
Evaluating Software Documentation Quality

by

Henry Kai Wei Tang

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

© Henry Kai Wei Tang, 2023

Abstract

Software libraries provide reusable code that allow developers to include needed

functionality without committing time and effort to develop the functionality

themselves. To benefit from the code reuse, developers first compare multiple

libraries that offer the needed functionality and spend time learning how to

use the library. This is typically done through a combination of trying the li-

brary, as well as reading the library’s documentation. However, “bad quality”

documentation is not only ineffective in aiding developers learn a library, but

may even be detrimental if there is incorrect information. Thus, it would be

useful if developers already had an idea about the documentation quality of a

library before they invest time in exploring it.

In this thesis, we investigate a metric-based evaluation of software docu-

mentation quality. We start by exploring the literature to confirm the impor-

tance of documentation when learning a software library before finding de-

scriptions of documentation aspects, as well as previous attempts to evaluate

documentation quality. We summarize the different quality aspects of docu-

mentation, then narrow our focus to six different documentation aspects: Code

Examples, Completeness, Ease of Use, Readability, and Up-to-date. From

these documentation quality aspects, we utilize the Goal-Question-Metric [60]

paradigm to determine the metrics that can be used to measure them. We

validate these initial metrics through an interview study of three industry

professionals, where we integrate the feedback back into our metrics. After in-

corporating the interview feedback, we create a summary tool presenting each

ii

of our metrics for a given library and conduct a survey with 25 developers

on the usefulness of our tool and metrics. Participants found our documenta-

tion quality summary useful with a median score of four on a five-point Likert

scale [36] rating system. Participants especially found the metrics relating to

text readability and code example readability as useful documentation quality

metrics. We also discuss opportunities and future applications of our work.

iii

Preface

This thesis is an original work by Henry Tang. The research project, of which

this thesis is a part, received ethics approval from the University of Alberta

Research Ethics Board, Project Name “Task-based Code Recommender Sys-

tems”, No. Pro00074107, December 12, 2018 - April 19, 2023.

iv

Contents

1 Introduction 1
1.1 Thesis Overview and Organization 3

2 Literature Review 6
2.1 Documentation Scope . 6
2.2 Documentation Quality Aspects 7
2.3 (Automatically) Measuring Documentation Quality 12

3 Selecting Metrics to Use for Evaluating Documentation Qual-
ity 16
3.1 Selecting Documentation Aspects 16
3.2 Deriving Metrics for Selected Documentation Aspects 17

3.2.1 Up-to-date and Completeness 18
3.2.2 Readability . 19
3.2.3 Code Examples . 21
3.2.4 Ease of Use . 21
3.2.5 Metric Summary . 22

4 Initial Validation of Selected Metrics through Developer In-
terviews 23
4.1 Mockup of Documentation Quality Overview Visualization . . 24
4.2 Interview Study Setup . 26

4.2.1 Participant Recruitment 26
4.2.2 Interview Setup . 26

4.3 Interview Analysis Methods 27
4.3.1 Open Coding . 28

4.4 Interview Results: General Documentation Questions 28
4.4.1 Open-Ended Questions 28

4.5 Interview Results: Mockup Feedback 30
4.5.1 General Mockup Feedback 30
4.5.2 Examples of API Methods/Classes 31
4.5.3 Documentation & Code Example Readability 31
4.5.4 Source Code/Documentation Consistency 32
4.5.5 Navigation Score . 32
4.5.6 Library Tasks . 32
4.5.7 Free-Form Answer and Tangent Discussions 33

4.6 Summary of Interview Insights and Concrete Changes 34
4.6.1 Content Changes . 35
4.6.2 Presentation Changes 35

v

5 Implementation of Documentation Quality Summary 37
5.1 Documented Library Task List & Linked Examples 37

5.1.1 Task Extraction Implementation 38
5.1.2 Code Example Linking Implementation 39
5.1.3 Task Extraction and Linking Verification 40

5.2 Documentation and Source Code Linking 45
5.2.1 Methods and Classes with Code Examples 46
5.2.2 Documentation/Source Code Similarity 49

5.3 Readability of Text and Code 52
5.3.1 Readability of Text . 52
5.3.2 Readability of Code . 53

5.4 Navigability . 53
5.4.1 HCI checklist . 53

6 Survey Evaluation of Our Documentation Quality Summary 56
6.1 Survey Setup . 56
6.2 Participant Recruitment . 59
6.3 Survey Response Analysis . 60

6.3.1 RQ1: Usefulness of Our Documentation Quality Sum-
mary . 62

6.3.2 RQ2: Matching User Expectation of Summary 64
6.3.3 RQ3: Integration of Documentation Quality Summary 65
6.3.4 General Comments . 66

7 Threats to Validity 68
7.1 Construct Validity . 68
7.2 Internal Validity . 70
7.3 External Validity . 71

8 Discussion 72
8.1 Applications . 72
8.2 Challenges and Opportunities 74

8.2.1 Challenges . 74
8.2.2 Opportunities . 75

9 Conclusion 78

References 79

Appendix A Ground truth guidelines 86
A.1 Task Extraction Guidelines . 86
A.2 Task Linking Guidelines . 86
A.3 Documentation Code Reference/Example and Source Code Match-

ing Guidelines . 86

Appendix B Programming verb lists 88
B.1 Original Verb List . 88
B.2 NLP Verb List . 89

B.2.1 NLP Verb Filter List 89
B.3 JSON Verb List . 90

B.3.1 JSON Verb Filter List 90
B.4 DOM Manipulation Verb List 91

B.4.1 DOM Manipulation Verb Filter List 91

Appendix C Survey Questions 92

vi

Appendix D Survey General Comments 94

vii

List of Tables

2.1 Summary of Documentation Quality Aspects 9

3.1 Summarized GQM for the five aspects we focus on 18
3.2 Summary of documentation aspects and derived metrics . . . 22

4.1 Demographic information of interview participants 26

viii

List of Figures

1.1 Process overview of creating our summary tool 4

4.1 Initial mockup of documentation quality overview. We validate
this mockup in our interview study. 24

4.2 A screenshot of the final documentation summary tool 35

6.1 The landing page of our summary tool 57
6.2 A screenshot of our survey within the summary tool 57
6.3 A screenshot of the demographic question 58
6.4 Distribution of years of experience of the tool accessors and

survey participants . 61
6.5 The number of responses for each library 62
6.6 The distribution of ratings for each metric in our documentation

quality summary . 63
6.7 The distribution of ratings of the general usefulness of our doc-

umentation quality summary 64
6.8 The distribution of ratings of whether the documentation qual-

ity summary matches user expectations for 21 participants fa-
miliar with the library they were viewing 65

6.9 The responses for where users would like to see this summary 66

8.1 A screenshot of the Library Comparison tool by De la Mora and
Nadi [41] . 73

8.2 Old (left) and new (right) NLTK parse package documentation
page . 76

ix

Chapter 1

Introduction

Software libraries provide reusable code that allows developers to include

needed functionality without having to commit time and effort to develop

the behaviour themselves. To benefit from such code reuse, developers usually

first compare multiple libraries that offer the needed functionality [41], [54],

[64] and then spend time to learn the selected library for efficient integration

into their code [52]. Fortunately, most libraries include documentation that

helps in library selection [20]–[22], [34], [41], [53], [61], [72] as well as in learn-

ing how to use a library. However, if the documentation is “bad quality” then

it is not only ineffective in assisting developers to use the library, but it may

cause further confusion, e.g., if the information is incorrect or out of date.

Therefore, one challenge of using software libraries is the unknown amount of

time that developers must spend in order to properly learn multiple libraries

to be able to compare and select the right library for their needs. Libraries

with “better” documentation quality will take less time for a developer to

learn, which raises the question of, “How to evaluate library documentation

quality?” This thesis builds upon the research of library comparison by De

la Mora and Nadi [41]. De la Mora and Nadi [41] created a tool that com-

pared libraries across different aspects, such as the popularity of a library or

its issue response and closing times, which assisted developers in evaluating

and comparing software libraries. They also surveyed developers about what

other aspects they would like to see, and documentation quality was among

the top-requested aspects. However, presenting this aspect first requires a way

1

to measure or assess documentation quality, which is the focus of this thesis.

Existing efforts for evaluating documentation quality focus on specific areas

of documentation that do not necessarily reflect the qualities of documentation

that are important to developers in order to learn and use a library. Addi-

tionally, some of the existing work propose metrics that are hard to calculate

and do not provide tools that would automatically calculate the metrics for

developers. For example, Forward [19] developed a measure of documentation

called AURA, which measures an Artefact’s “Usefulness”, “Referential de-

cay”, and “Authority”. Although Forward [19] conducted a survey to find the

important parts of documentation that developers found useful, their scope

was on every type of documentation (e.g., requirement, specification, design

documents, etc.), rather than focusing on the documentation that client de-

velopers consider when using software libraries. Aversano et al. [3] measured

the “completeness”, “up-to-dateness”, and “readability” of open source doc-

umentation. However, their evaluation of their metrics is based on a single

case study on one open source system and they do not provide a tool that

automatically calculates their metrics.

In this thesis, our goal is to create an automatic documentation quality

evaluation tool to aid developers in comparing and selecting a library to learn

and incorporate into their own projects. To evaluate a library’s documenta-

tion, we first determine what aspects of documentation should be measured,

then create metrics for these areas, and finally combine the metrics into a

single summary tool. We then conduct both an interview study of industry

professionals and a survey attached to the summary tool in order to validate

our metrics and usefulness of our summary tool.

Summarized, our research objectives are to:

� Determine which type of documentation is important for learning and

using a software library

� Determine what the “aspects” of documentation quality are

� Determine how best to measure these “aspects” and define implementable

metrics

2

� Implement a summary tool utilizing these metrics

� Validate the usefulness of the summary tool

1.1 Thesis Overview and Organization

Figure 1.1 shows the research process we follow and how this thesis is or-

ganized. This thesis begins with an overview of related work in the area of

software documentation (Chapter 2). Our related work starts by exploring

the different types of documentation important to developers using software

libraries before identifying documentation quality aspects. Our goal here is to

determine which documentation types developers utilize when using software

libraries, and to determine “good” and “bad” documentation quality aspects

by reviewing and aggregating different features identified in the software doc-

umentation literature. After identifying documentation quality aspects, we

then quantify these aspects by defining six metrics using the Goal-Question-

Metric (GQM) paradigm [60]. The documentation quality aspects we measure

in this thesis are completeness, readability, code examples, ease of use, and

up-to-dateness.

We then implement the metrics for these documentation quality aspects

and construct a documentation quality summary overview, shown in Fig-

ure 4.1, where we present our developed metrics. To help with the iterative

development of the metrics and the summary overview, we validate our ini-

tial metrics through interviews with three professional software developers for

feedback. The responses from the interviews support the metrics we conceived

and the participants agreed that the metrics give an approximation to various

aspects of the quality of software documentation. We update our metrics and

presentation using the interview feedback. Afterwards, Chapter 5 describes

our implementation of the metrics along with the validation of each metric

against manually constructed ground truths. We then finalize the documenta-

tion quality summary and create a public web-based summary tool that allows

developers to evaluate the documentation quality of libraries they are inter-

ested in. Figure 4.2 shows our final documentation quality overview summary.

3

Figure 1.1: Process overview of creating our summary tool

We use this summary tool to conduct a broader evaluation of our metrics and

documentation quality summary page. The tool allows a user to provide a

link to a GitHub repository and the homepage of the library’s documentation,

which it then processes to create a summary page with our metrics. The user

is then asked to complete a survey that gauges the usefulness of the summary

page and its metrics. We currently support processing documentation from

Python, Java, and JavaScript libraries.

We received 25 survey responses for 40 analyzed libraries across all three

of the supported languages. Overall, participants found our summary to be

useful with responses having a median score of four out of five when ask-

ing participants about the “usefulness” of our tool. While most respondents

found the summary tool to be overall useful, the most highly rated metrics are

the “Text readability” and “Code readability” metrics, and the lowest rated

metric for participants is the “Documentation/Source code similarity” metric.

This implies that library maintainers should focus more on clearly communi-

cating information through the documentation, rather than spending effort to

document every method available in the source code.

Finally, we discuss our threats to validity, and challenges and opportunities

this work enables. Our work not only provides developers a tool to quickly

evaluate a library documentation’s quality, but it also assists library maintain-

ers by highlighting the documentation quality aspects they should focus on for

their own library’s documentation. This work also opens up the development

4

for creating additional metrics to measure other documentation aspects, as

well as extending our current metrics to be more accurate and generalizable,

such as supporting an additional programming language.

To summarize, the contributions of this thesis are:

� The definition, automation, and verification of six metrics for evaluat-

ing documentation quality, derived from “good” and “bad” traits we

extracted from existing literature.

� An implementation of these six metrics for eight libraries in three pro-

gramming languages (Python, Java, and JavaScript) for an initial vali-

dation with industry professionals.

� An interview study with three professional developers that provide inter-

mediate feedback to help us improve our metrics and their presentation.

� A web application 1 that accepts a library link as input and produces

an overview summary of a library’s documentation quality. To date, the

service processed 40 total libraries (22 Python libraries, 5 Java libraries,

and 13 JavaScript libraries).

� A survey with 25 developers to evaluate the accuracy and usefulness of

the documentation quality summary page and metrics.

1https://smr.cs.ualberta.ca/docquality/

5

https://smr.cs.ualberta.ca/docquality/

Chapter 2

Literature Review

In this chapter, we discuss three directions of related work exploring docu-

mentation quality. We use the first two directions (documentation scope and

documentation quality aspects) to establish the importance of software doc-

umentation and the “good” and “bad” traits of documentation quality. The

third direction summarizes previous attempts in evaluating documentation

quality. All three of these directions serve to motivate and provide relevant

background for our documentation quality metrics.

2.1 Documentation Scope

Software documentation can describe various types of documentation that

appear during the software development and maintenance lifecycle [1], [20],

ranging from requirements, architectural documents, to even source code com-

ments. Additionally, documentation can have different target audiences, e.g.,

the system’s developers, maintainers, or end users. In our work, we focus on

documentation that is meant to help library client developers understand and

use a software library. This falls under the Operation & Maintenance category

defined by Aghajani et al. [1], where the implementation and testing of a soft-

ware have been completed and the software is made available to end users or

passed to subsequent maintainers. In the context of a software library, which

is the focus of our work, end users are the developers wishing to use the library

(i.e., client developers). Thus, we focus on documentation that conveys usage

information about the library, including the public Application Programming

6

Interface (API), installation instructions, and interaction with other software.

Given this scope when evaluating documentation quality, this thesis fo-

cuses on the official documentation provided by the library maintainers as

an external website because this type of official documentation is typically

readily available online and, according to Venigalla and Chimalakonda [68], is

what most developers will trust when learning a library. This sentiment is also

echoed by Curtis et al. [15], Jazzar [29], and Vargas et al. [34] whose respective

work identified documentation as an important part of software development

and maintenance, even if in practice documentation suffers too many issues

to be useful. Although Javadoc documentation is an external website readily

available online, given the choice, we opted to analyze manually created doc-

umentation by the library maintainers. Our intuition is if library maintainers

provide external documentation, then that official documentation will contain

the most up-to-date information that the maintainers wanted to convey to

library users. Additionally, dedicated library documentation contains added

information, such as installation instructions and interaction with other soft-

ware. Even though we opted against Javadoc given the option, our tool still

supports analyzing Javadoc pages.

We focus on the official documentation sources because an indication of the

official documentation’s quality reflects the effort of the library maintainers to

assist developers in using their library. A rating of a library’s documentation

quality will assist developers in deciding which library to learn and incorporate

into their own project.

2.2 Documentation Quality Aspects

In order to develop metrics that evaluate library documentation quality, we

first need to learn and establish which aspects of documentation enhance or

detract from its quality. In this section, we discuss what previous researchers

have discovered through various surveys and studies. We summarize this in-

formation in Table 2.1. This table shows the different kinds of documentation

quality aspects, defines each of them, and provides a list of references that

7

identify or consider this aspect.

Forward and Lethbridge [20] conducted a survey to understand the kinds of

documentation used by various roles in a software project, including managers,

project leaders, software architects, and software developers. The authors also

wanted to understand which attributes of documentation are most important

in general, across all roles. The following is the list of attributes in their survey,

ordered by importance from highest to lowest based on their participants’

responses:

1. Document content

2. Up-to-dateness

3. Availability (of the document)

4. Use of examples

5. Organization (sectionalization of content)

6. Type of document (requirements, specifications, etc.)

7. Use of diagrams

8. Navigation (internal/external links)

9. Structure (arrangement of text/diagrams on the document)

10. Writing style

11. Length of documentation

12. Spelling/grammar

13. Author

14. Influence to use the document

15. Format (PDF, HTML, etc.)

8

Table 2.1: Summary of Documentation Quality Aspects

Aspect Definition References

Accessibility How difficult is it to find the documentation? [20], [61], [72]

Appeal How interesting is it to read? [65]

Appropriateness comments Density of source code comments [3]

Authority How much authority does the documentation have? [19], [20], [72]

Code examples The existence of code examples in the documentation [20], [21], [52], [53], [67], [70]

Cohesion How well does the documentation fit together? [65]

Completeness
Is the information in the documentation complete?
Is all the source code documented?
Is all the tasks/features documented?

[2], [3], [8], [21], [53], [61], [67], [72]–[74]

Consistency
Is the documentation consistent with itself?
Same terminology, same format, etc.

[8], [21], [29], [65], [67], [72]

Consistency (to standard)
Does the documentation conform to a
documentation standard defined by an
external authority?

[3], [61]

Correctness
Is the information in the documentation
accurate?

[2], [21], [67], [72]

Documentation PoV
The documentation should be written
in the point of view of the reader.

[4]

Ease of Use
How easy is the documentation able to be used?
e.g., navigation, internal and external links

[3], [20], [52], [67], [70]

Effectiveness
Does the documentation make effective use
of technical vocabulary?

[65]

Fitness of purpose Does the documentation fit its intended purpose [4]

Format
What file format is the documentation?
e.g., HTML, PDF, etc.

[20]

Graphical Support Does the documentation use images? [3], [20], [21]

Length The length of the sentences in the documentation. [3], [20]

Maintainability How easy is the documentation able to be updated? [2]

Organization
Is the information in the documentation organized
efficiently? e.g., Sections/subsections

[3], [4], [20], [21], [53], [61], [65], [67], [72]

Preciseness How precise is the documentation? [21]

Quality How well written is the documentation? [65]

Readability How easy is the documentation read? [2], [3], [20], [21], [29], [65], [67], [72]

Record rationale Does the documentation include design decisions? [4]

Relevance of content Is the information in the documentation relevant? [4], [20], [21], [53], [65], [67]

Spelling and Grammar Spelling and grammar of the documentation [20], [72]

Support many scenarios
Does the documentation support many
scenarios?

[53]

Traceability
What is the extent to which changes in the
documentation can be tracked?

[72]

Type
What is the type of documentation?
e.g., Requirements, Specifications, Testing, etc.

[20]

Understandability
How understandable is the information
in the documentation?

[4], [65], [67]

Up-to-date
How up to date is the documentation
relative to the source code?

[2]–[4], [8], [19]–[21], [29], [61], [67], [72]

Usability
To what degree in which users can use the
documentation to achieve objectives?

[2]

Usefulness How useful is the documentation? [19]

Yellow highlighted rows are the selected aspects

9

From this list, we see that the most important attribute about documen-

tation is the content, followed closely by its up-to-dateness. This is logical as

documentation serves a purpose of informing readers about the software. If

this information is not reliable, then that documentation becomes meaningless.

The next most important attributes of this list then deal with documentation

attributes that are secondary to the information provided in the documenta-

tion. For example, making sure users can find the documentation, that there

are examples that show how to use or explain parts of the software, and mak-

ing sure that the documentation is properly organized and users can find the

information they need. Each of these attributes are shown in Table 2.1.

Aghajani et al. [1], [2] analyzed 878 artefacts (Stack Overflow threads, issue

trackers, pull requests, and mailing lists) that may reveal documentation prob-

lems to create a taxonomy of documentation issues. The authors summarized

their taxonomy of documentation issues into three overarching categories and

multiple subcategories to group the specific documentation issues. They then

performed two surveys, where the first survey determines the importance of

the different documentation issues in their taxonomy, and the second survey

determines the useful documentation types in the various software engineering

tasks. The authors’ first survey showed the importance of specific documen-

tation issues within each larger category. For example, under the “informa-

tion content” category, they have a subcategory called “completeness”, which

details issues surrounding whether the documentation adequately covers the

features of the library. Important issues for this subcategory were insufficient

installation, deployment and release documents, developer guidelines, and user

documentation. We treat their subcategories as documentation aspects and

use the important documentation issues, along with the attributes from For-

ward and Lethbridge [20] above, to help us in selecting which documentation

aspects to focus on. We discuss this in detail in Chapter 3. We also note

that the results of the authors’ second survey show that official documenta-

tion sources of a library (e.g., user manual, migration guide, installation guide,

etc.) are useful in the operations and maintenance phase of a library, which

supports the focus of this thesis.

10

Robillard [53] explored the issues developers face when learning APIs. They

surveyed 80 participants and found issues relating to the architecture of the

API, the experience of the learning developer, and issues with learning re-

sources, such as documentation. We focus on the documentation issues their

survey results show, which are: insufficient or inadequate examples, incomplete

content, no reference on accomplishing specific tasks with the API, inadequate

high-level information about the API, and undesirable presentation formats.

These findings align with the results by Aghajani et al. [1], [2] about issues

that diminish documentation quality and hinder learning of a library.

Uddin and Robillard [67] also explored the failings of documentation through

two surveys. Their first survey collected common documentation problems,

which they combined into 10 categories, and their second survey collected

each of the problem’s frequency and severity. The 10 created categories from

69 respondents of the first survey are:

1. Incompleteness

2. Ambiguity

3. Unexplained (code) examples

4. Obsoleteness

5. Inconsistency

6. Incorrectness

7. Bloat

8. Fragmentation

9. Excess structural information

10. Tangled information

The first six problems relate to the documentation content, while the last four

relate to the documentation presentation. From their second survey, Uddin

and Robillard [67] found “incompleteness”, “incorrectness”, “ambiguity”, and

11

“unexplained (code) examples” as the most severe issues from their list. These

results coincide with the issues and severities concluded by the previously

described studies in this section [1], [2], [53].

Garousi et al. [21] conducted two surveys: the first to understand how a

library’s documentation (requirements, design, test, process documents, and

code comments) is used for both the process of developing and maintaining

software, and the second about the attributes that affect documentation qual-

ity. Since we are interested in documentation quality aspects, we focus on

the second survey. Although Garousi et al. [21] do not focus on the official

documentation of a library, the documentation aspects they specified are gen-

eralizable to other types of documentation and align with literature already

discussed. The results of their survey showed that the most important aspects

of documentation quality are readability, relevance of content, and organiza-

tion. Garousi et al. [21] also defined “lacking” documentation aspects, meaning

these aspects were desirable aspects of documentation but were consistently

below their expected quality, e.g., documentation is expected to be up to date,

but is typically out of date. These “lacking” aspects were up-to-dateness, pre-

ciseness, and use of examples.

While there is additional work that also explores the issues and attributes

of documentation [4], [52], [65], [70], we do not discuss them in detail here as

they include similar documentation quality aspects already discussed above.

Instead, we summarize all quality aspects and the references that discuss them

in Table 2.1. Table 2.1 orders the different aspects alphabetically and provides

the supporting references for each aspect. We use this table to select the

documentation aspects to measure, as detailed in Chapter 3.

2.3 (Automatically) Measuring Documentation

Quality

In this section, we discuss previous efforts in automatically evaluating docu-

mentation quality.

Forward [19] explored the creation of a documentation quality indicator

12

by combining metrics of an Artefact’s Usefulness, Referential decay, and

Authority, or AURA. The author defined usefulness as a measure of a doc-

ument’s recency, frequency, and feedback, which requires manually retrieving

user feedback over long-term monitoring for a document. Referential decay is

a metric that uses a document’s last modified date to calculate its relative in-

consistency with the source code. Intuitively, an older document is more likely

to be inconsistent compared to a newer document. Finally, Forward [19] uses

Kleinberg’s authoritative ranking technique [33] as a measure of a document’s

authority, which indicates how important this document is compared to other

documents with similar information (e.g., external blogs). Although these

metrics are potentially useful, AURA is generalized to all types of documen-

tation, instead of focusing on the documentation that developers use to learn

about a library. This means that AURA potentially misses documentation

aspects that are important to software developers trying to use a library and

captures documentation aspects that may be irrelevant. AURA also requires

long-term data collection in order to calculate its metrics.

Aversano et al. [3] focused on evaluating the quality of documentation of

open-source software. Their intent was to create a system that can be adopted

by the open-source community in order to support high-quality documenta-

tion. In their work, they define multiple aspects of documentation quality, such

as completeness, alignment (which is up-to-dateness), readability, and ease of

use. Many of these aspects were also identified by previous researchers, as

shown in Section 2.2. While we do not go through all of their created metrics,

some of their formulas include:

1. Completeness = Total classes and packages described in doc
Total classes and packages in source code

2. Up to date = Y es|No

3. Readability = Flesch Readability Index

Although Aversano et al. [3] do define automatically measurable metrics for

aspects of documentation, they do not evaluate whether these formulas ad-

equately represent documentation quality for their intended metrics. Addi-

13

tionally, they only propose the metrics but do not implement a tool to auto-

matically calculate these metrics for a given library and leave it to interested

developers to calculate these values for themselves.

Other attempts at evaluating parts of software documentation include

Zhong and Su’s [73] DocRef tool and Lee et al.’s [35] FreshDoc tool, both

of which attempt to find discrepancies between a library’s documentation and

source code. They did this by combining natural language tools with code

analysis techniques to find documentation errors and report the inconsisten-

cies; in essence, they check the correctness of the documentation. Wingkvist

et al. [71] used the Goal-Question-Metric paradigm (GQM) [60] to derive the

idea of using test coverage and clone detection as metrics for documentation.

They treat each document as its own “class” and, through clone detection

techniques, check for “clones” that represent redundancy in the documenta-

tion. Their intuition is that high-quality documentation has a high degree of

uniqueness and low degree of similarity between the documents. They also

used test coverage to determine how much of the “source code” (the documen-

tation) has been checked. This was done by asking developers to complete a

task with a library and then measuring the time taken to find the necessary

information. “Test coverage” is then a fraction of documentation read when

looking for the relevant information (i.e., documentation coverage). Having

both positive test results and high test coverage then gives an indication of

“good” quality documentation, while having either individually does not, i.e.,

positive test results with low coverage means that only a fraction of the docu-

mentation is actually relevant. The authors conclude that the combination of

clone detection and test coverage is a representation of documentation quality.

However, Wingkvist et al.’s [71] approach relies on developer input, as each

evaluated library documentation would need developers to complete tasks to

measure “test coverage”, which is not automatable.

Although all these past efforts have been made to evaluate documentation

quality, our work is different in that we provide (1) a comprehensive summary

of documentation quality that addresses multiple important documentation

aspects, (2) an automatic service that evaluates documentation quality, and

14

(3) validated metrics through manually constructed ground truths, developer

interviews, and survey participants.

15

Chapter 3

Selecting Metrics to Use for
Evaluating Documentation
Quality

In this chapter, we discuss how we select the metrics we use to evaluate docu-

mentation quality. We first review the documentation aspects combined from

the different documentation areas discussed in Chapter 2 and select which

aspects to measure. We then discuss the process of creating or selecting the

metrics we use to measure each selected documentation aspect and how to

visualize them. Note that we do not discuss the concrete implementation of

each metric here, but rather in Chapter 5.

3.1 Selecting Documentation Aspects

Given the number of aspects shown in Table 2.1 and the fact that using GQM

may result in more than one metric per goal, it is infeasible to create metrics

for all possible aspects. Additionally, presenting quantitative data about all

these aspects to client developers is likely overwhelming. Instead, we decide to

focus on a subset of important aspects by performing the following assessment.

First, we look at the number of supporting literature references of an as-

pect. Since many of these references base their findings on developer input,

aspects mentioned repeatedly in those references are more likely important to

developers in assessing documentation. For example, the “Organization” as-

pect has relatively many supporting references, suggesting that it has more

16

importance than the “Graphical Support” aspect. However, even though

“Organization” has many supporting references, it is difficult to objectively

and automatically determine whether documentation is properly organized as

there is not a standard for what is considered “organized”. Therefore, we also

consider whether aspects are “potentially measurable” and include that as a

criteria for aspect selection. We define measurable aspects as aspects with

attributes that can be objectively and automatically calculated.

Even though we are now using a combination of number of supporting refer-

ences and a definition of measurable aspects, we still need to decide whether all

measurable aspects are worth measuring. Rather than use an arbitrary thresh-

old for the number of supporting references, we instead utilize the taxonomy

of documentation issues created by Aghajani et al. [1], [2] and the attribute

list from Forward and Lethbridge [20] as a starting point to determine which

aspects to focus on. The documentation issues and attribute list from these

two efforts help us narrow our focus on documentation quality aspects that

developers find hindering their learning of a library. This corresponds with

our initial goal of assisting developers to select libraries that would be easier

to learn and incorporate into their own project. Accordingly, we select the fol-

lowing measurable aspects: Completeness, Readability, and Up-to-dateness.

From this starting point, we then look at the other documentation aspects

from the literature, summarized in Table 2.1, and additionally select the most

frequent measurable aspects supported by the literature, which are Code ex-

amples and Ease of Use. Thus, our final selection of documentation aspects

to measure are: (1) Up-to-date, (2) Completeness, (3) Readability, (4) Code

examples, and (5) Ease of Use.

3.2 Deriving Metrics for Selected Documen-

tation Aspects

In this section we describe our process, following GQM [60], in creating the

metrics for each selected documentation aspect. The GQM paradigm [60] is an

approach that starts from a high-level “goal”, where the idea is to ask “ques-

17

Table 3.1: Summarized GQM for the five aspects we focus on

Goal Question(s) Metric

Up-to-date
Is the documentation
consistent with the
source code?

Ratio of matching public classes/methods
in the documentation to public classes/methods
in the source code

Completeness

- Are the methods/classes
found in the documentation
in the source code?
- What are the documented
library tasks and/or features ?

- Ratio of matching public classes/methods
in the documentation to public classes/methods
in the source code
- List of documented library tasks

Readability

- Is the documentation
text readable?
- Are the code examples
readable?

- Flesch readability score
- Code readability metric from previous
literature [5], [56], [57]

Code examples
Do all public
API methods/classes
have code examples?

Ratio of public methods appearing in documentation
code examples to public methods in the API

Ease of use
How easy is it to navigate
the documentation?

Checklist found from HCI research [11], [43], [69]

tions” about the goal, and ends with “metrics” that answer the “questions”

and measure the “goal”. For example, one documentation aspect, “Code ex-

amples”, is about the existence of code examples in the documentation, which

we can turn into a “goal”, i.e., the goal is to have code examples in the docu-

mentation. Then, we move on to asking “questions”, where the purpose of the

“questions” is to explore and define objects that represent the goal. Therefore,

if the goal is having code examples in the documentation, example questions

a developer may ask would be: “Are there code examples available?”, “How

useful are the code examples?”, “What are the code examples about?”, etc. Fi-

nally, “metrics” can be created to measure the answers for these questions, e.g.,

measure how many code examples exist in the documentation for a method or

class of the library. Table 3.1 summarizes our GQM [60] process for the five

selected aspects. Note that some metrics can measure multiple goals (aspects),

while multiple metrics may be needed to measure one goal (aspect).

3.2.1 Up-to-date and Completeness

We devise two metrics that measure both the“up-to-date” and “completeness”

aspects. The first metric measures the ratio of matching public methods be-

tween the documentation and source code, and the second metric measures the

18

ratio of matching public classes between the documentation and source code.

Intuitively, a higher ratio for both of these metrics means a higher similarity

between the methods and classes in the documentation and the public API

methods of the source code. This addresses both the “up-to-dateness” and

“completeness” aspect as out of date and/or incomplete documentation would

have a low ratio of matching API method signatures and/or a low ratio of

matching class definitions.

We also derive a second metric for the “completeness” aspect of documen-

tation as a list of the “documented library tasks”. This metric finds all the

“library tasks” in a documentation and also whether the task has an accompa-

nying code example. We define a “library task” as any usage of a library, in-

cluding its API, installation instructions, and interaction with other software.

This metric is supported by Uddin and Robillard [67] where they mention that

one of the documentation issues regarding content (in)completeness is the lack

of a description for a topic or task that can be done with the API, i.e., the

documentation is incomplete in the sense that developers struggle to figure

out how to use the API for a particular task. This sentiment is also supported

by another work by Robillard [53], as well as Garousi et al. [21], and Zhi et

al. [72].

One example task would be “Return sequence of PoS-tagged words” from

a Natural Language Processing (NLP) library. To NLP developers, Parts of

Speech (PoS) tagging is a basic and important task when programming in

the NLP domain. PoS tagging allows grammatical analysis on text corpora

that would provide insight on the grammatical patterns of that data. If a

prospective NLP library did not have this task described in the documentation,

then it would be harder for a developer to implement this needed task, or even

know if this task was supported by the library. Thus, knowing documented

supported tasks is important.

3.2.2 Readability

We split the readability of the documentation into two metrics: the first being

the readability of the documentation text and the second being the readability

19

of the code examples. Even if the readability of the text is high, if an accom-

panied code example is unreadable, then it would be difficult to match the

textual information with the concrete implementation. Additionally, a code

example would be confusing if the intent and purpose of a code example is not

properly described by a readable textual description. Thus, good documenta-

tion quality will have both readable text and readable code examples.

When deciding how to measure text readability, we again consult the lit-

erature [3], [19], [25], [58] and find that the Flesch readability metrics are

commonly used. For the purpose of this thesis, we chose to use the Flesch

reading ease formula [17] as it is designed solely to rate the readability of a

text, as opposed to the Flesch-Kincaid grade level formula [16] designed to

assign a United States grade level. Although other readability metrics are

available, we found several issues with using them. For example, although

the Coh-Metrix [24] or L2 Syntactic Complexity Analyzer (L2SCA) [38] are

arguably better measures of readability, both of these metrics require external

information outside of the text itself to properly use the metric. The Coh-

Metrix requires input such as a Latent Semantic Analysis [18] (LSA) space,

which is a representation of words and their text meaning. This LSA [18] space

needs to be created, which requires expert opinion for accurate annotations.

The L2SCA [38] metric also requires expert opinion as it requires a mapping

of “production units” (which require their own definition) and syntactic struc-

tures, which need to be created. As such, we select the Flesch reading ease

metric, as it relies solely on the text itself and no other external information

requiring expert opinion.

When consulting the literature on code readability, we found a set of fea-

tures proposed by Buse and Weimer [6] which can be used to evaluate code

readability. Some of these features include line length (number of characters),

number of identifiers, identifier length, number of parentheses, and number of

periods. Following Buse and Weimer’s [6] research, Scalabrino et al. [56], [57]

further refined these features by analyzing the correlation between these fac-

tors and code readability. They then trained a machine learning classifier that

predicts the readability of Java code. We utilize the results from Scalabrino

20

et al. [56], [57] and use their Java code classifier to measure code readability.

3.2.3 Code Examples

Code examples are also an important aspect of documentation. According to a

survey conducted by Forward and Lethbridge [20], the use of examples within

documentation was one of the most important “attributes” that contributed to

the overall “effectiveness” of documentation. Garousi et al. [21] also conducted

their own survey and found the use of examples to be one of the most impactful

“attributes” when evaluating the overall quality of a document. This sentiment

of the importance of code examples is echoed with the other references in

Table 2.1. In order to achieve the goal of gauging the code examples in the

documentation, the question we asked for GQM was: “Do all public API

methods/classes have code examples?” With the aspect being framed by this

question, we design the metric for this aspect to be a ratio of how many public

methods and classes in the documentation have code examples to all public

methods and classes available through a library’s API. The higher these ratios,

the higher the likelihood that there is an example to help guide developers to

use the library’s API.

3.2.4 Ease of Use

Lastly, the final documentation aspect we focus on is the ease of use aspect.

This documentation aspect focuses on how “easy” is it to use the documenta-

tion in terms of navigating and finding information for a task. To answer the

question of “how easy is the documentation to navigate?”, we turn to Human-

Computer interaction (HCI) research. This field of research focuses on the

design of computer technology and how humans interact with the interface

of computer design. In the context of this thesis, it would be how humans

interact with the online website hosting the official documentation. As such,

we create a checklist aggregated from HCI research [11], [43], [69] surrounding

website design. These guidelines include checking for relevant links to relevant

web pages, providing a table of contents, providing a search function within

the documentation itself, and providing a list of links to all other pages on the

21

Table 3.2: Summary of documentation aspects and derived metrics

Aspect Metric(s)

Up-to-date

- Ratio of matching public methods
between documentation and source code
- Ratio of matching public classes
between documentation and source code

Completeness

- Ratio of matching public methods
between documentation and source code
- Ratio of matching public classes
between documentation and source code
- Documented library task list

Readability - Flesch reading ease

Code Examples

- Ratio of public methods and classes having
code examples in the documentation over
all public methods and classes in the source
code

Ease of Use
- HCI check list
- Quick start check (described in Section 4.6)

documentation’s home page. The more a documentation matches the guide-

lines of HCI research, the “easier” it is to navigate the documentation to find

information.

3.2.5 Metric Summary

We present Figure 3.2 as a summarization of the different metrics we derive

for each of the selected documentation aspects described in detail in the above

sections. The “Quick start” check is an additional check we incorporate when

measuring the navigability of a documentation, which was added from feedback

given during the interview study discussed in Chapter 4.

22

Chapter 4

Initial Validation of Selected
Metrics through Developer
Interviews

After defining metrics that provide information about documentation quality,

we need to validate whether our metrics provide a measure for the intended

aspect, whether the metric is useful to developers when evaluating a library’s

documentation, and whether our summary presents them meaningfully. More

formally, we want to answer:

1. Are our metrics useful in evaluating documentation quality?

2. Do our metrics accurately reflect the documentation aspects they intend

to measure?

3. Is our current presentation of each metric easy to read and understand?

Answering these three questions gives us intermediate feedback before fully

implementing the metrics and documentation overview summary and perform-

ing large-scale evaluation. To answer these three questions, we resort to exter-

nal validation and conduct interviews with industry developers, asking about

the metrics we defined and their presentation.

23

Figure 4.1: Initial mockup of documentation quality overview. We validate
this mockup in our interview study.

4.1 Mockup of Documentation Quality Overview

Visualization

Our end goal is to create a tool to automatically evaluate documentation qual-

ity and provide a visual summary to client developers. This visual summary

would present the values of the metrics we calculate in an easy-to-read format.

However, before building this visual summary, we want to get early feedback

from developers to ensure that we create a visualization that is clear to them

and that presents useful information, in addition to validating our metrics

we derived in Chapter 3. Thus, we first create a mockup for the metrics we

discussed but without all of them being fully implemented yet. We show this

mockup as Figure 4.1 and use it in the interview study to receive feedback from

developers before fully implementing the metrics and documentation quality

overview summary (described below). The thesis author approximated the

values of the metrics for the mockup by manually calculating the metrics for

one page of the ReactJS documentation [13].

Our initial summary tool has six different components, labelled from 1O to

24

6O. Although components 1O and 5O are not any of our metrics, we include

them to provide background information about the library, that being its name

and license. Component 2O is a visualization of the individual metrics of

measuring the number of public API methods and public API classes that

have a code example provided in the documentation. Component 3O displays

multiple metrics. The “Average readability of x” refers to the rating of either

the documentation text readability or the code example readability. We create

the star ratings for these two metrics by treating the returned values from

the respective metrics as percentages out of 100, as both the Flesch reading

ease [17], and Scalabrino et al. [56], [57] measurements return a value from 0 to

100. Component 3O also includes the two ratios of matching methods/classes

in the documentation with the source code combined into one metric labelled

“Documentation/Source code consistency”. We create the star ratings for this

metric by normalizing the ratio over 100, allowing us to treat the value as

a percentage. Therefore, each star represents 20% consistency between the

documentation and source code. We do not use the term “up-to-date” in

our visualization because according to Zhong and Su [73], Lee et al. [35], and

Zhou et al. [75], “up-to-date” implies that textual descriptions and examples

(if any) are also “up-to-date” in the documentation, which we do not measure.

The last metric presented in Component 3O is the “Navigation Score”, where

we create the star rating based on the number of features the documentation

includes from the checklist we created from HCI research. The navigation score

star ratings are not based on a percentage of the checklist as, according to the

World Wide Web Consortium’s definition of a navigable website [69], having at

least two features constitutes a navigable website. Therefore, documentation

having more than two navigable features equates to a five-star rating, while

having exactly two features equates to a three-star rating, one feature equates

to a one-star rating, and no features having a zero-star rating. Component 6O

is the “List of tasks” which details what tasks can be done with the library,

as extracted from the documentation. It also provides information on whether

each task has an accompanying code example in the documentation between

parentheses. Finally, component 4O is a “general rating” of the documentation

25

Table 4.1: Demographic information of interview participants

Participant Job Title Role Years of Experience

P1 Jr. R&D Engineer Software Engineering, Soft-
ware Development, Dev
Ops

4

P2 Jr. Developer Research and development,
Front-end web development

2

P3 Sr. R&D Engineer System Administration,
Back-end coding, Databases

12

quality, where the star rating is an equal-weighted combination of the previous

metrics.

4.2 Interview Study Setup

This section details the interview setup, including the participant recruitment

and the creation of interview questions.

4.2.1 Participant Recruitment

Our participants are professional software developers working in an industrial

research company, using mainly JavaScript, whose goal is to create real prod-

ucts out of research prototypes and to perform applied research in software.

After receiving ethics clearance from our university, we interview three de-

velopers of varying seniority and experience from this company. Table 4.1

describes the demographics of the three participants.

4.2.2 Interview Setup

We conduct the interviews online through Zoom meetings. We follow a semi-

structured interview setup [37] where we use pre-determined guiding questions

but allow the discussion to deviate and explore tangent directions. However,

we try to ensure that interviewees answer our guiding questions such that we

can validate our chosen documentation aspects and metrics.

We structure the interview and guiding questions as follows. We first ask

participants about their background and role in the company. We then ask

them open-ended questions about what they perceive as positive and negative

26

features in library documentation (i.e., what do they like seeing in documen-

tation and what do they dislike seeing). The responses from this part help

us understand what developers use when evaluating documentation. It also

provides insights on whether our summary addresses these features and if we

are generally measuring relevant aspects. The list of open-ended questions we

ask are:

1. What are things you look for when viewing documentation for the first

time?

2. What do you want to see in documentation?

3. What are things that lower documentation quality?

4. What would be useful to know about the documentation of a library

before exploring it deeper?

Finally, we show participants the documentation quality mockup, Fig-

ure 4.1, and ask for their feedback on the provided metrics, as well as how

they are presented. For each component we present in the mockup, we ask

developers whether (1) the metric adequately represents its intended aspect

and (2) whether that aspect is beneficial in evaluating documentation quality.

When a participant does not understand the goal or intention of a metric, we

take note and explain it to them before asking them again to answer these two

questions. Each interview lasted approximately 30 minutes and we recorded

the audio, with participant consent and ethics clearance, for transcription pur-

poses and review.

4.3 Interview Analysis Methods

In this section, we describe the methods we use to analyze the interview re-

sponses. We start by transcribing each interview before analyzing the re-

sponses through an open coding mechanism [14], [63]. For each transcript,

we extract responses from each question and group related responses before

analyzing each group for the documentation aspect or metric they address.

27

4.3.1 Open Coding

After extracting all responses from the transcripts, we perform open coding to

group similar responses through a series of coding stages [7], [55]. First, the

author of this thesis reviews each of the interview transcripts and extracts all

the responses. This follows the same method as Campbell et al. [7] to define

the “units of meaning” which is described to represent one item that can be

analyzed for coding data. Second, the same author performs open coding in

order to group responses based on the content of the response. Third, the

author assigns a label to each group and creates “higher-level” categories to

group multiple labels. We refer to these “higher-level” groups as “themes” and

the “lower-level” labels as “codes”. After the thesis author creates the themes

and codes, the thesis author and another research collaborator independently

annotate each of the responses with both a theme and a code and we measure

inter-rater agreement. The inter-rater agreement between the two authors,

measured by the Cohen’s Kappa-score [10], is 0.66 for themes and 0.58 for

codes, which is a substantial agreement for themes and moderate agreement

for codes [10]. These themes and codes help us summarize the support and

criticisms of the current metrics, the mockup presentation, and in identify-

ing missing metrics/documentation aspects that developers find useful when

evaluating documentation quality. We discuss our results below.

4.4 Interview Results: General Documenta-

tion Questions

Here we discuss the results of our interview, following the open coding of

the responses from the interviewees. Our analysis will follow the flow of the

interviews, question by question.

4.4.1 Open-Ended Questions

We first discuss the responses to our open-ended questions about software

documentation.

28

What are things you look for when viewing documentation for the first time?

According to all our participants, we find that libraries are explored when there

is a specific task that needs to be solved. Additionally, having a general high-

level idea of the library, or what tasks the library supports, is beneficial when

deciding whether or not to use a library. This coincides with our metric of

finding a list of documented library tasks the library supports. Participants P2

and P3 also notice the general cleanliness of the documentation’s user interface,

e.g., if the documentation looks clean and aesthetically pleasing, they will base

their expectations from that first glance.

What do you want to see in documentation? All three participants want

to know how to use a library without much reading. Therefore, all three

participants agree that positive features in documentation include the presence

of a “quick-start” guide that includes installation or importing instructions and

code examples. The benefit of code examples help the developer understand

how the library should be used without much reading, and the benefit of

quick-start guides and installation examples serve to aid the developer to start

working with the library. Quick-start guides also provide basic information

without too much navigation into the documentation.

What are things that lower documentation quality? P1 and P3 mention

that negative features of documentation include having long and complicated

explanations, either in textual descriptions or code examples. Concrete ex-

amples of this are large blocks of text and long code examples. Intuitively,

the long physical length of documentation would make information difficult

to find in addition to being difficult to read and comprehend. Generally, all

participants agree that when information is hard to find or outdated, it causes

negative feelings and a loss of trust toward the library.

What would be useful to know about the documentation of a library before

exploring it deeper? We ask this question to determine if there is any useful

information for a developer to know about the documentation before starting

to read it. However, most of the responses by the interviewees focus on infor-

mation regarding the library itself, rather than about its documentation. For

example, P1 and P2 both mention knowing a library’s popularity, or use in

29

other projects, would be beneficial to know about a library before investing

time and effort into it. Additionally, P3 answers that the license of a library

is beneficial, as a conflicting license means no effort needs to be spent on this

library. The decision of whether to use a library or not can simply be based

on the license alone. Although not following our goal for this interview, this

information is still valuable in learning what is beneficial to developers when

evaluating a library, and other works already have such metrics for library

comparison [26], [39]–[41].

4.5 Interview Results: Mockup Feedback

We now discuss the feedback regarding our mockup (Figure 4.1) of a docu-

mentation quality overview summary. We again follow the interview flow of

questions, starting with general feedback about the mockup, before discussing

the feedback for each of the metrics in the same order as labelled in Figure 4.1.

4.5.1 General Mockup Feedback

Generally, all participants find that our mockup is clean and appreciate the

current information present as an overall report on a library’s documentation.

That being said, there are several suggested areas of improvement. One item of

feedback is to include more contrasting colours for clarity of reading the num-

bers on the pie charts (component 2O). Additionally, some of the space could

draw more attention to what is more important; e.g., component 2O, though

important, takes too much space on the page. Instead, that space could have

been used to make the “List of Tasks” (component 6O) more prevalent (which

all participants find important). As such, participants suggest changing the

structure of the different components, i.e., placing more important information

(e.g., list of tasks, general rating) on the left side and moving the metrics to

the right side. The current labels of the different metrics are also suggested

to be more succinct, while at the same time clearly convey what the metric

is trying to measure, e.g., “Average readability of documentation text” is de-

scribed to be “...almost like a sentence” by P1, when it could be more succinct

30

as “Readability of text”. Participants also express interest in additional in-

formation, such as the current maintainer of the library, providing the logo of

the library (if available), and having a high-level summary of the library.

4.5.2 Examples of API Methods/Classes

This feedback relates to component 2O of our mockup and aims to determine

whether developers view code examples of the library’s API methods and

classes as important. The answer to this question is a unanimous “yes”, with

P3 responding, “‘...hopefully I would like to have 100 percent every time...”.

However, in terms of the presentation, participants find that the pie charts are

unnecessary given that there are only two numbers presented for each metric.

As such, a suggestion is to remove the graph and add a single line for each

metric within component 3O.

4.5.3 Documentation & Code Example Readability

This feedback relates to component 3O and 4O of our mockup. All partici-

pants respond that readability of text and code examples are important. The

readability of the documentation text is important because developers do not

want to waste time or effort understanding complex explanations. They prefer

short, concise sentences that convey the intent of what is being described so

developers can focus more on the code examples provided to learn how to use

that API for their own use. Additionally, the readability of code examples is

also important. Since developers gravitate toward code examples to quickly

understand how to use the library, its clarity and understandability is neces-

sary for developers to feel comfortable with the library enough to experiment

with it. To facilitate this, P2 and P3 express the desire of having runnable

code examples within the documentation itself, e.g., a CodePen [9] example.

This allows developers to experiment and explore a library without commit-

ting the time and effort of installing or importing the library into their own

project. All participants also convey their satisfaction with the way we present

the information in the mockup, P2 stating “You give me one important infor-

mation, because average readability of documentation is something I value a

31

lot. ...[Y]ou gave me that is four out of five and you gave me information on

how you calculate it. So it’s perfect.”

4.5.4 Source Code/Documentation Consistency

As a reminder, we use the term “consistency” instead of “up-to-date” because

our metric only matches method signatures and class definitions between the

source code and documentation. It does not determine if other information

about the methods/classes, such as code examples and textual descriptions,

are up-to-date. All participants agree that consistency is important because

documentation builds “trust” between the developer and the library. When

the documentation proves itself to be incorrect, that trust is eroded and devel-

opers are more inclined to ignore the documentation and focus on analyzing

the source code, as P3 states, “Let’s say [I start with] 100% trust the documen-

tation is up-to-date and correct, and if I ever find out that it is not the case,

even for one method, then I tend to kind of ignore it and start digging into the

code much more.” This supports our current metric of rating the consistency

between the documentation and source code.

4.5.5 Navigation Score

Our intent with “Navigation Score” is to capture how easy it is to navigate

the documentation to find wanted information. While the participants express

interest in this metric, they were unable to think of a way to improve our

current plan of the implementation of the metric. Instead, one interesting

idea presented by participant P1 is to incorporate documentation within the

IDE itself accompanying code suggestions. This ignores needing to navigate

the documentation entirely by instead providing documentation along with

the suggested method within the IDE.

4.5.6 Library Tasks

For this component, the participants respond that knowing the tasks a library

supports is important. However, the current presentation can be improved,

32

e.g., there are too many tasks in the list and it is difficult to navigate. One

suggestion is to group or categorize the tasks in order to display it in a more

concise manner where a developer can see what tasks a library addresses at

a glance. One important feedback to note is, although knowing the tasks of

a library is important, it is equally important to know how to perform that

task. For example, P3 states “Code examples...I think is the thing that I love

to see the most”, and this is because “...descriptions I tend to get kind of

confused...code examples if you run with these parameters, you get that.” In

other words, code examples provide a clearer understanding of the intentions

of a library and how it accomplishes a particular task compared to textual

descriptions. As such, code examples go hand in hand with knowing what

tasks a library supports. This feedback supports our decision to additionally

provide information about whether a task has an accompanied code example

in the “Documented Library Task” list. However, we change this indicator to

be more visual (e.g., with a green checkmark and red cross) as opposed to a

textual indicator based on feedback.

4.5.7 Free-Form Answer and Tangent Discussions

Finally, the participants are able to share any insights regarding documenta-

tion and the mockup not previously addressed. Participant P1 acknowledges

the importance of good naming of API methods and classes, mentioning that

well-made, descriptive, and concise names for API methods and classes re-

moves the need for much of the documentation. A descriptive method name

allows a developer to understand the intent of the method and, accompanied

by a code example, to understand how to use the method, removing the need

for any textual documentation. Participant P2 highlights the importance of

the idea of “consistency” between the documentation and the source code, sug-

gesting that additional measurements can be included into the “consistency”

metric. Keeping the trust between the developer and library requires correct

documentation, however, and aside from bringing up its importance, no con-

crete metrics were suggested to facilitate measuring consistency beyond what

was currently presented. Participant P3 had no additional comments.

33

4.6 Summary of Interview Insights and Con-

crete Changes

The interviews provide us intermediate feedback on whether “we are on the

right track” and allow us to address any obvious issues before conducting

more large-scale validation with the survey. We summarize the feedback and

changes we considered based on it.

Are our metrics useful in evaluating documentation quality? From

the interview responses, our metrics are useful in evaluating documentation

quality. All of the responses convey that each metric we present in the sum-

mary is useful, with many responses expressing the benefit of that metric.

Do our metrics accurately reflect the documentation aspects they

intend to measure? All interviewees find our metric calculations to be

reasonable if not intuitive, and have no issue with the way our metrics are cal-

culated. As a reminder, during the free-form answer discussion (Section 4.5.7),

participant P2 expresses the desire for the incorporation of additional measure-

ments into the “consistency” metric, but has no suggestions for any concrete

metrics that could be added.

Is our current presentation of each metric easy to read and un-

derstand? Unfortunately, our presentation of the metrics is what most of

the negative feedback is about. Regardless of the usefulness and accuracy of

our metrics, our presentation of the metrics is confusing and requires some

guidance to understand. The most common issue is the confusion of how to

read certain metrics. We summarize our concrete changes with regards to our

presentation below.

Figure 4.2 shows our updated visual summary after incorporating the in-

terview feedback and is our full working version of the summary tool.

34

Figure 4.2: A screenshot of the final documentation summary tool

4.6.1 Content Changes

Since all three participants agree that a “quick-start” or installation guide is a

positive feature of documentation, one of the additions to our tool is the check

for such a guide, which we incorporate into the “Navigation Score” metric

(described in Section 5.4). Additionally, we add a summary description of

the library to add high-level information about the library. We also remove

the license since, although important, it is more related to the library itself,

whereas we want to focus on the library’s documentation and the license can

be incorporated into a library comparison overview, such as the one created

by De la Mora and Nadi [41].

4.6.2 Presentation Changes

Based on the presentation feedback by the participants, we change the pie

charts for “API methods and classes in code examples” to a single line each

in Figure 4.2. We also change the labels to “Methods with examples” and

“Classes with examples,” respectively. These metrics still present the percent-

ages of how many methods and classes have code examples in the documen-

tation. However, they now take less room and do not overshadow the other

information present. We create the star ratings for these two metrics by again

35

normalizing the ratio to percentages out of 100, where each star represents

20% of methods or classes with a code example in the documentation. Note

that in Figure 4.2, they are covered by the tooltip explaining the “Readability

of text” metric. We also change the structure of the summary by moving the

“List of Tasks” (changed to “Documented Library Tasks”) to the left side and

the box containing the different metrics to the right side of the page. This

change is made because of the participants’ opinions escalating the impor-

tance of the task list in comparison to the other information. We also sort

the “Documented Library Tasks” list by the frequency of the extracted task,

alphabetically, and if the task has a code example. The textual description

of whether a task has a code example is changed to a visual indicator with a

legend. The general rating is kept to the right side of the summary page; how-

ever, we move it closer to the name of the library. We rename the readability

metrics “Average readability of x” into: “Readability of text” and “Readabil-

ity of code” for each readability rating, respectively. We change the label for

“Documentation/Source code consistency” to “Documentation/Source code

similarity”, as we find that the initial responses of the summary tool state

that the word “consistency” is confusing. We change the label “Navigation

Score” to “Navigation rating”, as the word “score” has a connotation of be-

ing absolute, while a “rating” is more relative (in this case, to other library

documentation).

36

Chapter 5

Implementation of
Documentation Quality
Summary

After receiving feedback from the interviews, we proceed to implement the

final versions of the different metrics, as well as implement the automatic

calculation of metrics and creating the summary page for any given library.

5.1 Documented Library Task List & Linked

Examples

In this section, we explain how we extract the “Documented Library Tasks” list

in Figure 4.2 which corresponds to the “completeness” documentation aspect.

This component presents extracted tasks from documentation and links code

examples to those tasks.

We extract tasks using an existing technique by Treude et al. [66] and

link code examples by using heuristics that analyze the HTML structure of

the documentation. In other words, there are two stages to extracting the

information in this component. The first is to extract tasks from the docu-

mentation, designated as the task extraction phase, and the second is to find

and link code examples to those tasks, designated as the task linking phase.

37

5.1.1 Task Extraction Implementation

To extract tasks from the documentation, we utilize the task extraction tool

created by Treude et al. [66], called TaskNav (short for TaskNavigator). TaskNav

assists developers in navigating documentation where it provides a list of tasks,

extracted from documentation, in a search engine. For example, if a developer

wants to know the supported tasks surrounding PoS tagging by an NLP library

, they would search “tag” (or some form of the word) in TaskNav, and it would

return a list of tasks, such as “Run part of speech tagging” or “Remove XML

tags”. The intuition behind TaskNav is based on analyzing the grammatical

structure of a sentence to see if there is a potential task phrase. It does this

by extracting phrases from a sentence that include a programming verb and

follow a predefined task definition. A list of programming verbs was created

by Treude et al. [66] through their extensive testing, and we provide that list

both on our artifact page [47], as well as in Appendix B.1. They define a

task definition as: “...[a] verb involved in a dependency with an object or with

a prepositional phrase (or both)...”. Using the previous example, the words

“Run” and “Remove” are approved programming verbs in the verb list, and

their respective sentence structures follow the task definition.

For each page of a documentation, we follow Treude et al. [66]’s prepro-

cessing procedure where we remove all HTML tags from the page, except for

HTML header tags (h[1-6]), and replace inline <code> tags with <tt> to

allow inline code to be treated as nouns during the task extraction process.

Note that this replacement is only for the task extraction phase, while the task

linking phase (described next) uses the original HTML.

After preprocessing a documentation page, we feed it into TaskNav [66]1,

one paragraph at a time, to extract tasks. TaskNav treats each sentence of a

paragraph independently and uses the Stanford NLP toolkit [48] to find the

grammatical dependencies in each sentence to extract the tasks. Let us take

the following paragraph shown as “p-1” in Listing 5.1 as an example: “If you

want to run a series of TokensRegex rules before entity building, you can also

1Note that the authors have kindly provided us with a executable version of TaskNav.

38

specify a set of TokensRegex rules. A TokensRegexAnnotator sub-annotator

will be called. It has the name ner.additional.tokensregex.” 2 TaskNavigator

splits this paragraph into three sentences and extracts the following tasks from

them:

� run series before entity building

� run series of TokensRegex rules

� specify set of TokensRegex rules

� call TokensRegexAnnotator sub-annotator

Here, we can see that there are three tasks extracted from the first sentence,

because the words “run”, and “specify” are considered verbs, and there is

a dependency from these words to the objects “entity building”, and “To-

kensRegex rules”. The second sentence has the verb “call” and the object

“TokensRegexAnnotator sub-annotator”, which leads to one extracted task,

and the third sentence does not have any extracted tasks.

5.1.2 Code Example Linking Implementation

After extracting tasks from each paragraph in each page, we then link code

examples found on the same page to those paragraphs. We use a heuristic to

help us link code examples to tasks. The heuristic only considers paragraphs

that are (1) above the code example and (2) do not have a header in between

the paragraph and code example. Overall, for each code example denoted by

the <pre> tag, we traverse the HTML DOM tree to find the nearest paragraph

following the heuristic and link it to the closest paragraph that has extracted

tasks. Listing 5.1 shows four paragraphs (p0-p3), one code block (pre-0), and

one header (h-0). In this example, we find the code block pre-0 and attempt

to link this code example to a paragraph. According to our heuristics, we

ignore paragraphs p-0 and p-3. Since p-0 has header h-0 between it and the

code example and paragraph p-3 is below the example, this leaves paragraphs

2https://stanfordnlp.github.io/CoreNLP/ner.html

39

p-1 and p-2 as candidate paragraphs. Of these two paragraphs, we now check

whether either of them contain any extracted tasks. As shown in Section 5.1.1,

paragraph p-1 has four extracted tasks, while paragraph p-2 does not have any

extracted tasks. Therefore, we link code example pre-0 to paragraph p-1. If

both paragraphs p-1 and p-2 have code examples, then we would have selected

the closest paragraph to the example, i.e., paragraph p-2. After we find the

paragraph with extracted tasks nearest to the code example, we link and

store the extracted tasks of that paragraph with that code example for later

presentation in the “Documented Library Tasks” component of the summary

page.

5.1.3 Task Extraction and Linking Verification

In order to verify the correctness of our task extraction and linking process,

we create a ground truth consisting of eight web pages from four different

domains and three different programming languages. We use the orjson [28]

and JSON-java [62] library GitHub pages, the Stanford NLP “Named En-

tity Recognition” [42] and “‘Command Line Usage” [12] pages, the NLTK

“parse” [45] and “tag” [46] pages, the jQuery “get” [32] page, and the React

“Component and Props” [13] page. We first describe the ground truth creation

and verification for the task extraction, then detail the ground truth creation

and verification for the task linking. We provide the list of rules and guidelines

used to make the ground truths in Appendix A.

Task Extraction

To create the task extraction ground truth, the thesis author and another re-

search collaborator manually extract 354 tasks by looking at each paragraph

for each documentation page and finding tasks related to the usage of the

library. As a reminder, we define a “library task” as any usage of the li-

brary, including its API, installation instructions, and interaction with other

software. For example, in this paragraph extracted from orjson [28]: “or-

json supports CPython 3.7, 3.8, 3.9, and 3.10. It distributes x86 64/amd64

and aarch64/armv8 wheels for Linux and macOS. It distributes x86 64/amd64

40

Listing 5.1: Example paragraph and example from StanfordNLP NER docu-
mentation

<p> {% p-0 %}

By default no additional rules are run, so leaving

↪→ ner.additional.regexner.mapping blank will cause this

↪→ phase to not be run at all.

</p>

<h3 ...> {% h-0 %}

Additional TokensRegex Rules

</h3>

<p> {% p-1 %}

If you want to run a series of TokensRegex rules before entity

↪→ building, you can also specify a set of TokensRegex

↪→ rules. A TokensRegexAnnotator sub-annotator will be

↪→ called. It has the name ner.additional.tokensregex.

</p>

<p> {% p-2 %}

Example command:

</p>

<div ...>

<div ...>

<pre ...> {% pre-0 %}

java edu.stanford.nlp.pipeline.Stanford...

</pre>

</div>

</div>

<p> {% p-3 %}

You can learn more ...

</p>

wheels for Windows. orjson does not support PyPy. Releases follow semantic

versioning and serializing a new object type without an opt-in flag is considered

a breaking change.” 3, we would extract the library task:

� Serialize a new object

After the two annotators extract the library tasks, they discuss any discrep-

ancies and resolve agreements. Since tasks are extracted from the paragraph

and are not predefined categories/labels, we cannot use Cohen’s Kappa [10]

to measure agreements. Instead, we provide a percentage of the agreements

3https://github.com/ijl/orjson

41

between the two annotators where this ratio is the number of same extracted

library tasks on a document page, e.g., an agreement of 60% means the au-

thors extracted the same task(s) for 60% of the paragraphs on a document

page. The percentage agreement of library tasks over the eight ground truth

pages ranges from 21% to 83%, with an average agreement of 69%. Note that

the agreement percentage here is whether or not the two annotators extract

the exact same tasks from a paragraph. This means if annotator 1 extracts

three tasks from a paragraph and annotator 2 extracts four tasks from the

same paragraph, we mark that paragraph as a disagreement, even though all

but one task is different. The reason we choose to gauge agreement percentage

based off paragraphs and not the tasks themselves is because we can be certain

of the number of paragraphs as our denominator, while the number of tasks

is subjective and harder for future researchers to replicate.

We then automatically extract tasks using our described technique in Sec-

tion 5.1.1, which extracts 592 tasks from the eight different pages containing

1,681 paragraphs (based on the HTML <p> tag). To verify the extracted tasks,

we compare the automatically extracted tasks to ground truth tasks. How-

ever, the manually extracted tasks in the ground truth and the automatically

extracted tasks of the technique do not always match exactly. For example,

sometimes words are added or replaced, or even a different form of the word

is used, e.g., “Run trained CRF’s on each sentence” vs “Run series of trained

CRF’s”. In order to combat this issue, we use fuzzy matching with a similar-

ity threshold to determine if the tasks are equivalent. If this threshold is not

met, then we mark the extracted task as incorrect. Using this ground truth,

we calculate the precision as the number of matched extracted tasks with the

ground truth over the number of extracted tasks and find that the precision of

our task extraction technique for library tasks ranges from 3% to 20%, with

an average precision of 13%. The recall of our task extraction is the ratio of

matching extracted tasks to the number of ground truth tasks and ranges from

4% to 79% with an average recall of 47%.

We find multiple reasons that contribute to the false positives and false

negatives of the extraction approach. In terms of false positives, an automati-

42

cally extracted task by TaskNav may not be a “library task”, meaning that the

extracted task does not meaningfully denote a task supported by the library,

and only follows the grammatical task definition with an allowed “program-

ming verb”. For false negatives, some expected tasks in the ground truth did

not have the needed verb in the allowed programming verb list. For example,

from the “Named Entity Recognition” page of the CoreNLP documentation 4,

we manually extract the task “Give tokens more specific tags”. However, the

general verb list from Treude et al. [66] (Appendix B.1) does not contain the

verb “give”, as this verb is not a common general programming verb, and if

included, would cause too many false positives. In other cases, the program

found a programming verb, but could not extract a task following the gram-

matical task definition by Treude et al. [66]. For example, another task we

extract from the “Named Entity Recognition” page 5 is “tag numeric and time

related sequences”, from the sentence: “Next a series of rule based systems are

run to recognize and tag numeric sequences and time related sequences.”. How-

ever, the program will extract “tag time related sequences”, because the word

“numeric” in this sentence is considered an adjective and not part of the ob-

ject. Even though the verb “tag” is part of the programming verb list, our

ground truth tasks may not match the sentence structure that TaskNav uses.

Additionally, false negatives can occur due to not reaching our threshold of

fuzzy matching. We choose 95% as the threshold as lower thresholds result in

many false positives.

To address the reasons for the false positives and negatives that contribute

to the low precision and recall, we modify the verb list by Treude et al. [66]

and include an exclusion list of verbs. By changing the original verb list, we

limit the amount of false negatives that occur because a domain-specific verb

is missing from the allowed verb list, and by utilizing an exclusion verb list we

can filter verbs that raise too many false positives. The thesis author creates

these lists through manual experimentation and reading of the documentation

pages for the six libraries used in creating the ground truth. The number of

4https://stanfordnlp.github.io/CoreNLP/ner.html#fine-grained-ner
5https://stanfordnlp.github.io/CoreNLP/ner.html#numeric-sequences-and-sutime

43

https://stanfordnlp.github.io/CoreNLP/ner.html#fine-grained-ner
https://stanfordnlp.github.io/CoreNLP/ner.html#numeric-sequences-and-sutime

documentation pages over the six libraries total to 148 documentation pages.

To modify the original verb list (Appendix B.1) to the other verb lists (Appen-

dices B.2, B.3, B.4), we compare the missing extracted tasks of the program

to the ground truth tasks of libraries in the same domain and add commonly

found verbs that are missing in the original verb list. For example, the ad-

ditions we make to the NLP verb list B.2 are: supports, serialize, deserialize,

decode, parse, validate, and specialize. To create the exclusion list for the

NLP domain B.2.1, we again analyze a comparison between the program ex-

tracted tasks and the ground truth, and find tasks that were found by the

program that are not tasks in the ground truth. After we apply the different

verb and exclusion lists to the eight pages respectively, we raise our precision

to an average of 40% and recall to an average of 62%.

Task Linking

Similarly, we create a second ground truth for “task linking”, where we man-

ually check whether a task has a code example or not. The thesis author and

research collaborator again separately go through the same eight pages. For

each code example in a document, they select which paragraph (if any) to link

with the code example. This resulted in 227 linked code examples and para-

graphs. Since this is a more objective task, we obtain near-perfect agreement

on most of the documentation pages, with the only guiding instruction being

that the paragraph must describe the code example in some way. The lowest

agreement page was 64%, with the highest agreement being 100%.

Using this ground truth, we evaluate the performance of our task linking

technique on these documentation pages. We define the precision of our task

linking technique as the ratio of correct automatically linked code examples

to paragraphs over all linked code examples, where our technique ranges from

0% to 82% with an average linking precision of 43%. We define the recall as

the ratio of correct automatically linked code examples to the ground truth

code example/paragraph links, where the recall ranges from 0% to 75% with

an average recall of 33%.

One reason for false positives is that our automated technique links the

44

example to the closest paragraph that contains tasks and is located above

it. If the descriptive paragraph is underneath the code example or the correct

descriptive paragraph did not have extracted tasks, then our technique will

instead link the example to the closest paragraph with tasks, which would be

an incorrect description. False negatives occur when the program finds a code

example, but is unable to link it with any paragraph. This is because none of

the paragraphs between the code example and the nearest above (HTML tag)

header have extracted tasks. Since our heuristic does not consider paragraphs

above the closest header to an example or below the example, such a code

example would not be linked to any paragraph.

Another issue with our task linking evaluation stems from manually cre-

ating the ground truth. Since the ground truth links paragraphs and code

examples regardless of whether the paragraphs had extracted tasks, there is

a chance our program would be unable to link code examples to the correct

ground truth paragraph because that paragraph does not have any extracted

tasks. This means that evaluating the task linking on the ground truth as

is would be double penalizing the program, once for its performance on the

task extraction, and again for being unable to correctly link code examples.

Therefore, to isolate the task linking evaluation, we use a subset of the ground

truth where all linked paragraphs have extracted tasks. This results in 107

linked code examples and paragraphs. Using this subset, the precision for the

task linking ranges from 43% to 82% with an average precision of 55%, and

the recall ranges from 12% to 75% with an average recall of 42%.

5.2 Documentation and Source Code Linking

We now discuss the three metrics that require comparing the documented APIs

with the APIs offered in the actual source code: “Methods with examples”,

“Classes with examples”, and “Documentation/Source code consistency”.

45

Listing 5.2: Code example from StanfordNLP Simple API documentation6

Sentence sent = new Sentence("your text should go here");

sent.algorithms().headOfSpan(new Span(0, 2)); // Should return 1

5.2.1 Methods and Classes with Code Examples

To calculate “Methods with examples” and “Classes with examples” metrics,

we need to correctly detect which of the library methods appear in code ex-

amples in the documentation. Thus, we begin by extracting all code exam-

ples designated by the <pre> HTML tag. We then use a heuristic to filter

code examples without a method call by checking for at least one open round

parenthesis (“(”). This is a simple heuristic used to support incomplete code

examples and to support as many programming languages as possible. As a

reminder, we currently aim to support Python, Java, and JavaScript libraries.

If the code example just stated the method (e.g., in a comment), rather than

show how to use the method, it is not useful as an example. Listing 5.2 shows

a code example from the Stanford NLP [48] documentation 6. Using our above

heuristic, we extract the following method calls:

1. Sentence(“your text should go here”)

2. sent.algorithms()

3. headOfSpan(new Span(0, 2))

4. Span(0, 2)

After extracting the method calls from code examples in the documenta-

tion, we need to determine which of these method calls are library API meth-

ods. Thus, we next extract public methods from the library’s source code.

For each library, we clone its repository from GitHub and find its source code

by finding either a “src” directory or a directory with the same name as the

library; e.g., NLTK [44] stores its source code under the “nltk” directory in its

GitHub repo 7. Note that in the tool implementation, if we are unable to find

6https://stanfordnlp.github.io/CoreNLP/simple.html
7https://github.com/nltk/nltk

46

https://stanfordnlp.github.io/CoreNLP/simple.html
https://github.com/nltk/nltk

the source files of a directory, we let the user know on the summary page. For

each source file in the repository, we use an Abstract Syntax Tree (AST) to

represent each source code file. We then traverse the AST to find and extract

all public methods and their relevant information, including the fully qualified

method signature to determine its containing class. We use this information

to create a dictionary of public method signatures and then match the method

calls extracted from the documentation to the extracted source code method

signatures.

We match methods from the source code to methods in the code examples

by first matching the method name. If there are multiple function definitions

with the same name, e.g., same method in different classes, then we compare

the number of arguments in the example method call with the number of

parameters in each of the candidate method signatures. If the number of ar-

guments match the number of parameters, we count it as a match; otherwise,

we do not. In the event there are multiple function definitions with the same

name and parameters, we do not match the example method call with any of

them. We choose not to match the method call with any of the potential defi-

nitions to err on the side of precision, rather than randomly select a definition

to link. When we find a match, we consider that this documentation snippet

mentions this API and thus has an example.

Note that when matching method calls and signatures, both Python and

JavaScript have their own challenges. Python has “optional parameters” that

modify the number of arguments a method accepts, meaning there is an up-

per and lower bound to the number of parameters for a Python method.

JavaScript, on the other hand, does not check for the correct number of argu-

ments as missing arguments are inherently treated as “undefined” and do not

stop the execution of the method. To account for these differences, we modify

the parameter count logic to use a range for Python and to solely check for

matching method names for JavaScript.

For the class level, we consider that a class has code examples in the doc-

umentation if there is at least one method from this class (including construc-

tors) that is in use in a code example in the documentation according to the

47

above matching steps.

Validating Method and Class Linking

To verify the correctness of our method/class linking process, we create a

ground truth using the same libraries from section 5.1.3 with the exclusion

of React [50] and jQuery [31], and the addition of Requests [51], QUnit [49],

and jBinary [30]. We replace these libraries as the React and jQuery GitHub

repositories do not store their source code in a “src” directory, or a directory

sharing its name. This makes it difficult to verify as the generalized approach

described above for this metric would need to make exceptions for these two

libraries (in the form of custom file traversal algorithms).

Recall that our metric computes the proportion of source code library API

methods that have examples. Thus, the correctness of this metric depends on

the ability of our technique to detect library API methods in the documenta-

tion code examples. Accordingly, to create the ground truth for this metric,

we first extract all code examples from the documentation. For each code

example, we manually collect the list of library method calls in that example.

We double check that this is indeed a library method call by comparing it to

the source code of the library. Thus, our final ground truth for each library

consists of the list of documentation code examples and their corresponding

library methods. Given a code example, ideally, our automated extraction

technique would correctly extract all methods in the ground truth and noth-

ing beyond that.

We use the above ground truth to calculate the precision and recall of our

method linking technique. We define the precision of our technique as the

number of correct method calls the technique extracts divided by the total

number of method calls the technique extracts for a given library. We define

the recall of our technique as the proportion of ground truth methods the

technique is able to correctly detect. We calculate recall and precision per

documentation code example. To report overall numbers for a given library,

we calculate the median recall and precision over all snippets in that library.

Across the seven libraries we evaluate, the precision of our technique has a

48

median of 32% and the recall has a median of 40%.

A false positive in this context is when our technique says a code example

contains a library method m, but m is neither part of the code nor a library

method. One reason for false positives is if a third-party method call shares

the same name as a method in the library. In this scenario, the program will

match the extracted method call with a library method definition; however,

the code example does not actually use that library method. The last issue

that may cause false positives is incorrect method call extraction from the

documentation. Since our technique uses regular expressions to find method

calls and its arguments, there is the possibility our program finds an incorrect

number of arguments which match a library method definition.

We define false negatives as a failing of the program to find expected library

method calls in a code example. One reason for this is if the program fails

to match the extracted method from the code example to the corresponding

function definition extracted from the source code. This could be the case,

similar to above, if the library is updated and the method is removed, or the

number of parameters is changed in the source code but not the documenta-

tion. Another reason that contributes to this issue is the possibility that our

program fails to properly parse the example. This means that the program

fails to create an AST of the code example, where one reason would be in-

complete code examples. The issue of incomplete code examples is one area

of improvement we discuss in Chapter 8.2.

5.2.2 Documentation/Source Code Similarity

We now describe how we calculate the “Documentation/Source code similar-

ity” metric, which finds how many methods and classes in the documenta-

tion are in the library source code. This differs from the previous section

as we do not look for code examples; instead, we match the signatures of

the classes/methods in the documentation text with the signatures of the

classes/methods in the source code. As a reminder, this metric measures the

“completeness” and “up-to-date” aspect, i.e., we want to measure how much

of the signatures in the documentation are consistent with the source code

49

API signatures.

We first extract any inline code mentions from the documentation by pars-

ing the HTML for <code> and <dt> HTML tags. The <dt> HTML tag stands

for “description term” and is the other common HTML tag aside from the

<code> tag that we found to designate inline code in online documentation.

Once we extract the candidate signatures from the documentation, we then

use the same previously used heuristic to check for at least one open paren-

thesis in extracted HTML elements. We use the heuristic as an initial check

to ensure that the found HTML element has arguments or parameters that

we can extract and use to match against the created source code dictionary.

We extract the parameters and the corresponding class from the candidate

signatures by using regular expressions. We then try to match the candidate

signatures by its method name to the source code dictionary before also at-

tempting to match the corresponding class and parameter identifiers. At the

end, we calculate the metric as the percentage of documentation method calls

that are part of the library.

Validating Documentation/Source code similarity

The validation for the “Documentation/Source code similarity” metric is sim-

ilar to the validation described earlier in Section 5.2.1. However, instead of

the technique detecting library API methods in documentation code examples,

our technique detects library API methods in the inline code snippets of doc-

umentation text. To create the ground truth for this metric, we first extract

all inline code from the documentation text. For each piece of inline code,

we manually find the matching library method call(s). We perform the same

check of determining whether the library method calls are indeed part of the

library by comparing it to the source code. Thus, our final ground truth for

each library consists of the list of inline code snippets and their correspond-

ing library methods. Given a code snippet, ideally, our automated extraction

technique would correctly extract all methods in the ground truth.

We use this ground truth to calculate the precision and recall of our method

linking technique for inline code snippets. We define the precision of our

50

technique as the number of correct method calls extracted by the technique

divided by the total number of method calls extracted by the technique. We

define the recall of our technique as the proportion of ground truth methods

the technique was able to correctly detect. We calculate recall and precision

per documentation code snippet. To report overall numbers for a given library,

we calculate the median recall and precision over all snippets in that library.

Across the same seven libraries we evaluate on, the precision of our technique

ranges from 18% to 39%, with a median precision of 28%. The recall ranges

from 15% to 24%, with a median recall of 20%.

When we analyze the reasons for the low precision and recall, we find multi-

ple issues that caused false positives and negatives. We define false positives as

our technique saying a code snippet contains a library method m, but m is not

part of the code snippet and not a library method. One issue that contributes

to false positives is the initial heuristic of using parentheses to find method

calls. For example, the documentation may use parentheses as a way to con-

vey information, e.g., “: - Response. nonzero (false if bad HTTP Status)”.

The program would extract this code reference and find one parameter, i.e.,

“false if bad HTTP Status”, then match it to the method found in the source

code with the same name and number of parameters. However, this reference

is not a correct signature of the method, but rather information around its

return value. We define false negatives as the program failing to find expected

method calls in an inline code snippet with source code method definitions.

One reason for the program being unable to match extracted documentation

methods is a difference between the method definitions in the source code and

the usage of the documentation method. For example, the jBinary [30] library

does not conform to the patterns of the other eight initial libraries. In this

instance, jBinary utilizes JavaScript’s “proto property” to define its methods

within its source code. However, the jBinary documentation demonstrates

how to use the library by referencing the methods directly. This means the

usage in the documentation differs from the definition in the source code.

51

5.3 Readability of Text and Code

In this section, we explain the metrics for calculating the “readability” of doc-

umentation text and code examples. This corresponds with the “Readability

of text” and “Readability of code” metrics in Figure 4.2 and relates to the

“Readability” aspect of documentation.

5.3.1 Readability of Text

We calculate the readability of text using the Flesch reading ease metric [17].

This metric was developed by Flesch in order to assess the difficulty of a text

based on its readability; the higher the score, the easier the text is to read

and understand. Although the Flesch reading ease metric [17] was originally

developed for improving the readability of newspapers for the Associated Press

in the United States of America, it is still one of the most accurate and com-

monly used metrics when evaluating the readability of text. As mentioned in

Chapter 3.2.2, the Flesch reading ease metric [17] does not rely on any exter-

nal information aside from the text itself and it generates a score between 1

and 100, where the higher the score means the higher its readability, i.e., the

easier it is to read. The formula for the metric is shown in Equation 5.1. The

simplicity and accuracy of the Flesch reading ease metric [17] makes it one

of the most traditionally used readability formulas, even in other attempts of

rating the readability of software documentation [3], [19], [25], [58].

We incorporate the Flesch reading ease metric [17] into our summary tool

by taking the average score calculated on each page of the documentation. We

do this by first extracting all paragraphs, designated by the HTML <p> tag,

from each documentation page of a library and combine them into one text,

then we apply the formula in Equation 5.1 on each page. To extract the words

and sentences from the combined text, we use a tokenizer while we extract

syllables using a regular expression. The regular expression uses the heuristic

of the number syllables being equal to the number of vowels (or vowel pairs) in

a word, e.g., “onomatopoeia” has six vowels/vowel pairs, and has six syllables

(“o”, “o”, “a”, “o”, ‘oe‘”, “ia”).

52

Score = 206.835− 1.015(
totalwords

totalsentences
)− 84.6(

totalsyllables

totalwords
) (5.1)

5.3.2 Readability of Code

We calculate the readability of code using the implementation provided by

Scalabrino et al. [56] in their own work. As mentioned in Chapter 3.2.2,

Scalabrino et al. [56] proposed a set of updated features based on Buse and

Weimer’s [6] code readability model and applied machine learning to create a

classifier to use on Java documentation. In their work, they found positive and

negative correlations, and measured predictive power, between their proposed

features and the readability of code. For example, they found that code line

length, based on the number of characters, was a negatively correlated strong

predictor of code readability, which means the smaller the length of the code

line, the more readable it is. Using their findings, they created a machine learn-

ing classifier that predicts the readability of Java code using their features. For

the purpose of this thesis, we use Scalabrino et al. [56]’s implementation and

Java classifier to rate the readability of Java code. However, we are unable to

utilize their work to support the other two languages of Python and JavaScript

without needing to reimplement their work and train new classifiers. We dis-

cuss the extension of these features to classifiers supporting other languages

in Chapter 8.2.

5.4 Navigability

5.4.1 HCI checklist

To objectively evaluate the navigability of software documentation, we lever-

age Human-Computer Interaction (HCI) research. Since most official docu-

mentation pages are online webpages, utilizing HCI-research-backed guidelines

provides us with a research-supported checklist of features to evaluate online

library documentation navigability. Using guidelines from the Web Content

Accessibility Guidelines (WCAG) 2 [27] developed by the World Wide Web

53

Consortium (W3C), we implement an adaptation of their navigability checklist

for technical documentation.

We focus on their guidelines surrounding the multiple ways to reach a

webpage within the documentation itself, i.e., we focus on searching for the

following recommended navigation tools:

� G125: Providing links to navigate to related Web pages

� G64: Providing a Table of Contents

� G63: Providing a site map

� G161: Providing a search function to help users find content

� G126: Providing a list of links to all other Web pages

� G185: Linking to all of the pages on the site from the home page

According to the WCAG [27], a documentation is considered navigable

if at least two of these techniques are used. For each of these items, we

use a combination of HTML parsing and heuristics to determine whether a

documentation implements any of them. To determine if developers implement

built-in search functionality (item G161), we create a heuristic to look for input

elements with an attribute of the name “placeholder”, or form elements, that

also contain a “search” class. To check for a table of contents (item G64), we

parse the HTML to look for HTML <div> tags that have a class of “navigation”

or an ID of “sidebar”. If either of those checks fail, we instead look for all

ordered lists (HTML tag) and unordered lists (HTML tag) on the

homepage and check if the list contents contain links (HTML <href> tag) to

the other pages of the documentation, i.e., the links share the same domain as

the home page of the documentation. We check for the different links to other

pages of documentation by extracting all HTML <a href> tags on the page

(not restricted to being in and elements), then matching domains

between the link and the documentation home page. Finally, we create a

heuristic to check for “quick-start” and/or installation guides by checking the

54

contents of ordered and unordered lists for such a link. This heuristic is added

based on the feedback of our interview participants in Chapter 4.6.1. We

create each heuristic by manually investigating the combination of the nine

libraries used in Chapter 5.1.3 and Chapter 5.2.1 to find the different HTML

structures of each item. We then run the heuristics through six additional

libraries for a total of 15 libraries our heuristics worked correctly on. Of the

15 libraries, our checklist runs successfully on all libraries for each heuristic

that was applicable.

55

Chapter 6

Survey Evaluation of Our
Documentation Quality
Summary

To evaluate our documentation quality summary, we run a survey with soft-

ware developers. In this section we describe the survey setup, participant

recruitment, and analysis of results. The goal of this survey is to evaluate our

summary tool and gauge its effectiveness in providing developers an idea of

the documentation quality for a library. To determine this, we ask develop-

ers to rate the usefulness of the different metrics in the context of evaluating

documentation quality. Additionally, for users that are familiar with a library,

we ask whether our summary evaluation matches their expectations of that li-

brary’s documentation quality. Figure 6.2 is a screenshot of our survey, which

is shown to the right of the documentation summary.

6.1 Survey Setup

To evaluate whether the metrics we select are useful to developers in evaluating

a library’s documentation quality, we create a website to display the metrics,

as well as a survey attached to that website to retrieve feedback from users.

Our research questions are as follows:

� RQ1. How useful is our documentation summary for assessing the doc-

umentation quality of a library?

56

Figure 6.1: The landing page of our summary tool

Figure 6.2: A screenshot of our survey within the summary tool

� RQ2. Does our summary match users’ experience with the library?

� RQ3. Where do users want to see this summary information?

Before describing how we answer our research questions, we first describe

the flow a user would take when using our summary tool and answering the

attached survey. The flow of the survey begins on the landing page, which is

shown in Figure 6.1. From here, the user can choose to either select a library

with existing summary information or analyze a new library. If the user decides

to analyze a new library, they must provide the following information:

� The library name

57

Figure 6.3: A screenshot of the demographic question

� The library’s main programming language

� The official documentation URL for the library

� (Optional) The GitHub repo URL

Note that the user provides the documentation URL when analyzing a new

library.

We populate the initial list of available libraries with the nine libraries

we previously used in the different metric verifications: orjson [28], JSON-

Java [62], CoreNLP [48], NLTK [44], jQuery [31], React [50], jBinary [30],

QUnit [49], and Requests [51]. After selecting either of those two options,

we then ask for the user’s optional demographic information, shown in Fig-

ure 6.3. Regardless of whether the user chooses to provide their demographic

information, we then present the summary information about the documenta-

tion quality of a library, shown in Figure 4.2. If the user decides to participate

in the survey, they can access the survey by clicking on the blue “Answer

Survey Questions” button.

Figure 6.2 shows a screenshot of the start of the survey questions. The

survey has one question for each of the metrics we present in the summary,

with the “General Feedback” portion of the survey asking users if the summary

is generally useful, as well as where they want to see such a summary, and a

58

final free-text answer for additional feedback. The number of survey questions

total to 14 and the full list of survey questions is provided in Appendix C.

To answer RQ1, we ask about the usefulness of the individual metrics as

a proxy. We use a Likert scale [36] rating for each question of a metric, i.e.,

each question takes the form: “How useful is having a <metric name> in <

↪→ library name> documentation?” For example, one question we ask on

the CoreNLP [48] summary page is: “How useful is having a rating of methods

with a code example in CoreNLP’s documentation?”, with responses being a

selection of: “Not useful”, “Somewhat not useful”, “Neither useful nor not

useful”, “Somewhat useful”, and “Very useful”. We provide the full list of

questions in Appendix C.

If the user expresses that they are familiar with the library, we ask an

additional survey question, along with the other above questions, in order to

answer RQ2. This question is: “To what extent do you agree or disagree

with this statement: The documentation quality metrics represented in this

summary are consistent with my experience working with <library name>

(e.g., the metrics indicate low documentation quality and your experience is

that this library is poorly documented, or vice versa).”, which also has Likert

scale [36] responses from “Strongly disagree” to “Strongly agree”.

Finally, to answer RQ3, we ask users to respond with where they would

like to see our documentation quality summary integrated. We provide a drop

down list of four options: “None”, “README file badge”, “Package manager”,

and “Other”, where selecting the “Other” option allows the user to input their

own suggestion.

6.2 Participant Recruitment

We recruit participants for the survey following the Snowball sampling [23] and

Convenience sampling [59] methods using social media apps, such as Facebook

and Twitter, and personal connections. This resulted in a large spread of de-

veloper experience, ranging from one to two years of experience, to 10+ years,

with the median value being six years of experience. Since our target demo-

59

graphic is general software developers, both of these sampling methods work

to achieve our goals. As the purpose of this survey is to determine whether the

summary tool is useful, asking developers who are close at hand (Convenience

sampling [59]) allows us to quickly receive survey responses, while asking them

to share the survey with their connections (Snowball sampling [23]) allows us

to grow the survey responses among more software developers.

6.3 Survey Response Analysis

While gathering survey responses, we do not ask participants for their name or

other identifying information. Instead, we differentiate the different responses

through the use of a “session key” generated by Django, in combination with

the library the participant is viewing when answering the survey questions. If

a user views multiple libraries and submits multiples survey responses using

the same browser instance, then the session key will remain the same across

all responses with the different library names differentiating the responses.

By tracking the session keys in combination with the library, we find at least

168 distinct accesses to our tool and 133 distinct session keys. Unfortunately,

due to a bug in the implementation of the survey, early survey responses only

saved demographic information and failed to save responses for the ratings

of individual metrics. We do not know how many of these early participants

filled in the survey. After fixing the bug, we received 25 survey responses.

Along with the survey responses, we also received two endorsements on

Twitter in the form of comments expressing their interest and excitement

about the summary documentation tool. We present a distribution of all

years of experience for both the 168 participants who accessed the service and

the distribution of years of experience of the 25 survey responses in Figure 6.4.

The rest of our analysis will be based on 25 responses from 21 unique session

keys, where the participants filled in at least one of the survey questions. Of

these 25 responses, 24 rated every metric, while 1 response only rated the

general usefulness of the tool. These 25 responses were made on 12 different

libraries. We present the number of responses per library in Figure 6.5. From

60

Figure 6.4: Distribution of years of experience of the tool accessors and survey
participants

Figure 6.5, we can see that while most libraries have only one response, a few

libraries such as “numpy” and “React” are more popular for participants to

see a summary of the documentation quality. Of these libraries, it also appears

that Python and JavaScript libraries are more popular, as there are only two

responses for Java libraries: one for “Mockito” and one for “soot”.

61

Figure 6.5: The number of responses for each library

6.3.1 RQ1: Usefulness of Our Documentation Quality
Summary

To answer our first research question, we analyze the distribution of the 24

responses on each metric, which is presented in Figure 6.6. From the median

score of each metric, we see that most participants find most of the provided

metrics to be useful. The “General Rating”, “Text Readability”, and “Nav-

igability” metrics in particular seem to be the most generally useful of our

metrics as they have no rating of one, only ratings from two to five, meaning

that no participant found any of these metrics as “Not useful”. The median

scores for each of these metrics is four, meaning most participants found these

metrics to be “Somewhat useful”. While “Code Readability” does have some

ratings of one, its distribution, along with the “Text Readability” and the

“Navigability” ratings, suggests that it is one of the highest-rated metrics,

signifying that participants view these metrics as the most important metrics

of the summary. When viewing the other swells of the violin plot, most met-

rics have the majority of the responses around a rating of four or five, with

the exception of the “Documentation/Source code similarity” metric, which

has an even distribution across the different rating values. The “Documenta-

62

Figure 6.6: The distribution of ratings for each metric in our documentation
quality summary

tion/Source code similarity” metric also has the lowest median rating of three

and a half. This implies that while our other metrics are “Somewhat useful”

to developers when evaluating a library documentation’s quality, the “Docu-

mentation/Source code similarity” metric has more neutral sentiments, and

is generally more controversial in terms of its usefulness. The “Usefulness”

metric question asks participants to rate the general usefulness of the survey

tool. For this metric, all 25 responses provided a rating. From Figure 6.7,

we see that the median rating is four and the violin plot swell is also largest

around four, implying our participants agree our tool is “Somewhat useful”.

63

Figure 6.7: The distribution of ratings of the general usefulness of our docu-
mentation quality summary

6.3.2 RQ2: Matching User Expectation of Summary

For our second research question, we first retrieve the responses of participants

that are familiar with the library they were responding about. This results in

us analyzing 21 of the 25 responses. We plot the distribution of ratings asking

participants whether the summary matches their expectations of the docu-

mentation quality. We present this information in Figure 6.8. As we can see

from this graph, the median responses is a rating of three, meaning that most

participants “Neither agree nor disagree” that our summary matches their

expectations of the library documentation’s quality for each of our presented

metrics.

64

Figure 6.8: The distribution of ratings of whether the documentation quality
summary matches user expectations for 21 participants familiar with the li-
brary they were viewing

6.3.3 RQ3: Integration of Documentation Quality Sum-
mary

Finally, to answer RQ3, we ask participants where they would like to see library

documentation quality summaries. As a reminder, this question provides four

options of “None”, “README file badge”, “Package manager”, and “Other”,

where “Other” allows users to input their own suggestion. Figure 6.9 shows

the responses given by the participants and we see that most participants

would like a documentation quality summary in a README file badge, while

others would prefer the summary as part of a package manager. One “Other”

response expresses interest in seeing our summary tool in “Both readme and

package manager page”, which we simplify in Figure 6.9 as “Both”. The

integration of this documentation quality summary into README file badges

and package managers allows developers to see high-level information about

65

Figure 6.9: The responses for where users would like to see this summary

the documentation quality at a glance, which we discuss in further detail in

Chapter 8.1.

6.3.4 General Comments

Of the 25 responses we received, 10 participants responded with general feed-

back. We provide the list of general comments in Appendix D. While most

participants agree with the usefulness of each of our metrics, most general

feedback comments are regarding confusion with the calculations behind the

different metrics. For example, one participant’s response is that “My ex-

perience with React’s documentation has been overall pleasant. While I agree

with the navigation rating, I disagree with the documentation quality metric for

“Readability of text” and “Readability of code examples” - I think the text and

code examples are very easy to understand and easy to read.”. This suggests

that other more sophisticated measures of readability should be used, or an

explanation of the calculations for the readability metrics should be provided.

Another feedback comment expressing confusion with the metrics is “I find

it difficult to understand how the metrics are actually populated: what data

are they based on? How were they calculated? Based on what data? Which

version of jQuery? jQuery is a very bizarre library. I just find it difficult to

66

draw a conclusion from jQuery’s documentation to these metrics. Since most

the functionality is exposed on the $(selector) object. How are code examples

extracted?” We can also address this comment by explaining the calculations

behind the different metrics. Although we already provide information about

the calculations via tooltips when hovering over the metrics, adding further

detail within the tooltips will be cumbersome to read and may cover other

information in the summary. Instead, one idea would be a separate page con-

taining the details of the specific calculations for a library for those interested

to check. Other feedback comments include suggestions with other areas of the

documentation we can try to measure, such as this response: “Since jQuery

is a popular package documenting some security practices/well-known issues

might be helpful too. I am not sure how feasible this is though.” We discuss

potential improvements to our documentation quality summary in Chapter 8.

67

Chapter 7

Threats to Validity

In this section, we discuss the limitations and threats to the validity of our

results.

7.1 Construct Validity

Since we rely on manual validation to create the ground truths for each of

the different metrics, there is a risk that the tasks extracted, or code snippet

links (to documentation tasks, or source code methods) in the ground truth,

are subjective. When creating the ground truth for extracted tasks, the thesis

author and another research collaborator separately annotate the dataset for

extracted tasks from documentation paragraphs. We combat the subjectivity

of the task extraction by defining what a “task” is to help aid the research

collaborators in objectively determining what is and what is not a task. As

a reminder, this definition is: any usage of the library, including its API,

installation instructions, and interaction with other software, which we first

define in Section 3.2.1. For any disagreements that occurred between the

collaborators, they are discussed and resolved, erring on the side of precision,

meaning extracted tasks are confirmed only if it is unquestionable. The linking

of code examples to documentation paragraphs is a more objective assignment,

where the only (informal) “rule” is that the paragraph must describe the code

example in some way. The two research collaborators again annotate the

dataset separately, and we find the agreement between the collaborators to

be in near-perfect agreement, meaning the construct validity threat of this

68

ground truth is low. For any disagreements present, however, we follow the

same method of resolving them and erring on the side of precision. Finally,

the assignment of code example/snippet linking to source code methods is the

most objective, given that methods in the documentation must link to only one

source code method. As such, the thesis author is able to create the ground

truth themselves without the need of a second opinion on the links.

While there is subjectivity that arises from manual annotations, we com-

bat the subjectivity by stating definitions, rules, and guidelines where needed

to obtain objective decisions when creating the different ground truths. For

the ground truth assignments that require additional objectivity, we utilize a

second researcher to annotate the datasets, with disagreements resolved with

precision as a priority.

Another threat to construct validity is the issue of survey participants hav-

ing a “perceived value” of our summary and evaluation tool when answering

our survey questions. Given that there is nothing for our survey participants

to compare against, they are likely to rate our summary tool positively. We

mitigate this threat by asking participants not only about the usefulness of the

summary tool as a whole, but for each individual metric as well. By providing

participants tooltips that explain each metric and having participants provide

opinions on each metric, it provides us with a more robust view of how each

participant views our summary tool. One opportunity that arises from this

issue would be to run a user study asking participants to compare parts of our

summary tool against other existing documentation quality evaluation metrics

for the respective part; however, many of those tools will require updating or

implementation. For example, the user study can ask participants to compare

our summary tool’s evaluation of a documentation’s up-to-dateness, complete-

ness, and readability against an implementation of Aversano et al. [3]’s defined

metrics for these documentation aspects.

69

7.2 Internal Validity

In Chapter 4, we discuss the initial validation of our selected metrics through

an interview study. Although interview responses from only three industry pro-

fessionals are present, the purpose of the interview is to receive initial feedback

on the selected metrics and presentation of the summary, not a comprehensive

evaluation of our tool. As such, we incorporate the feedback we received into

our final implementation of the summary tool and metrics, especially given

the experience of the participants, which spans multiple years of experience

and roles.

Another threat to internal validity is the way we identify survey responses.

As described in Chapter 6.3, we differentiate responses through a combination

of a Django-generated session keys and the library the user was viewing. As

such, it is difficult to determine if each response was made by an individual

person, or if the same user submitted multiple responses on different sessions

accessing the website (closing and reopening the browser will do this). If it

is the case that the same person rates different libraries, their ratings on the

different metrics are valid; however, the questions of the general usefulness of

the tool and where they would like to see the documentation quality summary

integrated may be skewed. Additionally, the user may rate the same library

twice, skewing the results for all the questions. However, we mitigate this

threat by filtering the responses before analysis, which we describe in Sec-

tion 6.3. We also take note of the session key, as a session key remains the

same while a user is using the same instance of their browser while viewing the

tool, even if they view a different library, and we show in Section 6.3 that there

are 19 unique session keys. This provides an adequate level of mitigation in

determining the validity of the survey responses themselves and, consequently,

the reliability of the survey responses.

Finally, we address the internal validity issue of the created domain lists

listed in Appendix B. The thesis author creates these lists through manual

experimentation and reading of the six different libraries used in Chapter 5.1.3.

This brings into question the validity of the generalizability of the patterns

70

extracted from the different documentation sources. However, we mitigate this

threat through the quantity of documentation pages in use when creating each

domain list, which totals 148 different documentation pages. Although not an

exhaustive analysis of all libraries in the respective domains, it is enough to

create an initial domain list for the different domains that increase the precision

of task extraction by an average of 40% across the different tested libraries.

7.3 External Validity

A threat to our external validity is that we analyze eight documentation pages

over seven libraries and three languages when creating the ground truth for

the “Documented Task List & Linked Examples” metric (Chapter 5.1.3), and

242 documentation pages when creating the ground truth for “Documentation

and Source Code Linking” metrics (Chapter 5.2.1). Even though this sample

is not exhaustive of all software libraries, it helps us evaluate our technique.

Additionally, the metrics we developed against that ground truth received

positive feedback from the results of the survey described in Chapter 6. During

our survey analysis, we show that most participants find our summary tool

to be generally useful, and each of the metrics being useful when evaluating

documentation quality.

Another threat to our external validity is that we have responses from only

25 developers. We believe that the small number of responses is due to a

technical bug we had, which resulted in survey responses not being caught.

While the bug is fixed, we do not know how many of the early survey responses

are lost. However, of the 25 responses we did receive, the responses cover a wide

range of experienced developers over 12 different libraries in each of the three

supported languages. From Figure 6.4, we see that the distribution of years

of development experience of the 25 responses is similar to the distribution of

years of experience of the 168 responses. While not a statistically significant

sample of all software developers, the 25 responses we received still indicates

our tool and its metrics to be useful.

71

Chapter 8

Discussion

In this section, we discuss possible future applications that can utilize our

documentation quality summary work, as well as challenges encountered and

opportunities for improvement.

8.1 Applications

Our documentation quality summary can integrate with other tools evaluating

open source or company libraries. For example, our documentation quality

summarization could integrate with the previous work done by De la Mora

and Nadi [41]. In their work, they created a library comparison website, which

we provide a visualization for in Figure 8.1.

From Figure 8.1, we can see that their work presents various metrics sur-

rounding libraries as a whole, e.g., a metric indicating the popularity of the

library, or the average issue response time. Our documentation quality sum-

marization could be another metric that provides developers more information

about the documentation quality of a library. De la Mora and Nadi [41] con-

ducted a survey asking developers about their own library comparison tool and

also asked developers about other additional features they wanted included in

the comparison. Of the 61 responses they received, documentation quality was

one of the most demanded additional features. One integration of our docu-

mentation quality summary would be using our “General Rating” as another

row to the original metrics of their tool, while also allowing a way to view

our full summary of the documentation quality (e.g., by clicking on the star

72

Figure 8.1: A screenshot of the Library Comparison tool by De la Mora and
Nadi [41]

rating).

Other applications of our work could be integration into other formats

that provide quick evaluation of a library. From our analysis in Section 6.3,

we find that 16 respondents like the idea of integrating documentation quality

summaries into README files, possibly as a badge, and 6 respondents would

like to integrate it within package managers. README badges are highlights

to a repository that convey important information to prospective developers.

For example, a popular README badge is a dynamic badge that calculates

the code coverage of a repository. A documentation quality badge could also

be a useful dynamic badge that developers of a library can display in their

README file.

Package managers are tools that assist developers to install, upgrade, and

track the packages (or libraries) that are in use for a project. Some package

managers already present a high-level evaluation of a package to developers.

Node Package Manager (NPM) displays a small bar chart for each package

that conveys a package’s “popularity”, “quality”, and “maintenance”, which

is calculated through metrics implemented by npms.io 1. Our documentation

1https://npms.io/about

73

https://npms.io/about

quality summary could integrate into NPM and other package managers that

want to provide a high-level evaluation of a library’s documentation quality.

8.2 Challenges and Opportunities

In this section, we discuss challenges and future opportunities of improvement.

8.2.1 Challenges

Extraction Accuracy One challenge is accurately extracting “useful” tasks

from documentation. Since we utilize the TaskNav application created by

Treude et al. [66], most libraries are evaluated using their defined “task verb

list” 2, which we provide in Appendix B.1. However, as mentioned earlier,

we find this list to be limited as a general task list for all software domains.

Instead, specific domain verb lists are needed in order to accurately extract the

tasks for a domain. Although we create domain verb lists for Json, NLP, and

DOMmanipulation domains, there are many other software domains that need

their own domain verb lists to accurately extract tasks from their respective

documentation. The creation of custom domain verb lists for different software

domains is tedious, if not infeasible, as these lists need to be manually tailored.

There is also no authority over what is and what is not a software domain,

which would potentially lead to confusion of how to classify a particular library.

HTML Parsing Another challenge is that our implementation relies heavily

on HTML parsing of online library documentation. Since there is no standard

online documentation format, much of our implementation depends on finding

patterns for the different kinds of documentation we encounter. There is a

probability that there is “good” documentation that we evaluate as “bad”

because our implementation is not able to match the documentation’s HTML

with one of our defined patterns. However, our analysis is made over 242

different documentation pages over 9 different libraries in 3 different languages,

which gives confidence in the generalizability of our tool. Additionally, as

2https://www.cs.mcgill.ca/ swevo/tasknavigator/

74

https://www.cs.mcgill.ca/~swevo/tasknavigator/

shown in Figure 6.5, the survey responses are mainly on other libraries aside

from our original set of nine libraries, where most respondents still find our tool

useful for those other libraries. To overcome this challenge, one improvement

could be the development of an online library documentation standard, which

developers can adopt for their own libraries (similar to Javadocs).

8.2.2 Opportunities

Although we received positive feedback from developers on both the usefulness

of our metrics and summary tool, there are always opportunities for improve-

ment. In response to the general feedback from the survey, some comments

convey confusion with the calculations behind the different metrics. Even

though we have tooltips that appear when hovering over the individual met-

rics, one beneficial idea would be an FAQ section that details the breakdown

of each metric and how it is calculated. This would provide clarity to users

and would potentially explain the scores for metrics they may disagree with.

Other categories of improvement include the expansion of current metrics

for both accuracy and generalizability, and other areas of integration for a

documentation quality summary. One opportunity for expansion is creating

classifiers for other languages using the baseline from Scalabrino et al. [56]’s

research. As mentioned in Chapter 5.3.2, our tool utilizes an implementation

provided by Scalabrino et al. [56], along with a machine learning classifier they

trained on Java code. The inclusion of classifiers in other languages, such as

Python and JavaScript, will increase the usefulness and generalizability of our

summary tool, which will in turn support additional languages aside from the

three languages covered in this thesis.

Another area of improvement would be an expansion of our existing met-

rics, or even the addition of other metrics into our summarization of docu-

mentation quality. For example, our text readability metric uses the Flesch

reading ease metric [17]. However, in Chapter 3.2.2 we also describe other

readability metrics that are more accurate, but require external expert opin-

ion on curating datasets particular to the language used in software libraries.

One opportunity would be the creation of these datasets in order to utilize

75

Figure 8.2: Old (left) and new (right) NLTK parse package documentation
page

these metrics for library documentation.

Another opportunity for gauging the accuracy of our summary tool, as well

as a potential application, is reaching out to the library maintainers with our

evaluation of their library’s documentation. If library maintainers agree with

our evaluation of their documentation, then they could in turn improve their

documentation to achieve a higher score. Contrastingly, if library maintainers

disagree with our evaluation, we would be able to ask for feedback to im-

prove our metrics to more accurately reflect how the library’s documentation

is perceived. For example, during the course of this research, the NLTK [44]

documentation was updated. We show an example updated page in Figure 8.2.

Although we did not reach out to the NLTK maintainers to trigger this change,

it would be beneficial to run our evaluation on both the old and new documen-

tation versions and ask NLTK developers whether they agree or disagree with

the evaluations. According to our summary tool, the new NLTK documenta-

tion has a better readability score compared to the old NLTK documentation.

This aligns with an initiative by the NLTK development team to update the

NLTK online documentation for greater readability 3.

In terms of other metrics that can supplement our existing summary, we can

revisit the table shown in Table 2.1. As a reminder, the chosen documentation

aspects we select are highlighted in Table 2.1. Even though we decide to focus

3https://github.com/nltk/nltk/pull/2845

76

https://github.com/nltk/nltk/pull/2845

on these documentation aspects, other aspects may also be useful to include,

such as the “Relevance of Content”, and “Consistency” aspects. For example,

one metric we can envision for the “Consistency” metric is to compare the

words describing the different tasks found in different documentation pages.

A metric for the “Relevance of Content” aspect could be a clustering of the

documentation pages to see how redundant some pages may be, which may

be combined with a previous metric, such as whether the pages in the same

cluster have different code examples or task explanations. Pages that are not

in a cluster, or with nothing unique to the other pages in a cluster, may be

flagged for redundancy.

77

Chapter 9

Conclusion

In this thesis, we surveyed the literature on the importance of documenta-

tion in learning and using software libraries, extracted documentation aspects

defined throughout the literature, and created metrics to measure select docu-

mentation aspects. We then validated our metrics through an interview study,

before automatically implementing it as a documentation quality online sum-

mary tool for nine different libraries over three programming languages. We

presented our metrics in a summary of a library documentation quality through

an online tool available for public use. We evaluated our documentation sum-

mary tool through a survey with 25 responses, with the results of our survey

concluding that our summary as a whole is useful, with positive responses

for all metrics. We then discussed some challenges we faced, as well as op-

portunities for improvement and extension, including the integration of our

documentation summary into other evaluation tools. All of our data and code

are available online on our artifact page [47]. We hope that this research along

with the discussion we provide encourages further research into this area of

evaluating software documentation quality.

78

References

[1] E. Aghajani, C. Nagy, M. Linares-Vásquez, et al., “Software documen-
tation: The practitioners’ perspective,” in 2020 IEEE/ACM 42nd In-
ternational Conference on Software Engineering (ICSE), IEEE, 2020,
pp. 590–601.

[2] E. Aghajani, C. Nagy, O. L. Vega-Márquez, et al., “Software documenta-
tion issues unveiled,” in 2019 IEEE/ACM 41st International Conference
on Software Engineering (ICSE), 2019, pp. 1199–1210. doi: 10.1109/
ICSE.2019.00122.

[3] L. Aversano, D. Guardabascio, and M. Tortorella, “Evaluating the qual-
ity of the documentation of open source software.,” in ENASE, 2017,
pp. 308–313.

[4] F. Bachmann, L. Bass, J. Carriere, et al., “Software architecture docu-
mentation in practice: Documenting architectural layers,” CARNEGIE-
MELLON UNIV PITTSBURGH PA SOFTWARE ENGINEERING INST,
Tech. Rep., 2000.

[5] R. P. Buse and W. R. Weimer, “Learning a metric for code readability,”
IEEE Transactions on Software Engineering, vol. 36, no. 4, pp. 546–558,
2010. doi: 10.1109/TSE.2009.70.

[6] R. P. Buse and W. R. Weimer, “Learning a metric for code readability,”
IEEE Transactions on Software Engineering, vol. 36, no. 4, pp. 546–558,
2010. doi: 10.1109/TSE.2009.70.

[7] J. L. Campbell, C. Quincy, J. Osserman, and O. K. Pedersen, “Cod-
ing in-depth semistructured interviews: Problems of unitization and in-
tercoder reliability and agreement,” Sociological methods & research,
vol. 42, no. 3, pp. 294–320, 2013.

[8] J.-C. Chen and S.-J. Huang, “An empirical analysis of the impact of soft-
ware development problem factors on software maintainability,” Journal
of Systems and Software, vol. 82, no. 6, pp. 981–992, 2009, issn: 0164-
1212. doi: https://doi.org/10.1016/j.jss.2008.12.036. [Online].
Available: https://www.sciencedirect.com/science/article/pii/
S0164121208002793.

[9] Codepen feature. [Online]. Available: https://codepen.io/features/.

79

https://doi.org/10.1109/ICSE.2019.00122
https://doi.org/10.1109/ICSE.2019.00122
https://doi.org/10.1109/TSE.2009.70
https://doi.org/10.1109/TSE.2009.70
https://doi.org/https://doi.org/10.1016/j.jss.2008.12.036
https://www.sciencedirect.com/science/article/pii/S0164121208002793
https://www.sciencedirect.com/science/article/pii/S0164121208002793
https://codepen.io/features/

[10] J. Cohen, “A coefficient of agreement for nominal scales,” Educational
and psychological measurement, vol. 20, no. 1, pp. 37–46, 1960.

[11] T. Comber, “Building usable web pages: An hci perspective,” in Proceed-
ings of the First Australian World Wide Web Conference, Norsearch,
Ballina, Australia, 1995, pp. 119–124.

[12] Command line usage. [Online]. Available: https://stanfordnlp.github.
io/CoreNLP/cmdline.html.

[13] Components and props. [Online]. Available: https://reactjs.org/
docs/components-and-props.html.

[14] J. M. Corbin and A. Strauss, “Grounded theory research: Procedures,
canons, and evaluative criteria,” Qualitative sociology, vol. 13, no. 1,
pp. 3–21, 1990.

[15] B. Curtis, H. Krasner, and N. Iscoe, “A field study of the software design
process for large systems,” Communications of the ACM, vol. 31, no. 11,
pp. 1268–1287, 1988.

[16] R. Flesch, “Flesch-kincaid readability test,” Retrieved October, vol. 26,
no. 3, p. 2007, 2007.

[17] R. Flesch, “A new readability yardstick.,” Journal of applied psychology,
vol. 32, no. 3, p. 221, 1948.

[18] P. W. Foltz, “Latent semantic analysis for text-based research,” Behavior
Research Methods, Instruments, & Computers, vol. 28, no. 2, pp. 197–
202, 1996.

[19] A. Forward, Software documentation: Building and maintaining artefacts
of communication. University of Ottawa (Canada), 2002.

[20] A. Forward and T. C. Lethbridge, “The relevance of software docu-
mentation, tools and technologies: A survey,” ser. DocEng ’02, McLean,
Virginia, USA: Association for Computing Machinery, 2002, pp. 26–33,
isbn: 1581135947. doi: 10.1145/585058.585065. [Online]. Available:
https://doi.org/10.1145/585058.585065.

[21] G. Garousi, V. Garousi, M. Moussavi, G. Ruhe, and B. Smith, “Evaluat-
ing usage and quality of technical software documentation: An empirical
study,” in Proceedings of the 17th International Conference on Evalua-
tion and Assessment in Software Engineering, ser. EASE ’13, Porto de
Galinhas, Brazil: Association for Computing Machinery, 2013, pp. 24–
35, isbn: 9781450318488. doi: 10.1145/2460999.2461003. [Online].
Available: https://doi.org/10.1145/2460999.2461003.

80

https://stanfordnlp.github.io/CoreNLP/cmdline.html
https://stanfordnlp.github.io/CoreNLP/cmdline.html
https://reactjs.org/docs/components-and-props.html
https://reactjs.org/docs/components-and-props.html
https://doi.org/10.1145/585058.585065
https://doi.org/10.1145/585058.585065
https://doi.org/10.1145/2460999.2461003
https://doi.org/10.1145/2460999.2461003

[22] G. Garousi, V. Garousi-Yusifoğlu, G. Ruhe, J. Zhi, M. Moussavi, and
B. Smith, “Usage and usefulness of technical software documentation:
An industrial case study,” Information and Software Technology, vol. 57,
pp. 664–682, 2015, issn: 0950-5849. doi: https://doi.org/10.1016/j.
infsof.2014.08.003. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S095058491400192X.

[23] L. A. Goodman, “Snowball sampling,” The annals of mathematical statis-
tics, pp. 148–170, 1961.

[24] A. C. Graesser, D. S. McNamara, M. M. Louwerse, and Z. Cai, “Coh-
metrix: Analysis of text on cohesion and language,” Behavior research
methods, instruments, & computers, vol. 36, no. 2, pp. 193–202, 2004.

[25] G. Hargis, “Readability and computer documentation,” ACM J. Com-
put. Doc., vol. 24, no. 3, pp. 122–131, 2000, issn: 1527-6805. doi: 10.
1145/344599.344634. [Online]. Available: https://doi.org/10.1145/
344599.344634.

[26] A. Hora and M. T. Valente, “Apiwave: Keeping track of api popular-
ity and migration,” in 2015 IEEE International Conference on Software
Maintenance and Evolution (ICSME), 2015, pp. 321–323. doi: 10.1109/
ICSM.2015.7332478.

[27] How to meet wcag (quick reference), 2008. [Online]. Available: https:
/ / www . w3 . org / WAI / WCAG21 / quickref / ?showtechniques = 245 #

multiple-ways.

[28] Ijl, Ijl/orjson: Fast, correct python json library supporting dataclasses,
datetimes, and numpy. [Online]. Available: https://github.com/ijl/
orjson.

[29] A. Jazzar and W. Scacchi, “Understanding the requirements for informa-
tion system documentation: An empirical investigation,” in Proceedings
of Conference on Organizational Computing Systems, ser. COCS ’95,
Milpitas, California, USA: Association for Computing Machinery, 1995,
pp. 268–279, isbn: 0897917065. doi: 10.1145/224019.224048. [Online].
Available: https://doi.org/10.1145/224019.224048.

[30] Jbinary. [Online]. Available: https://github.com/jDataView/jBinary.

[31] Jquery. [Online]. Available: https://jquery.com/.

[32] Jquery.get. [Online]. Available: https://api.jquery.com/jQuery.
get/.

[33] J. M. Kleinberg et al., “Authoritative sources in a hyperlinked environ-
ment.,” in SODA, Citeseer, vol. 98, 1998, pp. 668–677.

81

https://doi.org/https://doi.org/10.1016/j.infsof.2014.08.003
https://doi.org/https://doi.org/10.1016/j.infsof.2014.08.003
https://www.sciencedirect.com/science/article/pii/S095058491400192X
https://www.sciencedirect.com/science/article/pii/S095058491400192X
https://doi.org/10.1145/344599.344634
https://doi.org/10.1145/344599.344634
https://doi.org/10.1145/344599.344634
https://doi.org/10.1145/344599.344634
https://doi.org/10.1109/ICSM.2015.7332478
https://doi.org/10.1109/ICSM.2015.7332478
https://www.w3.org/WAI/WCAG21/quickref/?showtechniques=245#multiple-ways
https://www.w3.org/WAI/WCAG21/quickref/?showtechniques=245#multiple-ways
https://www.w3.org/WAI/WCAG21/quickref/?showtechniques=245#multiple-ways
https://github.com/ijl/orjson
https://github.com/ijl/orjson
https://doi.org/10.1145/224019.224048
https://doi.org/10.1145/224019.224048
https://github.com/jDataView/jBinary
https://jquery.com/
https://api.jquery.com/jQuery.get/
https://api.jquery.com/jQuery.get/

[34] E. Larios Vargas, M. Aniche, C. Treude, M. Bruntink, and G. Gousios,
“Selecting third-party libraries: The practitioners’ perspective,” in Pro-
ceedings of the 28th ACM Joint Meeting on European Software Engi-
neering Conference and Symposium on the Foundations of Software En-
gineering, ser. ESEC/FSE 2020, Virtual Event, USA: Association for
Computing Machinery, 2020, pp. 245–256, isbn: 9781450370431. doi:
10.1145/3368089.3409711. [Online]. Available: https://doi.org/10.
1145/3368089.3409711.

[35] S. Lee, R. Wu, S.-C. Cheung, and S. Kang, “Automatic detection and up-
date suggestion for outdated api names in documentation,” IEEE Trans-
actions on Software Engineering, vol. 47, no. 4, pp. 653–675, 2021. doi:
10.1109/TSE.2019.2901459.

[36] R. Likert, “A technique for the measurement of attitudes.,” Archives of
psychology, 1932.

[37] R. Longhurst, “Semi-structured interviews and focus groups,” Key meth-
ods in geography, vol. 3, no. 2, pp. 143–156, 2003.

[38] X. Lu, “Automatic analysis of syntactic complexity in second language
writing,” International journal of corpus linguistics, vol. 15, no. 4, pp. 474–
496, 2010.

[39] Y. M. Mileva, V. Dallmeier, M. Burger, and A. Zeller, “Mining trends
of library usage,” in Proceedings of the Joint International and An-
nual ERCIM Workshops on Principles of Software Evolution (IWPSE)
and Software Evolution (Evol) Workshops, ser. IWPSE-Evol ’09, Ams-
terdam, The Netherlands: Association for Computing Machinery, 2009,
pp. 57–62, isbn: 9781605586786. doi: 10.1145/1595808.1595821. [On-
line]. Available: https://doi.org/10.1145/1595808.1595821.

[40] Y. M. Mileva, V. Dallmeier, and A. Zeller, “Mining api popularity,” in
Testing – Practice and Research Techniques, L. Bottaci and G. Fraser,
Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 173–180,
isbn: 978-3-642-15585-7.

[41] F. L. de la Mora and S. Nadi, “An empirical study of metric-based
comparisons of software libraries,” in Proceedings of the 14th Interna-
tional Conference on Predictive Models and Data Analytics in Software
Engineering, ser. PROMISE’18, Oulu, Finland: Association for Comput-
ing Machinery, 2018, pp. 22–31, isbn: 9781450365932. doi: 10.1145/
3273934.3273937. [Online]. Available: https://doi.org/10.1145/
3273934.3273937.

[42] Named entity recognition. [Online]. Available: https://stanfordnlp.
github.io/CoreNLP/ner.html.

[43] C. Nicolle and J. Abascal, Inclusive design guidelines for HCI. CRC
Press, 2001.

82

https://doi.org/10.1145/3368089.3409711
https://doi.org/10.1145/3368089.3409711
https://doi.org/10.1145/3368089.3409711
https://doi.org/10.1109/TSE.2019.2901459
https://doi.org/10.1145/1595808.1595821
https://doi.org/10.1145/1595808.1595821
https://doi.org/10.1145/3273934.3273937
https://doi.org/10.1145/3273934.3273937
https://doi.org/10.1145/3273934.3273937
https://doi.org/10.1145/3273934.3273937
https://stanfordnlp.github.io/CoreNLP/ner.html
https://stanfordnlp.github.io/CoreNLP/ner.html

[44] Nltk. [Online]. Available: https://www.nltk.org/.

[45] Nltk.parse package. [Online]. Available: https://www.nltk.org/api/
nltk.parse.html.

[46] Nltk.tag package. [Online]. Available: https://www.nltk.org/api/
nltk.tag.html.

[47] Online artifact page, https://github.com/ualberta-smr/tang-task-
extractor.

[48] Overview. [Online]. Available: https : / / stanfordnlp . github . io /

CoreNLP/.

[49] Qunit. [Online]. Available: https://qunitjs.com/.

[50] React. [Online]. Available: https://reactjs.org/.

[51] Requests. [Online]. Available: https://requests.readthedocs.io/en/
latest/.

[52] M. P. Robillard and R. DeLine, “A field study of api learning obstacles,”
Empirical Software Engineering, vol. 16, no. 6, pp. 703–732, 2011.

[53] M. P. Robillard, “What makes apis hard to learn? answers from devel-
opers,” IEEE Software, vol. 26, no. 6, pp. 27–34, 2009. doi: 10.1109/
MS.2009.193.

[54] J. Rowley, “Guidelines on the evaluation and selection of library software
packages,” in Aslib proceedings, MCB UP Ltd, 1990.

[55] J. Saldaña, The coding manual for qualitative researchers. sage, 2021.

[56] S. Scalabrino, M. Linares-Vásquez, R. Oliveto, and D. Poshyvanyk, “A
comprehensive model for code readability,” Journal of Software: Evolu-
tion and Process, vol. 30, no. 6, e1958, 2018.

[57] S. Scalabrino, M. Linares-Vásquez, D. Poshyvanyk, and R. Oliveto, “Im-
proving code readability models with textual features,” in 2016 IEEE
24th International Conference on Program Comprehension (ICPC), 2016,
pp. 1–10. doi: 10.1109/ICPC.2016.7503707.

[58] D. Schreck, V. Dallmeier, and T. Zimmermann, “How documentation
evolves over time,” in Ninth International Workshop on Principles of
Software Evolution: In Conjunction with the 6th ESEC/FSE Joint Meet-
ing, ser. IWPSE ’07, Dubrovnik, Croatia: Association for Computing
Machinery, 2007, pp. 4–10, isbn: 9781595937223. doi: 10.1145/1294948.
1294952. [Online]. Available: https://doi.org/10.1145/1294948.
1294952.

[59] P. Sedgwick, “Convenience sampling,” Bmj, vol. 347, 2013.

83

https://www.nltk.org/
https://www.nltk.org/api/nltk.parse.html
https://www.nltk.org/api/nltk.parse.html
https://www.nltk.org/api/nltk.tag.html
https://www.nltk.org/api/nltk.tag.html
https://github.com/ualberta-smr/tang-task-extractor
https://github.com/ualberta-smr/tang-task-extractor
https://stanfordnlp.github.io/CoreNLP/
https://stanfordnlp.github.io/CoreNLP/
https://qunitjs.com/
https://reactjs.org/
https://requests.readthedocs.io/en/latest/
https://requests.readthedocs.io/en/latest/
https://doi.org/10.1109/MS.2009.193
https://doi.org/10.1109/MS.2009.193
https://doi.org/10.1109/ICPC.2016.7503707
https://doi.org/10.1145/1294948.1294952
https://doi.org/10.1145/1294948.1294952
https://doi.org/10.1145/1294948.1294952
https://doi.org/10.1145/1294948.1294952

[60] R. van Solingen (Revision), V. Basili (Original article 1994 ed.), G.
Caldiera (Original article 1994 ed.), and H. D. Rombach (Original ar-
ticle 1994 ed.), “Goal question metric (gqm) approach,” in Encyclo-
pedia of Software Engineering. John Wiley & Sons, Ltd, 2002, isbn:
9780471028956. doi: https://doi.org/10.1002/0471028959.sof142.
eprint: https : / / onlinelibrary . wiley . com / doi / pdf / 10 . 1002 /
0471028959.sof142. [Online]. Available: https://onlinelibrary.
wiley.com/doi/abs/10.1002/0471028959.sof142.

[61] S. C. B. de Souza, N. Anquetil, and K. M. de Oliveira, “A study of
the documentation essential to software maintenance,” in Proceedings of
the 23rd Annual International Conference on Design of Communication:
Documenting & Designing for Pervasive Information, ser. SIGDOC ’05,
Coventry, United Kingdom: Association for Computing Machinery, 2005,
pp. 68–75, isbn: 1595931759. doi: 10.1145/1085313.1085331. [Online].
Available: https://doi.org/10.1145/1085313.1085331.

[62] Stleary, Json in java. [Online]. Available: https://github.com/stleary/
JSON-java.

[63] A. L. Strauss, Qualitative analysis for social scientists. Cambridge uni-
versity press, 1987.

[64] F. Thung, “Api recommendation system for software development,” in
2016 31st IEEE/ACM International Conference on Automated Software
Engineering (ASE), 2016, pp. 896–899.

[65] C. Treude, J. Middleton, and T. Atapattu, “Beyond accuracy: Assess-
ing software documentation quality,” CoRR, vol. abs/2007.10744, 2020.
arXiv: 2007.10744. [Online]. Available: https://arxiv.org/abs/
2007.10744.

[66] C. Treude, M. P. Robillard, and B. Dagenais, “Extracting development
tasks to navigate software documentation,” IEEE Transactions on Soft-
ware Engineering, vol. 41, no. 6, pp. 565–581, 2015. doi: 10.1109/TSE.
2014.2387172.

[67] G. Uddin and M. P. Robillard, “How api documentation fails,” IEEE
Software, vol. 32, no. 4, pp. 68–75, 2015. doi: 10.1109/MS.2014.80.

[68] A. S. M. Venigalla and S. Chimalakonda, “Understanding emotions of de-
veloper community towards software documentation,” in 2021 IEEE/ACM
43rd International Conference on Software Engineering: Software Engi-
neering in Society (ICSE-SEIS), IEEE, 2021, pp. 87–91.

[69] W3C, How to meet wcag (quick reference). [Online]. Available: https:
/ / www . w3 . org / WAI / WCAG21 / quickref / ?showtechniques = 245 #

multiple-ways.

84

https://doi.org/https://doi.org/10.1002/0471028959.sof142
https://onlinelibrary.wiley.com/doi/pdf/10.1002/0471028959.sof142
https://onlinelibrary.wiley.com/doi/pdf/10.1002/0471028959.sof142
https://onlinelibrary.wiley.com/doi/abs/10.1002/0471028959.sof142
https://onlinelibrary.wiley.com/doi/abs/10.1002/0471028959.sof142
https://doi.org/10.1145/1085313.1085331
https://doi.org/10.1145/1085313.1085331
https://github.com/stleary/JSON-java
https://github.com/stleary/JSON-java
https://arxiv.org/abs/2007.10744
https://arxiv.org/abs/2007.10744
https://arxiv.org/abs/2007.10744
https://doi.org/10.1109/TSE.2014.2387172
https://doi.org/10.1109/TSE.2014.2387172
https://doi.org/10.1109/MS.2014.80
https://www.w3.org/WAI/WCAG21/quickref/?showtechniques=245#multiple-ways
https://www.w3.org/WAI/WCAG21/quickref/?showtechniques=245#multiple-ways
https://www.w3.org/WAI/WCAG21/quickref/?showtechniques=245#multiple-ways

[70] R. Watson, M. Stamnes, J. Jeannot-Schroeder, and J. H. Spyridakis,
“Api documentation and software community values: A survey of open-
source api documentation,” in Proceedings of the 31st ACM International
Conference on Design of Communication, ser. SIGDOC ’13, Greenville,
North Carolina, USA: Association for Computing Machinery, 2013, pp. 165–
174, isbn: 9781450321310. doi: 10.1145/2507065.2507076. [Online].
Available: https://doi.org/10.1145/2507065.2507076.

[71] A. Wingkvist, M. Ericsson, R. Lincke, and W. Löwe, “A metrics-based
approach to technical documentation quality,” in 2010 Seventh Interna-
tional Conference on the Quality of Information and Communications
Technology, 2010, pp. 476–481. doi: 10.1109/QUATIC.2010.88.

[72] J. Zhi, V. Garousi-Yusifoğlu, B. Sun, G. Garousi, S. Shahnewaz, and G.
Ruhe, “Cost, benefits and quality of software development documenta-
tion: A systematic mapping,” Journal of Systems and Software, vol. 99,
pp. 175–198, 2015, issn: 0164-1212. doi: https://doi.org/10.1016/j.
jss.2014.09.042. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0164121214002131.

[73] H. Zhong and Z. Su, “Detecting api documentation errors,” SIGPLAN
Not., vol. 48, no. 10, pp. 803–816, 2013, issn: 0362-1340. doi: 10.1145/
2544173.2509523. [Online]. Available: https://doi.org/10.1145/
2544173.2509523.

[74] Y. Zhou, R. Gu, T. Chen, Z. Huang, S. Panichella, and H. Gall, “An-
alyzing apis documentation and code to detect directive defects,” in
2017 IEEE/ACM 39th International Conference on Software Engineer-
ing (ICSE), 2017, pp. 27–37. doi: 10.1109/ICSE.2017.11.

[75] Y. Zhou, X. Yan, T. Chen, S. Panichella, and H. Gall, “Drone: A tool
to detect and repair directive defects in java apis documentation,” in
2019 IEEE/ACM 41st International Conference on Software Engineer-
ing: Companion Proceedings (ICSE-Companion), 2019, pp. 115–118. doi:
10.1109/ICSE-Companion.2019.00052.

85

https://doi.org/10.1145/2507065.2507076
https://doi.org/10.1145/2507065.2507076
https://doi.org/10.1109/QUATIC.2010.88
https://doi.org/https://doi.org/10.1016/j.jss.2014.09.042
https://doi.org/https://doi.org/10.1016/j.jss.2014.09.042
https://www.sciencedirect.com/science/article/pii/S0164121214002131
https://www.sciencedirect.com/science/article/pii/S0164121214002131
https://doi.org/10.1145/2544173.2509523
https://doi.org/10.1145/2544173.2509523
https://doi.org/10.1145/2544173.2509523
https://doi.org/10.1145/2544173.2509523
https://doi.org/10.1109/ICSE.2017.11
https://doi.org/10.1109/ICSE-Companion.2019.00052

Appendix A

Ground truth guidelines

A.1 Task Extraction Guidelines

1. Paragraphs are designated with the HTML <p> tag

2. Task definition: Any usage of a library, including its API, installation

instructions, and interaction with other software

3. Ignore negative verbs (e.g., do not), because negatives usually describe

a “default” behaviour, rather than a task that a developer would want

to do

A.2 Task Linking Guidelines

1. Code examples are designated with the HTML <pre> tag

2. Paragraphs are designated with the HTML <p> tag

3. The paragraph needs to be in the same section as the code example

(regardless of position relative to the code example), where sections are

separated using HTML header tags (e.g., <h1>, <h2>)

4. The paragraph needs to describe the task the code example is illustrating

A.3 Documentation Code Reference/Example

and Source Code Matching Guidelines

1. Code references are designated with the HTML <code> and <dt> tags

86

2. Code examples are designated with the HTML <pre> tag

3. Extract method and class names from the code references/examples

4. Scan the source code for matching methods (and potential parent classes)

and track the source file name

87

Appendix B

Programming verb lists

B.1 Original Verb List

access, acquire, activate, add, adjust, align, append, apply, archive, ask, as-

sign, attach, bind, book, boost, bootstrapp, break, cache, calculate, call, catch,

change, check, checkout, clean, clone, combine, compare, compile, compose,

compress, configure, convert, count, create, customize, deactivate, define, de-

ploy, describe, design, determine, develop, disable, discontinue, display, divide,

document, download, duplicate, edit, embed, enable, encode, exclude, execute,

expand, expose, extend, fill, find, fit, fix, flush, force, format, generate, get,

group, handle, hide, identify, ignore, implement, import, include, indent, in-

herit, initialize, insert, install, instantiate, integrate, introduce, isolate, learn,

limit, link, list, load, locate, log, login, manage, manipulate, mark, match,

mock, modify, move, obtain, omit, open, order, output, override, overwrite,

pass, paste, patch, place, play, prefix, prepare, present, prevent, print, pro-

cess, push, raise, reach, read, receive, recompile, recreate, redefine, redirect,

refactor, reference, regenerate, release, remove, rename, render, repeat, re-

place, replicate, request, resolve, restart, retrieve, return, reuse, run, search,

select, send, separate, seperate, set, share, shorten, show, sign, simulate, skip,

sort, specify, split, store, submit, subscribe, summarize, support, surround,

switch, test, throw, track, translate, trigger, trim, update, use, wrap, write,

crop, scale, perform, center, produce, delete, encapsulate, save, fetch, differ-

entiate, compute, defer, provide, hardcode, multiply, choose, complete, enter,

set up, sell, purchase, price, rebuild, offer, host, log in

88

B.2 NLP Verb List

access, acquire, activate, add, adjust, align, append, apply, archive, ask, as-

sign, attach, bind, book, boost, bootstrapp, break, cache, calculate, call, catch,

change, check, checkout, clean, clone, combine, compare, compile, compose,

compress, configure, convert, count, create, customize, deactivate, define, de-

ploy, describe, design, determine, develop, disable, discontinue, display, divide,

document, download, duplicate, edit, embed, enable, encode, exclude, execute,

expand, expose, extend, fill, find, fit, fix, flush, force, format, generate, get,

group, handle, hide, identify, ignore, implement, import, include, indent, in-

herit, initialize, insert, install, instantiate, integrate, introduce, isolate, learn,

limit, link, list, load, locate, log, login, manage, manipulate, mark, match,

mock, modify, move, obtain, omit, open, order, output, override, overwrite,

pass, paste, patch, place, play, prefix, prepare, present, prevent, print, pro-

cess, push, raise, reach, read, receive, recompile, recreate, redefine, redirect,

refactor, reference, regenerate, release, remove, rename, render, repeat, re-

place, replicate, request, resolve, restart, retrieve, return, reuse, run, search,

select, send, separate, seperate, set, share, shorten, show, sign, simulate, skip,

sort, specify, split, store, submit, subscribe, summarize, support, surround

switch, test, throw, track, translate, trigger, trim, update, use, wrap, write,

crop, scale, perform, center, produce, delete, encapsulate, save, fetch, differ-

entiate, compute, defer, provide, hardcode, multiply, choose, complete, enter,

set up, sell, purchase, price, rebuild, offer, host, log in, supports, serialize,

deserialize, decode, parse, validate, specialize

B.2.1 NLP Verb Filter List

adjust, apply, combine, count, customize, describe, download, extend, find,

generate, implement, include, learn, list, locate, match, omit, place, process,

purchase, read, redirect, run, search, separate, seperate, store, use, write

89

B.3 JSON Verb List

access, acquire, activate, add, adjust, align, append, apply, archive, ask, as-

sign, attach, bind, book, boost, bootstrapp, break, cache, calculate, call, catch,

change, check, checkout, clean, clone, combine, compare, compile, compose,

compress, configure, convert, count, create, customize, deactivate, define, de-

ploy, describe, design, determine, develop, disable, discontinue, display, divide,

document, download, duplicate, edit, embed, enable, encode, exclude, execute,

expand, expose, extend, fill, find, fit, fix, flush, force, format, generate, get,

group, handle, hide, identify, ignore, implement, import, include, indent, in-

herit, initialize, insert, install, instantiate, integrate, introduce, isolate, learn,

limit, link, list, load, locate, log, login, manage, manipulate, mark, match,

mock, modify, move, obtain, omit, open, order, output, override, overwrite,

pass, paste, patch, place, play, prefix, prepare, present, prevent, print, pro-

cess, push, raise, reach, read, receive, recompile, recreate, redefine, redirect,

refactor, reference, regenerate, release, remove, rename, render, repeat, re-

place, replicate, request, resolve, restart, retrieve, return, reuse, run, search,

select, send, separate, seperate, set, share, shorten, show, sign, simulate, skip,

sort, specify, split, store, submit, subscribe, summarize, support, surround,

switch, test, throw, track, translate, trigger, trim, update, use, wrap, write,

crop, scale, perform, center, produce, delete, encapsulate, save, fetch, differ-

entiate, compute, defer, provide, hardcode, multiply, choose, complete, enter,

set up, sell, purchase, price, rebuild, offer, host, log in, supports, serialize,

deserialize, decode, parse, validate, specialize

B.3.1 JSON Verb Filter List

apply, change, compare, create, disable, handle, implement, include, indent,

open, pass, provide, raise, remove, return, run, store, submit, support, test,

use

90

B.4 DOM Manipulation Verb List

access, acquire, activate, add, adjust, align, append, apply, archive, ask, as-

sign, attach, bind, book, boost, bootstrapp, break, cache, calculate, call, catch,

change, check, checkout, clean, clone, combine, compare, compile, compose,

compress, configure, convert, count, create, customize, deactivate, define, de-

ploy, describe, design, determine, develop, disable, discontinue, display, divide,

document, download, duplicate, edit, embed, enable, encode, exclude, execute,

expand, expose, extend, fill, find, fit, fix, flush, force, format, generate, get,

group, handle, hide, identify, ignore, implement, import, include, indent, in-

herit, initialize, insert, install, instantiate, integrate, introduce, isolate, learn,

limit, link, list, load, locate, log, login, manage, manipulate, mark, match,

mock, modify, move, obtain, omit, open, order, output, override, overwrite,

pass, paste, patch, place, play, prefix, prepare, present, prevent, print, pro-

cess, push, raise, reach, read, receive, recompile, recreate, redefine, redirect,

refactor, reference, regenerate, release, remove, rename, render, repeat, re-

place, replicate, request, resolve, restart, retrieve, return, reuse, run, search,

select, send, separate, seperate, set, share, shorten, show, sign, simulate, skip,

sort, specify, split, store, submit, subscribe, summarize, support, surround,

switch, test, throw, track, translate, trigger, trim, update, use, wrap, write,

crop, scale, perform, center, produce, delete, encapsulate, save, fetch, differ-

entiate, compute, defer, provide, hardcode, multiply, choose, complete, enter,

set up, sell, purchase, price, rebuild, offer, host, log in, map, toggle, iterate,

serialize, return,

B.4.1 DOM Manipulation Verb Filter List

add, apply, assign, call, change, compare, create, describe, disable, find, han-

dle, implement, indent, insert, introduce, learn, receive, remove, render, re-

turn, reuse, specify, store, submit, test, fetch, use, write

91

Appendix C

Survey Questions

Blue text questions are ones that do not have Likert scale [36] responses.

These questions have accepted responses below them, if applicable.

1. Please state whether you are familiar with the <library name> library:

� I am

� I am not

2. How many years of software development experience do you have? (Not

just with this library)

� Positive Integer Value

3. How useful is having a general rating of <library name> documenta-

tion’s quality?

4. How useful is having a list of documented library tasks found in <library

↪→ name>’s documentation?

5. How useful is having a rating of methods with a code example in <

↪→ library name>’s documentation?

6. How useful is having a rating of classes with a code example in <library

↪→ name>’s documentation?

7. How useful is having a rating of readability of text in <library name>’s

documentation?

92

8. How useful is having a rating of readability of code examples in <library

↪→ name>’s documentation?

9. How useful is having a rating of similarity between <library name>’s

source code and documentation?

10. How useful is having a rating of navigability of <library name>’s doc-

umentation?

11. How useful is having a summary of <library name>’s documentation

quality?

12. Where would you like to see this documentation quality summary?

� README file Badge

� Package Manager

� Other (Allows the user to type in where they would like to see the

summary integrated)

13. To what extent do you agree or disagree with this statement: The doc-

umentation quality metrics represented in this summary are consistent

with my experience working with <library name> (e.g., the metrics in-

dicate low documentation quality and your experience is that this library

is poorly documented, or vice versa).

14. Please provide any additional feedback you have about <library name

↪→ >’s documentation quality summary.

� Free Text Answer

93

Appendix D

Survey General Comments

1. numpy’s documentation is large. It’s possible that your crawling just

didn’t find relevant portions. There is no way for me to tell from the

summary what your crawler actually saw. There does not seem to be any

relationship between the overall star summary (4/5) and the individual

quality metrics (mostly 0/5).

2. Since jQuery is a popular package documenting some security practices/well-

known issues might be helpful too. I am not sure how feasible this is

though.

3. Doesn’t seem to have discovered anything other than installation instruc-

tions

4. I don’t know whether I am interested in methods examples and class

examples (at least for Python).

5. It feels like some of the sections should have much higher important or

scores than they do. It is not clear why readability of code examples is

crossed out.

6. My experience with React’s documentation has been overall pleasant.

While I agree with the navigation rating, I disagree with the documen-

tation quality metric for ”Readability of text” and ”Readability of code

examples” - I think the text and code examples are very easy to under-

stand and easy to read.

94

7. More difficult to properly assess the documentation quality given that

the link for official documentation is more of a map for relevant docu-

mentation of methods rather than an all-encompassing page.

8. I find it difficult to understand how the metrics are actually populated:

what data are they based on? How were they calculated? Based on

what data? Which version of jQuery? jQuery is a very bizarre library. I

just find it difficult to draw a conclusion from jQuery’s documentation to

these metrics. since most the functionality is exposed on the $(selector)

object. How are code examples extracted?

9. The Flask project starts with a tutorial that teaches you how to use

it from the start up. This is a good documentation and it is unclear

how these metrics account for solid tutorials. That said it’s sometimes

difficult to find Flask API methods and types. These metrics do not

reflect many of the practical considerations of Flask’s documentation

quality.

10. Most of the documentation quality metrics are 0 star which seems pretty

strange and inaccurate to me. The documented library tasks section also

seems quite limited and I feel a google search would be more effective.

95

	Introduction
	Thesis Overview and Organization

	Literature Review
	Documentation Scope
	Documentation Quality Aspects
	(Automatically) Measuring Documentation Quality

	Selecting Metrics to Use for Evaluating Documentation Quality
	Selecting Documentation Aspects
	Deriving Metrics for Selected Documentation Aspects
	Up-to-date and Completeness
	Readability
	Code Examples
	Ease of Use
	Metric Summary

	Initial Validation of Selected Metrics through Developer Interviews
	Mockup of Documentation Quality Overview Visualization
	Interview Study Setup
	Participant Recruitment
	Interview Setup

	Interview Analysis Methods
	Open Coding

	Interview Results: General Documentation Questions
	Open-Ended Questions

	Interview Results: Mockup Feedback
	General Mockup Feedback
	Examples of API Methods/Classes
	Documentation & Code Example Readability
	Source Code/Documentation Consistency
	Navigation Score
	Library Tasks
	Free-Form Answer and Tangent Discussions

	Summary of Interview Insights and Concrete Changes
	Content Changes
	Presentation Changes

	Implementation of Documentation Quality Summary
	Documented Library Task List & Linked Examples
	Task Extraction Implementation
	Code Example Linking Implementation
	Task Extraction and Linking Verification

	Documentation and Source Code Linking
	Methods and Classes with Code Examples
	Documentation/Source Code Similarity

	Readability of Text and Code
	Readability of Text
	Readability of Code

	Navigability
	HCI checklist

	Survey Evaluation of Our Documentation Quality Summary
	Survey Setup
	Participant Recruitment
	Survey Response Analysis
	RQ1: Usefulness of Our Documentation Quality Summary
	RQ2: Matching User Expectation of Summary
	RQ3: Integration of Documentation Quality Summary
	General Comments

	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity

	Discussion
	Applications
	Challenges and Opportunities
	Challenges
	Opportunities

	Conclusion
	References
	Appendix Ground truth guidelines
	Task Extraction Guidelines
	Task Linking Guidelines
	Documentation Code Reference/Example and Source Code Matching Guidelines

	Appendix Programming verb lists
	Original Verb List
	NLP Verb List
	NLP Verb Filter List

	JSON Verb List
	JSON Verb Filter List

	DOM Manipulation Verb List
	DOM Manipulation Verb Filter List

	Appendix Survey Questions
	Appendix Survey General Comments

