

University of Alberta

Comparing XML Documents as Reference-aware Labeled Ordered Trees

by

Rimon A. E. Mikhaiel

The thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Computing Science

©Rimon A. E. Mikhaiel
Fall 2011

Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis
and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is

converted to, or otherwise made available in digital form, the University of Alberta will advise potential users
of the thesis of these terms.

The author reserves all other publication and other rights in association with the copyright in the thesis and,

except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or
otherwise reproduced in any material form whatsoever without the author's prior written permission.

Dedication

This thesis is dedicated to my lovely wife who has endlessly supported and

encouraged me through the years of this research, and to my two blessed angels

George and Daniel.

Also, I dedicate this thesis to my parents who have dreamed of seeing me holding

a doctorate of philosophy.

--Rimon Mikhaiel

Abstract

XML, the Extensible Markup Language, is the standard exchange format for

modern Information Systems, Service Oriented Architecture (SOA) and the

Semantic Web. Hence, comparing XML documents has become a necessary task

for tracking and merging changes between versions of the same document, or for

translating between documents referring to the same information but complying

with different schemata or originating from different parties. In this scenario,

given two documents, XML differencing is the process of finding an edit

sequence, namely a sequence of exact and approximate matching, deletion, and

insertion operations, which, if applied to the first document will result in the

second. In practice, domain-specific differencing solutions are expensive to

develop, and hard to reuse. Therefore, a generic differencing approach, able to

serve various domains, would be both useful and cost-effective. This thesis

presents VTracker, a generic XML differencing approach, which is capable of

capturing domain knowledge and semantics through a configurable domain-

specific cost function. VTracker views an XML document as an ordered labeled

tree. Given two XML-document trees and a cost function VTracker calculates the

tree-edit distance needed to transform one tree to the other. The first contribution

of VTracker is an automatic method used to synthesize such a cost function based

on the domain’s XML Schema Definition (XSD). Second, VTracker considers the

XML reference structure in addition to the natural XML containment structure.

Third, VTracker implements an affine-cost policy that prefers edit operations

applied to neighbors over dispersed elements. Finally, VTracker uses a set of

simplicity heuristics to nominate the best edit script in case of multiple ones found

with the same minimum cost. VTracker was applied to a variety of domains,

namely OWL/RDF, WSDL, BPEL, UML/XMI, XHTML, and RNA secondary

structure, where it performed competitively with, or even better than, state-of-the-

art methods in each of these domains.

Acknowledgement

This dissertation would not have been possible without the guidance and the help

of several individuals who extended and contributed their valuable assistance in

the preparation and completion of this study.

First of all, I owe my deepest gratitude to my supervisor, Professor Eleni

Stroulia, whose support and guidance made this thesis possible. Her passion and

encouragement have been my inspiration as I have overcome all the obstacles in

the completion this research work.

My colleagues Marios Fokaefs, Nikolaos Tsantalis, and Natalia Negara

whose constructive insights and feedbacks constituted valuable inputs towards the

improvement of this research.

I would also like to thank my editor, Margaret Evans, who provided great

help in reviewing the text of this thesis.

Last, but not least, my family, and the one above all of us, God the

Almighty, who has given me strength and guided me through this journey. May

His name be exalted, honored, and glorified.

--Rimon Mikhaiel

Table of Contents

!"#$%&'()*&! +*%'),-!%+)* .../!

!"#$%&'(%0)! 1#!23')-*,(#*,('&4#%&,(0)'2 ...5!
"#$!%&' ##(!
!"#"#$%&'$()**+,-.*/$011)&-23*. ""4!
!"#"!$()**+,-.*/$011)&-23*. ""5!

"#"!)*+)'),- ##$"!
!"!"#$6*7-8*/$9&): """ #;!
!"!"!$0'$<'8&7&=>$-.$-$()** "" #?!

"#.!/01'##$2!
!";"#$6*7-8*/$9&): """ !@!
!";"!$0$9ABC$.1*2DED2-8D&'$-.$-$()**"" !#!

"#3!456' ###".!
!"F"#$6*7-8*/$9&): """ !4!
!"F"!0GHIC$-.$-$()**""" !5!

"#(!7&'###"8!
!"?"#$6*7-8*/$9&): """ ;@!
!"?"!0JKC$L&/*7$-.$-$()** "" ;#!

"#9!%:+&'###..!
!"4"#$MN(KC$-.$-$()** "" ;F!

"#;!<*=!06>)*1=<-!0+<7>+7<6!>)&5=<?0)* ##.9!
!"5"#$6*7-8*/$9&): """ ;4!
!"5"!$6%0$A*2&'/-)>$A8)O28O)*$P&L1-)D.&'$-.$-$()**""" ;5!

!"#$%&'(%"'&&! 6%'#!2&'7(#(3&*&'+!(894:,+;;&'&*!+*3(9&%"),<=!
.#$!<6@7?<6&6*+0!)A!,6*6<?>!%&'!1?AA6<6*>?*,###3B!
.#"!+:6!)<?,?*='!C:=*,D0:=0:=!=',)<?+:& ##(B!
.#.!+:6!E+<=>F6<!=55<)=>: ##(3!
;";"#MKCB&2OL*'8.$-.$<)/*)*/$C-,*7*/$()**. "" ??!
;";"!$(3*$Q()-2:*)$P&.8$K&/*7"" ?4!
;";";$P&'.D/*)D'=$<O8=&D'=$6*E*)*'2*. """ 4;!
;";"F$P&'.D/*)D'=$J.-=*+P&'8*R8$ST'2&LD'=$6*E*)*'2*.U"" 45!

;";"?$A*7*28D'=$83*$<18DL-7$I/D8$A2)D18 "" 45!
;";"4$B&L-D'V0W-)*$<18DLDX-8D&'.""" 5@!

.#3!E+<=>F6<!=0!=!,6*6<?>!%&'!1?AA6<6*>?*, ###;"!

!"#$%&'(;)-'! #$$4>+*3(6%'#!2&'(%)(?$&!+;+!(,)9#+*?.........................@<!
3#$!=55'-?*,!E+<=>F6<!+)!)*+)'),-!&=+>:?*,###;3!
3#"!?&5'6&6*+=+?)*###2B!
3#.!+:6!>)*A?,7<=+?)*!5<)>600 ##2"!

!"#$%&'(;+6&! &6#4-#%+)*...A5!
(#$!,6*6<='!@7='?+-!6E='7=+?)*!6%56<?&6*+ ##2(!
(#"!<*=!>)&5=<?0)*!6%56<?&6*+###22!
(#.!)*+)'),-!&=+>:?*,!6%56<?&6*+ ##8.!
(#3!7&'!1?AA6<6*>?*,!6%56<?&6*+##8;!
(#(!06<E?>6!1?0>)E6<-!6%56<?&6*+## B!

!"#$%&'(?+8! ,+?!-??+)*B(!)*!4-?+)*B(#*,(;-%-'&(0)'2 /=@!
9#$!>)*>'70?)*## $B8!
9#"!A7+7<6!/)<F## $$B!

1+14+)3'#$"> ... ///!

List of Tables

Table 3-1: Sample of OWL/RDF synthesized cost model.................................... 58!

Table 4-1: VTracker’s system configurations for various domains...................... 84!

Table 5-1: Evaluation results of simplicity heuristics in RNA Secondary
Structure comparison measured by Harmonic Mean 91!

Table 5-2: Evaluation of VTracker against related work for RNA Secondary
Structure Comparison.. 93!

Table 5-3: Evaluation of various VTracker Contributions 95!

Table 5-4: Evaluation of VTracker against results from OAEI 2010 97!

Table 5-5: Evaluation of VTracker against UMLDiff .. 100!

Table 5-6: Evaluation of VTracker in SAWSDL-TC Collection 104!

List of Figures

AGHIJK!"D$L!=M!example!NO!%&'!PGOOKJKMQGMH!IRGMH!7MGS!/DEE$TKJRIR!UM!%&'!
PGOOKJKMQGMH!VKQWUMGRV.. 7!

AGHIJK!"D"L!0KXYNZ[R!+JKKD\ND+JKK!6PG\GMH!VNPKX!TKJRIR!+UG]R!+JKKD\ND
+JKK!>NJJKQ\GNM!VNPKX!ZG\W!JKHUJP!\N!PKXK\GNM!NO!U!MNPK!Q 8!

AGHIJK!"D.L!=!RUV^XK!)/'_<1A!NM\NXNH`!JK^JKRKM\KP!UR!U!\JKK!0\JIQ\IJK!
GMQXIPGMH!)M\NXNH`!>XURRKRa!5JN^KJ\GKRa!UMP!?MR\UMQKR# 17!

AGHIJK!"D3L!=!/01'!R^KQGOGQU\GNM!NO!U!^IbXGRWKP!NMXGMK!=XbIV!/Kb!
0KJTGQK .. 20!

AGHIJK!"D(L!=!/01'!R^KQGOGQU\GNM!NO!U!PKRGJKP!NMXGMK!4NNY!QU\UXNH!/Kb!
0KJTGQK .. 20!

AGHIJK!"D9L!=!/01'!R^KQGOGQU\GNM!JK^JKRKM\KP!UR!U!\JKK!R\JIQ\IJK# 23!

AGHIJK!"D;L!=!456'!^JNQKRR!ZNJYOXNZ!ONJ!UM!NMXGMKDUXbIV!RKJTGQK 25!

AGHIJK!"D2L!=!456'!^JNQKRR!ZNJYOXNZ!JK^JKRKM\KP!UR!U!\JKK 29!

AGHIJK!"D8L!=!7&'_%&?!RUV^XK!JK^JKRKM\KP!UR!U!\JKK!R\JIQ\IJK 32!

AGHIJK!"D$BL!=!%:+&'!PGOOKJKMQGMH!KSUV^XK .. 35!

AGHIJK!"D$$L!=M!%:+&'!PNQIVKM\!JK^JKRKM\KP!UR!UM!NJPKJKP!XUbKXKP!\JKK . 35!

Figure 2-12: An RNA Structure represented as an ordered labeled tree 38!

Figure 2-13: LFG versus TFG RNA tree structures ... 39!

AGHIJK!.D$L!+ZN!NbcKQ\DNJGKM\KP!RUV^XKR!JK^JKRKM\KP!UR!\JKK!R\JIQ\IJKR..... 43!

AGHIJK!.D"L!+ZN!%&'!RUV^XK!PNQIVKM\R!RWNZGMH!\WK!PGOOKJKMQK!bK\ZKKM!
MNMDMNJVUXGdKP!UMP!JKOKJKMQKDbURKP!MNJVUXGdKP!R\JIQ\IJKR................. 45!

AGHIJK!.D.L!=M!%&'!PGOOKJKMQGMH!KSUV^XK!GXXIR\JU\GMH!\WK!GV^NJ\UMQK!NO!
JKOKJKMQK!VNPKX ... 47!

AGHIJK!.D3L!=M!%&'!PGOOKJKMQGMH!KSUV^XK!GXXIR\JU\GMH!\WK!JNXK!NO!IRUHKD
QNM\KS\!RGVGXUJG\`!GM!JKRNXTGMH!VU\QWGMH!UVbGHIG\GKR 49!

Figure 3-5: A sample tree-edit script .. 51!

AGHIJK!.D9L!EGRIUXGdU\GNM!NO!CWUMHD0WURWU!UXHNJG\WV!e39f 53!

Figure 3-7: VTracker’s framework processing model .. 55!

Figure 3-8: VTracker domain bootstrapping process ... 58!

Figure 3-9: A sample string-edit distance with affine-gap policy where dashes
represent insertions and deletions ... 59!

Figure 3-10: An example to illustrate the importance of affine-cost function...... 61!

Figure 3-11: An RNA comparison example showing the steps of the
simplicity heuristic filtration process .. 69!

AGHIJK!3D$L!=M!)/'_<1A!VU\QWGMH!KSUV^XK!KV^WURGdKR!\WK!GV^NJ\UMQK!
NO!UM!UOOGMK!QNR\!OIMQ\GNM ... 76!

AGHIJK!3D"L!=M!)/'_<1A!VU\QWGMH!KV^WURGdKR!\WK!GV^NJ\UMQK!NO!
JKOKJKMQK!R\JIQ\IJK.. 79!

Figure 5-1: Runtime of basic versus domain-aware optimized tree-edit
distance algorithm ... 88!

Figure 5-2: Runtime performance improvement between basic and domain-
aware optimized algorithms .. 88!

Figure 5-3: Cardinality reduction for Archeaa family .. 91!

Figure 5-4: Evaluation of VTracker’s performance against benchmark results
displaying H-Mean of precision, recall, and F-Measure sorted by F-
Measure value ... 96!

Figure 5-5: Runtime of Basic versus Reference-aware algorithms in regards to
SAWSDL-TC experiment... 103!

List of Codes

>NPK!"D$L!=!RUV^XK!)M\NXNH`!)/'_<1A!PKRQJGbKP!GM!%&'!R`M\US 16!

>NPK!"D"L!=!RKJTGQK!/01'!R^KQGOGQU\GNM!PKRQJGbKP!GM!%&'!R`M\US.................. 22!

>NPK!"D.L!=!ZNJYOXNZ!456'!R^KQGOGQU\GNM!PKRQJGbKP!GM!%&'!R`M\US............... 28!

>NPK!"D3L!0GV^XK!gUTU!QXURR... 32!

>NPK!"D(L!=!7&'_%&?!JK^JKRKM\U\GNM!NO!\WK!RUV^XK!gUTU!QXURR 33!

Code 3-1: A pseudo code of Zhang-Shasha tree-edit distance algorithm............. 54!

Code 3-2: A pseudo code to check the eligibility of certain node for a deletion
affine discount... 62!

Code 5-1: An example of a simplified XML representation of a containment
model specification ... 100!

List of Symbols

($ =M!NJPKJKP!XUbKXKP!\JKK!
h(h! 0GdK!NO!\JKK!(a!UMP!KiIUXR!\WK!GMPKS!NO!\WK!JNN\!NO$("!

(eR#""R!f! =!ONJKR\!NO!MNPKR!R\UJ\GMH!U\!MNPK!ZG\W!GMPKS!R#!\N!MNPK!ZG\W!
GMPKS!R!#!

7LjRDk! ?MPKS!NO!XKO\DVNR\!XKUO!QWGXP!NO!MNPK!RD!
(eRDf! +JKK!JNN\KP!b`!MNPK!RD$a!ZWGQW!GR!KiIGTUXKM\!\N!(e7LjSDk""RDf!
7jRDk! 'UbKX!NO!MNPK!ZG\W!GMPKS$RDa!ZWGQW!GR!U!R`VbNX!OJNV!UM!

UX^WUbK\!!#!

 ! =!MIXX!MNPK!!
(xi , yi)! =!VU\QWGMH!KPG\!N^KJU\GNM!bK\ZKKM!XUbKX!NO!MNPK!xi!\N!XUbKX!NO!

MNPK yi!
(xi ,)! =!PKXK\GNM!KPG\!N^KJU\GNM!NO!node with index xi!
(, yi)! =M!GMRKJ\GNM!KPG\!N^KJU\GNM!NO!MNPK!ZG\W!GMPKS!yi!
"(xi , yi)! >NR\!NO!VU\QWGMH!XUbKX!NO!MNPK!xi!\N!XUbKX!NO!MNPK yi!

"$ >NR\!OIMQ\GNM!
"’$ <KOKJKMQKDUZUJK!>NR\!OIMQ\GNM!

"(xi ,)! >NR\!NO!PKXK\GMH!node with index xi!
!(, yi)! >NR\!NO!GMRKJ\GMH!MNPK!ZG\W!GMPKS!yi!

\PGR\! +JKKDKPG\!PGR\UMQK!
OPGR\! ANJKR\DKPG\!PGR\UMQK!

2&'8*R8jRDk! 0K\!NO!MNPKR!WNXPGMH!JKOKJKMQKR!\N!MNPK!RD!
#jRa!>k! =!RGVGXUJG\`!VKURIJK!\N!PK\KJVGMK!ZWK\WKJ!XUbKX!NO!MNPK!R!QUM!

RIbR\G\I\K!ONJ!XUbKX!NO!MNPK!>#!

List of Abbreviations

=0+! =bR\JUQ\!R`M\US!\JKKR!
456'! 4IRGMKRR!5JNQKRR!6SKQI\GNM!'UMHIUHK!
45&! 4IRGMKRR!5JNQKRR!&NPKX!
47'1! 4N\\NVD7^!'Ud`D1NZM!
>A,! >NM\JNXD!lNZ!HJU^WR!
1)&! 1NQIVKM\!)bcKQ\!&NPKX!
1+1! 1NQIVKM\!+`^K!1KOGMG\GNM!
Kb%&'! 6XKQ\JNMGQ!4IRGMKRR!IRGMH!%&'!
A&60! AUR\!&U\QW!6PG\!0QJG^\!
:DVKUM! :UJVNMGQ!VKUM!
:+&'! :`^KJ\KS\!&UJYI^!'UMHIUHK!
?16! ?M\KHJU\KP!1KTKXN^VKM\!6MTGJNMVKM\!
'A,! +GHW\!AGMKD,JUGMKP!j\JKK!JK^JKRKM\U\GNM!NO!<*=k!!
)=6?!)M\NXNH`!=XGHMVKM\!6TUXIU\GNM!?MG\GU\GTK!
)5A!)^KM!)OOGQK!ANJVU\!
)/'D0! /Kb!)M\NXNH`!'UMHIUHK!ONJ!0KJTGQKR!
)/'D0! /Kb!)M\NXNH`!'UMHIUHK!
<*=! <GbNMIQXKGQ!UQGP!
0,&'! 0\UMPUJP!,KMKJUXGdKP!&UJYI^!'UMHIUHK!
0&'! 0KJTGQK!&NPKXGMH!'UMHIUHK!
0)=! 0KJTGQK!)JGKM\KP!=JQWG\KQ\IJK!
0)=5! 0GV^XK!)bcKQ\!=QQKRR!5JN\NQNX!!
05<>!! 0KQNMPUJ`!UMP!5JGVUJ`!<*=!R\JIQ\IJK!>NV^UJGRNM!
+A,! +GHW\!AGMKD,JUGMKP!j\JKK!JK^JKRKM\U\GNM!NO!<*=k!!
711?! 7MGTKJRUX!1KRQJG^\GNM!1GRQNTKJ`!UMP!?M\KHJU\GNM!
7&'! 7MGOGKP!&NPKXGMH!'UMHIUHK!
/.>! /NJXP!/GPK!/Kb!>NMRNJ\GIV!

/01'! /Kb!0KJTGQK!1KRQJG^\GNM!'UMHIUHK!
/0A'! /Kb!0KJTGQKR!AXNZ!'UMHIUHK!
%?1! %`XKV!?PKM\GOGKJR!
%&?! %&'!&K\UPU\U!?M\KJQWUMHK!
%&'! 6S\KMRGbXK!&UJYI^!'UMHIUHK!
%01! %&'!0QWKVU!1KOGMG\GNM!
! !

1

Chapter One Introduction

XML, the Extensible Markup Language, is the universal format for structured

documents and data exchange on the World Wide Web. XML documents include

embedded metadata that represent their logical and semantic structure and

partially describe the behavior of computer programs that process them [147].

XML was conceived as a subset of Standard Generalized Markup Language

(SGML), and was originally designed to facilitate the interoperability between

SGML and Hypertext Markup Language (HTML) [19]. XML has now become

the standard exchange format for modern Information Systems, and Lindholm

states that “XML is the lingua franca1 for information interchange, and will

perhaps even surpass unstructured text someday” [89].

Many different types of data formats, specification languages, and

interaction protocols are represented in XML. For example, XML is the de facto

language for Service Oriented Architecture (SOA) technologies such as Universal

Description Discovery and Integration (UDDI) [35], Simple Object Access

Protocol (SOAP) [154], Web Service Description Language (WSDL) [155],

Business Process Execution Language (BPEL) [36], Web Ontology Language for

Services (OWL-S) [149], Electronic Business using XML (ebXML) [38] and

Service Modeling Language (SML) [153]. XML is also the standard

representation for Semantic Web technologies such as OWL [148] and RDF

[151]. XML, nevertheless, has become the standard artifact data format in many

other applications such as Open Office documents [131], SVG drawings [152],

and XHTML documents [156], XSL, databases [140], Open Office Format (OPF)

[24], and Open Office XML [113]. Additionally, XML is the standard exchange

format for modeling metadata languages such as XML Metadata Interchange

(XMI) [112].

1
 A language used for communication among people of different mother tongues

 Chapter One Introduction

2

In each of these domains one encounters instances of differencing

problems in the context of different activities. For example, XML document

differencing [32][27][28][110][89] is very important for document management

functions that include change detection and tracking, and version merging. A

differencing problem sometimes is also called a comparison problem, or a

matching problem. For example, in SOA, differencing is necessary for service

discovery and for matching a requested service against a repository of advertised

services, based on WSDL Matching [129][141][91][17], BPEL Matching

[48][40], or OWL-S Matching [67]. Differencing is also necessary in SOA, for the

purpose of automatic composition and integration of different services [82] [22],

in addition to helping in the migration from one version to another, or from one

service provider to another [23][53]. In the world of the Semantic Web,

differencing plays a key role in the problem of ontology matching, which is

essential for setting translation bases between vendors talking in terms of different

ontologies [49][87][41][42][54][115]. Differencing is also a fundamental task in

matching models such as Unified Modeling Language (UML). The latter is

important for monitoring and tracking evolutions occurring to a certain model, or

finding the proper mapping between elements of different models [161]. HTML

differencing is necessary for automatic information extraction from the Web in

order to be structured in an easy to process format [120][74][25][51][70] or even

to automatically generate RSS feeds from sites of interest [90].

In most of the aforementioned application domains special-purpose

methods have been developed to solve the differencing problem for these domains

in particular, which is both expensive to build and hard to reuse. Other

differencing methods, that rely on abstract syntactic representation and are not

tied to a certain application domain, are usually incapable of capturing domain

knowledge and semantics, and consequently are not able to produce results that

are acceptable to subject-matter experts. The research problem then becomes the

development of a general method for comparing XML documents for

application to all of these domains, while at the same time, ensuring that the

 Chapter One Introduction

3

method is aware of the domain-specific semantics, so that the reported

differences correspond to domain benchmarks.

This thesis presents VTracker, a generic XML differencing approach that

is capable of capturing domain knowledge and semantics through a configurable

domain-specific cost function. VTracker views an XML document as an ordered

labeled tree. Given two trees and a cost function, therefore, VTracker calculates

the tree-edit distance to transform one tree to another. VTracker is an extension of

the Zhang-Shasha’s tree-edit distance algorithm [166]. This thesis makes the

following contributions to the state of the art.

With respect to the original algorithm for differencing ordered labeled

trees, VTracker is innovative in two aspects. First, the original algorithm is (a)

extended to consider an XML reference structure on top of the natural XML

containment structure, (b) equipped with an affine-cost policy that promotes edit

scripts that group edit operations in neighbors, and (c) associated with a set of

heuristics for choosing the optimal edit script among multiple ones with the same

cost. Second, with respect to the application of the ordered labeled tree-

differencing paradigm to domain-specific differencing, VTracker develops a

method for bootstrapping the algorithm in a domain. This is performed by

automatically synthesizing a domain-aware cost function based on the underlying

XML Schema Definition (XSD). VTracker was applied in five different domains:

(a) OWL/RDF, (b) WSDL, BPEL, (c) UML/XMI, (d) XHTML, and (e) RNA

Secondary Structure, and its performance is similar, or even better than, state-of-

the-art methods in each of these domains.

The rest of the dissertation is structured as follows. Chapter Two presents

various instances of the XML differencing problems, which constitute the

motivation for this thesis. Chapter Three defines the requirements for a generic

XML differencing approach, explains the original algorithm, and presents

VTracker as a generic XML differencing method. Chapter Four explains the

methodology of applying VTracker to a specific domain, and the necessary

 Chapter One Introduction

4

configuration needed for VTracker to become domain-aware. Chapter Five

presents the empirical evaluation results of how VTracker performed in various

application domains. Finally, Chapter Six provides a discussion and the

conclusion of the thesis.

5

Chapter Two Background and Related Work

The problem of XML differencing has been studied in the context of many

application domains. This chapter discusses instances of the differencing problem

in a variety of domains, current state-of-the-art approaches to addressing the

differencing problem, and their implications to this work. Differencing methods

can be divided into two broad categories: general XML differencing and domain-

specific differencing. The approaches in the former category aim to be so generic

that they can compare any kind of XML document regardless of the underlying

application domain. The approaches in the latter category are aware of the

knowledge and semantics of the underlying domains, and are built to serve such

domains in particular.

2.1 XML

XML differencing is defined as the process of finding proper mapping between

elements of the two documents in order to detect changes, deletions, and

insertions. The input consists of two XML documents, and optionally the

Document Type Definitions (DTDs) or XSDs to which they conform. The output

is an edit script that can transform one document into the other, in conjunction

with a similarity measure between the two documents, called edit-distance.

XML-document differencing is necessary for version management

functions such as change detection and tracking [144][6][109], version merging

[32][27][28][110][89], indexing, and answering temporal queries [97]. Some

applications have the luxury of recording the changes as they happen through the

XML document editor, or an Integrated Development Environment (IDE), which

is then utilized to produce the differencing results. However, a general XML

differencing method should not rely on the assumption that editing and changes

happen through a certain editing utility, or that the edit operations are consistently

recorded as they happen.

XML differencing methods can be divided into two main categories based

on whether they use a tree-to-tree correction model or not. It is essential to keep in

mind that the approach proposed in this thesis is based on the tree-to-tree

Chapter Two Background and Related Work

6

correction paradigm. Therefore, the first category constitutes the more closely

related work.

2.1.1 Non Tree-based Approaches

The most basic XML differencing approach is simply to compare the textual

content of these documents through a string-edit distance approach such as the

UNIX diff command. Applying the diff command on the two documents, shown

in AGHIJK!"D$ (a), would report that one line was deleted and four new lines where

inserted as shown in AGHIJK! "D$ (b). However, AGHIJK! "D$ (c) shows a more

intuitive result that both documents have the same content with a new element

“name” inserted. To deliver such a more “natural” comparison result one would

have to recognize the internal tree structure of XML documents.

Inspired by string-edit distance, Lindholm et al. in Faxma and Faxma+

[89] transform an XML document into a sequence of events through a depth-first

traversal, and then apply a sequence-based matching measure similar to a

Levenshtein string-edit distance [86]. Calculating a string-edit distance is much

cheaper than that of a tree-edit distance; however, representing an XML document

as a sequence loses valuable details about the structural relationships between

these elements such as the ancestor-child or sibling relationships.

In X-Diff [140], Wang et al. use X-Path queries to determine the

similarities between nodes from different documents. Two elements are

considered similar if they have the same X-Path signature. If one node is moved

from its parent to another parent in the same level X-Diff will not recognize such

a change. Additionally, X-Diff cannot detect changes that happen in the relative

order of elements. In addition, if an internal node is deleted (or inserted) the entire

sub-tree will be detected as deleted (or inserted) as well since its X-Path signature

will be different.

Chapter Two Background and Related Work

7

(

(

(CDE(%FG(894(HGIJKLMNO(

!

CPE('LOJQNO(GR(-MST(HSRR(IGKKDMH!

!

CIE(,LOSULH(HSRR(ULOJQNO(

;SVJUL(W:/7(#M(example(GR(894(HSRRLULMISMV(JOSMV(-MST(!"##$XLUOJO(DM(

894(HSRRLULMISMV(KLIYDMSOK(

2.1.2 Tree-based Approaches

By nature an XML document can be represented as an ordered labeled tree in a

very similar manner to a Document Object Model (DOM) representation of an

XML document. In that sense, the XML differencing problem can be formulated

as a tree-to-tree correction problem where the objective is to find the cheapest (i.e.

most optimal) script of edit operations such as change, deletion, and insertion that

transform one tree into the other.

The roots of the tree-to-tree correction problem can be traced back to 1977

and 1979 when Selkow [125] and Tai [134] published their work, respectively. In

1989, Zhang and Shasha published their tree-edit distance algorithm [166][168],

which is based on Tai’s model. Given two trees, tree-edit distance is the minimum

Chapter Two Background and Related Work

8

cost sequence of edit-operations that transforms one tree into the other. The set of

possible edit operations in Tai’s model is different from those in Selkow’s model.

On one hand, Tai’s model allows fine-grained edit operations, namely to change

label of a single node, delete an existing single node, or insert a new single node;

on the other hand, Selkow’s model allows coarse-grained edit operations, like

change label of a single node, delete an entire sub-tree, or insert an entire sub-

tree. AGHIJK!"D" illustrates the difference between the two models, where Selkow

deals with entire sub-trees while Tai deals with single nodes. Selkow’s model is

appropriate for differencing applications where changes always happen to leaf

nodes, or where a change to an internal (i.e. non-leaf) node implies a change to

the entire sub-tree under this node. However, as it offers fine-grained edit

operations, Tai’s model allows for changes to happen anywhere in the tree

without affecting the status of other nodes. In this way, Tai’s model is more

general than Selkow’s. For the same reason, Tai’s is more expensive as it requires

comparing trees at the node level while Selkow’s needs to compare trees at the

sub-trees level. Therefore, XML differencing approaches based on tree-edit

distance are recommended to use Tai’s model as it offers fine-grained operations,

and it allows changes to happen anywhere in an XML document not only at the

leaves level.

!

CDE()USVSMDQ(%ULL(CPE(%DSZO(KGHLQ(CIE(?LQ[GFZO(KGHLQ((

;SVJUL(W:W7(?LQ[GFZO(%ULL:NG:%ULL(&HSNSMV(KGHLQ(XLUOJO(%DS\O(%ULL:

NG:%ULL(!GUULINSGM(KGHLQ(FSNY(ULVDUH(NG(HLQLNSGM(GR(D(MGHL(I(

Chapter Two Background and Related Work

9

Generic XML-differencing approaches are the ones that are not tied to a

certain application domain, and do not include heuristics, customizations,

workarounds, or assumptions that are limited to a certain application domain. The

following are the most relevant related works.

One of the most popular concepts in the literature of XML differencing is

the work of Cobéna et al. named XyDiff [32]. This method is known for being

efficient in terms of speed and memory space, and views an XML document as an

ordered labeled tree. Intuitively, the algorithm starts by trying to detect large sub-

trees left unchanged between the old and new versions. Then, the algorithm tries

to match more nodes by considering ancestors and descendants of matched nodes

and taking labels into consideration. The core idea of the XyDiff algorithm is to

identify nodes using hash values called Xylem Identifiers (XIDs), and then to

perform a greedy search for common sub-trees through an algorithm that is called

Bottom-Up Lazy-Down (BULD) with complexity O(n log n). One limitation of

XyDiff is that it is only efficient in comparing versions of the same document;

otherwise it loses the advantage of skipping large unchanged trees in which case it

must compare the two entire trees. Additionally, the concept of XID is not

applicable to documents originated from different sources, since the document

structure will be different, and consequently the elements will have different XID

hash values. Finally, the XyDiff views XML documents as mere structured

chunks of data. It does not consider the application semantics that might be

captured within these structures.

Another important contribution, in the XML differencing literature, is the

work of Chawathe et al., on Fast Match Edit Script (FMES) [27] and MH-DIFF

[28]. FMES views an XML document as an ordered labeled tree. It aims at

calculating an edit distance between two given trees. It starts with globally

detected nodes that have a perfect or close match regardless of the structure or

relative order. It then tries to make both trees structurally isomorphic by detecting

deletion and insertion operations. The benefit of this approach is that it does not

assume object-identifiers (e.g. XIDs in XyDiff), and that the cost function used to

Chapter Two Background and Related Work

10

measure matching between nodes is customizable to reflect the domain’s

knowledge and semantics. However, this method has the following drawbacks:

(1) it cannot be made to detect structural changes since it matches nodes in a

global manner without taking into consideration structural relationships between

them; (2) consequently, it does not produce sound results in the case of documents

with different structure, or those originated from different sources, and (3) there is

no easy way to build such a domain-specific cost function. MH-Diff aims at

detecting meaningful edit operations such as copy and glue in addition to standard

change, deletion, and insertion. It arranges nodes from the first tree linearly

against nodes from the second tree in a bipartite graph. In this graph, if an edge

links a node n in T1 to node m in T2, then node n is matched to node m. A node

linked to special node “+” indicates that this node was inserted, and node linked

to special node “-” indicates a deleted node. If a node in T1 is linked to multiple

nodes in T2, then this node was copied multiple times. Similarly, multiple nodes in

T1 linked to a single node in T2 indicate that these nodes were glued into that

single node. In this way, the differencing problem is formulated as finding an

edge cover in the induced graph. In spite of the advantages of MH-Differencing

over FMES, both still suffer the same drawbacks. Both detect edit operations in a

global manner while disregarding the locality of different sub-trees, and

consequently the more structurally different are the two given trees, the more non-

sense results both methods will produce. Finally, neither method is designed to

compare documents originating from different sources or vendors.

A further contribution to the XML differencing techniques is the work of

Nierman and Jagadish [110]. This work also views an XML document as an

ordered labeled tree, and the objective is to calculate the tree-edit distance

between two given trees. The new contribution of this model is that it combines

operations of the Selkow’s coarse-grained model and Tai’s fine-grained model.

This method reports five kinds of edit operations: change label of a single node,

delete a single node, insert a single node, delete a sub-tree, and insert a sub-tree.

This approach is better than previous methods in terms of generality since it will

Chapter Two Background and Related Work

11

compare structurally different documents as well as documents originated from

different source. However, the efficiency of this method largely depends on the

structural similarity of the two trees. In other words, if the two trees are

structurally different, its actual complexity is significantly inferior to standard

tree-edit distance algorithms (e.g. Zhang-Shasha’s).

Another application of XML matching is answering twig queries where

the objective is to find a small query tree inside a large XML document. An

answer to a twig query is a list of sub-trees that match the small query tree in

terms of their contents and structure. The approximate query answer is a list of

ranked sub-trees that partially match the query tree content and structure. One

method of solving this problem is the work of Vagenza et al. [137] that views

both the query and the large XML structures as two directed acyclic graphs, and

then it measures the structural similarities between the query and various sub-

trees. Another interesting method to this problem is the work of Augsten et al.

[14] that is based on pruning irrelevant sub-trees, and then applying a tree-edit

distance on a small set of candidate sub-trees. This work uses a prefix ring buffer

approach to perform a single scan in order to prune sub-trees that exceed a certain

size threshold, or are contained in their relevant sub-trees.

The literature of XML differencing is rich with many other approaches

both similar to, and different from, the ones presented above. For example,

Microsoft’s “XML Diff and Patch” is based on the Zhang-Shasha algorithm;

DiffMK, by Sun Micro Systems, is based on the Unix diff algorithm. DiffXML is

based on FMES, and JXyDiff is a Java implementation of XyDiff. Ml!nková’s

[106] work and research combines the work of both Nierman [110] and XClust

[85] together. Additionally, XClust X-Differencing is based on X-Diff and allows

for some domain-specific customization. For additional details, the reader is

recommended to review the surveys of Peters [117] and Cobéna [31].

Chapter Two Background and Related Work

12

2.2 Ontology

The World Wide Web Consortium (W3C) defines ontology as a set of

“formalized vocabularies of terms, often covering a specific domain and shared

by a community of users” [148]. Ontologies are important to formally describe a

certain domain’s terminologies, vocabularies, concepts, and relationships. An

ontology description usually defines elements such as individuals (i.e. objects),

classes, attributes, relationships, or restrictions on relationships. One important

ontology-description language is Web Ontology Language (OWL) [148] that is

designed to serve the needs of Semantic Web and Service Oriented Architecture

[149].

Ontology matching is a task necessary for a variety of activities such as

migration and bridging between various versions and evolutions of the same

ontology, translation between different ontologies, discovery and composition of

services, integration of software systems, and linking web-accessible data. In

nearly every scenario where software components of different parties need to

interact, it is necessary to translate between their underlying ontologies. The term

“ontology matching” refers to the problem of identifying the proper semantic

mapping between entities of different ontologies representing the same conceptual

domains. The general technical problem driving the research around ontology

matching is part of the overall Semantic-Web agenda, which envisions that the

information available on the web will be annotated with semantic metadata in the

form of ontology tags, and that heterogeneous information, provided by people

and organizations will be integrated through mapping of their tag ontologies. As

centralized coordination of the ontology-development process is unlikely, one can

anticipate – and we are already witnessing – an explosion in the number of

ontologies used today. Many of these ontologies describe similar (the same or

overlapping) domains, but use different terminologies. To integrate data from

such disparate ontologies one must recognize the semantic correspondences

between their elements. Manual mapping of such correspondence is time-

consuming, error prone, and clearly not possible on the web scale [30]. This is

Chapter Two Background and Related Work

13

why general, applicable across domains, automated methods for ontology

mapping are necessary.

2.2.1 Related Work

In principle, there are three categories of ontology-matching methods [30]. Some

methods attempt to construct and maintain a global ontology based on several

local ontologies, by describing and mapping the relationships between the

elements of the local and global ontologies. Other methods focus on enabling

interoperability in distributed environments and mediating between the distributed

data in such environments by pair–mapping. Finally, a third family of methods is

designed to map a set of overlapping ontologies through ontology merging and

alignment.

The Ontology Alignment Evaluation Initiative (OAEI) organizes an

international competition between Ontology Matching systems and frameworks.

Every year OAEI appoints the top state-of-the-art approaches in that domain.

According to the published results of OAEI 2010 “ASMOV and RiMOM are

ahead, with as close follower, while SOBOM, GeRMeSMB and Ef2Match,

respectively, had presented intermediary values of precision and recall” [50].

The ASMOV algorithm [49] iteratively calculates the similarity between

entities for a pair of ontologies by analyzing four features: lexical elements (id,

label, and comments), relational structure (ancestor-descendant hierarchy),

internal structure (property restrictions for concepts; types, domains, and ranges

for properties; data values for individuals), and extension (instances of classes and

property values). The measures obtained by comparing these four features are

combined into a single value using a weighted summation formula.

The RiMOM approach [87] uses three matching strategies. One is the

name-based strategy which calculates the string-edit distance between the labels

of two entities. The second is the metadata-based strategy that calculates the

cosine distance between weighted feature vectors representing the words

contained in the entity’s label and comment. And the third is the instance-based

Chapter Two Background and Related Work

14

strategy that constructs another document for each entity consisting of the words

in the instances related to that entity.

The AgreementMaker [42] comprises several matching algorithms, or

matchers, that are either (1) concept-based matchers which are a combination of

string matchers and a cosine distance matcher, or (2) structural matchers that

make sure that if two nodes are similar, then their descendants should be also.

SOBOM [162] incorporates anchor generator matchers that use textual

information such as label, id, and comments in addition to structural information

such as number of super- and sub-concepts, the number of constraints. It then uses

a structural matcher that uses anchors to induce the construction of similarity

propagation graphs for sub-ontologies. Finally, it uses what it calls an R-matcher

that matches the definitions based on the linguistics and semantics of relations.

GeRMeSMB [72] is composed of two modules, GeRMeSuite and SMB.

GeRMeSuite is a generic matching framework that can match ontologies as well

as schemas in other modeling languages. SMB is a ‘meta’ matching system that

works on the similarity matrices produced by GeRMeSuite. It fine-tunes the

clarity of the similarity values by improving ‘good’ values and decreasing ‘bad’

values.

In addition to the OAEI contestants there are other related works. For

example, the work of Giunchiglia et al. [54] is based on the edit distance between

matched ontologies in order to preserve relative structural relationships between

matched elements. Another related work is Papavassiliou et al. [115] that aims at

detecting meaningful changes between Ontology RDFs through a new set of

meaningful edit operations.

In general, ontology matching systems consider the following features as

an essential part of their approaches: (1) conceptual identity in terms of id, label,

and comments, (2) structural identity in terms of inheritance and composition

relationships, and (3) other relationships including dependency, association, and

instantiation.

Chapter Two Background and Related Work

15

2.2.2 An Ontology as a Tree

The scope of this thesis focuses on OWL as an example of ontology description

language. According to W3C 2009 specification the primary exchange format for

OWL2 is RDF/XML [148]. >NPK! "D$ shows a portion of an OWL Ontology

described in RDF/XML syntax. This example is a part of the reference ontology

specification used in the OAEI benchmark dataset. As shown in this example, the

OWL ontology is composed of a set of classes, object properties, and individual

objects. Each of those elements is then defined either in its own terms, or by

referring to definitions of other elements.

As an XML document an OWL ontology specification can be represented

as a tree. VTracker is based on a DOM model as a tree representation of an XML

document where all XML elements such as classes, properties, relationships and

restrictions are represented as tree nodes, and where element names are

represented as tree labels and XML attributes are represented as node attributes.

Metadata elements such as XML instructions and comments are not included in

the tree model. For example, AGHIJK! "D. illustrates this idea by visualizing the

ontology described in >NPK!"D$ as a tree. In this tree the ontology defines two

classes named Article and Part, one object property named author, and one

individual with id a492378321. Similarly, the Article class definition is composed

of a label, a comment, and two inheritance relationships: the first is a restricted

version of the author object property while the second is a normal sub-class

relationship of Part class definition. In conjunction with the XML containment

structure, this example illustrates another type of structure that is called the

reference structure. In AGHIJK!"D. the solid lines denote containment relationships

while the dotted arrows denote reference relationships. In this tree there are three

reference relationships: an instantiation relationship between article #a492378321

and the class definition of Article, and two association relationships

!

Chapter Two Background and Related Work

16

<rdf:RDF>
 <owl:Class rdf:ID="Article">
 <rdfs:label xml:lang="en">Article</rdfs:label>
 <rdfs:comment xml:lang="en">An article from a journal or
 magazine.</rdfs:comment>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#author"/>
 <owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">1
 </owl:cardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf rdf:resource="#Part"/>
 </owl:Class>

 <owl:ObjectProperty rdf:ID="author">
 <rdfs:subPropertyOf rdf:resource="#humanCreator"/>
 <rdfs:label xml:lang="en">author</rdfs:label>
 <rdfs:comment xml:lang="en">The list of the author(s) of a
 work.</rdfs:comment>
 </owl:ObjectProperty>

 <owl:Class rdf:ID="Part">
 <rdfs:subClassOf rdf:resource="#Reference"/>
 <rdfs:label xml:lang="en">Part</rdfs:label>
 <rdfs:comment xml:lang="en">A part of something (either Book
 or Proceedings).</rdfs:comment>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#pages"/>
 <owl:maxCardinality rdf:datatype="&xsd;nonNegativeInteger">1
 </owl:maxCardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#title"/>
 <owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">1
 </owl:cardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#isPartOf"/>
 <owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">1
 </owl:cardinality>
 </owl:Restriction>
 </owl:Class>
</rdf:RDF>

!GHL(W:/7(#(ODK]QL()MNGQGV^()04_',;(HLOIUSPLH(SM(894(O^MNDT(

Chapter Two Background and Related Work

17

linked to the definitions of the Part class and the author object property. The

intent of such a reference structure is to allow ontological definitions to be reused

within other definitions. This kind of hyperlinkage dramatically affects the

semantics of an element’s definition. Although the referenced element definition

is not physically a part of the referring structure, it is definitely a part of its

semantics. Therefore, when definitions of two elements are matched to each other

it is not enough to only match the containment structure on both sides but also the

referenced structures as well. In other words, a differencing approach should

consider referenced structures as being a part of the referring structure.

(

;SVJUL(W:`7(#(ODK]QL()04_',;(GMNGQGV^(UL]ULOLMNLH(DO(D(NULL(

?NUJINJUL(SMIQJHSMV()MNGQGV^(!QDOOLOB($UG]LUNSLOB(DMH(+MONDMILO.(

Chapter Two Background and Related Work

18

2.3 WSDL

Service discovery is an essential task in the process of developing service-oriented

applications. In a typical service-discovery scenario the service requester has

specific expectations about the candidate service. In general, there are three types

of desiderata for a service: it has (a) to be capable of performing a certain task,

i.e. maintain a shopping cart, (b) to expose a particular interface, i.e. provide

view, add-product and remove-product, and (c) to behave in a certain manner, i.e.

ignore any request for product removals if no product additions have been

performed yet. Such expectations motivate and guide the developers’ searches

through web-services repositories, as they try to discover and select the service

that best matches their needs. This thesis does not target the capability-matching

problem since it is always done at the UDDI level, which is not a particularly

challenging problem. However, this thesis focuses on WSDL matching as an

example of interface matching, and on BPEL matching as an example of behavior

and protocol matching problems

A WSDL specification is the description of a software component that

includes a description of its interface, a description of where the actual

implementation exists, and how it can be used [129][141]. W3C defines services:

“As collections of network endpoints, or ports. In WSDL the abstract

definition of endpoints and messages is separated from their

concrete network deployment or data format bindings. This allows

the reuse of abstract definitions: messages, which are abstract

descriptions of the data being exchanged, and port types, which are

abstract collections of operations. The concrete protocol and data

format specification for a particular port type constitutes a reusable

binding. A port is defined by associating a network address with a

reusable binding, and a collection of ports define a service”.

WSDL matching is the process of finding a proper mapping between

elements of two specifications that maximizes the overall matching and

Chapter Two Background and Related Work

19

minimizes the number and cost of edit operations required to transform the first

WSDL to the second one. An important application of WSDL matching is service

discovery and matching. In general, when looking for a service, a developer has in

mind both the signatures of the operations desired, and some behavioral scenarios

in which the candidate service is expected to participate. WSDL matching is then

responsible for mapping a desired set of desired operations against a set of

provided ones, their inputs, outputs, data types, etc. Then the objective is to

measure the distance between the desired service WSDL and the published ones,

and to find the closest one to the desired interface The objective is first to find the

best published service, and then to find the proper mapping between different

elements of both interfaces such as data types, messages, operations, and ports.

Another application of WSDL matching is to increase service reusability

by allowing a service to be consumed in multiple use-cases, not only the one it

was designed for [102]. For example, consider the case of an Album Catalog

service in AGHIJK! "D3 against a consumer interested in a Book Catalog service

AGHIJK! "D(. In such cases, although the published service deals with different

concepts than that of the service consumer, the consumer could still effectively

use the service, if only a mapping between the divergent schema elements were

found. For example, in this scenario, both services register items, search the

catalog, get item details, and find other items from the same producer or

publisher. It would, therefore, be desirable to discover the published service in

response to such a request if no better match is available.

WSDL matching is also important for version migration where the

objective is to precisely recognize the changes to the WSDL specification of a

service interface, and (a) find a proper mapping between elements of the old

interface and those of the new one, (b) characterize the changes in terms of their

complexity and (c) semi-automatically develop adaptors for migrating clients

from older interface versions to newer ones [53].

Chapter Two Background and Related Work

20

!

;SVJUL(W:<7(#(0?,4(O]LISRSIDNSGM(GR(D(]JPQSOYLH(GMQSML(#QPJK(0LP(

?LUXSIL(

;SVJUL(W:57(#(0?,4(O]LISRSIDNSGM(GR(D(HLOSULH(GMQSML(1GG[(IDNDQGV(0LP(

?LUXSIL(

2.3.1 Related Work

Interface matching is concerned with mapping the elements of a candidate

published interface to the elements of the requested one. Usually, such mapping is

based on signature matching between the published operations and the requested

ones. It matches the input and output parameters in addition to pre- and post-

Chapter Two Background and Related Work

21

conditions [116]. For example, Wang and Stroulia [141] proposed a family of

WSDL matching methods that consider both the identifier and structural

similarity of data types and methods. Payne et al. [116] developed a DAML-S

matching method, assuming a common ontology between the publisher and the

requester, based on parameter matching using type subsumption and inheritance

relationships. Syeda-Mahmood et al. [132] proposed an interface matching

approach based on name similarity.

It is worth mentioning that most of the WSDL matching techniques suffer

from two drawbacks: first, interface matching does not guarantee a successful

interaction because such an interface usually does not specify the usage conditions

of the operations involved. Hence, an improper usage of the published operations

will lead to an interaction failure. Second, interface matching may easily become

confused when services are not distinctive when the data types are simple, and

when there is not much documentation. Both problems were addressed by the

author in the context of examining usage protocols for service discovery through a

mixed approach that incorporates both WSDL matching with BPEL matching in

an integrated way [102].

2.3.2 A WSDL specification as a Tree

A WSDL specification is an XML document by nature. A WSDL specification,

therefore, can be easily represented as a partially ordered labeled tree. For

example, the XML document shown in >NPK!"D" describes the “evSoap” service

that is represented as a tree in AGHIJK!"D9. As shown in this Figure, a WSDL tree

is composed of few main sub-trees: a set of data type definitions, a set of API

messages signatures, a set of port types, a set of bindings, and finally a service

specification sub-tree. Like ontology specifications, a WSDL specification largely

depends on the concept of the reference-structure as an efficient way of reusing

element definitions such as XML Schema definitions, messages, operations, etc.

Intuitively, references are used to avoid duplicate definitions.

Chapter Two Background and Related Work

22

<definitions>
 <types>
 <s:schema>
 <s:element name="VerifyEmailResponse">
 <s:complexType>
 <s:sequence>
 <s:element minOccurs="1" maxOccurs="1" name="VerifyEmailResult"
 type="s0:ReturnIndicator"/>
 </s:sequence>
 </s:complexType>
 </s:element>
 <s:element name="VerifyEmail">
 <s:complexType>
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="1" name="email" type="s:string"/>
 </s:sequence>
 </s:complexType>
 </s:element>
 </s:schema>
 </types>
 <message name="VerifyEmailSoapIn">
 <part name="parameters" element="s0:VerifyEmail"/>
 </message>
 <message name="VerifyEmailSoapOut">
 <part name="parameters" element="s0:VerifyEmailResponse"/>
 </message>
 <portType name="evSoap">
 <operation name="VerifyEmail">
 <input message="s0:VerifyEmailSoapIn"/>
 <output message="s0:VerifyEmailSoapOut"/>
 </operation>
 </portType>
 <binding name="evSoap" type="s0:evSoap">
 <soap:binding transport="http://schemas.xmlsoap.org/soap/http"
 style="document"/>
 <operation name="VerifyEmail">
 <soap:operation soapAction="http://ws.cdyne.com/VerifyEmail"
 style="document"/>
 <input>
 <soap:body use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>
 </output>
 </operation>
 </binding>
 <service name="ev">
 <port name="evSoap" binding="s0:evSoap">
 <soap:address location="http://www.cdyne.com/emailverify/ev.asmx"/>
 </port>
 </service>
</definitions>

!GHL(W:W7(#(OLUXSIL(0?,4(O]LISRSIDNSGM(HLOIUSPLH(SM(894(O^MNDT(

Chapter Two Background and Related Work

23

(

;SVJUL(W:a7(#(0?,4(O]LISRSIDNSGM(UL]ULOLMNLH(DO(D(NULL(ONUJINJUL.(

2.4 BPEL

This thesis focuses on Business Process Execution Language (BPEL) as an

example of workflow description language2 [36][34]. BPEL is an XML-based

language created for designing, composing, and executing web services. BEA

Systems, IBM, and Microsoft, developed the BPEL specifications. It combines

and replaces IBM's Web Services Flow Language (WSFL) and Microsoft's

XLANG specification. BPEL cooperates with WSDL messages, XML Schema

type definitions, and XPath data manipulation. BPEL can be used to describe

either public business protocols that capture the exchange behavior of each of the

parties involved in the protocols without revealing their internal behavior; or

2 BPEL is also sometimes identified as BPELWS or BPEL4WS.

Chapter Two Background and Related Work

24

private executable business processes that model the actual behavior of each

participant in business interactions that are private, but not publicly, visible. In

essence, it provides the common core of process description elements, but can be

extended to handle specific situations or concepts [36][34]. For example, AGHIJK!

"D; shows a workflow that can possibly be attached to the WSDL interface of the

online album described in AGHIJK!"D3.

The task of comparing business process model (BPM) specifications to

recognize similarities and differences is ubiquitous. It is necessary for discovering

business processes that provide desired behaviors, for pinpointing changes

between subsequent versions, and for verifying conformance of processes against

desired protocols. Differencing business process models is a critical feature for

integration development [77]. In a collaborative environment different team

members concurrently manipulate shared process models that result in different

versions of the same original process model. In this case, a process model

integration technique is needed to smoothly merge all the versions together into

an integrated process model. Basically, this technique is required to align

unchanged model elements, and integrate all the changes accordingly.

Differencing business process models is also useful for behavior matching in

service-discovery [102]. In a typical service-discovery scenario, the service

requester is looking for a service to complete a composite application and has

specific expectations about the candidate service. In general, there are three types

of desired outcomes for a service. It should deliver a certain function, expose a

particular interface and behave in a desired manner. The first and second aspects,

namely service functionality and interface, are usually checked through UDDI and

WSDL matching techniques, while service behavior, the third aspect, needs a

business process differencing technique.

Chapter Two Background and Related Work

25

!

;SVJUL(W:@7(#(1$&4(]UGILOO(FGU[RQGF(RGU(DM(GMQSML:DQPJK(OLUXSIL(

Chapter Two Background and Related Work

26

Beyond the above technical model-reasoning problems, aligning business

process models is essential for process agility. In order to stay competitive

companies must be able to adapt their business processes to the ever-changing

market dynamics. However, such a dynamic adaptive market would leave the

company with the big challenge of how to leverage available resources to satisfy

new requests. A good alignment should utilize current portfolio while minimizing

required not-yet available infrastructure. In both cases, the problem is how to

match elements of one BPM to elements of another BPM. The objective is to

maximize the similarity while minimizing the differences.

Furthermore, process-model differencing is useful for verifying

conformance of processes against desired protocols. A typical business process

model describes the details of a certain business process, and the interactions

between this process and other processes, external entities, or human users. These

interactions usually follow a certain communication protocol that should be

respected at all times. Breaking any of these protocols is likely to cause a process

failure. Therefore, any modification to the process model should be carefully

checked against the interaction protocols to verify conformance. In this case, a

process model differencing technique is to match a model interaction against a

desired interaction protocol.

2.4.1 Related Work

Most of the literature on process matching related work falls under the category of

process-control model matching. Control matching means to match the control

structure of the business model. There are three basic process control models:

Petri-nets, Pi-Calculus, and Tree hierarchy. For example, Brockmans et al. [26]

presents an approach for aligning the Petri-net models of two business processes

[105], and presents an approach for aligning the pi-calculus formulations of two

business processes. Additionally, there are approaches that compare business

process models based on a given Finite State Automata [95], or Markov Decision

Processes [45]. The common drawback with all of the above approaches is that

Chapter Two Background and Related Work

27

they only consider the control model of a process while ignoring the associated

data-flow and message-flow model.

One of the earliest works on the BPEL matching problem is that done by

Mikhaiel and Stroulia [102] which is based on representing a BPEL process as an

ordered labeled tree, and then applying VTracker to it. Similarly, the work of

Corrales et al. [40] represents a BPEL process as a graph, and then the BPEL

differencing problem is formulated as a graph-edit distance problem. In 2007,

Eshuis and Grefen [48] addressed the same problem. Their approach was based on

representing a BPEL process as a tree. Then, two leaf nodes are compared based

on their least common ancestor. The motivation behind the work of Eshuis and

Grefen is to offer a BPEL matching approach that does not only consider the

syntactic description of the process but also its semantic aspects. For example,

they stated that the “drawback of such an approach is that different syntactic

constructs typically mean the same. So two processes may not be matched even

though they are equivalent.” [48]. This concept will be discussed in more detail

when presenting the concept of node similarity.

One last related work is WebSphere Integration Developer (WID)3 that

compares different versions of the same process model. The results of this tool are

encouraging except that all changes have to happen through the WID IDE itself

otherwise non-sense diff result will be produced. In other words, the tool keeps

track of changes happening to the model, which is then used to compare different

versions of the same. Consequently, this tool is not able to compare or integrate

totally different models, or models originating from different sources.

2.4.2 A BPEL as a Tree

Similar to WSDL, a BPEL specification is an XML document by nature. So,

again, it is easy to represent it as an ordered labeled tree. To illustrate the idea,

>NPK! "D. shows the XML specifications of the BPEL workflow depicted in

AGHIJK!"D;. In this specification, it is identified that BPEL uses hyperlinks to refer

3 http://www-01.ibm.com/software/integration/wid/

Chapter Two Background and Related Work

28

to operations, messages, partner links, and to link names. AGHIJK!"D2 illustrates

how to represent this example as an ordered labeled tree.
<bpel:process>
 <bpel:partnerLinks>
 <bpel:partnerLink name="client" partnerLinkType="tns:JobProcessing"
 myRole ="JobProcessingProvider" partnerRole="JobProcessingRequester"/>
 <bpel:partnerLink name="OnlineAlbum-link" partnerLinkType="ns1:OnlineAlbum"
 myRole="OnlineAlbumProvider">
 </bpel:partnerLink>
 </bpel:partnerLinks>
 <bpel:variables>
 <bpel:variable name="OnlineAlbum-linkResponse"
 messageType="ns1:PublishAlbumResponseMessage">
 </bpel:variable>
 </bpel:variables>
 <bpel:sequence name="main">
 <bpel:receive name="Publish Album" createInstance="no"
 partnerLink="OnlineAlbum-link" operation="PublishAlbum"
 portType="ns1:OnlineAlbum" variable="OnlineAlbum-linkResponse">
 </bpel:receive>
 <bpel:if name="If album already exists?">
 <bpel:sequence>
 <bpel:throw name="ALBUM_ALREADY_EXISTS"></bpel:throw>
 <bpel:reply name="Send Exception" partnerLink="OnlineAlbum-link"
 operation="PublishAlbum" portType="ns1:OnlineAlbum"
 variable="OnlineAlbum-linkResponse">
 </bpel:reply>
 </bpel:sequence>
 <bpel:else>
 <bpel:sequence>
 <bpel:opaqueActivity name="Add Album"></bpel:opaqueActivity>
 <bpel:reply name="Send album-id" partnerLink="OnlineAlbum-link"
 operation="PublishAlbum" portType="ns1:OnlineAlbum">
 </bpel:reply>
 </bpel:sequence>
 </bpel:else>
 </bpel:if>
 <bpel:exit name="Exit"></bpel:exit>
 </bpel:sequence>

</bpel:process>(

!GHL(W:`7(#(FGU[RQGF(1$&4(O]LISRSIDNSGM(HLOIUSPLH(SM(894(O^MNDT(

Chapter Two Background and Related Work

29

;SVJUL(W:A7(#(1$&4(]UGILOO(FGU[RQGF(UL]ULOLMNLH(DO(D(NULL

2.5 UML

Another core problem in software-evolution analysis is the detection of specific

changes that occur between subsequent releases of a system. Consequently, it is

necessary to analyze and understand the developmental steps that brought the

system to its current state. Since structural changes are motivated by the need to

improve the functionality and the quality of the software system, subsequent

longitudinal analysis of the identified changes can lead to interesting insights on

the change patterns as well as the rationale for the overall evolutionary history of

a software system.

The drawback in UML differencing aims at finding design changes of

long-living software systems. Given two object-oriented models the objective is

to find the proper mapping between different elements like packages, classes,

Chapter Two Background and Related Work

30

interfaces, attributes, operations, parameters, etc. in addition to detecting

minimum cost edit script that transforms one model into another.

2.5.1 Related Work

A substantial body of research has focused on software differencing. Fluri et al.

[52] suggested a tree-differencing algorithm that extracts fine-grained source-code

changes between abstract syntax trees (AST). The algorithm is an extension of the

Chawathe et al. [27] algorithm for change detection in hierarchical tree-like data

structures. It also uses string similarity measures for leaves and tree-similarity

measures for sub-trees.

Chevalier et al. [29] proposed a technique to detect similar structures in

evolving C++ source codes that is also based on matching AST. The goal of the

study was to visualize the evolution of the code clone structure and to indicate

small to medium-scale changes, such as function and class-level refactoring code

edits.

Apiwattanapong et al. [13] proposed a differencing algorithm CalcDiff

that extends the existing Larski et al. [80] algorithm. CalcDiff compares two

versions of an object-oriented program in order to identify and classify differences

and similarities between them. Since traditional control-flow graphs (CFG) cannot

model different object-oriented constructs such as dynamic binding, exception

handling, synchronization, and reflection, the authors introduced an extended

graph representation of a traditional CFG (ECFG). The new representation

enables the comparison of object-oriented features of general object-oriented

languages. Using this graph, the algorithm identifies behavioral changes resulting

from structural changes, and relates them to the point of the code where this

different behavior occurs. CalcDiff first performs matching on the class level, then

on the method level, and finally on the node level using a hammock comparison

algorithm on an extended ECFG.

Xing and Stroulia [161] suggested a differencing algorithm UMLDiff,

which is designed to automatically identify structural changes between two

Chapter Two Background and Related Work

31

software logical models [76]. It outputs a set of change facts describing the

differences between the two models. UMLDiff was implemented in the context of

the JDEvAn tool, an Eclipse plug-in.

2.5.2 A UML model as a Tree

One of the most common formats to exchange UML model specification is XML

Metadata Interchange (XMI). XMI is a model driven XML Integration framework

for defining, interchanging, manipulating and integrating XML data and objects.

XMI-based standards are in use for integrating tools, repositories, applications

and data warehouses. In this way a UML model can be represented as an XML

document which in turn can be represented as an ordered labeled tree. UML/XMI

tree is composed of a set structure of packaged elements nodes that describe the

package and the class hierarchies. A class tree structure is composed of a set of

owned attributes nodes and owned operations nodes that represent the attributes

and methods, respectively.

For example, >NPK! "D(shows UML/XMI representation of the simple

Java class shown in >NPK!"D3, which was generated using Jar2UML4. AGHIJK!"D8

illustrates how to represent a UML/XMI specification as an ordered label tree. In

this way the problem of UML differencing can be formulated as a tree-edit

distance problem between the tree structures corresponding to their XMI

representation. One more observation is that UML/XMI largely relies on the

XML reference structure to reuse definitions of some elements. For example, in

this figure, there are hyperlinks between type attributes with value “java.lang.int”

to the real definition of the “int” under the package “java.lang”. Therefore, the

reference structure is essential in the UML differencing problem.

4 http://soft.vub.ac.be/soft/research/mdd/jar2uml

Chapter Two Background and Related Work

32

(

;SVJUL(W:b7(#(-94_89+(ODK]QL(UL]ULOLMNLH(DO(D(NULL(ONUJINJUL(

package com.foo;
public class Operation {
 int op1, op2;
 public Operation(int op1, int op2){
 this.op1 = op1;
 this.op2 = op2;
 }
 public int getOp1() {
 return op1;
 }
 public int getOp2() {
 return op2;
 }
}

!GHL(W:<7(?SK]QL(cDXD(IQDOO(

Chapter Two Background and Related Work

33

<uml:Model xmi:version="2.1"
 xmlns:xmi="http://schema.omg.org/spec/XMI/2.1"
 xmlns:uml="http://www.eclipse.org/uml2/3.0.0/UML"
 xmi:id="_0GWAUKaxEeCv2JHI4_R6HA" name="foo">
<packagedElement xmi:type="uml:Package"
 xmi:id="_0NB3IKaxEeCv2JHI4_R6HA" name="com">
 <packagedElement xmi:type="uml:Package"
 xmi:id="_0NB3IaaxEeCv2JHI4_R6HA" name="foo">
 <packagedElement xmi:type="uml:Class"
 xmi:id="_0NB3IqaxEeCv2JHI4_R6HA" name="Operation">
 <generalization xmi:id="_0NB3I6axEeCv2JHI4_R6HA"
 general="_0M2Q8qaxEeCv2JHI4_R6HA"/>
 <ownedOperation xmi:id="_0SC6A6axEeCv2JHI4_R6HA"
 name="<init>" visibility="public">
 <ownedParameter xmi:id="_0SDhEKaxEeCv2JHI4_R6HA"
 name="op1" type="_0NBQEKaxEeCv2JHI4_R6HA"/>
 <ownedParameter xmi:id="_0SDhEaaxEeCv2JHI4_R6HA"
 name="op2" type="_0NBQEKaxEeCv2JHI4_R6HA"/>
 </ownedOperation>
 <ownedOperation xmi:id="_0SDhEqaxEeCv2JHI4_R6HA"
 name="getOp1" visibility="public">
 <ownedParameter xmi:id="_0SDhE6axEeCv2JHI4_R6HA"
 name="return" type="_0NBQEKaxEeCv2JHI4_R6HA" direction="return"/>
 </ownedOperation>
 <ownedOperation xmi:id="_0SDhFKaxEeCv2JHI4_R6HA"
 name="setOp1" visibility="public">
 <ownedParameter xmi:id="_0SEIIKaxEeCv2JHI4_R6HA"
 name="op1" type="_0NBQEKaxEeCv2JHI4_R6HA"/>
 </ownedOperation>
 <ownedOperation xmi:id="_0SEIIaaxEeCv2JHI4_R6HA"
 name="getOp2" visibility="public">
 <ownedParameter xmi:id="_0SEIIqaxEeCv2JHI4_R6HA"
 name="return" type="_0NBQEKaxEeCv2JHI4_R6HA" direction="return"/>
 </ownedOperation>
 <ownedOperation xmi:id="_0SEII6axEeCv2JHI4_R6HA"
 name="setOp2" visibility="public">
 <ownedParameter xmi:id="_0SEIJKaxEeCv2JHI4_R6HA"
 name="op2" type="_0NBQEKaxEeCv2JHI4_R6HA"/>
 </ownedOperation>
 <ownedOperation xmi:id="_0SEvMKaxEeCv2JHI4_R6HA"
 name="toString" visibility="public">
 <ownedParameter xmi:id="_0SEvMaaxEeCv2JHI4_R6HA"
 name="return" type="_0M_a4KaxEeCv2JHI4_R6HA" direction="return"/>
 </ownedOperation>
 </packagedElement>
 </packagedElement>
</packagedElement>
</uml:Model>

!GHL(W:57(#(-94_89+(UL]ULOLMNDNSGM(GR(NYL(ODK]QL(cDXD(IQDOO

2.6 XHTML

HTML differencing is an interesting problem with a variety of useful applications.

It is relevant to web-site maintenance where a manager might wish to periodically

Chapter Two Background and Related Work

34

review the changes made by the various web-site users in order to approve their

publication. It is also useful to recurring web-site visitors who may want to

quickly assess whether or not an interesting change has been made to their page of

interest. It is essential for web-content warehouses where documents are

periodically collected by crawlers; upon receiving new versions of an existing

document, the warehouse manager may want to track the changes that occurred

since the last received version. Finally, it is a necessary step for automatic web

wrapping [120][164][70] where document comparison is used to automatically

extract data from the web. AGHIJK! "D$B depicts a simple XHTML differencing

example illustrating four kinds of edit operations.

2.6.1 XHTML as a Tree

An XHTML document can easily be described as an ordered labeled tree where

the root of the tree is the HTML tag that is composed of two main sub-trees: head

and body. As shown in AGHIJK!"D$$ XHTML elements of both sections become

nodes in the tree representation where elements are represented as nodes, element

names are labels of the nodes, and attributes of elements become attributes of

nodes. Instructional elements such as comments, scripts, styles, etc are ignored in

the tree representation, as they do not affect the containment structure of an

XHTML document. Unlike previous kinds of XML documents, XHTML does not

have a reference structure per se. In HTML, hyperlinks main objective is to be

used by a real user to navigate from one location to another, rather than being

used by a processing program to reference other elements in the same document.

Chapter Two Background and Related Work

35

(

(CDE($DVL/(

(

CPE($DVLW(

!

CDE ,LOSULH(ULOJQNO(

;SVJUL(W:/=7(#(8"%94(HSRRLULMISMV(LTDK]QL(

;SVJUL(W://7(#M(8"%94(HGIJKLMN(UL]ULOLMNLH(DO(DM(GUHLULH(QDPLQLH(

NULL

Chapter Two Background and Related Work

36

2.7 RNA Secondary Structure Comparison

Ribonucleic acid (RNA) molecules are involved in many important biological

processes. Some, such as mRNA, carry genetic information; others, such as

tRNA, rRNA, and the recently discovered microRNA, are directly responsible for

the accomplishment of distinct functions. Biology research has shown that

specific organism processes and functions can be attributed to particular

secondary structures of RNA molecules [94]. As the organisms evolve their RNA

structure changes and their processes and functions change correspondingly.

Consequently, the processes and functions of newly discovered organisms can be

inferred based on the processes and functions of known organisms to which they

are related in evolutionary terms, and with which they share corresponding RNA

secondary structures. Thus, a precise and efficient RNA secondary structure

comparison is essential for providing useful hints on possible RNA molecule

functions, as well as their phylogenetic relationships. The primary structure of an

RNA molecule is a sequence of nucleotides (bases) over the alphabet {A, C, G,

U}. Its secondary structure is a folding of its primary structure and is formally

specified as a set of base pairs that form bonds between A-U, C-G, and G-U bases

[94].

2.7.1 Related Work

Many approaches have been proposed for RNA alignment and comparison, and,

in general, they can be categorized against two dimensions. The first dimension

concerns the RNA features considered by the approach (e.g. primary structure,

secondary structure, or both primary and secondary structure), and the second

concerns the model used to represent RNA (e.g. string based or tree structure).

Some approaches adopt string-based representations of the RNA primary

structure only. In these cases, RNA molecules are represented as strings and

standard string-alignment algorithms are applied [7][8]. However, because they

ignore the associated secondary structure these approaches match RNA bases

Chapter Two Background and Related Work

37

regardless of the molecular interactions in which they are involved (i.e. the loops

they constitute) leading to biologically implausible alignment solutions [16].

Yet other approaches consider the RNA secondary structure only which is

abstractly represented as a structure of loops. Such representations capture the

topological skeleton of RNA molecules regardless of their underlying primary

structure, and are useful for measuring the high-level structural similarity between

molecules, but the measurements are not precise. Shapiro’s work (1988)

exemplifies these approaches in that it represents a secondary structure as a tree

where each node represents a loop (e.g. Internal, Hairpin, Bulge, or Multi loop).

 String/Arc representation Tree-based
representation

Primary structure only Bafna, 1995;
Secondary structure only El-Mabrouk et at, 2002. Coarse-grained

Jin et at, 2005;
Shapiro and Zhang,
1990; Le et al., 1989;
Shapiro 1988.

Primary and secondary
structure

Jiang et al., 2002;
Lin et al., 2001;
Collins et al., 2001;
Wang and Zhang, 2001,
2005;
Corpet and Michot 1994.

Fine-grained
- Tight Fine-grained:
Herrbach et al., 2006;
Liu et al., 2005;
Zhang, 1998.
- Loose Fine-grained:
Höchsmann, 2005

2.7.2 RNA Secondary Structure Comparison as a Tree

Figure 2-12 illustrates how Mikhaiel and Stroulia [103] represented an RNA

molecule as a Tight Fine-Grained (TFG) tree structure. In this representation, a

loop is represented by: (1) one node representing the opening base pair of this

loop, and (2) a set of nodes each representing other single bases this loop. This

representation captures both the primary and secondary structures leading to a

better comparison quality.

Chapter Two Background and Related Work

38

(a) An RNA Secondary Structure (b) RNATree representation

Figure 2-12: An RNA Structure represented as an ordered labeled tree

Another way to represent RNA Secondary Structure is called Loose Fine-

Grained (LFG) tree structure introduced by RNA Forester [59][60][61]. As shown

in Figure 2-13, in this representation stem loops are decomposed into a joint node

and two separate nucleotide (base) nodes. In LFG, each element is represented as

a single node while each bond is represented as a joint node. The main difference

between LFG and TFG is that LFG allows fine-grained edit operations. For

example, in TFG an edit operation may include replacing, deleting, or inserting a

pair of elements while LFG allows to report edit operations like breaking the joint

between a pair of elements, or deleting/inserting a single node.

Chapter Two Background and Related Work

39

Figure 2-13: LFG versus TFG RNA tree structures

.

.

. CG
AU

UA

U

A U G C

AU

AU

.

.

. CG
AU

UA

A U G U

.

.

. J
J C G

J A U
U A

U

A U C C

J A U
J A U

.

.

. J
J G
J A U

U A

C

A U G U

. . .

U
C G

A U

U A

U
A

G
C

A U
A U

. . .
C G

U A

U
A

G
U

A U

40

Chapter Three VTracker: A Generic XML-Differencing
Method

VTracker is a generic solution to the XML differencing problem. VTracker is

applicable to various domains, and is able to compete with, and replace, domain-

specific differencing approaches. This chapter presents the requirements of a

generic XML differencing approach, the original Zhang-Shasha algorithm, and

then the details of VTracker by explaining how it meets these requirements.

3.1 Requirements of Generic XML differencing

As discussed in the previous chapter the problem of XML differencing has been

studied from many perspectives. Many researchers have designed domain-specific

XML differencing approaches that are intended to serve some domains in

particular. Other researchers looked broadly and tried to design generic

approaches that were supposed to fit in many domains. However, many of the so-

called, generic approaches suffer critical limitations that prevent them from being

practically generic. This section lays out a set of guidelines for any XML

differencing approach that aims at being generic.

(1) Be domain independent

The first obvious requirement of a generic XML differencing approach is to avoid

being tied to, or constrained by, a specific application domain. Also, it should not

include implicit semantics or knowledge of some specific domains in particular. It

should be able to serve multiple domains, and be capable of capturing domain

specific knowledge and semantics through an easy to develop customization

technique.

(2) Produce meaningful minimal edit script

Another requirement of an XML-differencing approach is to produce the shortest

possible edit script that can transform a given XML document to another one. A

differencing method should avoid reporting unnecessary deletions or insertions.

For example, if the root of a sub-tree is deleted (or inserted), the entire sub-tree

should not necessarily be deleted (or inserted). In this sense, Selkow’s tree-to-tree

correction model is not the best in terms of delta size since it offers three kinds of

Chapter Three VTracker: A Generic XML-Differencing Method

41

edit operations: change node label, delete sub-tree, or insert sub-tree. Hence, tree-

edit distance methods offering fine-grained edit operations are more efficient in

terms of the produced delta.

Another requirement on the edit script is to be meaningful. A produced

delta should be sound, reasonable, and acceptable by subject-matter experts;

otherwise, the results are not useful and do not reflect any meaning to the user.

Furthermore, if a meaningful script is not the most minimal script, being

meaningful suppresses the minimalistic requirement.

(3) Consider the hierarchical data structure represented in XML

By nature, XML has a tree like structure. An XML-differencing approach should

be aware of this structure and should not consider an XML as a flat file. Mapping

results, therefore, should obey the structural relationships between mapped

elements. The Zhang-Shasha algorithm formalized this aspect in the following

rules. Consider nodes i1 and i2 belong to T1 while j1 and j2 are nodes in T2, then in

order to map node i1 to node j1, while node i2 is mapped to node j2 the following

conditions should apply [166]:

?# D#$ Y$ D!! GOO! Z#Y$ Z!m! NMKD\NDNMK!VU^^GMH! ZWKJK! KUQW! MNPK! QUMMN\! bK!

GMTNXTKP! GM\N! VNJK! \WUM! NMK! KPG\! N^KJU\GNM#! +WGR! QNMPG\GNM! ZGXX!

MN\! bK! TUXGP! GM! VK\WNPR! \WU\! UXXNZ! R^XG\a! QN^`a! UMP! HXIKDKPG\!

N^KJU\GNMR#!

??# D#$ GR! NM! \WK! XKO\! NO$ D!! GOO! Z#$ GR! NM! \WK! XKO\! NO$ Z!$ m! ^JKRKJTGMH! RGbXGMHR!

NJPKJ#!

???# D#$GR!UM!UMQKR\NJ!NO$D!!GOO!Z#$GR!UM!UMQKR\NJ!NO$Z!$m!^JKRKJTGMH!UMQKR\NJD

QWGXP!NJPKJ#!
(4) Allow edit operations anywhere

In XML documents edits may happen anywhere in the document, to a leaf node or

to an internal node. For example, edits may include changing the value of a

certain leaf node, or restructuring the sub-tree of another node. A differencing

method should, therefore, be able to detect changes that may happen anywhere in

Chapter Three VTracker: A Generic XML-Differencing Method

42

the two given XML documents, and not to be limited to certain type of changes.

Additionally, a method’s performance should be consistent in detecting different

types of changes.

(5) Identify elements based on all available information

XML elements should be identified by value, attributes, content, context,

structure, and references. They should not only be identified by attributes or hash

values that were preset in an earlier version comparison, or only with attributes

considered keys in that domain. For instance, sentences and paragraphs in

structured-text documents do not come with an identifier [27]. Also, some

elements may have different domain identifier values but have the same content

structure. For example consider a case where an element x on one side is being

matched against two elements y1 and y2 on the other side, and where y1 has the

same identifier value as x but with different content while y2 has the same

contents but with a different identifier value. Then, the question becomes, what

identifies an element: identifier values, or content and structure? Either answer to

this question is right as long as it considers identifier values, contents, structure,

context, and other attributes.

(6) Do not assume prior change-tracking log

A differencing method should assume that the two given documents were

independently developed and edited by different parties and through different

technologies. A generic XML differencing method should not assume that edits

and changes are tracked by the editor utility. An XML differencing method should

not rely on the fact that changes always happen through a particular tool, whose

job is to keep track of, and record, changes happening to a certain XML

document. Otherwise, it is not differencing but rather a method to report changes

that were previously recorded.

(7) Be as efficient as domain-specific differencing techniques

One main reason motivating the development of domain-specific methods is the

inefficiency of generic approaches. Generic methods usually perform extra steps

Chapter Three VTracker: A Generic XML-Differencing Method

43

that are neither necessary nor justifiable at least from the point of view of some

domains. For example, generic methods will have to consider all possible

combinations when matching sub-trees against each other. In some domains, such

behavior is considered a waste of time, since according to the domain knowledge

some nodes are impossible to be mapped to some other nodes so why should it try

to match them. For example, Figure 3-1 shows two java object-oriented

hierarchies, where it is not acceptable, by any means, to match a package node

neither to a class node nor to an interface node while a class node might be

matched to either an interface or a class node. Unlike generic approaches a

domain-aware method is more efficient since it will try to match a package sub-

trees only to a package sub-tree, and similarly, a class sub-trees against only a

class or an interface sub-trees. Therefore, a generic method to compete with

domain-specific methods should be intelligent enough to skip, and avoid any

unnecessary comparison steps.

!

CDE #M(GPdLIN:GUSLMNLH(9GHLQ(XLUOSGM(/(

!

CPE #M(GPdLIN:GUSLMNLH(9GHLQ(XLUOSGM(W(

;SVJUL(`:/7(%FG(GPdLIN:GUSLMNLH(ODK]QLO(UL]ULOLMNLH(DO(NULL(ONUJINJULO(

Chapter Three VTracker: A Generic XML-Differencing Method

44

(8) Consider XML reference structure in the differencing process

The reference model is a special feature in XML that aims at increasing the

reusability of some element definitions by referring to them from other elements.

And usually that is either to apply some normalization mechanisms, or to

implement certain relationships such as association, specialization, or

instantiation. Chapter Two presents many domain applications that largely rely on

the XML reference structure, and therefore the reference structure should play a

role in an XML differencing process. To illustrate the idea, AGHIJK!.D" shows two

different structures to represent the same Student Enrolment database. The first

structure does not use hyperlinks (i.e. references) while the second does. In the

first structure, a course definition is repeated every time it is mentioned while in

the second structure; the course is defined once and is then referenced when

needed.

Chapter Three VTracker: A Generic XML-Differencing Method

45

(a) An XML sample with no reference

model

(b) An XML sample with a

reference model

;SVJUL(`:W7(%FG(894(ODK]QL(HGIJKLMNO(OYGFSMV(NYL(HSRRLULMIL(

PLNFLLM(MGM:MGUKDQSeLH(DMH(ULRLULMIL:PDOLH(MGUKDQSeLH(ONUJINJULO(

During a differencing process, the referenced structure should be

considered as a part of the referring structure in the same place as the hyperlink.

Chapter Three VTracker: A Generic XML-Differencing Method

46

Similarly, when matching a document of the first type against a document of the

second type, hyperlinks should logically be replaced by the referenced structures.

In other words, element attributes constituting ID and IDREF should be handled

differently than as just attributes. For instance, AGHIJK! .D. shows a simple

example illustrating how the reference structure influences the validity of the

produced results. This example describes two workflows: the first one has a start

node that leads to one other node labeled “Process ABC”. In the second

workflow, the start node forks into two nodes “Process XYZ” and “Process

ABC”. The challenge here is that the nodes in the two workflows have different

IDs. AGHIJK!.D. shows it is not difficult to detect that the node labeled “Process

XYZ” was newly inserted, and that the id of the node labeled “Process ABC” has

been changed from “2” to “5”. However, the tricky part is in the reference inside

the start node. The differencing tool should choose how to map <node idref = “2”/>

either to <node idref = “4”/> (as in AGHIJK! .D. (b)) or to <node idref = “5”/> (as in

AGHIJK!.D. (c)). Unless the attribute IDRef is treated specially, the solution will

not be justifiable. A possible way to wisely resolve this situation is to follow the

reference on both sides and compare the referenced nodes; comparing node 2

against node 4, and comparing node 2 against node 5 and choose the one that is

closer. If this is applied properly, the correct solution should look like AGHIJK!.D.

(c) where the solution shown in AGHIJK!.D. (b) should be perceived as incorrect

for two reasons: (1) there is no reasonable justification why <node idref = “2”/> is

mapped to <node idref = “4”/>, and (2) the reported results contradict with the rest of

the results where it refers to a node “4” that is not mapped to the other side. While

the solution based on reference model in AGHIJK!.D. (c) makes sense as it matches

references to nodes that are the closest to each other.

Chapter Three VTracker: A Generic XML-Differencing Method

47

!
CDE(%FG(ODK]QL(FGU[RQGFO(

!
CPE(#M(LTDK]QL(GR(JMHLOSULH(HSRRLULMISMV(ULOJQNO(

!
CIE(#M(LTDK]QL(GR(HLOSULH(HSRRLULMISMV(ULOJQNO(

;SVJUL(`:`7(#M(894(HSRRLULMISMV(LTDK]QL(SQQJONUDNSMV(NYL(SK]GUNDMIL(GR(

ULRLULMIL(KGHLQ(

Chapter Three VTracker: A Generic XML-Differencing Method

48

(9) Consider XML usage-context structure in the differencing process

The XML reference model implies a two-way relationship: the previous example

discussed one of them, namely outgoing references from an element of interest.

The other direction, the so-called usage-context, is the referenced-by relationship,

namely incoming references to the element of interest. AGHIJK! .D3 illustrates a

very simple example of the usage-context where there are two elements on the

second tree that can be matched to an element in the first tree. The question will

be which one to map it to. Such confusion would be resolved by all known

methods through randomly picking any of the two choices. However, a smart

differencing tool should resolve this confusion by picking the choice that maps

elements used in similar contexts. A sound result should consider the fact that on

the first document, node #2 is referenced from the start node, which implies that

the correspondent in the second document should have a similar usage-context. In

other words, the usage-context of a node should have an important role in the

identification of that node. In that sense, the solution in AGHIJK!.D3 (c) should be

the right one as it maps nodes with the same usage-context. To the best of our

knowledge, the known XML differencing tools neither consider the reference

model nor the usage-context during the differencing process. This aspect is an

important element of the applicability of the XML model for generic methods.

Finally, it is evident that usage-context should be used in conjunction with a

reference-aware approach to produce the best results.

Chapter Three VTracker: A Generic XML-Differencing Method

49

!
CDE(%FG(ODK]QL(FGU[RQGFO(

!
CPE(#M(LTDK]QL(GR(JMHLOSULH(ULOJQNO(

!
CIE(#M(LTDK]QL(GR(HLOSULH(ULOJQNO(

;SVJUL(`:<7(#M(894(HSRRLULMISMV(LTDK]QL(SQQJONUDNSMV(NYL(UGQL(GR(JODVL:

IGMNLTN(OSKSQDUSN^(SM(ULOGQXSMV(KDNIYSMV(DKPSVJSNSLO(

Chapter Three VTracker: A Generic XML-Differencing Method

50

3.2 The Original Zhang-Shasha Algorithm

This section explains the original Zhang-Shasha algorithm [166] that is the base

of the current implementation of VTracker. Given two ordered labeled trees, and a

cost function, the Zhang-Shasha algorithm calculates the optimal edit distance to

transform the first tree into the second tree.

Before explaining the algorithm, descriptions of some essential definitions

and notations are offered. Let T be a rooted tree, then:

• Ordered tree: a tree T is called an ordered tree if a left-to-right order among

siblings in T is given.

• Node index: nodes are numbered in a post-order manner where children are

visited from left-to-right before their parents. In other words, the index of the

root node should be the same as the size of the tree that is denoted as |T|.

Hence, T[x1..x2] refers to the set of nodes with indexes between x1 and x2

inclusive. The left most leaf child of a node xi can be obtained by lm(xi).

Hence, the sub-tree rooted by node xi can be represented as T[lm(xi)..xi] that is

short-handed as T[xi], and the whole tree can similarly be represented as T[|T|].

• Node label: the label of a node xi is denoted by l(xi).

• Labeled tree: a rooted tree T is called a labeled tree if each node v is assigned

a symbol from an alphabet !.

• Edit operations: an edit operation si is represented as (xi , yi) where xi is either

a node in T1 where 1< xi < |T1|, or is in case of no correspondence in T1, and

similarly yi is either a node in T2 where 1< yi < |T2|, or is in case of no

correspondence in T2. Hence, edit operations can be formally described as

follows:

o Change operation: denoted as (xi , yi) where l1(xi) the label of node xi is

mapped to l2(yi). If l1(xi) = l2(yi), it is pronounced as a match rather

than as a change operation.

Chapter Three VTracker: A Generic XML-Differencing Method

51

o Deletion Operation: denoted as (xi ,) and means that node xi with

label l1(xi) in T1 has no correspondence in T2.

o Insertion Operation: denoted as (, yi) and means that node yi with

label l2(yi) in T2 has no correspondence in T1.

Figure 3-5: A sample tree-edit script

Figure 3-5 illustrates the tree-edit operations: (1) operation change label of

node f to be f’, (2) operation delete node c where its children {d, e} became

children of its parent, i.e. node a, and (3) operation insert a new node j to become

an intermediate parent of some of node a children. It is very important to mention

that an insertion operation is just the inverse of a deletion operation. The same

operation when applied to the first tree, it is called a deletion but when applied to

the second tree, it is called an insertion. Additionally, in a change operation, if the

labels are the same, then it is not called a change but rather match operation.

• &HSN(scriptL!an edit script is represented as Si = si1, …, sik where Si is the ith

edit script that is composed of a sequence of k edit operations, and that is

capable of transforming T1 into T2. An edit operation sij denotes the jth edit

operation of the ith edit script, and is represented as either a matching

operation (xij,yij) such that xij and yij are nodes in T1 into T2 respectively, a

delete operation (xij,), or an insert operation (, yi) that satisfy the

following conditions such as

!

(xij
1
,yij

1
)and

!

(xij
2
,yij

2
) are in Si:

o

!

xij
1

= xij
2
" yij

1
= yij

2
(one-to-one condition; no merge or split

allowed).
o

!

xij
1
 is an ancestor of

!

xij
2

!

"

!

yij
1
is an ancestor of

!

yij
2

 (structure

preserving condition).
o

!

xij
1
 is to the left of

!

xij
2

!

"

!

yij
1
is to the left of

!

yij
2

 (order preserving

condition).

Chapter Three VTracker: A Generic XML-Differencing Method

52

• %ULL:edit(HSONDMIL7(URRIVK!\WU\!HGTKM!U!QNR\! OIMQ\GNM!!!PKOGMKP!NM!KUQW!

KPG\!N^KJU\GNM!.Da!UMP!GR!PKMN\KP!UR$"S.DU#!+WKM!\WK!QNR\!NO!UM!KPG\!RQJG^\!A!GR!

QUXQIXU\KP! UR B(\WK! sum of costs of operations in

.

• An optimal edit script between T1 and T2 is an edit script between T1 and T2 of

the minimum cost, and is defined as:

where n is number of edit scripts that can transform T1 into T2. Hence, the

tree-edit distance problem is to compute the cheapest edit distance and the

corresponding edit script.

The Zhang-Shasha algorithm is based on a dynamic-programming

approach that splits a tree-edit distance problem to a set of recursive sub-problems

explained in Code 3-1. To accomplish that the algorithm divides a tree into a set

of relevant sub-trees that are identified by a set of key roots. Key roots are defined

as the set of nodes that includes the root of the tree in addition to all nodes that

have at least one left sibling. The key-root set of each tree is then sorted according

to the index of the key-root node. Hence, for all combinations of key sub-trees,

the algorithm calculates the tree-edit distance starting from smaller sub-trees to

bigger ones. The calculations of bigger sub-trees leverage results of smaller ones.

Lemma 3-1: Tree-Edit Distance

where the distance between two forests is defined as:

Chapter Three VTracker: A Generic XML-Differencing Method

53

Lemma 3-2: Forest-Edit Distance

As illustrated by AGHIJK! .D9, during each tree-edit distance calculation

between T1[x] and T2[y], the Zhang-Shasha algorithm chooses the minimum cost

option of the three following aspects:

• The cost of mapping node x to node y plus the cost of matching the remaining

forests to each other.

• The cost of deleting node x plus the cost of matching remaining forest of first

tree against the entire second tree.

• The cost of inserting node y plus the cost of matching entire first tree against

remaining forest of the second tree.

!
CDE(6SOJDQSeDNSGM(GR(%ULL:&HSN(,SONDMIL(

!
CPE(6SOJDQSeDNSGM(GR(;GULON:&HSN(,SONDMIL(

;SVJUL(`:a7(6SOJDQSeDNSGM(GR(fYDMV:?YDOYD(DQVGUSNYK(g<ah(

Chapter Three VTracker: A Generic XML-Differencing Method

54

DECLARE matrix tdist with size [|T1|+1] * [|T2|+1]
DECLARE matrix fdist with size [|T1|+1] * [|T2|+1]
FUNCTION treeDistance (x , y)
START
 lmx = lm1 (x) // left most node of x
 lmy = lm2(y) // left most node of y

 bound1 = x – lmx + 2 //size of sub-tree x + 1
 bound2 = y – lmy + 2 //size of sub-tree y + 1

 fdist[0][0] = 0

 // set the first column
 FOR i = 1 TO bound1 – 1
 fdist[i][0] = fdist[i-1][0] + cost(k,-1)

 // set the first row
 FOR j = 1 TO bound2 – 1
 fdist[0][j] = fdist[0][j-1] + cost(-1,l)

 k = lmx
 l = lmy
 FOR i = 1 TO bound1 - 1
 FOR j = 1 TO bound2 – 1
 IF lm1(k) = lmx and lm2(l) = lmy
 THEN // tree edit distance
 fdist[i][j] = min(fdist[i-1][j] + cost(k,-1),
 fdist[i][j-1] + cost(-1,l),
 fdist[i-1][j-1] + cost(k,l))
 tdist[k][l] = fdist[i][j]
 ELSE // forest edit distance
 m = lm1(k) – lmx
 n = lm2(y) – lmy
 fdist[j][j] = min(fdist[i-1][j] + cost(k,-1),
 fdist[i][j-1] + cost(-1,l),
 fdist[m][n] + tdist(k,l))
 RETURN tdist[x][y]
END

Code 3-1: A pseudo code of Zhang-Shasha tree-edit distance algorithm

3.3 The VTracker Approach

VTracker is a tree-edit distance algorithm that extends the Secondary and Primary

RNA Comparison (SPRC) [103] algorithm, which was developed in the context

of the author’s work in RNA secondary structure alignment. Both SPRC and

VTracker are based on the Zhang-Shasha tree-edit distance algorithm [166] which

calculates the minimum edit distance between two trees given a cost function for

different edit operations (e.g. change, deletion, and insertion). According to the

Chapter Three VTracker: A Generic XML-Differencing Method

55

exact analysis of the algorithm performed by Dulucq and Tichit [46], Zhang-

Shasha’s algorithm is of complexity |T1|3/2|T2|3/2. Both VTracker and SPRC extend

the Zhang-Shasha algorithm in two ways. First, they use an affine–cost policy that

is that the cost of each operation may be adjusted based on the context in which it

is applied. Second, in a post-processing step, they apply a simplicity-based filter

to discard the more unlikely solutions from the solution set produced by the tree-

alignment phase. But, unlike the Zhang-Shasha algorithm and SPRC, VTracker is

both reference-aware and context-aware based on back cross-references between

nodes of the compared trees. As shown in Figure 3-7, VTracker, given two XML

documents and a cost model, produces the cheapest edit script that will transform

the first document into the second one in conjunction with the edit script

associated with the reported distance. This section presents the details of

VTracker, and shows how VTracker meets all the requirements of generic XML

differencing.

Figure 3-7: VTracker’s framework processing model

3.3.1 XML Documents as Ordered Labeled Trees

In VTracker, an XML tree is composed of a set of nodes, where each node is

either a text node or an element node. A text node only has a value while an

element node has a name, attributes, and/or children nodes. Each node has one

parent. An attribute has a name and a value. A value is a literal value, an

identifier, or a reference to an identifier. The reference model inside an XML

document is either imposed by the underlying XML DTD or XML Schema, or

Chapter Three VTracker: A Generic XML-Differencing Method

56

just logically embedded in the application. To be more specific, in DTD, an

identifier attribute is declared as a type ID and a reference attribute is declared as

an IDREF. Although, the XML referencing model is a critical player in the XML

business, to the best of our knowledge, none of XML differencing approaches

pays it the appropriate attention. One other thing to mention is that only text and

element nodes are considered in VTracker since all other types of nodes, such as

processing instructions and comments, do not add any value to the semantics of

the document. Similarly, VTracker ignores empty text nodes and text nodes

consisting of only white spaces.

3.3.2 The VTracker Cost Model

The main contribution of VTracker is its innovative cost model. The cost model is

the module responsible for assessing the cost of various edit-operations such as

deleting a node, inserting a node, or changing a node label. The next few sub-

sections discuss VTracker’s context-oriented cost model such as change edit cost,

deletion (or insertion) edit costs, and the relative weight between the change and

deletion (or insertion) edit costs.

(1) Context-oriented Change Edit Cost

Given two tree nodes, a simple change edit cost assessment would follow a binary

function that yields one of two values: zero in the case of perfect match, a

constant value otherwise. However, in practice, two nodes that are not exactly the

same may also not be entirely different. In VTracker, a matching cost is not a

binary function but is an analog function where a matching cost value may range

from zero, in the case of a perfect match, to a maximum constant, to indicate an

impossible match. A simple implementation of such an analog cost function

would measure the string distance between the two node names, their attributes,

etc. However, some nodes that do not have similar names may have similar

semantics, and vice versa, some nodes that may have literally similar names may

have very distinct meanings. Therefore, in order to produce accurate solutions that

are intuitive to domain experts, VTracker needs to be equipped with a domain-

Chapter Three VTracker: A Generic XML-Differencing Method

57

specific cost function that correctly captures the understanding of subject-matter

experts as to what constitutes similarity and difference among elements in the

given domain. But, lacking such knowledge, a standard cost function can always

be used as a default, which may, however, sometimes yield less accurate and non-

intuitive results.

To address the challenge of coming up with a “good” domain-specific cost

function, VTracker has an innovative method for synthesizing a cost function

from the domain’s XML schema by relying on the assumption that the XML

schema captures in its syntax a substantial part of the domain’s semantics.

Essentially, VTracker assumes that the designers of the domain schema use their

understanding of the domain semantics to identify the basic domain elements and

to organize related elements into complex ones.

Once VTracker has been used first to develop a domain-specific cost

function, it can be used to compare XML documents that are instances of the

schema based on which the cost function has been developed. Figure 3-8

illustrates the bootstrapping process that should happen once, and for good, for

each new domain. Given the domain’s XSD along with the default cost model,

VTracker is used to compare the schema elements against each other while trying

to measure similarities, i.e. edit distance between them as if it is a regular XML

document. VTracker then produces a distance matrix between defined elements.

The distance matrix is the core of the cost model as it specifies the possibility that

two elements are replaceable.

Table 3-1 depicts a sample of the cost model that was synthesized based

on OWL/RDF XSDs. This sample shows all labels with distance more than 0%,

and less than 8%. Each row shows the distance between two node labels followed

by a percentage where 0.0% means a perfect match, and 100% means an

impossible match. This distance is also interpreted as a similarity measure

between nodes of the two given nodes. For instance, two nodes with a 15%

distance would be more acceptable as a replacement of each other than those with

Chapter Three VTracker: A Generic XML-Differencing Method

58

a 90% distance. As shown in this table, VTracker managed to uncover the

semantics of the domain that are implicitly embedded in the underlying XSD, and

was able to find only relevant matches. Then, the produced cost function is used

to compare instances of this given XSD.

Figure 3-8: VTracker domain bootstrapping process

Table 3-1: Sample of OWL/RDF synthesized cost model

cardinality maxCardinality 2.78%
cardinality minCardinality 2.78%
subject object 3.70%
cardinality qualifiedCardinality 3.70%
cardinality maxQualifiedCardinality 4.63%
cardinality minQualifiedCardinality 4.63%
backwardCompatibleWith incompatibleWith 5.56%
maxCardinality minCardinality 5.56%
maxQualifiedCardinality minQualifiedCardinality 5.56%
maxQualifiedCardinality qualifiedCardinality 5.56%
minQualifiedCardinality qualifiedCardinality 5.56%
allValuesFrom someValuesFrom 6.48%
annotatedProperty annotatedSource 6.48%
annotatedProperty annotatedTarget 6.48%
annotatedSource annotatedTarget 6.48%
maxCardinality maxQualifiedCardinality 6.48%
maxCardinality minQualifiedCardinality 6.48%
maxCardinality qualifiedCardinality 6.48%
minCardinality maxQualifiedCardinality 6.48%
minCardinality minQualifiedCardinality 6.48%
minCardinality qualifiedCardinality 6.48%
sourceIndividual targetIndividual 6.48%
AsymmetricProperty SymmetricProperty 6.67%
IrreflexiveProperty ReflexiveProperty 6.67%
intersectionOf unionOf 7.41%
oneOf unionOf 7.41%
unionOf oneOf 7.41%
ReflexiveProperty TransitiveProperty 7.78%

Chapter Three VTracker: A Generic XML-Differencing Method

59

It is very important to mention here that the quality of the cost-model

synthesizer largely depends on the richness and restriction of the given XSD. The

richer and more restrictive the XSD the better quality of the cost-model achieved.

If the given XSD does not capture the majority of the domain semantics, then the

synthesizer will produce non-sense. It is essential to remember that it is always

possible to manually configure the domain cost model, or even to fix the

synthesized one. It is also important to mention that the bootstrapping process can

help in building a cost function to translate between two different schemas. In this

case, VTracker has to be provided by the two XSDs.

(2) Context-oriented Deletion/Insertion Edit Cost

A simple cost function assigns a uniform cost value to all deletion and insertion

operations regardless of the context where the operation is applied. Thus, the cost

of a node insertion/deletion is always the same, irrespective of whether or not that

node's children are also to be deleted (or inserted). However, a parent node

becomes less important if all its children are deleted. In order to produce more

intuitive tree-edit sequences, VTracker uses an affine-cost policy.

The idea of affine-cost function was borrowed from the affine-gap cost

function introduced in Bio-informatics sequence edit-distance problems [55].

Intuitively, the idea is that a single long insertion should be cheaper than several

short ones of the same total lengths. For example, Figure 3-9 shows two

possibilities of matching two strings “AUGCCUAGCCG” and “AUCG”. The first

possibility has more gap fragments than the second. According to the affine-gap

policy, the hypothesis is that “it is always cheaper by dozen.”, and that deletions

and insertions tends to happen at contingent elements rather than dispersed ones.

A U G C C U A G C C G

A - - - - U - - C - G

A U - - - - - - - C G

Figure 3-9: A sample string-edit distance with affine-gap policy where dashes

represent insertions and deletions

Chapter Three VTracker: A Generic XML-Differencing Method

60

In VTracker, a node's deletion (or insertion) cost is context sensitive if all

of a node’s children are also candidates for deletion, this node is more likely to be

deleted as well, and then the deletion cost of that node should be less than the

regular deletion cost. The same is true for the insertion cost. To reflect this

heuristic, the cost of the deletion or insertion of such a node is discounted by a

certain percentage. Figure 3-10 illustrates the importance of an affine-cost

function. First, assume a standard cost function where the cost of a deletion or an

insertion is 3 while the cost of change is 6. Now, Let us consider the two trees of

Figure 3-10 (a). According to the cost function, the cost of the differencing shown

in Figure 3-10 (b) is 24 (four change operations) while the cost of the differencing

of Figure 3-10 (c) is 30 (five deletion operations + five insertion operations).

Therefore, according to this cost function, solution Figure 3-10 (b) is the optimal

since it is cheaper. With a closer look at why Figure 3-10 (c) is so expensive,

structure nodes like <param>, <name> and <type> are found to be more costly to

delete, as they are so numerous. However, such structure nodes have no value if

their contents are to be deleted. And, here comes the advantage of affine-cost

function that discounts the edits to such structure-preserving nodes in case all

their children are to be deleted. For example, according to a 66.6% discount

policy, deleting or inserting any of the structure nodes will cost one unit instead of

three each. In other words, applying affine-cost policy on the Figure 3-10(c), the

cost will be 18 (two regular deletions of three units each + three discounted

deletions of one unit each + two regular insertions of three units each + three

discounted insertions of one unit each), which promotes the second solution to be

the optimal one.!!

Then, the question is how to decide if a node is eligible for an affine

discount. In other words, while calculating the edit cost between two nodes x and

y, the algorithm has to determine whether the children of x, y, or both are to be

deleted. As shown in Code 3-2, for the cost function to decide whether this node

is eligible for an affine policy discount, it has to leverage the distance calculations

of this node’s sub-forest. It checks if the cost of deleting the forest fdist[0..x-

Chapter Three VTracker: A Generic XML-Differencing Method

61

1,0..y-1] equals the summation of fdist[0..lm1(x)-1, 0..y-1] plus the deletion cost

of T1[lm1(x)-1..x-1]. A cell is eligible for a deletion affine discount, if and only if,

either the cell is in the first column since the first column always means a full

deletion, or the accumulated cost recorded with this node’s children equals the

cost of deleting the same children. The eligibility of the insertion affine discount

is similarly calculated.

!
CDE(%FG(NULLO(

!
CPE(,SRRLULMISMV(ULOJQNO(GR(ONDMHDUH(IGON(RJMINSGM(

!
CIE ,SRRLULMISMV(ULOJQNO(GR(DRRSML:IGON(RJMINSGM(

Figure 3-10: An example to illustrate the importance of affine-cost function

Chapter Three VTracker: A Generic XML-Differencing Method

62

FUNCTION IsDeleteAffineEligible (x, y)
START
 IF y = 0
 THEN // the whole tree is to be deleted
 RETURN true
 ELSE
 // Cost of matching the remaining forests to each other
 CostRemaingForest = fdist [lm1 (x)-1][y]

 // Cost of matching sub-forest is the actual cost minus
 // Cost of matching the remaining forests to each of the
 CostSubForest = fdist [x-1][y] – CostRemaingForest

 // Cost of deleting everything minus
 // Cost of matching the remaining forests to each other
 CostDelSubForest = fdist [x-1][0] – fdist [lm1 (x)-1][0]

 IF costSubForest = costDelSubForest
 RETURN true
 ELSE
 RETURN false
END

Code 3-2: A pseudo code to check the eligibility of certain node for a deletion

affine discount

(3) Relative Weight between Deletion and Change Edit Costs

The previous two sections discuss the importance of context-sensitive cost

functions on the dimensions of change, and deletion/insertion edit operations. The

next question is what is the proper relative weight between these three types of

operations? In practice, the cost value itself is not that important. Of greater

importance is the relative cost between the different operations. In actuality, the

cost of a deletion operation should always equal the cost of an insertion operation.

Then the question becomes what is the relation between the cost value of

deletion/insertion and the cost value of change. Many related works use a uniform

cost model where deletion, insertion, and change operations have the same unit

cost. However, this model gives the change operation more privilege over deletion

and insertion. For example, if two nodes are totally different, but because of the

uniform cost model matching them to each other will cost one unit while the cost

of deleting the first node plus inserting the second node will cost two units, then

Chapter Three VTracker: A Generic XML-Differencing Method

63

the match option will always be favored over deletion and insertion operations

since it costs less. Therefore, in VTracker’s cost model, the cost of change should

be at least equal to the sum of the deletion and insertion costs; which gives a fair

chance between all the three operations. In that way, if two nodes are:

• Perfect match, then their matching cost will be zero.

• Partially similar, then their matching cost will be prorated to the maximum

matching cost, which should be less than the cost of deleting the first node

plus the cost of inserting the second node.

• Entirely different, then the cost of matching them will equal the cost of

deleting the first node plus the cost of inserting the second node, which gives

both choices a fair chance to be favored by further calculations at subsequent

nodes.
(4) Basic Cost Functions

VTracker uses a set of cost functions to measure the basic distance between

different elements. One of the most common cost functions is the Levenshtein

string-edit distance, and is used (a) to measure the distance between couples of

string tokens, which is always normalized to the size of the two tokens; and (b) to

measure the distance between two sets of tokens. In this case, Levenshtein’s

string-edit distance is used at two levels: once on the character level inside each

token, and once more on the token-level for each set. Also Levenshtein’s string-

edit distance is used to measure the distance between attribute names, and

between attribute values.

3.3.3 Considering Outgoing References

The more fundamental advantage of VTracker over other differencing methods is

the integration of the XML referencing structure into the XML containment

structure, which enables VTracker to compare more complex structures (i.e. trees

with back references) than others (that only compare proper trees). The approach

presented in this thesis considers only references to nodes within the same

document; references to external elements are currently ignored. However, a

Chapter Three VTracker: A Generic XML-Differencing Method

64

workaround would include all external documents along with the main document

into one tree structure.

A typical interpretation of such references is that the referenced element

structure is meant to be entirely copied under the reference location; but, to avoid

duplications, and inconsistencies, elements are reused through a reference to a

common definition. SPRC, the precursor of VTracker, handled such referencing

cases by just copying the content of the common element specification to every

reference occurrence. This approach led to really large tree structures, especially

in cases with many such cross-references. In addition to increasing the size of the

tree and consequently increasing the time necessary for the computation, such

“duplication” of elements to all their reference locations decouples them from

each other and allows them to be treated as independent entities with just an

“accidental” similarity in their internal structure and naming, which

fundamentally misrepresents the intent of the schema designer.

The question then becomes how the cost function should be adjusted in

order to compute the differences of two nodes in terms of the similarities and

differences of the elements they contain and refer to. The answer to this question

is straightforward: a referenced structure should be considered as an extension to

the containment structure. As explained in Lemma 3-3, in order to assess the

matching edit cost between two nodes x and y, the following cases have to be

considered:

• Neither node has a hyperlink attribute: a regular matching cost assessment is

applied either through a domain-specific cost function or by applying a string-

edit distance between the element names, attributes, and values.

• One node has a hyperlink attribute: a tree-edit distance measure is calculated

between the referenced structure on the hyperlink side against the entire sub-

tree on the other side.

• Both nodes have hyperlink attributes: a tree-edit distance measure is

calculated between both referenced structures.

Chapter Three VTracker: A Generic XML-Differencing Method

65

Lemma 3-3: Reference-aware cost function

In order to consider the reference-structure as a supplemental part of the tree-edit

distance calculation, the cost function ! is modified to be:

!
Modifying a cost function to be reference-aware is conceptually a simple

task. However, there are a few issues that have to be considered during the

implementation. The following paragraphs discuss three challenges to be

considered during the implementation of a reference-aware cost function.

(1) Normalized values

The expected output of the cost-assessment function is a value between zero and

the maximum matching cost. However, following a hyperlink and involving a

reference structure in the calculation may yield a distance value that is relative to

the size of the referenced structures. Therefore, a normalized step is required to

make sure that the reported matching distance is within range. As shown in

Lemma 3-3, this can be accomplished by dividing the calculated tree-edit distance

of the referenced structures by the cost of deleting them, which will yield a value

less than, or equal to, 1.0. Finally, this value is multiplied by the maximum

matching cost so that it is leveled with the normal matching cost.

(2) Infinite Loops

A challenge that arises when XML elements hold references to other elements is

to prevent the algorithm from falling into an infinite loop, as it follows these

references. Hence, the cost function should be equipped with a simple stack trace

p that maintains the recursion path of the current calculations. Accordingly, the

Chapter Three VTracker: A Generic XML-Differencing Method

66

cost function "’(x, y, p) accepts a recursion stack parameter p to reassure not

visiting the same state twice.

(3) Performance

One last thing to discuss here is the performance of reference-aware edit distance

calculation. The performance of the original Zhang-Shasha algorithm largely

relies on the order in which sub-trees are compared to each other. The algorithm

has a very specific order by which it calculates sub-problems so that rework is

avoided or at least minimized. The Zhang-Shasha algorithm uses the concept of

key-trees, on top of the dynamic programming model, to decide the order in

which sub-problems should be solved so that no recursion is required, in part,

because recursive calculations dramatically affect the amount of memory space

required to solve the problem. However, VTracker, in addition to the containment

hierarchy, also follows the reference relations between elements which affect the

actual dependencies between sub-trees and consequently impacts the “proper”

order in which sub-tree mappings should be calculated. References can

unexpectedly happen from any node to any other node which can dramatically

change the order in which sub-trees are compared and which dynamically

increases the degree of recursion required to solve the problem.

To mitigate this problem, VTracker sorts key sub-trees based on their

references, following the following two sorting criteria.

a) Popularity of the node: the number of inbound references. Sub-trees with

more inbound references should be considered before others with a fewer

number of inbound references. This criterion guarantees that high-demand

nodes are always calculated before low-demand ones so that calculations of

high-demand sub-trees are always ready first which in turn dramatically

decreases the number of possible recursions

bk Pre-requisites of a node: the number of outbound references. Nodes with

many out-bound references (i.e. hyperlinks) are harder to calculate especially

if their referenced sub-trees have not been calculated at that time. Therefore,

Chapter Three VTracker: A Generic XML-Differencing Method

67

sub-trees with many pre-requisites should be delayed to the end so that most

of their referenced sub-trees are calculated first.!!
3.3.4 Considering Usage-Context (Incoming References)

In usage-context matching, VTracker considers not only the internal and

referenced structure of an element but also the context in which this element is

used, namely the elements from which this element is being referenced. As

discussed earlier, usage-context distance is used to resolve confusions that may

happen in the regular tree-edit distance calculation.

In a post-calculation process, usage-context distance measures are

calculated and combined with standard tree-edit distance measures into a new

context-aware tree-edit distance measure. For each two nodes x and y, two

context-usage sets are established from nodes that having references to node x and

node y, respectively. Then, the usage-context distance between the two sets is

calculated as the Levenshtein distance [86] between elements of the sets, where

the distance between any two elements is the tree-edit distance between them, and

the total Levenshtein distance is then called the usage-context distance between x

and y. Finally, the context-aware tree-edit distance measure is the average

between the usage-context distance and the tree-edit distance measure.

3.3.5 Selecting the Optimal Edit Script

The original Zhang-Shasha algorithm describes only the process of calculating a

tree-edit distance and does not describe the proper way of recovering the edit

script associated with this distance. Under the conditions of a perfect cost function

there should be only one optimal edit script that transforms one tree into the other.

In practice, such a perfect cost function is unlikely (even impossible) to exist

leading to the fact that a tree-edit distance may have multiple corresponding edit

scripts all with the same cheapest total cost value. It is important to mention that

these various edit scripts may be quite different and they may report very different

solutions.

Chapter Three VTracker: A Generic XML-Differencing Method

68

For example, Figure 3-11 (a) shows segments from two RNA secondary

structures represented in two kinds of tree structures. This example is interesting

because in both tree representations, there are three possible edit scripts, i.e.

solutions all with the same cost shown in Figure 3-11 (b) - (d). Each of these edit

scripts corresponds to a different sequence of evolutionary operations that may

have led to the production of one tree rather than another. The question is then

which one should be reported as the differencing result. VTracker uses an

innovative set of simplicity heuristics, which is designed to discard the unlikely

solutions from the possible set. During this phase, three different simplicity

criteria are applied to decrease the set’s cardinality by eliminating solutions that

do not meet the criteria.

(1) Path Minimality

Intuitively, the first simplicity criterion eliminates “non minimal paths”. When

there is more than one different path with the same minimum cost, the one with

the least number of deletion and/or insertion operations is preferable. This

criterion aligns very well with the requirement of having a minimal delta, i.e., a

minimal edit script. In the example of Figure 3-11, since all solutions have the

same number of edit-operations, no solution is discarded in this phase of filtration.

(2) Vertical Simplicity

The second simplicity heuristic eliminates any edit sequences in which “non-

contiguous similar edit operations” exist. Intuitively, this rule assumes that a

contiguous sequence of edit operations of the same type essentially represents a

single mutation or refactoring on a segment of neighboring nodes. Thus, when

there are multiple different edit-operation scripts with the same minimum cost,

and the same number of operations, the one with the least number of changes

(refractions) of operational types along a tree branch is preferable.

This heuristic is implemented by counting the number of vertical refraction

points. A vertical refraction point is defined as a node where the editing operation

applied to its parent differs from the operation applied to this node. For example,

Chapter Three VTracker: A Generic XML-Differencing Method

69

solution two has five vertical refraction points; contrast this with either solution

one or solution three that each has three vertical refraction points only. Therefore,

solutions one and three are simpler than solution two as they have fewer vertical

refraction points; hence, solution two is discarded while solutions one and three

pass this filtration step.

RNA Segments TFG representation LFG representation

 (DE(%FG('*#(OLVKLMNO

 (b) ?GQJNSGM 1

(CIE(?GQJNSGM(W(

(CHE(?GQJNSGM(`(

Figure 3-11: An RNA comparison example showing the steps of the
simplicity heuristic filtration process

U
C G

A U

U A

U
A

G
C

A U
A U

. . .
C G

U A

U
A

G
U

A U

.

.

. CG
AU

UA

U

A U G C

AU

AU

.

.

. CG
AU

UA

A U G U

.

.

. J
J C G

J A U
U A

U

A U C C

J A U
J A U

.

.

. J
J G
J A U

U A

C

A U G U

. . .

U
C G

A U

U A

U
A

G
C

A U
A U

. . .
C G

U A

U
A

G
U

A U

.

.

. CG
AU

UA

U

A U G C

AU

AU

.

.

. CG
AU

UA

A U G U

.

.

. J
J C G

J A U
U A

U

A U C C

J A U
J A U

.

.

. J
J G
J A U

U A

C

A U G U

. . .

U
C G

A U

U A

U
A

G
C

A U
A U

. . .
C G

U A

U
A

G
U

A U

.

.

. CG
AU

UA

U

A U G C

AU

AU

.

.

. CG
AU

UA

A U G U

.

.

. J
J C G

J A U
U A

U

A U C C

J A U
J A U

.

.

. J
J G
J A U

U A

C

A U G U

. . .

U
C G

A U

U A

U
A

G
C

A U
A U

. . .
C G

U A

U
A

G
U

A U

.

.

. CG
AU

UA

U

A U G C

AU

AU

.

.

. CG
AU

UA

A U G U

.

.

. J
J C G

J A U
U A

U

A U C C

J A U
J A U

.

.

. J
J G
J A U

U A

C

A U G U

Chapter Three VTracker: A Generic XML-Differencing Method

70

(3) Horizontal Simplicity

This filtering criterion is implemented by counting the number of horizontal

refraction points. A horizontal refraction point is defined as a node where the

operation applied to its sibling differs from the operation applied to this node. For

example, in the case of the Tight Fine-Grained (TFG) tree representation solution

one has no horizontal refraction points and solution three has one refraction

points; in the case of the Loose Fine-Grained (LFG) tree representation solution

one has four horizontal refraction points and solution three has six. Therefore,

solution one is identified as the simplest edit script by having the most contiguous

similar edit operations.

3.3.6 Domain–Aware Optimizations

Unlike other contributions of VTracker, contributions presented in this section are

specific to the Zhang-Shasha algorithm. Other contributions are generic and

applicable to any other tree-edit distance approach.

Section 3.1 discusses one of the main inefficiency reasons of generic

methods that are performing unnecessary steps in trying to match nodes that are

not possible to map to each other. As mentioned before, the Zhang-Shasha

algorithm is based on splitting each tree into a set of key sub-trees, and then to

calculate the edit distance between all combinations of these sub-trees. Hence,

VTracker, when provided with a domain-specific cost function that defines the

similarity measure between various kinds of elements, optimizes the algorithm

performance by deciding on the feasibility of a sub-tree-to-sub-tree correction

process before carrying it out. In other words, it should not start matching two

sub-trees if the roots of the two sub-trees are not of replaceable types. In this way,

an unfeasible sub-tree will be skipped while focusing only on the feasible ones.

Formally speaking, the similarity measure is always true by default

unless specified otherwise by the following formula:

!

"(x,y) =
false # (l1(x),l2(y)) > threshold
true otherwise

$
%
&

Chapter Three VTracker: A Generic XML-Differencing Method

71

where node-label distances are provided by the domain-specific cost

function. In this way, the tree-edit distance between two sub-trees is skipped if the

two root nodes are not replaceable which leads to an optimized version of the

forest distance calculations Lemma 3-4.

Lemma 3-4: Forest-edit distance with similarity measure

Proof

When nodes x2 and y2 are not replaceable, the first option in the tdist (Lemma 3-1)

formula becomes very expensive, and will be discarded, which will leave two

options only:

Substituting these two options with Lemma 3-2 results in the following forest

distance formula representing the case when x2 and y2 which are not replaceable.

Chapter Three VTracker: A Generic XML-Differencing Method

72

Now, in order to prove Lemma 3-4, it is necessary to prove that the first

two options in the above formula are not necessary since they are considered in

the other two options. In other words, it is necessary to prove that

...1

Finally, Lemma 3-4 will enhance the performance of a generic

differencing method to skip unnecessary sub-tree matching. In this way, there is a

decrease in the complexity of being O(n4) in worst case and O(n3) in average case,

to be O(n2) in average case and reduce the possibility of the worst case even if its

complexity remains the same.

3.4 VTracker as a generic XML differencing

This section discusses how VTracker meets the requirements of being a generic

XML differencing approach.

• Not domain specific: by definition VTracker is designed to handle any kind of

XML differencing problem. Yet, it is capable of becoming domain-aware,

using a domain-specific cost function, and constructed in the bootstrapping

process described in Section 3.3.2, in order to produce results that are sound

and reasonable in terms of the domain knowledge and semantics.

• Meaningful minimal edit script: VTracker accomplishes this objective in

many ways such as the affine-cost policy described in 3.3.2, the simplicity

heuristics in 3.3.5.

Chapter Three VTracker: A Generic XML-Differencing Method

73

• Hierarchal data structure: VTracker views an XML document as an ordered

labeled tree since it is based on the Zhang-Shasha algorithm described in

Section 3.2. Also, mapped elements should obey both the ancestor-child and

siblings.

• Changes anywhere: VTracker does not favor certain kinds of changes over

other kinds. VTracker is capable of detecting changes happening to internal

structure nodes as efficiently as changes happening to leaf nodes. VTracker

does not favor certain patterns of changes or edit operations.

• Object Identity: in VTracker, an element is identified by its name, attributes,

value, and structure. VTracker also uses ancestor and siblings relationships to

identify an element. Although VTracker does assume or require that given

XML documents have some kind of atomic IDs, it utilizes key attributes if

specified by the domain configuration. Moreover, it uses both the reference

and usage-context structure to reinforce the identity of a certain element.

• No prior change tracking: by definition VTracker does not require edits to be

done through a certain tool, utility, or IDE. It is also capable of comparing

documents originated from different sources, or by different vendors.

• Efficiency: VTracker provides an optimization technique that is based on a

domain-specific cost function; it focuses on comparing trees that are

replaceable as described in Section 3.3.6.

• Reference structure: VTracker views the XML reference structure as a part of

referring structures as described in Section 3.3.3.

• Usage-Context Structure: VTracker uses usage-context similarity as an extra

measure to validate and reinforce the calculated tree-edit distance results as

explained in Section 3.3.4.

74

Chapter Four Applying VTracker to Specific Domains

Chapter Three explains the details of VTracker as a generic XML differencing

method. Yet, VTracker is capable of being domain-aware through a domain-

specific cost function. This chapter explains in detail how VTracker can be

customized for a certain domain, and how its contributions such as affine-cost

policy, reference-aware differencing, usage-context similarity assessment,

simplicity heuristics for solution filtering, and synthesized cost function are

applicable to each of these domains.

4.1 Applying VTracker to Ontology Matching

As previously explained, the ontology matching is the process of finding a

semantic mapping between elements of two different ontologies. This thesis

focuses on OWL/RDF as an example of ontology specification language. It was

shown in AGHIJK! "D. how an OWL/RDF described in XML syntax can be

represented as an ordered labeled tree. !

(1) Affine-Cost Policy

As discussed in the details of VTracker, affine-cost policy is important to prevent

structural formality from having a negative influence on the quality of results. The

objective of an affine-cost function is to assign a reduced cost when deleting or

inserting internal nodes where all these children are deleted (or inserted) as well.

The idea is based on the hypothesis that the purpose of an internal node is to

group the structure of its content. Therefore, if its children are deleted, then this

internal node loses its purpose and consequently needs to be deleted as well. The

affine-cost function reduces its deletion cost to indicate to the algorithm the

diminished importance of such a node.

AGHIJK!3D$ illustrates the necessity of an affine-cost policy. This example

matches two ontologies with two class definitions each, shown in AGHIJK!3D$ (a)

and (b). First in an OWL ontology definition, the number of structure nodes

exceeds that of the text nodes, which means that structure nodes have the upper

hand on the matching decision. However, in this example, structure nodes can

Chapter Four Applying VTracker to Specific Domains

75

negatively influence such a decision. Let us compare the tree-edit distance of the

two solutions of AGHIJK!3D$ (c) and (d) when following a fixed deletion insertion

cost versus an affine-cost function. The first solution is where a part class matches

a collection class while the reference class is mapped to the part class, which is a

rather counterintuitive solution. The second solution keeps the part class

unchanged, deletes the reference class, and inserts the collection class.

The following calculations are based on the standard cost function where a

deletion costs three units, an insertion costs three units, and a change costs six

units. As shown in the table below, following a fixed costing policy, the number

of internal nodes affects the total cost of the solution making it a very expensive

choice. However, when following an affine-cost policy, the six internal nodes will

receive a cost discount since their children are deleted as well. It should now be

evident how an affine-cost policy would help to promote solutions that have a

significant number of structure changes.

Solutions Fixed cost policy Affine cost policy

Solution 1:

4 change Operations

2 attribute changes

4 * 6 =24

2 * 2 = 4

Total = 28 units

4.1.1.1.1

4 * 6 =24

2 * 2 = 4

Total = 28 units

Solution 2:

4 leaf node deletions

6 internal node deletions

4 * 3 = 12

6 * 3 = 18

Total = 30 units

4 * 3 = 12

6 * 1.5 = 9

Total = 21 units

Chapter Four Applying VTracker to Specific Domains

76

!
CDE()MNGQGV^(i(/(

!
CPE()MNGQGV^(i(W(

!
CIE(,SRRLULMISMV(ULOJQNO(FSNYGJN(D(RSTLH(HLQLNSGM_SMOLUNSGM(IGON(

!
CHE(,SRRLULMISMV(ULOJQNO(RGQQGFSMV(DM(DRRSML:IGON(]GQSI^(

;SVJUL(<:/7(#M()04_',;(KDNIYSMV(LTDK]QL(LK]YDOSeLO(NYL(SK]GUNDMIL(
GR(DM(DRRSML(IGON(RJMINSGM(

Chapter Four Applying VTracker to Specific Domains

77

(2) Ontology Reference Structure

The example in AGHIJK! 3D" shows two ontologies: the first ontology, shown in

AGHIJK! 3D" (a), defines two classes, a Resource and a Monograph where a

Monograph is a sub class of a Resource; the second ontology, AGHIJK! 3D" (b),

defines four classes, Part, Reference, Chapter, and Book where Chapter and Book

are sub classes of Part and Reference, respectively. Intuitively, the Resource and

Reference classes are very similar in terms of their labels and comments, and

should be matched to each other. Now, one of the two classes of the first ontology

is successfully matched.

The next question is which class in the second ontology should be mapped

to the Monograph class in the first ontology. Comparing the Monograph class

definition against the remaining three classes Part, Chapter, and Book,

Monograph has keywords that are similar to the three classes. Therefore, due to

such confusion, a solution could randomly map Monograph to any of the three

classes. AGHIJK! 3D" (c) shows one of such random solution. However, since

VTracker is reference-aware, it easily resolved this confusion based on the sub-

class relation between the Monograph and Resource classes that are mapped to

the Reference class. In another way, the Monograph should be mapped to a sub-

class of the Reference class. As AGHIJK!3D" (d) shows, the perfect solution occurs

where Monograph is matched to Book since both are sub-classes of matched

classes.

Chapter Four Applying VTracker to Specific Domains

78

!
CDE()MNGQGV^(i(/(

!
CPE()MNGQGV^(i(W(

Chapter Four Applying VTracker to Specific Domains

79

!
CIE(*GN(ULRLULMIL:DFDUL(HSRRLULMISMV(

!
CHE(6%UDI[LU('LRLULMIL:DFDUL(HSRRLULMISMV(

;SVJUL(<:W7(#M()04_',;(KDNIYSMV(LK]YDOSeLO(NYL(SK]GUNDMIL(GR(
ULRLULMIL(ONUJINJUL(

Chapter Four Applying VTracker to Specific Domains

80

4.2 Implementation

This section explains the implementation outline of VTracker as a generic XML

differencing approach. VTracker is implemented using Java 2 Standard Edition

(J2SE), and therefore is it portable to different operating systems and platforms,

and it is also capable of running as a standalone or a web application.

A typical deployment of VTracker is composed of a mandatory component

VTrackerCore in addition to one or more domain-specific modules.

VTrackerCore is main component of VTracker and it implements all the

contributions presented in this thesis. The VTracker core is composed of the

following components.

(1) TreeEditingSuggestor: that is given two XML documents and a cost

function it produces a tree-edit distance matrix, and optionally an edit scripts

associated with the calculated distances. This class is responsible for

implementing the tree-edit distance algorithm. VTracker includes different

implementations of the tree-edit distance algorithm such as the basic

algorithm, the basic algorithm with affine-cost computation, and the algorithm

that can be configured with domain-specific parameters for efficiency

improvement.

(2) CostAssessor: the cost function is provided to TreeEditingSuggestor in the

form of an instance that implements the abstract class CostAssessor. This

CostAssessor is responsible for assessing the cost of deleting or inserting a

certain node, in addition to deciding the cost of replacing one node with

another. VTrackerCore provides two types of CostAssessors:

XMLCostAssessor and RefXMLCostAssessor. Each domain then decides

which one to use according to whether the domain may include references or

not. In this way, VTracker distinguishes between the approach and the cost

function. It is also important to mention that RefXMLCostAssessor is the

component that is responsible for assessing the reference structure similarity.

Chapter Four Applying VTracker to Specific Domains

81

Given two nodes x and y, in order to assess the similarity measure,

RefXMLCostAssessor checks if:

o Neither node has a hyperlink attribute: a regular matching cost

assessment is applied either through a domain-specific cost function or

by applying a string-edit distance between the element names,

attributes, and values.

o One node has a hyperlink attribute: a tree-edit distance measure is

calculated between the referenced structure on the hyperlink side

against the entire sub-tree on the other side.

o Both nodes have hyperlink attributes: a tree-edit distance measure is

calculated between both referenced structures.

(3) Edit Script backtracker: is an optional module that runs when the tree-edit

script is required. In application domains where the edit distance should be

accompanied with an edit script, this module is responsible for building the

edit script that is associated with the calculated tree-edit distance. Tree-edit

traces map is recorded during the distance calculation process. These maps are

matrixes where each cell records how the corresponding edit-distance was

calculated; which one(s) of three edit choice led to that distance. In this way, a

calculated edit distance can be tracked back to determine the sequence of edit

operations involved in such a distance. In cases where multiple edit scripts are

possible, this module employs the three-filtration steps of the simplicity

heuristics.

(4) Advanced Comparison: this module is responsible for recognizing move

operations as a combination of deletion from one place and insertion at

another place. This module starts with calling the TreeEditingSuggestor for

the two given XML documents in order to recognize deletions, insertions, and

change operations. The advanced Comparison Module then strips out the two

trees from all nodes except from sub-trees that are entirely deleted or inserted.

Then, this module calls TreeEditingSuggestor on the stripped trees trying to

Chapter Four Applying VTracker to Specific Domains

82

find if there are any possible matches, if yes, these are recognized as moves;

otherwise they are reported as regular deletions or insertions.

4.3 The Configuration Process

This section discusses various configuration options of VTracker, and how they

affect the end results. The following options have to be provided by the domain

expert through a configuration file.

(1) Cost function: It can be manually composed, or automatically generated by

VTracker in a bootstrapping step from the domain XSD. A cost model is the

module responsible for assessing the cost of various edit-operations such as

deleting a node, inserting a node, or changing a node label. A simple cost

function would assign the same cost to all operations, with deletions and

insertions having the same cost as changes. A better cost-function assigns

costs based on the importance of the edit operating on the semantics of the

document such that deleting important nodes should be more expensive than

deleting optional or less important nodes. VTracker uses a context-oriented

cost model where the cost of deleting or inserting a node is determined in the

context of other edit operations happening around this node. Section 3.3.2

described VTracker’s context-oriented cost model, and the relative weight

between the change and deletion (or insertion) edit costs.

(2) Key elements (optional): is a list of schema element names that appear in an

XML document. In some domains, a user is not interested in detailed edit

operations that may happen to all types of elements. Instead, the domain

expert is only interested in changes happening to some particular elements.

This configuration option will not affect the calculation process but will be

used in the solution report phase to filter out elements that are not key

elements. For example, in OWL/RDF the objective is to find mapping

between Class DatatypeProperty, and ObjectProperty but not Restriction nor

subClassOf, etc. Hence, the elements Class DatatypeProperty, and

owl:ObjectProperty should be considered key elements.

Chapter Four Applying VTracker to Specific Domains

83

(3) Key attributes: this configuration option is used to give VTracker a hint about

the relative importance of some attributes. In other words, attributes specified

in this option are given more importance than other types of attributes. For

example, since key attributes such as @id, @attribute, etc are relatively more

important than values of other attributes, changing or deleting any of these

attributes costs double the changing or deleting regular attributes. Similarly, a

perfect match between two key attributes is rewarded as double as matching

regular attributes.

(4) Meta Elements: a list of elements such as scripts and comments in HTML,

XML instructions and comments, etc. that should not be considered during the

differencing process. These elements will be suppressed during the

differencing process.

(5) Meta attributes: is a list of attributes, similar to meta elements, such as

identifiers used by IDEs, or those used for reverse engineering backward

compatibility that are not to be considered during the differencing process.

(6) Reference Structure: the domain expert must decide whether the provided

XML documents will include a reference structure, in which case the

following two options are to be provided.

• ID attributes: a list of attribute names that are used as object IDs. In

many cases, this list of attributes overlaps with the list provided as Key

attributes.

• IDRef attributes: a list of attribute names that will reference, and have

hyperlinks to, objects identified by ID attributes.

Table 4-1 shows the configuration necessary to customize VTracker for

domains of interest. As shown in this table, the process of customizing VTracker

to a certain domain is a simple process.

84

Table 4-1: VTracker’s system configurations for various domains

!"#"$%&' ()*')+,*' -./*' 01*'213' 2451*' 678'
!"#$%&'()$*"(% +,($-.#*/.0% +,($-.#*/.0% +,($-.#*/.0% +,($-.#*/.0% +,($-.#*/.0% %

122*(.3!"#$%4"5*),% 6.#% 6.#% 6.#% 6.#% 6.#% %

7.,%85.9.($:#;%
"<5=!5>##%

"<5=?>$>$,@.4A"@.A$,%
"<5=BCD.)$4A"@.A$,%

"@.A>$*"(%
9.##>E.%

F#0=.5.9.($%
%

% @>)G>E.085.9.($%
"<(.0B@.A>$*"(% %

%

7.,%1$$A*C'$.:#;% A02=H?%
A02=>C"'$% I(>9.% I(>9.% I(>9.%

I*0%
I(>9.%
I-A.2%

%

J.$>%85.9.($:#;% % % C@<#=*9@"A$% .1(("$>$*"(#%
9.$>%
#)A*@$%
5*(G%

%

J.$>%1$$A*C'$.:#;% % % %

IF9*=*0%
I$,@.%

IE.(.A>5%
%

%

%

6"9"$"#:"'+;$<:;<$"' 6.#% 6.#% 6.#% 6.#% K"% K"%

H?%1$$A*C'$.% A02=H?%
A02=>C"'$% I(>9.% I(>9.% IF9*=*0% % %

H?L.2%1$$A*C'$.:#;%

A02=A.#"'A).%
A02=@>A#.M,@.%
A02=0>$>$,@.%
!"!#!$%&$'#!(&

I$,@.%
I.5.9.($&

I@>A$(.AN*(G%
I5*(GK>9.%
I@"A$M,@.%
I"@.A>$*"(%

I$,@.%
IE.(.A>5% %

%

* In OWL/RDF class or property definition can be referenced by instantiating a new element of the class or property. In this case, the referencing happens
through the instance element name.

85

Chapter Five Evaluation

Chapter Three explains VTracker as a generic XML differencing method capable

of becoming domain-aware. This chapter supports that statement with a set of

empirical experiments that illustrate the contributions of VTracker over related

work. The following set of experiments starts by evaluating basic features of

VTracker, and moves gradually towards increasingly complex ones.

In the following experiments, the quality of results is measured in terms of

Precision and Recall. Given a set of target mappings and a set of calculated ones,

a precision is defined as the probability of a (randomly selected) calculated

mapping to be in the target set. Similarly, a recall is defined as the probability of a

(randomly selected) target mapping to be in the calculated set. In this way, a

precision is calculated by dividing the number of correct calculated mappings by

the size of the calculated set; while a recall is calculated by dividing the number

of correct calculated mappings by the size of target set. Additionally, a precision

and recall can be combined into a single measure called F-Measure that is

calculated as twice the precision times recall divided by the summation of

precision and recall.

5.1 General Quality Evaluation Experiment

The objective of this experiment is to evaluate the feasibility of the concept of

domain-aware optimization explained in Section 3.3.6. The hypothesis behind this

kind of optimization shows that the performance of the tree-edit distance

algorithm can be improved by specifying a general similarity measure between

different kinds of node labels. This similarity measure is a Boolean function that,

given labels of two sub-tree roots, determines whether these labels can possibly be

mapped to each other. Given such a measure, a tree-edit distance method can be

smart enough to avoid comparing sub-trees that are impossible to match to each

other.

The dataset used in this experiment was synthesized by XMark [124].

XMark is an XML benchmark framework that is capable of generating XML

 Chapter Five Evaluation

86

documents of various sizes based on a size input parameter. The produced XML

documents model an auction web site. This benchmark is originally intended for

evaluating XML management approaches. In this experiment it is used as an

unbiased source of random XML documents. In this experiment XMark was ran

20 times with different size parameters starting from 0.0001 all the way to 0.0028

that produced 28 XML documents of various sizes ranging from 29 KB to 217

KB. Then a random deformer was applied 40 times on each of these documents,

which resulted in 40 different versions of each document. The job of a deformer is

to randomly change node labels, delete existing nodes, or insert new nodes in a

given XML document with total edit probabilities uniformly distributed between

various kinds of edit operations. The 40 versions were deformed with various

total probabilities ranging from “0.5” to “1.0.” Each deformed version is then

saved along with a record of edit operations that were randomly applied it.

The experiment is to compare each of the 28 XMark generated documents

against each of its 40 deformed versions, and to measure the quality of the result

and the time required to finish each comparison job. In this experiment, the task

of VTracker is to compare each deformed document against the original version,

and to produce the edit script that transforms the original document to the

deformed one. The produced set of edit operations is then compared against the

recorded ones, and measuring the precision and recall of each comparison; where

a precision is ratio between the number of true positive edit operations divided by

the number of produced edit operations. Similarly, recall is calculated as the ratio

between the number of true positive edit operations divided by the number of

recorded edit operations.

VTracker was requested to run in two different configuration setups: a

default standard setup, and a domain-aware optimized setup. In the default

standard setup, VTracker uses the standard tree-edit distance algorithm explained

in Section 3.2, a default cost function, no domain-specific configurations, and is

not reference-aware. In the domain-aware optimized setup, VTracker uses the

domain-optimized tree-edit distance algorithm explained in Section 3.3.6, a

 Chapter Five Evaluation

87

simple cost function that allows only for perfect match between node labels, no

other domain-specific configurations, and is not reference-aware. In the latter

setup, VTracker determines two nodes are similar enough to proceed with

comparing their sub-trees if the two nodes have the same label; otherwise, it is

impossible to map them to each other.

There are two important observations concerning the evaluation results of

this experiment. First, both setups produced the exact tree-edit distances for all the

1120 test cases, which implies that this optimization technique did not affect the

quality of the result. In other words, the optimization technique did not miss

cheaper tree-edit scenarios. Figure 5-1 shows the run times required by both

setups across different problem sizes; where a problem size is the multiplication

of sizes of the two given trees. Figure 5-2 calculates the percentage of

improvement in those various problems. In each of these cases, a percentage of

improvement is calculated as the saved time, i.e. optimized runtime minus basic

runtime, divided by the basic runtime. The second observation is that this

optimization technique consistently improves the runtime performance by 25% in

average. Combining this observation with the former one, it is concluded that

domain-optimized tree-edit distance technique consistently improves the runtime

performance without compromising the quality of calculated edit-distance that

supports the hypothesis of Section 3.3.6.

 Chapter Five Evaluation

88

Figure 5-1: Runtime of basic versus domain-aware optimized tree-edit

distance algorithm

Figure 5-2: Runtime performance improvement between basic and domain-

aware optimized algorithms
5.2 RNA Comparison Experiment

The objective of this experiment is to evaluate the importance of the simplicity

heuristics. The set of simplicity heuristics is important to tree-edit distance

problems where multiple optimal edit scripts have the same cheapest cost to

transform one tree into another.

 Chapter Five Evaluation

89

The dataset of this experiment is based on three “5S ribosomal” families

(Szymanski et al.): Archeaa (91 structures), Eubacteria (756 structures), and

Eukaryota (526 structures) [133]. “5S ribosomal” RNA is an integral component

of the large subunit of all cytoplasmic and most organeller ribosomes. Its small

size, and association with ribosomal and non-ribosomal proteins make it an ideal

model RNA molecule for studies of RNA structure and RNA-protein interactions.

Furthermore, multiple, biologically correct, sequence alignments of 5S ribosomal

RNAs are known, where base pairs in phylogenetically conserved secondary

structures are specified5, thus providing target alignments against which

computational alignments should be measured. In this way, each of these multiple

alignments is decomposed into sets of pair-wise test cases (e.g. 4,186 pairs in

Archeaa, 286,524 in Eubacteria, and 138,864 in Eukaryota).

In this experiment, RNA Secondary structures are represented as XML

documents. Since there is not standard representation of an RNA tree structure,

this experiment evaluated two different representation approaches: a Loose Fine-

Grained (LFG) representation, and a modified version of the Tight Fine-Grained

(TFG) representation by Mikhaiel and Stroulia [103]. As illustrated in Section

2.7.2, LFG is different from TFG tree structure in the way it represents stem

loops. The former represent it as a joint node in addition to two nucleotide (base)

nodes while the later represent the entire loop as one single node.

The used “5S ribosomal” dataset is provided in a tab-delimited multiple

alignment formats. So, the first task of this experiment is for each structure to

transform the tab delimited brackets, dashes, and symbols into an XML format

that complies with the LFG and TFG RNA tree representations. Then, each pair of

structures is fed to VTracker to compare them, produce the edit script, and to

transform the edit script into a tab-delimited format again. Finally, the produced

alignment is compared against the published one, and both precision and recall are

measured where precision is the number of true positive aligned symbols divided

5 http://www.man.poznan.pl/5SData/Alignments.html

 Chapter Five Evaluation

90

by the number of produced symbol alignments. Similarly, recall is calculated as

the number of true positive aligned elements divided by the number of published

ones.

In this experiment, VTracker is configured to use the standard tree-edit

distance algorithm, a manually developed domain-specific cost function, no other

domain-specific configurations, and is not reference-aware. For each pair-wise

matching problem in this experiment VTracker was requested to calculate the

tree-edit distance A set of all optimal edit scripts associated with the calculated

edit distance is built. Cardinality of the solution set is the number of edit-scripts in

that set. The cardinality of each set is recoded before and after applying each of

the three-filtration steps. Then, a filtration step is successful if it kept the target

solution in the filtered solution set.

Figure 5-3 shows that simplicity heuristics are able to efficiently reduce

the number of plausible minimum-cost alignments without excluding the

biologically good ones for the Archeaa family. This graph shows the results of

Archeaa family since it is more challenging than other families. It shows that the

number of problems with high-cardinality solution sets was reduced, while the

number of problems with low-cardinality solution sets was increased. The last

category is especially interesting: for example, there were 1489 problems that

produced a set of more than nine solutions – the corresponding number after the

heuristics were applied was 242. Table 5-1 shows that, based on 429,574 test

cases, the simplicity filtration process is capable of reducing (on average) the

solution set size from 10.86 to 2.24 with 90.05% of keeping the best given

solution in the filtered set.

 Chapter Five Evaluation

91

Figure 5-3: Cardinality reduction for Archeaa family

Table 5-1: Evaluation results of simplicity heuristics in RNA Secondary
Structure comparison measured by Harmonic Mean

Simplicity Heuristics
1. Shortest Path 2. Vertical

Simplicity
3. Horizontal

Simplicity

Family # of
Problems

Avg
Card.

Avg
Card.

Quality Avg
Card.

Quality Avg
Card.

Quality

Archeaa 4186 59.28 58.62 99.55 9.69 83.97 3.25 88.52
Eubactria 286524 14.50 14.34 99.9 5.10 95.8 2.58 92.57
Eukaryota 138864 1.88 1.87 100 1.81 99.87 1.50 96.04
H-mean 10.86 10.74 99.93 4.08 97.00 2.24 93.65

To enable the comparison of the quality of the alignments produced by

VTracker against these target alignments, the F-Measure that combines both the

precision and recall of each comparison problem. The F-Measure of two

alternative alignments of two RNA structures is calculated as twice the number of

bases in the two compared structures that are edited similarly in each of the two

alignments, divided by the sum of the two RNA structure lengths. Based on the

above definition, F-Measure is a percentage, and when evaluating a computational

alignment against a biologically plausible one, higher F-Measures are more

desirable than smaller ones: when F-Measure = 1.00% the two alignments are

identical (i.e. the calculated one is identical to the biologically published one).

 Chapter Five Evaluation

92

The second part of this experiment measures the quality of the alignments

produced by the two VTracker variants (i.e. VTracker applied to LFG and

VTracker applied to TFG), and the two most well known RNA alignment tools at

the time of the experiment (year 2007): RNA Align [33]6 and RNA Forester

[59][60][61]7. The RNA Forester tool is based on tree-edit distance approach and

adopts an LFG representation – in fact, the team behind the tool is the first to

propose this type of LFG representation. Therefore, RNAForester presents a good

example of related work as it is uses a similar approach and was built specifically

to answer this kind of particular RNA alignment questions. RNAForester is built

on the tree alignment algorithm of ordered trees by Jiang et al. [68] and extended

it to calculate local forest alignments, which is essential for finding local similar

regions in RNA Secondary Structure. On the other hand, the RNA Align tool uses

a sequence-based representation; which represents non-tree based approaches.

RNA Align is based on an arc-based representation where joints between

elements in secondary and tertiary structures are represented as arcs, and the

objective is find the cheapest arc edit script that transforms one RNA structure

into another. In this experiment, pairs of RNA structures were fed to the four tools

to produce four corresponding alignments. Then, the four alignments were

compared against the target solutions and their F-Measure metric is calculated.

VTracker actually produces a set of possible alignments for each compared pair.

For each family, Table 5-2 shows the percentage of cases where F-Measure is

1.00%, i.e., the calculated alignment and the biologically correct one are the same

in addition to statistics of other cases, in which the computed alignment was not

perfect Table 5-2 shows that both VTracker representations have an outstanding

quality compared to those of RNA Forester and RNA Align. VTracker is capable

in 26% of the cases of reporting the target solution 7% for RNA Forester and

11.5% for RNA Align.

6 http://www.csd.uwo.ca/~kzhang/rna/rna_match.html

7 http://bibiserv.techfak.uni-bielefeld.de/rnaforester/

 Chapter Five Evaluation

93

Table 5-2: Evaluation of VTracker against related work for RNA Secondary
Structure Comparison

 Archeaa Family (4,186 test cases)

 Average F-Measure Number of cases
where F-Measure = 1.0

VTracker LFG 0.99 26.9%
VTracker TFG 0.98 20.1%
RNA Forester 0.97 7.0%
RNA Align 0.97 11.5%

5.3 Ontology Matching Experiment

The objective of this experiment is to evaluate the feasibility of considering the

reference model as an essential part of the XML differencing problem. It also

evaluates the feasibility of using a synthesized cost function versus using the

default one. Finally, it compares the quality of VTracker’s result against those

state-of-the-art approaches.

VTracker was evaluated against results from the Ontology Alignment

Evaluation Initiative’s (OAEI-2010 Campaign). The Benchmark test library

consists of 48 test cases over three sets. The simplest benchmark (1xx) contains

three ontology instances, comparing the reference ontology with itself, with

another irrelevant ontology or the same ontology in its restriction to OWL-Lite,

The second benchmark (2xx) contains 43 instances obtained by discarding

features (like name of entities, comments, specialization hierarchy, instances,

properties) from the reference ontology. It aims at evaluating how an algorithm

behaves when a particular type of information is lacking. Finally, the third

benchmark contains four ontologies of bibliographic references (3xx) found on

the web and left mostly untouched. It is important to state that VTracker had

difficulties to process cases 206, 207, and 210 due to some XML encoding issues.

Therefore, the following evaluation is based on results from the other 45 test

cases.

Each of the dataset test cases is provided in the format of OWL/RDF

ontology definitions and is described in XML syntax. Each of those ontologies

 Chapter Five Evaluation

94

describes a set of classes, properties, relationships, and instances. The experiment

objective is, given two such ontology definitions, to find which classes and

properties in the first ontology can be matched to classes and properties of the

second ontology, and with how much confidence. In this way, an edit script is

required to determine which nodes are mapped to each other. This benchmark

involves comparing 45 test cases. In each test case, the task is to compare the

given ontology against the reference ontology, and to measure the quality of the

produced results by the OAEI benchmark evaluation tool (EvalAlign8). EvalAlign

then calculates the precision and recall given the reference ontology alignment

and the produced one. For each test case, precision and recall were collected from

evaluation results. Then the harmonic mean (H-mean) of precisions and recalls is

calculated. In order to precisely characterize how useful each of VTracker’s

features is to its effectiveness we conducted a sequence of experiments, starting

by applying the core VTracker algorithm and proceeding to incrementally enable

each of the algorithm’s features, and then repeating the same experiment. Table

5-3 shows the evaluation results for all the combinations.

Table 5-3 shows that pursuing an affine-cost model improved both

precision and recall by between 1% and 4%. It also shows the affine-cost function

makes more difference in the case of the default cost model than in the case of the

domain-specific cost model. This may be interpreted that the domain-specific cost

model inherently includes the semantics of affine-cost policy, and that internal

structure nodes are not as important as other nodes. According to the experiment,

enabling references improved both precision and recall by 2% to 6% i.e. H-Mean.

Table 5-3 also shows that enabling context-awareness improved both precision

and recall by 4% to 9% on average. An observation on these results is that

context-aware differencing works better in conjunction with reference-aware

models and especially with having affine-cost policy on the top. This experiment

also evaluated the influence of having a domain-specific cost function,

8
 procalign.jar fr.inrialpes.exmo.align.util.EvalAlign -i fr.inrialpes.exmo.align.impl.eval.PRecEvaluator

 Chapter Five Evaluation

95

synthesized by applying VTracker to the domain XML schema. Additionally,

Table 5-3 shows that the best quality of result was produced with the following

combination Reference-aware + context-aware + affine-cost policy + synthesized

cost function. Finally, it is important to mention that, according to this

experiment, none of the presented features negatively influenced the quality of

results.

Table 5-3: Evaluation of various VTracker Contributions

 Synthesized Cost Function Default Cost Function

Affine
Policy

Non-Affine
Policy

Affine
Policy

Non-Affine
Policy

 Prec. Recall Prec. Recall Prec. Recall Prec. Recall

Context-aware
0.85 0.87 0.84 0.86 0.84 0.86 0.82 0.83

Reference-
aware Non-Context-

aware
0.77 0.79 0.75 0.77 0.77 0.78 0.73 0.74

Context-aware
0.79 0.81 0.78 0.80 0.79 0.81 0.78 0.79

Non
reference-

aware Non-Context-
aware

0.75 0.76 0.73 0.75 0.75 0.76 0.71 0.72

Table 5-4 shows the evaluation of VTracker against other systems from the 2010

Campaign of Ontology Alignment Evaluation Initiative. In this experiment

VTracker was run with the following features enabled: (1) affine-cost policy

option, (2) reference-aware model option, (3) context-aware option, and (4)

domain-specific synthesized cost function. As shown in Table 5-4, in terms of

recall, VTracker is the second top system with only 2% less than the top one (i.e.

ASMOV) while in terms of precision, VTracker came in ninth place. The

interpretation is that VTracker is the second top one in terms of finding relevant

mappings, and the ninth in terms of finding only relevant mappings. The overall

performance of VTracker is a harmonic mean of precision of 85% and recall of

87%. The combined F-Measure of precision and recall placed VTracker in the

fourth place after ASMOV, RiMOM, and ArgMaker as shown in Figure 5-4. One

 Chapter Five Evaluation

96

more observation about the quality of VTracker is that it is the best one in having

balanced precision and recall which means that VTracker is very balanced

between finding relevant mapping and discarding non-relevant ones. Finally, it is

important to mention that having VTracker in the fourth position is such an

achievement for two reasons: (1) the top three tools are especially built to answer

this particular kind of ontology matching questions while VTracker is generic and

not specially built for that purpose. Even though, VTracker did better than many

other domain-specific tools, and (2) the top three tools are equipped with some

kinds of lexical matching mechanism, which is not available in VTracker in its

current version. We strongly believe that adding a lexical matching mechanism

like WordNet to VTracker will improve the quality of produced results.

We have to mention that we did not participate in this benchmark contest.

However, we used results of the contest published in [50]. For external validity,

we used EvalAlign tool that measures the precision and recall for each of the

ontology matching cases.

Figure 5-4: Evaluation of VTracker’s performance against benchmark

results displaying H-Mean of precision, recall, and F-Measure sorted by

F- Measure value

 Chapter Five Evaluation

97

Table 5-4: Evaluation of VTracker against results from OAEI 2010
 1xx 2xx 3xx H-mean
refalign Precision 1.00 1.00 1.00 1.00
 Recall 1.00 1.00 1.00 1.00
VTracker Precision 1.00 0.87 0.48 0.85
 Recall 1.00 0.88 0.56 0.87
edna Precision 1.00 0.43 0.51 0.45
 Recall 1.00 0.57 0.65 0.58
ArgMaker Precision 0.98 0.95 0.88 0.95
 Recall 1.00 0.84 0.58 0.84
AROMA Precision 1.00 0.94 0.83 0.94
 Recall 0.98 0.46 0.58 0.48
ASMOV Precision 1.00 0.99 0.88 0.99
 Recall 1.00 0.89 0.84 0.89
CODI Precision 1.00 0.83 0.95 0.84
 Recall 0.99 0.42 0.45 0.44
Ef2Match Precision 1.00 0.98 0.92 0.98
 Recall 1.00 0.63 0.75 0.65
Falcon Precision 1.00 0.81 0.89 0.82
 Recall 1.00 0.63 0.76 0.65
GeRMeSMB Precision 1.00 0.96 0.9 0.96
 Recall 1.00 0.66 0.42 0.67
MapPSO Precision 1.00 0.67 0.72 0.68
 Recall 1.00 0.59 0.39 0.6
RiMOM Precision 1.00 0.99 0.94 0.99
 Recall 1.00 0.83 0.76 0.84
SOBOM Precision 1.00 0.97 0.79 0.97
 Recall 1.00 0.74 0.75 0.75
TaxoMap Precision 1.00 0.86 0.71 0.86
 Recall 0.34 0.29 0.32 0.29

5.4 UML Differencing Experiment

The objective of this experiment is to evaluate the performance of VTracker in the

domain of Object-oriented model comparison. In this experiment an object-

oriented model was divided into three kinds of design models: (1) a containment

model that includes relationships between a class and its operations and attributes;

(2) an inheritance model that includes relationships such as subclass and

realization relationships; and (3) a usage model that includes dependency and

association relationships such data types and calls of attributes and operations.

 Chapter Five Evaluation

98

The dataset of this experiment is 13 successive versions of JFreeChart9

starting from version 1.0.0 to 1.0.13. The ground truth of model evolutions were

independently developed by two the authors: Tsantalis, N., Negara [136] with

help of Eclipse IDE. For the containment model, the ground-truth included edit

operations to add, remove, or rename an operation, and to add, remove, or rename

an attribute. The inheritance model included operations to add, remove, or rename

a generalization, and to add or remove a realization. Finally, a usage model

included operations to add, remove, or replace an operation call, and to add,

remove, or replace an attribute access. In this experiment, the task of VTracker is,

given two UML modules, to try find proper matching between elements of the

two modules and report different kinds of edit operations explained above.

In this experiment, source-codes of Java classes were parsed and

represented as XML documents. The XML representation used in this experiment

is a simplified version of UML/XMI described in Section 2.5.2. The standard

UML/XMI representation combines the three models into one coherent UML

model. However, for the purpose of this experiment, the three models were

represented separately using a simplified UML/XMI representation. One big

difference is that the standard UML/XMI representation largely depends on XML

reference-structure to share element definitions between various models while the

simplified representation does not have such a reference-model as it is only based

on XML containment structure. Code 5-1 shows an example of the simplified

XML representation that describes the containment model of class

"org.jfree.chart.block.BlockContainer". Accordingly, VTracker is configured to

use the domain-optimized tree-edit distance algorithm, a standard cost function,

some domain-specific configurations, and is not reference-aware. This experiment

uses three kinds of domain-specific configurations. First, it specified attributes

className, operationName, and paramName as keyAttributes. As explained in

Section 4.3, key attributes give VTracker hint on the relative importance of

9 http://sourceforge.net/projects/jfreechart/

 Chapter Five Evaluation

99

different attributes. In this experiment, these attributes are relatively more

important than other attributes as they logically identify a model element.

Secondly, this experiment, configure attributes named ID as meta-attribute that

should be ignored during the differencing process since it is just used to find

correspondence between edit operations and original model elements. In the third,

since this experiment is only interested in edit operations happening to

parameters, and classes, the configurations of this experiment specified them as

key elements. As explained in Section 4.3, configuring key elements do not

influence the differencing process but it determines the desired outcome of the

differencing process. Generally, VTracker reports the tree-edit distance and the

edit script associated with this distance. Having this kind of configuration,

VTracker is instructed to also report tree-edit distance matrix between all key

elements. The produced matrix contains distances between all sub-trees rooted by

key elements. Finally this experiments applies the stable marriage algorithm in

order to find the optimal mapping between various elements. In this way,

VTracker overcomes the limitation of ordered trees and allow mapping between

nodes that are not in the same order. In other words, VTracker uses the tree-edit

distance algorithm to measure the distance between various key sub-trees, and

then it uses these distances to find the best mapping solution.

In this experiment VTracker was compared against UMLDiff [161].

UMLDiff is one of the state-of-the-art methods in comparing UML models.

UMLDiff is based on purpose built heuristics, and matching techniques, to serve

UML differencing in particular. Therefore, the experiment evaluates the

performance of VTracker as generic method against a domain-specific method

like UMLDiff. This evaluation of this experiment was independently performed

by Tsantalis and Nigara. in [136]. Table 5-5, borrowed from [136], shows that

VTracker has similar precision and recall to UMLDiff in matching elements of

the containment model while VTracker does much better than UMLDiff when it

comes to matching elements of the inheritance or the usage models. VTracker

deals with all models on the same basis. It does not favor one over the other. That

 Chapter Five Evaluation

100

is why VTracker did similarly in all models unlike UMLDiff that may be strong

in matching some kinds of relationships but not the others. One more observation

is that VTracker has consistent values of precision and recall, which implies that

VTracker is very confident in the produced result.
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<VirtualRoot name="VirtualRoot">
 <Class ID="63493" className="org.jfree.chart.block.BlockContainer"
 isAbstract="false" isInterface="false">
 <Operation ID="63512" operationName="add" param1="void"
 param2="org.jfree.chart.block.Block" param3="java.lang.Object"
 visibility="public">
 <Parameter paramKind="return" paramtType="void" />
 <Parameter paramKind="in" paramName="block"
 paramtType="org.jfree.chart.block.Block" />
 <Parameter paramKind="in" paramName="key" paramtType="java.lang.Object" />
 <MethodCall ID="10320" arg1="java.lang.Object"
 methodCallName="java.util.List.add" originClassName="java.util.List">
 <Argument argKind="in" argType="java.lang.Object" />
 <Argument argKind="return" argType="boolean" />
 </MethodCall>
 <MethodCall ID="10322" arg1="org.jfree.chart.block.Block"
 arg2="java.lang.Object"
 methodCallName="org.jfree.chart.block.Arrangement.add"
 originClassName="org.jfree.chart.block.Arrangement">
 <Argument argKind="in" argType="org.jfree.chart.block.Block" />
 <Argument argKind="in" argType="java.lang.Object" />
 <Argument argKind="return" argType="void" />
 </MethodCall>
 <FieldAccess ClassType="org.jfree.chart.block.Arrangement"
 ID="10321" OwnerClassName="org.jfree.chart.block.BlockContainer"
 fieldName="org.jfree.chart.block.BlockContainer.arrangement" />
 <FieldAccess ClassType="java.util.List" ID="10319"
 OwnerClassName="org.jfree.chart.block.BlockContainer"
 fieldName="org.jfree.chart.block.BlockContainer.blocks" />
 </Operation>
 </Class>
</VirtualRoot>
Code 5-1: An example of a simplified XML representation of a containment

model specification

Table 5-5: Evaluation of VTracker against UMLDiff
 VTracker UMLDiff
 Precision Recall Precision Recall

Containment 0.99 0.98 0.97 0.97
Inheritance 1.00 1.00 0.88 0.88
Usage 0.95 0.94 0.91 0.84

 Chapter Five Evaluation

101

5.5 Service Discovery Experiment

This experiment aims at evaluating VTracker in terms of two aspects. First, it

evaluates the feasibility of considering the XML reference model in the domain of

WSDL matching. Second, it generally evaluates the performance of VTracker in

that domain.

The dataset of this experiment is based on SAWSDL-TC 3 that includes a

set of 1080 WSDL services from seven different domains: education, medical

care, food, travel, communication, economy, weaponry, geography, and

simulation. The collection also includes a set of 42 WSDL queries from these

domains. For each query-service combination the SAWSDL-TC 3 collection

includes a matching grade to indicate the relevance of matching this service to

that particular query. This grade is based on a 4-graded scale:

• Highly relevant: Any service that offers exactly what the user asked for (or

even better).

• Relevant: Any service that might answer the request completely or

partially does the requested job.

• Potentially relevant: any service that may be helpful

• Non-relevant: any service that is totally irrelevant to the query request.

For each query, VTracker is requested to calculate the edit-distance

between the WSDL of the query and the 1080 WSDLs of the offered services.

Then, calculated distances of each query are sorted in ascending order according

to the calculated distance. Then, a matching relevance is determined by the order

of the solution. Consider an example where SAWSDL-TC has a set of three

highly relevant offers, then if any of the top three distances in the calculated list

belong to this set, this distance is considered a true-positive result to that grade.

This experiment evaluates results of 21 WSDL queries against the 1080 offered

service WSDLs from SAWSDL-TC. For each query, Table 5-6 shows the four

different grades along with the number of offered services in each grade. This

table shows that in 90% of the queries, VTracker is able to recommend the highly

 Chapter Five Evaluation

102

relevant offers at the top of the matching list. Secondly, VTracker is successful by

95% in ranking irrelevant offers at the bottom of the list. VTracker was also

capable in 39% to rank relevant offers in proper position in the matching list. It is

also capable in 37.5% to rank partially relevant offers in their proper positions.

This table also shows that the using references improved the quality of ranking

partially relevant offers from 34% to 37.5% of the cases. It is important to

mention that VTracker did better in finding highly recommended and irrelevant

offers than in finding relevant and partially relevant ones. In other words,

VTracker was successful in finding perfect matches and absolutely different

offers while it did not do that good when it comes to the gray area in between.

This can be explained by the fact that VTracker does not include a lexical

matching mechanism; it is only based on structural, content, context, and

reference matching mechanisms. In the case of perfect match or an absolute

different offers the VTracker mechanism are good enough to measure the

similarity. However, when in comes to the gray area in the middle, a lexical

matching is essential assess the relevancy between a request and an offer.

Figure 5-5 shows percentage of extra time required by the reference-aware

algorithm compared to the time required by the basic one. This figure shows that

the reference-aware tree-edit distance algorithm consistently requires more time

than that is required by the basic algorithm. The question is “Can the required

extra time be justified?”. Indeed, yes it can. For example in the query named

“governmentdegree_scholarship_service.wsdl”, reference-aware requires almost

double the time required by the basic approach while in that particular case, the

quality of the partially-relevant grade was also doubled, i.e. improved from 55%

to 100%. Similarly, in case of query named “getLocationOfCityState.wsdl”,

reference-aware approach required about 140% more than basic one while it

improved the quality of the same grade from 23% to 31%. Therefore, we can

conclude that while the reference-aware approach requires more time, it

proportionally improves the quality of the results.

 Chapter Five Evaluation

103

Figure 5-5: Runtime of Basic versus Reference-aware algorithms in regards

to SAWSDL-TC experiment

 Chapter Five Evaluation

104

Table 5-6: Evaluation of VTracker in SAWSDL-TC Collection
 Highly Relevant Relevant Partially Relevant Irrelevant

 VTracker VTracker VTracker VTracker

SAW
SDL-
TC Ref Basic

SAW
SDL-
TC Ref Basic

SAW
SDL-
TC Ref Basic

SAW
SDL-
TC Ref Basic

1personbicyclecar_price_service.wsdl 11 45% 55% 20 50% 45% 61 77% 75% 988 89% 89%

book_price_service.wsdl 12 50% 50% 22 59% 64% 45 11% 56% 1001 88% 90%

bookpersoncreditcardaccount__service.wsdl 5 20% 20% 9 78% 78% 12 100% 14% 1054 95% 92%
bookpersoncreditcardaccount_price_service.wsdl 2 50% 50% 37 62% 65% 56 66% 66% 985 88% 88%

car_price_service.wsdl 14 29% 29% 35 54% 54% 44 9% 84% 987 85% 88%

citycountry_hotel_service.wsdl 8 25% 25% 8 25% 25% 23 17% 17% 1041 94% 94%
country_skilledoccupation_service.wsdl 21 24% 24% 46 46% 46% 22 23% 18% 991 86% 86%

dvdplayermp3player_price_service.wsdl 5 60% 60% 10 20% 40% 12 0% 33% 1053 95% 96%

EBookOrder1.wsdl 3 67% 67% 0 0% 0% 12 0% 0% 1065 97% 97%
fall_down_pill.wsdl 1 0% 0% 1 100% 100% 0 0% 0% 1078 100% 100%

geocodeUSAddress.wsdl 11 9% 9% 9 78% 56% 3 100% 33% 1057 96% 96%
geographical-regiongeographical-
region_map_service.wsdl 4 50% 50% 2 100% 100% 12 33% 33% 1062 97% 97%

geopolitical-entity_weatherprocess_service.wsdl 3 67% 67% 30 67% 63% 4 0% 100% 1043 95% 95%
getAltitudeAboveSeaLevelOfLocation.wsdl 3 33% 33% 0 0% 0% 0 0% 0% 1077 100% 100%

getDistanceBetweenCitiesWorldwide.wsdl 1 0% 0% 2 50% 50% 17 35% 6% 1060 97% 96%

getLocationOfCityState.wsdl 1 0% 0% 4 25% 25% 13 31% 23% 1062 97% 97%
getLocationOfUSCity.wsdl 4 25% 25% 12 17% 17% 5 100% 67% 1059 97% 97%

getLocationOfUSZipcode.wsdl 7 14% 14% 4 0% 0% 9 22% 56% 1060 97% 97%

getMapOfUSAddress.wsdl 4 25% 25% 1 0% 0% 11 0% 18% 1064 97% 97%
getSunsetSunriseTimeOfLocation.wsdl 3 33% 33% 1 0% 0% 0 0% 0% 1076 99% 99%

getZipcodeForUSCity.wsdl 5 20% 20% 2 0% 0% 3 100% 0% 1070 99% 98%

governmentdegree_scholarship_service.wsdl 8 63% 63% 26 27% 27% 18 100% 55% 1028 93% 92%
Average 32% 33% 39% 39% 38% 34% 95% 95%

 Chapter Five Evaluation

105

To conclude, this chapter explains the evaluation process of VTracker in

different domains and in different setup and configurations. The first experiment,

evaluates the general aspects of VTracker such as performance and quality of

using the domain-optimized tree-edit distance algorithm that avoids matching

infeasible sub-trees. It was shown that the optimized technique saves on average

about 25% of the processing time while producing the same quality of results. The

second experiment evaluates the matching quality of VTracker in the context of

RNA Secondary Structure Comparison. It was shown that VTracker has an F-

Measure value of 0.99, which exceeds the performance of the state-of-the-art

methods at the experiment time, i.e. 2007. In this experiment VTracker using the

LFG tree-representation performed better than RNA Forester that uses the same

tree representation where VTracker was able to find the target solution in 26% of

the cases while RNA Forester found the target solution in only 7% of the test

cases. Additionally this experiment illustrated the importance of simplicity

heuristics in finding the best optimal solution from within a set of optimal ones.

Thirdly, the OAEI benchmark experiment evaluated the performance of VTracker

in the context of Ontology Matching where VTracker comes in the forth-top place

within systems those are especially built to serve this application domain. This

experiment also illustrated the importance of domain-specific cost function and

the XML reference-structure in improving the quality of the produced results. In

the forth is the UML differencing experiment that was independently conducted

by a third party to evaluate the performance of VTracker in the context of object-

oriented model differencing against the-state-of-the-art in the domain which is

UMLDiff. In this experiment VTracker superiorly competed with UMLDiff.

Finally, VTracker is evaluated in the context of SAWSDL-TC bench mach of

matching WASL queries against offered WSDL services where VTracker was

able to find at least one of the best offers in 90% of the cases. This experiment

also evaluates the influence of using the reference-aware algorithm in the quality

of the produced results.

 Chapter Five Evaluation

106

Finally, it is also worth to mention that VTracker has been applied to XHTML

comparison through installing as a differencing component of Annoki, an open

source of wiki.

107

Chapter Six Discussion, Conclusion, and Future Work

This thesis, motivated by the importance of XML, a universal format for

structured documents and data on the Web, focuses on the general problem of

XML differencing. Instances of this general problem appear in various domains

such as document management, service discovery and matching, system

integration, semantic-web interoperability, and many other domains. In each of

these domains special methods have been developed to solve the particular

instance of the differencing problem for the domain in question. To mitigate the

problem of effort duplication, this thesis presents VTracker, a generic differencing

method that is capable of being domain-aware through a domain-specific cost

function. VTracker views an XML document as an ordered labeled tree on which

it can apply Zhang-Shasha’s tree-edit distance algorithm.

This thesis makes two important contributions: first, an extension to of the

original Zhang-Shasha algorithm with an XML reference structure (i.e.

hyperlinks) on the top of the natural XML containment structure, and second, a

domain-specific cost function that is capable of capturing domain knowledge and

semantics. It has been illustrated by examples in Section 3.1 that the reference-

structure plays a critical role in determining the semantics of a given XML

document. In addition both the OAEI and SAWSDL-TC experiments shows how

considering the reference-structure during the tree-edit distance calculation

improves the quality of produced results. Similarly, the usage-context similarity

measure is important to work in conjunction with the reference-aware algorithm

to resolve matching ambiguities such as the example of !"#$%&' ()*. VTracker

also extends Zhang-Shasha with an affine-cost policy that prevents structural

formality from having a negative influence on the quality of results, which was

illustrated in the example of Figure 3-10 and another example in Section 4.1in the

context of ontology matching. Additionally, VTracker is equipped with the

mechanism, called simplicity heuristics, to handle situations where a calculated

edit distance has multiple edit scripts that are all capable of transforming the first

tree into the second tree. The set of simplicity heuristics is important in

 Chapter Six Discussion, Conclusion, and Future Work

108

applications that involve considerable amount of changes in the internal structure

of the given trees. It has shown special significance in the context of RNA

Secondary Structure Comparison. VTracker is also equipped with a domain-

specific cost function mechanism where VTracker is used to match elements of

the domain schema against each other calculating the edit distance between each

two elements. The calculated distance matrix is then used as the domain-specific

cost function when matching instances of this schema. This synthesizing

mechanism assumes that the given XML schema is rich with domain semantics

and knowledge. This assumption was proven true in cases like BPEL and

OWL/RDF XML schemas. However, this assumption is not always true

especially in cases where simple schema is provided such as WSDL and XMI.

Chapter Two explains how the reference structure is a critical component

in the semantics of many applications of XML such as OWL/RDF, WSDL,

BPEL, and UML/XMI. Both XHTML and RNA do not utilize this particular

feature of XML since their semantics do not require this kind of association and

dependency relationships. Chapter Three discusses the importance of another

aspect of the XML reference structure and the concept of usage-context as a

secondary measure of similarity between XML elements. This chapter also

emphasizes the importance of using an affine-cost policy for giving a fair chance

between deletions and changes. The objective of affine-cost policy is defined so

as to promote edit scripts that group edit operations in neighbors. Similarly, the

heuristic-based approach chooses the most optimal edit scripts in case of multiple

ones. Chapter Four explores the applicability of VTracker in various problem

domains. In Chapter Five, the heuristic-based approach was proven true in

domains, such as RNA secondary structure, where one edit-distance may have

multiple edit scripts. Also, VTracker proposes a method for bootstrapping the

algorithm in a domain by automatically synthesizing a domain-aware cost

function based on the underlying XML Schema Definition (XSD). The feasibility

of the synthetic cost model was illustrated in Experiment Number Three where

 Chapter Six Discussion, Conclusion, and Future Work

109

employing the synthetic cost function improved the quality of the matching

results.

Various aspects of VTracker were evaluated through a set of five

experiments. The first experiment evaluated the general performance of VTracker

along with the influence of the proposed optimization. Secondly, the feasibility of

the simplicity heuristic set was illustrated in the context of RNA Secondary

Structure Comparison. Thirdly, the importance of the reference model and the

synthetic cost function were verified in the context of an OAEI Ontology

Matching benchmark experiment. In this experiment, VTracker was also

evaluated against state-of-the-art approaches in Ontology Matching domain, and

VTracker competed successfully with the top tier systems. In the fourth, VTracker

was evaluated against the state-of-the-art approach in object-oriented differencing,

and VTracker showed an outstanding performance against UMLDiff. Finally,

VTracker was evaluated in the domain of WSDL service matching where it also

performed adequately.

6.1 Conclusion

The aim of this work is to demonstrate that differencing problems in various

domains are similar in their essence, and can be solved through a generalized

approach that takes into consideration a domain’s specialties. The objective is to

show that all domain specific differencing methods are simply trying to

accomplish the same thing. It would be more beneficial for these domain-specific

solutions to start from a generic method like VTracker, and focus more on the real

problem of differencing semantics, which is captured through the cost function.

VTracker was evaluated against state-of-the-art systems in each of those domain’s

differencing techniques. These evaluations should be considered positive if

VTracker performs comparably to, or exceeds, methods especially built to serve

those domains. As shown in the evaluation chapter VTracker competed very well

with the more well known differencing methods in these domains.

 Chapter Six Discussion, Conclusion, and Future Work

110

Finally, it is important to mention that VTracker takes the differencing

problem into a higher level of flexibility. A user can control the level of details on

which VTracker works. For example in the case of UML model differencing, the

experiment designer was allowed to decide which aspects of the model to

compare: inheritance model, containment model, or usage model. The experiment

designer had to provide an XML structure that captures only the desired aspects.

The same flexibility applies in case of BPEL matching. If WSDL definitions are

included in the BPEL specification XML document, then VTracker considers the

BPEL workflow along with the underlying WSDL definitions to reach more

accurate matching quality. In this way, VTracker allows a user to specify the

desired level of details and aspects.

6.2 Future Work

There are many directions of future work in VTracker. Firstly, we plan to work

towards improving the quality of the cost model in general and domain-specific

cost functions in particular. On one hand, a big contribution would be to equip

VTracker with a lexical matching mechanism such as WordNet that is capable of

matching synonym terms and vocabularies. On the other hand, it is clear that

XML Schema Definitions are undeniably rich with domain semantics and

knowledge so another dimension of improving the cost model is to dig deeper into

various domain XML schemas to uncover more implicit semantics, and to

improve the current process of synthesizing domain-specific cost functions. A

second future task is to automate the process of domain-specific configuration,

using a domain schema to recognize ID/IDREF, key, and metadata attributes.

Further experimentation is also necessary to validate the applicability of VTracker

in other domains and to evaluate its effectiveness against benchmarks of these

domains. Finally, we are interested in reusing and applying the innovations of

VTracker in the context of other tree-edit distance differencing mechanisms.

111

Bibliography

'
+,- ./0123'456575'89:&'.;;0"</2"=>'=?'7&2%"'@&21'2='4=%A?0=B'6/>/#&C&>2D5'9:&'E=$%>/0'
=?'F"%<$"213'GH12&C1'/>I'F=C;$2&%13'J=05'K3'@=5',5'L,MMKN3';;5'O,)PP5''
+O- ./0123'4565753'84:H'B=%A?0=B'"1'@Q9'R$12'/'7");%=<&11D5'S79%&>I13'!&T%$/%H3'OUU*5'
+(- .#/%B/03' .53' />I' .>A=0&A/%3' .53' 8.$2=C/2"<' 6/2<:C/A">#' =?' 4&T' G&%V"<&1D5' W>'
7%=<&&I">#1'=?'W>2&%>/2"=>/0'F=>?&%&><&'=>'4&T'G&%V"<&13'WF4G'XUP3';;5'*Y)Y*3'OUUP5'5'
+*- .00/0"3' E53' />I' G/#=23'653' 8.' @&B'Z"12/><&' ?=%' ["#:' \&V&0']@.' G&<=>I/%H' G2%<2%&'
F=C;/%"1=>D5'W^^^_.F6'9%/>1/<2"=>15'F=C;$25'S"=05'S"=">?=%C/2"<1'3'J=05'O3'@=5','LOUUYN3';;5'
(),*5'
+Y- .00/0"3' E53' />I' G/#=23'653' 8@=V&0' 9%&&' ^I"2' Q;&%/2"=>1' ?=%']@.' G&<=>I/%H' G2%<2%&'
F=C;/%"1=>D5' W>' 7%=<&&I">#1' =?' 7%=<&&I">#1' =?' 2:&' *2:' 4=%A1:=;' =>' .0#=%"2:C1' ">'
S"=W>?=%C/2"<13'4.SW'`U*3';;5'*,O)*OY3'OUU*5'
+P- .02">&03' 65' />I' !%/>A0">3' 653' 8^??"<"&>2' ?"02&%">#' =?' a6\' I=<$C&>21' ?=%' 1&0&<2"V&'
I"11&C">/2"=>'=?'">?=%C/2"=>D5'W>'7%=<&&I">#1'=?'2:&'OP2:'W>2&%>/2"=>/0'F=>?&%&><&'=>'J&%H'
\/%#&'Z/2/'S/1&1'LJ\ZS'XUUN3';;5'Y(bP*3'OUUU5'
+c- .021<:$03' G53' d"1:3'453' 6"00&%3'453' 6H&%13' ^53' />I' \";C/>3' Z53' 8S/1"<' 0=</0' /0"#>C&>2'
1&/%<:'2==0D5'E=$%>/0'=?'6=0&<$0/%'S"=0=#H3''J=05'O,Y3'@=5'('L,MMUN3';;5'*U()*,U5'
+K- .021<:$03'G53'6/II&>3'953'G<:/??&%3'.53'e:/>#3' E53'e:/>#3'e53'6"00&%3'453'/>I'\";C/>3'Z53'
8d/;;&I' S\.G9' />I' 7GW)S\.G9f' /' >&B' #&>&%/2"=>' =?' ;%=2&">' I/2/T/1&' 1&/%<:' ;%=#%/C1D5'
E=$%>/0'=?'@$<0&"<'.<"I1']&1&/%<:3'J=05'OY3'@=5',c'L,MMcN3';;5'((KM)(*UO5'
+M- .>I%&B13'953'F$%T&%/3'!53'Z:=0/A"/3'[53'd=0/>I3'g53'h0&">3'E53'\&HC/>>3'!53'\"$3'h53']=00&%3'
Z53' GC"2:3' Z53' 9:/22&3' G53' 9%"<A=V"<3' W53' />I' 4&&%/B/%/>/3' G53' 8S$1">&11' 7%=<&11' ^i&<$2"=>'
\/>#$/#&' ?=%' 4&T' G&%V"<&1D5' J&%1"=>' ,5,3' OUU(3' :22;f__BBB)
,OK5"TC5<=C_I&V&0=;&%B=%A1_0"T%/%H_1;&<"?"</2"=>_B1)T;&0_'
+,U- .>A=0&A/%3' .5' 8Z.6\)Gf' 4&T' G&%V"<&' Z&1<%";2"=>' ?=%' 2:&' G&C/>2"<' 4&TD5' W>'
7%=<&&I">#1'=?'W>2&%>/2"=>/0'G&C/>2"<'4&T'F=>?&%&><&3'WG4FXUO3';;5'(*K)(P(3'OUUO5'
+,,- .>2:=>H3'65' 8.'G2$IH'=?' G2%/2&#"<'F:/>#&3'7%=<&11'.0"#>C&>23' />I'@=2/2"=>f'!@dF'
9/;' 7%=<&115D' 4:"2&' ;/;&%' ?%=C' W>2&%>/2"=>/0' 7&%?=%C/><&' d%=$;3' \2I5'
:22;f__BBB5T;2%&>I15<=C_;$T0"</2"=>?"0&1_.>2:=>HjOUG2$IHjOUjOZjOU!@dFjOUF/1&
jOU,jOZ9^a9jOUjOZjOU(jOZ*jOZU(jO^;I?'L0/12'/<<&11&I'E$0H'(U3'OU,UN5'
+,O- .>2=>"=$3' .53' />I' [/%C&0&>3' !5J53' 84&T' Q>2=0=#H' \/>#$/#&f' Q4\D5' S==A' 2"20&If'
[/>IT==A'=>'Q>2=0=#"&1'">'W>?=%C/2"=>'GH12&C13';$T0"1:&%f'G;%">#&%)J&%0/#3'OUU(5'
+,(- .;"B/22/>/;=>#3'953'Q%1=3'.53'/>I'[/%%=0I3'65'E53'8EZ"??f'.'I"??&%&><">#'2&<:>"k$&'/>I'
2==0' ?=%'=TR&<2)=%"&>2&I';%=#%/C185' E=$%>/0'=?'.$2=C/2&I'G=?2B/%&'^>#">&&%">#'L.G^N53'J=05'
,*3''@=5',LOUUcN3';;5'(b(P5'
+,*- .$#12&>3'@53'S/%T=1/3'Z53' 'S=:0&>3'653' '/>I'7/0;/>/13'953'l9.G6f'9=;)A'.;;%=i"C/2&'
G$T2%&&' 6/2<:">#l3' W>' 7%=<&&I">#1' =?' OP2:' W>2&%>/2"=>/0' F=>?&%&><&' =>' Z/2/' ^>#">&&%">#'
LWFZ^m,UN3'';;5'(Y('b'(P*3'OU,U5''
+,Y- S/&3' E53' S/&3'[53' h/>#3' G5[53' />I'h"C3' g53' 8.$2=C/2"<' F=>2%=0' =?'4=%A?0=B'7%=<&11&1'
n1">#' ^F.']$0&1D5' W^^^' 2%/>1/<2"=>1' =>' A>=B0&I#&' />I' I/2/' &>#">&&%">#3' J=05' ,P3' @=5' K'
LOUU*N3'';;5,U,U),UO(5'
+,P- S/?>/3' J53' 6$2:$A%"1:>/>3' G53' />I']/V"3']53' 8F=C;$2">#' 1"C"0/%"2H' T&2B&&>']@.'
12%">#1D5'W>'7%=<&&I">#1'=?'F=CT">/2=%"/0'7/22&%>'6/2<:">#'F=>?&%&><&'`MY33';;5',),P53',MMY5'
+,c- S/2%/3' G5' />I' S/B/3' G53' l4&T' G&%V"<&' F/2&#=%"o/2"=>' n1">#' @=%C/0"o&I' G"C"0/%"2H'
G<=%&3'8'W>2&%>/2"=>/0'E=$%>/0'=?'F=C;$2&%'9:&=%H'/>I'^>#">&&%">#3'J=05'O3'@=5','LOU,UN3';;5'
,(M),*O5'

 Bibliography

112

+,K- S&%>/%I3'653'S=H&%3'\53'[/T%/%I3'.53'G&TT/>3'653'8\&/%>">#';%=T/T"0"12"<'C=I&01'=?'2%&&'
&I"2'I"12/><&D5'E=$%>/0'=?'7/22&%>']&<=#>"2"=>3'J=05'*,3'@=5'K'LOUUKN3';;5'OP,,)OPOM5'
+,M- S&%>&%1)\&&3' 95' />I' F=>>=00H3' Z5' l[H;&%2&i2' 6/%A$;' \/>#$/#&')' O5Ul3']!F' ,KPP5'
7%=;=1&I'G2/>I/%I3'@=V&CT&%',MMY5'
+OU- S&%>&%1)\&&3'953'S%"<A0&H3'Z53'6"00&%3'^53'/>I'GB"<A3']5]3'8!%&k$&>20H'.1A&I'p$&12"=>1'
/T=$2']Z!D5'4(F3':22;f__BBB5B(5=%#_]Z!_!.p3'OUU*5'
+O,- S&%>&%1)\&&3' 953' !"&0I">#3']53' />I'6/1">2&%3' \53' 8n>"?=%C']&1=$%<&' WI&>2"?"&%' Ln]WNf'
d&>&%"<'GH>2/iD5']!F'(MKP3'E/>$/%H'OUUY3':22;f__BBB5%?<)&I"2=%5=%#_%?<_%?<(MKP52i2'
+OO- S0/><:&23'453'^0"=3']53'G2%=$0"/3'^53'8F=>V&%1/2"=>'^%%=%1'">'4&T'G&%V"<&'F==%I">/2"=>f'
]$>)2"C&' Z&2&<2"=>' />I']&;/"%D5' W>' 7%=<&&I">#1' =?' W>2&%>/2"=>/0' F=>?&%&><&' =>' 4&T'
W>2&00"#&><&'L4WmYN3';;5'**O'b'**M3'OUUY5'
+O(- S0/><:&23'453' ^0"=3']53' G2%=$0"/3' ^5' 8G$;;=%2">#'.I/;2"V&'4&T)G&%V"<&'Q%<:&12%/2"=>'
B"2:' />' .#&>2' F=>V&%1/2"=>' !%/C&B=%AD5' W>' 7%=<&&I">#1' =?' 2:&' 2:"%I' W^^^' W>2&%>/2"=>/0'
F=>?&%&><&'=>'4&T'G&%V"<&1'LWF4GmYN3';;5Y*,)Y*M3'OUUY5'
+O*- S%/$&%3' 653' 4&"%3']53' />I' 6<]/&3' 653' 8Q;&>Z=<$C&>25' V,5,' 1;&<"q</2"=>D3' OUUc3'
:22;f__I=<15=/1"1)=;&>5=%#_=??"<&_V,5,_QG_Q;&>Z=<$C&>2)V,5,5;I?'
+OY- S%&$&03' 9565' lW>?=%C/2"=>' ^i2%/<2"=>' ?%=C' [96\' Z=<$C&>21' TH' G2%$<2$%/0'
6/2<:">#l5' W>' 7%=<&&I">#' =?' G&<=>I' W>2&%>/2"=>/0' 4=%A1:=;' =>' 4&T' Z=<$C&>2' .>/0H1"1'
L4Z.mU(N3'3;;5,,),*3'OUU(5'
+OP- S%=<AC/>13' G53' ^:%"#3' 653' h=1<:C"I&%3' .53' QT&%B&"13' .53' />I' G2$I&%3']53' 8G&C/>2"<'
.0"#>C&>2' =?' S$1">&11' 7%=<&11&1D5' W>' 7%=<&&I">#1' =?' ^"#:2:' W>2&%>/2"=>/0' F=>?&%&><&' =>'
^>2&%;%"1&'W>?=%C/2"=>'GH12&C13'LWF^WGmPN3';;5,M,),MP3'OUUP5'
+Oc- F:/B/2:&3' G53']/R/%/C/>3' .53' d/%<"/)6=0">/3'[5' />I'4"I=C3E53' 8F:/>#&'Z&2&<2"=>' ">'
["&%/%<:"</00H' G2%<2%&I' W>?=%C/2"=>D5' W>' 7%=<&&I">#1' =?' 2:&' .F6' GWd6QZ' W>2&%>/2"=>/0'
F=>?&%&><&'=>'6/>/#&C&>2'=?'Z/2/'LGWd6QZmMPN3'J=05'OY3'@=5'OL,MMPN3';;5'*M(bYU*5'
+OK- F:/B/2:&3' G5' />I' d/%<"/)6=0">/3' [53' 86&/>">#?$0' F:/>#&' Z&2&<2"=>' ">' G2%<2%&I'
Z/2/D5'W>'7%=<&&I">#1'=?'2:&'.F6'GWd6QZ'W>2&%>/2"=>/0'F=>?&%&><&'=>'6/>/#&C&>2'=?'Z/2/'
LGWd6QZmMcN3'J=05'OP3'@=5'OL,MMcN3';;5'OPb(c5'
+OM- F:&V/0"&%3' !53' .$T&%3'Z53' />I'9&0&/3'.53' 8G2%<2%/0' />/0H1"1' />I' V"1$/0"o/2"=>'=?' <rr'
<=I&'&V=0$2"=>'$1">#'1H>2/i' 2%&&1D5' W>'7%=<&&I">#1'=?' 2:&'>">2:' W>2&%>/2"=>/0'4=%A1:=;'=>'
7%"><";0&1' =?' G=?2B/%&' ^V=0$2"=>' LW47G^mcNf' ">' <=>R$><2"=>' B"2:' 2:&' P2:' ^G^F_!G^' R=">2'
C&&2">#3';;5'MUbMc3'OUUc5'
+(U- F:="3'@53'G=>#3' W5)g53'/>I'[/>3'[53' 8.'1$%V&H'=>'=>2=0=#H'C/;;">#D5'GWd6QZ']&<=%I3'
J=05'(Y3'@=5'(LOUUPN3';;5'(*b*,5'
+(,- F=Ts>/3' d53' .TI&11/0&C3' 953' [">>/<:3' g53' 8.' <=C;/%/2"V&' 12$IH' ?=%' a6\' <:/>#&'
I&2&<2"=>D3' d&C=']&;=%2' >$CT&%' OO,3' OUUO5' :22;f__BBB)
%=<kT"15">%"/5?%_V&%1=_d&C=_7nS\W_/00)' THH&/%5;:;3'
?2;f__?2;5">%"/5?%_W@]W._7%=R&<21_#&C=_#&C=_d&C=']&;=%2)OO,5;I?3'/<<&11&I'6/H'OUUY5'
+(O- F=T&>/3' d53' .T"2&T=$03' G53' 6/%"/>3' .53' lZ&2&<2">#' F:/>#&1' ">' a6\' Z=<$C&>21l5' W>'
7%=<&&I">#1'=?'2:&',K2:'W>2&%>/2"=>/0'F=>?&%&><&'=>'Z/2/'^>#">&&%">#'LWFZ^XUON3';;5'*,)YO3'
OUUO5'
+((- F=00">13'd53'\&3'G53'/>I'e:/>#3'h53'8.'>&B'/0#=%"2:C'?=%'<=C;$2">#'1"C"0/%"2H'T&2B&&>'
]@.' 12%<2%&1D5' E=$%>/0' W>?=%C/2"=>' G<"&><&1f' />' W>2&%>/2"=>/0' E=$%>/03' J=05' ,(M5' @=5' ,)
O3LOUU,N3';;5'YM)cc5'
+(*- F=>2%"T$2=%1f'WS63'S^.'GH12&C13'6"<%=1=?23'G.7'.d'G"&T&0'GH12&C3'8S$1">&11'7%=<&11'
^i&<$2"=>' \/>#$/#&' ?=%' 4&T' G&%V"<&1' V&%1"=>' ,5,3' 8' 6/H3'
OUU(5:22;f__BBB5"TC5<=C_I&V&0=;&%B=%A1_0"T%/%H_1;&<"?"</2"=>_B1)T;&0_' L0/12' /<<&11&I'
E$0H'(U3'OU,UN5'

 Bibliography

113

+(Y- F=>2%"T$2&%1f' WS63' GH12">&23' n>"2G;/<&3' 6"<%=1=?23' \6W3' G.7' .d3' F=C;$2&%'
.11=<"/2&13' G&&S&H=>I'9&<:>=0=#H3' />I'Q%/<0&3' 8nZZW'J&%1"=>'(5U5O')'nZZW'G;&<'9&<:>"</0'
F=CC"22&&' Z%/?23' Z/2&I' OUU*,U,MD' Q.GWG' G2/>I/%I3' :22;f__BBB5=/1"1)
=;&>5=%#_<=CC"22&&1_$II")1;&<_I=<_1;&<_V(_$II")V(5U5O)OUU*,U,M5:2C' L0/12' /<<&11&I'
E$0H',U3'OU,,N5'
+(P- F=>2%"T$2&%1f' .I=T&' GH12&C13' S^.3' Z&0="22&3' WS63' W>I"V"I$/03' W>2/0"=3' ET=11' W><55'
6"<%=1=?23' Q%/<0&3' G.73' G2&%0">#' F=CC&%<&3' 9WSFQ' G=?2B/%&3' B&T6&2:=I13' 84&T' G&%V"<&1'
S$1">&11' 7%=<&11' ^i&<$2"=>' \/>#$/#&'J&%1"=>'O5U3' D' Q.GWG' G2/>I/%I3' ,,' .;%"0' OUUc3'
:22;f__I=<15=/1"1)=;&>5=%#_B1T;&0_O5U_QG_B1T;&0)VO5U)QG5:2C0' L0/12' /<<&11&I' E$0H' (U3'
OU,UN5'
+(c- F=>2%"T$2&%1f' .I=T&' GH12&C13' S^.3' Z&0="22&3' WS63' W>I"V"I$/03' W>2/0"=3' ET=11' W><55'
6"<%=1=?23'Q%/<0&3'G.73'G2&%0">#'F=CC&%<&3'9WSFQ'G=?2B/%&3'B&T6&2:=I13'8G<:&C/'?=%'Q.GWG'
S$1">&11'7%=<&11'^i&<$2"=>'\/>#$/#&'L4G)S7^\N'O5U')'.T12%/<2'S7^\'F=CC=>'S/1&D'Q.GWG'
G2/>I/%I3' :22;f__I=<15=/1"1)=;&>5=%#_B1T;&0_O5U_QG_;%=<&11_/T12%/<2_B1)
T;&0t/T12%/<2t<=CC=>tT/1&5i1I'L0/12'/<<&11&I'E$0H'(U3'OU,UN5'
+(K- Q.GWG'&Ta6\']&#]&;'J&%1"=>'*5U'7/%2'Uf'QV&%V"&B'Z=<$C&>25',O'6/H'OU,,5'Q.GWG'
F=CC"22&&' G;&<"?"</2"=>' Z%/?2' UO' _' 7$T0"<']&V"&B' Z%/?2' U,5' :22;f__I=<15=/1"1)
=;&>5=%#_%&#%&;_%&#%&;)<=%&_V*5U_<1;%IU,_%&#%&;)<=%&)=V&%V"&B)V*5U)<1;%IU,5=I25'
+(M- F=%;&23' !53' />I' 6"<:=23' S53' 8]@.0"#>' ;%=#%/Cf' /0"#>C&>2' =?']@.' 1&k$&><&1' $1">#'
T=2:';%"C/%H'/>I'1&<=>I/%H'12%<2%&1D5'E=$%>/0'F=C;$25'.;;05'S"=1<"53'J=05',U3'@=5'*L,MM*Nf'
;;5'(KM)(MM5'
+*U- F=%%/0&13' E5F53' d%"#=%"3' Z53' />I' S=$o&#:=$T3' 653' 8S7^\' ;%=<&11&1' C/2<:C/A">#' ?=%'
1&%V"<&' I"1<=V&%HD5' W>' 7%=<&&I">#1' =?' Q96' F=>?&%&><&1f' F==;&%/2"V&' W>?=%C/2"=>' GH12&C1'
LF==;WGmPN3';;5'O(c–OY*53'OUUP5'
+*,- F%$o3' W5' />I' G$>>/3' 453' 8G2%<2%/0' .0"#>C&>2' 6&2:=I1' B"2:' .;;0"</2"=>1' 2='
d&=1;/2"/0' Q>2=0=#"&1D5' 9%/>1/<2"=>1' ">' dWG3' 1;&<"/0' "11$&' =>' G&C/>2"<' G"C"0/%"2H'
6&/1$%&C&>2'/>I'd&=1;/2"/0'.;;0"</2"=>13'J=05',O3'@=5'PLOUUKN3';;5'PK(bc,,5'
+*O- F%$o3'W53'.>2=>&00"3'!5'753'/>I'G2%=&3'F53'8^?q<"&>2'G&0&<2"=>'=?'6/;;">#1'/>I'.$2=C/2"<'
p$/0"2H)I%"V&>' F=CT">/2"=>' =?' 6/2<:">#' 6&2:=I1D5' W>' 7%=<&&I">#1' =?' ' ">2&%>/2"=>/0'
B=%A1:=;'=>'Q>2=0=#H'6/2<:">#'LQ6mUMN3'J=05'YY,'=?'F^n]'4=%A1:=;'7%=<&&I">#13'F^n])
4G5=%#3'OUUM3'OUUM5'
+*(- Z/V&>;=%23' 95[5' u' G:=%23' E5^53' l9:&' @&B' W>I$12%"/0' ^>#">&&%">#f' W>?=%C/2"=>'
9&<:>=0=#H' />I'S$1">&11' 7%=<&11']&I&1"#>85' G0=/>'6/>/#&C&>2']&V"&B3' ;;5' ,,)Oc3' L,MMU'
G$CC&%N5'
+**- Z/VHI=V3'^53' />I'S/2o=#0$3' G53' 8.' <=C;$2/2"=>/0'C=I&0' ?=%']@.'C$02";0&' 12%$<2$%/0'
/0"#>C&>2D5'E=$%>/0'9:&=%&2"</0'F=C;$2&%'G<"&><&3'J=05'(PK3'@=5'('LOUUPN3';;5OUY)O,P5'
+*Y- Z=1:"3'753'd==IB">3']53'.AA"%/R$3']53'/>I'J&%C/3'h53'8ZH>/C"<'B=%A?0=B'<=C;=1"2"=>'
$1">#'C/%A=V'I&<"1"=>';%=<&11&1D5'W>2&%>/2"=>/0'E=$%>/0'=?'4&T'G&%V"<&1']&1&/%<:3'J=05'O3'@=5'
,LOUUYN3';;5',),c5'
+*P- Z0<k3'G53'/>I'9"<:"23'\53'8]@.'G&<=>I/%H'12%<2%&'<=C;/%"1=>f'&i/<2'/>/0H1"1'=?'2:&'
e:/>#bG:/1:/' 2%&&' &I"2' /0#=%"2:CD5' E=$%>/0' 9:&=%&2"</0' F=C;$2&%' G<"&><&3' J=05' (UP3' @=5'
,(LOUU(N3';;5'*c,'b'*K*5'
+*c- ^0)6/T%=$A3'@5' />I']/??">=23'655338.;;%=i"C/2&'C/2<:">#' =?' 1&<=>I/%H' 12%<2%&1D5'
W>' 7%=<&&I">#1' =?' 2:&' G"i2:' .>>$/0' ">2&%>/2"=>/0' F=>?&%&><&' =>' F=C;$2/2"=>/0' S"=0=#H'
L]^FQ6S'XUON3',YP),P*3'OUUO5'
+*K- ^1:$"13']5'/>I'd%&?&>3'753'8G2%<2%/0'C/2<:">#'=?'S7^\';%=<&11&1D5'W>'7%=<&&I">#1'=?'
2:&'!"?2:'^$%=;&/>'F=>?&%&><&'=>'4&T'G&%V"<&1'L^FQ4G'mUcN3';;5',c,b,KU3'OUUc5'

 Bibliography

114

+*M- ^$o&>/23' E5' />I' J/02<:&V3' 753' 8G"C"0/%"2H)T/1&I' =>2=0=#H' /0"#>C&>2' ">' Q4\)0"25D5' W>'
7%=<&&I">#1'=?' 2:&',Y2:'^$%=;&/>'F=>?&%&><&'=>'.%2"?"<"/0' W>2&00"#&><&' L^F.WmU*N3';;5'((()
((c3'OUU*5'
+YU- ^$o&>/23'E53'!&%%/%/3'.53'6&"0"<A&3'F53'7/>&3'E53'G<:/%??&3'!53'G:V/"A=3'753'G2$<A&>1<:C"I23'
[53'vVwT)e/C/o/03'Q53'GVw2&A3'J5'/>I'I=1'G/>2=13'F5953'8!"%12'%&1$021'=?'2:&'Q>2=0=#H'.0"#>C&>2'
^V/0$/2"=>'W>"2"/2"V&'OU,UD5'W>'7%=<&&I">#1'=?'2:&'!"?2:'W>2&%>/2"=>/0'4=%A1:=;'=>'Q>2=0=#H'
6/2<:">#'LQ6m,UN3'2:&'M2:'W>2&%>/2"=>/0'G&C/>2"<'4&T'F=>?&%&><&'WG4F3'OU,U5'
+Y,- !&%%/%/3' ^5' />I' S/$C#/%2>&%3']53' l.$2=C/2"<' 4%/;;&%' .I/;2/2"=>' SH' 9%&&' ^I"2'
Z"12/><&'6/2<:">#l5'W>'7%=<&&I">#1'=?'2:&'O>I'W>2&%>/2"=>/0'4=%A1:=;'=?'W>'F=CT">/2"=>1'=?'
W>2&00"#&>2'6&2:=I1'/>I'.;;0"</2"=>1'LFW6.m,UN3';;'*,)Y*3'OU,U5'
+YO- !0$%"3'S53'4$&%1<:3'653'7W>o#&%3'653'/>I'd/003[53'8F:/>#&'Z"12"00">#f'9%&&'Z"??&%&><">#'
?=%' !">&)d%/">&I' G=$%<&' F=I&' F:/>#&' ^i2%/<2"=>D5' W^^^' 9%/>1/<2"=>1' =>' G=?2B/%&'
^>#">&&%">#3'J=05'((3'@=5',,3';;5'cOYbc*(3'OUUc5'
+Y(- !=A/&?13' 653' 6"A:/"&03']53' 91/>2/0"13' @53' G2%=$0"/3' ^53' 8.>' ^C;"%"</0' G2$IH' =>' 4&T'
G&%V"<&' ^V=0$2"=>D5' W>' 7%=<&&I">#1' =?' 2:&' M2:' W>2&%>/2"=>/0' F=>?&%&><&' =>' 4&T' G&%V"<&1'
LWF4Gm,,N3'';;5''*M)YP3'OU,,5'
+Y*- d"$><:"#0"/3'!5'3'g/21A&V"<:3'653'6<>&"003'!53'8G2%<2%&';%&1&%V">#'1&C/>2"<'C/2<:">#D5'
W>'7%=<&&I">#1'=?' 2:&'WG4Fr.G4F'W>2&%>/2"=>/0'B=%A1:=;'=>'Q>2=0=#H'6/2<:">#'LQ6mUcN3'
;/#&1',(bO*3'OUUc5'
+YY- d=2=:3'Q5' 3' 8.>' WC;%=V&I'.0#=%"2:C' ?=%'6/2<:">#'S"=0=#"</0'G&k$&><&1D5' E=$%>/0'=?'
6=0&<$0/%'S"=0=#H3'J=05',PO3'@=5'('L,MK,N3';;5'cUY)cUK5'
+YP- [/V&H3' 65' 8^11&>2"/0' S$1">&11' 7%=<&11' 6=I&0">#D5' S==A' ;$T0"1:&I' TH' QX]&"00H' u'
.11=<"/2&13'WGS@'U)YMP)UUK*()U3'OUUY5'
+Yc- [&%%T/<:3' F53' Z&>"1&3' .53' Z0<k3' G53' 9=$o&23' [53' 8.0"#>C&>2' =?']@.' 1&<=>I/%H'
12%<2%&1'$1">#'/'?$00'1&2'=?'=;&%/2"=>1D3']/;;=%2'I&']&<:&%<:&'\]W'>x',*Y,3'OUUP'
+YK- ["><:<0"??&3' Z53' 8G"2$/2"=>/0' G=?2B/%&' 70/2?=%C1' S&#">' 2=' ^C&%#&D5' eZ@&23'
:22;f__T0=#15oI>&25<=C_["><:<0"??&_y;zPM3' Q<2=T&%' ,P2:3' OUUP3' 0/12' /<<&11&I' =>' E$>' ,P2:3'
OUUK5'
+YM- [=<:1C/>>3' 653' 9=&00&%3' 953' d"&#&%"<:3']53' />I' h$%2o3' G53' 8\=</0' G"C"0/%"2H' =?']@.'
G&<=>I/%H' G2%<2%&15D' W>' 7%=<&&I">#1' =?' F=C;$2/2"=>/0' GH12&C1' S"=">?=%C/2"<1' LFGSmU(Nf'
;;5',YM),PK3'OUU(5'
+PU- [{<:1C/>>3'653'J=113'S53'/>I'd"&#&%"<:3']53'87$%&'6$02";0&']@.'G&<=>I/%H'G2%<2%&'
.0"#>C&>21f'.'7%=#%&11"V&'7%=?"0&'.;;%=/<:D5'W^^^_.F6'9%/>15'F=C;$25'S"=05'S"=">?=%C/2"<1'
J=05',3'@=5','LOUU*N3';;5'Y()PO5'
+P,- [{<:1C/>>3' 653' 89:&' 2%&&' /0"#>C&>2' C=I&0' f' /0#=%"2:C13' "C;0&C&>2/2"=>1' />I'
/;;0"</2"=>1' ?=%' 2:&' />/0H1"1' =?']@.' 1&<=>I/%H' 12%<2%&1D5' Z"11&%2/2"=>3' n>"V&%1"2|2'
S"&0&?&0I3'9&<:>"1<:&'!/A$02|23'OUUY5'
+PO- [=?/<A&%3'W53'!=>2/>/3'453'G2/I0&%3'753'S=>:=&??&%3'\53'9/<A&%3'653'/>I'G<:$12&%3'753'8!/12'
!=0I">#' />I'F=C;/%"1=>'=?']@.'G&<=>I/%H' G2%<2%&15D' F:&C"</0'6=>2:0H3' J=05' ,OY3'@=5' O'
L,MM*Nf';;5',Pc),KK5'
+P(- [=??C/>>3' F5' 65' />I' QmZ=>>&003' 65' E53' 87/22&%>' C/2<:">#' ">' 2%&&1D5' E=$%>/0' =?' 2:&'
.11=<"/2"=>'?=%'F=C;$2">#'6/<:">&%H'LE.F6N3'J=05'OM3'@=5',L,MKON3';;5'PKbMY5'
+P*- [=00">#1B=%2:3' Z53' 89:&' B=%A?0=B' %&?&%&><&' C=I&0D5' 4=%A?0=B' 6/>/#&C&>2'
F=/0"2"=>'G;&<"?"</2"=>'9FUU),UU(3'4=%A?0=B'6/>/#&C&>2'F=/0"2"=>3'4"><:&12&%'[/C;1:"%&3'
nh3'E/>$/%H',MMY5'
+PY- [=%%=<A13' W53' 8.' Z&>=2/2"=>/0' G&C/>2"<1' ?=%' G2/>I/%I' QW\' />I' W>12/><&' QW\D5'
:22;f__BBB5=>2=A>=B0&I#&5=%#_="0_I=B>0_1&C/>2"<15;I?3'OUUU5'
+PP- W1&%23' F53' 89:&' ^I"2">#' Z"12/><&' S&2B&&>' 9%&&15D' 3' ,MMM3'
:22;f__<"2&1&&%5"125;1$5&I$_"1&%2MM&I"2">#5:2C0'L/<<&11&I'.$#5'OUUPN'

 Bibliography

115

+Pc- E/&#&%3'65F53']=R&<)d=0IC/>>3'd53'\"&T&2%$2:3'F53'6}:03'd53'd&":13'h53'8]/>A&I'6/2<:">#'
?=%' G&%V"<&' Z&1<%";2"=>1' n1">#' Q4\)GD5'W>' 7%=<&&I">#1' =?' hCC>"A/2"=>' ">' J&%2&"02&>'
GH12&C&>'Lh"JGmYN3';;5'M,),UO3'OUUY5'
+PK- E"/>#3'953'4/>#3'\53'/>I'e:/>#3'h53'8.0"#>C&>2'?=%'2%&&1')/>'/02&%>/2"V&'2='2%&&'&I"2D5'W>'
7%=<&&I">#1'=?' 2:&'Y2:'.>>$/0'GHC;=1"$C'=>'F=CT">/2=%"/0'7/22&%>'6/2<:">#3'\@FG3'KUcf'
;;5'cY)KP3',MM*5'
+PM- E"/>#3'953'4/>#3'\5'/>I'e:/>#3'h53' 8.0"#>C&>2'=?' 2%&&1'b'/>'/02&%>/2"V&' 2=' 2%&&'&I"2D5'
9:&=%&2"</0'F=C;$2&%'G<"&><&3'J=05',*(3'@=5',L,MMYN3';;5',(c),*K5'
+cU- E"/>#3'g53'G2%=$0"/3'^53'89=B/%I1']&&>#">&&%">#'4&T'G"2&1'2='4&T1&%V"<&1'7%=V"I&%1D3'
W>' 7%=<&&I">#1' =?' ^"#:2:' ^$%=C"<%=' 4=%A">#' F=>?&%&><&' =>' G=?2B/%&' 6/">2&>/><&' />I'
]&&>#">&&%">#'LFG6]m*N3';;5'OMP)(UY3'OUU*5'
+c,- E">3'E53'G/%A&%3'S5'h53'S:/V1/%3'J5'F53'g/>#3'\53'/>I'S=0&H3'[53'D9=B/%I1'/'4&"#:2&I)9%&&'
G"C"0/%"2H'.0#=%"2:C'?=%']@.'G&<=>I/%H'G2%<2%&'F=C;/%"1=>D5'W>'7%=<&&I">#1'=?'2:&'^"#:2:'
">2&%>/2"=>/0' F=>?&%&><&' =>' ["#:)7&%?=%C/><&' F=C;$2">#' ">' .1"/)7/<"?"<']&#"=>'
L[7F.GW.mYN5';;5'P(M')'P**'3'OUUY5'
+cO- h&>1<:&3' Z53' p$"i3' F53' F:/22"3' 65' .53' />I' E/%A&3'653' ld&]=6&f' .' d&>&%"<']=0&' S/1&I'
6&2/C=I&0'?=%'6=I&0'6/>/#&C&>2l3'E=$%>/0'=>'Z/2/'G&C/>2"<13'JWWW3';;5'KOb,,c3'OUUc5'
+c(- h"0;&0' ~/">&>3' 75' />I' 6/>>"0/3' [53' 8Q%I&%&I' />I' $>=%I&%&I' 2%&&' "><0$1"=>D5' GW.6'
E=$%>/0'=?'F=C;$2">#3'J=05'O*3'@=5'O3';;5'(*Ub(YP3',MMY5'
+c*- h"C3'g53'7/%A3'E53'h"C3'953'/>I'F:="3'E53'l4&T'W>?=%C/2"=>'^i2%/<2"=>'TH'[96\'9%&&'^I"2'
Z"12/><&'6/2<:">#l5'W>'7%=<&&I">#1'=?'W>2&%>/2"=>/0'F=>?&%&><&'=>'F=>V&%#&><&'W>?=%C/2"=>'
9&<:>=0=#H'LWFFW9mUcN3';;5O*YY)O*PU3'OUUc'
+cY- h0&">3'73'9"%2:/;$%/3'G53'G:/%V"23'Z5'/>I'h"C"/3'S53'8.'2%&&)'&I"2)I"12/><&'/0#=%"2:C'?=%'
<=C;/%">#'1"C;0&3'<0=1&I'1:/;&1D5'W>'7%=<&&I">#1'=?'2:&',,2:'.>>$/0'.F6)GW.6'GHC;=1"$C'
=>'Z"1<%&2&'.0#=%"2:C1'LGQZ.mUUN3';;5'PMPbcU*3'OUUU5'
+cP- h%$<:2&>3'753'89:&'*r,'V"&B'C=I&0'=?'/%<:"2&<2$%&D5'W^^^'G=?2B/%&3'J=05',O3'@=5'P3';;5'
*ObYU3',MMY5'
+cc- h}12&%3' E5'653'd&%2:3'F53'!{%12&%3'.53'/>I'^>#&013'd53' 8Z&2&<2">#'/>I']&1=0V">#'7%=<&11'
6=I&0'Z"??&%&><&1'">'2:&'.T1&><&'=?'/'F:/>#&'\=#85'W>'7%=<&&I">#1'=?'2:&'P2:'W>2&%>/2"=>/0'
F=>?&%&><&'=>'S$1">&11'7%=<&11'6/>/#&C&>2'LS76mUKN5'\@FG3'J=05'YO*U5';;5'O**)OPU3'OUUK5'
+cK- \/:3'953' 89:&'G&%V"<&1'.0"#>C&>2']"1A'!/<2=%f'9:&']&/0'F:/00&>#&'?=%'[7D5'.%2"<0&' "1'
;%=V"I&I' <=$%2&1H' =?' 7%&>2"<&' [/003' OUU,3'
:22;f__BBB5;:;2%5<=C_/%2"<0&1_/%2"<0&5/1;y;zO(cPKu1&k@$CzYu%0z,'
+cM- \/:3' 95' ^53' 89:&' G&%V"<&1' .0"#>C&>2']"1A' !/<2=%f' 9:&']&/0' F:/00&>#&' ?=%' [785'
BBB5">?=%C"25<=C3' Q<2' OP3' OUU,3' .%2"<0&' "1' ;%=V"I&I' <=$%2&1H' =?'7%&>2"<&' [/003'
:22;f__BBB5">?=%C"25<=C_/%2"<0&1_/%2"<0&5/1;iy;zO(cPK'L0/12'/<<&11&I'E$0H'(U3'OU,UN5'
+KU- \/1A"3' E5' />I' Go&%C&%3' 453' 8WI&>2"q</2"=>' =?' ;%=#%/C' C=I"q</2"=>1' />I' "21'
/;;0"</2"=>1' ">' 1=?2B/%&' C/">2&>/><&D5' W>' 7%=<&&I">#1' =?' F=>?&%&><&' =>' G=?2B/%&'
6/">2&>/><&3';;5'OKO'b'OMU3',MMO5'
+K,- \/11"0/3' Q53' />I' GB"<A3']5]5' 8]&1=$%<&' Z&1<%";2"=>' !%/C&B=%A' L]Z!N' 6=I&0' />I'
GH>2/i' G;&<"?"</2"=>D5' 4(F']&<=CC&>I/2"=>' OO' !&T%$/%H' ,MMM3'
:22;f__BBB5B(5=%#_9]_,MMM_]^F)%I?)1H>2/i),MMMUOOO5'
+KO- \&3'Z5)@53'@#$H&>3'J5)p53'/>I'd=:3'.53'l6/2<:">#'4GZ\'/>I'Q4\)G'4&T'G&%V"<&1l3'W>'
7%=<&&I">#' =?' 2:&' OUUM' W^^^' W>2&%>/2"=>/0' F=>?&%&><&' =>' G&C/>2"<' F=C;$2">#' LWFGFXUMN3''
;;5',Mc)OUO3'OUUM5'
+K(- \&3'G53'@$11">=V3']53'/>I'6/o&03'E53'89%&&'#%/;:1'=?']@.'1&<=>I/%H'12%<2%&1'/>I'2:&"%'
<=C;/%"1=>D5'F=C;$2/2"=>/0'S"=C&I"</0']&1&/%<:3'J=05'OO3'@=5'Y'L,MKMN3';;5'*P,)*c(5'

 Bibliography

116

+K*- \&3' G53' QB&>13' E53' @$11">=V3']53' F:&>3' E53' G:/;"%=3' S53' />I'6/"o&03' E53' 8]@.' 1&<=>I/%H'
12%<2%&1f' <=C;/%"1=>' />I' I&2&%C">/2"=>' =?' ?%&k$&>20H' %&<$%%">#' 1$T12%$<2$%&1' TH'
<=>1&>1$1D5'F=C;$25'.;;05'S"=1<"53'J=05'Y3'@=5'('L,MKMN3';;5'OUY')'O,U5'
+KY- \&&3'65' \53' g/>#3' \5' [53' [1$3'45' />I' g/>#3' a53' 8aF0$12f' F0$12&%">#' a6\' G<:&C/1' ?=%'
^??&<2"V&' W>2&#%/2"=>D5' W>' 7%=<&&I">#1' =?' 2:&' &0&V&>2:' ">2&%>/2"=>/0' <=>?&%&><&' =>'
W>?=%C/2"=>'/>I'A>=B0&I#&'C/>/#&C&>2'LFWh6XUON3';;5'OMO)OMM3'OUUO5''
+KP- \&V&>1:2&">3J53' 8S">/%H' <=I&1' </;/T0&' =?' <=%%&<2">#' I&0&2"=>13' ">1&%2"=>1' />I'
%&V&%1/01D5'G=V"&2'7:H1"<1'Z=A0/IH3'J=05',U3'@=5'K5'L,MPPN3';;5'cUc)c,U5'
+Kc- \"3E53'9/>#3E53'\"3g53'/>I'\$=p53'8]"6Q6f'.'IH>/C"<'C$02")12%/2&#H'=>2=0=#H'/0"#>C&>2'
?%/C&B=%AD5'W^^^'9%/>1/<2"=>'=>'h>=B0&I#&'/>I'Z/2/'^>#">&&%">#3'J=05'O,3'@=5'KLOUUMN3';;5'
,O,Kb,O(O5'
+KK- \">3' d53' 6/3' S53' />I' e:/>#3' h53' 8^I"2' I"12/><&' T&2B&&>' 2B=']@.' 12%<2%&15D' W>'
7%=<&&I">#1' =?' 2:&' !"?2:' .>>$/0' ">2&%>/2"=>/0' F=>?&%&><&' =>' F=C;$2/2"=>/0' S"=0=#H5'
L]^FQ6S'XU,N3';;5'O,,)OOU3'OUU,5'
+KM- \">I:=0C3'953'h/>#/1:/%R$3'E53'9/%A=C/3'G53'8!/12'/>I'1"C;0&'a6\'2%&&'I"??&%&><">#'TH'
1&k$&><&'/0"#>C&>2D5'W>'7%=<&&I">#1'=?'2:&'OUUP'.F6'1HC;=1"$C'=>'Z=<$C&>2'&>#">&&%">#'
LZ=<^>#mUPN3';;5'cY)K*3'OUUP5'
+MU- \"$3'S53'[/>3'[3'@=%=3'953'/>I'9=A$I/3'953'l7&%1=>/0'@&B1']GG'!&&I1'd&>&%/2"=>'n1">#'
^i"12">#' @&B1' !&&I1l5' W>' 7%=<&&I">#1' =?' W>2&%>/2"=>/0' F=>?&%&><&' =>' 4&T' ^>#">&&%">#'
LWF4^mUMN'3';;5'*,M)*((3'OUUM5'
+M,- \"$3' !53' G:"3' g53' g$3' E53' 4/>#3' 953' />I'4$3' E53' l6&/1$%">#' G"C"0/%"2H' =?'4&T' G&%V"<&1'
S/1&I' =>'4GZ\85' W>' 7%=<&&I">#1' =?' W>2&%>/2"=>/0' F=>?&%&><&' =>'4&T' G&%V"<&1' LWF4Gm,UN3'
;;5,YY),PO3'OU,U5'
+MO- \"$3'E53'4/>#3'E53'[$3'E53'/>I'9"/>3'S53'8.'C&2:=I'?=%'/0"#>">#']@.'1&<=>I/%H'12%<2%&1'
/>I'"21'/;;0"</2"=>'2=']@.'C=2"?'I&2&<2"=>D5'S6F'S"=">?=%C/2"<15'Pf'KM3'OUUY5'
+M(- \"$3'g53'4/>#3'E53'e:$3'E53'\"/>#3'[53'9"/>3'e53'/>I'G$>3'453'8S$1">&11'7%=<&11'6=I&0">#'">'
.T12%/<2' \=#"<' 9%&&D5' WS6']&1&/%<:']&;=%23' WS6']&1&/%<:' Z"V"1"=>3' F:">/']&1&/%<:'
\/T=%/2=%H3']FO(***'LFU*,,)UUPN3'@=V&CT&%3'OUU*5'
+M*- 6/3' S53' 4/>#3' \53' />I' e:/>#3' h53' 8F=C;$2">#' 1"C"0/%"2H' T&2B&&>']@.' 12%<2%&1D5'
9:&=%&2"</0'F=C;$2&%'G<"&><&3'J=05'OcP3'@=5',)OLOUUON3';;5',,,),(O5'
+MY- 6/:0&A=3' .53' 4=CT/<:&%3' .53' />I' !/>A:/$1&%3' 753' 8.' d%/CC/%)S/1&I' W>I&i' ?=%'
6/2<:">#'S$1">&11'7%=<&11&185' W>'7%=<&&I">#1' =?' W>2&%>/2"=>/0' F=>?&%&><&' =>'4&T'G&%V"<&'
LWF4GmYN3';;5'O,)(U3'OUUY5'
+MP- 6/>=0/3'!53'/>I'6"00&%3'^53' 8]Z!'7%"C&%D5'4(F']&<=CC&>I/2"=>',U'!&T%$/%H'OUU*3'
:22;f__BBB5B(5=%#_9]_OUU*_]^F)%I?);%"C&%)OUU*UO,U_5'
+Mc- 6/%"/>3'.53'.T"2&T=$03'G53'F=T&>/3'd53'/>I'6"#>&23'\53'8F:/>#&)<&>2%"<'C/>/#&C&>2'=?'
V&%1"=>1' ">' />' a6\' B/%&:=$1&D5' W>' 7%=<&&I">#1' =?' 2:&' W>2&%>/2"=>/0' F=>?&%&><&' =>' J&%H'
\/%#&'Z/2/'S/1&1'LJ\ZSmU,N3';;5'YK,)YMU3'OUU,5'
+MK- 6/%2">3'Z53'S$%12&">3'653'[=TT13'E53'\/11"0/3'Q53'6<Z&%C=223'Z53'6<00%/"2:3'G53'@/%/H/>/>3'
G53'7/=0$<<"3'653'7/%1"/3'S53'7/H>&3953'G"%">3'^53'G%">"V/1/>3'@53'/>I'GH</%/3'h5' 8QB0)1f'G&C/>2"<'
C/%A$;'?=%'B&T'1&%V"<&1D5':22;f'__BBB5I/C05=%#_1&%V"<&1_=B0)1_,5,_=V&%V"&B_3'OUU*5'
+MM- 6<d$">>&113' Z5\53' !"A&13']53' G2&">3' \5.53' />I'[&>I0&%3' E5.3' 8Z.6\)Q@9f' .>'Q>2=0=#H'
\/>#$/#&'?=%'2:&'G&C/>2"<'4&TD5'G;">>">#'2:&'G&C/>2"<'4&Tf'S%">#">#'2:&'4=%0I'4"I&'4&T'
2='W21'!$00'7=2&>2"/03'9:&'6W9'7%&113'F/CT%"I#&3'6/11/<:$1&2213'WGS@'UOPOUPO(O,3';;5'PY)M*3'
OUU(5'
+,UU- 6<d$">>&113' Z5\53' />I' [/%C&0&>3' !5J53' 8Q4\'4&T' Q>2=0=#H' \/>#$/#&f' QV&%V"&BD5'
4(F']&<=CC&>I/2"=>3',U2:'=?'!&T%$/%H'OUU*3':22;f__BBB5B(5=%#_9]_=B0)?&/2$%&1_'
+,U,- 6<W0%/"2:3'G53'/>I'6/>I&003'Z53'8F=C;/%"1=>'=?'Z.6\)G'/>I'S7^*4G'L">"2"/0'I%/?2ND5'
h>=B0&I#&'GH12&C1'\/T3'G2/>?=%I'n>"V&%1"2H3'G&;2&CT&%'Y3'OUUO5'

 Bibliography

117

+,UO- 6"A:/"&03']53' G2%=$0"/3' ^53' 8^i/C">">#' n1/#&' 7%=2=<=01' ?=%' G&%V"<&' Z"1<=V&%HD5' W>'
7%=<&&I">#1'=?'2:&'*2:'W>2&%>/2"=>/0'F=>?&%&><&'=>'G&%V"<&'Q%"&>2&I'F=C;$2">#'LWFGQFmUPN3'
\@FG'*OM*3';;5'*MP))'YUO3'OUUP5'
+,U(- 6"A:/"&03]53' \">3' d53' G2%=$0"/3^53' 8G"C;0"<"2H' ">']@.' G&<=>I/%H' G2%<2%&' .0"#>C&>2f'
9=B/%I1'T"=0=#"</00H';0/$1"T0&' /0"#>C&>2185' W>'7%=<&&I">#1'=?' 2:&' W^^^'P2:' GHC;=1"$C'=>'
S"=">?=%C/2"<1'u'S"=&>#">&&%">#'LSWS^'`UPN3';;5',*M')',YK'3'OUUP5'
+,U*- 6"00&%3' ^53' 8.>' W>2%=I$<2"=>' 2=' 2:&']&1=$%<&' Z&1<%";2"=>' !%/C&B=%AD5' Z)\"T'
6/#/o">&3'WGG@',UKO)MKc(3'6/H',MMK5'
+,UY- 6"0>&%3']53' 7/%%=B3' E53' />I'4/0A&%3' Z53' 8.' F/0<$0$1' =?' 6=T"0&' 7%=<&11&13' 7/%2' WrWWD5'
E=$%>/0'=?'W>?=%C/2"=>'/>I'F=C;$2/2"=>3'J=05',UU3''@=5','L,MMON3'';;5',)Kc5'
+,UP- 60�>A=Vw3' W53' 8G"C"0/%"2H' =?' a6\' 1<:&C/' I&?">"2"=>1D5' W>' 7%=<&&I">#' =?' 2:&' &"#:2:'
.F6'1HC;=1"$C'=>'Z=<$C&>2'^>#">&&%">#'LZ=<^>#mUKN3'OUUK5'
+,Uc- 6$>o>&%3'953'd$"CT%&2"&%&3' !53' 9/1"%/>3' G53' e:/>#3' \53' />I'e:=$3'g53' 89%&&E$i2/;=1&%f'
G</0/T0&'9%&&'F=C;/%"1=>'$1">#'!=<$1rF=>2&i2'B"2:'d$/%/>2&&I'J"1"T"0"2HD5'GWdd].7[3'.F6'
9%/>1/<2"=>1'=>'d%/;:"<13'J=05'OO3'@=5'('LOUU(N3';;5'*Y()*PO5'
+,UK- 6$11&%3' E53' 8G/0&1?=%<&5<=C' \/$><:&1'
.;&iF=>>&<2D5T0=#57%=#%/CC/T0&4&T5<=C@=V&CT&%3' Oc2:3' OUUP3'
:22;f__T0=#5;%=#%/CC/T0&B&T5<=C_OUUP_,,_Oc_1/0&1?=%<&<=C)0/$><:&1)/;&i<=>>&<2_3'
0/12'/<<&11&I'=>'E$>',P2:3'OUUK5'
+,UM- @#$H&>3' S53' .T"2&T=$03' G53' F=T&>/3' d53' />I' 7%&I/3'653' 86=>"2=%">#' a6\' I/2/' =>' 2:&'
B&TD5' W>' 7%=<&&I">#1' =?' 2:&' OUU,' W>2&%>/2"=>/0' F=>?&%&><&' =>' 6/>/#&C&>2' =?' Z/2/'
LGWd6QZmU,N3';;5'*(c)**K'3OUU,5'
+,,U- @"&%C/>3' .5' />I' E/#/I"1:3' [5' J53' 8^V/0$/2">#' G2%$<2$%/0' G"C"0/%"2H' ">' a6\'
Z=<$C&>21D5'W>'7%=<&&I">#1'=?'2:&'!"?2:'W>2&%>/2"=>/0'4=%A1:=;'=>'2:&'4&T'/>I'Z/2/T/1&1'
L4&TZSXUON3';;5'P,)PP3OUUO5'
+,,,- QX]&"00H3' 953' 84:/2' W1'4&T' O5Uf' Z&1"#>' 7/22&%>1' />I' S$1">&11'6=I&01' ?=%' 2:&' @&i2'
d&>&%/2"=>' =?' G=?2B/%&D5B&T' /%2"<0&' =>' Qm]&"00H' >&23' G&;' (U3' OUUY'
L:22;f__BBB5=%&"00H>&25<=C_;$T_/_=%&"00H_2"C_>&B1_OUUY_UM_(U_B:/2)"1)B&T)OU5:2C0'
/<<&11'=>'E/>'(%I3'OUUMN5'
+,,O- QTR&<2'6=I&0">#'d%=$;' LQ6dN3' la6\'6&2/I/2/' W>2&%<:/>#&' La6WNl3'Q6d'!=%C/00H'
]&0&/1&I' J&%1"=>1' Q?' a6W3' V&%1"=>' O5,5,3' Z&<&CT&%' OUUc5'
:22;f__BBB5=C#5=%#_1;&<_a6W_O5,5,_'
+,,(- 7/=0"3'E53'J/0&2)[/%;&%3'W53'!/%k$:/%3'.53'/>I'G&T&12H&>3'W53'8^F6.)(cP'QÄ<&'Q;&>'a6\'
!"0&'!=%C/21D5'OUUP5'
+,,*- 7/=0$<<"3'653'h/B/C$%/3'953'7/H>&3'95']53'/>I'GH</%/3'h53'8G&C/>2"<'6/2<:">#'=?'4&T'
G&%V"<&1' F/;/T"0"2"&185' W>' 7%=<&&I">#1' =?' 2:&' ,12' W>2&%>/2"=>/0' G&C/>2"<' 4&T' F=>?&%&><&'
LWG4FmU(N3';;5'((()(*c3'OUUO5'
+,,Y- 7/;/V/11"0"=$3' J53' !0=$%"13' d53' !$>I$0/A"3' W53' h=2o">=13' Z53' F:%"12=;:"I&13' J53' 8Q>'
Z&2&<2">#'["#:)\&V&0'F:/>#&1' ">']Z!_G'hS1D5' W>'7%=<&&I">#1'=?' 2:&' W>2&%>/2"=>/0'G&C/>2"<'
4&T'F=>?&%&><&'LWG4FmUMN3';;5'*c(b*KK3'OUUM5'
+,,P- 7/H>&3'95]53'7/=0$<<"3'653'/>I'GH</%/3'h53'8.IV&%2"1">#'/>I'6/2<:">#'Z.6\)G'G&%V"<&'
Z&1<%";2"=>1D5''W>'7%=<&&I">#1'=?'G&C/>2"<'4&T'4=%A">#'GHC;=1"$C'LG44GmU,N3'OUU,5'
+,,c- 7&2&%13' \53' 8F:/>#&' Z&2&<2"=>' ">' a6\' 9%&&1f' /' G$%V&HD5' (%I' 9B&>2&' G2$I&>2'
F=>?&%&><&'=>'W93'^>1<:&I&'E$>&3'OUUY5'
+,,K- p&0"3^53' d00/V/2/3' E53' !%&"10&T&>3' S53' 8F$12=C"o/T0&' I&2&<2"=>' =?' <:/>#&1' ?=%' a6\'
I=<$C&>21' $1">#' a7/2:' &i;%&11"=>1D5' W>' 7%=<&&I">#1' =?' .F6' GHC;=1"$C' =>' Z=<$C&>2'
^>#">&&%">#'LZ=<^>#mUPN3';;5'KK)MU3'OUUP5'
+,,M-]/C&1:3']5'/>I']/C/A%"1:>/>3'W5J53'8@=>0">&/%';/22&%>'C/2<:">#'">'2%&&1D5'E=$%>/0'=?'
2:&'.11=<"/2"=>'?=%'F=C;$2">#'6/<:">&%H'LE.F6N3'J=05(M3'@=5'OL,MMON3';;5''OMYb'(,P5'

 Bibliography

118

+,OU-]&"13'Z53'd=0#:&%3'753'G"0V/3'.5'/>I'\/&>I&%3'.53'8.$2=C/2"<'B&T'>&B1'&i2%/<2"=>'$1">#'
2%&&'&I"2'I"12/><&D5'W>'7%=<&&I">#1'=?'2:&',(2:'W>2&%>/2"=>/0'F=>?&%&><&'=>'2:&'4=%0I'4"I&'
4&T'L444mU*N3';;5'YUObY,,3'OUU*5'
+,O,-]@.!=%&12&%'Q>0">&f':22;f__T"T"1&%V52&<:?/A5$>")T"&0&?&0I5I&_%>/?=%&12&%_'L/<<&11&I'
.$#5'G&;2&CT&%'OU,,N5'
+,OO- G/0"C"?/%I3'h53' />I'4%"#:23'65' 87&2%")@&2'T/1&I'6=I&0">#'=?'4=%A?0=B'GH12&C1f'.>'
QV&%V"&BD5' ' W>'^$%=;&/>' E=$%>/0'=?'Q;&%/2"=>/0']&1&/%<:3' 'J=05',(*3'@=5'(LOUU,N3';;5'O,Kb
O(U5'
+,O(- G/>A=??3'Z53'/>I'F&I&%#%&>3']53'8G"C$02/>&=$1'<=C;/%"1=>'=?'2%&&'=%'C=%&'1&k$&><&1'
%&0/2&I'TH'/'2%&&D5'9:&'9:&=%H'/>I'7%/<2"<&'=?'G&k$&><&'F=C;/%"1=>3'J=05'OKL,MK(N3';;5'OY()
OP(5'
+,O*- G<:C"I23'.53'4//13' !53' h&%12&>3'65\53' F/%&H3'65E53'6/>=0&1<$3' W53' S$11&3']53' 8a6/%Af'.'
S&><:C/%A' ?=%'a6\'Z/2/'6/>/#&C&>2D5'W>'7%=<&&I">#1'=?' 2:&' W>2&%>/2"=>/0'F=>?&%&><&'=>'
J&%H'\/%#&'Z/2/'S/1&1'LJ\ZSmUON3';;'Mc*)MKY3'OUUO5'
+,OY- G&0A=B3'G53'89:&'2%&&)2=)2%&&'&I"2">#';%=T0&CD3'W>?=%C/2"=>'7%=<&11">#'\&22&%13'J=05'P3'
@=5'P'L,MccN'3;;5',K*)KP5'
+,OP- G:/;"%=3'S53'8.>'/0#=%"2:C'?=%'<=C;/%">#'C$02";0&']@.'1&<=>I/%H'12%$<2$%&15D'F=C;5'
.;;05'S"=1<"3'J=05'*3'@=5'(L,MKKN3';;5'(Kc)(M(5'
+,Oc- G"V/%/C/>3' ^53' />I' h/C/2:3' 653' 8Q>' 2:&' $1&' =?' ;&2%"' >&21' ?=%' T$1">&11' ;%=<&11'
C=I&0">#D5':22;f__<"2&1&&%5"125;1$5&I$_Y(Y((c5:2C0'
+,OK- G:/;"%=3'S53'/>I'e:/>#3'h53'8F=C;/%">#'C$02";0&']@.'1&<=>I/%H'12%$<2$%&1'$1">#'2%&&'
<=C;/%"1=>15D'F=C;$25'.;;05'S"=1<"53'J=05'P5'@=5'*'L,MMUNf';;5'(UM)(,K5'
+,OM- G2%=$0"/3' ^53' />I'4/>#3' g53' 8G2%<2%/0' />I' G&C/>2"<' 6/2<:">#' ?=%' .11&11">#'4&T)
G&%V"<&' G"C"0/%"2HD5' W>2&%>/2"=>/0' E=$%>/0' =?' F==;&%/2"V&' W>?=%C/2"=>' GH12&C13' J=05' ,*3' @=5'
*LOUUYN3';;5'*Uc)*(c5'
+,(U- G$00"V/>3' \53' 8&S/H' Z&V&0=;&%1' F%&/2&' [$#&' G=?2B/%&).1).)G&%V"<&' F=CC$>"2HD5'
9&<:4&T' @&2B=%A' L2&<:B&T5<=CN3' 6/%<:' U(3' OUUP3'
:22;f__BBB52&<:B&T5<=C_B"%&_&T"o_,K,YUUM,K3'0/12'/<<&11&I'=>'E$>',P3'OUUK5'
+,(,- G$>'6"<%=1H12&C15'Q;&>QÄ<&5=%#'a6\'!"0&'!=%C/25',5U3'Z&<5'OUUO'
+,(O- GH&I/)6/:C==I3'95'!53'G:/:3'd53'.AA"%/R$3']53'WV/>3'.5'.53'/>I'd==IB">3']53'8G&/%<:">#'
G&%V"<&']&;=1"2=%"&1' TH' F=CT">">#' G&C/>2"<' />I'Q>2=0=#"</0'6/2<:">#85' W>' 7%=<&&I">#1' =?'
W>2&%>/2"=>/0'F=>?&%&><&'=>'4&T'G&%V"<&'LWF4GmUYN3;;5',()OU3'OUUY5'
+,((- GoHC/>1A"3' 653' S/%<"1o&B1A/3' 653' ^%IC/>>3' J53' />I' S/%<"1o&B1A"3' E5' 8YG' %"T=1=C/0'
]@.'I/2/T/1&D5'E=$%>/0'@$<0&"<'.<"I1']&1&/%<:3'J=05'(U3'@=5','LOUUON3';;5',cP),cK5'
+,(*- 9/"3' h5F53' 89:&' 2%&&)2=)2%&&' <=%%&<2"=>' ;%=T0&CD5' E=$%>/0' =?' 2:&' .F63' J=05' OP3' @=5'
(L,McMN3';;5'*OOb*((5'
+,(Y- 9:&']@.' C/2<:' ;/<A/#&f' :22;f__BBB5<1I5$B=5</_ÅAo:/>#_%>/_%>/tC/2<:5:2C0'
L/<<&11&I'.$#5'OUUPN'
+,(P- 91/>2/0"13' @53' @&#/%/3' @53' !=A/&?13' 653' 6"A:/"&03']53' />I' G2%=$0"/3' ^53' 8.' Z=C/">)
.#>=12"<'9&<:>"k$&'?=%'Z"??&%&><">#'QTR&<2)Q%"&>2&I'6=I&01D3'2='/;;&/%5'
+,(c- J/#&>/3'e53'6=%=3'653'/>I'91=2%/13'J53'l9B"#'k$&%H';%=<&11">#'=V&%'#%/;:)12%<2%&I'
a6\' I/2/l3' W>' 7%=<&&I">#1' =?' 2:&' c2:' W>2&%>/2"=>/0'4=%A1:=;' =>' 2:&'4&T' />I'Z/2/T/1&1f'
<=0=</2&I'B"2:'.F6'GWd6QZ_7QZG3';;5'*()*K3'OUU*3''
+,(K- J"%I&003'653' 8S$1">&11' ;%=<&11&1' />I'B=%A?0=B' ">' 2:&'4&T' 1&%V"<&1'B=%0I3' /%2"<0&D5'
WS6' I&V&0=;&%4=%A13' GQ.' 4&T' G&%V"<&13' E/>3' OUU(3' :22;f__BBB)
,OK5"TC5<=C_I&V&0=;&%B=%A1_B&T1&%V"<&1_0"T%/%H_B1)B=%A5:2C0Ç/$2:=%5'

 Bibliography

119

+,(M- 4/>#3'\53'/>I'd$1?"&0I3'Z53'8WC;%=V&I'/;;%=i"C/2"=>'/0#=%"2:C1'?=%'2%&&'/0"#>C&>2D5'
W>' 7%=<&&I">#1' =?' 2:&' c2:' F=CT">/2=%"/0' 7/22&%>'6/2<:">#' <=>?&%&><&3' LF76mMPN' ' ;;5' OOU)
O((3',MMP5'
+,*U- 4/>#3'g53'Z&4"223'Z5'E5'/>I'F/"3'E5)g53'8a)Z"Éf'/>'&É&<2"V&'<:/>#&'I&2&<2"=>'/0#=%"2:C'
?=%' a6\' I=<$C&>21D5' W>' 7%=<&&I">#1' =?' 2:&,M2:' W>2&%>/2"=>/0' F=>?&%&><&' =>' Z/2/'
^>#">&&%">#3';;5'Y,MbY(U3'OUU(5'
+,*,- 4/>#3' g53' G2%=$0"/3' ^5' 8!0&i"T0&' W>2&%?/<&' 6/2<:">#' ?=%' 4&T)G&%V"<&' Z"1<=V&%HD5' W>'
7%=<&&I">#1'=?' 2:&'*2:'W>2&%>/2"=>/0'F=>?&%&><&'=>'4&T'W>?=%C/2"=>'GH12&C1'^>#">&&%">#3'
;;5',*c),YP3'OUU(5'
+,*O- 4/>#3'e53'/>I'e:/>#3'h53' 8.0"#>C&>2'T&2B&&>'9B=']@.'G2%<2%&1D5' W>'7%=<&&I">#1'
=?'2:&'OP2:'">2&%>/2"=>/0'GHC;=1"$C'=>'6/2:&C/2"</0'!=$>I/2"=>1'=?'F=C;$2&%'G<"&><&3';;5'
PMU)cUO3'OUU,5'
+,*(- 4/>#3' e5' />I' e:/>#3' h53' 86$02";0&']@.' G2%$<2$%&' .0"#>C&>2D5' W>' 7%=<&&I">#1'
F=C;$2/2"=>/0'GH12&C1'S"=">?=%C/2"<1'F=>?&%&><&'LFGS'U*Nf';;5'O*P)OY*3'OUU*5'
+,**- 4&TT&%3@53' QmF=>>&003F53' [$>23S53' \&V">&3]53' 7=;A">3\53' />I' \/%=1&3' d53' 89:&'
W>?=%C/2"=>'/>I'F=>2&>2'^i<:/>#&'LWF^N'7%=2=<=0D5':22;f__BBB5B(5=%#_9]_@Q9^)"<&5'
+,*Y- 4=CT/<:&%3'.53'!/>A:/$1&%3'753'/>I'@&$:=0I3'^5'89%/>1?=%C">#'S7^\'">2='.>>=2/2&I'
Z&2&%C">"12"<'!">"2&'G2/2&'.$2=C/2/' ?=%'G&%V"<&'Z"1<=V&%H5D' W>'7%=<&&I">#1'=?' W>2&%>/2"=>/0'
F=>?&%&><&'=>'4&T'G&%V"<&1'LWF4GmU*N3';;5'(,P)(O(3'OUU*'
+,*P- 4=%0I' 4"I&' 4&T' F=>1=%2"$C' L4(FN3' F/CT%"I#&3' 6/11/<:$1&2213' nG.5' Z=<$C&>2'
QTR&<2'6=I&0'LZQ6N'\&V&0'('F=%&'G;&<"q</2"=>3'.;%5'OUU*5'4(F']&<=CC&>I/2"=>5'
+,*c- 4=%0I' 4"I&' 4&T' F=>1=%2"$C' L4(FN3' F/CT%"I#&3' 6/11/<:$1&2213' nG.5' ^i2&>1"T0&'
6/%A$;' \/>#$/#&' La6\N' ,5U' L!"?2:' ^I"2"=>N3' 4(F']&<=CC&>I/2"=>' OP' @=V&CT&%' OUUK5'
:22;f__BBB5B(5=%#_9]_OUUK_]^F)iC0)OUUK,,OP_'
+,*K- 4=%0I'4"I&'4&T'F=>1=%2"$C'L4(FN3'F/CT%"I#&3'6/11/<:$1&2213'nG.5'Q4\'O'4&T'
Q>2=0=#H'\/>#$/#&3'4(F']&<=CC&>I/2"=>'Oc'Q<2=T&%'OUUM5'
+,*M- 4=%0I' 4"I&' 4&T' F=>1=%2"$C' L4(FN3' F/CT%"I#&3' 6/11/<:$1&2213' nG.5' Q4\)Gf'
G&C/>2"<'6/%A$;'?=%'4&T'G&%V"<&13'4(F']&<=CC&>I/2"=>'OO'@=V&CT&%OUU*5'
+,YU- 4=%0I' 4"I&' 4&T' F=>1=%2"$C' L4(FN3' F/CT%"I#&3' 6/11/<:$1&2213' nG.5']&C=2&'
^V&>21'?=%'a6\'L]^aN',5U3'!&T5'OUUP5'4(F'4=%A">#'Z%/?25'
+,Y,- 4=%0I' 4"I&' 4&T' F=>1=%2"$C' L4(FN3' F/CT%"I#&3' 6/11/<:$1&2213' nG.5']&1=$%<&'
Z&1<%";2"=>'!%/C&B=%A'L]Z!N3'!&T5'OUU*5'4(F']&<=CC&>I/2"=>5'
+,YO- 4=%0I' 4"I&' 4&T' F=>1=%2"$C' L4(FN3' F/CT%"I#&3' 6/11/<:$1&2213' nG.5' G</0/T0&'
J&<2=%'d%/;:"<1'LGJdN5',5,'G;&<"q</2"=>3'E/>5'OUU(5'4(F']&<=CC&>I/2"=>5'
+,Y(- 4=%0I' 4"I&' 4&T' F=>1=%2"$C' L4(FN3' F/CT%"I#&3' 6/11/<:$1&2213' nG.5' G&%V"<&'
6=I&0">#'\/>#$/#&3'J&%1"=>',5,3'6/H5'OUUM5'4(F']&<=CC&>I/2"=>5'
+,Y*- 4=%0I'4"I&'4&T'F=>1=%2"$C'L4(FN3'F/CT%"I#&3'6/11/<:$1&2213'nG.5'GQ.7'J&%1"=>'
,5O'7/%2'Uf'7%"C&%'LG&<=>I'^I"2"=>N3'.;%5'OUUc5'4(F']&<=CC&>I/2"=>5'
+,YY- 4=%0I'4"I&'4&T'F=>1=%2"$C'L4(FN3'F/CT%"I#&3'6/11/<:$1&2213'nG.5'4&T'G&%V"<&1'
Z&1<%";2"=>' \/>#$/#&' L4GZ\N' J&%1"=>' O5U' 7/%2' ,f' F=%&' \/>#$/#&3' .;%5' OUUc5' 4(F'
]&<=CC&>I/2"=>5'
+,YP- 4=%0I'4"I&'4&T' F=>1=%2"$C' L4(FN3' F/CT%"I#&3'6/11/<:$1&2213' nG.5' a[96\' ,5U'
9:&' ^i2&>1"T0&' [H;&%9&i2' 6/%A$;' \/>#$/#&' LG&<=>I' ^I"2"=>N3' .$#5OUUO5' 4(F'
]&<=CC&>I/2"=>5'
+,Yc- 4=%0I' 4"I&' 4&T' F=>1=%2"$C' L4(FN3' F/CT%"I#&3' 6/11/<:$1&2213' nG.5' a6\'
W>?=%C/2"=>'G&23'O>I'&I"2"=>3'!&T5'OUU*5'4(F']&<=CC&>I/2"=>5'
+,YK- 4=%0I' 4"I&' 4&T' F=>1=%2"$C' L4(FN3' F/CT%"I#&3' 6/11/<:$1&2213' nG.5' a6\' 7/2:'
\/>#$/#&'La7/2:N'O5U3'O>I'&I"2"=>3'Z&<5'OU,U5'4(F']&<=CC&>I/2"=>5'

 Bibliography

120

+,YM- 4=%0I'4"I&'4&T' F=>1=%2"$C' L4(FN3' F/CT%"I#&3'6/11/<:$1&2213' nG.5' ap$&%H' ,5U'
/>I'a7/2:'O5U'Z/2/'6=I&0'LaZ6N3'@=V5'OUUY5'4(F'F/>I"I/2&']&<=CC&>I/2"=>5'
+,PU- 4=%0I'4"I&'4&T'F=>1=%2"$C3'L4(FN'F/CT%"I#&3'6/11/<:$1&2213'nG.5'4&T'Q>2=0=#H'
\/>#$/#&f'QV&%V"&B'LQ4\N3'!&T5'OUU*5'4(F']&<=CC&>I/2"=>5'
+,P,- a">#3' e5' />I' G2%=$0"/3' ^53' 8n6\Z"??f' />' /0#=%"2:C' ?=%' =TR&<2' =%"&>2&I' I&1"#>'
I"??&%&><">#3'8'">'7%=<&&I">#1'=?'2:&'OU2:'W^^^_.F6'">2&%>/2"=>/0'F=>?&%&><&'=>'.$2=C/2&I'
1=?2B/%&'&>#">&&%">#3';;5'Y*bPY3'OUUY5'
+,PO- a$3'753'4/>#3'g53'F:&>#3'\53'/>I'e/>#3'953'l.0"#>C&>2'%&1$021'=?'GQSQ6'?=%'Q.^W'OU,Ul3'
W>'7%=<&&I">#1'=?'Q>2=0=#H'6/2<:">#'4=%A1:=;'<=0=</2&I'B"2:'WG4F'OU,U5'
+,P(- a$3' g53' 4/>#3' \53' />I' Z&>#3' a53' 8^i/<2' ;/22&%>' C/2<:">#' ?=%']@.' 1&<=>I/%H'
12%<2%&1D5' W>' 7%=<&&I">#1' =?' 2:&' G&<=>I' F=>?&%&><&' =>' .1"/)7/<"?"<' S"=">?=%C/2"<13' .F6'
W>2&%>/2"=>/0'F=>?&%&><&'7%=<&&I">#'G&%"&13'J=05'YY3';;5'OYc)OP(3'OUU*5'
+,P*- e:/"3' g53' \"$3' S53' 84&T' I/2/' &i2%/<2"=>' T/1&I' =>' ;/%2"/0' 2%&&' /0"#>C&>2D3' W>'
7%=<&&I">#1'=?'2:&',*2:'">2&%>/2"=>/0'<=>?&%&><&'=>'4=%0I'4"I&'4&T'L444mU*N3';;5'cP)KY3'
OUUY5'
+,PY- e:/>#3' h53' 8F=C;$2">#' G"C"0/%"2H' S&2B&&>']@.' G&<=>I/%H' G2%<2%&1D5' W>'
7%=<&&I">#1'=?'2:&'W^^^'">2&%>/2"=>/0'E=">2'GHC;=1"/'=>'">2&00"#&><&'/>I'GH12&C13';;5,OP'b'
,(O3',MMK5'
+,PP- e:/>#3' h53' G2#/2C/>3']53' />I' G:/1:/3' Z53' 8G"C;0&' ?/12' /0#=%"2:C' ?=%' 2:&' &I"2">#'
I"12/><&'T&2B&&>' 2%&&1'/>I' %&0/2&I';%=T0&C1D5' GW.6' E=$%>/0'=>'F=C;$2">#3'J=05' ,K3'@=5'P3'
L,MKMN3';;5',O*Yb,OPO5'
+,Pc- e:/>#3'h53'G:/1:/3'Z5'/>I'4/>#3'E5'95'\53'8.;;%=i"C/2&'2%&&'C/2<:">#'">'2:&';%&1&><&'
=?'V/%"/T0&'0&>#2:'I=>m2'</%&1D5'E=$%>/0'=?'.0#=%"2:C13'J=05',P3'@=5',L,MM*N3';;5'((bPP5'
+,PK- e:/>#3'h53'4/>#3'E5'95'\53'/>I'G:/1:/3'Z53'8Q>'2:&'&I"2">#'I"12/><&'T&2B&&>'$>I"%&<2&I'
/<H<0"<' #%/;:1' />I' %&0/2&I' ;%=T0&C1D5' W>' 7%=<&&I">#1' =?' 2:&' Y2:' .>>$/0' GHC;=1"$C' =>'
F=CT">/2=%"/0'7/22&%>'6/2<:">#'LF76'mMYN3';;5'(MYb*Uc3',MMY5'
+,PM- e:/>#3'h53'4/>#3'\53'/>I'6/3'S53' 8F=C;$2">#'1"C"0/%"2H'T&2B&&>']@.'12%<2%&1D5' W>'
7%=<&&I">#1'=?',U2:'.>>$/0'GHC;=1"$C'=>'F=CT">/2=%"/0'7/22&%>'6/2<:">#'LF76' mMMN3';;5'
OK,)OM(3',MMM5'

