l+K/Y+l/Y 

x 2*2 ( ^ ? ; 1,1; 
2K Hi*)(*+1) 

2 ' 2 ' ' 'l+K/Y+l/Y 

= ^ e x p ( - 2 ^ ) 2 F 2 Q ^ ; l , l ; 2 ^ . 

This result was obtained in [10, TABLE I] for a noise-free environment. 

(5.19) 
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5.3 Rayleigh Fading Channels 

Setting K\ = K2 = 0 in (5.10) yields the Rayleigh case. One has 

r2 

/ z ( 0 ) = f - ^ f r & e x p 
Jo af a^ 

dr (5.20) 

where 

ft = Yi 

Yi 

Using [4, (3.478.1)], (5.20) can be solved as 

7i + l 

/z(0) = 
2^j3ij32CTia2 (5.21) 

2(J81a2
2 + i32cT1

2)3/2-

Substituting (5.21) and (5.16) into (5.8) gives a closed-form solution for the normalized 

switching rate of dual selection diversity in noisy Rayleigh fading channels of dissimilar 

powers, and after some algebraic manipulations, one obtains 

^ " ^ («+<*»+2)w v 1 + 4 + ^ U J <5-22) 
where 

CfT = 
^2 

One observes that the normalized switching rate of dual selection diversity in noisy Rayleigh 

fading channels is affected by the ratio of the scattering component powers in the two 

branches, the signal-to-noise ratio, and the ratio of the bandwidth of the receiver filter to 

the maximum Doppler frequency. At large SNR, (5.22) becomes 

hmJsw/fD--—^. 

In the case of i.i.d. branches, i.e. o\ = CT2, (5.22) specializes to 

(5.23) 

Rfw/fD = n< 
Y 

\ | 2 ( y + l ) 
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Since 2-̂ 2(•, •; •, -',0) = 1, and setting K = 0 in (5.18) yields the same expression as (5.24). 

At large SNR, (5.24) becomes 

Km^W/z) 

= lim nA 
y -

1 
Aj2 + 2/y [ 

1 + 1(*»\' 

= T2 (5-25) 

The results (5.23) and (5.25) were obtained in [10, TABLE I] for a noise-free environment. 

5.4 Numerical Results 

Numerical results are presented by plotting the normalized switching rate, Rfw/fo, versus 

the signal-to-noise ratio, y. Figs. 5.2 - 5.5 show that the switching rate in noisy fading 

channels converges to that in the absence of noise for large values of SNR, as expected. 

The normalized switching rates increase as the ratio of the bandwidth of the receiver filter 

to the maximum Doppler frequency increases. This interesting and useful result indicates 

that an adaptive filter can be used at the receiver to avoid excessive switching. 

Fig. 5.2 shows normalized switching rates of dual selection combining in i.i.d. Rayleigh 

fading branches in the presence of noise. The normalized switching rates can be greater 

or lesser than those in the absence of noise, depending on the ratio, Bw/fo, and the SNR. 

Generally, the switching rate in noise is greater than without noise unless the receiver filter 

bandwidth is narrow compared to the maximum Doppler frequency. However, the differ­

ence is small above, say, 15 dB. Fig. 5.3 shows normalized switching rates of dual selec­

tion combining in i.n.d. Rayleigh fading branches in the presence of noise when ca = 0.5. 

Comparing the results in Fig. 5.3 with those in Fig. 5.2, one observes that unequal branch 

powers cause the switching rate to be smaller because the branch with the greater power 
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becomes preferred. Again, the noise has a relatively small effect on the switching rate when 

the SNR of branch one is greater than about 15 dB. Fig. 5.4 shows normalized switching 

rates of dual selection combining in i.i.d. Rician fading branches in the presence of noise 

when K = 1 and K = 5. The normalized switching rates in noise have small vacillations 

around the switching rates without noise when the receiver filter bandwidth is comparable 

to the Doppler frequency for both K —\ and K = 5; otherwise, the switching rate is gen­

erally increased by noise. The effect of noise is relatively small when the SNR is above 

around 20 dB for K = 1, and around 25 dB for K — 5. Fig. 5.5 shows normalized switching 

rates of dual selection combining in i.n.d. Rician fading branches in the presence of noise 

when K\ — 1, Ki — 5, ca = 1 and K\=K2 = 5, ca — 1/3. In general, the normalized 

switching rates at small SNR are much greater than the switching rates in a noise-free en­

vironment. For example, at 0 dB SNR, the switching rate is increased 6.55, 3.93 and 2.62 

times for Bw/fp = 5, 3 and 2, respectively, for K\ = 1, £2 = 5, cCT = 1. However, the 

difference is small when the SNR of branch one is greater than around 15 dB for all cases 

in Fig. 5.5. 
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5.2. Normalized switching rates of dual selection combining in i.i.d. Rayleigh fading 

branches in the presence of noise. 
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5.3. Normalized switching rates of dual selection combining in i.n.d. Rayleigh fading 

branches in the presence of noise for ca = 0.5 (yi = ^Y2)-
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Fig. 5.4. Normalized switching rates of dual selection combining in i.i.d. Rician fading 

branches in the presence of noise when K = 1 (solid line), and K = 5 (dashed line). 
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Fig. 5.5. Normalized switching rates of dual selection combining in i.n.d. Rician fading 

branches in the presence of noise when K\ = 1, K2 = 5, cCT = 1 (solid line) and 

Ki = K2 = 5, ca = 1/3 (dashed line). 
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Chapter 6 

Summary and Conclusions 

Multipath propagation causes signal fading, which degrades the quality of service in wire­

less communications. Diversity combining is a powerful technique for providing better 

performance in signal transmission over multipath fading channels. Selection diversity 

combining is one widely used technique in receivers because of its simple and economi­

cal designs. A dual selection diversity combiner chooses one branch with stronger signal 

power from two diversity branches. The switching rate of the diversity combining helps 

assess receiver outages due to switching transients. If the receiver switches too often, much 

of the transmitted data will be lost since each switching transient corrupts the receiver 

filters. Also importantly, the switching rate provides valuable information for phase esti­

mation in coherent demodulation receivers, as a coherent receiver is required to dwell on 

the received signal long enough in order to establish an accurate phase estimate for fading 

compensation. If the receiver experiences a very fast switching rate, the receiver cannot 

produce an accurate phase estimate. Whether branch selection is based on a symbol, mul­

tiple symbol, block or frame basis is determined by the switching rate. Power consumption 

is also a concern in battery-powered mobile terminals since switching branches consumes 

power. Motivated by the above reasons, we have examined the diversity switching rate in 
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this thesis. 

Previous work on diversity switching rate has only considered independent Rayleigh, 

Rician and Nakagami-m fading channels in the absence of noise. In this thesis, we have ex­

tended the investigation from independent Rayleigh and Rician cases to correlated Rayleigh 

and Rician branches without the consideration of noise. Second, we have studied the 

switching rate of the selection diversity combining in i.i.d. K-/x and a-jU distributed fad­

ing. Third, we have taken noise into account in the derivation of the switching rate in 

independent Rayleigh and Rician fading channels. 

In summary, 

1. In practical wireless communications, the fading signals received at the different 

antennas may be correlated due to close antenna spacing. We have considered re­

stricted space applications in Chapter 3, where the two fading branches are corre­

lated. An analytical expression for the selection diversity switching rate has been 

derived for dual correlated fading channels in the absence of noise. Both balanced 

and unbalanced fading channels were considered. Numerical results were presented 

for a space-diversity system with horizontally spaced omnidirectional antennas at a 

mobile terminal. It was observed that the switching rate for correlated dual diversity 

branches can be either greater or lesser than that for the case of independent diver­

sity branches, depending on the angle between the antenna axis and the direction of 

vehicle motion and the antenna spacing. 

2. The \c-\x and a-\i fading models provide better fits to field measurements than other 

traditional fading models, such as Rayleigh, Rician and Nakagami-m. They also 

fully describe the characteristics of the fading signal in terms of measurable physical 

parameters. A closed-form expression for the switching rate has been derived for dual 

selection diversity combining, which is a new unifying result that is more general 
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than previous results and includes them as special cases. Dual i.i.d. K:-/X and a-^i 

fading channels have been adopted, and numerical results have been presented. 

3. In practical communication systems, noise is unavoidable and it degrades the quality 

of transmitted signals. Therefore, it is important to explore the effects of noise on 

the switching rate in fading channels. An analytical expression for the switching 

rate has been derived for dual selection diversity combining in the presence of noise. 

Both i.i.d. and i.n.d. fading channels have been considered, and numerical results 

have been presented. It was observed that the switching rate in noisy fading channels 

converges to that in the absence of noise at high SNR, and an adaptive filter can be 

used at the receiver to adjust the bandwidth of the receiver filter to avoid excessive 

switching. 
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Appendix A 

Equivalence of the K-JA Distribution and 

the Generalized Rician Distribution 

In this appendix, we will show that (1.20) is a version of the generalized Rician distribution. 

Let R be defined as 

R = 
V 

(A-l) 

where Xj are independent Gaussian random variables with means m.j, j = 1,2, •• • ,n' and 

identical variances a2. Then the generalized Rician distribution has the PDF given in [22, 

eq. (2.1-143)] 

fR{r) = 
r»'/2 

T2a(n'-2)/2 exp 
r2 + a2 

2a2 V/2-1 (5) (A-2) 

where 

a2 = 2 m5' 
7 = 1 

which is equivalent to d2, and r > 0. The second moment ofR is given in [22, eq. (2.1-146)] 

E(R2)=2o2exp 
a2 \ T(n'/2 + l) i i 2 

n ^ n a 
2* J T(n'/2) l F l l : 2 + 1 ' 2 " ; 2 ^ j - ( A _ 3 ) 
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Note that (1.18) is the summation of 2n independent non-zero mean Gaussian random 

variables. Therefore, replacing n' in (A-l) with 2n, one can write (A-2) as 

Mr) = 0- 2 a n - l C X P 

r2 + a 

'^a~2 

21 
ra (A-4) 

and (A-3) as 

£(i?2)=2a2exp 
a2 \ I > + 1 ) 

1F1 n+l,n;- (A-5) 
2(72J r(») ' ' V ' ' '2a2J' 

Next, we will show that (A-5) is identical to r2 in (1.20). Using [4, (9.14.1)] and [4, 

(8.331.1)], (A-5) can be written as 

E(R2)=2o2^(-^i(n + k ) ^ l (A-6) 

Combining the identity 

^=S x" 

n=0 fl! 

with (A-6) and after some simplifications, one obtains 

E{R2)=2a2n + a2 (A-7) 

In (1.20), \i is the real extension of integer n. Substituting /i — n, f = \/2na2 + d2 and 

d2 = a2 into (1.20) yields (A-4) after some algebraic manipulations. 

64 



Appendix B 

Derivation of Conditional Mean and 

Variance of S in Rayleigh Fading 

In this appendix, we will derive M = E[S|S] and A = Var[S|S] for dual selection diver­

sity combining in Rayleigh fading channels. Define the matrices S = [Si, S2]T and S = 

[Si, S2]T, where (-)T denotes the transpose matrix. Here S\, S2, Si and 52 are mutually 

correlated Complex Gaussian variables. Then the matrices M and A are given by [15, eq. 

(22)] 

M = ^S = (cb-1)*S 

A = a-cb~ 1c r* (B-l) 

where (-)-1 denotes the inverse matrix, a, b and c are partitioned matrices of the matrix 

s 
s 

* 
s 
s 

T 
a c 

a*T b 

Let Pij{x) = E[S*(t)Sj(t + T)], then Pij(r) is the first derivative of Pijix) with respect 

to T, Ptj(r) is the second derivative of Pijix) with respect to x, pij = Pij{0), pij = pij(0), 
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and pij — Pij(0). Then /i and A can be obtained as 

Then it follows that 

M I-IP12I2 

P12P12 -P12 

P12 - p i 2 P r 2 

A = 
n 1 1 + IP'2l2 -A , Pl*2(Pl2)2 

** • P12(P1*2)
2 « , J M L 

(B-3) 

M 
1 

I-IP12I 

P12P12S1 - p!*252 

P12S1-P12P1V2. 

(B-4) 
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Appendix C 

Derivation of Conditional Mean and 

Variance of R in Rician Fading 

In this appendix, we will derive M = E[R|R] and A = E[RRr|R] - E[R|R]E[Rr|R] for 

dual selection diversity combining in Rician fading channels. Define the matrices R = 

[Xi, Yu X2, Y2]
T and R = [Xh Yh X2, Y2]

T. Here Xh Yu X2, Y2, Xx, Yx, X2 and Y2 are 

jointly correlated Gaussian variables. Then the matrices M and A are given by [17, eq. 

(15)] 

M = (cb-1)(R-m) 

A = a-cb"1c r (C-l) 

where a, b and c are partitioned matrices of the matrix 

_ _ 
a c 

cT b 
L J 

( 

= E< 
1 
V 

_ _ 
R 

R 

R 

R 
L J 

T \ 

) 

/ 

-E{ 
\ 
V 

R 

R 
L J 

>> ( y 
J * \ 

- _ 
R 

R 
L J 
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Matrices a, b and c can be calculated as [17, (17a)-(17d)] 

where 

-of/Jo 0 -Ox02\lc 

0 -fffAi crio-2Vc 

-0\02iXc O i 0 2 V c 

-OiG2Vc -0\(J2iic 

-of ft, 

0 

-<7iO-2Vc 

-GiG2fXc 

0 

-02 P« 

b = 
0 

0 

of/*! 

0"lCf2Mc -CTiO^Vc 

O i 0 2 V c 0\G2[lc 

0\G2\ic G\GlVc 

- 0 l O 2 V c G\02\lc 

0 

0 

c = 

0 

-of va 

^i2va 0\02\XC 

Cilia 

-oio2vc 

-0\02llc O i 0 2 V c 

-0\02VC Ol02Mc 

0 

-ai<y2vc -aia2fic - o f v a 

m = [mxl myx mx2 my^ 

0 

MaO) = 
Cov{Xj(f + T),Xi(f)} Cov{Fi(f+ *),£(*)} 

vfl(T) = 
of 

Mc(T) = 

VC(T) = 

CovQftfr+ *),*2(f)} = Cov{ri(? + T),r2(r)} 
CTi 02 Oi 02 

Cov{Xi(f+T),y2(0} Cov{yi(f+T),x2(0} 

(C-3a) 

(C-3b) 

O i 0 2 oio 2 

(C-3c) 

(C-3d) 

(C-4a) 

(C-4b) 

(C-4c) 

(C-4d) 
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and y, y are the first and the second derivatives of y with respect to t, where y = {pia, ^ c , va, vc }. 

Then (C-l) can be obtained after some algebraic manipulations [17, (19a)-(19j)] 

M = 

Mi -M2 -%MZ 

M2 M\ 
°2 

M4 -

^ 3 •%M4 (Ji * 
-Mi 

f M4 gM3 M2 

- M 2 

- M i 

Zi - mx, 

Y\ - myl 

X2 - mx2 

Y2 - mYl 

A = 

afAi 0 CTia2A2 aiC72A3 

0 ofAl -O1O2A3 0x02^2 

cri<T2A2 -CTia2A3 ofAi 0 

o-io-2A3 (THT2A2 0 ofAi 

TJ _ 1 =Mc+ v c-A*a 

Mi = rj (>Ciac + vcvc) 

M2 = r? (VcMc + McVa - Mcvc) 

M3 = rj(AW«c + vcva) 

M4 = T)(w f l/ic-/icva) 

Ai = T7 [2\>a (Vc/ic - JXCVc) + \Xa (Ac + V2 + V2)] - Aa 

A2 = ri [2vc {vciAc - HaVa) + Mc (Ac - Va - v2)] - Ac 

A3 = TJ [2Ac (MCVC - MflVfl) + Vc (v2 - V2 - Ac)] - Vc. 

(C-5a) 

(C-5b) 

(C-5c) 

(C-5d) 

(C-5e) 

(C-5f) 

(C-5g) 

(C-5h) 

(C-5i) 

(C-5j) 
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