University of Alberta

Comparing XML Documents as Reference-aware Labeled Ordered Trees
by

Rimon A. E. Mikhaiel

The thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Computing Science

©Rimon A. E. Mikhaiel

Fall 2011
Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis
and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is
converted to, or otherwise made available in digital form, the University of Alberta will advise potential users
of the thesis of these terms.

The author reserves all other publication and other rights in association with the copyright in the thesis and,
except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or
otherwise reproduced in any material form whatsoever without the author's prior written permission.

Dedication

This thesis is dedicated to my lovely wife who has endlessly supported and
encouraged me through the years of this research, and to my two blessed angels

George and Daniel.

Also, I dedicate this thesis to my parents who have dreamed of seeing me holding

a doctorate of philosophy.

--Rimon Mikhaiel

Abstract

XML, the Extensible Markup Language, is the standard exchange format for
modern Information Systems, Service Oriented Architecture (SOA) and the
Semantic Web. Hence, comparing XML documents has become a necessary task
for tracking and merging changes between versions of the same document, or for
translating between documents referring to the same information but complying
with different schemata or originating from different parties. In this scenario,
given two documents, XML differencing is the process of finding an edit
sequence, namely a sequence of exact and approximate matching, deletion, and
insertion operations, which, if applied to the first document will result in the
second. In practice, domain-specific differencing solutions are expensive to
develop, and hard to reuse. Therefore, a generic differencing approach, able to
serve various domains, would be both useful and cost-effective. This thesis
presents VTracker, a generic XML differencing approach, which is capable of
capturing domain knowledge and semantics through a configurable domain-
specific cost function. VTracker views an XML document as an ordered labeled
tree. Given two XML-document trees and a cost function VTracker calculates the
tree-edit distance needed to transform one tree to the other. The first contribution
of VTracker is an automatic method used to synthesize such a cost function based
on the domain’s XML Schema Definition (XSD). Second, VTracker considers the
XML reference structure in addition to the natural XML containment structure.
Third, VTracker implements an affine-cost policy that prefers edit operations
applied to neighbors over dispersed elements. Finally, VTracker uses a set of
simplicity heuristics to nominate the best edit script in case of multiple ones found
with the same minimum cost. VTracker was applied to a variety of domains,
namely OWL/RDF, WSDL, BPEL, UML/XMI, XHTML, and RNA secondary
structure, where it performed competitively with, or even better than, state-of-the-

art methods in each of these domains.

Acknowledgement

This dissertation would not have been possible without the guidance and the help
of several individuals who extended and contributed their valuable assistance in

the preparation and completion of this study.

First of all, I owe my deepest gratitude to my supervisor, Professor Eleni
Stroulia, whose support and guidance made this thesis possible. Her passion and
encouragement have been my inspiration as I have overcome all the obstacles in

the completion this research work.

My colleagues Marios Fokaefs, Nikolaos Tsantalis, and Natalia Negara
whose constructive insights and feedbacks constituted valuable inputs towards the

improvement of this research.

I would also like to thank my editor, Margaret Evans, who provided great

help in reviewing the text of this thesis.

Last, but not least, my family, and the one above all of us, God the
Almighty, who has given me strength and guided me through this journey. May

His name be exalted, honored, and glorified.

--Rimon Mikhaiel

Table of Contents

CHAPTER ONE INTRODUCTION ...ccoiimsmsmsnsssssssssssssssssssssssssssssssssssssnsassssssssassssssssnsassssennss 1
CHAPTERTWO BACKGROUND AND RELATED WORKconsmmsmsmsmsasssessssssssesennss 5
2.1 XML ctesseseessisesssessssssssesssssssssss s st s s s s s £ R e 5
2.1.1 Non Tree-baSed APPTOUCHESceoeeeesrerssirsserissseisssesssesssesissssssssessssesassssssssssssssssssesanss 6
2.1.2 Tree-baSed APPTOACNES ...ouruvvrcvsrsserssisisssisssisssasssen 7

2.2 ONTOLOGY eueurtresuressrerssressressssessssessssesssessssessssessssessssessssessseesssnesssesssseesssessssesssseesssessssessssesnssnssssesans 12
2.2.1 ROIALEA WOTK caoeeeereretrereerisssersserissenissesissssssssssssesassesassssasssssssessssesssssssssssssssssssssassessseses 13
2.2.2 AN ONEOLOGY AS A TTCC coouoeeverererererissserrssserssesesisssesisssssssssesssssessssssssassssssasssessssssssssssssssn 15

2.3 WSD L ietteteeseesteseeseseee s s sesss s bR R R R R 18
2.3.1 ROIALEA WOTK oot ssernserissenisserissssssssssssesassesassssasssssssessssessssssssssssssssssssssassesaseses 20
2.3.2 A WSDL SPECIfiCAtION QS A TTEC..ccoumverrrerrrererineserisssesssssessonssesisssssssssesssssessssssesssssssen 21

24 BPEL ottt s s e R 23
2.4.1 RElALEA WOTK coovvrsrvrserssirsssrssssisssissssisssssssssisssssssssssssssassssissssssssssssssssssssssssssssssssssssssesssssses 26
2.4.2 A BPEL QS A TIO...oeeerirsrsscnserssirsssisssssesssesssssisssassesssesssssassssssssssessssssssssssssssesssesssssasssens 27

2.5 UMLeeeeeeeeessesesese s s sessss s s s bR R R R R 29
2.5.1 ROIALEA WOTK oottt esevesesissasissssis s s s sssisss i sssssssssas s ssssssssssssesaseses 30
2.5.2 A UML MOAEI AS A TTCC c..u.eurreerereeerreerisesrissserssesssesissssissssssssessssessssessssssssssssssssssssesanseses 31

2.6 XHT ML oot s st s ssssssssssssssss s st ssssssssssssssssssssasssssssas 33
2.6.1 XHTML QS 0 TTEE cccureererirvsrnseenserssersssisssssesssesssssasssassesssessssssssssssssssesssssssssassssssesssesssssasssens 34

2.7 RNA SECONDARY STRUCTURE COMPARISONcuvuvirrenssresssessssessssessssessssessssessssessssssssssssssssssennns 36
2.7.1 REIALEA WOTK oottt sevessesissesissssis s essssesassssassssassssssssessssssassssissssssssssssesaseses 36
2.7.2 RNA Secondary Structure CompariSOn aS A TIrEC.....mroimisissosssosssssessssssnssens 37
CHAPTER THREE VTRACKER: A GENERIC XML-DIFFERENCING METHOD40
3.1 REQUIREMENTS OF GENERIC XML DIFFERENCINGvurvsueeeseesssesssssssssserssssesssssssssassessseseses 40
3.2 THE ORIGINAL ZHANG-SHASHA ALGORITHM ..cvuvuvirrensresssessssensssessssessssessssessssesssssssssssssssssesans 50
3.3 THE VTRACKER APPROACH ..ccurestrestressressresssessssessssessssessssessssessssessssenssssssssensseenssessssesnsssenssnsans 54
3.3.1 XML Documents as Ordered LADeled Trees ... oeronserissesssssssssessnses 55
3.3.2 The VTracKer COSt MOUCL.urersmsrsssrisssirissisissssissssisssesssssissssisssssssssssssssssssssssssssssssanses 56
3.3.3 Considering OULGOING REfEIENCEScorverorsererisersssernsesissesissssssesesssessssssssssssssssnses 63

3.3.4 Considering Usage-Context (INCOMING References)......nerosserisseserisssens 67

3.3.5 Selecting the Optimal Edit SCTIDE ... euoeeeoseerrseresssresssernsesissesissssssssssssesssessssssasssssssses 67

3.3.6 Domain-Aware OPLiMUZATIONS.......ccwreorersseenssssessssossssssssssssasssssssssssssssssssssssssssssssssssss 70

3.4 VTRACKER AS A GENERIC XML DIFFERENCING vuuuveuumrerssresssmmessssssssmsssssssssssssssssssssssssssssssnsess 72
CHAPTER FOUR APPLYING VTRACKER TO SPECIFIC DOMAINS.......ccsmsmssmsansans 74
4.1 APPLYING VTRACKER TO ONTOLOGY MATCHING .uusvvuseeesseesssmsesssmsssssmsssssmsssssssssssssssssssssssssns 74
4.2 IMPLEMENTATION couuuvususessssesssssssssssssssssssssssssssssssessssassssssssssssssssssssssmsssssesssssasssssesssssssssssmsssssssssss 80
4.3 THE CONFIGURATION PROCESS .oururvuumuresmsesssmsssssssssssssssessssssssssssssssesssssesssssesssssessssessssasssssssssns 82
CHAPTER FIVE EVALUATION ...cccocsmsemsemsemsensnsssssssssssssssssssssssssssssssassassssssssssssssssssssssssanes 85
5.1 GENERAL QUALITY EVALUATION EXPERIMENTcoveureunesessesssssssessessessessesssssssssssssessessssssssenses 85
5.2 RNA COMPARISON EXPERIMENT .ouccvvuuueessnressssesssssssssssssmsssssmssssssssssesssssssssssssssssssssssssssssssnnees 88
5.3 ONTOLOGY MATCHING EXPERIMENT ..uucvuuueessnessssessssesssmsssssmsssnness 93
5.4 UML DIFFERENCING EXPERIMENT .couuveeumeessseesssenssseessssesssssssssssssssesssssesssssesssssesssssssssessssseses 97
5.5 SERVICE DISCOVERY EXPERIMENTcorteuerueeeessessessserssssssesssessssssssssssssesssasssssssesssessssssssssenns 101
CHAPTER SIX DISCUSSION, CONCLUSION, AND FUTURE WORKcooussessnans 107
6.1 CONCLUSION couvurevusressseessssessssssssssssssssessssssssssesssssssssssesssssesssssessssssssssssssssssssesssssesssssasssaessssnsssanns 109
6.2 FUTURE WORK ..ouevutueessnessssesssmsesssssssssssssssesssssssssssesssssessssssssssesssssssssssssssssesssssssssssssssessssssssanes 110

BIBLIOGRAPHY ..o s sssssssassssssssasasns 111

List of Tables
Table 3-1: Sample of OWL/RDF synthesized cost model.............ccceevvrrriennnnnne. 58
Table 4-1: VTracker’s system configurations for various domains...................... 84

Table 5-1: Evaluation results of simplicity heuristics in RNA Secondary
Structure comparison measured by Harmonic Mean...........ccccceeeeveeennennnee. 91

Table 5-2: Evaluation of VTracker against related work for RNA Secondary

Structure COMPATISON.......cccvirerrieeririeeiieeesreeeteeesaeeeeseeesseeessreeessseesseeennnes 93
Table 5-3: Evaluation of various VTracker Contributionscccceeeeveervennennne. 95
Table 5-4: Evaluation of VTracker against results from OAEI 2010................... 97
Table 5-5: Evaluation of VTracker against UMLDIfYcccoovveviiiieniennen. 100

Table 5-6: Evaluation of VTracker in SAWSDL-TC Collectionccccuun........ 104

List of Figures

Figure 2-1: An example of XML differencing using Unix diff versus an XML
differencing mechaniSm...........cccoocviiiiiiiiiiiiene e 7

Figure 2-2: Selkow’s Tree-to-Tree Editing model versus Tai's Tree-to-
Tree Correction model with regard to deletion of anode c....................... 8

Figure 2-3: A sample OWL/RDF ontology represented as a tree Structure
including Ontology Classes, Properties, and Instances.ccccceune.e. 17

Figure 2-4: A WSDL specification of a published online Album Web
SEIVICE ..o 20

Figure 2-5: A WSDL specification of a desired online Book catalog Web

SEIVICE ..t 20
Figure 2-6: A WSDL specification represented as a tree structure. 23
Figure 2-7: A BPEL process workflow for an online-album service 25
Figure 2-8: A BPEL process workflow represented as a tree.............c.cccue.ee. 29
Figure 2-9: A UML/XMI sample represented as a tree structure.................... 32
Figure 2-10: A XHTML differencing example...........cccccoeverciienienciienienieeeene, 35

Figure 2-11: An XHTML document represented as an ordered labeled tree . 35
Figure 2-12: An RNA Structure represented as an ordered labeled tree 38
Figure 2-13: LFG versus TFG RNA tree Structuresc.cceceveenerveeneeneeenennenn 39
Figure 3-1: Two object-oriented samples represented as tree structures..... 43

Figure 3-2: Two XML sample documents showing the difference between
non-normalized and reference-based normalized structures................. 45

Figure 3-3: An XML differencing example illustrating the importance of
reference model.............cccooiiiiiiiiiii e 47

Figure 3-4: An XML differencing example illustrating the role of usage-
context similarity in resolving matching ambiguities...........c..ccccceceneee. 49

Figure 3-5: A sample tree-edit SCIIPtcoveevuerieriiniiiierieieeeeee e 51

Figure 3-6: Visualization of Zhang-Shasha algorithm [46].........c..ccceeevrennnnne. 53
Figure 3-7: VTracker’s framework processing model...........ccccceeeeviercieennneennee. 55
Figure 3-8: VTracker domain bootsStrapping ProCesscceevvereveereeeveenvenneens 58

Figure 3-9: A sample string-edit distance with affine-gap policy where dashes
represent insertions and deletionscccueevieriiieriieeiiienie e 59

Figure 3-10: An example to illustrate the importance of affine-cost function...... 61

Figure 3-11: An RNA comparison example showing the steps of the
simplicity heuristic filtration ProCess.........ccvveeeruieeriieeeriieeriee e e 69

Figure 4-1: An OWL/RDF matching example emphasizes the importance
of an affine cost fuNCtion...........ccooieiiiiiie 76

Figure 4-2: An OWL/RDF matching emphasizes the importance of
reference STIUCTUTE........coouiiiiiiiicecceteee e 79

Figure 5-1: Runtime of basic versus domain-aware optimized tree-edit
distance algorithmc.cooiiiiiiiiiiiiciee e 88

Figure 5-2: Runtime performance improvement between basic and domain-
aware optimized algorithmscccueeiiiiiiieiiieiieciee e 88

Figure 5-3: Cardinality reduction for Archeaa familyccccceevevieiiiennnnnnne. 91

Figure 5-4: Evaluation of VTracker’s performance against benchmark results
displaying H-Mean of precision, recall, and F-Measure sorted by F-
IMEASUIE VAIUECcuvieiiiiieiieieeiieie ettt et sae e 96

Figure 5-5: Runtime of Basic versus Reference-aware algorithms in regards to
SAWSDL-TC XPEIIMENL.....cc.eeriieeiieiieaieeiieeieerieeeteensreereesseessneensnesneans 103

List of Codes

Code 2-1: A sample Ontology OWL/RDF described in XML syntax 16
Code 2-2: A service WSDL specification described in XML syntax.................. 22
Code 2-3: A workflow BPEL specification described in XML syntax............... 28
Code 2-4: Simple Java Class.........coceeeiieiiiiiieieecieeeeee e 32
Code 2-5: A UML/XMI representation of the sample Java class....................... 33
Code 3-1: A pseudo code of Zhang-Shasha tree-edit distance algorithm............. 54

Code 3-2: A pseudo code to check the eligibility of certain node for a deletion
AffINE dISCOUNT......oiiiiiieeiie et e e e 62

Code 5-1: An example of a simplified XML representation of a containment
MOdel SPECTTICATIONvveeeeiiieeiiieciie et et e ree e 100

| T
T[X]..Xz]

Im(x:)
T[X i]
I(xi)

A
(xi, i)

(xi, A)
(A,)
NXi 5 i)
Y

y

xi, A)
Y(A,)
tdist
fdist

context(x;)

ox,y)

List of Symbols

An ordered labeled tree
Size of tree T, and equals the index of the root of T.

A forest of nodes starting at node with index x; to node with
index x;.

Index of left-most leaf child of node x;
Tree rooted by node x;, which is equivalent to T[Im(x;)..xi]

Label of node with index x;, which is a symbol from an
alphabet 2.

A null node

A matching edit operation between label of node x; to label of
node y;

A deletion edit operation of node with index x;

An insertion edit operation of node with index y;
Cost of matching label of node x; to label of node y;
Cost function

Reference-aware Cost function

Cost of deleting node with index x;

Cost of inserting node with index y;

Tree-edit distance

Forest-edit distance

Set of nodes holding references to node x;

A similarity measure to determine whether label of node x can
substitute for label of node y.

AST
BPEL
BPM
BULD
CFG
DOM
DTD
ebXML
FMES
H-mean
HTML
IDE
LFG
OAEI
OPF
OWL-S
OWL-S
RNA
SGML
SML
SOA
SOAP
SPRC
TFG
UDDI
UML
W3C

List of Abbreviations

Abstract syntax trees

Business Process Execution Language

Business Process Model

Bottom-Up Lazy-Down

Control- flow graphs

Document Object Model

Document Type Definition

Electronic Business using XML

Fast Match Edit Script

Harmonic mean

Hypertext Markup Language

Integrated Development Environment

Tight Fine-Grained (tree representation of RNA)
Ontology Alignment Evaluation Initiative

Open Office Format

Web Ontology Language for Services

Web Ontology Language

Ribonucleic acid

Standard Generalized Markup Language

Service Modeling Language

Service Oriented Architecture

Simple Object Access Protocol

Secondary and Primary RNA structure Comparison
Tight Fine-Grained (tree representation of RNA)
Universal Description Discovery and Integration
Unified Modeling Language

World Wide Web Consortium

WSDL
WSFL
XID
XMI
XML
XSD

Web Service Description Language
Web Services Flow Language
Xylem Identifiers

XML Metadata Interchange
Extensible Markup Language

XML Schema Definition

Chapter One Introduction

XML, the Extensible Markup Language, is the universal format for structured
documents and data exchange on the World Wide Web. XML documents include
embedded metadata that represent their logical and semantic structure and
partially describe the behavior of computer programs that process them [147].
XML was conceived as a subset of Standard Generalized Markup Language
(SGML), and was originally designed to facilitate the interoperability between
SGML and Hypertext Markup Language (HTML) [19]. XML has now become
the standard exchange format for modern Information Systems, and Lindholm
states that “XML is the lingua franca' for information interchange, and will

perhaps even surpass unstructured text someday” [89].

Many different types of data formats, specification languages, and
interaction protocols are represented in XML. For example, XML is the de facto
language for Service Oriented Architecture (SOA) technologies such as Universal
Description Discovery and Integration (UDDI) [35], Simple Object Access
Protocol (SOAP) [154], Web Service Description Language (WSDL) [155],
Business Process Execution Language (BPEL) [36], Web Ontology Language for
Services (OWL-S) [149], Electronic Business using XML (ebXML) [38] and
Service Modeling Language (SML) [153]. XML 1is also the standard
representation for Semantic Web technologies such as OWL [148] and RDF
[151]. XML, nevertheless, has become the standard artifact data format in many
other applications such as Open Office documents [131], SVG drawings [152],
and XHTML documents [156], XSL, databases [140], Open Office Format (OPF)
[24], and Open Office XML [113]. Additionally, XML is the standard exchange
format for modeling metadata languages such as XML Metadata Interchange

(XMI) [112].

A language used for communication among people of different mother tongues

Chapter One Introduction

In each of these domains one encounters instances of differencing
problems in the context of different activities. For example, XML document
differencing [32][27][28][110][89] is very important for document management
functions that include change detection and tracking, and version merging. A
differencing problem sometimes is also called a comparison problem, or a
matching problem. For example, in SOA, differencing is necessary for service
discovery and for matching a requested service against a repository of advertised
services, based on WSDL Matching [129][141][91][17], BPEL Matching
[48][40], or OWL-S Matching [67]. Differencing is also necessary in SOA, for the
purpose of automatic composition and integration of different services [82] [22],
in addition to helping in the migration from one version to another, or from one
service provider to another [23][53]. In the world of the Semantic Web,
differencing plays a key role in the problem of ontology matching, which is
essential for setting translation bases between vendors talking in terms of different
ontologies [49][87][41][42][54][115]. Differencing is also a fundamental task in
matching models such as Unified Modeling Language (UML). The latter is
important for monitoring and tracking evolutions occurring to a certain model, or
finding the proper mapping between elements of different models [161]. HTML
differencing is necessary for automatic information extraction from the Web in
order to be structured in an easy to process format [120][74][25][51][70] or even

to automatically generate RSS feeds from sites of interest [90].

In most of the aforementioned application domains special-purpose
methods have been developed to solve the differencing problem for these domains
in particular, which is both expensive to build and hard to reuse. Other
differencing methods, that rely on abstract syntactic representation and are not
tied to a certain application domain, are usually incapable of capturing domain
knowledge and semantics, and consequently are not able to produce results that
are acceptable to subject-matter experts. The research problem then becomes the
development of a general method for comparing XML documents for

application to all of these domains, while at the same time, ensuring that the

2

Chapter One Introduction

method is aware of the domain-specific semantics, so that the reported

differences correspond to domain benchmarks.

This thesis presents VTracker, a generic XML differencing approach that
is capable of capturing domain knowledge and semantics through a configurable
domain-specific cost function. VTracker views an XML document as an ordered
labeled tree. Given two trees and a cost function, therefore, VTracker calculates
the tree-edit distance to transform one tree to another. VTracker is an extension of
the Zhang-Shasha’s tree-edit distance algorithm [166]. This thesis makes the

following contributions to the state of the art.

With respect to the original algorithm for differencing ordered labeled
trees, VTracker is innovative in two aspects. First, the original algorithm is (a)
extended to consider an XML reference structure on top of the natural XML
containment structure, (b) equipped with an affine-cost policy that promotes edit
scripts that group edit operations in neighbors, and (c) associated with a set of
heuristics for choosing the optimal edit script among multiple ones with the same
cost. Second, with respect to the application of the ordered labeled tree-
differencing paradigm to domain-specific differencing, VTracker develops a
method for bootstrapping the algorithm in a domain. This is performed by
automatically synthesizing a domain-aware cost function based on the underlying
XML Schema Definition (XSD). VTracker was applied in five different domains:
(a) OWL/RDF, (b) WSDL, BPEL, (c) UML/XMI, (d) XHTML, and (¢) RNA
Secondary Structure, and its performance is similar, or even better than, state-of-

the-art methods in each of these domains.

The rest of the dissertation is structured as follows. Chapter Two presents
various instances of the XML differencing problems, which constitute the
motivation for this thesis. Chapter Three defines the requirements for a generic
XML differencing approach, explains the original algorithm, and presents
VTracker as a generic XML differencing method. Chapter Four explains the
methodology of applying VTracker to a specific domain, and the necessary

Chapter One Introduction

configuration needed for VTracker to become domain-aware. Chapter Five
presents the empirical evaluation results of how VTracker performed in various
application domains. Finally, Chapter Six provides a discussion and the

conclusion of the thesis.

Chapter Two Background and Related Work

The problem of XML differencing has been studied in the context of many
application domains. This chapter discusses instances of the differencing problem
in a variety of domains, current state-of-the-art approaches to addressing the
differencing problem, and their implications to this work. Differencing methods
can be divided into two broad categories: general XML differencing and domain-
specific differencing. The approaches in the former category aim to be so generic
that they can compare any kind of XML document regardless of the underlying
application domain. The approaches in the latter category are aware of the
knowledge and semantics of the underlying domains, and are built to serve such
domains in particular.

2.1 XML

XML differencing is defined as the process of finding proper mapping between
elements of the two documents in order to detect changes, deletions, and
insertions. The input consists of two XML documents, and optionally the
Document Type Definitions (DTDs) or XSDs to which they conform. The output
is an edit script that can transform one document into the other, in conjunction

with a similarity measure between the two documents, called edit-distance.

XML-document differencing is necessary for version management
functions such as change detection and tracking [144][6][109], version merging
[32][27][28][110][89], indexing, and answering temporal queries [97]. Some
applications have the luxury of recording the changes as they happen through the
XML document editor, or an Integrated Development Environment (IDE), which
is then utilized to produce the differencing results. However, a general XML
differencing method should not rely on the assumption that editing and changes
happen through a certain editing utility, or that the edit operations are consistently

recorded as they happen.

XML differencing methods can be divided into two main categories based
on whether they use a tree-to-tree correction model or not. It is essential to keep in

mind that the approach proposed in this thesis is based on the tree-to-tree

5

Chapter Two Background and Related Work

correction paradigm. Therefore, the first category constitutes the more closely
related work.

2.1.1 Non Tree-based Approaches

The most basic XML differencing approach is simply to compare the textual
content of these documents through a string-edit distance approach such as the
UNIX diff command. Applying the diff command on the two documents, shown
in Figure 2-1 (a), would report that one line was deleted and four new lines where
inserted as shown in Figure 2-1 (b). However, Figure 2-1 (c) shows a more
intuitive result that both documents have the same content with a new element
“name” inserted. To deliver such a more “natural” comparison result one would

have to recognize the internal tree structure of XML documents.

Inspired by string-edit distance, Lindholm et al. in Faxma and Faxma+
[89] transform an XML document into a sequence of events through a depth-first
traversal, and then apply a sequence-based matching measure similar to a
Levenshtein string-edit distance [86]. Calculating a string-edit distance is much
cheaper than that of a tree-edit distance; however, representing an XML document
as a sequence loses valuable details about the structural relationships between

these elements such as the ancestor-child or sibling relationships.

In X-Diff [140], Wang et al. use X-Path queries to determine the
similarities between nodes from different documents. Two elements are
considered similar if they have the same X-Path signature. If one node is moved
from its parent to another parent in the same level X-Diff will not recognize such
a change. Additionally, X-Diff cannot detect changes that happen in the relative
order of elements. In addition, if an internal node is deleted (or inserted) the entire
sub-tree will be detected as deleted (or inserted) as well since its X-Path signature

will be different.

Chapter Two Background and Related Work

<root> <root>
<person id ="1">John Smith</person= <person id ="1"=>
</root> <name>John
Smith</name>
</person>
</root>

(a) Two XML documents

2c2,5
< <person id ="1"=John Smith</person>
<person id ="1">
<name>John
Smith</name>
</person>

(b) Results of Unix diff command

-<root >
-<person id="1">
<name> BN </name>
</person>
</root>

(c) Desired diff results

Figure 2-1: An example of XML differencing using Unix diff versus an

XML differencing mechanism

2.1.2 Tree-based Approaches

By nature an XML document can be represented as an ordered labeled tree in a
very similar manner to a Document Object Model (DOM) representation of an
XML document. In that sense, the XML differencing problem can be formulated
as a tree-to-tree correction problem where the objective is to find the cheapest (i.e.
most optimal) script of edit operations such as change, deletion, and insertion that

transform one tree into the other.

The roots of the tree-to-tree correction problem can be traced back to 1977
and 1979 when Selkow [125] and Tai [134] published their work, respectively. In
1989, Zhang and Shasha published their tree-edit distance algorithm [166][168],

which is based on Tai’s model. Given two trees, tree-edit distance is the minimum

7

Chapter Two Background and Related Work

cost sequence of edit-operations that transforms one tree into the other. The set of
possible edit operations in Tai’s model is different from those in Selkow’s model.
On one hand, Tai’s model allows fine-grained edit operations, namely to change
label of a single node, delefe an existing single node, or insert a new single node;
on the other hand, Selkow’s model allows coarse-grained edit operations, like
change label of a single node, delete an entire sub-tree, or insert an entire sub-
tree. Figure 2-2 illustrates the difference between the two models, where Selkow
deals with entire sub-trees while Tai deals with single nodes. Selkow’s model is
appropriate for differencing applications where changes always happen to leaf
nodes, or where a change to an internal (i.e. non-leaf) node implies a change to
the entire sub-tree under this node. However, as it offers fine-grained edit
operations, Tai’s model allows for changes to happen anywhere in the tree
without affecting the status of other nodes. In this way, Tai’s model is more
general than Selkow’s. For the same reason, Tai’s is more expensive as it requires
comparing trees at the node level while Selkow’s needs to compare trees at the
sub-trees level. Therefore, XML differencing approaches based on tree-edit
distance are recommended to use Tai’s model as it offers fine-grained operations,
and it allows changes to happen anywhere in an XML document not only at the

leaves level.

(a) Original Tree (b) Tai’s model (c) Selkow’s model

Figure 2-2: Selkow’s Tree-to-Tree Editing model versus Tai's Tree-

to-Tree Correction model with regard to deletion of a node c

Chapter Two Background and Related Work

Generic XML-differencing approaches are the ones that are not tied to a
certain application domain, and do not include heuristics, customizations,
workarounds, or assumptions that are limited to a certain application domain. The

following are the most relevant related works.

One of the most popular concepts in the literature of XML differencing is
the work of Cobéna et al. named XyDiff [32]. This method is known for being
efficient in terms of speed and memory space, and views an XML document as an
ordered labeled tree. Intuitively, the algorithm starts by trying to detect large sub-
trees left unchanged between the old and new versions. Then, the algorithm tries
to match more nodes by considering ancestors and descendants of matched nodes
and taking labels into consideration. The core idea of the XyDiff algorithm is to
identify nodes using hash values called Xylem Identifiers (XIDs), and then to
perform a greedy search for common sub-trees through an algorithm that is called
Bottom-Up Lazy-Down (BULD) with complexity O(n log n). One limitation of
XyDiff is that it is only efficient in comparing versions of the same document;
otherwise it loses the advantage of skipping large unchanged trees in which case it
must compare the two entire trees. Additionally, the concept of XID is not
applicable to documents originated from different sources, since the document
structure will be different, and consequently the elements will have different XID
hash values. Finally, the XyDiff views XML documents as mere structured
chunks of data. It does not consider the application semantics that might be

captured within these structures.

Another important contribution, in the XML differencing literature, is the
work of Chawathe et al., on Fast Match Edit Script (FMES) [27] and MH-DIFF
[28]. FMES views an XML document as an ordered labeled tree. It aims at
calculating an edit distance between two given trees. It starts with globally
detected nodes that have a perfect or close match regardless of the structure or
relative order. It then tries to make both trees structurally isomorphic by detecting
deletion and insertion operations. The benefit of this approach is that it does not

assume object-identifiers (e.g. XIDs in XyDiff), and that the cost function used to

9

Chapter Two Background and Related Work

measure matching between nodes is customizable to reflect the domain’s
knowledge and semantics. However, this method has the following drawbacks:
(1) it cannot be made to detect structural changes since it matches nodes in a
global manner without taking into consideration structural relationships between
them; (2) consequently, it does not produce sound results in the case of documents
with different structure, or those originated from different sources, and (3) there is
no easy way to build such a domain-specific cost function. MH-Diff aims at
detecting meaningful edit operations such as copy and glue in addition to standard
change, deletion, and insertion. It arranges nodes from the first tree linearly
against nodes from the second tree in a bipartite graph. In this graph, if an edge
links a node » in T; to node m in 7>, then node n is matched to node m. A node
linked to special node “+” indicates that this node was inserted, and node linked

¢ 9

to special node indicates a deleted node. If a node in 77 is linked to multiple
nodes in 75, then this node was copied multiple times. Similarly, multiple nodes in
T, linked to a single node in 75 indicate that these nodes were glued into that
single node. In this way, the differencing problem is formulated as finding an
edge cover in the induced graph. In spite of the advantages of MH-Differencing
over FMES, both still suffer the same drawbacks. Both detect edit operations in a
global manner while disregarding the locality of different sub-trees, and
consequently the more structurally different are the two given trees, the more non-

sense results both methods will produce. Finally, neither method is designed to

compare documents originating from different sources or vendors.

A further contribution to the XML differencing techniques is the work of
Nierman and Jagadish [110]. This work also views an XML document as an
ordered labeled tree, and the objective is to calculate the tree-edit distance
between two given trees. The new contribution of this model is that it combines
operations of the Selkow’s coarse-grained model and Tai’s fine-grained model.
This method reports five kinds of edit operations: change label of a single node,
delete a single node, insert a single node, delete a sub-tree, and insert a sub-tree.

This approach is better than previous methods in terms of generality since it will

10

Chapter Two Background and Related Work

compare structurally different documents as well as documents originated from
different source. However, the efficiency of this method largely depends on the
structural similarity of the two trees. In other words, if the two trees are
structurally different, its actual complexity is significantly inferior to standard

tree-edit distance algorithms (e.g. Zhang-Shasha’s).

Another application of XML matching is answering twig queries where
the objective is to find a small query tree inside a large XML document. An
answer to a twig query is a list of sub-trees that match the small query tree in
terms of their contents and structure. The approximate query answer is a list of
ranked sub-trees that partially match the query tree content and structure. One
method of solving this problem is the work of Vagenza et al. [137] that views
both the query and the large XML structures as two directed acyclic graphs, and
then it measures the structural similarities between the query and various sub-
trees. Another interesting method to this problem is the work of Augsten et al.
[14] that is based on pruning irrelevant sub-trees, and then applying a tree-edit
distance on a small set of candidate sub-trees. This work uses a prefix ring buffer
approach to perform a single scan in order to prune sub-trees that exceed a certain

size threshold, or are contained in their relevant sub-trees.

The literature of XML differencing is rich with many other approaches
both similar to, and different from, the ones presented above. For example,
Microsoft’s “XML Diff and Patch” is based on the Zhang-Shasha algorithm;
DiffMK, by Sun Micro Systems, is based on the Unix diff algorithm. DiffXML is
based on FMES, and JXyDiff is a Java implementation of XyDiff. Mlynkova’s
[106] work and research combines the work of both Nierman [110] and XClust
[85] together. Additionally, XClust X-Differencing is based on X-Diff and allows
for some domain-specific customization. For additional details, the reader is

recommended to review the surveys of Peters [117] and Cobéna [31].

11

Chapter Two Background and Related Work

2.2 Ontology

The World Wide Web Consortium (W3C) defines ontology as a set of
“formalized vocabularies of terms, often covering a specific domain and shared
by a community of users” [148]. Ontologies are important to formally describe a
certain domain’s terminologies, vocabularies, concepts, and relationships. An
ontology description usually defines elements such as individuals (i.e. objects),
classes, attributes, relationships, or restrictions on relationships. One important
ontology-description language is Web Ontology Language (OWL) [148] that is
designed to serve the needs of Semantic Web and Service Oriented Architecture

[149].

Ontology matching is a task necessary for a variety of activities such as
migration and bridging between various versions and evolutions of the same
ontology, translation between different ontologies, discovery and composition of
services, integration of software systems, and linking web-accessible data. In
nearly every scenario where software components of different parties need to
interact, it is necessary to translate between their underlying ontologies. The term
“ontology matching” refers to the problem of identifying the proper semantic
mapping between entities of different ontologies representing the same conceptual
domains. The general technical problem driving the research around ontology
matching is part of the overall Semantic-Web agenda, which envisions that the
information available on the web will be annotated with semantic metadata in the
form of ontology tags, and that heterogeneous information, provided by people
and organizations will be integrated through mapping of their tag ontologies. As
centralized coordination of the ontology-development process is unlikely, one can
anticipate — and we are already witnessing — an explosion in the number of
ontologies used today. Many of these ontologies describe similar (the same or
overlapping) domains, but use different terminologies. To integrate data from
such disparate ontologies one must recognize the semantic correspondences
between their elements. Manual mapping of such correspondence is time-

consuming, error prone, and clearly not possible on the web scale [30]. This is

12

Chapter Two Background and Related Work

why general, applicable across domains, automated methods for ontology
mapping are necessary.

2.2.1 Related Work

In principle, there are three categories of ontology-matching methods [30]. Some
methods attempt to construct and maintain a global ontology based on several
local ontologies, by describing and mapping the relationships between the
elements of the local and global ontologies. Other methods focus on enabling
interoperability in distributed environments and mediating between the distributed
data in such environments by pair—-mapping. Finally, a third family of methods is
designed to map a set of overlapping ontologies through ontology merging and

alignment.

The Ontology Alignment Evaluation Initiative (OAEI) organizes an
international competition between Ontology Matching systems and frameworks.
Every year OAEI appoints the top state-of-the-art approaches in that domain.
According to the published results of OAEI 2010 “ASMOV and RiMOM are
ahead, with as close follower, while SOBOM, GeRMeSMB and Ef2Match,

respectively, had presented intermediary values of precision and recall” [50].

The ASMOV algorithm [49] iteratively calculates the similarity between
entities for a pair of ontologies by analyzing four features: lexical elements (id,
label, and comments), relational structure (ancestor-descendant hierarchy),
internal structure (property restrictions for concepts; types, domains, and ranges
for properties; data values for individuals), and extension (instances of classes and
property values). The measures obtained by comparing these four features are

combined into a single value using a weighted summation formula.

The RIMOM approach [87] uses three matching strategies. One is the
name-based strategy which calculates the string-edit distance between the labels
of two entities. The second is the metadata-based strategy that calculates the
cosine distance between weighted feature vectors representing the words

contained in the entity’s label and comment. And the third is the instance-based

13

Chapter Two Background and Related Work

strategy that constructs another document for each entity consisting of the words

in the instances related to that entity.

The AgreementMaker [42] comprises several matching algorithms, or
matchers, that are either (1) concept-based matchers which are a combination of
string matchers and a cosine distance matcher, or (2) structural matchers that

make sure that if two nodes are similar, then their descendants should be also.

SOBOM [162] incorporates anchor generator matchers that use textual
information such as label, id, and comments in addition to structural information
such as number of super- and sub-concepts, the number of constraints. It then uses
a structural matcher that uses anchors to induce the construction of similarity
propagation graphs for sub-ontologies. Finally, it uses what it calls an R-matcher

that matches the definitions based on the linguistics and semantics of relations.

GeRMeSMB [72] is composed of two modules, GeRMeSuite and SMB.
GeRMeSuite is a generic matching framework that can match ontologies as well
as schemas in other modeling languages. SMB is a ‘meta’ matching system that
works on the similarity matrices produced by GeRMeSuite. It fine-tunes the
clarity of the similarity values by improving ‘good’ values and decreasing ‘bad’

values.

In addition to the OAEI contestants there are other related works. For
example, the work of Giunchiglia et al. [54] is based on the edit distance between
matched ontologies in order to preserve relative structural relationships between
matched elements. Another related work is Papavassiliou et al. [115] that aims at
detecting meaningful changes between Ontology RDFs through a new set of

meaningful edit operations.

In general, ontology matching systems consider the following features as
an essential part of their approaches: (1) conceptual identity in terms of id, label,
and comments, (2) structural identity in terms of inheritance and composition
relationships, and (3) other relationships including dependency, association, and

Instantiation.

14

Chapter Two Background and Related Work

2.2.2 An Ontology as a Tree

The scope of this thesis focuses on OWL as an example of ontology description
language. According to W3C 2009 specification the primary exchange format for
OWL2 is RDF/XML [148]. Code 2-1 shows a portion of an OWL Ontology
described in RDF/XML syntax. This example is a part of the reference ontology
specification used in the OAEI benchmark dataset. As shown in this example, the
OWL ontology is composed of a set of classes, object properties, and individual
objects. Each of those elements is then defined either in its own terms, or by

referring to definitions of other elements.

As an XML document an OWL ontology specification can be represented
as a tree. VTracker is based on a DOM model as a tree representation of an XML
document where all XML elements such as classes, properties, relationships and
restrictions are represented as tree nodes, and where element names are
represented as tree labels and XML attributes are represented as node attributes.
Metadata elements such as XML instructions and comments are not included in
the tree model. For example, Figure 2-3 illustrates this idea by visualizing the
ontology described in Code 2-1 as a tree. In this tree the ontology defines two
classes named Article and Part, one object property named author, and one
individual with id a492378321. Similarly, the Article class definition is composed
of a label, a comment, and two inheritance relationships: the first is a restricted
version of the author object property while the second is a normal sub-class
relationship of Part class definition. In conjunction with the XML containment
structure, this example illustrates another type of structure that is called the
reference structure. In Figure 2-3 the solid lines denote containment relationships
while the dotted arrows denote reference relationships. In this tree there are three
reference relationships: an instantiation relationship between article #a492378321

and the class definition of Article, and two association relationships

15

Chapter Two Background and Related Work

<rdf:RDF>
<owl:Class rdf:ID="Article">
<rdfs:label xml:lang="en">Article</rdfs:label>
<rdfs:comment xml:lang="en">An article from a journal or
magazine.</rdfs:comment>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#author"/>
<owl:cardinality rdf:datatype="&xsd;nonNegativelnteger">1
</owl:cardinality>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf rdf:resource="#Part"/>
</owl:Class>

<owl:0bjectProperty rdf:ID="author">

<rdfs:subProperty0f rdf:resource="#humanCreator"/>

<rdfs:label xml:lang="en">author</rdfs:label>

<rdfs:comment xml:lang="en">The list of the author(s) of a
work.</rdfs:comment>

</owl:0bjectProperty>

<owl:Class rdf:ID="Part">
<rdfs:subClassOf rdf:resource="#Reference"/>
<rdfs:label xml:lang="en">Part</rdfs:label>
<rdfs:comment xml:lang="en">A part of something (either Book
or Proceedings).</rdfs:comment>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#pages"/>
<owl:maxCardinality rdf:datatype="&xsd;nonNegativelnteger">1
</owl :maxCardinality>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#title"/>
<owl:cardinality rdf:datatype="&xsd;nonNegativelnteger">1
</owl:cardinality>
</owl:Restriction>
</rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#isPartOf"/>
<owl:cardinality rdf:datatype="&xsd;nonNegativelnteger">1
</owl:cardinality>
</owl:Restriction>
</owl:Class>
</rdf :RDF>

Code 2-1: A sample Ontology OWL/RDF described in XML syntax

16

Chapter Two Background and Related Work

linked to the definitions of the Part class and the author object property. The
intent of such a reference structure is to allow ontological definitions to be reused
within other definitions. This kind of hyperlinkage dramatically affects the
semantics of an element’s definition. Although the referenced element definition
is not physically a part of the referring structure, it is definitely a part of its
semantics. Therefore, when definitions of two elements are matched to each other
it is not enough to only match the containment structure on both sides but also the
referenced structures as well. In other words, a differencing approach should

consider referenced structures as being a part of the referring structure.

Ontology

<Article rdf:about="#a492378321"> @ <owl:Class rdf:ID="Part">

""" <owl:Class rdf:ID="Article”>

3 <owl:ObjectProperty rdf:ID="author”>
1

i

<rdfs:label> I
I
‘1, HEE N
. 1
Article |
I
1
<rdfs:subClassOf> | <rdfs:subClassOf rdf:resource="#Part”> @
|
<rdfs:comment> J’ |
|
‘l, <owl:Restriction> |
I
An article from a journal.. |
I
I
]
]
<owl:onProperty rdf:resource="#author”> @ <owl:cardinality>
1

Figure 2-3: A sample OWL/RDF ontology represented as a tree

Structure including Ontology Classes, Properties, and Instances.

17

Chapter Two Background and Related Work

2.3 WSDL

Service discovery is an essential task in the process of developing service-oriented
applications. In a typical service-discovery scenario the service requester has
specific expectations about the candidate service. In general, there are three types
of desiderata for a service: it has (a) to be capable of performing a certain task,
i.e. maintain a shopping cart, (b) to expose a particular interface, i.e. provide
view, add-product and remove-product, and (c) to behave in a certain manner, i.e.
ignore any request for product removals if no product additions have been
performed yet. Such expectations motivate and guide the developers’ searches
through web-services repositories, as they try to discover and select the service
that best matches their needs. This thesis does not target the capability-matching
problem since it is always done at the UDDI level, which is not a particularly
challenging problem. However, this thesis focuses on WSDL matching as an
example of interface matching, and on BPEL matching as an example of behavior

and protocol matching problems

A WSDL specification is the description of a software component that
includes a description of its interface, a description of where the actual

implementation exists, and how it can be used [129][141]. W3C defines services:

“As collections of network endpoints, or ports. In WSDL the abstract
definition of endpoints and messages is separated from their
concrete network deployment or data format bindings. This allows
the reuse of abstract definitions: messages, which are abstract
descriptions of the data being exchanged, and port types, which are
abstract collections of operations. The concrete protocol and data
format specification for a particular port type constitutes a reusable
binding. A port is defined by associating a network address with a

reusable binding, and a collection of ports define a service”.

WSDL matching is the process of finding a proper mapping between

elements of two specifications that maximizes the overall matching and

18

Chapter Two Background and Related Work

minimizes the number and cost of edit operations required to transform the first
WSDL to the second one. An important application of WSDL matching is service
discovery and matching. In general, when looking for a service, a developer has in
mind both the signatures of the operations desired, and some behavioral scenarios
in which the candidate service is expected to participate. WSDL matching is then
responsible for mapping a desired set of desired operations against a set of
provided ones, their inputs, outputs, data types, etc. Then the objective is to
measure the distance between the desired service WSDL and the published ones,
and to find the closest one to the desired interface The objective is first to find the
best published service, and then to find the proper mapping between different

elements of both interfaces such as data types, messages, operations, and ports.

Another application of WSDL matching is to increase service reusability
by allowing a service to be consumed in multiple use-cases, not only the one it
was designed for [102]. For example, consider the case of an Album Catalog
service in Figure 2-4 against a consumer interested in a Book Catalog service
Figure 2-5. In such cases, although the published service deals with different
concepts than that of the service consumer, the consumer could still effectively
use the service, if only a mapping between the divergent schema elements were
found. For example, in this scenario, both services register items, search the
catalog, get item details, and find other items from the same producer or
publisher. It would, therefore, be desirable to discover the published service in

response to such a request if no better match is available.

WSDL matching is also important for version migration where the
objective is to precisely recognize the changes to the WSDL specification of a
service interface, and (a) find a proper mapping between elements of the old
interface and those of the new one, (b) characterize the changes in terms of their
complexity and (c) semi-automatically develop adaptors for migrating clients

from older interface versions to newer ones [53].

19

Chapter Two Background and Related Work

Port Types

B €9 Album-Catalog

B & Getartistalbums
[>]input
<1 output

B & GetDetails .
[>linput __ T
< output

B & Publishalbum
[1input
<1 output

& & Search
[]input

<1 output

Messages

‘L)Elf

B[] GetArtistalbumsRequestMessage
target-artist (tns:artist-name)
B[] GetArtistAlbumsResponseMessage
result-set (tns:album-id-list)
B[] GetDetailsRequestMessage
target-album (tns:album-id)
[[] GetDetailsResponseMessage
album-details (tns:album-details)
&[] PublishalbumRequestMessage
album-desc (tns:album-details)
| PublishalbumResponseMessage
publishing-result (string)
B[] SearchRequestMessage
query-string (tns:album-name)
B[] SearchResponseMessage
result-set (tns:album-id-list)

Figure 2-4: A WSDL specification of a published online Album Web

Service
Port Types Messages
B €9 Book-Shop B[] AddBookRequestMessage
book-info (tns:book)

= iﬁ AddBook
|nput
&) output
B 4 FindRelatedBooks
[>]input
<1l output
B 4 RetrieveBookDetails
Dl input
\:] output
= i& Searchlerary

|nput ﬁ—)

\:] outp

El [] AddBookResponseMessage
result (p:string)

B[] FindRelatedBooksRequestMessage
query-string (tns:author-name)

B [FindRelatedBooksResponseMessage
result-set (tns:ISBN-list)
[RetrieveBookDetailsRequestMessage

book-ISBN (tns:ISEN)
E] [] RetrieveBookDetailsResponseMessage
book-info (tns:book)
B[] SearchLibraryRequestMessage
query-string (tns:book-name)-
| SearchLibraryResponseMessage
result-set (tns:ISBN-list)

Figure 2-5: A WSDL specification of a desired online Book catalog Web

Service

2.3.1 Related Work

Interface matching is concerned with mapping the elements of a candidate

published interface to the elements of the requested one. Usually, such mapping is

based on signature matching between the published operations and the requested

ones. It matches the input and output

parameters in addition to pre- and post-

20

Chapter Two Background and Related Work

conditions [116]. For example, Wang and Stroulia [141] proposed a family of
WSDL matching methods that consider both the identifier and structural
similarity of data types and methods. Payne et al. [116] developed a DAML-S
matching method, assuming a common ontology between the publisher and the
requester, based on parameter matching using type subsumption and inheritance
relationships. Syeda-Mahmood et al. [132] proposed an interface matching

approach based on name similarity.

It is worth mentioning that most of the WSDL matching techniques suffer
from two drawbacks: first, interface matching does not guarantee a successful
interaction because such an interface usually does not specify the usage conditions
of the operations involved. Hence, an improper usage of the published operations
will lead to an interaction failure. Second, interface matching may easily become
confused when services are not distinctive when the data types are simple, and
when there is not much documentation. Both problems were addressed by the
author in the context of examining usage protocols for service discovery through a
mixed approach that incorporates both WSDL matching with BPEL matching in
an integrated way [102].

2.3.2 A WSDL specification as a Tree

A WSDL specification is an XML document by nature. A WSDL specification,
therefore, can be easily represented as a partially ordered labeled tree. For
example, the XML document shown in Code 2-2 describes the “evSoap” service
that is represented as a tree in Figure 2-6. As shown in this Figure, a WSDL tree
is composed of few main sub-trees: a set of data type definitions, a set of API
messages signatures, a set of port types, a set of bindings, and finally a service
specification sub-tree. Like ontology specifications, a WSDL specification largely
depends on the concept of the reference-structure as an efficient way of reusing
element definitions such as XML Schema definitions, messages, operations, etc.

Intuitively, references are used to avoid duplicate definitions.

21

Chapter Two Background and Related Work

<definitions>
<types>
<s:schema>
<s:element name="VerifyEmailResponse">
<s:complexType>
<s:sequence>
<s:element minOccurs="1" maxOccurs="1" name="VerifyEmailResult"
type="s0:ReturnIndicator"/>
</s:sequence>
</s:complexType>
</s:element>
<s:element name="VerifyEmail ">
<s:complexType>
<s:sequence>
<s:element minOccurs="0" maxOccurs="1" name="email" type="s:string"/>
</s:sequence>
</s:complexType>
</s:element>
</s:schema>
</types>
<message name="VerifyEmailSoapIn">
<part name="parameters" element="s0:VerifyEmail"/>
</message>
<message name="VerifyEmailSoapOut">
<part name="parameters" element="s@:VerifyEmailResponse"/>
</message>
<portType name="evSoap">
<operation name="VerifyEmail ">
<input message="s@:VerifyEmailSoapIn"/>
<output message="s@:VerifyEmailSoapOut"/>
</operation>
</portType>
<binding name="evSoap" type="s0:evSoap">
<soap:binding transport="http://schemas.xmlsoap.org/soap/http"
style="document"/>
<operation name="VerifyEmail ">
<soap:operation soapAction="http://ws.cdyne.com/VerifyEmail"
style="document"/>
<input>
<soap:body use="literal"/>
</input>
<output>
<soap:body use="literal"/>
</output>
</operation>
</binding>
<service name="ev">
<port name="evSoap" binding="s0:evSoap">
<soap:address location="http://www.cdyne.com/emailverify/ev.asmx"/>
</port>
</service>
</definitions>

Code 2-2: A service WSDL specification described in XML syntax

22

Chapter Two Background and Related Work

<definitions>

<types> <message <message <portType <service name="ev">
name= <. name= <.. name="evSoap"> <binding \L
“VerifyEmailSoapIn”> : "VerifyEmailSoapOut”> : name="evSoap”
type="s0:evSoap">
<part F <part ‘
name="parameters" name="parameters” ‘ <operation
element="VerifyEmail" /> element="VerifyEmailResponse" /> ' name="VerifyEmail">
v ' ' i

<schema> |

<element ~ <element

name= < name= | L .
"VerifyEmail"> "VerifyEmailResponse"> . <input) <output

¢ 4, \ message="VerifyEmailSoapIn" /> “Verify ilSoapOut” />
<complexType> <complexType>) -

<sequence> <sequence>

<element <element
minOccurs="1" minOccurs="0"
maxOccurs="1" maxOccurs="1"

name="VerifyEmailResult" name="email”
type="Returnindicator" /> type="string" />

Figure 2-6: A WSDL specification represented as a tree structure.

2.4 BPEL

This thesis focuses on Business Process Execution Language (BPEL) as an
example of workflow description language2 [36][34]. BPEL 1s an XML-based
language created for designing, composing, and executing web services. BEA
Systems, IBM, and Microsoft, developed the BPEL specifications. It combines
and replaces IBM's Web Services Flow Language (WSFL) and Microsoft's
XLANG specification. BPEL cooperates with WSDL messages, XML Schema
type definitions, and XPath data manipulation. BPEL can be used to describe
either public business protocols that capture the exchange behavior of each of the

parties involved in the protocols without revealing their internal behavior; or

2 BPEL is also sometimes identified as BPELWS or BPEL4WS.

23

Chapter Two Background and Related Work

private executable business processes that model the actual behavior of each
participant in business interactions that are private, but not publicly, visible. In
essence, it provides the common core of process description elements, but can be
extended to handle specific situations or concepts [36][34]. For example, Figure
2-7 shows a workflow that can possibly be attached to the WSDL interface of the

online album described in Figure 2-4.

The task of comparing business process model (BPM) specifications to
recognize similarities and differences is ubiquitous. It is necessary for discovering
business processes that provide desired behaviors, for pinpointing changes
between subsequent versions, and for verifying conformance of processes against
desired protocols. Differencing business process models is a critical feature for
integration development [77]. In a collaborative environment different team
members concurrently manipulate shared process models that result in different
versions of the same original process model. In this case, a process model
integration technique is needed to smoothly merge all the versions together into
an integrated process model. Basically, this technique is required to align
unchanged model elements, and integrate all the changes accordingly.
Differencing business process models is also useful for behavior matching in
service-discovery [102]. In a typical service-discovery scenario, the service
requester is looking for a service to complete a composite application and has
specific expectations about the candidate service. In general, there are three types
of desired outcomes for a service. It should deliver a certain function, expose a
particular interface and behave in a desired manner. The first and second aspects,
namely service functionality and interface, are usually checked through UDDI and
WSDL matching techniques, while service behavior, the third aspect, needs a

business process differencing technique.

24

Chapter Two Background and Related Work

®

= main
=]

% Sequence
=]

& | Publish Album

@ If album already exists?

=
If album already exists? Else
= Sequence ; Sequence
=] =]
1% ALBUM_ALREADY_EXISTS .| Add Album
4| Send Exception 4] Send album-id
= =
=
Exit
=2

% Sequencel
=]

& | Catalog Search Reguest

| Perform Search

42| Return Search Results

=

= Sequence2
=]

@] Get Album Details

@ If album exits?

=

If Else

= Sequence ; Sequence
=] =]
.| Retrieve Album Records 12 ALBUM_NOT_FOUND
4| Send Album Details 4] Send Exception

= 2

=
Exitl

=

Figure 2-7: A BPEL process workflow for an online-album service

25

Chapter Two Background and Related Work

Beyond the above technical model-reasoning problems, aligning business
process models is essential for process agility. In order to stay competitive
companies must be able to adapt their business processes to the ever-changing
market dynamics. However, such a dynamic adaptive market would leave the
company with the big challenge of how to leverage available resources to satisfy
new requests. A good alignment should utilize current portfolio while minimizing
required not-yet available infrastructure. In both cases, the problem is how to
match elements of one BPM to elements of another BPM. The objective is to

maximize the similarity while minimizing the differences.

Furthermore, process-model differencing is useful for verifying
conformance of processes against desired protocols. A typical business process
model describes the details of a certain business process, and the interactions
between this process and other processes, external entities, or human users. These
interactions usually follow a certain communication protocol that should be
respected at all times. Breaking any of these protocols is likely to cause a process
failure. Therefore, any modification to the process model should be carefully
checked against the interaction protocols to verify conformance. In this case, a
process model differencing technique is to match a model interaction against a
desired interaction protocol.

2.4.1 Related Work

Most of the literature on process matching related work falls under the category of
process-control model matching. Control matching means to match the control
structure of the business model. There are three basic process control models:
Petri-nets, Pi-Calculus, and Tree hierarchy. For example, Brockmans et al. [26]
presents an approach for aligning the Petri-net models of two business processes
[105], and presents an approach for aligning the pi-calculus formulations of two
business processes. Additionally, there are approaches that compare business
process models based on a given Finite State Automata [95], or Markov Decision

Processes [45]. The common drawback with all of the above approaches is that

26

Chapter Two Background and Related Work

they only consider the control model of a process while ignoring the associated

data-flow and message-flow model.

One of the earliest works on the BPEL matching problem is that done by
Mikhaiel and Stroulia [102] which is based on representing a BPEL process as an
ordered labeled tree, and then applying VTracker to it. Similarly, the work of
Corrales et al. [40] represents a BPEL process as a graph, and then the BPEL
differencing problem is formulated as a graph-edit distance problem. In 2007,
Eshuis and Grefen [48] addressed the same problem. Their approach was based on
representing a BPEL process as a tree. Then, two leaf nodes are compared based
on their least common ancestor. The motivation behind the work of Eshuis and
Grefen is to offer a BPEL matching approach that does not only consider the
syntactic description of the process but also its semantic aspects. For example,
they stated that the “drawback of such an approach is that different syntactic
constructs typically mean the same. So two processes may not be matched even
though they are equivalent.” [48]. This concept will be discussed in more detail

when presenting the concept of node similarity.

One last related work is WebSphere Integration Developer (WID)® that
compares different versions of the same process model. The results of this tool are
encouraging except that all changes have to happen through the WID IDE itself
otherwise non-sense diff result will be produced. In other words, the tool keeps
track of changes happening to the model, which is then used to compare different
versions of the same. Consequently, this tool is not able to compare or integrate
totally different models, or models originating from different sources.

2.4.2 A BPEL as a Tree

Similar to WSDL, a BPEL specification is an XML document by nature. So,
again, it is easy to represent it as an ordered labeled tree. To illustrate the idea,
Code 2-3 shows the XML specifications of the BPEL workflow depicted in
Figure 2-7. In this specification, it is identified that BPEL uses hyperlinks to refer

3 http://www-01.ibm.com/software/integration/wid/

27

Chapter Two Background and Related Work

to operations, messages, partner links, and to link names. Figure 2-8 illustrates

how to represent this example as an ordered labeled tree.

<bpel:process>
<bpel:partnerLinks>
<bpel:partnerLink name="client" partnerLinkType="tns:JjobProcessing"
myRole ="JobProcessingProvider" partnerRole="JobProcessingRequester"/>
<bpel:partnerLink name="0OnlineAlbum-1ink" partnerLinkType="ns1:0nlineAlbum”
myRole="0OnlineAlbumProvider">
</bpel:partnerLink>
</bpel:partnerLinks>
<bpel:variables>
<bpel:variable name="OnlineAlbum-1inkResponse"”
messageType="ns1:PublishAlbumResponseMessage ">
</bpel:variable>
</bpel:variables>
<bpel :sequence name="main">
<bpel:receive name="Publish Album" createInstance="no"
partnerLink="0nlineAlbum-1ink" operation="PublishAlbum"
portType="ns1:0nlineAlbum"” variable="0nlineAlbum-1inkResponse">
</bpel:receive>
<bpel:if name="If album already exists?"-
<bpel :sequence>
<bpel:throw name="ALBUM_ALREADY_EXISTS"></bpel:throw>
<bpel:reply name="Send Exception" partnerLink="0OnlineAlbum-1ink"
operation="PublishAlbum" portType="ns1:0nlineAlbum"
variable="0OnlineAlbum-1inkResponse">
</bpel:reply>
</bpel:sequence>
<bpel:else>
<bpel:sequence>
<bpel:opaqueActivity name="Add Album"></bpel:opaqueActivity>
<bpel:reply name="Send album-id" partnerLink="0OnlineAlbum-I1ink"
operation="PublishAlbum" portType="nsl:0nlineAlbum">
</bpel:reply>
</bpel:sequence>
</bpel:else>
</bpel:if>
<bpel:exit name="Exit'"></bpel:exit>
</bpel:sequence>

</bpel :process>

Code 2-3: A workflow BPEL specification described in XML syntax

28

Chapter Two Background and Related Work

<process>
<partnerLinks> <variables> <sequence name=“main”>
,‘ . /\
A28 - <receive <exit
<partnerLink <partnerLink name="“Publish Album” Name="Exit" />
name= name= {+partnerLink =“OnlineAlbum-link” .../>
“client"> “OnlineAlbum-link"> SS ~
4+ N
1 \
|| <variable \
name="OnIineAIbum-IinkResponse\'\
messagélType="PuinshAIbumResponseMéésage‘S v

“ <if
\name="If album already exists?" />

1

1

1 1

1 /’/\
1 1
\ 1

\<sequence> 1 <else>
\ \
~ \ \L
\ \
\\ \\ <sequence>
<throw \ <reply \
name=“ALBUM_ALREADY_EXISTS”> V' name="“Send Exception "\

partnerLink =“OnlineAlbum-link’\..>
\

N
<opaqueActivity \\\ <reply
name="Add Album "> - name="Send album-id ”
partnerLink =“OnlineAlbum-link”...>

Figure 2-8: A BPEL process workflow represented as a tree

2.5 UML

Another core problem in software-evolution analysis is the detection of specific

changes that occur between subsequent releases of a system. Consequently, it is

necessary to analyze and understand the developmental steps that brought the

system to its current state. Since structural changes are motivated by the need to

improve the functionality and the quality of the software system, subsequent

longitudinal analysis of the identified changes can lead to interesting insights on

the change patterns as well as the rationale for the overall evolutionary history of

a software system.

The drawback in UML differencing aims at finding design changes of

long-living software systems. Given two object-oriented models the objective is

to find the proper mapping between different elements like packages, classes,

29

Chapter Two Background and Related Work

interfaces, attributes, operations, parameters, etc. in addition to detecting
minimum cost edit script that transforms one model into another.

2.5.1 Related Work

A substantial body of research has focused on software differencing. Fluri et al.
[52] suggested a tree-differencing algorithm that extracts fine-grained source-code
changes between abstract syntax trees (AST). The algorithm is an extension of the
Chawathe et al. [27] algorithm for change detection in hierarchical tree-like data
structures. It also uses string similarity measures for leaves and tree-similarity

measures for sub-trees.

Chevalier et al. [29] proposed a technique to detect similar structures in
evolving C++ source codes that is also based on matching AST. The goal of the
study was to visualize the evolution of the code clone structure and to indicate
small to medium-scale changes, such as function and class-level refactoring code

edits.

Apiwattanapong et al. [13] proposed a differencing algorithm CalcDiff
that extends the existing Larski et al. [80] algorithm. CalcDiff compares two
versions of an object-oriented program in order to identify and classify differences
and similarities between them. Since traditional control-flow graphs (CFG) cannot
model different object-oriented constructs such as dynamic binding, exception
handling, synchronization, and reflection, the authors introduced an extended
graph representation of a traditional CFG (ECFG). The new representation
enables the comparison of object-oriented features of general object-oriented
languages. Using this graph, the algorithm identifies behavioral changes resulting
from structural changes, and relates them to the point of the code where this
different behavior occurs. CalcDiff first performs matching on the class level, then
on the method level, and finally on the node level using a hammock comparison

algorithm on an extended ECFG.

Xing and Stroulia [161] suggested a differencing algorithm UMLDIfT,

which is designed to automatically identify structural changes between two

30

Chapter Two Background and Related Work

software logical models [76]. It outputs a set of change facts describing the
differences between the two models. UMLDiff was implemented in the context of
the JDEvAn tool, an Eclipse plug-in.

2.5.2 A UML model as a Tree

One of the most common formats to exchange UML model specification is XML
Metadata Interchange (XMI). XMI is a model driven XML Integration framework
for defining, interchanging, manipulating and integrating XML data and objects.
XMl-based standards are in use for integrating tools, repositories, applications
and data warehouses. In this way a UML model can be represented as an XML
document which in turn can be represented as an ordered labeled tree. UML/XMI
tree is composed of a set structure of packaged elements nodes that describe the
package and the class hierarchies. A class tree structure is composed of a set of
owned attributes nodes and owned operations nodes that represent the attributes

and methods, respectively.

For example, Code 2-5 shows UML/XMI representation of the simple
Java class shown in Code 2-4, which was generated using Jar2UML". Figure 2-9
illustrates how to represent a UML/XMI specification as an ordered label tree. In
this way the problem of UML differencing can be formulated as a tree-edit
distance problem between the tree structures corresponding to their XMI
representation. One more observation is that UML/XMI largely relies on the
XML reference structure to reuse definitions of some elements. For example, in
this figure, there are hyperlinks between type attributes with value “java.lang.int”
to the real definition of the “int” under the package “java.lang”. Therefore, the

reference structure is essential in the UML differencing problem.

* http://soft.vub.ac.be/soft/research/mdd/jar2uml

31

Chapter Two Background and Related Work

package com.foo;
public class Operation {
int opl, op2;

public Operation(int opl, int op2){

this.opl = opl;
this.op2 = op2;

}

public int getOpl() {
return opl;

}

public int getOp2() {
return opZ;

}

Code 2-4: Simple Java class

<uml:Model>

4/\)

<packagedElement
xmi:type="“uml:Package” name="“com”>

v

<packagedElement
xmi:type=“uml:Package” name="foo”>

<packagedElement
xmi:type=“uml:Class” name="Operation”>

<ownedAttribute
name=“op1”
visibility="package”
type=“java.lang.int”>

<ownedAttribute
name="op2”
visibility="package”
type=“java.lang.int”>

v

<ownedOperation
name="init” visibility="public”>

<ownedParameter
name="op2”

<ownedParameter
name="opl”
type="java.lang.int”>

<packagedElement
xmi:type="“uml:Package” name="java”>

v

<packagedElement
xmi:type=“uml:Package” name="lang”>

v

<packagedElement
xmi:type=“uml:PrimitiveType”
name="int">

<ownedOperation
name="getOp2”
visibility="public”>

l

<ownedParameter
name="return”
direction="return”
type=“java.lang.int” >

<ownedOperation
name="getOpl”
visibility="public”>

)

<ownedParameter
name="“return”
direction="return”
type=“java.lang.int” >

type="java.lang.int”>

Figure 2-9: A UML/XMI sample represented as a tree structure

32

Chapter Two Background and Related Work

<uml:Model xmi:version="2.1"
xmlns:xmi="http://schema.omg.org/spec/XMI/2.1"
xmlns:uml="http://ww.eclipse.org/uml2/3.0.0/UML"
xmi:id="_0GWAUKaxEeCv2IHI4_R6HA" name="foo">
<packagedElement xmi:type="uml:Package"
xmi:id="_0ONB3IKaxEeCvZJHI4_R6HA" name="com">
<packagedElement xmi:type="uml:Package"
xmi:id="_0ONB3IaaxEeCvZJHI4_R6HA" name="foo">
<packagedElement xmi:type="uml:Class"
xmi:id="_0ONB3IgaxEeCvZ2JHI4_R6HA" name="Operation">
<generalization xmi:id="_@NB3I6axEeCvZJIHI4_R6HA"
general="_0M2Q8qaxEeCvZ2IHI4_R6HA"/>
<ownedOperation xmi:id="_0SC6A6axEeCv2IHI4_R6HA"
name="<init>" visibility="public">
<ownedParameter xmi:id="_0SDhEKaxEeCvZ2JIHI4_R6HA"
name="opl" type="_0ONBQEKaxEeCvZIHI4_R6HA"/>
<ownedParameter xmi:id="_0SDhEaaxEeCvZ2IHI4_R6HA"
name="op2" type="_0ONBQEKaxEeCvZIHI4_R6HA"/>
</ownedOperation>
<ownedOperation xmi:id="_0SDhEgqaxEeCvZ2IHI4_R6HA"
name="getOp1" visibility="public">
<ownedParameter xmi:id="_0SDhE6axEeCvZIHI4_R6HA"
name="return" type="_0NBQEKaxEeCvZ2JHI4_R6HA" direction="return"/>
</ownedOperation>
<ownedOperation xmi:id="_0SDhFKaxEeCvZJHI4_R6HA"
name="setOpl1" visibility="public">
<ownedParameter xmi:id="_0SEIIKaxEeCvZIHI4_R6HA"
name="opl" type="_0ONBQEKaxEeCvZJIHI4_R6HA"/>
</ownedOperation>
<ownedOperation xmi:id="_0SEITaaxEeCvZIHI4_R6HA"
name="getOp2" visibility="public">
<ownedParameter xmi:id="_0SEIIqaxEeCvZJIHI4_R6HA"
name="return” type="_0ONBQEKaxEeCvZJIHI4_R6HA" direction="return"/>
</ownedOperation>
<ownedOperation xmi:id="_0SEII6axEeCv2IHI4_R6HA"
name="setOp2" visibility="public">
<ownedParameter xmi:id="_0SEIJKaxEeCvZ2IHI4_R6HA"
name="op2" type="_0ONBQEKaxEeCvZIHI4_R6HA"/>
</ownedOperation>
<ownedOperation xmi:id="_0SEvMKaxEeCv2IHI4_R6HA"
name="toString" visibility="public">
<ownedParameter xmi:id="_0SEvMaaxEeCvZJIHI4_R6HA"
name="return" type="_0M_a4KaxEeCvZ2JHI4_R6HA" direction="return"/>
</ownedOperation>
</packagedElement>
</packagedElement>
</packagedElement>
</uml :Model>

Code 2-5: A UML/XMI representation of the sample Java class

2.6 XHTML

HTML differencing is an interesting problem with a variety of useful applications.

It is relevant to web-site maintenance where a manager might wish to periodically

33

Chapter Two Background and Related Work

review the changes made by the various web-site users in order to approve their
publication. It is also useful to recurring web-site visitors who may want to
quickly assess whether or not an interesting change has been made to their page of
interest. It is essential for web-content warehouses where documents are
periodically collected by crawlers; upon receiving new versions of an existing
document, the warehouse manager may want to track the changes that occurred
since the last received version. Finally, it is a necessary step for automatic web
wrapping [120][164][70] where document comparison is used to automatically
extract data from the web. Figure 2-10 depicts a simple XHTML differencing
example illustrating four kinds of edit operations.

2.6.1 XHTML as a Tree

An XHTML document can easily be described as an ordered labeled tree where
the root of the tree is the HTML tag that is composed of two main sub-trees: head
and body. As shown in Figure 2-11 XHTML elements of both sections become
nodes in the tree representation where elements are represented as nodes, element
names are labels of the nodes, and attributes of elements become attributes of
nodes. Instructional elements such as comments, scripts, styles, etc are ignored in
the tree representation, as they do not affect the containment structure of an
XHTML document. Unlike previous kinds of XML documents, XHTML does not
have a reference structure per se. In HTML, hyperlinks main objective is to be
used by a real user to navigate from one location to another, rather than being

used by a processing program to reference other elements in the same document.

34

Chapter Two Background and Related Work

1. 222
Home Page —
g 2. 444
3. 333
e 111
. 222
. 333 Home Page
o 444 contact web master
a) Pagel b) Page2
g g
1 .
2. 222
3. B4
4. 333
[Change
_ [Delete
l: Insert
contact web master e Move

(a) Desired results

Figure 2-10: A XHTML differencing example

<html>
<head> <body>

<hl> m
v

 <«li>

Home Page ¢ ‘L \L

111 222 333 444

Figure 2-11: An XHTML document represented as an ordered labeled

tree

35

Chapter Two Background and Related Work

2.7 RNA Secondary Structure Comparison

Ribonucleic acid (RNA) molecules are involved in many important biological
processes. Some, such as mRNA, carry genetic information; others, such as
tRNA, rRNA, and the recently discovered microRNA, are directly responsible for
the accomplishment of distinct functions. Biology research has shown that
specific organism processes and functions can be attributed to particular
secondary structures of RNA molecules [94]. As the organisms evolve their RNA
structure changes and their processes and functions change correspondingly.
Consequently, the processes and functions of newly discovered organisms can be
inferred based on the processes and functions of known organisms to which they
are related in evolutionary terms, and with which they share corresponding RNA
secondary structures. Thus, a precise and efficient RNA secondary structure
comparison is essential for providing useful hints on possible RNA molecule
functions, as well as their phylogenetic relationships. The primary structure of an
RNA molecule is a sequence of nucleotides (bases) over the alphabet {A, C, G,
U}. Its secondary structure is a folding of its primary structure and is formally
specified as a set of base pairs that form bonds between A-U, C-G, and G-U bases
[94].

2.7.1 Related Work

Many approaches have been proposed for RNA alignment and comparison, and,
in general, they can be categorized against two dimensions. The first dimension
concerns the RNA features considered by the approach (e.g. primary structure,
secondary structure, or both primary and secondary structure), and the second

concerns the model used to represent RNA (e.g. string based or tree structure).

Some approaches adopt string-based representations of the RNA primary
structure only. In these cases, RNA molecules are represented as strings and
standard string-alignment algorithms are applied [7][8]. However, because they

ignore the associated secondary structure these approaches match RNA bases

36

Chapter Two Background and Related Work

regardless of the molecular interactions in which they are involved (i.e. the loops

they constitute) leading to biologically implausible alignment solutions [16].

Yet other approaches consider the RNA secondary structure only which is
abstractly represented as a structure of loops. Such representations capture the
topological skeleton of RNA molecules regardless of their underlying primary
structure, and are useful for measuring the high-level structural similarity between
molecules, but the measurements are not precise. Shapiro’s work (1988)
exemplifies these approaches in that it represents a secondary structure as a tree

where each node represents a loop (e.g. Internal, Hairpin, Bulge, or Multi loop).

String/Arc representation | Tree-based
representation

Primary structure only Bafna, 1995;

Secondary structure only El-Mabrouk et at, 2002. Coarse-grained

Jin et at, 2005;
Shapiro and Zhang,
1990; Le et al., 1989;
Shapiro 1988.

Primary and secondary Jiang et al., 2002; Fine-grained

structure Lin et al., 2001; - Tight Fine-grained:
Collins et al., 2001; Herrbach et al., 2006,
Wang and Zhang, 2001, | Liu et al., 2005;
2005; Zhang, 1998.

Corpet and Michot 1994. | - Loose Fine-grained:
Hochsmann, 2005

2.7.2 RNA Secondary Structure Comparison as a Tree

Figure 2-12 illustrates how Mikhaiel and Stroulia [103] represented an RNA
molecule as a Tight Fine-Grained (TFG) tree structure. In this representation, a
loop is represented by: (1) one node representing the opening base pair of this
loop, and (2) a set of nodes each representing other single bases this loop. This
representation captures both the primary and secondary structures leading to a

better comparison quality.

37

Chapter Two Background and Related Work

s A A
G-C
G-C
. C-G Uy
C U I
p
A GGCGC GG
CCGGG GC(C C
A U A C £} e
i .U
Gc G ’
cG o GC
“Ca
G-C
A 3
\ G-C ¢ ‘
C A
c G A
C C
A C A fl
v €
;;
(a) An RNA Secondary Structure (b) RNATTree representation

Figure 2-12: An RNA Structure represented as an ordered labeled tree

Another way to represent RNA Secondary Structure is called Loose Fine-
Grained (LFG) tree structure introduced by RNA Forester [59][60][61]. As shown
in Figure 2-13, in this representation stem loops are decomposed into a joint node
and two separate nucleotide (base) nodes. In LFG, each element is represented as
a single node while each bond is represented as a joint node. The main difference
between LFG and TFG is that LFG allows fine-grained edit operations. For
example, in TFG an edit operation may include replacing, deleting, or inserting a
pair of elements while LFG allows to report edit operations like breaking the joint

between a pair of elements, or deleting/inserting a single node.

38

Chapter Two Background and Related Work

=G

A=U /CIG C|G /R /{\
N T CUS g
e A A N
AlUAUGU AJUUATUGTUA
u — T~
A U

ATl G C
UA T CCA

Figure 2-13: LFG versus TFG RNA tree structures

39

Chapter Three VTracker: A Generic XML-Differencing
Method

VTracker is a generic solution to the XML differencing problem. VTracker is
applicable to various domains, and is able to compete with, and replace, domain-
specific differencing approaches. This chapter presents the requirements of a
generic XML differencing approach, the original Zhang-Shasha algorithm, and
then the details of VTracker by explaining how it meets these requirements.

3.1 Requirements of Generic XML differencing

As discussed in the previous chapter the problem of XML differencing has been
studied from many perspectives. Many researchers have designed domain-specific
XML differencing approaches that are intended to serve some domains in
particular. Other researchers looked broadly and tried to design generic
approaches that were supposed to fit in many domains. However, many of the so-
called, generic approaches suffer critical limitations that prevent them from being
practically generic. This section lays out a set of guidelines for any XML

differencing approach that aims at being generic.
(1) Be domain independent

The first obvious requirement of a generic XML differencing approach is to avoid
being tied to, or constrained by, a specific application domain. Also, it should not
include implicit semantics or knowledge of some specific domains in particular. It
should be able to serve multiple domains, and be capable of capturing domain
specific knowledge and semantics through an easy to develop customization

technique.
(2) Produce meaningful minimal edit script

Another requirement of an XML-differencing approach is to produce the shortest
possible edit script that can transform a given XML document to another one. A
differencing method should avoid reporting unnecessary deletions or insertions.
For example, if the root of a sub-tree is deleted (or inserted), the entire sub-tree
should not necessarily be deleted (or inserted). In this sense, Selkow’s tree-to-tree

correction model is not the best in terms of delta size since it offers three kinds of

40

Chapter Three VTracker: A Generic XML-Differencing Method

edit operations: change node label, delete sub-tree, or insert sub-tree. Hence, tree-
edit distance methods offering fine-grained edit operations are more efficient in

terms of the produced delta.

Another requirement on the edit script is to be meaningful. A produced
delta should be sound, reasonable, and acceptable by subject-matter experts;
otherwise, the results are not useful and do not reflect any meaning to the user.
Furthermore, if a meaningful script is not the most minimal script, being

meaningful suppresses the minimalistic requirement.
(3) Consider the hierarchical data structure represented in XML

By nature, XML has a tree like structure. An XML-differencing approach should
be aware of this structure and should not consider an XML as a flat file. Mapping
results, therefore, should obey the structural relationships between mapped
elements. The Zhang-Shasha algorithm formalized this aspect in the following
rules. Consider nodes i; and i, belong to 7; while j; and j, are nodes in 7>, then in
order to map node #; to node j;, while node i, is mapped to node j, the following
conditions should apply [166]:

. i; - iz iff ji- j2; one-to-one mapping where each node cannot be
involved into more than one edit operation. This condition will
not be valid in methods that allow split, copy, and glue-edit
operations.

II. i;is on the left of iz iff j; is on the left of j2 ; preserving siblings
order.

III. i;is an ancestor of i; iff j; is an ancestor of j2; preserving ancestor-
child order.
(4) Allow edit operations anywhere
In XML documents edits may happen anywhere in the document, to a leaf node or
to an internal node. For example, edits may include changing the value of a
certain leaf node, or restructuring the sub-tree of another node. A differencing

method should, therefore, be able to detect changes that may happen anywhere in

41

Chapter Three VTracker: A Generic XML-Differencing Method

the two given XML documents, and not to be limited to certain type of changes.
Additionally, a method’s performance should be consistent in detecting different

types of changes.
(5) Identify elements based on all available information

XML elements should be identified by value, attributes, content, context,
structure, and references. They should not only be identified by attributes or hash
values that were preset in an earlier version comparison, or only with attributes
considered keys in that domain. For instance, sentences and paragraphs in
structured-text documents do not come with an identifier [27]. Also, some
elements may have different domain identifier values but have the same content
structure. For example consider a case where an element x on one side is being
matched against two elements y; and y, on the other side, and where y; has the
same identifier value as x but with different content while y, has the same
contents but with a different identifier value. Then, the question becomes, what
identifies an element: identifier values, or content and structure? Either answer to
this question is right as long as it considers identifier values, contents, structure,

context, and other attributes.
(6) Do not assume prior change-tracking log

A differencing method should assume that the two given documents were
independently developed and edited by different parties and through different
technologies. A generic XML differencing method should not assume that edits
and changes are tracked by the editor utility. An XML differencing method should
not rely on the fact that changes always happen through a particular tool, whose
job is to keep track of, and record, changes happening to a certain XML
document. Otherwise, it is not differencing but rather a method to report changes

that were previously recorded.

(7) Be as efficient as domain-specific differencing techniques
One main reason motivating the development of domain-specific methods is the

inefficiency of generic approaches. Generic methods usually perform extra steps

42

Chapter Three VTracker: A Generic XML-Differencing Method

that are neither necessary nor justifiable at least from the point of view of some
domains. For example, generic methods will have to consider all possible
combinations when matching sub-trees against each other. In some domains, such
behavior is considered a waste of time, since according to the domain knowledge
some nodes are impossible to be mapped to some other nodes so why should it try
to match them. For example, Figure 3-1 shows two java object-oriented
hierarchies, where it is not acceptable, by any means, to match a package node
neither to a class node nor to an interface node while a class node might be
matched to either an interface or a class node. Unlike generic approaches a
domain-aware method is more efficient since it will try to match a package sub-
trees only to a package sub-tree, and similarly, a class sub-trees against only a
class or an interface sub-trees. Therefore, a generic method to compete with
domain-specific methods should be intelligent enough to skip, and avoid any

unnecessary comparison steps.

<package name="“com”>

v

<package name="“foo”>

<interface name="IFool”> <class name="“Fo02”>
<class name="“Fool”>

(a) An object-oriented Model version 1

<package name=“com”>

<package name="bar”>

/\

<class name="Barl”> <class name="“Bar2”>

(b) An object-oriented Model version 2

Figure 3-1: Two object-oriented samples represented as tree structures

43

Chapter Three VTracker: A Generic XML-Differencing Method

(8) Consider XML reference structure in the differencing process

The reference model is a special feature in XML that aims at increasing the
reusability of some element definitions by referring to them from other elements.
And usually that is either to apply some normalization mechanisms, or to
implement certain relationships such as association, specialization, or
instantiation. Chapter Two presents many domain applications that largely rely on
the XML reference structure, and therefore the reference structure should play a
role in an XML differencing process. To illustrate the idea, Figure 3-2 shows two
different structures to represent the same Student Enrolment database. The first
structure does not use hyperlinks (i.e. references) while the second does. In the
first structure, a course definition is repeated every time it is mentioned while in
the second structure; the course is defined once and is then referenced when

needed.

44

Chapter Three VTracker: A Generic XML-Differencing Method

<?xml version="1.0" encoding="is0-8859-1"?> <?xml version="1.0" encoding="is0-8859-1"?>
-<school > -<school >
-<students > -<students >
-<student id="S00123"> -<student id="S00123">
<name >John Smith</name> <name >John Smith</name>
<email >john.smith</email> <email >john.smith</email>
-<enrollment > -<enrollment >
-<course id="CMPUT101"> <course idref="CMPUT101"/>
<name >Introduction to Computing</name> <course idref="CMPUT114"/>
<location >Room 309</location> </enroliment>
-<instructor id="100289"> </student>
<name >David Jordan </name> -<student id="S00403">
<room >315</room> <name >Wayne Jackman</name>
<finstructor> <email >wayne.jackman</email>
</course> -<enrollment >
-<course id="CMPUT114"> <course idref="CMPUT101"/>
<name >Programming with Data <course idref="CMPUT114"/>
Structures</name> </enrollment>
<location >Room 310</location> </student>
-<instructor id="100305"> </students>
<name >Mike McDonald</name> -<courses >
<room >410</room> -<course id="CMPUT101">
<finstructor> <name >Introduction to Computing</name>
</course> <location >Room 309</location>
</enrollment> -<instructor id="100289">
</student> <name >David Jordan </name>
-<student id="S00403"> <room >315</room>
<name >Wayne Jackman</name> <finstructor>
<email >wayne.jackman</email> </course>
-<enrollment > -<course id="CMPUT114">
-<course id="CMPUT101"> <name >Programming with Data
<name >Introduction to Computing</name> Structures</name>
<location >Room 309</location> <location >Room 310</location>
-<instructor id="100289"> -<instructor id="100305">
<name >David Jordan </name> <name >Mike McDonald</name>
<room >315</room> <room >410</room>
<finstructor> <finstructor>
</course> </course>

-<course id="CMPUT114">
<name >Programming with Data
Structures</name>
<location >Room 310</location>
-<instructor id="100305">
<name >Mike McDonald</name>
<room >410</room>

<finstructor>
</course>
</enrollment>
</student>
(a) An XML sample with no reference (b) An XML sample with a
model reference model

Figure 3-2: Two XML sample documents showing the difference

between non-normalized and reference-based normalized structures

During a differencing process, the referenced structure should be

considered as a part of the referring structure in the same place as the hyperlink.

45

Chapter Three VTracker: A Generic XML-Differencing Method

Similarly, when matching a document of the first type against a document of the
second type, hyperlinks should logically be replaced by the referenced structures.
In other words, element attributes constituting ID and IDREF should be handled
differently than as just attributes. For instance, Figure 3-3 shows a simple
example illustrating how the reference structure influences the validity of the
produced results. This example describes two workflows: the first one has a start
node that leads to one other node labeled “Process ABC”. In the second
workflow, the start node forks into two nodes “Process XYZ” and ‘“Process
ABC”. The challenge here is that the nodes in the two workflows have different
IDs. Figure 3-3 shows it is not difficult to detect that the node labeled “Process
XYZ” was newly inserted, and that the id of the node labeled “Process ABC” has
been changed from “2” to “5”. However, the tricky part is in the reference inside
the start node. The differencing tool should choose how to map <node idref = “27/>
either to <node idref = “4”/> (as in Figure 3-3 (b)) or to <node idref = “57/> (as in
Figure 3-3 (c)). Unless the attribute IDRef is treated specially, the solution will
not be justifiable. A possible way to wisely resolve this situation is to follow the
reference on both sides and compare the referenced nodes; comparing node 2
against node 4, and comparing node 2 against node 5 and choose the one that is
closer. If this is applied properly, the correct solution should look like Figure 3-3
(c) where the solution shown in Figure 3-3 (b) should be perceived as incorrect
for two reasons: (1) there is no reasonable justification why <node idref = “2”/> is
mapped to <node idref = “4”/>, and (2) the reported results contradict with the rest of
the results where it refers to a node “4” that is not mapped to the other side. While
the solution based on reference model in Figure 3-3 (c) makes sense as it matches

references to nodes that are the closest to each other.

46

Chapter Three VTracker: A Generic XML-Differencing Method

-<workflow > -<workflow >
-<node id="1"> -<node id="1">
<label >Start</label> <label >Start</label>
-<next > -<next >
<node idref="2"/> <node idref="4"/>
</next> <node idref="5"/>
</node> </next>
-<node id="2"> </node>
<label >Process ABC</label> -<node id="4">
</node> <label >Process XYZ</label>
<fworkflow> </node>

-<node id="5">
<label >Process ABC</label>
</node>
<fworkflow>

(a) Two sample workflows

-<workflow > -<workflow >
-<node id="1"> -<node id="1">
<label >Start</label> <label >Start</label>
-<next > -<next >
<node idref="2"/> <node idref="4"/>
</next> <node-idref="6"/>
</node> </next>
-<node id="2"> </node>
<label >Process ABC</label> - id="4"
</node> <label->Process XYZ<flabel>
<fworkflow> </node>

-<node id="58">
<label >Process ABC</label>
</node>
<fworkflow>

(b) An example of undesired differencing results

-<workflow > -<workflow >
-<node id="1"> -<node id="1">
<label >Start</label> <label >Start</label>
-<next > -<next >
<node idref="2"/> <node-idref="4"/>
</next> <node idref="5"/>
</node> </next>
-<node id="2"> </node>
<label >Process ABC</label> -<pode-id="4">
</node> <label>Process XYZ<flabel>
<fworkflow> </node>

-<node id="5">
<label >Process ABC</label>
</node>
</workflow>
(c) An example of desired differencing results
Figure 3-3: An XML differencing example illustrating the importance of

reference model

47

Chapter Three VTracker: A Generic XML-Differencing Method

(9) Consider XML usage-context structure in the differencing process

The XML reference model implies a two-way relationship: the previous example
discussed one of them, namely outgoing references from an element of interest.
The other direction, the so-called usage-context, is the referenced-by relationship,
namely incoming references to the element of interest. Figure 3-4 illustrates a
very simple example of the usage-context where there are two elements on the
second tree that can be matched to an element in the first tree. The question will
be which one to map it to. Such confusion would be resolved by all known
methods through randomly picking any of the two choices. However, a smart
differencing tool should resolve this confusion by picking the choice that maps
elements used in similar contexts. A sound result should consider the fact that on
the first document, node #2 is referenced from the start node, which implies that
the correspondent in the second document should have a similar usage-context. In
other words, the usage-context of a node should have an important role in the
identification of that node. In that sense, the solution in Figure 3-4 (c) should be
the right one as it maps nodes with the same usage-context. To the best of our
knowledge, the known XML differencing tools neither consider the reference
model nor the usage-context during the differencing process. This aspect is an
important element of the applicability of the XML model for generic methods.
Finally, it is evident that usage-context should be used in conjunction with a

reference-aware approach to produce the best results.

48

Chapter Three VTracker: A Generic XML-Differencing Method

-<workflow > -<workflow >
-<node id="1"> -<node id="1">
<label >Start</label> <label >Start</label>
-<next > -<next >
<node idref="2"/> <node idref="5"/>
</next> </next>
</node> </node>
-<node id="2"> -<node id="4">
<label >Process ABC</label> <label >Process ABC</label>
</node> </node>
<fworkflow> -<node id="5">
<label >Process ABC</label>
</node>
<fworkflow>

(a) Two sample workflows

-<workflow > -<workflow >
-<node id="1"> -<node id="1">
<label >Start</label> <label >Start</label>
-<next > -<next >
<node idref="2"/> <node idref="5"/>
</next> </next>
</node> </node>
-<node id="2"> -<node id="4">
<label >Process ABC</label> <label >Process ABC</label>
</node> </node>
<fworkflow> ~<node-id="5">
<label>Process ABC</label>
</node>
<fworkflow>

(b) An example of undesired results

-<workflow > -<workflow >
-<node id="1"> -<node id="1">
<label >Start</label> <label >Start</label>
-<next > -<next >
<node idref="2"/> <node idref="5"/>
</next> </next>
</node> </node>
-<node id="2"> ~<node-id="4">
<label >Process ABC</label> <label>Process ABC</label>
</node> </node>
<fworkflow> -<node id="5">
<label >Process ABC</label>
</node>
<fworkflow>

(c) An example of desired results
Figure 3-4: An XML differencing example illustrating the role of usage-

context similarity in resolving matching ambiguities

49

Chapter Three VTracker: A Generic XML-Differencing Method

3.2 The Original Zhang-Shasha Algorithm

This section explains the original Zhang-Shasha algorithm [166] that is the base

of the current implementation of VTracker. Given two ordered labeled trees, and a

cost function, the Zhang-Shasha algorithm calculates the optimal edit distance to

transform the first tree into the second tree.

Before explaining the algorithm, descriptions of some essential definitions

and notations are offered. Let 7 be a rooted tree, then:

Ordered tree: a tree 7 is called an ordered tree if a left-to-right order among

siblings in 7 is given.

Node index: nodes are numbered in a post-order manner where children are
visited from left-to-right before their parents. In other words, the index of the
root node should be the same as the size of the tree that is denoted as |7].
Hence, T]x;..x;] refers to the set of nodes with indexes between x; and x,
inclusive. The left most leaf child of a node x; can be obtained by /m(x;).
Hence, the sub-tree rooted by node x; can be represented as 71/m(x;)..x;] that is

short-handed as 77x;], and the whole tree can similarly be represented as 77|7]].
Node label: the label of a node x; is denoted by /(x;).

Labeled tree: a rooted tree 7 is called a labeled tree if each node v is assigned

a symbol from an alphabet 2.

Edit operations: an edit operation s; is represented as (x; , ;) where x; is either
anode in 7; where 1< x; <|T}|, or is A in case of no correspondence in 7;, and
similarly y; is either a node in 7, where 1< y; < |T,|, or is A in case of no
correspondence in 7>. Hence, edit operations can be formally described as

follows:

o Change operation: denoted as (x; , ;) where /;(x;) the label of node x; is
mapped to L(v). If [;(x;) = [x(y;), it is pronounced as a match rather

than as a change operation.

50

Chapter Three VTracker: A Generic XML-Differencing Method

o Deletion Operation: denoted as (x; , A) and means that node x; with

label /;(x;) in T; has no correspondence in 7.

o Insertion Operation: denoted as (A, y;) and means that node y; with

label /5(y;) in T>has no correspondence in 77.

(@) (@) x (2)
® (@ O ® (@ ® ®@® @O b @ ()
change(f,f) delete(c) insert(j)
) (© @ (e ©® ®

Figure 3-5: A sample tree-edit script

Figure 3-5 illustrates the tree-edit operations: (1) operation change label of
node f to be f°, (2) operation delete node ¢ where its children {d, e} became
children of its parent, i.e. node a, and (3) operation insert a new node j to become
an intermediate parent of some of node a children. It is very important to mention
that an insertion operation is just the inverse of a deletion operation. The same
operation when applied to the first tree, it is called a deletion but when applied to
the second tree, it is called an insertion. Additionally, in a change operation, if the
labels are the same, then it is not called a change but rather match operation.

* Edit script: an edit script is represented as S; = s;;, ..., Sx Where §; is the i
edit script that is composed of a sequence of k edit operations, and that is
capable of transforming 7 into 7>. An edit operation s;; denotes the J" edit

h

operation of the i” edit script, and is represented as either a matching

operation (x;,y;) such that x; and y; are nodes in 7; into 7, respectively, a
delete operation (x;, A), or an insert operation (A, y;) that satisfy the

following conditions such as (xij] Vi)and (xij2 , yi/z) are in S;:

O Xy =Xy Sy, =Yy, (one-to-one condition; no merge or split

allowed).

o x; isan ancestor of Xy =y, isan ancestor of Yy, (structure

preserving condition).
o x; isto the left of Xy = y,.jlis to the left of Vi, (order preserving

1

condition).

51

Chapter Three VTracker: A Generic XML-Differencing Method

* Tree-edit distance: assume that given a cost function y defined on each
edit operation s;, and is denoted as y(s;). Then the cost of an edit script S is

V(Si) = Ey(sij)

calculated as ' , the sum of costs of operations in

S =85S

* An optimal edit script between T, and T is an edit script between 7 ,nd T, of

the minimum cost, and is defined as:
6(T1,T2) = min{y(Si)|1 sis n}

where 7 is number of edit scripts that can transform 77 into 7. Hence, the
tree-edit distance problem is to compute the cheapest edit distance and the

corresponding edit script.

The Zhang-Shasha algorithm is based on a dynamic-programming
approach that splits a tree-edit distance problem to a set of recursive sub-problems
explained in Code 3-1. To accomplish that the algorithm divides a tree into a set
of relevant sub-trees that are identified by a set of key roots. Key roots are defined
as the set of nodes that includes the root of the tree in addition to all nodes that
have at least one left sibling. The key-root set of each tree is then sorted according
to the index of the key-root node. Hence, for all combinations of key sub-trees,
the algorithm calculates the tree-edit distance starting from smaller sub-trees to

bigger ones. The calculations of bigger sub-trees leverage results of smaller ones.

Lemma 3-1: Tree-Edit Distance

tdist(x,y) = tdist(T;[Im,(x)..x|,T,[Im,(y)..y])

fdistT[Im,(x)..x =11, T,[Im,(y)..y =11) + y(x,y)
=min fdistT}[Im,(x)..x =11, T,[lIm,(y)..y]) + y(x,A)
fdistT[Im,(x)..x LT[Im,(y)..y = 11) + y(4,y)

where the distance between two forests is defined as:

52

Chapter Three VTracker: A Generic XML-Differencing Method

Lemma 3-2: Forest-Edit Distance

fdistTx,..5, 1, Ty, ..y, 1)

fdistT | x,..Am(x,) =111y, ..Am,(y,) = 1]) + tdist(x,,y,)
=miny fdistT[x,..x, =1],T,[y,..y,]) + y(x,,A4)

fdistT|x,..x,1,T,1y,.y, =1+ y(4,y)

As illustrated by Figure 3-6, during each tree-edit distance calculation
between T;[x] and T,[y], the Zhang-Shasha algorithm chooses the minimum cost

option of the three following aspects:

* The cost of mapping node x to node y plus the cost of matching the remaining
forests to each other.

* The cost of deleting node x plus the cost of matching remaining forest of first
tree against the entire second tree.

* The cost of inserting node y plus the cost of matching entire first tree against

remaining forest of the second tree.

TreeCost(:. 5 &, S 4.35)
ForestCost(/ % /o, 2)+ change(o, o)
= Min < ForestCost(: > <,/ % /%)+ delete(o)
ForestCost(< % 7%,/ % 7 /) + insert(o)

(a) Visualization of Tree-Edit Distance

ForestCost(:...n A A, b S0 L8 i i)
ForestCost(: ..,/ .= v.) + TreeCost(/." , BEaER)
= Min ForestCost(.. A A Sy SRVAVAVA) + delete(o)
ForestCost(/..5 £y, 5L AN A8 + insert(o)

(b) Visualization of Forest-Edit Distance

Figure 3-6: Visualization of Zhang-Shasha algorithm [46]

53

Chapter Three VTracker: A Generic XML-Differencing Method

DECLARE matrix tdist with size [|T;|+1] * [|T,|+1]
DECLARE matrix fdist with size [|T;|+1] * [|T,|+1]
FUNCTION treeDistance (x , V)
START

Imx = 1Iml (x) // left most node of x

Ilmy = 1m2(y) // left most node of y

boundl = x - 1lmx + 2 //size of sub-tree x + 1
bound2 =y - lmy + 2 //size of sub-tree y + 1

fdist[0][0] = 0

// set the first column
FOR i = 1 TO boundl - 1

fdist[1i][0] = fdist[i-1][0] + cost(k,-1)
// set the first row
FOR j = 1 TO bound2 - 1

fdist[0][j] = fdist[0][j-1] + cost(-1,1)
k = Imx

1 = 1lmy
FOR i = 1 TO boundl -1

FOR j = 1 TO bound2 - 1

IF 1ml (k) = lmx and 1m2(1l) = lmy

THEN // tree edit distance

fdist[i][]] = min(fdist[i-1][3j] + cost(k,-1),

fdist[i][j-1] + cost(-1,1),
fdist[i-1][j-1] + cost(k,1))

tdist[k] [1] = fdist[i]l[7]
ELSE // forest edit distance

m = Iml(k) - Imx

n = 1lm2(y) - lmy

fdist[3§][3] = min(fdist[i-1]1[j] + cost(k,-1),

fdist[i][J-1] + cost(-1,1),
fdist[m] [n] + tdist(k,1))
RETURN tdist[x][Vy]
END

Code 3-1: A pseudo code of Zhang-Shasha tree-edit distance algorithm

3.3 The VTracker Approach

VTracker is a tree-edit distance algorithm that extends the Secondary and Primary
RNA Comparison (SPRC) [103] algorithm, which was developed in the context
of the author’s work in RNA secondary structure alignment. Both SPRC and
VTracker are based on the Zhang-Shasha tree-edit distance algorithm [166] which
calculates the minimum edit distance between two trees given a cost function for

different edit operations (e.g. change, deletion, and insertion). According to the

54

Chapter Three VTracker: A Generic XML-Differencing Method

exact analysis of the algorithm performed by Dulucq and Tichit [46], Zhang-
Shasha’s algorithm is of complexity |T,[**|To]*”>. Both VTracker and SPRC extend
the Zhang-Shasha algorithm in two ways. First, they use an affine—cost policy that
is that the cost of each operation may be adjusted based on the context in which it
is applied. Second, in a post-processing step, they apply a simplicity-based filter
to discard the more unlikely solutions from the solution set produced by the tree-
alignment phase. But, unlike the Zhang-Shasha algorithm and SPRC, VTracker is
both reference-aware and context-aware based on back cross-references between
nodes of the compared trees. As shown in Figure 3-7, VTracker, given two XML
documents and a cost model, produces the cheapest edit script that will transform
the first document into the second one in conjunction with the edit script
associated with the reported distance. This section presents the details of
VTracker, and shows how VTracker meets all the requirements of generic XML

differencing.

Cost

XML Model 'Il‘)x:ee Edit

Document |stan_ce
_ | Matrix
— v
'D‘ VTracker
Edit
- Script

XML

Document

Figure 3-7: VTracker’s framework processing model

3.3.1 XML Documents as Ordered Labeled Trees

In VTracker, an XML tree is composed of a set of nodes, where each node is
either a text node or an element node. A text node only has a value while an
element node has a name, attributes, and/or children nodes. Each node has one
parent. An attribute has a name and a value. A value is a literal value, an
identifier, or a reference to an identifier. The reference model inside an XML

document is either imposed by the underlying XML DTD or XML Schema, or

55

Chapter Three VTracker: A Generic XML-Differencing Method

just logically embedded in the application. To be more specific, in DTD, an
identifier attribute is declared as a type ID and a reference attribute is declared as
an IDREF. Although, the XML referencing model is a critical player in the XML
business, to the best of our knowledge, none of XML differencing approaches
pays it the appropriate attention. One other thing to mention is that only text and
element nodes are considered in VTracker since all other types of nodes, such as
processing instructions and comments, do not add any value to the semantics of
the document. Similarly, VTracker ignores empty text nodes and text nodes
consisting of only white spaces.

3.3.2 The VTracker Cost Model

The main contribution of VTracker is its innovative cost model. The cost model is
the module responsible for assessing the cost of various edit-operations such as
deleting a node, inserting a node, or changing a node label. The next few sub-
sections discuss VTracker’s context-oriented cost model such as change edit cost,
deletion (or insertion) edit costs, and the relative weight between the change and

deletion (or insertion) edit costs.
(1) Context-oriented Change Edit Cost

Given two tree nodes, a simple change edit cost assessment would follow a binary
function that yields one of two values: zero in the case of perfect match, a
constant value otherwise. However, in practice, two nodes that are not exactly the
same may also not be entirely different. In VTracker, a matching cost is not a
binary function but is an analog function where a matching cost value may range
from zero, in the case of a perfect match, to a maximum constant, to indicate an
impossible match. A simple implementation of such an analog cost function
would measure the string distance between the two node names, their attributes,
etc. However, some nodes that do not have similar names may have similar
semantics, and vice versa, some nodes that may have literally similar names may
have very distinct meanings. Therefore, in order to produce accurate solutions that

are intuitive to domain experts, VTracker needs to be equipped with a domain-

56

Chapter Three VTracker: A Generic XML-Differencing Method

specific cost function that correctly captures the understanding of subject-matter
experts as to what constitutes similarity and difference among elements in the
given domain. But, lacking such knowledge, a standard cost function can always
be used as a default, which may, however, sometimes yield less accurate and non-

intuitive results.

To address the challenge of coming up with a “good” domain-specific cost
function, VTracker has an innovative method for synthesizing a cost function
from the domain’s XML schema by relying on the assumption that the XML
schema captures in its syntax a substantial part of the domain’s semantics.
Essentially, VTracker assumes that the designers of the domain schema use their
understanding of the domain semantics to identify the basic domain elements and

to organize related elements into complex ones.

Once VTracker has been used first to develop a domain-specific cost
function, it can be used to compare XML documents that are instances of the
schema based on which the cost function has been developed. Figure 3-8
illustrates the bootstrapping process that should happen once, and for good, for
each new domain. Given the domain’s XSD along with the default cost model,
VTracker is used to compare the schema elements against each other while trying
to measure similarities, i.e. edit distance between them as if it is a regular XML
document. VTracker then produces a distance matrix between defined elements.
The distance matrix is the core of the cost model as it specifies the possibility that

two elements are replaceable.

Table 3-1 depicts a sample of the cost model that was synthesized based
on OWL/RDF XSDs. This sample shows all labels with distance more than 0%,
and less than 8%. Each row shows the distance between two node labels followed
by a percentage where 0.0% means a perfect match, and 100% means an
impossible match. This distance is also interpreted as a similarity measure
between nodes of the two given nodes. For instance, two nodes with a 15%

distance would be more acceptable as a replacement of each other than those with

57

Chapter Three VTracker: A Generic XML-Differencing Method

a 90% distance. As shown in this table, VTracker managed to uncover the
semantics of the domain that are implicitly embedded in the underlying XSD, and
was able to find only relevant matches. Then, the produced cost function is used

to compare instances of this given XSD.

Default
Cost
Model
XML Schema \ Tree / «) }J”
e s . / Domain /
Definition | > VTracker > Difgl,:ce Jax SCostthM;).del >/ Cost /,«
(XSD)' ' ' Loynthesizer | | Model /

— Matrix / /

Figure 3-8: VTracker domain bootstrapping process

Table 3-1: Sample of OWL/RDF synthesized cost model

cardinality

cardinality

subject

cardinality

cardinality

cardinality
backwardCompatibleWith
maxCardinality
maxQualifiedCardinality
maxQualifiedCardinality
minQualifiedCardinality
allValuesFrom
annotatedProperty
annotatedProperty
annotatedSource
maxCardinality
maxCardinality
maxCardinality
minCardinality
minCardinality
minCardinality
sourcelndividual
AsymmetricProperty
IrreflexiveProperty
intersectionOf

oneOf

unionOf
ReflexiveProperty

maxCardinalitv
minCardinality

object
qualifiedCardinality
maxQualifiedCardinality
minQualifiedCardinality
incompatibleWith
minCardinality
minQualifiedCardinality
qualifiedCardinality
qualifiedCardinality
someValuesFrom
annotatedSource
annotatedTarget
annotatedTarget
maxQualifiedCardinality
minQualifiedCardinality
qualifiedCardinality
maxQualifiedCardinality
minQualifiedCardinality
qualifiedCardinality
targetIndividual
SymmetricProperty
ReflexiveProperty
unionOf

unionOf

oneOf
TransitiveProperty

2.78%
2.78%

3.70%
3.70%
4.63%
4.63%
5.56%
5.56%
5.56%
5.56%
5.56%
6.48%
6.48%
6.48%
6.48%
6.48%
6.48%
6.48%
6.48%
6.48%
6.48%
6.48%
6.67%
6.67%
741%
741%
741%
7.78%

58

Chapter Three VTracker: A Generic XML-Differencing Method

It is very important to mention here that the quality of the cost-model
synthesizer largely depends on the richness and restriction of the given XSD. The
richer and more restrictive the XSD the better quality of the cost-model achieved.
If the given XSD does not capture the majority of the domain semantics, then the
synthesizer will produce non-sense. It is essential to remember that it is always
possible to manually configure the domain cost model, or even to fix the
synthesized one. It is also important to mention that the bootstrapping process can
help in building a cost function to translate between two different schemas. In this

case, VTracker has to be provided by the two XSDs.
(2) Context-oriented Deletion/Insertion Edit Cost

A simple cost function assigns a uniform cost value to all deletion and insertion
operations regardless of the context where the operation is applied. Thus, the cost
of a node insertion/deletion is always the same, irrespective of whether or not that
node's children are also to be deleted (or inserted). However, a parent node
becomes less important if all its children are deleted. In order to produce more

intuitive tree-edit sequences, VTracker uses an affine-cost policy.

The idea of affine-cost function was borrowed from the affine-gap cost
function introduced in Bio-informatics sequence edit-distance problems [55].
Intuitively, the idea is that a single long insertion should be cheaper than several
short ones of the same total lengths. For example, Figure 3-9 shows two
possibilities of matching two strings “AUGCCUAGCCG” and “AUCG”. The first
possibility has more gap fragments than the second. According to the affine-gap
policy, the hypothesis is that “it is always cheaper by dozen.”, and that deletions
and insertions tends to happen at contingent elements rather than dispersed ones.

AUGCCUAGCCG
A----U--C-¢@G
AU- - - - ---CG

Figure 3-9: A sample string-edit distance with affine-gap policy where dashes

represent insertions and deletions

59

Chapter Three VTracker: A Generic XML-Differencing Method

In VTracker, a node's deletion (or insertion) cost is context sensitive if all
of a node’s children are also candidates for deletion, this node is more likely to be
deleted as well, and then the deletion cost of that node should be less than the
regular deletion cost. The same is true for the insertion cost. To reflect this
heuristic, the cost of the deletion or insertion of such a node is discounted by a
certain percentage. Figure 3-10 illustrates the importance of an affine-cost
function. First, assume a standard cost function where the cost of a deletion or an
insertion is 3 while the cost of change is 6. Now, Let us consider the two trees of
Figure 3-10 (a). According to the cost function, the cost of the differencing shown
in Figure 3-10 (b) is 24 (four change operations) while the cost of the differencing
of Figure 3-10 (c) is 30 (five deletion operations + five insertion operations).
Therefore, according to this cost function, solution Figure 3-10 (b) is the optimal
since it is cheaper. With a closer look at why Figure 3-10 (c) is so expensive,
structure nodes like <param>, <name> and <type> are found to be more costly to
delete, as they are so numerous. However, such structure nodes have no value if
their contents are to be deleted. And, here comes the advantage of affine-cost
function that discounts the edits to such structure-preserving nodes in case all
their children are to be deleted. For example, according to a 66.6% discount
policy, deleting or inserting any of the structure nodes will cost one unit instead of
three each. In other words, applying affine-cost policy on the Figure 3-10(c), the
cost will be 18 (two regular deletions of three units each + three discounted
deletions of one unit each + two regular insertions of three units each + three
discounted insertions of one unit each), which promotes the second solution to be

the optimal one.

Then, the question is how to decide if a node is eligible for an affine
discount. In other words, while calculating the edit cost between two nodes x and
v, the algorithm has to determine whether the children of x, y, or both are to be
deleted. As shown in Code 3-2, for the cost function to decide whether this node
is eligible for an affine policy discount, it has to leverage the distance calculations

of this node’s sub-forest. It checks if the cost of deleting the forest fdist/0..x-

60

Chapter Three VTracker: A Generic XML-Differencing Method

1,0..y-1] equals the summation of fdist/0..Im;(x)-1, 0..y-1] plus the deletion cost
of T;[Im;(x)-1..x-1]. A cell is eligible for a deletion affine discount, if and only if,
either the cell is in the first column since the first column always means a full
deletion, or the accumulated cost recorded with this node’s children equals the
cost of deleting the same children. The eligibility of the insertion affine discount

is similarly calculated.

11 11

<method name="foo”> <method name="foo”>
5 ~ - 10 5 ~ 10
<param> <param> <param> <param>
2 4 7 9 2 4 7 9
<name> <type> <name> <type> <name> <type> <name> <type>
1] 3 6 8 1 ‘ 3 6 8
age int name string name string amount float

(a) Two trees

11 11

<method name="foo”> <method name=“foo”>
5 10 5 10
<param=> <param= <param=> <param=
2 4 7 9 2 4 7 9
<name> <type> <name> <type> <name> <type> <name> <type>
| ;
1 3 ’ 6 8 ‘ 1 . 3 ‘ 6 8
age int name string name string amount float
A A A A A A A N
(b) Differencing results of standard cost function
11 11
<method name="foo”> <method name="foo”>
s _— T~ 10 5 10
<param> <param> <param> <param>
2 ~_ 4 7 ~_9 2 4 7 9
<name> <type> <name> <type> <name> <type> <name> <type>
| ‘
1| 3| 6 8 1 3 6 8 ‘
age int name string name string amount float

(c) Differencing results of affine-cost function

Figure 3-10: An example to illustrate the importance of affine-cost function

61

Chapter Three VTracker: A Generic XML-Differencing Method

FUNCTION IsDeleteAffineEligible (x, V)

START

IF vy =0

THEN // the whole tree is to be deleted

RETURN true

ELSE

// Cost of matching the remaining forests to each other
CostRemaingForest = fdist [1ml (x)-1]][y]

// Cost of matching sub-forest is the actual cost minus
// Cost of matching the remaining forests to each of the
CostSubForest = fdist [x-1][y] - CostRemaingForest

// Cost of deleting everything minus
// Cost of matching the remaining forests to each other
CostDelSubForest = fdist [x-1]1[0] - fdist [1lml (x)-1]1[0]

IF costSubForest = costDelSubForest
RETURN true
ELSE

RETURN false

END

Code 3-2: A pseudo code to check the eligibility of certain node for a deletion

affine discount

(3) Relative Weight between Deletion and Change Edit Costs

The previous two sections discuss the importance of context-sensitive cost
functions on the dimensions of change, and deletion/insertion edit operations. The
next question is what is the proper relative weight between these three types of
operations? In practice, the cost value itself is not that important. Of greater
importance is the relative cost between the different operations. In actuality, the
cost of a deletion operation should always equal the cost of an insertion operation.
Then the question becomes what is the relation between the cost value of
deletion/insertion and the cost value of change. Many related works use a uniform
cost model where deletion, insertion, and change operations have the same unit
cost. However, this model gives the change operation more privilege over deletion
and insertion. For example, if two nodes are totally different, but because of the
uniform cost model matching them to each other will cost one unit while the cost

of deleting the first node plus inserting the second node will cost two units, then

62

Chapter Three VTracker: A Generic XML-Differencing Method

the match option will always be favored over deletion and insertion operations
since it costs less. Therefore, in VTracker’s cost model, the cost of change should
be at least equal to the sum of the deletion and insertion costs; which gives a fair

chance between all the three operations. In that way, if two nodes are:

* Perfect match, then their matching cost will be zero.

* Partially similar, then their matching cost will be prorated to the maximum
matching cost, which should be less than the cost of deleting the first node
plus the cost of inserting the second node.

* Entirely different, then the cost of matching them will equal the cost of
deleting the first node plus the cost of inserting the second node, which gives
both choices a fair chance to be favored by further calculations at subsequent
nodes.

(4) Basic Cost Functions

VTracker uses a set of cost functions to measure the basic distance between
different elements. One of the most common cost functions is the Levenshtein
string-edit distance, and is used (a) to measure the distance between couples of
string tokens, which is always normalized to the size of the two tokens; and (b) to
measure the distance between two sets of tokens. In this case, Levenshtein’s
string-edit distance is used at two levels: once on the character level inside each
token, and once more on the token-level for each set. Also Levenshtein’s string-
edit distance is used to measure the distance between attribute names, and
between attribute values.

3.3.3 Considering Outgoing References

The more fundamental advantage of VTracker over other differencing methods is
the integration of the XML referencing structure into the XML containment
structure, which enables VTracker to compare more complex structures (i.e. trees
with back references) than others (that only compare proper trees). The approach
presented in this thesis considers only references to nodes within the same

document; references to external elements are currently ignored. However, a

63

Chapter Three VTracker: A Generic XML-Differencing Method

workaround would include all external documents along with the main document

Into one tree structure.

A typical interpretation of such references is that the referenced element
structure is meant to be entirely copied under the reference location; but, to avoid
duplications, and inconsistencies, elements are reused through a reference to a
common definition. SPRC, the precursor of VTracker, handled such referencing
cases by just copying the content of the common element specification to every
reference occurrence. This approach led to really large tree structures, especially
in cases with many such cross-references. In addition to increasing the size of the
tree and consequently increasing the time necessary for the computation, such
“duplication” of elements to all their reference locations decouples them from
each other and allows them to be treated as independent entities with just an
“accidental” similarity in their internal structure and naming, which

fundamentally misrepresents the intent of the schema designer.

The question then becomes how the cost function should be adjusted in
order to compute the differences of two nodes in terms of the similarities and
differences of the elements they contain and refer to. The answer to this question
is straightforward: a referenced structure should be considered as an extension to
the containment structure. As explained in Lemma 3-3, in order to assess the
matching edit cost between two nodes x and y, the following cases have to be

considered:

* Neither node has a hyperlink attribute: a regular matching cost assessment is
applied either through a domain-specific cost function or by applying a string-
edit distance between the element names, attributes, and values.

* One node has a hyperlink attribute: a tree-edit distance measure is calculated
between the referenced structure on the hyperlink side against the entire sub-
tree on the other side.

* Both nodes have hyperlink attributes: a tree-edit distance measure is

calculated between both referenced structures.

64

Chapter Three VTracker: A Generic XML-Differencing Method

Lemma 3-3: Reference-aware cost function

In order to consider the reference-structure as a supplemental part of the tree-edit

distance calculation, the cost function y is modified to be:

tdist(x',y,p)

tdist(x',A) +y(A,y)
tdist(x,y',p)

J/max 'x - x

yv(x’y’p) = y(X,A')_'_tdl'St(A’yy)Ymax y y
. tdist(x',y .,p) Yo ox—x&y =y
tdist(x',A) + tdist(A,y")
y(x,y) otherwise

Modifying a cost function to be reference-aware is conceptually a simple
task. However, there are a few issues that have to be considered during the
implementation. The following paragraphs discuss three challenges to be

considered during the implementation of a reference-aware cost function.
(1) Normalized values

The expected output of the cost-assessment function is a value between zero and
the maximum matching cost. However, following a hyperlink and involving a
reference structure in the calculation may yield a distance value that is relative to
the size of the referenced structures. Therefore, a normalized step is required to
make sure that the reported matching distance is within range. As shown in
Lemma 3-3, this can be accomplished by dividing the calculated tree-edit distance
of the referenced structures by the cost of deleting them, which will yield a value
less than, or equal to, 1.0. Finally, this value is multiplied by the maximum

matching cost so that it is leveled with the normal matching cost.
(2) Infinite Loops

A challenge that arises when XML elements hold references to other elements is
to prevent the algorithm from falling into an infinite loop, as it follows these
references. Hence, the cost function should be equipped with a simple stack trace

p that maintains the recursion path of the current calculations. Accordingly, the

65

Chapter Three VTracker: A Generic XML-Differencing Method

cost function y’(x, ¥, p) accepts a recursion stack parameter p to reassure not

visiting the same state twice.
(3) Performance

One last thing to discuss here is the performance of reference-aware edit distance
calculation. The performance of the original Zhang-Shasha algorithm largely
relies on the order in which sub-trees are compared to each other. The algorithm
has a very specific order by which it calculates sub-problems so that rework is
avoided or at least minimized. The Zhang-Shasha algorithm uses the concept of
key-trees, on top of the dynamic programming model, to decide the order in
which sub-problems should be solved so that no recursion is required, in part,
because recursive calculations dramatically affect the amount of memory space
required to solve the problem. However, VTracker, in addition to the containment
hierarchy, also follows the reference relations between elements which affect the
actual dependencies between sub-trees and consequently impacts the “proper”
order in which sub-tree mappings should be -calculated. References can
unexpectedly happen from any node to any other node which can dramatically
change the order in which sub-trees are compared and which dynamically

increases the degree of recursion required to solve the problem.

To mitigate this problem, VTracker sorts key sub-trees based on their

references, following the following two sorting criteria.

a) Popularity of the node: the number of inbound references. Sub-trees with
more inbound references should be considered before others with a fewer
number of inbound references. This criterion guarantees that high-demand
nodes are always calculated before low-demand ones so that calculations of
high-demand sub-trees are always ready first which in turn dramatically
decreases the number of possible recursions

b) Pre-requisites of a node: the number of outbound references. Nodes with
many out-bound references (i.e. hyperlinks) are harder to calculate especially

if their referenced sub-trees have not been calculated at that time. Therefore,

66

Chapter Three VTracker: A Generic XML-Differencing Method

sub-trees with many pre-requisites should be delayed to the end so that most
of their referenced sub-trees are calculated first.

3.3.4 Considering Usage-Context (Incoming References)

In usage-context matching, VTracker considers not only the internal and
referenced structure of an element but also the context in which this element is
used, namely the elements from which this element is being referenced. As
discussed earlier, usage-context distance is used to resolve confusions that may

happen in the regular tree-edit distance calculation.

In a post-calculation process, usage-context distance measures are
calculated and combined with standard tree-edit distance measures into a new
context-aware tree-edit distance measure. For each two nodes x and y, two
context-usage sets are established from nodes that having references to node x and
node y, respectively. Then, the usage-context distance between the two sets is
calculated as the Levenshtein distance [86] between elements of the sets, where
the distance between any two elements is the tree-edit distance between them, and
the total Levenshtein distance is then called the usage-context distance between x
and y. Finally, the context-aware tree-edit distance measure is the average
between the usage-context distance and the tree-edit distance measure.

3.3.5 Selecting the Optimal Edit Script

The original Zhang-Shasha algorithm describes only the process of calculating a
tree-edit distance and does not describe the proper way of recovering the edit
script associated with this distance. Under the conditions of a perfect cost function
there should be only one optimal edit script that transforms one tree into the other.
In practice, such a perfect cost function is unlikely (even impossible) to exist
leading to the fact that a tree-edit distance may have multiple corresponding edit
scripts all with the same cheapest total cost value. It is important to mention that
these various edit scripts may be quite different and they may report very different

solutions.

67

Chapter Three VTracker: A Generic XML-Differencing Method

For example, Figure 3-11 (a) shows segments from two RNA secondary
structures represented in two kinds of tree structures. This example is interesting
because in both tree representations, there are three possible edit scripts, i.e.
solutions all with the same cost shown in Figure 3-11 (b) - (d). Each of these edit
scripts corresponds to a different sequence of evolutionary operations that may
have led to the production of one tree rather than another. The question is then
which one should be reported as the differencing result. VTracker uses an
innovative set of simplicity heuristics, which is designed to discard the unlikely
solutions from the possible set. During this phase, three different simplicity
criteria are applied to decrease the set’s cardinality by eliminating solutions that

do not meet the criteria.
(1) Path Minimality

Intuitively, the first simplicity criterion eliminates “non minimal paths”. When
there is more than one different path with the same minimum cost, the one with
the least number of deletion and/or insertion operations is preferable. This
criterion aligns very well with the requirement of having a minimal delta, i.e., a
minimal edit script. In the example of Figure 3-11, since all solutions have the

same number of edit-operations, no solution is discarded in this phase of filtration.
(2) Vertical Simplicity

The second simplicity heuristic eliminates any edit sequences in which “non-
contiguous similar edit operations” exist. Intuitively, this rule assumes that a
contiguous sequence of edit operations of the same type essentially represents a
single mutation or refactoring on a segment of neighboring nodes. Thus, when
there are multiple different edit-operation scripts with the same minimum cost,
and the same number of operations, the one with the least number of changes

(refractions) of operational types along a tree branch is preferable.

This heuristic is implemented by counting the number of vertical refraction
points. A vertical refraction point is defined as a node where the editing operation

applied to its parent differs from the operation applied to this node. For example,

68

Chapter Three VTracker: A Generic XML-Differencing Method

solution two has five vertical refraction points; contrast this with either solution
one or solution three that each has three vertical refraction points only. Therefore,
solutions one and three are simpler than solution two as they have fewer vertical
refraction points; hence, solution two is discarded while solutions one and three

pass this filtration step.

G oG : : : :
VO A cf AN PN

- U=A
Y G I Lo Qs
AU .G AU 8- AJU AU
AU AU AU G U S
U= A AJUUATUGTUA
AL > A JU
-G A 1T G C

U A 1T C C A
RNA Segments TFG representation LFG representation

(a) Two RNA segments

>ﬁ

)

e S g N
ATl G 1

7 U A 1 G U A
ENG

c-G C=G) !
¢ A=U CG CG
A|U

(N
:l")
>
=\
)
)
o>
c

UAUCTCA
(b) Solution 1

'C.(|} g:g /uggj CF {g\ /f\
U=A X U C G CJ1G
A 17 ;%S A| X

\
av R XXy
A z%(JAUGU B

)z;fc.(; ‘g-% AQIG C|G /{\

(Y U=A U U CEXE] G
AU A D Her) A S CAS
-G ASFEU A U

L

A ¢ R it
TG A 1T G C

UAUCCA
(d) Solution 3

Figure 3-11: An RNA comparison example showing the steps of the
simplicity heuristic filtration process

69

Chapter Three VTracker: A Generic XML-Differencing Method

(3) Horizontal Simplicity

This filtering criterion is implemented by counting the number of horizontal
refraction points. A horizontal refraction point is defined as a node where the
operation applied to its sibling differs from the operation applied to this node. For
example, in the case of the Tight Fine-Grained (TFG) tree representation solution
one has no horizontal refraction points and solution three has one refraction
points; in the case of the Loose Fine-Grained (LFG) tree representation solution
one has four horizontal refraction points and solution three has six. Therefore,
solution one is identified as the simplest edit script by having the most contiguous
similar edit operations.

3.3.6 Domain—-Aware Optimizations

Unlike other contributions of VTracker, contributions presented in this section are
specific to the Zhang-Shasha algorithm. Other contributions are generic and

applicable to any other tree-edit distance approach.

Section 3.1 discusses one of the main inefficiency reasons of generic
methods that are performing unnecessary steps in trying to match nodes that are
not possible to map to each other. As mentioned before, the Zhang-Shasha
algorithm is based on splitting each tree into a set of key sub-trees, and then to
calculate the edit distance between all combinations of these sub-trees. Hence,
VTracker, when provided with a domain-specific cost function that defines the
similarity measure between various kinds of elements, optimizes the algorithm
performance by deciding on the feasibility of a sub-tree-to-sub-tree correction
process before carrying it out. In other words, it should not start matching two
sub-trees if the roots of the two sub-trees are not of replaceable types. In this way,

an unfeasible sub-tree will be skipped while focusing only on the feasible ones.

Formally speaking, the similarity measure P is always true by default

unless specified otherwise by the following formula:

false y(l(x),L,(y)) > threshold
p(x,y) = .
true otherwise

70

Chapter Three VTracker: A Generic XML-Differencing Method

where node-label distances are provided by the domain-specific cost
function. In this way, the tree-edit distance between two sub-trees is skipped if the
two root nodes are not replaceable which leads to an optimized version of the

forest distance calculations Lemma 3-4.

Lemma 3-4: Forest-edit distance with similarity measure

fdistTx,..x,1,T,[y,.y,])

(fdistT|x,..Am(x,) =11.T,1y,..Am,(y,) = 1]) + tdist(x,,y,) p(x,,y,)
o otherwise
=min fdistT[x,..x, = 1,T[y,..y,]) +7(x,,A)

fdistT|x,..x,1,T1y,.y, =1 +y(4,y,)

Proof

When nodes x; and y; are not replaceable, the first option in the tdist (Lemma 3-1)
formula becomes very expensive, and will be discarded, which will leave two

options only:

tdist(x,,y,) = tdist(T[Im,(x,)..x, |, T,[Im,(y,)..y,])
_ min{fdist{Tl[lml(xz)..x2 =11,L[Im,(y,)..y,1) + y(x,,4)
fdistT1m,(x,)..x, |, T 1m,(y,)..y, =1 + v(4.y,)

Substituting these two options with Lemma 3-2 results in the following forest

distance formula representing the case when x, and y, which are not replaceable.

71

Chapter Three VTracker: A Generic XML-Differencing Method

fdistT[x,..x,.T,[y,.y,])
S distT[x,..dm (x,) =11, T,1y,..dm,(y,) = 1) + fdis(T,[im,(x,)..x, = 11,T,[im,(y,)..y,]) + y(x,,A)
. fdistT[x,..0m(x,) = 11,T1y,..dm,(y,) = 1) + fdistT[im(x,)..x,|,T,[Im,(y,)..y, = 1) + y(4,y,)
fdistT[x,..x, =1.T,1y,.y,]) + y(x,,4)
JdistTx,..x, | Ly, .y, = 1D +y(A,y,)

=mi

Now, in order to prove Lemma 3-4, it is necessary to prove that the first
two options in the above formula are not necessary since they are considered in
the other two options. In other words, it is necessary to prove that

fdistTx,..dm,(x,) =11,T,1y,..dm,(y,) = 1) + fdistT}|Im,(x,)..x, = 11,1, [Im,(y,).y,]) =
fdistT|x,..x, =11,T,[y,.y,]) .1

Finally, Lemma 3-4 will enhance the performance of a generic
differencing method to skip unnecessary sub-tree matching. In this way, there is a
decrease in the complexity of being O(n”) in worst case and O(n’) in average case,
to be O(n?) in average case and reduce the possibility of the worst case even if its
complexity remains the same.

3.4 VTracker as a generic XML differencing

This section discusses how VTracker meets the requirements of being a generic

XML differencing approach.

* Not domain specific: by definition VTracker is designed to handle any kind of
XML differencing problem. Yet, it is capable of becoming domain-aware,
using a domain-specific cost function, and constructed in the bootstrapping
process described in Section 3.3.2, in order to produce results that are sound
and reasonable in terms of the domain knowledge and semantics.

* Meaningful minimal edit script: VTracker accomplishes this objective in
many ways such as the affine-cost policy described in 3.3.2, the simplicity

heuristics in 3.3.5.

72

Chapter Three VTracker: A Generic XML-Differencing Method

Hierarchal data structure: VTracker views an XML document as an ordered
labeled tree since it is based on the Zhang-Shasha algorithm described in
Section 3.2. Also, mapped elements should obey both the ancestor-child and
siblings.

Changes anywhere: VTracker does not favor certain kinds of changes over
other kinds. VTracker is capable of detecting changes happening to internal
structure nodes as efficiently as changes happening to leaf nodes. VTracker
does not favor certain patterns of changes or edit operations.

Object Identity: in VTracker, an element is identified by its name, attributes,
value, and structure. VTracker also uses ancestor and siblings relationships to
identify an element. Although VTracker does assume or require that given
XML documents have some kind of atomic IDs, it utilizes key attributes if
specified by the domain configuration. Moreover, it uses both the reference
and usage-context structure to reinforce the identity of a certain element.

No prior change tracking: by definition VTracker does not require edits to be
done through a certain tool, utility, or IDE. It is also capable of comparing
documents originated from different sources, or by different vendors.
Efficiency: VTracker provides an optimization technique that is based on a
domain-specific cost function; it focuses on comparing trees that are
replaceable as described in Section 3.3.6.

Reference structure: VTracker views the XML reference structure as a part of
referring structures as described in Section 3.3.3.

Usage-Context Structure: VTracker uses usage-context similarity as an extra
measure to validate and reinforce the calculated tree-edit distance results as

explained in Section 3.3.4.

73

Chapter Four Applying VTracker to Specific Domains

Chapter Three explains the details of VTracker as a generic XML differencing
method. Yet, VTracker is capable of being domain-aware through a domain-
specific cost function. This chapter explains in detail how VTracker can be
customized for a certain domain, and how its contributions such as affine-cost
policy, reference-aware differencing, usage-context similarity assessment,
simplicity heuristics for solution filtering, and synthesized cost function are
applicable to each of these domains.

4.1 Applying VTracker to Ontology Matching

As previously explained, the ontology matching is the process of finding a
semantic mapping between elements of two different ontologies. This thesis
focuses on OWL/RDF as an example of ontology specification language. It was
shown in Figure 2-3 how an OWL/RDF described in XML syntax can be

represented as an ordered labeled tree.
(1) Affine-Cost Policy

As discussed in the details of VTracker, affine-cost policy is important to prevent
structural formality from having a negative influence on the quality of results. The
objective of an affine-cost function is to assign a reduced cost when deleting or
inserting internal nodes where all these children are deleted (or inserted) as well.
The idea is based on the hypothesis that the purpose of an internal node is to
group the structure of its content. Therefore, if its children are deleted, then this
internal node loses its purpose and consequently needs to be deleted as well. The
affine-cost function reduces its deletion cost to indicate to the algorithm the

diminished importance of such a node.

Figure 4-1 illustrates the necessity of an affine-cost policy. This example
matches two ontologies with two class definitions each, shown in Figure 4-1 (a)
and (b). First in an OWL ontology definition, the number of structure nodes
exceeds that of the text nodes, which means that structure nodes have the upper

hand on the matching decision. However, in this example, structure nodes can

74

Chapter Four Applying VTracker to Specific Domains

negatively influence such a decision. Let us compare the tree-edit distance of the
two solutions of Figure 4-1 (c) and (d) when following a fixed deletion insertion
cost versus an affine-cost function. The first solution is where a part class matches
a collection class while the reference class is mapped to the part class, which is a
rather counterintuitive solution. The second solution keeps the part class

unchanged, deletes the reference class, and inserts the collection class.

The following calculations are based on the standard cost function where a
deletion costs three units, an insertion costs three units, and a change costs six
units. As shown in the table below, following a fixed costing policy, the number
of internal nodes affects the total cost of the solution making it a very expensive
choice. However, when following an affine-cost policy, the six internal nodes will
receive a cost discount since their children are deleted as well. It should now be
evident how an affine-cost policy would help to promote solutions that have a

significant number of structure changes.

Solutions Fixed cost policy Affine cost policy
Solution 1: 4.1.1.1.1
4 change Operations 4*6=24 4*6=24
2 attribute changes 2*%2=4 2*%2=4
Total = 28 units Total = 28 units
Solution 2: 4*3=12 4*3=12
4 leaf node deletions 6*3=18 6*15=9
6 internal node deletions Total = 30 units Total = 21 units

75

Chapter Four Applying VTracker to Specific Domains

<?xml version="1.0" encoding="is0-8859-1"7>
<IDOCTYPE rdf:RDF >
-<rdf:RDF xmins:ow|="http://www.w3.0rg/2002/07/owl#" xmins:rdf="&rdf;" xmins:rdfs="&rdfs;">
-<owl:Class rdf:ID="Part">
<rdfs:label xml:lang="en">Part</rdfs:label>
<rdfs:comment xml:lang="en">A part of something (either Book or Proceedings). </rdfs:comment>
</owl:Class>
-<owl:Class rdf:ID="Reference">
<rdfs:label xml:lang="en">Reference</rdfs:label>
<rdfs:comment xml:lang="en">Base class for all entries </rdfs:comment>
</owl:Class>
</rdf:RDF>

(a) Ontology # 1

<?xml version="1.0" encoding="is0-8853-1"?>
<IDOCTYPE rdf:RDF >
-<rdf:RDF xmins:owl="http:/www.w3.0rg/2002/07/owl#" xmiIns:rdf="&rdf;" xmins:rdfs="&rdfs;">
-<owl:Class rdf:ID="Collection">
<rdfs:label xml:lang="en">Collection</rdfs:label>
<rdfs:comment xml:lang="en">A book that is collection of texts or articles.</rdfs:comment>
</owl:Class>
-<owl:Class rdf:ID="Part">
<rdfs:label xml:lang="en">Part</rdfs:label>
<rdfs:comment xml:lang="en">A part of something (either Book or Proceedings).</rdfs:comment>
</owl:Class>

</rdf:RDF>

(b) Ontology # 2
<?xml version="1.0" encoding="is0-8859-1"7?>
<IDOCTYPE rdf:RDF >

-<rdf:RDF xmIns:ow|="http://www.w3.0rg/2002/07/owl#" xmIns:rdf="&rdf;" xmins:rdfs="&rdfs;">
-<owl:Class rdf:ID = "EEIEEEH" >

<rdfs:label xml:lang="en" </rdfs:label>
<rdfs:comment xml:lang="en" > ENEEE EE BB IEEES] </rdfs:comment>
</owl:.Class>

-<owl:Class rdf:ID = "BEll" >
<rdfs:label xml:lang="en">[glli</rdfs:label>
<rdfs:comment xml:lang="en" </rdfs:comment>
</owl:Class>
</rdf:RDF>

(c) Differencing results without a fixed deletion/insertion cost

<?xml version="1.0" encoding="is0-8859-1"7?>
<IDOCTYPE rdf:RDF >
-<rdf:RDF xmlIns:ow|="http://www.w3.0rg/2002/07/owl#" xmins:rdf="&rdf;" xmins:rdfs="&rdfs;">
-<owl:Class rdf:ID="Collection">
<rdfs:label xml:lang="en">Collection</rdfs:label>
<rdfs:comment xml:lang="en">A book that is collection of texts or articles.</rdfs:comment>
</owl:.Class>
-<owl:Class rdf:ID="Part">
<rdfs:label xml:lang="en">Part</rdfs:label>
<rdfs:comment xml:lang="en">A part of something (either Book or Proceedings).</rdfs:comment>
</owl:.Class>

<Irdf:RDF>
(d) Differencing results following an affine-cost policy
Figure 4-1: An OWL/RDF matching example emphasizes the importance

of an affine cost function

76

Chapter Four Applying VTracker to Specific Domains

(2) Ontology Reference Structure

The example in Figure 4-2 shows two ontologies: the first ontology, shown in
Figure 4-2 (a), defines two classes, a Resource and a Monograph where a
Monograph is a sub class of a Resource; the second ontology, Figure 4-2 (b),
defines four classes, Part, Reference, Chapter, and Book where Chapter and Book
are sub classes of Part and Reference, respectively. Intuitively, the Resource and
Reference classes are very similar in terms of their labels and comments, and
should be matched to each other. Now, one of the two classes of the first ontology

is successfully matched.

The next question is which class in the second ontology should be mapped
to the Monograph class in the first ontology. Comparing the Monograph class
definition against the remaining three classes Part, Chapter, and Book,
Monograph has keywords that are similar to the three classes. Therefore, due to
such confusion, a solution could randomly map Monograph to any of the three
classes. Figure 4-2 (c) shows one of such random solution. However, since
VTracker is reference-aware, it easily resolved this confusion based on the sub-
class relation between the Monograph and Resource classes that are mapped to
the Reference class. In another way, the Monograph should be mapped to a sub-
class of the Reference class. As Figure 4-2 (d) shows, the perfect solution occurs
where Monograph is matched to Book since both are sub-classes of matched

classes.

77

Chapter Four Applying VTracker to Specific Domains

<?xml version="1.0" encoding="is0-8853-1"?>
<IDOCTYPE rdf:RDF >
-<rdf:RDF xmins:ow|="http://www.w3.0rg/2002/07/owl#" xmins:rdf="&rdf;" xmins:rdfs="&rdfs;">
-<owl:Class rdf:ID="Resource">
<rdfs:label xml:lang="en">Reference</rdfs:label>
<rdfs:comment xml:lang="en">Base class for all entries </rdfs:comment>
</owl:Class>
-<owl:Class rdf:ID="Monograph">
<rdfs:subClassOf rdf:resource="#Resource"/>
<rdfs:label xml:lang="en">Monograph</rdfs:label>
<rdfs:comment xml:lang="en">A book that is a single entity, as opposed to a
collection.</rdfs:comment>
</owl:Class>
</rdf:.RDF>

(a) Ontology # 1

<?xml version="1.0" encoding="is0-8859-1"7>
<IDOCTYPE rdf:RDF >
-<rdf:RDF xmins:ow|="http://www.w3.0rg/2002/07/owl#" xmins:rdf="&rdf;" xmins:rdfs="&rdfs;">
-<owl:Class rdf:ID="Part">
<rdfs:label xml:lang="en">Part</rdfs:label>
<rdfs:comment xml:lang="en">A part of something (either Book or Proceedings).
</rdfs:comment>
</owl:Class>
-<owl:Class rdf:ID="Reference">
<rdfs:label xml:lang="en">Reference</rdfs:label>
<rdfs:comment xml:lang="en">Base class for all entries </rdfs:comment>
</owl:Class>
-<owl:Class rdf:ID="Chapter">
<rdfs:subClassOf rdf:resource="#Part"/>
<rdfs:label xml:lang="en">BookPart</rdfs:label>
<rdfs:comment xml:lang="en">A chapter (or section or whatever) of a book having its
own title.</rdfs:comment>
</owl:.Class>
-<owl:Class rdf:ID="Book">
<rdfs:subClassOf rdf:rresource="#Reference"/>
<rdfs:label xml:lang="en">Book</rdfs:label>
<rdfs:comment xml:lang="en">A book that may be a monograph or a collection of
written texts</rdfs:comment>
</owl:Class>
</rdf:.RDF>

(b) Ontology # 2

78

Chapter Four Applying VTracker to Specific Domains

<?xml version="1.0" encoding="is0-8859-1"7>
<IDOCTYPE rdf:RDF >
-<rdf:RDF xmins:ow|="http://mww.w3.0rg/2002/07/owl#" xmIns:rdf="&rdf;"
xmins:rdfs="&rdfs;">
-<owl:Class rdf:ID="Part">
<rdfs:label xml:lang="en">Part</rdfs:label>
<rdfs:comment xml:lang="en">A part of something (either Book or Proceedings).
</rdfs:comment>
</owl:Class>
-<owl:Class rdf:ID =" ">
<rdfs:label xml:lang="en">Reference</rdfs:label>
<rdfs:comment xml:lang="en">Base class for all entries </rdfs:comment>
</owl:Class>
-<owl:Class rdf:ID = "iEEl" >
<rdfs:subClassOf rdf:resource = "[BEl" />
<rdfs:label xml:lang="en" </rdfs:label>
<rdfs:comment xml:lang="en"
DR </rdfs:comment>
</owl:Class>
-<owl:Class rdf:ID="Book">
<rdfs:subClassOf rdf:resource="#Reference"/>
<rdfs:label xml:lang="en">Book</rdfs:label>
<rdfs:comment xml:lang="en">A book that may be a monograph or a collection of
written texts</rdfs:comment>
</owl:Class>
</rdf:RDF>

(c) Not reference-aware differencing
<?xml version="1.0" encoding="is0-8859-1"7>
<IDOCTYPE rdf:RDF >
-<rdf:RDF xmins:ow|="http://www.w3.0rg/2002/07/owl#" xmins:rdf="&rdf;" xmIns:rdfs="&rdfs;">
-<owl:Class rdf:ID="Part">
<rdfs:label xml:lang="en">Part</rdfs:label>
<rdfs:comment xml:lang="en">A part of something (either Book or Proceedings).
</rdfs:comment>
</owl:Class>
-<owl:Class rdf:ID = "REEIENEE" >
<rdfs:label xml:lang="en">Reference</rdfs:label>
<rdfs:comment xml:lang="en">Base class for all entries </rdfs:comment>
</owl:Class>
-<owl:Class rdf:ID="Chapter">
<rdfs:subClassOf rdf:resource="#Part"/>
<rdfs:label xml:lang="en">BookPart</rdfs:label>
<rdfs:comment xml:lang="en">A chapter (or section or whatever) of a book having its
own title.</rdfs:comment>
</owl:Class>
-<owl:Class rdf:ID = "EBBR" >
<rdfs:subClassOf rdf:resource = "[REEIEIEE" />

<rdfs:label xml:lang="en" </rdfs:label>
<rdfs:comment xml:lang="en"
B8 </rdfs:comment>
</owl:Class>
</rdf.RDF>

(d) VTracker Reference-aware differencing
Figure 4-2: An OWL/RDF matching emphasizes the importance of
reference structure

79

Chapter Four Applying VTracker to Specific Domains

4.2 Implementation

This section explains the implementation outline of VTracker as a generic XML
differencing approach. VTracker is implemented using Java 2 Standard Edition
(J2SE), and therefore is it portable to different operating systems and platforms,

and it is also capable of running as a standalone or a web application.

A typical deployment of VTracker is composed of a mandatory component
VTrackerCore in addition to one or more domain-specific modules.
VTrackerCore is main component of VTracker and it implements all the
contributions presented in this thesis. The VTracker core is composed of the

following components.

(1) TreeEditingSuggestor: that is given two XML documents and a cost
function it produces a tree-edit distance matrix, and optionally an edit scripts
associated with the calculated distances. This class is responsible for
implementing the tree-edit distance algorithm. VTracker includes different
implementations of the tree-edit distance algorithm such as the basic
algorithm, the basic algorithm with affine-cost computation, and the algorithm
that can be configured with domain-specific parameters for efficiency
improvement.

(2) CostAssessor: the cost function is provided to TreeEditingSuggestor in the
form of an instance that implements the abstract class CostAssessor. This
CostAssessor is responsible for assessing the cost of deleting or inserting a
certain node, in addition to deciding the cost of replacing one node with
another. VTrackerCore provides two types of CostAssessors:
XMLCostAssessor and RefXMLCostAssessor. Each domain then decides
which one to use according to whether the domain may include references or
not. In this way, VTracker distinguishes between the approach and the cost
function. It is also important to mention that RefXMLCostAssessor is the

component that is responsible for assessing the reference structure similarity.

80

Chapter Four Applying VTracker to Specific Domains

Given two nodes x and y, in order to assess the similarity measure,
RefXMLCostAssessor checks if:

o Neither node has a hyperlink attribute: a regular matching cost
assessment is applied either through a domain-specific cost function or
by applying a string-edit distance between the element names,
attributes, and values.

o One node has a hyperlink attribute: a tree-edit distance measure is
calculated between the referenced structure on the hyperlink side
against the entire sub-tree on the other side.

o Both nodes have hyperlink attributes: a tree-edit distance measure is
calculated between both referenced structures.

(3) Edit Script backtracker: is an optional module that runs when the tree-edit
script is required. In application domains where the edit distance should be
accompanied with an edit script, this module is responsible for building the
edit script that is associated with the calculated tree-edit distance. Tree-edit
traces map is recorded during the distance calculation process. These maps are
matrixes where each cell records how the corresponding edit-distance was
calculated; which one(s) of three edit choice led to that distance. In this way, a
calculated edit distance can be tracked back to determine the sequence of edit
operations involved in such a distance. In cases where multiple edit scripts are
possible, this module employs the three-filtration steps of the simplicity
heuristics.

(4) Advanced Comparison: this module is responsible for recognizing move
operations as a combination of deletion from one place and insertion at
another place. This module starts with calling the TreeEditingSuggestor for
the two given XML documents in order to recognize deletions, insertions, and
change operations. The advanced Comparison Module then strips out the two
trees from all nodes except from sub-trees that are entirely deleted or inserted.

Then, this module calls TreeEditingSuggestor on the stripped trees trying to

81

Chapter Four Applying VTracker to Specific Domains

find if there are any possible matches, if yes, these are recognized as moves;
otherwise they are reported as regular deletions or insertions.

4.3 The Configuration Process

This section discusses various configuration options of VTracker, and how they
affect the end results. The following options have to be provided by the domain

expert through a configuration file.

(1) Cost function: It can be manually composed, or automatically generated by
VTracker in a bootstrapping step from the domain XSD. A cost model is the
module responsible for assessing the cost of various edit-operations such as
deleting a node, inserting a node, or changing a node label. A simple cost
function would assign the same cost to all operations, with deletions and
insertions having the same cost as changes. A better cost-function assigns
costs based on the importance of the edit operating on the semantics of the
document such that deleting important nodes should be more expensive than
deleting optional or less important nodes. VTracker uses a context-oriented
cost model where the cost of deleting or inserting a node is determined in the
context of other edit operations happening around this node. Section 3.3.2
described VTracker’s context-oriented cost model, and the relative weight
between the change and deletion (or insertion) edit costs.

(2) Key elements (optional): is a list of schema element names that appear in an
XML document. In some domains, a user is not interested in detailed edit
operations that may happen to all types of elements. Instead, the domain
expert is only interested in changes happening to some particular elements.
This configuration option will not affect the calculation process but will be
used in the solution report phase to filter out elements that are not key
elements. For example, in OWL/RDF the objective is to find mapping
between Class DatatypeProperty, and ObjectProperty but not Restriction nor
subClassOf, etc. Hence, the elements Class DatatypeProperty, and
owl:ObjectProperty should be considered key elements.

82

Chapter Four Applying VTracker to Specific Domains

(3) Key attributes: this configuration option is used to give VTracker a hint about
the relative importance of some attributes. In other words, attributes specified
in this option are given more importance than other types of attributes. For
example, since key attributes such as @id, @attribute, etc are relatively more
important than values of other attributes, changing or deleting any of these
attributes costs double the changing or deleting regular attributes. Similarly, a
perfect match between two key attributes is rewarded as double as matching
regular attributes.

(4) Meta Elements: a list of elements such as scripts and comments in HTML,
XML instructions and comments, etc. that should not be considered during the
differencing process. These elements will be suppressed during the
differencing process.

(5) Meta attributes: is a list of attributes, similar to meta elements, such as
identifiers used by IDEs, or those used for reverse engineering backward
compatibility that are not to be considered during the differencing process.

(6) Reference Structure: the domain expert must decide whether the provided
XML documents will include a reference structure, in which case the
following two options are to be provided.

e ID attributes: a list of attribute names that are used as object IDs. In
many cases, this list of attributes overlaps with the list provided as Key
attributes.

* [DRef attributes: a list of attribute names that will reference, and have

hyperlinks to, objects identified by ID attributes.

Table 4-1 shows the configuration necessary to customize VTracker for
domains of interest. As shown in this table, the process of customizing VTracker

to a certain domain is a simple process.

83

Table 4-1: VTracker’s system configurations for various domains

General OWL WSDL BPEL UML XMI XHTML RNA
Cost Function Synthesized Synthesized Synthesized Synthesized Synthesized
Affine-Cost Policy Yes Yes Yes Yes Yes
owl:Class Orgizzzloerl ackagedElement
Key Element(s) owl:DatatypeProperty 5 P & .
. xsd:element ownedOperation
owl:ObjectProperty
rdf:ID @id
Key Attribute(s) . @name @name @name @name
rdf:about
@href
meta
Meta Element(s) bpws:import eAnnotations script
link
@xmi:id
. @type
Meta Attribute(s) @general
Reference Structure Yes Yes Yes Yes No No
ID Attribute rdt:ID @name @name @xmi:id
rdf:about
rdf:resource @pa.rtneerk
rdf:parseType @type @linkName @type
IDRef Attribute(s) b yp P @portType yP
rdf:datatype @element : @general
p @operation
element name

* In OWL/RDF class or property definition can be referenced by instantiating a new element of the class or property. In this case, the referencing happens

through the instance element name.

84

Chapter Five Evaluation

Chapter Three explains VTracker as a generic XML differencing method capable
of becoming domain-aware. This chapter supports that statement with a set of
empirical experiments that illustrate the contributions of VTracker over related
work. The following set of experiments starts by evaluating basic features of

VTracker, and moves gradually towards increasingly complex ones.

In the following experiments, the quality of results is measured in terms of
Precision and Recall. Given a set of target mappings and a set of calculated ones,
a precision is defined as the probability of a (randomly selected) calculated
mapping to be in the target set. Similarly, a recall is defined as the probability of a
(randomly selected) target mapping to be in the calculated set. In this way, a
precision is calculated by dividing the number of correct calculated mappings by
the size of the calculated set; while a recall is calculated by dividing the number
of correct calculated mappings by the size of target set. Additionally, a precision
and recall can be combined into a single measure called F-Measure that is
calculated as twice the precision times recall divided by the summation of
precision and recall.

5.1 General Quality Evaluation Experiment

The objective of this experiment is to evaluate the feasibility of the concept of
domain-aware optimization explained in Section 3.3.6. The hypothesis behind this
kind of optimization shows that the performance of the tree-edit distance
algorithm can be improved by specifying a general similarity measure between
different kinds of node labels. This similarity measure is a Boolean function that,
given labels of two sub-tree roots, determines whether these labels can possibly be
mapped to each other. Given such a measure, a tree-edit distance method can be
smart enough to avoid comparing sub-trees that are impossible to match to each

other.

The dataset used in this experiment was synthesized by XMark [124].
XMark is an XML benchmark framework that is capable of generating XML

85

Chapter Five Evaluation

documents of various sizes based on a size input parameter. The produced XML
documents model an auction web site. This benchmark is originally intended for
evaluating XML management approaches. In this experiment it is used as an
unbiased source of random XML documents. In this experiment XMark was ran
20 times with different size parameters starting from 0.0001 all the way to 0.0028
that produced 28 XML documents of various sizes ranging from 29 KB to 217
KB. Then a random deformer was applied 40 times on each of these documents,
which resulted in 40 different versions of each document. The job of a deformer is
to randomly change node labels, delete existing nodes, or insert new nodes in a
given XML document with total edit probabilities uniformly distributed between
various kinds of edit operations. The 40 versions were deformed with various
total probabilities ranging from “0.5” to “1.0.” Each deformed version is then

saved along with a record of edit operations that were randomly applied it.

The experiment is to compare each of the 28 XMark generated documents
against each of its 40 deformed versions, and to measure the quality of the result
and the time required to finish each comparison job. In this experiment, the task
of VTracker is to compare each deformed document against the original version,
and to produce the edit script that transforms the original document to the
deformed one. The produced set of edit operations is then compared against the
recorded ones, and measuring the precision and recall of each comparison; where
a precision is ratio between the number of true positive edit operations divided by
the number of produced edit operations. Similarly, recall is calculated as the ratio
between the number of true positive edit operations divided by the number of

recorded edit operations.

VTracker was requested to run in two different configuration setups: a
default standard setup, and a domain-aware optimized setup. In the default
standard setup, VTracker uses the standard tree-edit distance algorithm explained
in Section 3.2, a default cost function, no domain-specific configurations, and is
not reference-aware. In the domain-aware optimized setup, VTracker uses the

domain-optimized tree-edit distance algorithm explained in Section 3.3.6, a

86

Chapter Five Evaluation

simple cost function that allows only for perfect match between node labels, no
other domain-specific configurations, and is not reference-aware. In the latter
setup, VTracker determines two nodes are similar enough to proceed with
comparing their sub-trees if the two nodes have the same label; otherwise, it is

impossible to map them to each other.

There are two important observations concerning the evaluation results of
this experiment. First, both setups produced the exact tree-edit distances for all the
1120 test cases, which implies that this optimization technique did not affect the
quality of the result. In other words, the optimization technique did not miss
cheaper tree-edit scenarios. Figure 5-1 shows the run times required by both
setups across different problem sizes; where a problem size is the multiplication
of sizes of the two given trees. Figure 5-2 calculates the percentage of
improvement in those various problems. In each of these cases, a percentage of
improvement is calculated as the saved time, i.e. optimized runtime minus basic
runtime, divided by the basic runtime. The second observation is that this
optimization technique consistently improves the runtime performance by 25% in
average. Combining this observation with the former one, it is concluded that
domain-optimized tree-edit distance technique consistently improves the runtime
performance without compromising the quality of calculated edit-distance that

supports the hypothesis of Section 3.3.6.

87

Chapter Five Evaluation

Runtime in sec

250

200

150

100

50

151

185

224
294
353

442

619
764
850
987
1,132
1,332

Basic

1,817
2,374
2,703
3,322
3,798

Problem size in K

B DomainAwareEfficient

4,099

4,347
4,916
5,717
6,459
7,216
9,187

Figure 5-1: Runtime of basic versus domain-aware optimized tree-edit
distance algorithm

Improvement in Runtime %

0.4
0.35
0.3
0.25
0.2
0.15
0.1
0.05

151
185
224
294
353
442
619
764
850
987
1,132
1,332

1,817
2,374
2,703
3,322
3,798

Problem size in K

4,099

4,347
4,916
5,717
6,459
7,216
9,187

Figure 5-2: Runtime performance improvement between basic and domain-

aware optimized algorithms

5.2 RNA Comparison Experiment

The objective of this experiment is to evaluate the importance of the simplicity

heuristics. The set of simplicity heuristics is important to tree-edit distance

problems where multiple optimal edit scripts have the same cheapest cost to

transform one tree into another.

88

Chapter Five Evaluation

The dataset of this experiment is based on three “5S ribosomal” families
(Szymanski et al.): Archeaa (91 structures), Eubacteria (756 structures), and
Eukaryota (526 structures) [133]. “5S ribosomal” RNA is an integral component
of the large subunit of all cytoplasmic and most organeller ribosomes. Its small
size, and association with ribosomal and non-ribosomal proteins make it an ideal
model RNA molecule for studies of RNA structure and RNA-protein interactions.
Furthermore, multiple, biologically correct, sequence alignments of 5S ribosomal
RNAs are known, where base pairs in phylogenetically conserved secondary
structures are specified’, thus providing target alignments against which
computational alignments should be measured. In this way, each of these multiple
alignments is decomposed into sets of pair-wise test cases (e.g. 4,186 pairs in

Archeaa, 286,524 in Eubacteria, and 138,864 in Eukaryota).

In this experiment, RNA Secondary structures are represented as XML
documents. Since there is not standard representation of an RNA tree structure,
this experiment evaluated two different representation approaches: a Loose Fine-
Grained (LFQG) representation, and a modified version of the Tight Fine-Grained
(TFG) representation by Mikhaiel and Stroulia [103]. As illustrated in Section
2.7.2, LFG is different from TFG tree structure in the way it represents stem
loops. The former represent it as a joint node in addition to two nucleotide (base)

nodes while the later represent the entire loop as one single node.

The used “5S ribosomal” dataset is provided in a tab-delimited multiple
alignment formats. So, the first task of this experiment is for each structure to
transform the tab delimited brackets, dashes, and symbols into an XML format
that complies with the LFG and TFG RNA tree representations. Then, each pair of
structures is fed to VTracker to compare them, produce the edit script, and to
transform the edit script into a tab-delimited format again. Finally, the produced
alignment 1s compared against the published one, and both precision and recall are

measured where precision is the number of true positive aligned symbols divided

3 http://www.man.poznan.pl/5SData/Alignments.htm]

89

Chapter Five Evaluation

by the number of produced symbol alignments. Similarly, recall is calculated as
the number of true positive aligned elements divided by the number of published

ones.

In this experiment, VTracker is configured to use the standard tree-edit
distance algorithm, a manually developed domain-specific cost function, no other
domain-specific configurations, and is not reference-aware. For each pair-wise
matching problem in this experiment VTracker was requested to calculate the
tree-edit distance A set of all optimal edit scripts associated with the calculated
edit distance is built. Cardinality of the solution set is the number of edit-scripts in
that set. The cardinality of each set is recoded before and after applying each of
the three-filtration steps. Then, a filtration step is successful if it kept the target

solution in the filtered solution set.

Figure 5-3 shows that simplicity heuristics are able to efficiently reduce
the number of plausible minimum-cost alignments without excluding the
biologically good ones for the Archeaa family. This graph shows the results of
Archeaa family since it is more challenging than other families. It shows that the
number of problems with high-cardinality solution sets was reduced, while the
number of problems with low-cardinality solution sets was increased. The last
category is especially interesting: for example, there were 1489 problems that
produced a set of more than nine solutions — the corresponding number after the
heuristics were applied was 242. Table 5-1 shows that, based on 429,574 test
cases, the simplicity filtration process is capable of reducing (on average) the
solution set size from 10.86 to 2.24 with 90.05% of keeping the best given

solution in the filtered set.

90

Chapter Five Evaluation

O Before filtration
| Aterfiltration

Number of problems

1 2 3 4 5 5 7 8 9 9«
Solution Sets' Cardinality

Figure 5-3: Cardinality reduction for Archeaa family

Table 5-1: Evaluation results of simplicity heuristics in RNA Secondary
Structure comparison measured by Harmonic Mean

Family # of Avg Simplicity Heuristics
Problems Card. 1. Shortest Path 2. Vertical 3. Horizontal
Simplicity Simplicity
Avg Quality Avg Quality Avg Quality
Card. Card. Card.
Archeaa 4186 59.28 58.62 99.55 9.69 83.97 3.25 88.52
Eubactria 286524 14.50 14.34 99.9 5.10 95.8 2.58 92.57
Eukaryota 138864 1.88 1.87 100 1.81 99.87 1.50 96.04
H-mean 10.86 10.74 99.93 4.08 97.00 2.24 93.65

To enable the comparison of the quality of the alignments produced by
VTracker against these target alignments, the F-Measure that combines both the
precision and recall of each comparison problem. The F-Measure of two
alternative alignments of two RNA structures is calculated as twice the number of
bases in the two compared structures that are edited similarly in each of the two
alignments, divided by the sum of the two RNA structure lengths. Based on the
above definition, F-Measure is a percentage, and when evaluating a computational
alignment against a biologically plausible one, higher F-Measures are more
desirable than smaller ones: when F-Measure = 1.00% the two alignments are

identical (i.e. the calculated one is identical to the biologically published one).

91

Chapter Five Evaluation

The second part of this experiment measures the quality of the alignments
produced by the two VTracker variants (i.e. VTracker applied to LFG and
VTracker applied to TFG), and the two most well known RNA alignment tools at
the time of the experiment (year 2007): RNA Align [33]° and RNA Forester
[59][60][61]". The RNA Forester tool is based on tree-edit distance approach and
adopts an LFG representation — in fact, the team behind the tool is the first to
propose this type of LFG representation. Therefore, RNAForester presents a good
example of related work as it is uses a similar approach and was built specifically
to answer this kind of particular RNA alignment questions. RNAForester is built
on the tree alignment algorithm of ordered trees by Jiang et al. [68] and extended
it to calculate local forest alignments, which is essential for finding local similar
regions in RNA Secondary Structure. On the other hand, the RNA Align tool uses
a sequence-based representation; which represents non-tree based approaches.
RNA Align is based on an arc-based representation where joints between
elements in secondary and tertiary structures are represented as arcs, and the
objective is find the cheapest arc edit script that transforms one RNA structure
into another. In this experiment, pairs of RNA structures were fed to the four tools
to produce four corresponding alignments. Then, the four alignments were
compared against the target solutions and their F-Measure metric is calculated.
VTracker actually produces a set of possible alignments for each compared pair.
For each family, Table 5-2 shows the percentage of cases where F-Measure is
1.00%, i.e., the calculated alignment and the biologically correct one are the same
in addition to statistics of other cases, in which the computed alignment was not
perfect Table 5-2 shows that both VTracker representations have an outstanding
quality compared to those of RNA Forester and RNA Align. VTracker is capable
in 26% of the cases of reporting the target solution 7% for RNA Forester and
11.5% for RNA Align.

® http://www.csd.uwo.ca/~kzhang/rna/rna_match.html

7 http://bibiserv.techfak.uni-bielefeld.de/rnaforester/

92

Chapter Five Evaluation

Table 5-2: Evaluation of VTracker against related work for RNA Secondary
Structure Comparison

Archeaa Family (4,186 test cases)

Average F-Measure Number of cases
where F-Measure = 1.0
VTracker LFG 0.99 26.9%
VTracker TFG 0.98 20.1%
RNA Forester 0.97 7.0%
RNA Align 097 11.5%

5.3 Ontology Matching Experiment

The objective of this experiment is to evaluate the feasibility of considering the
reference model as an essential part of the XML differencing problem. It also
evaluates the feasibility of using a synthesized cost function versus using the
default one. Finally, it compares the quality of VTracker’s result against those

state-of-the-art approaches.

VTracker was evaluated against results from the Ontology Alignment
Evaluation Initiative’s (OAEI-2010 Campaign). The Benchmark test library
consists of 48 test cases over three sets. The simplest benchmark (1xx) contains
three ontology instances, comparing the reference ontology with itself, with
another irrelevant ontology or the same ontology in its restriction to OWL-Lite,
The second benchmark (2xx) contains 43 instances obtained by discarding
features (like name of entities, comments, specialization hierarchy, instances,
properties) from the reference ontology. It aims at evaluating how an algorithm
behaves when a particular type of information is lacking. Finally, the third
benchmark contains four ontologies of bibliographic references (3xx) found on
the web and left mostly untouched. It is important to state that VTracker had
difficulties to process cases 206, 207, and 210 due to some XML encoding issues.
Therefore, the following evaluation is based on results from the other 45 test

cascs.

Each of the dataset test cases is provided in the format of OWL/RDF

ontology definitions and is described in XML syntax. Each of those ontologies

93

Chapter Five Evaluation

describes a set of classes, properties, relationships, and instances. The experiment
objective is, given two such ontology definitions, to find which classes and
properties in the first ontology can be matched to classes and properties of the
second ontology, and with how much confidence. In this way, an edit script is
required to determine which nodes are mapped to each other. This benchmark
involves comparing 45 test cases. In each test case, the task is to compare the
given ontology against the reference ontology, and to measure the quality of the
produced results by the OAEI benchmark evaluation tool (EvalAlign®). EvalAlign
then calculates the precision and recall given the reference ontology alignment
and the produced one. For each test case, precision and recall were collected from
evaluation results. Then the harmonic mean (H-mean) of precisions and recalls is
calculated. In order to precisely characterize how useful each of VTracker’s
features is to its effectiveness we conducted a sequence of experiments, starting
by applying the core VTracker algorithm and proceeding to incrementally enable
each of the algorithm’s features, and then repeating the same experiment. Table

5-3 shows the evaluation results for all the combinations.

Table 5-3 shows that pursuing an affine-cost model improved both
precision and recall by between 1% and 4%. It also shows the affine-cost function
makes more difference in the case of the default cost model than in the case of the
domain-specific cost model. This may be interpreted that the domain-specific cost
model inherently includes the semantics of affine-cost policy, and that internal
structure nodes are not as important as other nodes. According to the experiment,
enabling references improved both precision and recall by 2% to 6% i.e. H-Mean.
Table 5-3 also shows that enabling context-awareness improved both precision
and recall by 4% to 9% on average. An observation on these results is that
context-aware differencing works better in conjunction with reference-aware
models and especially with having affine-cost policy on the top. This experiment

also evaluated the influence of having a domain-specific cost function,

procalign jar fr.inrialpes.exmo.align.util. EvalAlign -i fr.inrialpes.exmo.align.impl.eval. PRecEvaluator

94

Chapter Five Evaluation

synthesized by applying VTracker to the domain XML schema. Additionally,
Table 5-3 shows that the best quality of result was produced with the following
combination Reference-aware + context-aware + affine-cost policy + synthesized
cost function. Finally, it is important to mention that, according to this
experiment, none of the presented features negatively influenced the quality of

results.

Table 5-3: Evaluation of various VTracker Contributions

Synthesized Cost Function Default Cost Function
Affine Non-Affine Affine Non-Affine
Policy Policy Policy Policy

Prec. Recall Prec. Recall Prec. Recall Prec. Recall

085 087 084 086 084 086 0.82 0.83

Reference- Context-aware

aware o on-Context- 077 079 075 077 077 078 073 074
aware
079 081 078 080 079 081 078 079
Non C
ontext-aware
reference-
aware Non-Context- 075 076 073 075 075 076 071 072

aware

Table 5-4 shows the evaluation of VTracker against other systems from the 2010
Campaign of Ontology Alignment Evaluation Initiative. In this experiment
VTracker was run with the following features enabled: (1) affine-cost policy
option, (2) reference-aware model option, (3) context-aware option, and (4)
domain-specific synthesized cost function. As shown in Table 5-4, in terms of
recall, VTracker is the second top system with only 2% less than the top one (i.e.
ASMOYV) while in terms of precision, VTracker came in ninth place. The
interpretation is that VTracker is the second top one in terms of finding relevant
mappings, and the ninth in terms of finding only relevant mappings. The overall
performance of VTracker is a harmonic mean of precision of 85% and recall of
87%. The combined F-Measure of precision and recall placed VTracker in the

fourth place after ASMOV, RiMOM, and ArgMaker as shown in Figure 5-4. One

95

Chapter Five Evaluation

more observation about the quality of VTracker is that it is the best one in having
balanced precision and recall which means that VTracker is very balanced
between finding relevant mapping and discarding non-relevant ones. Finally, it is
important to mention that having VTracker in the fourth position is such an
achievement for two reasons: (1) the top three tools are especially built to answer
this particular kind of ontology matching questions while VTracker is generic and
not specially built for that purpose. Even though, VTracker did better than many
other domain-specific tools, and (2) the top three tools are equipped with some
kinds of lexical matching mechanism, which is not available in VTracker in its
current version. We strongly believe that adding a lexical matching mechanism

like WordNet to VTracker will improve the quality of produced results.

We have to mention that we did not participate in this benchmark contest.
However, we used results of the contest published in [50]. For external validity,
we used EvalAlign tool that measures the precision and recall for each of the

ontology matching cases.

1.00

0.90

0.80

0.70

0.60

0.50

0.40

0.30

0.20

0.10

0.00
(j@ .@O @’Skg} @dg:‘ o‘bo@ Q‘?@% ‘}5\{}‘ <<’b\(lo(\ 8(,)0 0 V 00\ e&@ @,bq
voe & & 9 6&\&‘ & N <

B F-Measure ™ Precision MRecall

Figure 5-4: Evaluation of VTracker’s performance against benchmark
results displaying H-Mean of precision, recall, and F-Measure sorted by

F- Measure value

96

Chapter Five Evaluation

Table 5-4: Evaluation of VTracker against results from OAEI 2010

1xx 2XX 3xx H-mean
refalign Precision 1.00 1.00 1.00 1.00
Recall 1.00 1.00 1.00 1.00
VTracker Precision 1.00 0.87 048 0.85
Recall 1.00 0.88 0.56 0.87
edna Precision 1.00 0.43 0.51 045
Recall 1.00 0.57 0.65 0.58
ArgMaker Precision 0.98 0.95 0.88 0.95
Recall 1.00 0.84 0.58 0.84
AROMA Precision 1.00 0.94 0.83 0.94
Recall 0.98 046 0.58 048
ASMOV Precision 1.00 0.99 0.88 0.99
Recall 1.00 0.89 0.84 0.89
CODI Precision 1.00 0.83 0.95 0.84
Recall 0.99 042 045 044
Ef2Match Precision 1.00 0.98 0.92 0.98
Recall 1.00 0.63 0.75 0.65
Falcon Precision 1.00 0.81 0.89 0.82
Recall 1.00 0.63 0.76 0.65
GeRMeSMB Precision 1.00 0.96 09 0.96
Recall 1.00 0.66 042 0.67
MapPSO Precision 1.00 0.67 0.72 0.68
Recall 1.00 0.59 0.39 0.6
RiIMOM Precision 1.00 0.99 0.94 0.99
Recall 1.00 0.83 0.76 0.84
SOBOM Precision 1.00 0.97 0.79 0.97
Recall 1.00 0.74 0.75 0.75
TaxoMap Precision 1.00 0.86 0.71 0.86
Recall 0.34 0.29 0.32 0.29

5.4 UML Differencing Experiment

The objective of this experiment is to evaluate the performance of VTracker in the
domain of Object-oriented model comparison. In this experiment an object-
oriented model was divided into three kinds of design models: (1) a containment
model that includes relationships between a class and its operations and attributes;
(2) an inheritance model that includes relationships such as subclass and
realization relationships; and (3) a usage model that includes dependency and

association relationships such data types and calls of attributes and operations.

97

Chapter Five Evaluation

The dataset of this experiment is 13 successive versions of JFreeChart’
starting from version 1.0.0 to 1.0.13. The ground truth of model evolutions were
independently developed by two the authors: Tsantalis, N., Negara [136] with
help of Eclipse IDE. For the containment model, the ground-truth included edit
operations to add, remove, or rename an operation, and to add, remove, or rename
an attribute. The inheritance model included operations to add, remove, or rename
a generalization, and to add or remove a realization. Finally, a usage model
included operations to add, remove, or replace an operation call, and to add,
remove, or replace an attribute access. In this experiment, the task of VTracker is,
given two UML modules, to try find proper matching between elements of the

two modules and report different kinds of edit operations explained above.

In this experiment, source-codes of Java classes were parsed and
represented as XML documents. The XML representation used in this experiment
is a simplified version of UML/XMI described in Section 2.5.2. The standard
UML/XMI representation combines the three models into one coherent UML
model. However, for the purpose of this experiment, the three models were
represented separately using a simplified UML/XMI representation. One big
difference is that the standard UML/XMI representation largely depends on XML
reference-structure to share element definitions between various models while the
simplified representation does not have such a reference-model as it is only based
on XML containment structure. Code 5-1 shows an example of the simplified
XML representation that describes the containment model of class
"org.jfree.chart.block.BlockContainer". Accordingly, VTracker is configured to
use the domain-optimized tree-edit distance algorithm, a standard cost function,
some domain-specific configurations, and is not reference-aware. This experiment
uses three kinds of domain-specific configurations. First, it specified attributes
className, operationName, and paramName as keyAttributes. As explained in

Section 4.3, key attributes give VTracker hint on the relative importance of

? http://sourceforge.net/projects/jfreechart/

98

Chapter Five Evaluation

different attributes. In this experiment, these attributes are relatively more
important than other attributes as they logically identify a model element.
Secondly, this experiment, configure attributes named /D as meta-attribute that
should be ignored during the differencing process since it is just used to find
correspondence between edit operations and original model elements. In the third,
since this experiment is only interested in edit operations happening to
parameters, and classes, the configurations of this experiment specified them as
key elements. As explained in Section 4.3, configuring key elements do not
influence the differencing process but it determines the desired outcome of the
differencing process. Generally, VTracker reports the tree-edit distance and the
edit script associated with this distance. Having this kind of configuration,
VTracker is instructed to also report tree-edit distance matrix between all key
elements. The produced matrix contains distances between all sub-trees rooted by
key elements. Finally this experiments applies the stable marriage algorithm in
order to find the optimal mapping between various elements. In this way,
VTracker overcomes the limitation of ordered trees and allow mapping between
nodes that are not in the same order. In other words, VTracker uses the tree-edit
distance algorithm to measure the distance between various key sub-trees, and

then it uses these distances to find the best mapping solution.

In this experiment VTracker was compared against UMLDIff [161].
UMLDIff is one of the state-of-the-art methods in comparing UML models.
UMLD:IfT is based on purpose built heuristics, and matching techniques, to serve
UML differencing in particular. Therefore, the experiment evaluates the
performance of VTracker as generic method against a domain-specific method
like UMLD:fTf. This evaluation of this experiment was independently performed
by Tsantalis and Nigara. in [136]. Table 5-5, borrowed from [136], shows that
VTracker has similar precision and recall to UMLDIff in matching elements of
the containment model while VTracker does much better than UMLDiff when it
comes to matching elements of the inheritance or the usage models. VTracker

deals with all models on the same basis. It does not favor one over the other. That

99

Chapter Five Evaluation

is why VTracker did similarly in all models unlike UMLDiff that may be strong
in matching some kinds of relationships but not the others. One more observation
is that VTracker has consistent values of precision and recall, which implies that

VTracker is very confident in the produced result.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<VirtualRoot name="VirtualRoot">
<Class ID="63493" className="org. jfree.chart.block.BlockContainer"
isAbstract="false" isInterface="false">
<Operation ID="63512" operationName="add" paraml="void"
param2="org. jfree.chart.block.Block" param3="java.lang.Object"
visibility="public">
<Parameter paramKind="return” paramtType="void" />
<Parameter paramKind="in" paramName="block"
paramtType="org. jfree.chart.block.Block" />
<Parameter paramKind="in" paramName="key" paramtType="java.lang.0Object" />
<MethodCall ID="10320" argl="java.lang.0Object"”
methodCallName="java.util.List.add"” originClassName="java.util.List">
<Argument argKind="in" argType="java.lang.0Object" />
<Argument argKind="return"” argType="boolean" />
</MethodCall>
<MethodCall ID="10322" argl="org. jfree.chart.block.Block"
arg2="java.lang.0Object"
methodCallName="org. jfree.chart.block.Arrangement.add"
originClassName="org. jfree.chart.block.Arrangement">
<Argument argKind="in" argType="org. jfree.chart.block.Block" />
<Argument argKind="in" argType="java.lang.0Object" />
<Argument argKind="return"” argType="void" />
</MethodCall>
<FieldAccess ClassType="org. jfree.chart.block.Arrangement”
ID="10321" OwnerClassName="org. jfree.chart.block.BlockContainer"
fieldName="org. jfree.chart.block.BlockContainer.arrangement" />
<FieldAccess ClassType="java.util.List" ID="10319"
OwnerClassName="org. jfree. chart.block.BlockContainer"
fieldName="org. jfree.chart.block.BlockContainer.blocks" />
</Operation>
</Class>
</VirtualRoot>

Code 5-1: An example of a simplified XML representation of a containment

model specification

Table 5-5: Evaluation of VTracker against UMLDIiff

VTracker UMLDiIff
Precision Recall Precision Recall
Containment 0.99 0.98 0.97 0.97
Inheritance 1.00 1.00 0.88 0.88
Usage 0.95 0.94 091 0.84

100

Chapter Five Evaluation

5.5 Service Discovery Experiment

This experiment aims at evaluating VTracker in terms of two aspects. First, it
evaluates the feasibility of considering the XML reference model in the domain of
WSDL matching. Second, it generally evaluates the performance of VTracker in

that domain.

The dataset of this experiment is based on SAWSDL-TC 3 that includes a
set of 1080 WSDL services from seven different domains: education, medical
care, food, travel, communication, economy, weaponry, geography, and
simulation. The collection also includes a set of 42 WSDL queries from these
domains. For each query-service combination the SAWSDL-TC 3 collection
includes a matching grade to indicate the relevance of matching this service to

that particular query. This grade is based on a 4-graded scale:

* Highly relevant: Any service that offers exactly what the user asked for (or
even better).

* Relevant: Any service that might answer the request completely or
partially does the requested job.

* Potentially relevant: any service that may be helpful

* Non-relevant: any service that is totally irrelevant to the query request.

For each query, VTracker is requested to calculate the edit-distance
between the WSDL of the query and the 1080 WSDLs of the offered services.
Then, calculated distances of each query are sorted in ascending order according
to the calculated distance. Then, a matching relevance is determined by the order
of the solution. Consider an example where SAWSDL-TC has a set of three
highly relevant offers, then if any of the top three distances in the calculated list
belong to this set, this distance is considered a true-positive result to that grade.
This experiment evaluates results of 21 WSDL queries against the 1080 offered
service WSDLs from SAWSDL-TC. For each query, Table 5-6 shows the four
different grades along with the number of offered services in each grade. This

table shows that in 90% of the queries, VTracker is able to recommend the highly

101

Chapter Five Evaluation

relevant offers at the top of the matching list. Secondly, VTracker is successful by
95% in ranking irrelevant offers at the bottom of the list. VTracker was also
capable in 39% to rank relevant offers in proper position in the matching list. It is
also capable in 37.5% to rank partially relevant offers in their proper positions.
This table also shows that the using references improved the quality of ranking
partially relevant offers from 34% to 37.5% of the cases. It is important to
mention that VTracker did better in finding highly recommended and irrelevant
offers than in finding relevant and partially relevant ones. In other words,
VTracker was successful in finding perfect matches and absolutely different
offers while it did not do that good when it comes to the gray area in between.
This can be explained by the fact that VTracker does not include a lexical
matching mechanism; it is only based on structural, content, context, and
reference matching mechanisms. In the case of perfect match or an absolute
different offers the VTracker mechanism are good enough to measure the
similarity. However, when in comes to the gray area in the middle, a lexical

matching is essential assess the relevancy between a request and an offer.

Figure 5-5 shows percentage of extra time required by the reference-aware
algorithm compared to the time required by the basic one. This figure shows that
the reference-aware tree-edit distance algorithm consistently requires more time
than that is required by the basic algorithm. The question is “Can the required
extra time be justified?”. Indeed, yes it can. For example in the query named
“governmentdegree scholarship service.wsdl”, reference-aware requires almost
double the time required by the basic approach while in that particular case, the
quality of the partially-relevant grade was also doubled, i.e. improved from 55%
to 100%. Similarly, in case of query named “getLocationOfCityState.wsdl”,
reference-aware approach required about 140% more than basic one while it
improved the quality of the same grade from 23% to 31%. Therefore, we can
conclude that while the reference-aware approach requires more time, it

proportionally improves the quality of the results.

102

Chapter Five Evaluation

NI A Y

250.00%
150.00%
100.00%
50.00%
0.00%

s oaJ8apjuawuianod
A11DsnJo43poodiziad
Wy | asiaunglasungyad
$s31ppysnjodenia3d
02dizsnjouone’on3ad
A13snjouonesomyad
1easAnDjouone07393
Juaamiagasueysiqilad
1e353an0qyapnIL|yIa3
-|eagijodoad
-|eo1ydes80a8
SSaIppYSNapod0ad
id umop ey
T49pi0xoog]
“J1aAejdgdwssie|dpap
dnooopa||iys Asunod
135 [9104 AJ3UnodAd
201A19s 9oud Jed
piedipaiouosiadyooq
piedjipasouosiadyooq
2o1n3s aoud jooq
1ud aespAdiquosiadT

in regards

Queries
Reference-aware algorithms

103

ic versus
to SAWSDL-TC experiment

ime of Bas

Runt

Figure 5-5

Chapter Five Evaluation

Table 5-6: Evaluation of VTracker in SAWSDL-TC Collection

Highly Relevant Relevant Partially Relevant Irrelevant

SAW VTracker SAW VTracker SAW VTracker SAW VTracker

SDL- SDL- SDL- SDL-

TC Ref Basic TC Ref Basic TC Ref Basic TC Ref Basic
1personbicyclecar_price_service.wsdl 11 45% 55% 20 50% 45% 61 77% 75% 988 89% 89%
book_price_service.wsdl 12 50% 50% 22 59% 64% 45 11% 56% 1001 88% 90%
bookpersoncreditcardaccount__service.wsdl 5 20% 20% 9 78% 78% 12 100% 14% 1054 95% 92%
bookpersoncreditcardaccount_price_service.wsdl 2 50% 50% 37 62% 65% 56 66% 66% 985 88% 88%
car_price_service.wsdl 14 29% 29% 35 54% 54% 44 9% 84% 987 85% 88%
citycountry_hotel_service.wsdl 8 25% 25% 8 25% 25% 23 17% 17% 1041 94% 94%
country_skilledoccupation_service.wsdl 21 24% 24% 46 46% 46% 22 23% 18% 991 86% 86%
dvdplayermp3player_price_service.wsdl 5 60% 60% 10 20% 40% 12 0% 33% 1053 95% 96%
EBookOrderl.wsdl 3 67% 67% 0 0% 0% 12 0% 0% 1065 97% 97%
fall_down_pill.wsdl 1 0% 0% 1 100% 100% 0 0% 0% 1078 100% 100%
geocodeUSAddress.wsdl 11 9% 9% 9 78% 56% 3 100% 33% 1057 96% 96%
geographical-regiongeographical-
region_map_service.wsdl 4 50% 50% 2 100% 100% 12 33% 33% 1062 97% 97%
geopolitical-entity_weatherprocess_service.wsdl 3 67% 67% 30 67% 63% 4 0% 100% 1043 95% 95%
getAltitudeAboveSeal evelOfLocation.wsdl 3 33% 33% 0 0% 0% 0 0% 0% 1077 100% 100%
getDistanceBetweenCitiesWorldwide.wsdl 1 0% 0% 2 50% 50% 17 35% 6% 1060 97% 96%
getLocationOfCityState.wsdl 1 0% 0% 4 25% 25% 13 31% 23% 1062 97% 97%
getLocationOfUSCity.wsdl 4 25% 25% 12 17% 17% 5 100% 67% 1059 97% 97%
getlLocationOfUSZipcode.wsdl 7 14% 14% 4 0% 0% 9 22% 56% 1060 97% 97%
getMapOfUSAddress.wsdl 4 25% 25% 1 0% 0% 11 0% 18% 1064 97% 97%
getSunsetSunriseTimeOfLocation.wsdl 3 33% 33% 1 0% 0% 0 0% 0% 1076 99% 99%
getZipcodeForUSCity.wsdl 5 20% 20% 2 0% 0% 3 100% 0% 1070 99% 98%
governmentdegree_scholarship_service.wsdl 8 63% 63% 26 27% 27% 18 100% 55% 1028 93% 92%
Average 32% 33% 39% 39% 38% 34% 95% 95%

104

Chapter Five Evaluation

To conclude, this chapter explains the evaluation process of VTracker in
different domains and in different setup and configurations. The first experiment,
evaluates the general aspects of VTracker such as performance and quality of
using the domain-optimized tree-edit distance algorithm that avoids matching
infeasible sub-trees. It was shown that the optimized technique saves on average
about 25% of the processing time while producing the same quality of results. The
second experiment evaluates the matching quality of VTracker in the context of
RNA Secondary Structure Comparison. It was shown that VTracker has an F-
Measure value of 0.99, which exceeds the performance of the state-of-the-art
methods at the experiment time, i.e. 2007. In this experiment VTracker using the
LFG tree-representation performed better than RNA Forester that uses the same
tree representation where VTracker was able to find the target solution in 26% of
the cases while RNA Forester found the target solution in only 7% of the test
cases. Additionally this experiment illustrated the importance of simplicity
heuristics in finding the best optimal solution from within a set of optimal ones.
Thirdly, the OAEI benchmark experiment evaluated the performance of VTracker
in the context of Ontology Matching where VTracker comes in the forth-top place
within systems those are especially built to serve this application domain. This
experiment also illustrated the importance of domain-specific cost function and
the XML reference-structure in improving the quality of the produced results. In
the forth is the UML differencing experiment that was independently conducted
by a third party to evaluate the performance of VTracker in the context of object-
oriented model differencing against the-state-of-the-art in the domain which is
UMLDift. In this experiment VTracker superiorly competed with UMLDifY.
Finally, VTracker is evaluated in the context of SAWSDL-TC bench mach of
matching WASL queries against offered WSDL services where VTracker was
able to find at least one of the best offers in 90% of the cases. This experiment
also evaluates the influence of using the reference-aware algorithm in the quality

of the produced results.

105

Chapter Five Evaluation

Finally, it is also worth to mention that VTracker has been applied to XHTML
comparison through installing as a differencing component of Annoki, an open

source of wiki.

106

Chapter Six Discussion, Conclusion, and Future Work

This thesis, motivated by the importance of XML, a universal format for
structured documents and data on the Web, focuses on the general problem of
XML differencing. Instances of this general problem appear in various domains
such as document management, service discovery and matching, system
integration, semantic-web interoperability, and many other domains. In each of
these domains special methods have been developed to solve the particular
instance of the differencing problem for the domain in question. To mitigate the
problem of effort duplication, this thesis presents VTracker, a generic differencing
method that is capable of being domain-aware through a domain-specific cost
function. VTracker views an XML document as an ordered labeled tree on which

it can apply Zhang-Shasha’s tree-edit distance algorithm.

This thesis makes two important contributions: first, an extension to of the
original Zhang-Shasha algorithm with an XML reference structure (i.e.
hyperlinks) on the top of the natural XML containment structure, and second, a
domain-specific cost function that is capable of capturing domain knowledge and
semantics. It has been illustrated by examples in Section 3.1 that the reference-
structure plays a critical role in determining the semantics of a given XML
document. In addition both the OAEI and SAWSDL-TC experiments shows how
considering the reference-structure during the tree-edit distance calculation
improves the quality of produced results. Similarly, the usage-context similarity
measure is important to work in conjunction with the reference-aware algorithm
to resolve matching ambiguities such as the example of Figure 3-4. VTracker
also extends Zhang-Shasha with an affine-cost policy that prevents structural
formality from having a negative influence on the quality of results, which was
illustrated in the example of Figure 3-10 and another example in Section 4.1in the
context of ontology matching. Additionally, VTracker is equipped with the
mechanism, called simplicity heuristics, to handle situations where a calculated
edit distance has multiple edit scripts that are all capable of transforming the first

tree into the second tree. The set of simplicity heuristics is important in

107

Chapter Six Discussion, Conclusion, and Future Work

applications that involve considerable amount of changes in the internal structure
of the given trees. It has shown special significance in the context of RNA
Secondary Structure Comparison. VTracker is also equipped with a domain-
specific cost function mechanism where VTracker is used to match elements of
the domain schema against each other calculating the edit distance between each
two elements. The calculated distance matrix is then used as the domain-specific
cost function when matching instances of this schema. This synthesizing
mechanism assumes that the given XML schema is rich with domain semantics
and knowledge. This assumption was proven true in cases like BPEL and
OWL/RDF XML schemas. However, this assumption is not always true

especially in cases where simple schema is provided such as WSDL and XMI.

Chapter Two explains how the reference structure is a critical component
in the semantics of many applications of XML such as OWL/RDF, WSDL,
BPEL, and UML/XMI. Both XHTML and RNA do not utilize this particular
feature of XML since their semantics do not require this kind of association and
dependency relationships. Chapter Three discusses the importance of another
aspect of the XML reference structure and the concept of usage-context as a
secondary measure of similarity between XML elements. This chapter also
emphasizes the importance of using an affine-cost policy for giving a fair chance
between deletions and changes. The objective of affine-cost policy is defined so
as to promote edit scripts that group edit operations in neighbors. Similarly, the
heuristic-based approach chooses the most optimal edit scripts in case of multiple
ones. Chapter Four explores the applicability of VTracker in various problem
domains. In Chapter Five, the heuristic-based approach was proven true in
domains, such as RNA secondary structure, where one edit-distance may have
multiple edit scripts. Also, VTracker proposes a method for bootstrapping the
algorithm in a domain by automatically synthesizing a domain-aware cost
function based on the underlying XML Schema Definition (XSD). The feasibility

of the synthetic cost model was illustrated in Experiment Number Three where

108

Chapter Six Discussion, Conclusion, and Future Work

employing the synthetic cost function improved the quality of the matching

results.

Various aspects of VTracker were evaluated through a set of five
experiments. The first experiment evaluated the general performance of VTracker
along with the influence of the proposed optimization. Secondly, the feasibility of
the simplicity heuristic set was illustrated in the context of RNA Secondary
Structure Comparison. Thirdly, the importance of the reference model and the
synthetic cost function were verified in the context of an OAEI Ontology
Matching benchmark experiment. In this experiment, VTracker was also
evaluated against state-of-the-art approaches in Ontology Matching domain, and
VTracker competed successfully with the top tier systems. In the fourth, VTracker
was evaluated against the state-of-the-art approach in object-oriented differencing,
and VTracker showed an outstanding performance against UMLDIff. Finally,
VTracker was evaluated in the domain of WSDL service matching where it also
performed adequately.

6.1 Conclusion

The aim of this work is to demonstrate that differencing problems in various
domains are similar in their essence, and can be solved through a generalized
approach that takes into consideration a domain’s specialties. The objective is to
show that all domain specific differencing methods are simply trying to
accomplish the same thing. It would be more beneficial for these domain-specific
solutions to start from a generic method like VTracker, and focus more on the real
problem of differencing semantics, which is captured through the cost function.
VTracker was evaluated against state-of-the-art systems in each of those domain’s
differencing techniques. These evaluations should be considered positive if
VTracker performs comparably to, or exceeds, methods especially built to serve
those domains. As shown in the evaluation chapter VTracker competed very well

with the more well known differencing methods in these domains.

109

Chapter Six Discussion, Conclusion, and Future Work

Finally, it is important to mention that VTracker takes the differencing
problem into a higher level of flexibility. A user can control the level of details on
which VTracker works. For example in the case of UML model differencing, the
experiment designer was allowed to decide which aspects of the model to
compare: inheritance model, containment model, or usage model. The experiment
designer had to provide an XML structure that captures only the desired aspects.
The same flexibility applies in case of BPEL matching. If WSDL definitions are
included in the BPEL specification XML document, then VTracker considers the
BPEL workflow along with the underlying WSDL definitions to reach more
accurate matching quality. In this way, VTracker allows a user to specify the
desired level of details and aspects.

6.2 Future Work

There are many directions of future work in VTracker. Firstly, we plan to work
towards improving the quality of the cost model in general and domain-specific
cost functions in particular. On one hand, a big contribution would be to equip
VTracker with a lexical matching mechanism such as WordNet that is capable of
matching synonym terms and vocabularies. On the other hand, it is clear that
XML Schema Definitions are undeniably rich with domain semantics and
knowledge so another dimension of improving the cost model is to dig deeper into
various domain XML schemas to uncover more implicit semantics, and to
improve the current process of synthesizing domain-specific cost functions. A
second future task is to automate the process of domain-specific configuration,
using a domain schema to recognize ID/IDREF, key, and metadata attributes.
Further experimentation is also necessary to validate the applicability of VTracker
in other domains and to evaluate its effectiveness against benchmarks of these
domains. Finally, we are interested in reusing and applying the innovations of

VTracker in the context of other tree-edit distance differencing mechanisms.

110

Bibliography

[1] Aalst, W.M.P. “The Application of Petri Nets to Workflow Management”. The Journal
of Circuits, Systems and Computers, Vol. 8, No. 1. (1998), pp. 21-66.

[2] Aalst, W.M.P., “Why workflow is NOT just a Pi-process”. BPTrends, February, 2004.

[3] Agarwal, A, and Ankolekar, A, “Automatic Matchmaking of Web Services”. In
Proceedings of International Conference on Web Services, ICWS '06, pp. 45-54, 2006. .

[4] Allali, J., and Sagot, M., “A New Distance for High Level RNA Secondary Structure
Comparison”. IEEE/ACM Transactions. Comput. Biol. Bioinformatics, Vol. 2, No. 1 (2005), pp.
3-14.

[5] Allali, J., and Sagot, M., “Novel Tree Edit Operations for RNA Secondary Structure
Comparison”. In Proceedings of Proceedings of the 4th Workshop on Algorithms in
Biolnformatics, WABI ‘04, pp. 412-425, 2004.

[6] Altinel, M. and Franklin, M., “Efficient filtering of XML documents for selective
dissemination of information”. In Proceedings of the 26th International Conference on Very
Large Data Bases (VLDB '00), pp- 53-64, 2000.

[7] Altschul, S., Gish, W., Miller, W., Myers, E., and Lipman, D., “Basic local alignment
search tool”. Journal of Molecular Biology, Vol. 215, No. 3 (1990), pp. 403-410.

[8] Altschul, S., Madden, T., Schaffer, A., Zhang, ., Zhang, Z., Miller, W., and Lipman, D.,
“Gapped BLAST and PSI-BLAST: a new generation of protein database search programs”.
Journal of Nucleic Acids Research, Vol. 25, No. 17 (1997), pp. 3389-3402.

[9] Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein,], Leymann, F., Liu, K., Roller,
D., Smith, D., Thatte, S., Trickovic, I, and Weerawarana, S., “Business Process Execution
Language for Web Services”. Version 1.1, 2003, http://www-
128.ibm.com/developerworks/library/specification/ws-bpel/

[10] Ankolekar, A. “DAML-S: Web Service Description for the Semantic Web”. In
Proceedings of International Semantic Web Conference, ISWC'02, pp. 348-363, 2002,

[11] Anthony, M. “A Study of Strategic Change, Process Alignment, and Notation: FNGC
Tap Process.” White paper from International Performance Group, Ltd.
http://www.bptrends.com/publicationfiles/Anthony%20Study%20%2D%20FNGC%?20Case
%201%2DTEXT%20%2D%203%2D4%2D03%2Epdf (last accessed July 30, 2010).

[12] Antoniou, A., and Harmelen, F.V.,, “Web Ontology Language: OWL”. Book titled:
Handbook on Ontologies in Information Systems, publisher: Springer-Verlag, 2003.

[13] Apiwattanapong, T., Orso, A., and Harrold, M. |, “IDiff: A differencing technique and

tool for object-oriented programs®. Journal of Automated Software Engineering (ASE)., Vol.
14, No. 1(2007), pp. 3-36.

[14] Augsten, N., Barbosa, D., Bohlen, M., and Palpanas, T., "TASM: Top-k Approximate
Subtree Matching”, In Proceedings of 26th International Conference on Data Engineering
(ICDE’10), pp. 353 - 364, 2010.

[15] Bae,], Bae, H.,, Kang, S.H., and Kim, Y., “Automatic Control of Workflow Processes
Using ECA Rules”. IEEE transactions on knowledge and data engineering, Vol. 16, No. 8
(2004), pp.1010-1023.

[16] Bafna, V., Muthukrishnan, S. and Ravi, R, “Computing similarity between RNA
strings”. In Proceedings of Combinatorial Pattern Matching Conference ‘95,, pp. 1-16., 1995.

[17] Batra, S. and Bawa, S., "Web Service Categorization Using Normalized Similarity
Score, “ International Journal of Computer Theory and Engineering, Vol. 2, No. 1 (2010), pp.
139-142.

111

Bibliography

[18] Bernard, M., Boyer, L., Habrard, A., Sebban, M., “Learning probabilistic models of tree
edit distance”. Journal of Pattern Recognition, Vol. 41, No. 8 (2008), pp. 2611-2629.

[19] Berners-Lee, T. and Connolly, D. "Hypertext Markup Language - 2.0", RFC 1866.
Proposed Standard, November 1995.

[20] Berners-Lee, T., Brickley, D., Miller, E., and Swick, R.R, “Frequently Asked Questions
about RDF”. W3(, http://www.w3.org/RDF/FAQ, 2004.

[21] Berners-Lee, T., Fielding, R., and Masinter, L., “Uniform Resource Identifier (URI):
Generic Syntax”. RFC 3986, January 2005, http://www.rfc-editor.org/rfc/rfc3986.txt

[22] Blanchet, W., Elio, R,, Stroulia, E., “Conversation Errors in Web Service Coordination:
Run-time Detection and Repair”. In Proceedings of International Conference on Web
Intelligence (WI'5), pp. 442 - 449, 2005.

[23] Blanchet, W, Elio, R, Stroulia, E. “Supporting Adaptive Web-Service Orchestration
with an Agent Conversation Framework”. In Proceedings of the third IEEE International
Conference on Web Services (ICWS’5), pp.541-549, 2005.

[24] Brauer, M., Weir, R.,, and McRae, M., “OpenDocument. v1.1 specification”, 2007,
http://docs.oasis-open.org/office/v1.1/0S/OpenDocument-v1.1.pdf

[25] Breuel, T.M. "Information Extraction from HTML Documents by Structural
Matching". In Proceeding of Second International Workshop on Web Document Analysis
(WDA’03), ,pp-11-14, 2003.

[26] Brockmans, S., Ehrig, M., Koschmider, A., Oberweis, A., and Studer, R., “Semantic
Alignment of Business Processes”. In Proceedings of Eighth International Conference on
Enterprise Information Systems, (ICEIS’6), pp.191-196, 2006.

[27] Chawathe, S., Rajaraman, A., Garcia-Molina, H. and Widom,]., “Change Detection in
Hierarchically Structured Information”. In Proceedings of the ACM SIGMOD International
Conference on Management of Data (SIGMOD’96), Vol. 25, No. 2(1996), pp. 493-504.

[28] Chawathe, S. and Garcia-Molina, H., “Meaningful Change Detection in Structured
Data”. In Proceedings of the ACM SIGMOD International Conference on Management of Data
(SIGMOD’97), Vol. 26, No. 2(1997), pp. 26-37.

[29] Chevalier, F., Auber, D., and Telea, A., “Structural analysis and visualization of c++
code evolution using syntax trees”. In Proceedings of the ninth International Workshop on
Principles of Software Evolution (IWPSE’7): in conjunction with the 6th ESEC/FSE joint
meeting, pp. 90-97, 2007.

[30] Choi, N,, Song, I.-Y,, and Han, H., “A survey on ontology mapping”. SIGMOD Record,
Vol. 35, No. 3(2006), pp. 34-41.

[31] Cobéna, G., Abdessalem, T., Hinnach, Y., “A comparative study for XML change
detection”, Gemo Report number 221, 2002. http://www-
rocgbis.inria.fr/verso/Gemo/PUBLI/all- byyear.php,
ftp://ftp.inria.fr/INRIA/Projects/gemo/gemo/Gemo Report-221.pdf, accessed May 2005.

[32] Cobena, G., Abiteboul, S., Marian, A., "Detecting Changes in XML Documents". In

Proceedings of the 18th International Conference on Data Engineering (ICDE'02), pp. 41-52,
2002.

[33] Collins, G, Le, S., and Zhang, K., “A new algorithm for computing similarity between
RNA structures”. Journal Information Sciences: an International Journal, Vol. 139. No. 1-
2,(2001), pp. 59-77.

[34] Contributors: IBM, BEA Systems, Microsoft, SAP AG Siebel System, “Business Process
Execution Language for Web Services version 1.1, “ May,
2003.http://www.ibm.com/developerworks/library/specification/ws-bpel/ (last accessed
July 30, 2010).

112

Bibliography

[35] Contributers: IBM, Systinet, UnitSpace, Microsoft, LMI, SAP AG, Computer
Associates, SeeBeyond Technology, and Oracle, “UDDI Version 3.0.2 - UDDI Spec Technical
Committee Draft, Dated 20041019” 0ASIS Standard, http://www.oasis-
open.org/committees/uddi-spec/doc/spec/v3/uddi-v3.0.2-20041019.htm (last accessed
July 10, 2011).

[36] Contributers: Adobe Systems, BEA, Deloitte, IBM, Individual, Intalio, Jboss Inc..
Microsoft, Oracle, SAP, Sterling Commerce, TIBCO Software, webMethods, “Web Services
Business Process Execution Language Version 2.0, ” OASIS Standard, 11 April 2007,
http://docs.oasis-open.org/wsbpel/2.0/0S/wsbpel-v2.0-0S.html (last accessed July 30,
2010).

[37] Contributers: Adobe Systems, BEA, Deloitte, IBM, Individual, Intalio, Jboss Inc..
Microsoft, Oracle, SAP, Sterling Commerce, TIBCO Software, webMethods, “Schema for OASIS
Business Process Execution Language (WS-BPEL) 2.0 - Abstract BPEL Common Base” OASIS
Standard, http://docs.oasis-open.org/wsbpel/2.0/0S/process/abstract/ws-
bpel_abstract_common_base.xsd (last accessed July 30, 2010).

[38] OASIS ebXML RegRep Version 4.0 Part 0: Overview Document. 12 May 2011. OASIS
Committee Specification Draft 02 / Public Review Draft 01. http://docs.oasis-
open.org/regrep/regrep-core/v4.0/csprd01/regrep-core-overview-v4.0-csprd01.odt.

[39] Corpet, F., and Michot, B.,, “RNAlign program: alignment of RNA sequences using
both primary and secondary structures”. Journal Comput. Appl. Biosci., Vol. 10, No. 4(1994):
pp- 389-399.

[40] Corrales, J.C., Grigori, D., and Bouzeghoub, M., “BPEL processes matchmaking for
service discovery”. In Proceedings of OTM Conferences: Cooperative Information Systems
(CooplS’6), pp. 237 - 254., 2006.

[41] Cruz, . and Sunna, W. “Structural Alignment Methods with Applications to
Geospatial Ontologies”. Transactions in GIS, special issue on Semantic Similarity
Measurement and Geospatial Applications, Vol. 12, No. 6(2008), pp. 683-711.

[42] Cruz, I, Antonellj, F. P., and Stroe, C., “Efficient Selection of Mappings and Automatic
Quality-driven Combination of Matching Methods”. In Proceedings of international
workshop on Ontology Matching (OM’'09), Vol. 551 of CEUR Workshop Proceedings, CEUR-
WS.org, 2009, 2009.

[43] Davenport, T.H. & Short,]J.E., "The New Industrial Engineering: Information
Technology and Business Process Redesign®. Sloan Management Review, pp. 11-27, (1990
Summer).

[44] Davydov, E., and Batzoglu, S., “A computational model for RNA multiple structural
alignment”. Journal Theoretical Computer Science, Vol. 368, No. 3 (2006), pp.205-216.

[45] Doshi, P., Goodwin, R., AkKiraju, R., and Verma, K., “Dynamic workflow composition
using markov decision processes”. International Journal of Web Services Research, Vol. 2, No.
1(2005), pp. 1-17.

[46] Dulucgq, S., and Tichit, L., “RNA Secondary structure comparison: exact analysis of the
Zhang-Shasha tree edit algorithm”. Journal Theoretical Computer Science, Vol. 306, No.
13(2003), pp- 471 - 484.

[47] El-Mabrouk, N. and Raffinot, M..,“Approximate matching of secondary structures”.
In Proceedings of the Sixth Annual international Conference on Computational Biology
(RECOMB '02), 156-164, 2002.

[48] Eshuis, R. and Grefen, P., “Structural matching of BPEL processes”. In Proceedings of
the Fifth European Conference on Web Services (ECOWS '07), pp. 171-180, 2007.

113

Bibliography

[49] Euzenat, J. and Valtchev, P., “Similarity-based ontology alignment in OWL-lit.”. In
Proceedings of the 15th European Conference on Artificial Intelligence (ECAI'04), pp. 333-
337, 2004.

[50] Euzenat, ., Ferrara, A., Meilicke, C., Pane,]., Scharffe, F., Shvaiko, P., Stuckenschmidt,
H., Svdb-Zamazal, 0., Svatek, V. and dos Santos, C.T., “First results of the Ontology Alignment
Evaluation Initiative 2010”. In Proceedings of the Fifth International Workshop on Ontology
Matching (OM’10), the 9th International Semantic Web Conference ISWC, 2010.

[51] Ferrara, E. and Baumgartner, R., "Automatic Wrapper Adaptation By Tree Edit
Distance Matching". In Proceedings of the 2nd International Workshop of In Combinations of
Intelligent Methods and Applications (CIMA’10), pp 41-54, 2010.

[52] Fluri, B., Wuersch, M., PInzger, M., and Gall,H., “Change Distilling: Tree Differencing
for Fine-Grained Source Code Change Extraction”. IEEE Transactions on Software
Engineering, Vol. 33, No. 11, pp. 725-743, 2007.

[53] Fokaefs, M., Mikhaiel, R., Tsantalis, N., Stroulia, E., “An Empirical Study on Web
Service Evolution”. In Proceedings of the 9th International Conference on Web Services
(ICWS’'11), pp. 49-56,2011.

[54] Giunchiglia, F., Yatskevich, M., Mcneill, F., “Structure preserving semantic matching”.
In Proceedings of the ISWC+ASWC International workshop on Ontology Matching (OM’07),
pages 13-24, 2007.

[55] Gotoh, O., “An Improved Algorithm for Matching Biological Sequences”. Journal of
Molecular Biology, Vol. 162, No. 3 (1981), pp. 705-708.

[56] Havey, M. “Essential Business Process Modeling”. Book published by O'Reilly &
Associates, ISBN 0-596-00843-0, 2005.

[57] Herrbach, C., Denise, A, Dulucq, S., Touzet, H. “Alignment of RNA secondary
structures using a full set of operations”, Rapport de Recherche LRI n° 1451, 2006

[58] Hinchcliffe, D. “Situational Software Platforms Begin to Emerge”. ZDNet,
http://blogs.zdnet.com/Hinchcliffe /?7p=69, October 16th, 2006, last accessed on Jun 16th,
2008.

[59] Hochsmann, M., Toeller, T., Giegerich, R., and Kurtz, S. “Local Similarity of RNA
Secondary Structures.” In Proceedings of Computational Systems Bioinformatics (CSB’03):
pp. 159-168, 2003.

[60] Hochsmann, M., Voss, B., and Giegerich, R., “Pure Multiple RNA Secondary Structure
Alignments: A Progressive Profile Approach”. IEEE/ACM Trans. Comput. Biol. Bioinformatics
Vol. 1, No. 1 (2004), pp. 53-62.

[61] Hochsmann, M. “The tree alignment model : algorithms, implementations and
applications for the analysis of RNA secondary structures”. Dissertation, Universitat
Bielefeld, Technische Fakultit, 2005.

[62] Hofacker, I., Fontana, W., Stadler, P., Bonhoeffer, L., Tacker, M., and Schuster, P., “Fast
Folding and Comparison of RNA Secondary Structures.” Chemical Monthly, Vol. 125, No. 2
(1994): pp. 167-188.

[63] Hoffmann, C. M. and O’Donnell, M.], “Pattern matching in trees”. Journal of the
Association for Computing Machinery (JACM), Vol. 29, No. 1(1982), pp. 68-95.

[64] Hollingsworth, D. “The workflow reference model”. Workflow Management
Coalition Specification TC00-1003, Workflow Management Coalition, Winchester Hampshire,
UK, January 1995.

[65] Horrocks, 1., “A Denotational Semantics for Standard OIL and Instance OIL”.
http://www.ontoknowledge.org/oil/downl/semantics.pdf, 2000.

[66] Isert, C., “The Editing Distance Between Trees.” , 1999,
http://citeseer.ist.psu.edu/isert99editing.html (accessed Aug. 2006)

114

Bibliography

[67] Jaeger, M.C,, Rojec-Goldmann, G., Liebetruth, C., Miih], G, Geihs, K., “Ranked Matching
for Service Descriptions Using OWL-S”.In Proceedings of Kummunikation in Verteilten
Systemen (KiVS’5), pp. 91-102, 2005.

[68] Jiang, T., Wang, L., and Zhang, K., “Alignment for trees -an alternative to tree edit”. In
Proceedings of the 5th Annual Symposium on Combinatorial Pattern Matching, LNCS, 807:
pp. 75-86, 1994.

[69] Jiang, T., Wang, L. and Zhang, K., “Alignment of trees - an alternative to tree edit”.
Theoretical Computer Science, Vol. 143, No. 1(1995), pp. 137-148.

[70] Jiang, Y., Stroulia, E., “Towards Reengineering Web Sites to Webservices Providers”,
In Proceedings of Eighth Euromicro Working Conference on Software Maintenance and
Reengineering (CSMR’4), pp. 296-305, 2004.

[71] Jin,], Sarker, B. K., Bhavsar, V. C,, Yang, L., and Boley, H., "Towards a Weighted-Tree
Similarity Algorithm for RNA Secondary Structure Comparison”. In Proceedings of the Eighth
international Conference on High-Performance Computing in Asia-Pacific Region
(HPCASIA’S). pp. 639 - 644, 2005.

[72] Kensche, D., Quix, C., Chatti, M. A,, and Jarke, M., "GeRoMe: A Generic Role Based
Metamodel for Model Management"”, Journal on Data Semantics, VIII, pp. 82-117, 2007.

[73] Kilpel “ainen, P. and Mannila, H., “Ordered and unordered tree inclusion”. SIAM
Journal of Computing, Vol. 24, No. 2, pp. 340-356, 1995.

[74] Kim, Y., Park, J., Kim, T., and Choi, J., "Web Information Extraction by HTML Tree Edit
Distance Matching". In Proceedings of International Conference on Convergence Information
Technology (ICCIT’07), pp.2455-2460, 2007

[75] Klein, P, Tirthapura, S., Sharvit, D. and Kimia, B., “A tree- edit-distance algorithm for
comparing simple, closed shapes”. In Proceedings of the 11th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA’00), pp. 696-704, 2000.

[76] Kruchten, P., “The 4+1 view model of architecture”. IEEE Software, Vol. 12, No. 6, pp.
42-50, 1995.

[77] Kister, J. M., Gerth, C., Forster, A.,, and Engels, G., “Detecting and Resolving Process
Model Differences in the Absence of a Change Log". In Proceedings of the 6th International
Conference on Business Process Management (BPM’08). LNCS, Vol. 5240. pp. 244-260, 2008.
[78] Lah, T, “The Services Alignment Risk Factor: The Real Challenge for HP”. Article is
provided courtesy of Prentice Hall, 2001,
http://www.phptr.com/articles/article.asp?p=23768&seqNum=5&rl=1

[79] Lah, T. E, “The Services Alignment Risk Factor: The Real Challenge for HP*
www.informit.com, Oct 26, 2001, Article is provided courtesy ofPrentice Hall,
http://www.informit.com/articles/article.aspx?p=23768 (last accessed July 30, 2010).

[80] Laski,]J. and Szermer, W. “Identification of program modifications and its
applications in software maintenance”. In Proceedings of Conference on Software
Maintenance, pp. 282 - 290, 1992.

[81] Lassila, 0., and Swick, R.R. “Resource Description Framework (RDF) Model and
Syntax Specification”. W3C Recommendation 22 February 1999,
http://www.w3.0org/TR/1999 /REC-rdf-syntax-19990222.

[82] Le, D.-N., Nguyen, V.-Q., and Goh, A., "Matching WSDL and OWL-S Web Services", In
Proceeding of the 2009 IEEE International Conference on Semantic Computing (ICSC'09),
pp. 197-202, 2009.

[83] Le, S., Nussinov, R., and Mazel,], “Tree graphs of RNA secondary structures and their
comparison”. Computational Biomedical Research, Vol. 22, No. 5 (1989), pp. 461-473.

115

Bibliography

[84] Le, S., Owens, J., Nussinov, R., Chen, J., Shapiro, B., and Maizel, J., “RNA secondary
structures: comparison and determination of frequently recurring substructures by
consensus”. Comput. Appl. Biosci., Vol. 5, No. 3 (1989), pp. 205 - 210.

[85] Lee, M. L, Yang, L. H,, Hsu, W. and Yang, X., “XClust: Clustering XML Schemas for
Effective Integration”. In Proceedings of the eleventh international conference on
Information and knowledge management (CIKM'02), pp. 292-299, 2002.

[86] Levenshtein, V., “Binary codes capable of correcting deletions, insertions and
reversals”. Soviet Physics Doklady, Vol. 10, No. 8. (1966), pp. 707-710.

[87] Li]J., Tang)].,, Li,Y., and LuoQ., “RIMOM: A dynamic multi-strategy ontology alignment
framework”. IEEE Transaction on Knowledge and Data Engineering, Vol. 21, No. 8(2009), pp.
1218-1232.

[88] Lin, G, Ma, B, and Zhang, K, “Edit distance between two RNA structures.” In
Proceedings of the Fifth Annual international Conference on Computational Biology.
(RECOMB '01), pp. 211-220, 2001.

[89] Lindholm, T., Kangasharju, J., Tarkoma, S., “Fast and simple XML tree differencing by
sequence alignment”. In Proceedings of the 2006 ACM symposium on Document engineering
(DocEng’06), pp- 75-84, 2006.

[90] Liu, B, Han, H, Noro, T., and Tokuda, T., "Personal News RSS Feeds Generation Using
Existing News Feeds". In Proceedings of International Conference on Web Engineering
(ICWE’09), pp. 419-433, 20009.

[91] Liu, F,, Shi, Y, Yu,], Wang, T.,, and Wu,], "Measuring Similarity of Web Services
Based on WSDL“ In Proceedings of International Conference on Web Services (ICWS’10),
pp.155-162, 2010.

[92] Liu,]J., Wang,], Huy,], and Tian, B., “A method for aligning RNA secondary structures
and its application to RNA motif detection”. BMC Bioinformatics. 6: 89, 2005.

[93] Liu, Y., Wang, |, Zhu,], Liang, H., Tian, Z., and Sun, W., “Business Process Modeling in
Abstract Logic Tree”. IBM Research Report, IBM Research Division, China Research
Laboratory, RC23444 (C0411-006), November, 2004.

[94] Ma, B., Wang, L., and Zhang, K., “Computing similarity between RNA structures”.
Theoretical Computer Science, Vol. 276, No. 1-2(2002), pp. 111-132.

[95] Mahleko, A, Wombacher, A., and Fankhauser, P., “A Grammar-Based Index for
Matching Business Processes“. In Proceedings of International Conference on Web Service
(ICWS’5), pp. 21-30, 2005.

[96] Manola, F., and Miller, E., “RDF Primer”. W3C Recommendation 10 February 2004,
http://www.w3.0org/TR/2004 /REC-rdf-primer-20040210/.

[97] Marian, A., Abiteboul, S., Cobena, G., and Mignet, L., “Change-centric management of

versions in an XML warehouse”. In Proceedings of the International Conference on Very
Large Data Bases (VLDB’01), pp. 581-590, 2001.

[98] Martin, D., Burstein, M., Hobbs, J., Lassila, 0., McDermott, D., Mcllraith, S., Narayanan,
S., Paolucci, M., Parsia, B., Payne,T,, Sirin, E., Srinivasan, N., and Sycara, K. “Owl-s: Semantic
markup for web services”. http: //www.daml.org/services/owl-s/1.1/overview/, 2004.

[99] McGuinness, D.L., Fikes, R., Stein, L.A.,, and Hendler, J.A, “DAML-ONT: An Ontology
Language for the Semantic Web”. Spinning the Semantic Web: Bringing the World Wide Web
to Its Full Potential, The MIT Press, Cambridge, Massachusetts, ISBN 0262062321, pp. 65-94,
2003.

[100] McGuinness, D.L., and Harmelen, F.V., “OWL Web Ontology Language: Overview”.
W3C Recommendation, 10th of February 2004, http://www.w3.org/TR/owl-features/

[101] Mcllraith, S., and Mandell, D., “Comparison of DAML-S and BPEL4WS (initial draft)”.
Knowledge Systems Lab, Stanford University, September 5, 2002.

116

Bibliography

[102] Mikhaiel, R., Stroulia, E., “Examining Usage Protocols for Service Discovery”. In
Proceedings of the 4th International Conference on Service Oriented Computing (ICSOC’06),
LNCS 4294, pp. 496-- 502, 2006.

[103] Mikhaiel,R,, Lin, G., Stroulia,E., “Simplicity in RNA Secondary Structure Alignment:
Towards biologically plausible alignments®. In Proceedings of the IEEE 6th Symposium on
Bioinformatics & Bioengineering (BIBE ‘06), pp. 149 - 158, 2006.

[104] Miller, E., “An Introduction to the Resource Description Framework”. D-Lib
Magazine, ISSN 1082-9873, May 1998.

[105] Milner, R., Parrow,]., and Walker, D., “A Calculus of Mobile Processes, Part I+II”.
Journal of Information and Computation, Vol. 100, No. 1 (1992), pp. 1-87.

[106] Mlynkova, I, “Similarity of XML schema definitions”. In Proceeding of the eighth
ACM symposium on Document Engineering (DocEng’08), 2008.

[107] Munzner, T., Guimbretiere, F., Tasiran, S., Zhang, L., and Zhou, Y., “TreeJuxtaposer:
Scalable Tree Comparison using Focus+Context with Guaranteed Visibility”. SIGGRAPH, ACM
Transactions on Graphics, Vol. 22, No. 3 (2003), pp- 453-462.

[108] Musser, J. “Salesforce.com Launches
ApexConnect”.blog.ProgrammableWeb.comNovember, 27th, 2006,
http://blog.programmableweb.com/2006/11/27 /salesforcecom-launches-apexconnect/,
last accessed on Jun 16th, 2008.

[109] Nguyen, B., Abiteboul, S., Cobena, G., and Preda, M., “Monitoring XML data on the
web”. In Proceedings of the 2001 International Conference on Management of Data
(SIGMOD’01), pp. 437-448,2001.

[110] Nierman, A. and Jagadish, H. V. “Evaluating Structural Similarity in XML
Documents”. In Proceedings of the Fifth International Workshop on the Web and Databases
(WebDB'02), pp. 61-66,2002.

[111] O'Reilly, T., “What Is Web 2.0: Design Patterns and Business Models for the Next
Generation of Software”.web article on O'Reilly net, Sep 30, 2005
(http://www.oreillynet.com/pub/a/oreilly/tim /news/2005/09/30/what-is-web-20.html
access on Jan 3rd, 2009).

[112] Object Modeling Group (OMG), "XML Metadata Interchange (XMI)", OMG Formally
Released Versions of XMI, version 2.1.1, December 2007.
http://www.omg.org/spec/XMI1/2.1.1/

[113] Paolj,], Valet-Harper, L., Farquhar, A., and Sebestyen, 1., “ECMA-376 Office Open XML
File Formats”. 2006.

[114] Paolucci, M., Kawamura, T., Payne, T. R, and Sycara, K., “Semantic Matching of Web
Services Capabilities“. In Proceedings of the 1st International Semantic Web Conference
(ISWC’'03), pp. 333-347, 2002.

[115] Papavassiliou, V., Flouris, G., Fundulaki, I., Kotzinos, D. Christophides, V. “On
Detecting High-Level Changes in RDF/S KBs”. In Proceedings of the International Semantic
Web Conference (ISWC'09), pp. 473-488, 2009.

[116] Payne, T.R, Paolucci, M., and Sycara, K., “Advertising and Matching DAML-S Service
Descriptions”. In Proceedings of Semantic Web Working Symposium (SWWS’01), 2001.
[117] Peters, L., “Change Detection in XML Trees: a Survey”. 3rd Twente Student
Conference on IT, Enschede June, 2005.

[118] QeliE., Gllavata,]J., Freisleben, B. “Customizable detection of changes for XML
documents using XPath expressions”. In Proceedings of ACM Symposium on Document
Engineering (DocEng’06), pp. 88-90, 2006.

[119] Ramesh, R. and Ramakrishnan, 1.V, “Nonlinear pattern matching in trees”. Journal of
the Association for Computing Machinery (JACM), Vol.39, No. 2(1992), pp. 295- 316.

117

Bibliography

[120] Reis, D., Golgher, P,, Silva, A. and Laender, A., “Automatic web news extraction using
tree edit distance”. In Proceedings of the 13th International Conference on the World Wide
Web (WWW’04), pp. 502-511, 2004.

[121] RNAForester Online: http://bibiserv.techfak.uni-bielefeld.de/rnaforester/ (accessed
Aug. September 2011).

[122] Salimifard, K., and Wright, M. “Petri-Net based Modeling of Workflow Systems: An
Overview”. In European Journal of Operational Research, Vol. 134, No. 3(2001), pp. 218-
230.

[123] Sankoff, D., and Cedergren, R., “Simultaneous comparison of tree or more sequences
related by a tree”. The Theory and Practice of Sequence Comparison, Vol. 28(1983), pp. 253-
263.

[124] Schmidt, A, Waas, F., Kersten, M.L., Carey, M.]., Manolescu, 1., Busse, R.,, “XMark: A
Benchmark for XML Data Management”. In Proceedings of the International Conference on
Very Large Data Bases (VLDB’02), pp 974-985, 2002.

[125] Selkow, S., “The tree-to-tree editing problem”, Information Processing Letters, Vol. 6,
No. 6 (1977) ,pp- 184-86.

[126] Shapiro, B., “An algorithm for comparing multiple RNA secondary structures.” Comp.
Appl. Biosci, Vol. 4, No. 3(1988), pp. 387-393.

[127] Sivaraman, E. and Kamath, M., “On the use of petri nets for business process
modeling”. http://citeseer.ist.psu.edu/535337.html

[128] Shapiro, B, and Zhang, K., “Comparing multiple RNA secondary structures using tree
comparisons.” Comput. Appl. Biosci., Vol. 6. No. 4 (1990): pp. 309-318.

[129] Stroulia, E. and Wang, Y., “Structural and Semantic Matching for Assessing Web-
Service Similarity”. International Journal of Cooperative Information Systems, Vol. 14, No.
4(2005), pp. 407-437.

[130] Sullivan, L., “eBay Developers Create Huge Software-As-A-Service Community”.
TechWeb Network (techweb.com), March 03, 2006,
http://www.techweb.com/wire/ebiz/181500918, last accessed on Jun 16, 2008.

[131] Sun Microsystems. OpenOffice.org XML File Format. 1.0, Dec. 2002

[132] Syeda-Mahmood, T. F., Shah, G., Akkiraju, R., Ivan, A. A.,, and Goodwin, R., “Searching
Service Repositories by Combining Semantic and Ontological Matching”. In Proceedings of
International Conference on Web Service (ICWS’05),pp- 13-20, 2005.

[133] Szymanski, M., Barciszewska, M., Erdmann, V., and Barciszewski,]. “5S ribosomal
RNA database”. Journal Nucleic Acids Research, Vol. 30, No. 1 (2002), pp. 176-178.

[134] Tai, K.C,, “The tree-to-tree correction problem”. Journal of the ACM, Vol. 26, No.
3(1979), pp. 422-433.

[135] The RNA match package: http://www.csd.uwo.ca/~kzhang/rna/rna_match.html
(accessed Aug. 2006)

[136] Tsantalis, N.,, Negara, N. Fokaefs, M., Mikhaiel, R, and Stroulia, E., “A Domain-
Agnostic Technique for Differencing Object-Oriented Models”, to appear.

[137] Vagena, Z., Moro, M., and Tsotras, V., "Twig query processing over graph-structured
XML data", In Proceedings of the 7th International Workshop on the Web and Databases:
colocated with ACM SIGMOD/PODS, pp. 43-48, 2004,

[138] Virdell, M., “Business processes and workflow in the Web services world, article”.
IBM developerWorks, SOA Web Services, Jan, 2003, http://www-
128.ibm.com/developerworks/webservices/library/ws-work.html#author.

118

Bibliography

[139] Wang, L., and Gusfield, D., “Improved approximation algorithms for tree alignment”.
In Proceedings of the 7th Combinatorial Pattern Matching conference, (CPM’'96) pp. 220-
233, 1996.

[140] Wang, Y. DeWitt, D. . and Cai,].-Y., “X-Diff: an effective change detection algorithm
for XML documents”. In Proceedings of thel9th International Conference on Data
Engineering, pp. 519-530, 2003.

[141] Wang, Y., Stroulia, E. “Flexible Interface Matching for Web-Service Discovery”. In
Proceedings of the 4th International Conference on Web Information Systems Engineering,
pp. 147-156, 2003.

[142] Wang, Z, and Zhang, K., “Alignment between Two RNA Structures”. In Proceedings
of the 26th international Symposium on Mathematical Foundations of Computer Science, pp.
690-702,2001.

[143] Wang, Z. and Zhang, K, “Multiple RNA Structure Alignment”. In Proceedings
Computational Systems Bioinformatics Conference (CSB 04): pp. 246-254, 2004.

[144] Webber,N,, O’Connell,C, HuntB., Levine,R.,, PopkinL., and Larose, G. “The
Information and Content Exchange (ICE) Protocol”. http://www.w3.org/TR/NOTE-ice.

[145] Wombacher, A., Fankhauser, P., and Neuhold, E. “Transforming BPEL into Annotated
Deterministic Finite State Automata for Service Discovery.” In Proceedings of International
Conference on Web Services (ICWS’04), pp. 316-323, 2004

[146] World Wide Web Consortium (W3C), Cambridge, Massachusetts, USA. Document
Object Model (DOM) Level 3 Core Specification, Apr. 2004. W3C Recommendation.

[147] World Wide Web Consortium (W3C), Cambridge, Massachusetts, USA. Extensible
Markup Language (XML) 1.0 (Fifth Edition), W3C Recommendation 26 November 2008.
http://www.w3.org/TR/2008/REC-xml-20081126/

[148] World Wide Web Consortium (W3C), Cambridge, Massachusetts, USA. OWL 2 Web
Ontology Language, W3C Recommendation 27 October 2009.

[149] World Wide Web Consortium (W3C), Cambridge, Massachusetts, USA. OWL-S:
Semantic Markup for Web Services, W3C Recommendation 22 November2004.

[150] World Wide Web Consortium (W3C), Cambridge, Massachusetts, USA. Remote
Events for XML (REX) 1.0, Feb. 2006. W3C Working Draft.

[151] World Wide Web Consortium (W3C), Cambridge, Massachusetts, USA. Resource
Description Framework (RDF), Feb. 2004. W3C Recommendation.

[152] World Wide Web Consortium (W3C), Cambridge, Massachusetts, USA. Scalable
Vector Graphics (SVG). 1.1 Specification, Jan. 2003. W3C Recommendation.

[153] World Wide Web Consortium (W3C), Cambridge, Massachusetts, USA. Service
Modeling Language, Version 1.1, May. 2009. W3C Recommendation.

[154] World Wide Web Consortium (W3C), Cambridge, Massachusetts, USA. SOAP Version
1.2 Part 0: Primer (Second Edition), Apr. 2007. W3C Recommendation.

[155] World Wide Web Consortium (W3C), Cambridge, Massachusetts, USA. Web Services
Description Language (WSDL) Version 2.0 Part 1: Core Language, Apr. 2007. W3C
Recommendation.

[156] World Wide Web Consortium (W3C), Cambridge, Massachusetts, USA. XHTML 1.0
The Extensible HyperText Markup Language (Second Edition), Aug.2002. W3C
Recommendation.

[157] World Wide Web Consortium (W3C), Cambridge, Massachusetts, USA. XML
Information Set, 2nd edition, Feb. 2004. W3C Recommendation.

[158] World Wide Web Consortium (W3C), Cambridge, Massachusetts, USA. XML Path
Language (XPath) 2.0, 2nd edition, Dec. 2010. W3C Recommendation.

119

Bibliography

[159] World Wide Web Consortium (W3C), Cambridge, Massachusetts, USA. XQuery 1.0
and XPath 2.0 Data Model (XDM), Nov. 2005. W3C Candidate Recommendation.

[160] World Wide Web Consortium, (W3C) Cambridge, Massachusetts, USA. Web Ontology
Language: Overview (OWL), Feb. 2004. W3C Recommendation.

[161] Xing, Z. and Stroulia, E., “UMLDIiff: an algorithm for object oriented design
differencing, “ in Proceedings of the 20th IEEE/ACM international Conference on Automated
software engineering, pp. 54-65, 2005.

[162] Xu, P, Wang, Y., Cheng, L., and Zang, T., "Alignment results of SOBOM for OAEI 2010",
In Proceedings of Ontology Matching Workshop colocated with ISWC 2010.

[163] Xu, Y., Wang, L, and Deng, X, “Exact pattern matching for RNA secondary
structures”. In Proceedings of the Second Conference on Asia-Pacific Bioinformatics, ACM
International Conference Proceeding Series, Vol. 55, pp. 257-263, 2004.

[164] Zhai, Y., Liu, B, “Web data extraction based on partial tree alignment”’, In
Proceedings of the 14th international conference on World Wide Web (WWW’04), pp. 76-85,
2005.

[165] Zhang, K., “Computing Similarity Between RNA Secondary Structures”. In
Proceedings of the IEEE international Joint Symposia on intelligence and Systems, pp.126 -
132, 1998.

[166] Zhang, K., Stgatman, R, and Shasha, D. “Simple fast algorithm for the editing
distance between trees and related problems”. SIAM Journal on Computing, Vol. 18, No. 6,
(1989), pp. 1245-1262.

[167] Zhang, K, Shasha, D. and Wang,]. T. L., “Approximate tree matching in the presence
of variable length don’t cares”. Journal of Algorithms, Vol. 16, No. 1(1994), pp. 33-66.

[168] Zhang, K., Wang,]. T. L., and Shasha, D., “On the editing distance between undirected
acyclic graphs and related problems”. In Proceedings of the 5th Annual Symposium on
Combinatorial Pattern Matching (CPM '95), pp. 395-407, 1995.

[169] Zhang, K, Wang, L., and Ma, B., “Computing similarity between RNA structures”. In

Proceedings of 10th Annual Symposium on Combinatorial Pattern Matching (CPM ’99), pp.
281-293,1999.

120

