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Abstract 

For efficient process control and monitoring, accurate real-time information of quality variables 

is essential. To predict these quality (or slow-rate) variables at a fast-rate, in the industry, 

inferential/soft sensors are often used. However, most of the conventional methods for soft 

sensors do not utilize prior process knowledge even if it is available. The prediction accuracy of 

these inferential sensors depends mainly on the quality of available data, which can be affected 

by significant noise, outliers, drift and possible sensor failures. To address these issues, in this 

work, soft sensors based on Bayesian network (BN) are developed. Compared to the existing soft 

sensors, the proposed approach will allow users to integrate prior knowledge into the BN 

structure. Due to the probabilistic nature of BNs, variances of measurement noises and 

disturbances between hidden states are simultaneously estimated. Moreover, BN based soft 

sensor can naturally handle multi-rate, missing data, outliers or the problem of drift, which 

usually arises during online soft sensor implementation stage. Performance of the proposed 

approach is demonstrated on a benchmark flow-network problem and an industrial process. It is 

observed that Bayesian network based soft sensors are able to give significantly better and more 

reliable estimates compared to the conventional approaches.  
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Chapter 1  

Introduction   

1.1 Background  

In the process industry, measurements of important quality variables, such as compositions, 

density and molecular weight are infrequently sampled, analyzed in the lab and the 

measurements are usually available after certain time delay. However, for efficient control and 

monitoring of the process, accurate and real-time information of these quality variables is 

essential. To overcome this challenge, in literature, inferential sensors or soft sensors are 

developed using the plant historical data, which can predict the slow rate variables or quality 

variables at a fast-rate. In the last few decades, soft sensors have become an emerging 

technology for advanced control applications allowing industrial users to improve productivity, 

save energy, reduce environmental impact and improve profitability by reducing the off-

specification product1,2,3,4.  

Soft sensos that are developed from the energy, mass and material balance of the system 

are usually referred to as first principles model5,6,7,8 (or white box models) based soft sensor. This 

approach requires expert knowledge, which is not always available. On the other hand, data-

driven soft sensor models (or black-box models), which rely entirely on plant’s historical data, 

have gained significant attention in the recent years3,9,10,11. Main advantage of data-driven soft 

sensor models is their relative ease to develop, which do not require many theoretical 

assumptions1. In between those two approaches there exist grey-box models, which integrate the 

first-principle models with the data-driven models5,12 . This approach is often utilized to establish 
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model structures when certain process knowledge is available and the model parameters are 

estimated from process data.  

 The most popular deterministic data-driven soft sensor modeling methods are ordinary 

least squares (OLS), principle component analysis (PCA)13, partial least squares (PLS)14, 

artificial neural networks (ANN)15 and support vector machines (SVM) 1. OLS is the simplest 

data-driven approach that assumes target variable is a function of linear combination of input 

variables. PLS and PCA are dimensionality reduction algorithms used to address the issue of 

input data colinearity. ANN, on the other hand, is used to address the nonlinearity in the data, 

and it captures nonlinear behavior of the process1,16,17. Since process variables are contaminated 

with random noises, use of deterministic methods (i.e. OLS, PLS, PCA, ANN) can lead to 

inaccurate soft sensor models. The main drawbacks of the aforementioned non-probabilistic 

data-driven models are that they do not take into account the causal relation between process 

variables and most of them assume input variables to be noise-free.  In terms of popular ANN 

approach, its success lies in building the network structure, which is generally a trial and error 

procedure. The main drawback of ANN is the inter-relation between input and output variables, 

which is completely black-box. Further, the learnt knowledge does not have any physical 

interpretation1. Therefore, ANN soft sensor performance mainly depends on the historical data 

quality1. Further, these approaches mitigate the issue of missing data mainly through case 

deletion 18, data augmentation19 and multiple imputation20. Case deletion is a common approach 

for developing OLS based soft sensor models in the presence of missing data. In this approach, 

data of all other variables are deleted at instances when data of one variable is missing. This 

results in smaller number of samples to work with and thus loss of information.  
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In contrast, since the process measurements are contaminated with uncertainties, 

probabilistic methods are more appropriate to characterize the randomness in process data, which 

can be solved under probabilistic framework, such as maximum likelihood. Issues such as 

missing and multi-rate data, outliers and process drifts can be effectively handled by the 

probabilistic approaches using expectation maximization (EM) algorithm21,22 and Bayesian 

inference. In literature, to account for the uncertainty in process data, such probabilistic 

approaches have been well developed, such as Probabilistic Principle Component Analysis 

(PPCA)23, Probabilistic Principle Component Regression (PPCR)24 and Probabilistic Partial 

Least Squares (PPLS)25. Although probabilistic models namely, PPCA and PPLS can handle 

multi-rate data and address the issue of uncertainty, they again suffer from the inability to utilize 

prior process knowledge, which is the major drawback.   

Therefore, a probabilistic graphical model, namely Bayesian networks, is chosen as the 

base of this work. In literature, Bayesian networks have found applications in fault detection and 

diagnosis 26,27. Its application to soft sensors has only gained recent attention with few industrial 

applications. Mohammadi et al. (2019) developed a soft sensor for quality variable prediction 

and fault detection, and applied it to a gas sweetening system in industrial process. The 

developed soft sensor is compared with PPCA for missing data scenario and it is observed that 

BN based soft sensor can estimate the states with better accuracy than PPCA. To address the 

time varying processes, Liu et al. (2018) developed adaptive prediction models (such as moving 

window, locally weighted, time-difference) under the Bayesian network framework and applied 

them to debutanizer and CO2 absorption columns. It is observed that all the three adaptive 

models have a better estimation accuracy compared to PLS based adaptive models. 

Khatibisepehr & Huang (2008) proposed error-in-variables BN soft sensor, which accounts for 



4 

 

noise in the data and was illustrated on a simplified problem. From the above literature, it is 

evident that Bayesian network based soft sensor has shown a good potential. Therefore, in this 

work, Bayesian network based soft sensor is further developed to address the issues that arise 

during off-line soft sensor development and online implementation stages. Even though the 

aforementioned researches have proposed different algorithms under BNs modeling framework, 

this is a field that has not been well studied in depth. BN based soft sensors proposed by 

Mohammadi et al. (2019) and Liu et al. (2018) are developed under lenient conditions, where 

data is corrupted only with measurement noise and measurements of the key input variables are 

fully available. In reality, not only measurements, but also process states are affected by 

uncertainty and measurements of some key input variables may not be available due to sensor 

issue. Further, in literature, no general explicit analytical solution with considerations of all the 

above scenarios has been derived. Through this work, we are able to improve existing 

deterministic models by estimating the measurement and state uncertainties and predicting the 

true value of the target variable through probabilistic approach. Further, this work improves the 

existing probabilistic models by allowing users the possibility of incorporating prior information 

into the soft sensor modeling through application of Bayesian networks.   

       The proposed multi-rate Bayesian network soft sensor (MR-BN-SS) is developed 

under the assumption that the measurements are free of outliers i.e. noise effecting the 

measurements follows normal distribution with zero mean and some low variance. In general, 

process data is corrupted with outliers, which may be due to abrupt disturbances or sensor 

failures. Not accounting for these outliers in soft-sensor modeling stage can give inaccurate 

model. To address this issue, a robust multi-rate Bayesian network soft sensor (RMR-BN-SS) 

modeling approach is proposed, employing Student’s t-distribution28, 75. 
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Although Normal distribution is widely used in probabilistic modeling, due to its 

exponentially decaying tail, Normal distribution cannot handle outliers well. Just to compare 

these two distributions in the presence of outliers, Figure 1. 1 is illustrated. This graph compares 

the fit of Gaussian and Student’s t-distributions to a given set of data without (top) and with 

(bottom) outliers. From this figure, it can be understood that as the number of outliers increases, 

Gaussian distribution is unable to capture the true mean and variance of the data (bottom figure) 

accurately. Instead it results in a slightly off mean and large variance value. t-distribution, in 

contrast, is capable of describing the data well, resulting in accurate statistics (bottom figure). 

For this reason, this work proposes a RMR-BN-SS through t-distribution.  

 

 

Figure 1. 1: Gaussian and Student’s-t distribution fit 

Outliers  
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 Soft sensor development and implementation is a multi-stage process, where the initial 

developed model has to be tested off-line. Once the off-line model performance is satisfactory, 

the performance is further validated by implementing it on open-loop real-time DCS platform. 

Upon satisfactory performance, predictions of the soft sensor are finally used for APC 

application. Due to the time dependent or drifting nature of chemical processes, real-time 

implementation of developed soft sensors faces the issue of process/sensor drift. Once developed 

soft senor is ready to be used, the process may slowly drift (i.e. may be due to catalyst 

deactivation, or fouling of heat exchanger) away from its initial operating conditions leading to 

inaccurate soft-sensor predictions. The conventional approach to address the drift is to carryout 

bias update when lab samples are available. The drawback of this approach is that, the bias 

update/correction to predictions is performed only when lab samples are available i.e. maybe 

once or twice a day. In between the availability of lab samples, the bias is kept constant as the 

old value leading to sub-optimal performance. To account for process/sensor drift, the inference 

step of the proposed multi-rate BN soft-sensor framework is extended to adaptive Bayesian 

inference and the soft sensor is named as adaptive multi-rate BN soft-sensor (AMR-BN-SS), 

where the process/sensor drift is captured through random-walk model or colored noise model, 

respectively. Therefore, through this proposed adaptive approach, we are motivated to adapt to 

drifting measurements and can achieve accurate output predictions compared to the conventional 

bias update approach. 

1.2 Thesis Contribution  

The contributions of this thesis to the existing literature are summarized below:  



7 

 

1. Development and analysis of two Bayesian network structures, namely two-layered 

and multi-layered structures. The former does not need any process information and 

the latter incorporates some process information.  

2. A Bayesian network based soft sensor for down-sampled, multi-rate and noisy lab 

data is proposed, where parameter learning is carried out through EM algorithm and 

predictions are carried out through Bayesian inference. Analytical solutions are 

derived for both parameter learning and inference steps.   

3. Complete missing input variable is considered in the proposed soft sensor structure. 

4. Robust MR-BN-SS considering student-t distribution is proposed, where both input 

and output outliers are addressed. Analytical solutions are derived for both parameter 

learning and inference/ prediction steps.  

5. Adaptive MR-BN-SS is proposed considering random walk and colored noise 

models, and analytical solutions are derived.   

6. The performance of the proposed approaches is demonstrated on simulation of a 

benchmark flow-network system and on a set of industrial data.  

Figure 1. 2 outline the major contributions made and common issues that this thesis have 

addressed through a simple flow-chart.  
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Figure 1. 2: Flow-chart of contributions 

 

1.3 Thesis outline 

The remainder of this thesis is organized as follows:  

Chapter 2 discusses preliminaries and introduction to BNs. It outlines the systematic 

orders of BN based soft sensor development and includes two different formulations for down-

sampled (DS) and multi-rate (MR) data. The proposed approach in this chapter can handle noisy, 

multi-rate and completely missing measurements without significantly deteriorating the soft 

sensor output prediction performance. Efficacy of the proposed approach was tested on 

simulation and industrial process data and compared to the popular OLS and PLS soft sensors.  

Chapter 3 extends above formulation to addressing outliers and develops robust multi-

rate Bayesian network soft sensor. Two separate formulations are included in this chapter, one 

for DS data and another for MR data, both corrupted with outliers. The performance of the 

proposed approach was tested on the same simulation and industrial case study discussed in the 
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previous chapter and different soft sensor performances were compared to the robust ordinary 

least squares (ROLS). 

 Chapter 4 proposes adaptive MR-BN-SS. This chapter tackles the issue of drift and 

provides two different formulations to address process and sensor drift separately. Effectiveness 

of the proposed approach is validated on the same simulation problem and was compared to bias 

updated OLS soft sensor.  

Chapter 5 draws final conclusion of the thesis and provides a list of future work 

directions.   
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Chapter 2  

Bayesian Network Soft Sensor Development 

for Multi-rate and Noisy Data 
 

2.1 Introduction to Bayesian networks and Bayesian network soft 

sensor development 

Bayesian networks are probabilistic graphical models representing random variables and their 

conditional dependencies via directed acyclic graph. In BN structure, nodes represent random 

variables and arcs represent cause and effect relationship between random variables29,30,31. Figure 

2. 1 shows a simple common effect BN structure (or v-structure). In this structure, co-parents or 

the direct causes are {Y2….Ym} nodes and the child is the Y1 node. From soft sensor development 

point of view, one can relate {Y2….Ym} as input variables, which affect the quality variable Y1. 

Chain and common cause structures shown in Figure 2. 2 and Figure 2. 3 respectively are other 

important structures that are used in constructing BN structure of a process29. For a process with 

m random process variables {Y1....Ym}, there could be at least one or more source/ parentless 

node. Let’s assume 𝒀𝒄  is the source node and 𝑐 is number of source nodes in a given BN 

structure. For example, for the common effect structure shown in Figure 2. 1, 𝒀𝒄 = [𝑌2, … , 𝑌𝑚] 

and 𝑐 = (𝑚 − 1). Through the property of conditional independence i.e. given the evidence of 

parents of Yi, (Pa(Yi)), Yi is dependent only on its parents (i.e. p(Yi| Pa(Yi)) and is independent 

of its ancestors. Using chain rule of probability, the joint probability distribution can be 

compactly expressed as follows: 
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                                         1

1

( ... ) ( ) ( | ( ))
m c

m c i a i

i

p Y Y p Y p Y p Y




                         (2. 1) 

where, 𝑝(𝒀𝒄) is the prior probability of the source nodes. Details regarding different common 

structures and properties of Bayesian network can be found in (Koller & Friedman (2009)).  

                                           

Figure 2. 1: Common effect structure 

 

Figure 2. 2: Chain structure 

 

 

Figure 2. 3: Common cause structure 
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Initial step or building a Bayesian network structure is the most important yet challenging 

step for the development of BN based soft sensors. In BN structure, measured variables are 

treated as observed nodes and unmeasured variables/quality variables are considered as hidden 

variables of states. BN structure may be constructed through one of the following ways: (1) using 

process knowledge through process flow-sheets, (2) using historical process data and (3) by 

combination of process knowledge and process data29,32,33. In this work, the third approach is 

followed. Moreover, to estimate the noise-free state values, we introduce at least an equal 

number of hidden state nodes as the number of measurement nodes to the standard BN structure. 

This will be discussed in the following sections. 

Once an optimal Bayesian network structure is constructed, the next critical step is to carry 

out parameter learning either through maximum-likelihood estimation or Bayesian inference. 

Due to the presence of hidden variables and missing data, expectation maximization (EM) 

algorithm21,34,35,36 has to be used. The E-step, which involves computation of posterior 

probability of hidden variables, is usually computed through exact approaches, such as variable 

elimination and junction tree algorithms37. Although these approaches can obtain analytical 

solutions, the hidden nodes are assumed to be discrete and the run time of these inference 

algorithms is exponentially increasing, leading to NP hard problem37,38,39. In chemical plants, 

process variables are continuous in nature, so approximate inference approaches, such as Monte-

Carlo sampling and Variational inference have been used to compute the posterior 

probability37,40. However, Monte-Carlo sampling is too computationally expensive for online 

prediction applications, while obtaining analytical solution is a difficult problem. Thus, in this 

work, Bayesian inference approach is used, which can provide analytical solutions. 
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Once parameters are estimated, the final step is output prediction. Given input data, 

posterior probability distribution of output is obtained through Bayesian inference. This approach 

also allows analytical solutions.  

2.2 Modeling assumptions 

Assumption 2. 1: The following measurement model is assumed between the measurement node 

(Y) and hidden state node (X) of jth variable: 

 𝑌𝑗 = 𝑋𝑗 + 𝜀𝑗  (2.2) 

where variable/node number is 𝑗 = [1,2,… ,𝑚] and m
jY R is the measurement. m

jX R is hidden 

state corresponding to 𝑌𝑗 and follows Gaussian distribution. Also, 𝜀𝑗 is assumed to be a zero 

mean white noise signal and follows Gaussian distribution as:                                         

          𝜀𝑗~𝑁(0,𝜎𝑌𝑗

2 )        (2.3) 

Once the error is assumed to follow the Gaussian distribution, corresponding measurements will 

follow same distribution as shown below: 

                                                                 𝑝( 𝑌𝑗|𝑋𝑗)~𝑁(𝑋𝑗,𝜎𝑌𝑗

2 )                                                                                 (2.4)                                        

Assumption 2. 2: In this formulation, there are at least same number of hidden states X as the 

number of the measurements Y. Between the hidden states themselves, the conditional 

distribution is assumed to follow a linear model as: 

 𝑝 (𝑋𝑗|𝑃𝑎(𝑋𝑗)) ~𝑁(𝛽0,𝑗 + ∑ 𝛽0+𝑝,𝑗𝑃𝑎(𝑋𝑗)𝑝
,

𝑁𝑃𝑎

𝑝=1

𝜎𝑋𝑗

2 ) (2.5) 

where, 𝑃𝑎(𝑋𝑗)  includes all parent nodes of 𝑋𝑗 and 𝑁𝑝𝑎 is the number of parents.  
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Note that the measurement and state noise variance terms (𝜎𝑌𝑗

2 ,  𝜎𝑋𝑗

2 ) are unknown and need to be 

estimated along with the unknown model parameters between the hidden states, 𝜷𝑗 =

[𝛽0,𝑗,[𝛽1,𝑗 …𝛽𝑁𝑃𝑎 ,𝑗 ]]. For any variable j, all unknown parameters can be represented as: 

 𝛩𝑗 = [𝜷𝑗, 𝜎𝑌𝑗

2  , 𝜎𝑋𝑗

2 ] (2.6) 

   

2.3 Development of Bayesian network based soft sensor 

Under these assumptions Bayesian network soft sensor is developed through the following three 

steps: (1) construction of Bayesian network structure, (2) parameter learning and (3) output 

prediction. The details will be discussed in the following sections.  

2.3.1 Construction of Bayesian network structure 

In this sub-section, Bayesian network structure is developed from the process flow diagram. To 

illustrate the procedure, a benchmark heat exchanger flow network problem41 given in Figure 

2. 4 is considered. 

 

 

 

 

 

 

 

Figure 2. 4: Schematic representation of heat exchanger flow network 
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Here, the numbers 1 to 6 corresponds to the flow-variables, where flow-4 is the desired quality 

variable with slow-rate measurements. This system consists of 6 streams. The source flow, 

marked as flow-1, passes through a splitter (SPL) to become flow-2 and 3. Flow-2 further passes 

through a heat exchanger (HX) resulting in flow-4, while flow-3 passes through a valve (VAL) 

resulting in flow-5. Finally, flow-5 and flow-4 pass through mixer resulting in the final product 

flow-6. Considering this cause and effect relationship between the flow variables, Bayesian 

network structure given in Figure 2.5 can be developed.  

 

 

 

 

 

 

 

 

 

 

Figure 2.5: Bayesian network representation of flow-network 

 

In Figure 2. 5, {Y1….Y6} correspond to the measurements nodes and {X1….X6} correspond to 

hidden states (noise-free). For any BN structure with m random process variables, by using the 

property of D-separation principle 29 and conditional independency between the nodes, the joint 

probability density function can be written as: 
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       1 1

1 1

( ... , ... ) ( ) ( | ) ( | ( ))
m m c

m m c i i i a i

i i

p Y Y X X p X p Y X p X p X


 

            (2. 7)                  

where 𝑿𝒄 is a variable without parent node, and 𝑐 is the total number of source node. In this BN 

structure, given in Figure 2.5, 𝑿𝒔 = 𝑋1 and 𝑐 = 1.  

2.3.2 Parameter learning 

Consider a batch of N independent data points of m random process variables generated by 

perturbing the mean of the source node with certain variance, given by  

                  

11 1 11 1

12 2 12 2

1 1

.. .. .. .. .. ..

.. .. .. .. .. ..

.. .. .. .. .. .. .. .. .. ..

.. .. .. .. .. .. .. .. .. ..

.. .. .. .. .. ..

 

m m

m m

N mN N mNN m N m 

   
   
   
   
   
   
      

y y x x

y y x x

Y = X =

y y x x

 

where each column in the data matrix Y (measurements) and X (hidden states) represents N 

independent samples of a random node. Each rows represents a sample of random nodes 

[1, . . . , 𝑚] at a particular sampling instant. Further, for simplicity Y and X can be written as Y = 

{Y1….Ym} and X = {X1….Xm}. In the absence of hidden variables, parameter estimation 

problem for any general Bayesian network structure (i.e. given in Figure 2. 1) can be posed as 

maximizing the log-likelihood function w.r.t unknown parameters i.e. 

 

 𝛩∗ = 𝑎𝑟𝑔 𝑚𝑎𝑥
  𝛩

𝑙𝑜𝑔𝑝(𝒀|𝛩) (2. 8) 

 

However, in the presence of hidden nodes, such as the Bayesian network structure given in 

Figure 2.5, unknown parameters (𝛩) are obtained by maximizing the joint log-likelihood as 

shown below. 
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 max
𝛩

𝑙𝑜𝑔𝑝(𝑿,𝒀) = max
𝛩

[∑ log𝑝(𝑌𝑗|𝑋𝑗,𝛩) + ∑ log𝑝(𝑋𝑗|𝑃𝑎(𝑋𝑗), 𝛩) + log𝑝(𝑿𝒄|𝐼)

𝑚−𝑐

𝑗=1

𝑚

𝑗=1

] (2. 9) 

 

where 𝑝(𝑿𝒄|𝐼) refers to prior information of the source nodes 𝑿𝒄. Since the joint density function 

given in Equation (2. 9) contains hidden nodes, direct numerical maximization of the above joint 

density may result in sub-optimal solutions, and explicit solution for the parameters is 

intractable. Thus, here we resort to expectation maximization (EM) approach21. 

2.3.3 Parameter learning for down-sampled data 

EM algorithm is a popular iterative approach for obtaining maximum likelihood estimates of 

parameters in the presence of missing data or hidden states. In EM approach, unknown 

parameters are estimated by maximizing the lower bound of the likelihood function, which is 

known as the Q function 21. EM algorithm consists of two steps, Expectation-step (E-step) and 

Maximization-step (M-step), which will be explained in detail in the subsequent sections.   

E-step: 

Given the observations (Y) and parameters (𝛩𝑟) at the rth iteration, expectation of the complete 

log-likelihood function w.r.t all the hidden variables X is calculated (as Q function). 

 𝑄(𝛩| 𝛩𝑟) = 𝐸𝑿|𝒀,𝛩𝑟
[log𝑝(𝒀, 𝑿|𝛩)] (2. 10) 

Using the property of D-separation principle and conditional dependencies (or independencies) 

among the m random variables, the Q function given in Equation (2. 10) can be expressed as 

follows: 

 

 
Q(𝛩|𝛩𝑟) = E𝑿|𝒀,𝛩𝑟

[∑log𝑝(𝑌𝑗|𝑋𝑗,𝛩) + ∑ log𝑝(𝑋𝑗|𝑃𝑎(𝑋𝑗), 𝛩) + log𝑝(𝑿𝒄|𝐼)

𝑚−𝑐

𝑗=1

𝑚

𝑗=1

] 
(2. 11) 
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Assumption 2. 3:   The prior distribution for the source node, 𝑝(𝑿𝒄|𝐼), can be utilized if the 

information is available. However, in the absence of prior knowledge, it can be assumed to 

follow uniform distribution and this assumption will be adopted for the rest of the derivations.  

Under Assumption 2. 3, Equation (2. 11) can be approximated as follows: 

 

 Q(𝛩|𝛩𝑟) = E𝑋|𝑌,𝛩𝑟
[∑log 𝑝(𝑌𝑗|𝑋𝑗, 𝛩) + ∑ log𝑝(𝑋𝑗|𝑃𝑎(𝑋𝑗), 𝛩)

𝑚−𝑐

𝑗=1

𝑚

𝑗=1

] (2. 12) 

 

For a batch of data with size N, and under Assumption 2. 1 that the measurements noises are 

mutually independent, Equation (2. 12) can be further expressed as: 

 

 Q(𝛩|𝛩𝑟) = E𝑿|𝒀,𝛩𝑟
[∑ ∑ log𝑝(𝑦𝑖,𝑗 |𝑥𝑖,𝑗, 𝛩) + ∑ ∑log 𝑝(𝑥𝑖,𝑗 |𝑃𝑎(𝑥𝑖,𝑗), 𝛩)

𝑁

𝑖=1

𝑚−𝑐

𝑗=1

𝑁

𝑖=1

𝑚

𝑗=1

] (2. 13) 

 

From modeling Assumption 2. 1 & Assumption 2. 2, the expressions for 𝑝(𝑦𝑖,𝑗|𝑥𝑖,𝑗, 𝛩) and 

𝑝(𝑥𝑖,𝑗 |𝑃𝑎(𝑥𝑖,𝑗), 𝛩) of any ith sample and jth variable are written as  

 𝑝(𝑦𝑖,𝑗|𝑥𝑖,𝑗,𝛩)    =
1

√2𝜋𝜎𝑦𝑗
2  

𝑒𝑥𝑝 (−
(𝑦𝑖𝑗 − 𝑥𝑖𝑗)

2

2𝜎𝑦𝑗
2 ) (2. 14) 

 𝑝(𝑥𝑖,𝑗|𝑃𝑎(𝑥𝑖,𝑗),𝛩) =
1

√2𝜋𝜎𝑥𝑗
2  

ex𝑝 (−
(𝑥𝑖𝑗 − 𝛽0,𝑗 − ∑ 𝑃𝑎(𝑥𝑖𝑗)𝑝𝛽0+𝑝,𝑗

𝑁𝑃𝑎
𝑝=1

)
2

2𝜎𝑥𝑗
2

) (2. 15) 
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Using the terms shown in Equations (2. 14) & (2. 15) and Equation (2. 13) results in the 

following equation. 

 
Q(𝛩|𝛩𝑟) = E𝑿|𝒀,𝛩𝑟

[∑ ∑ [
1

√2𝜋  
log (𝜎𝑦𝑗

2 ) −
(𝑦𝑖𝑗−𝑥𝑖𝑗)

2

2𝜎𝑦𝑗
2 ]𝑁

𝑖=1
𝑚
𝑗=1 + ∑ ∑ [

1

√2𝜋  
log (𝜎𝑥𝑗

2 ) −𝑁
𝑖=1

𝑚−𝑐
𝑗=1

(𝑥𝑖𝑗−𝛽0,𝑗−∑ 𝑃𝑎(𝑥𝑖𝑗)𝑝𝛽0+𝑝,𝑗
𝑁𝑃𝑎
𝑝=1

)
2

2𝜎𝑥𝑗
2 ]]  

(2. 16) 

 

 

Using the linear property of Expectation, this equation can be further expressed as:    

 

Q(𝛩|𝛩𝑟) = [∑ ∑ [
1

√2𝜋 
log (𝜎𝑦𝑗

2 )−
(𝑦𝑖𝑗

2 +EX|Y,𝛩𝑟
[𝑥𝑖𝑗

2 ]−2𝑦𝑖𝑗EX|Y,𝛩𝑟
[𝑥𝑖𝑗

 ])
 

2𝜎𝑦𝑗
2 ]𝑁

𝑖=1
𝑚
𝑗=1 +

∑ ∑ [
1

√2𝜋  
log (𝜎𝑥𝑗

2 ) − E𝑿|𝒀,𝛩𝑟
[
(𝑥𝑖𝑗−𝛽0,𝑗−∑ 𝑃𝑎(𝑥𝑖𝑗)𝑝𝛽0+𝑝,𝑗

𝑁𝑃𝑎
𝑝=1

)
2

2𝜎𝑥𝑗
2 ]]𝑁

𝑖=1
𝑚−𝑐
𝑗=1 ]  

(2. 17) 

 

Thus, from Equation (2. 17), it can be observed that the following statistics are required in order 

to evaluate the Q function. 

 E𝑿|𝒀,𝛩𝑟
[𝑥𝑖𝑗

2 ],    E𝑿|𝒀,𝛩𝑟
[𝑥𝑖𝑗

 ],    E𝑿|𝒀,𝛩𝑟
[𝑥𝑖𝑗

 𝑃𝑎(𝑥𝑖𝑗
 )],    E𝑿|𝒀,𝛩𝑟

[ 𝑃𝑎(𝑥𝑖𝑗)𝑁𝑝𝑎
 𝑃𝑎𝑁𝑝𝑎+1

(𝑥𝑖𝑗
 )]  (2. 18) 

where these statistics can be further expanded as: 

 E𝑿|𝒀,𝛩𝑟
[𝑥𝑖𝑗

2 ] = 𝑣𝑎𝑟 (𝑥𝑖𝑗
 ) + E𝑿|𝒀,𝛩𝑟

[𝑥𝑖𝑗
 ] E𝑿|𝒀,𝛩𝑘  

[𝑥𝑖𝑗
 ] (2. 19) 

 E𝑿|𝒀,𝛩𝑟  
[𝑥𝑖𝑗

  𝑃𝑎(𝑥𝑖𝑗) ] = 𝑐𝑜𝑣(𝑥𝑖𝑗
 , 𝑃𝑎(𝑥𝑖𝑗) ) +  E𝑿|𝒀,𝛩𝑟  

[𝑥𝑖𝑗
 ] E𝑿|𝒀,𝛩𝑟  

[𝑃𝑎(𝑥𝑖𝑗) ] (2. 20) 

 

For a node with multiple parents, additional statistics concerning the relationship between the 

parent nodes will be necessary. Those statistics can be expanded as: 
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E𝑿|𝒀,𝛩𝑟  
[𝑃𝑎(𝑥𝑖𝑗)𝑁𝑝𝑎

𝑃𝑎(𝑥𝑖𝑗)𝑁𝑝𝑎+1
] = 𝑐𝑜𝑣 (𝑃𝑎(𝑥𝑖𝑗)𝑁𝑝𝑎

,𝑃𝑎(𝑥𝑖𝑗)𝑁𝑝𝑎+1
) +

 E𝑿|𝒀,𝛩𝑟  
[𝑃𝑎(𝑥𝑖𝑗)𝑁𝑝𝑎

]  E𝑿|𝒀,𝛩𝑟  
[𝑃𝑎(𝑥𝑖𝑗)𝑁𝑝𝑎+1

]  

(2. 21) 

 

Thus, from Equations (2. 19) - (2. 21), it is evident that the following statistics will be required.  

 E𝑿|𝒀,𝛩𝑟
[𝑥𝑖𝑗

 ],  𝑣𝑎𝑟 (𝑥𝑖𝑗
 ), 𝑐𝑜𝑣(𝑥𝑖𝑗

 , 𝑃𝑎(𝑥𝑖𝑗) 
) , E𝑿|𝒀,𝛩𝑟

[𝑃𝑎(𝑥𝑖𝑗) ],𝑐𝑜𝑣(𝑃𝑎(𝑥𝑖𝑗)𝑁𝑝𝑎 ,𝑃𝑎(𝑥𝑖𝑗)𝑁𝑝𝑎+1)  

 (2. 22)  

 

These statistics are obtained by evaluating the posterior distribution of the hidden variables, and 

the variance and covariance terms are obtained from the covariance matrix, which is explained in 

the following sections. 

Computing the statistics from posterior distribution 

A full posterior distribution via Bayesian rule can be expressed as:  

 

 𝑝(𝑿|𝒀, 𝛩𝑜𝑙𝑑) =
𝑝(𝑿, 𝒀|𝛩𝑜𝑙𝑑 )

𝑝(𝒀)
 (2. 23) 

 

Thus, for a batch of data, posterior distribution of the hidden state X is obtained from 

computation of the below formulation, where 𝛾 is a normalizing constant that equals 𝑝(𝒀)−1. 

 

 𝑝(𝑿|𝒀, 𝛩𝑟) = 𝛾 [∏ 𝑝(𝑌𝑗|𝑋𝑗, 𝛩𝑟)

𝑚

𝑗=1

∏ 𝑝(𝑋𝑗|𝑃𝑎(𝑋𝑗), 𝛩𝑟)

𝑚−𝑐

𝑗=1

𝑝(𝑿𝒄|𝐼)] (2. 24) 
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Maximizing logarithmic of posterior distribution function w.r.t each hidden state will result in set 

of simultaneous equations, from which mode of the hidden states can be computed as:  

 

 

𝑿̂ = max log
𝑿

𝑝(𝑿|𝒀, 𝛩𝑟)

= max
𝑋

[∑log 𝑝(𝑌𝑗|𝑋𝑗,𝛩𝑟) + ∑ log𝑝(𝑋𝑗|𝑃𝑎(𝑋𝑗), 𝛩𝑟) +log 𝑝(𝑿𝒄|𝐼)

𝑚−𝑐

𝑗=1

𝑚

𝑗=1

+ log(𝛾)] 

(2. 25) 

Based on the Assumption 2. 1-Assumption 2. 3, Equation (2. 25) can be expressed as follows: 

 

 

Considering the first order optimality conditions for Equation (2. 26) i.e. 
𝜕  𝑙𝑜𝑔𝑃 (𝑋|𝑌,𝛩𝑟)

𝜕𝑋
= 0, for 

any ith sample and jth variable, the estimates of hidden states can be represented in analytical 

form as given by Equations (2. 27) - (2. 28). Here 𝑁𝑐ℎ stands for the number of children that the 

 

max log
𝑿

𝑝(𝑿|𝒀, 𝛩𝑟)

= max
𝑋

[∑∑ [
1

√2𝜋 
log (𝜎𝑦𝑗,𝑟

2 ) −
(𝑦𝑖𝑗 − 𝑥𝑖𝑗)

2

2𝜎𝑦𝑗 ,𝑟
2

]

𝑚

𝑗=1

𝑁

𝑖=1

+ ∑ ∑ [
1

√2𝜋 
log (𝜎𝑥𝑗,𝑟

2 )−
(𝑥𝑖𝑗 − 𝛽0,𝑗,𝑟 − ∑ 𝑃𝑎𝑝(𝑥𝑖𝑗)𝛽0+𝑝,𝑗,𝑟

𝑁𝑃𝑎
𝑝=1 )

2

2𝜎𝑥𝑗,𝑟
2

]

𝑚−𝑐

𝑗=1

𝑁

𝑖=1

+ log(𝛾)] 

           

(2. 26) 
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target node (𝑥𝑗) has in the Bayesian network structure and 𝐶ℎ(𝑥𝑗) indicates the child node of the 

variable 𝑥𝑗. 

 𝛼 (𝑥𝑗
 ) = (

1

𝜎𝑦𝑗 ,𝑟
2

+
1

𝜎
𝑥𝑗|𝑃𝑎(𝑥𝑗),𝑟
2

+ ∑
(𝛽𝑐,𝑗,𝑟

2  )
 

𝜎
𝐶ℎ𝑐(𝑥𝑗)|𝑥𝑗,𝑟

2

𝑁𝑐ℎ

𝑐=1

)

 

  (2. 27) 

 

 
𝑥 𝑖𝑗

 =

𝑦𝑖𝑗

𝜎𝑦𝑗,𝑟
2 +  ∑

𝛽𝑐,𝑗,𝑟
 (𝛽0,𝑗,𝑟 + ∑ 𝑃𝑎𝑝(𝑥 𝑖𝑗

 )𝛽0+𝑝,𝑗,𝑟
𝑁𝑃𝑎−1
𝑝=1

)
 

𝜎
𝐶ℎ(𝑥𝑗)|𝑥𝑗,𝑘,𝑟

2 +
(𝛽0,𝑗,𝑟 + ∑ 𝑃𝑎𝑝(𝑥 𝑖𝑗

 )𝛽0+𝑝,𝑗,𝑟
𝑁𝑃𝑎
𝑝=1 )

𝜎
𝑥𝑗 |𝑃𝑎(𝑥𝑗),𝑟
2  

𝑁𝐶ℎ
𝑐=1

𝛼(𝑥𝑗)
  

(2. 28) 

 

For j = 1…m variables, this will result in m simultaneous linear equations, which can be solved 

by using any linear equation solver. 

By Gaussian distribution property and from linear relation among the variables, the 

covariance matrix of the hidden states, 𝑋 = [𝑋1, …𝑋𝑚], can be computed by rearranging the 

posterior probability distribution Equation i.e. Equation (2. 24) as: 

 𝒑(𝑿|𝒀) ∝ 𝑒𝑥𝑝(−
1

2
(𝑋 − 𝑋)𝑇𝑆(𝑋 − 𝑋)) (2. 29) 

 

where, 𝑋 corresponds to the estimated state vector for ith sampling instant whose elements are 

obtained from Equation (2. 29), and 𝐷 is the inverse covariance matrix of the hidden states. For 

any jth variable, the diagonal elements of the 𝐷 matrix are obtained as: 

 𝐷𝑗𝑗 = (
1

𝜎𝑦𝑗 ,𝑟
2

+
1

𝜎
𝑥𝑗|𝑃𝑎(𝑥𝑗),𝑟
2

+ ∑
(𝛽𝑐,𝑗,𝑟

2  )
 

𝜎
𝐶ℎ𝑐(𝑥𝑗)|𝑥𝑗,𝑟

2

𝑁𝑐ℎ

𝑐=1

) (2. 30) 
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and the off-diagonal elements, which are interaction between the jth node and its child or parent 

nodes, can be expressed as: 

 
𝐷𝑧𝑗 =

𝛽𝑧,𝑗,𝑟
 

𝜎
𝐶ℎ𝑐(𝑥𝑗)|𝑥𝑗,𝑟

2
 𝑖𝑓 𝑧 = 𝑐ℎ𝑖𝑙𝑑 𝑛𝑜𝑑𝑒 (𝑧 ∈ 1… 𝑁𝑐ℎ) 

(2. 31) 

 
𝐷𝑧𝑗 =

𝛽𝑧,𝑗,𝑟
 

𝜎(𝑥𝑗)|𝑝𝑎(𝑥𝑗,𝑟)
2

 𝑖𝑓 𝑧 = 𝑝𝑎𝑟𝑒𝑛𝑡 𝑛𝑜𝑑𝑒 (𝑧 ∈ 1… 𝑁𝑝𝑎) 
(2. 32) 

where 𝐷𝑧𝑗 = 0  𝑖𝑓 𝑧 = 𝑛𝑒𝑖𝑡ℎ𝑒𝑟 𝑐ℎ𝑖𝑑 𝑛𝑜𝑟 𝑝𝑎𝑟𝑒𝑛𝑡 (2. 33) 

 

Thus, for ith sampling instant, all the elements of 𝐷 matrix are obtained from the above 

Equations. For a batch of data N, the 𝐷 matrix results in a block-diagonal matrix 𝑫. The 

covariance matrix of the hidden states (i.e. Σ𝑥 =  𝐷 −𝟏) for ith sample or for entire batch of data 

(N) can be obtained by computing the inverse of 𝐷 matrix or full block diagonal matrix (𝑫), 

respectively.  

M-step: 

In the M-step, Q function is maximized w.r.t all the parameters 𝛩𝑟 as shown in Equation (2. 34) 

as:  

In the context of this problem, maximization can be expanded as:  

 
𝜕  𝑄

𝜕𝜎𝑦𝑗
2

= 0,
𝜕  𝑄

𝜕𝜎𝑥𝑗
2

= 0,
𝜕  𝑄

𝜕𝛽𝑗

= 0 (2. 35) 

Closed form solutions for all the parameters can be derived as follows:  

 𝜎𝑦𝑗 ,𝑟+1
2 =

𝐸𝑿|𝒀,𝛩𝑟
(∑ (𝑦𝑗𝑖 − 𝑥𝑗𝑖 )

2𝑁
𝑖=1 )

𝑁
 (2. 36) 

 𝛩𝑟+1 = 𝑎𝑟𝑔 max
𝛩

𝑄[𝛩|𝛩𝑟] (2. 34) 
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𝜎𝑥𝑗,𝑟+1

2 =  
𝐸𝑿|𝒀,𝛩𝑟

(∑ (𝑥𝑗𝑖 − 𝛽0𝑗 − ∑ 𝛽0+𝑝,𝑗
𝑁𝑃𝑎
𝑝=1 𝑃𝑎𝑝(𝑥𝑖𝑗))

2𝑁
𝑖=1 )

𝑁
 

 

(2. 37) 

 
𝛽0,𝑗,𝑟+1 =

𝐸𝑿|𝒀,𝛩𝑟
(∑ (𝑥𝑖𝑗 − ∑ 𝑃𝑎𝑝(𝑥𝑖𝑗

 )𝛽0+𝑝,𝑗
𝑁𝑃𝑎
𝑝=1 )

 𝑁
𝑖=1 )

𝑁
 

 

(2. 38) 

 

𝛽0𝑗+𝑝,𝑟+1

=
𝐸𝑿|𝒀,𝛩𝑟

(∑ 𝑃𝑎𝑝(𝑥𝑖𝑗)
 𝑁

𝑖=1 )𝐸𝑿|𝒀,𝛩𝑟
(∑ (𝑥𝑖𝑗 − 𝛽0,𝑗 − ∑ 𝑃𝑎𝑝(𝑥𝑖𝑗

 )𝛽0+𝑝,𝑗
𝑁𝑃𝑎−1
𝑝=1 )

 𝑁
𝑖=1 )

𝐸𝑿|𝒀,𝛩𝑟
(∑ 𝑃𝑎𝑝(𝑥𝑖𝑗)

 𝑁
𝑖=1 )

2
 

 

(2. 39) 

   

2.3.4 Parameter learning for multi-rate/missing data  

Until now the derivation of parameter learning has assumed that all measurements have the same 

sampling rate and are fully available. In reality, quality variables that are typically obtained 

through lab analysis are available only at a slow-rate, resulting the multi-rate problem. Further, 

due to possible sensor problems some key variables can be completely missing. Thus, this 

section formulates parameter learning of data with missing variables.   

Assumption 2. 4: To account for missing data in parameter learning, the batch of measurement 

data (𝒀 ∈ 𝑅𝑚×𝑁) and corresponding hidden states (𝑿 ∈ 𝑅𝑚×𝑁) of m variables with N samples 

can be expressed as: 

 𝒀 = [𝒀𝑜𝑏𝑠 𝒀𝑚𝑖𝑠 ], 𝑿 = [𝑿𝑜𝑏𝑠 𝑿𝑚𝑖𝑠 ]  (2. 40) 
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where, 𝑌𝑜𝑏𝑠, ∈ 𝑅𝑚×𝑂 is the available measurements in the training data set,  𝑌𝑚𝑖𝑠 , ∈ 𝑅𝑚×𝑀   refers 

to the missing measurements, 𝑋𝑜𝑏𝑠 corresponds to the hidden states and 𝑋𝑚𝑖𝑠  corresponds to the 

hidden states of the corresponding measurements.  𝑂,𝑀 refer to the total number of observed and 

missing data samples in the training data set, respectively. Thus, based on Assumption 2. 4, the 

unknown parameters can be obtained by maximizing the logarithm of complete likelihood 

function given as: 

 max
𝛩

log 𝑝(𝒀𝑜𝑏𝑠, 𝒀𝑚𝑖𝑠 ,𝑿|𝛩) (2. 41) 

 

Using the property of independency of measurements and from Bayesian network principles, the 

joint likelihood function can be factored as:  

 

where, 𝑝(𝑌𝑜𝑏𝑠 |𝑋𝑜𝑏𝑠, 𝛩), 𝑃(𝑌𝑚𝑖𝑠 |𝑋𝑚𝑖𝑠 , 𝛩) and 𝑝(𝑋|𝑃𝑎(𝑋), 𝛩) follow Gaussian distribution from 

Assumption 2. 1 - Assumption 2. 3, joint log-likelihood function can be written as:  

 

log 𝑝(𝒀𝑜𝑏𝑠 ,𝒀𝑚𝑖𝑠 , 𝑿|, 𝛩)

= ∑ log𝑝(𝑌𝑜𝑏𝑠 ,𝑗|𝑋𝑜𝑏𝑠,𝑗 , 𝛩) + ∑ 𝑙𝑜𝑔𝑝(𝑌𝑚𝑖𝑠,𝑗 |𝑋𝑚𝑖𝑠,𝑗, 𝛩)

𝑚

𝑗=1

𝑚

𝑗=1

+ ∑ log𝑝(𝑋𝑗|𝑃𝑎(𝑋𝑗), 𝛩)

𝑚−𝑐

𝑗=1

 

(2. 43) 

 

 

Expectation Maximization (EM) Algorithm 

 

 

𝑝(𝒀𝑜𝑏𝑠  , 𝒀𝑚𝑖𝑠 , 𝑿|𝛩)

= ∏ 𝑝(𝑌𝑜𝑏𝑠,𝑗 |𝑋𝑜𝑏𝑠,𝑗, 𝛩)

𝑚

𝑗=1

∏ 𝑝(𝑌𝑚𝑖𝑠,𝑗 |𝑋𝑚𝑖𝑠,𝑗, 𝛩)

𝑚

𝑗=1

∏ 𝑝(𝑋𝑗|𝑃𝑎(𝑋𝑗), 𝛩)𝑝(𝑋𝑐|𝐼)

𝑚−𝑐

𝑗=1

 

(2. 42) 
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E-step:  

Expectation of the complete log-likelihood function w.r.t. all the missing data (𝒀𝑚𝑖𝑠) and hidden 

variables (X) is evaluated as: 

 𝑄(𝛩| 𝛩𝑟) = 𝐸𝑿,𝒀𝑚𝑖𝑠 |𝒀𝑜𝑏𝑠,𝛩𝑟
[log𝑝(𝒀𝑜𝑏𝑠 , 𝒀𝑚𝑖𝑠 , 𝑿|𝛩)] (2. 44) 

 

Using the property of independency of measurement and conditional dependency of the nodes, 

the Q function can be expressed as:   

 

𝑄(𝛩|𝛩𝑟) = 𝐸𝑿,𝒀𝑚𝑖𝑠 |𝒀𝑜𝑏𝑠,𝛩𝑟
[ ∑log 𝑝(𝑌𝑜𝑏𝑠,𝑗|𝑋𝑜𝑏𝑠,𝑗 ,𝛩) + ∑ 𝑙𝑜𝑔𝑝(𝑌𝑚𝑖𝑠,𝑗 |𝑋𝑚𝑖𝑠,𝑗, 𝛩)

𝑚

𝑗=1

𝑚

𝑗=1

+ ∑ log 𝑝(𝑋𝑗|𝑃𝑎(𝑋𝑗), 𝛩)

𝑚−𝑐

𝑗=1

] 

(2. 45) 

 

As per Assumption 2.3, prior term is assumed to be uniform. For ease of presentation, above 

equation can be separated as:  

 𝑄(𝛩|𝛩𝑟) = 𝑄1(𝛩| 𝛩𝑟)+ 𝑄2(𝛩| 𝛩𝑟)     (2. 46) 

where 

 𝑄1(𝛩|𝛩𝑟) = 𝐸𝑿,𝒀𝑚𝑖𝑠 |𝑌𝑜𝑏𝑠 ,𝛩𝑟
[ ∑log𝑝(𝑌𝑜𝑏𝑠,𝑗|𝑋𝑜𝑏𝑠,𝑗, 𝛩) + ∑ 𝑙𝑜𝑔𝑝(𝑌𝑚𝑖𝑠,𝑗|𝑋𝑚𝑖𝑠,𝑗 , 𝛩)

𝑚

𝑗=1

𝑚

𝑗=1

] (2. 47) 

 𝑄2(𝛩|𝛩𝑟) = 𝐸𝑿,𝒀𝑚𝑖𝑠 |𝑌𝑜𝑏𝑠 ,𝛩𝑟
[ ∑ log𝑝(𝑋𝑗|𝑃𝑎(𝑋𝑗), 𝛩)

𝑚−𝑐

𝑗=1

] (2. 48) 

 

For a batch of data with size N,  𝑄1(𝛩|𝛩𝑟) from Equation (2. 47) is evaluated as follows. 
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𝑄1(𝛩|𝛩𝑟) = 𝐸𝑿,𝒀𝑚𝑖𝑠 |𝑌𝑜𝑏𝑠 ,𝛩𝑟
[log∏ ∏ 𝑝(𝑦𝑜𝑏𝑠,𝑖𝑗|𝑥𝑜𝑏𝑠,𝑖𝑗, 𝛩)

𝑚

𝑗=1

𝑂

𝑖=1

]

+  𝐸𝑿,𝒀𝑚𝑖𝑠 |𝑌𝑜𝑏𝑠 ,𝛩𝑟
[log ∏ ∏ 𝑝(𝑦𝑚𝑖𝑠,𝑖𝑗 |𝑥𝑚𝑖𝑠,𝑖𝑗, 𝛩)

𝑚

𝑗=1

𝑁

𝑖=𝑂+1

] 

 (2. 49) 

) 

Based on the Assumption 2. 1 and Assumption 2. 2 that conditional distributions follow 

Gaussian distribution, Equation (2. 49) can be further expressed as: 

 

𝑄1(𝛩|𝛩𝑟) = 𝐸𝑿,𝒀𝑚𝑖𝑠 |𝑌𝑜𝑏𝑠 ,𝛩𝑟

[
 
 
 

∑∑

[
 
 
 

log

(

 1

√2𝜋𝜎𝑗
2

)

 −
(𝑦𝑜𝑏𝑠,𝑖𝑗 − 𝑥𝑜𝑏𝑠,𝑖𝑗)

2

2𝜎𝑗
2

]
 
 
 𝑚

𝑗=1

𝑂

𝑖=1
]
 
 
 

+ 𝐸𝑿,𝒀𝑚𝑖𝑠 |𝑌𝑜𝑏𝑠 ,𝛩𝑟

[
 
 
 

∑ ∑

[
 
 
 

log

(

 1

√2𝜋𝜎𝑗
2

)

 −
(𝑦𝑚𝑖𝑠,𝑖𝑗 − 𝑥𝑚𝑖𝑠,𝑖𝑗)

2

2𝜎𝑗
2

]
 
 
 𝑚

𝑗=1

𝑁

𝑖=𝑂+1
]
 
 
 

 

(2. 50) 

) 

 

For evaluating 𝑄1(𝛩|𝛩𝑟) function, in addition to the required statistics of hidden variables 

corresponding to the observed measurements i.e. the following statistics related to the missing 

measurements and their corresponding hidden states are required. 

 𝐸𝑿,𝒀𝑚𝑖𝑠 |𝒀𝑜𝑏𝑠,𝛩𝑟
[𝑥𝑜𝑏𝑠,𝑖𝑗

2 ],  𝐸𝑿,𝒀𝑚𝑖𝑠 |𝒀𝑜𝑏𝑠,𝛩𝑟
[𝑥𝑜𝑏𝑠,𝑖𝑗

 ] (2. 51) 

 

 E𝐗,𝐘mis|𝐘obs,Θr
[ymis,ij

2 ],E𝐗,𝐘mis|𝐘obs,Θr
[xmis,ij

2 ], E𝐗,𝐘mis|𝐘obs,Θr
[xmis,ij ymis,ij] (2. 52) 

 

where these statistics can be further expanded as follows: 

  𝐸𝑿,𝒀𝑚𝑖𝑠 |𝒀𝑜𝑏𝑠,𝛩𝑟
[𝑥𝑚𝑖𝑠,𝑖𝑗𝑦𝑚𝑖𝑠,𝑖𝑗] = 𝑐𝑜𝑣(𝑥𝑚𝑖𝑠,𝑖𝑗 , 𝑦𝑚𝑖𝑠,𝑖𝑗) + (2. 53)  
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 𝐸𝑿,𝒀𝑚𝑖𝑠 |𝒀𝑜𝑏𝑠,𝛩𝑟
[𝑥𝑚𝑖𝑠,𝑖𝑗] 𝐸𝑿,𝒀𝑚𝑖𝑠 |𝒀𝑜𝑏𝑠 ,𝛩𝑟

𝐸[ 𝑦𝑚𝑖𝑠,𝑖𝑗]  

 

  𝐸𝑿,𝒀𝑚𝑖𝑠 |𝒀𝑜𝑏𝑠 ,𝛩𝑟
[𝑦𝑚𝑖𝑠,𝑖𝑗

2 ] = 𝑣𝑎𝑟(𝑦𝑚𝑖𝑠,𝑖𝑗) +  𝐸𝑿,𝒀𝑚𝑖𝑠 |𝒀𝑜𝑏𝑠,𝛩𝑟
[𝑦𝑚𝑖𝑠,𝑖𝑗]

2
 (2. 54)  

 

It is noted that, evaluating 𝑄2(𝛩|𝛩𝑟) function from Equation (2. 48), is similar to evaluation of 

the following term in Equation (2. 17) i.e. 

 

E𝑿|𝒀,𝛩𝑟
[
(𝑥𝑖𝑗 − 𝛽0,𝑗 − ∑ 𝑃𝑎𝑝(𝑥𝑖𝑗

 )𝛽0+𝑝,𝑗
𝑁𝑃𝑎
𝑝=1 )

2

2𝜎𝑥𝑗
2

] 

 

(2. 55) 

and identical statistics illustrated in Equation (2. 22) are required. Therefore, all the statistics will 

be derived in the following section.  

Computing the statistics from posterior distribution  

From Bayes’ rule, the full posterior probability distribution is:  

 
𝑝(𝑿, 𝒀𝑚𝑖𝑠 |𝒀𝑜𝑏𝑠 , 𝛩𝑟) =

𝑝(𝒀𝑜𝑏𝑠 |𝑿𝑜𝑏𝑠 , 𝛩𝑟)𝑝(𝑿, 𝒀𝑚𝑖𝑠 |𝐼)

𝑝(𝒀𝑜𝑏𝑠)
 

(2. 56) 

 

Since in the above Equation, the denominator acts as normalizing constant, its inverse is marked 

as 𝛾 and the posterior distribution can be written as: 

 𝑝(𝑿, 𝒀𝑚𝑖𝑠 |𝒀𝑜𝑏𝑠 , 𝛩𝑟) = 𝛾𝑝(𝒀𝑜𝑏𝑠 |𝑿𝑜𝑏𝑠 , 𝛩𝑟)𝑝(𝑿, 𝒀𝑚𝑖𝑠 |𝐼) (2. 57) 

 

By using the property of conditional dependence between the nodes, above equation can be 

further decomposed as: 
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𝑝(𝑿, 𝒀𝑚𝑖𝑠 |𝒀𝑜𝑏𝑠 , 𝛩𝑟)

= 𝛾𝑝(𝒀𝑜𝑏𝑠 |𝑿𝑜𝑏𝑠 , 𝛩𝑟)𝑝(𝒀𝑚𝑖𝑠 |𝑿𝑚𝑖𝑠 , 𝛩𝑟)𝑝(𝑿|𝑃𝑎(𝑿),𝛩𝑟)𝑝(𝑃𝑎(𝑿)|𝐼) 

(2. 58) 

 

It is to be noted that in the above formulation, 𝑝(𝑃𝑎(𝑿)|𝐼) is the prior information of the source 

node/parentless nodes. Thus, given the observed measurements (𝑌𝑜𝑏𝑠) and parameter vector 

(𝛩𝑟), estimates of hidden states (𝑋) and missing measurements (𝑌𝑚𝑖𝑠) are obtained by 

maximizing the log of posterior distribution function w.r.t. these variable as: 

 

max
𝑿,𝒀𝑚𝑖𝑠

𝑙𝑜𝑔𝑝(𝑿, 𝒀𝑚𝑖𝑠 |𝒀𝑜𝑏𝑠 , 𝛩𝑟)  

= max
𝑿,𝒀𝑚𝑖𝑠

[𝑙𝑜𝑔𝑝(𝒀𝑜𝑏𝑠 |𝑿𝑜𝑏𝑠, 𝛩𝑟) + 𝑙𝑜𝑔𝑝(𝒀𝑚𝑖𝑠 |𝑿𝑚𝑖𝑠 , 𝛩𝑟)

+ 𝑙𝑜𝑔𝑝(𝑿|𝑃𝑎(𝑿),𝛩𝑟) + 𝑙𝑜𝑔𝑝(𝑃𝑎(𝑿)|𝐼) + log(𝛾)] 

(2. 59) 

 

Based on all the assumptions made, Equation (2. 59) can be expressed as follows:  

 

 

max
𝑿,𝒀𝑚𝑖𝑠

𝑙𝑜𝑔𝑝(𝑿, 𝒀𝑚𝑖𝑠 |𝒀𝑜𝑏𝑠 , 𝛩𝑟) 

= max
𝑿,𝒀𝑚𝑖𝑠

[∑ ∑[
1

√2𝜋 
log (𝜎𝑦𝑗 ,𝑟

2 ) −
(𝑦𝑜𝑏𝑠,𝑖𝑗 − 𝑥𝑜𝑏𝑠,𝑖𝑗)

2

2𝜎𝑦𝑗,𝑟
2

]

𝑚

𝑗=1

𝑂

𝑖=1

+ ∑ ∑ [
1

√2𝜋 
log (𝜎𝑦𝑗 ,𝑟

2 ) −
(𝑦𝑚𝑖𝑠,𝑖𝑗 − 𝑥𝑚𝑖𝑠,𝑖𝑗)

2

2𝜎𝑦𝑗,𝑟
2

]

𝑚

𝑗=1

𝑁

𝑖=𝑂+1

+ ∑ ∑ [
1

√2𝜋 
log (𝜎𝑥𝑗,𝑟

2 ) −
(𝑥𝑖𝑗 − 𝛽0,𝑗 − ∑ 𝑃𝑎𝑝(𝑥𝑖𝑗)𝛽0+𝑝,𝑗

𝑁𝑃𝑎
𝑝=1 )

2

2𝜎𝑥𝑗,𝑟
2

]

𝑚−𝑐

𝑗=1

𝑁

𝑖=1

] 

(2. 60) 

Considering the first order optimality conditions for Equation (2. 60) (equating first order 

derivatives w.r.t. hidden states and missing measurement to zero), for any ith sample and jth 
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variable, the estimates of hidden states and missing measurements can be derived in analytical 

form as follows, where the denominator term is given in Equation (2. 27). 

 

 
𝑥 𝑖𝑗

 =

𝑦𝑜𝑏𝑠 𝑖𝑗

𝜎𝑦𝑗,𝑟
2 + ∑

𝛽𝑐 ,𝑗,𝑟
 (𝛽0,𝑗,𝑟 + ∑ 𝑃𝑎𝑝(𝑥 𝑖𝑗

 )𝛽0+𝑝,𝑗,𝑟
𝑁𝑃𝑎 −1
𝑝=1

)
 

𝜎
𝐶ℎ(𝑥𝑗)|𝑥𝑗 ,𝑟
2 +

(𝛽0,𝑗,𝑟 + ∑ 𝑃𝑎𝑝(𝑥 𝑖𝑗
 )𝛽0+𝑝,𝑗,𝑟

𝑁𝑃𝑎
𝑝=1 )

𝜎
𝑥𝑗|𝑃𝑎(𝑥𝑗) ,𝑟
2  𝐶

𝑐=1

𝛼(𝑥𝑗)
  

(2. 61) 

   

At the instants where the slow-rate samples, 𝑦̂𝑚𝑖𝑠,𝑖𝑗, are not available, by using the posterior 

probability given in Equation (2. 62), the hidden state value of the corresponding measurement  

𝑦̂𝑚𝑖𝑠,𝑖𝑗  can be expressed as in Equation (2. 63), where the denominator for the jth missing 

variable is given as Equation (2. 64).  

𝑦̂𝑚𝑖𝑠,𝑖𝑗 = 𝑥̂𝑖𝑗 (2. 62) 

 

 𝑥 𝑖𝑗
 =

 ∑
𝛽𝑐,𝑗,𝑟

 (𝛽0,𝑗,𝑟 + ∑ 𝑃𝑎𝑝(𝑥 𝑖𝑗
 )𝛽0+𝑝,𝑗,𝑟

𝑁𝑃𝑎 −1
𝑝=1

)
 

𝜎
𝐶ℎ(𝑥𝑗)|𝑥𝑗 ,𝑟
2 +

(𝛽0,𝑗,𝑟 + ∑ 𝑃𝑎𝑝(𝑥 𝑖𝑗
 )𝛽0+𝑝,𝑗,𝑟

𝑁𝑃𝑎
𝑝=1 )

𝜎
𝑥𝑗 |𝑃𝑎(𝑥𝑗),𝑟
2  

𝑁𝐶ℎ
𝑐=1

𝛼𝑚𝑖𝑠 (𝑥𝑗)
  

 

(2. 63) 

 𝛼𝑚𝑖𝑠(𝑥𝑗
 ) = (

1

𝜎𝑥𝑗|𝑃𝑎(𝑥𝑗),𝑟
2 +

1

𝜎𝑥𝑗−𝑝𝑟𝑖𝑜𝑟
2 + ∑

(𝛽𝑐,𝑗
2  )

 

𝜎𝐶ℎ𝑐(𝑥𝑗)|𝑥𝑗

2

𝑁𝑐ℎ

𝑐=1

)

 

 (2. 64)                  

             

                                                        

The covariance between the hidden states 𝑋 can be computed as discussed in section 0, 

Equations (2. 30)-(2. 33).  

For variables j = 1…m, Equations (2. 61)-(2. 63) result in a set of m simultaneous linear 

equations, which can be solved simultaneously by any linear solver. 
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M-step:  

In the M-step, Q function is maximized w.r.t all the parameters 𝛩 as shown in Equation (2. 34). 

Solving the updated measurement noise variance term with multi-rate data will result in the 

following parameter update equation. 

 

 

𝜎𝑦𝑗 ,𝑟+1
2 =

E𝑿,𝒀𝑚𝑖𝑠 |𝒀𝑜𝑏𝑠,𝛩𝑟  (∑ (𝑦𝑜𝑏𝑠,𝑗𝑖 − 𝑥𝑗𝑖 )
2𝑂

𝑖=1 + ∑ (𝑦𝑚𝑖𝑠,𝑗𝑖 − 𝑥𝑗𝑖 )
2𝑁

𝑖=𝑂+1 )

𝑁
 

(2. 65) 

 

The rest of the model parameters are updated through Equations (2. 36) - (2. 39).  

Convergence Check 

Once E-step and M-step of the algorithm are completed, newly estimated parameter set is 

checked for the convergence i.e. 

 𝛩𝑖+1 − 𝛩𝑖 ≤ 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 (2. 66) 

 

and the EM algorithm will iterate until the tolerance is reached.  

2.4 Inference in Bayesian networks 

Once the parameter learning is carried out, and model and variance parameters are estimated, the 

next step is to predict output using the newly available measurements. Here, Bayesian inference 

is utilized to predict the corresponding hidden state node of the quality variable, e.g. 𝑋4 in the 

illustrative example.  

Considering the k th sampling instant, measurements of all the input variables are available as 

𝒚𝑘 = [𝑦1,𝑘 … 𝑦𝑚−1,𝑘]𝑇 , only the measurements of quality variable 𝑦𝑗 = 𝑓,𝑘  (𝑤ℎ𝑒𝑟𝑒 𝑗 ∈
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1 ….𝑚) are unavailable, and the hidden state vector of all the process variables to be inferred is 

given as  𝒙𝑘 = [𝑥1,𝑘 … 𝑥𝑚,𝑘]𝑇 .   

From Bayes’ theorem given in Equation (2. 23), the posterior probability of the hidden states is 

the following, where 𝛾 is a normalizing constant that equals 𝑃(𝒚𝒌)−1. 

 

 𝑝(𝒙𝑘|𝒚𝑘) = 𝛾𝑝(𝒚𝑘|𝒙𝑘)𝑝(𝒙𝑘|𝑰) (2. 67) 

 

Using the property of independency of measurements and conditional dependency of the nodes, 

the posterior probability distribution function can be further decomposed, resulting in 

 

where 𝑝(𝑥𝑐,𝑘|𝐼) is prior probability of the source node  𝑥𝑐  at the kth instant. Thus, point estimates 

of the hidden state variables at the kth sampling instant can be obtained by minimizing the 

negative logarithmic of posterior distribution function i.e.  

 

𝒙̂𝑘 = min
𝒙𝑘

−[log𝑝(𝒙𝑘|𝒚𝑘)]

= min
𝒙𝑘

− [ ∑ log 𝑝(𝑦𝑗,𝑘|𝑥𝑗,𝑘) + ∑ log 𝑝(𝑥𝑗,𝑘|𝑃𝑎(𝑥𝑗,𝑘))

𝑚−𝑐

𝑗=1

𝑚−1

𝑗=1,𝑗≠𝑓

+ 𝑙𝑜𝑔 𝑝(𝑥𝑐,𝑘|𝐼) + log(𝛾)] 

(2. 69) 

 

 
𝑝(𝒙𝑘|𝒚𝑘) = 𝛾 ∏ 𝑝(𝑦𝑗,𝑘|𝑥𝑗,𝑘)

𝑚−1

𝑗=1,𝑗≠𝑓

∏ 𝑝 (𝑥𝑗,𝑘|𝑃𝑎(𝑥𝑗,𝑘)) 𝑝(𝑥𝑐,𝑘|𝐼)

𝑚−𝑐

𝑗=1

 
(2. 68) 
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Since the prior probability distribution of the source node i.e. 𝑝(𝑥𝑐,𝑘|𝐼) is assumed to follow 

uniform distribution, namely a constant, this term can be omitted without affecting the 

maximization operation. Thus, Equation (2. 69) is expanded to the following expression: 

 

 

min
𝒙𝑘

−[log𝑝(𝒙𝑘|𝒚𝑘)]

= min
𝒙𝑘

− [ ∑
(𝑦𝑗,𝑘 − 𝑥𝑗,𝑘)

2

2𝜎𝑦𝑗
2

+ ∑
(𝑥𝑗,𝑘 − 𝛽0,𝑗 − ∑ 𝑃𝑎𝑝(𝑥𝑗,𝑘

 )𝛽0+𝑝,𝑗
𝑁𝑃𝑎
𝑝=1 )

2

2𝜎𝑥𝑗
2

𝑚−𝑐

𝑗=1

𝑚−1

𝑗=1,𝑗≠𝑓

+ log(𝛾)] 

 

 

                                                                                                                                               (2. 70)  

Maximizing the objective function w.r.t. each hidden states gives a set of simultaneous linear 

Equations as:  

 𝑓(𝒙̂𝑘 
,𝛩) = 𝐵 (2. 71) 

 

which can be transformed into A𝒙̂𝑘 = B, and the estimates of all the hidden states are obtained by 

 𝒙̂𝑘 = 𝐴−1𝐵  (2. 72) 

 

Thus, the analytical expression of estimate of hidden state variable 𝑗 (𝑤ℎ𝑒𝑟𝑒, 𝑗 ∈ 1 …𝑚) at k th 

instant is given by Equation (2. 73) and Equation (2. 74), where the denominators are given in 

Equation (2. 27) and Equation (2. 64) respectively. 

 

 
𝑥𝑗≠𝑓,𝑘

 =

𝑦𝑗,𝑘

𝜎𝑦𝑗
2 +  ∑

𝛽𝑐,𝑗
 (𝛽0,𝑗 + ∑ 𝑃𝑎𝑝(𝑥𝑗,𝑘

 )𝛽0+𝑝,𝑗
𝑁𝑃𝑎 −1
𝑝=1

)
 

𝜎
𝐶ℎ(𝑥𝑗)|𝑥𝑗

2 +
(𝛽0,𝑗 + ∑ 𝑃𝑎𝑝(𝑥𝑗,𝑘

 )𝛽0+𝑝,𝑗
𝑁𝑃𝑎
𝑝=1

)

𝜎
𝑥𝑗|𝑃𝑎(𝑥𝑗)
2  

𝑁𝐶ℎ
𝑐=1

𝛼𝑜𝑏𝑠 (𝑥𝑗)
  

(2. 73) 
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𝑥𝑗=𝑓,𝑘

 =

 ∑
𝛽𝑐,𝑗

 (𝛽0,𝑗 + ∑ 𝑃𝑎𝑝(𝑥𝑗,𝑘
 )𝛽0+𝑝,𝑗

𝑁𝑃𝑎 −1
𝑝=1

)
 

𝜎
𝐶ℎ(𝑥𝑗)|𝑥𝑗

2 +
(𝛽0,𝑗 + ∑ 𝑃𝑎𝑝(𝑥𝑗,𝑘

 )𝛽0+𝑝,𝑗
𝑁𝑃𝑎
𝑝=1 )

𝜎
𝑥𝑗 |𝑃𝑎(𝑥𝑗)
2  

𝑁𝐶ℎ
𝑐=1

𝛼𝑚𝑖𝑠(𝑥𝑗)
  

(2. 74) 

 

Thus, through solving above simultaneous linear equations, estimates of hidden states are 

obtained at every sampling instant.  

2.5 Simulation and industrial application  

The performance of the proposed approach is demonstrated on following benchmark simulation 

41 example and an industrial case study. In both cases, we have analyzed following three 

scenarios:  

i. Multi-rate and noisy lab data  

ii. Noisy input  

iii. Completely missing key input  + noisy input  

In simulation studies, to compare the efficacy of the proposed approach, average root mean 

squared error (ARMSE) is computed based on 10 realizations, with 100 data samples each. This 

equation for the jth variable is: 

 (𝐴𝑅𝑀𝑆𝐸)𝑗 =
1

𝑁𝑟

√
∑ (𝑥𝑖,𝑗 − 𝑥𝑖,𝑗 )

2𝑁
𝑖=1 

𝑁
 (2. 75) 

                                                                                              

where Nr corresponds to the number of Monte-Carlo simulations and N represents number of 

samples. In the industrial case study, all the real-time predictions have to be down-sampled 
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according to the sampling rate of available lab data in order to compute RMSE and correlation 

coefficient since lab data are only available at slow-rate. For the jth variable,  

 

 

(𝑅𝑀𝑆𝐸)𝑗 = √
∑ (𝑦𝑖,𝑗 − 𝑥𝑖,𝑗 )

2𝑁
𝑖=1 

𝑁
 

(2. 76) 

 

 

and correlation coefficient, 𝐶𝑜𝑟𝑟 (or Pearson’s product-moment correlation coefficient), between 

the lab measurement and estimated state is calculated as: 

 

 
(𝐶𝑜𝑟𝑟)𝑗 =

∑ (𝑦𝑖,𝑗 − 𝑦𝑗̅)(𝑥̂𝑖,𝑗 −  𝑥𝑗̂
̅̅ ̅)𝑁

𝑖=1

√∑ (𝑦𝑖,𝑗 − 𝑦𝑗̅)
2𝑁

𝑖=1
√∑ (𝑥̂𝑖,𝑗 −  𝑥𝑗̂

̅̅ ̅)
2𝑁

𝑖=1

 
(2. 77) 

 

where the arithmetic average of a measurement is: 

 𝑦𝑗̅ =
1

𝑁
∑ 𝑦𝑖𝑗

𝑁

𝑖=1

  (2. 78) 

 

2.5.1 Flow Network  

Schematic of the flow network system is given in Figure 2. 4 and process model Equations are 

given in Equation (2. 79). Corresponding Bayesian network structure is illustrated in Figure 2. 5.  

 

 

𝑋2 = 𝑠𝑝𝑙𝑖𝑡  𝑟𝑎𝑡𝑖𝑜 ∗ 𝑋1 + 𝜀𝑥2
 

𝑋3 = (1 − 𝑠𝑝𝑙𝑖𝑡  𝑟𝑎𝑡𝑖𝑜) ∗ 𝑋1 + 𝜀𝑥3
 

𝑋4 = 𝑋2 + 𝜀𝑥4
 

𝑋5 = 𝑋3 + 𝜀𝑥5
 

(2. 79) 
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𝑋6 = 𝑋4 + 𝑋5 + 𝜀𝑥6
 

 

The uncertainty in the state 𝜀𝑥𝑖 
is a white noise signal and follows Gaussian distribution i.e. 

 

 𝜀𝑥𝑖
~𝑁(0,𝜎𝑥𝑖

) (2. 80) 

where 𝜎𝑥𝑖
= 0.01 ∗ 𝜎(𝑋𝑖,𝑡𝑟𝑢𝑒) (2. 81) 

 

As discussed in section 2.4, inference was conducted for X4, which is the flow-4 hidden state 

node.  Corresponding measurement, Y4, is available only at every 30 sampling instances. Steady 

state mean values of the process flow variables are given in Table 2. 1. For the multi-rate 

Bayesian network soft sensor (MR-BN-SS) scenario, 2500 data samples were used for training 

and 500 samples were used for validation. For the down-sampled Bayesian network soft sensor 

(DS-BN-SS), namely OLS and PLS approaches, previously mentioned 2500 data samples were 

down-sampled according to the slow sampling rate.  

 

 

  

  

 

 

 

 

Table 2. 1: Steady state values of the process variables 

Process Variable Mean values (m/s) 

𝑌1 100 

𝑌2 64 

𝑌3 36 

𝑌4 64 

𝑌5 36 

𝑌6 100 
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Multi-rate and noisy lab data  

In this simulation, 𝑌4 is corrupted with noise and is multi-rate. Under these conditions, the 

efficacy of the proposed down-sampled Bayesian network soft sensor (DS-BN-SS) and multi-

rate Bayesian network soft sensor (MR-BN-SS) are compared to the popular OLS and PLS soft 

sensors. Figure 2. 6 is the graphical result. Average RMSE values for the target hidden state are 

reported in Table 2. 2. From this table, it can be observed that MR-BN-SS has the lowest 

ARMSE value. Moreover, the proposed DS-BN-SS also performs better than the conventional 

approaches, but not as good as MR-BN-SS. The reason is that MR-BN-SS is capable of using 

fast-rate samples, constituting a semi-supervised learning. To illustrate the goodness of BN based 

soft sensors, noise variance convergence profiles of two measurements (𝑌5 and 𝑌6) are reported 

only in Figure 2. 7. Rest of the estimated parameters follow similar performance and hence are 

not reported here. Estimated noise variances and model parameters are reported in Table 2. 11 - 

Table 2. 13 given in Appendix to Chapter 2. It can be observed from these tables that BN based 

soft sensors can accurately estimate the unknown noise variances and the model parameters; 

thus, output predictions are much more accurate.  
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Figure 2. 6: Comparison of BN soft sensor predictions 

 

 

Table 2. 2: Comparison of ARMSE values 

 

Variables 

True and Noisy 

measurements 
DS- BN-SS MR-BN-SS 

 

OLS 

 

PLS 

𝑋4 0.6472 0.0734 0.0485 0.2516 0.2514 
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Figure 2. 7: Convergences profile of the noise variances of measurements 𝑌5 and 𝑌6 

 

Noisy input data with multi-rate lab data 

In this sub-section, one of the key input variable (i.e. Y2) is assumed to be corrupted with strong 

noise. Figure 2.8 shows the prediction comparisons of different soft sensors. From this figure and 

the ARMSE values shown in Table 2. 3, it can be seen that the MR-BN-SS is able to predict the 

target state with much lower ARMSE than the popular OLS and PLS soft sensors.  
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 Figure 2. 8: Comparison of MR-BN soft sensor prediction 

 

  

 

 

 

 

Table 2. 3: Comparison of ARMSE values 

 

Completely missing/sensor failure of key input variable 

In this scenario, in addition to noisy 𝑌2 input, measurement of 𝑌6 is assumed to be completely 

missing. Figure 2. 9 compares the predictions of the proposed MR-BN-SS under this situation. 

From the reported ARMSE values in Table 2.4, it can be observed that performance of the 

proposed approach still outperforms the conventional approaches.  

Variables 
True and Noisy 

measurements 
MR-BN-SS 

 

OLS 

 

PLS 

𝑋4 0.3236 0.0588 0.1378 0.3077 
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Figure 2. 9: Comparison of MR-BN soft sensor predictions to completely missing case 

 

 

 

 

Table 2. 4: Comparison of ARMSE values 

 

2.5.2 Industrial case study 

In this sub-section, performance of the proposed Bayesian network soft sensor is demonstrated 

on a real industrial data set. In oil sands industry, upgrading unit is an energy intensive process, 

where bitumen extracted is hydro-processed and fractionated to convert into lighter components, 

which are further blended and transferred to refinery for further treatment. Figure 2. 10 shows a 

schematic representation of a typical process unit in the upgrading section. The liquid feed is sent 

Variables 
True and Noisy 

measurements 

MR-BN-SS 
 

OLS 

 

PLS 

𝑋4 0.3314 0.1175 0.1267 0.3080 
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to the fractionator and depending on the boiling points, light products are recovered and further 

processed in the stripping unit to obtain the desired product, (𝑌8). For propriety reasons, detailed 

process is not shown and all data are normalized. 

 

 

Figure 2. 10: Simplified process diagram of the industrial case study 

 

Here, lab measurements of quality variable (Y8) are available every 24 hours. Through 

correlation analysis, 7 inputs, which have higher correlation with the lab data are selected for 

developing a Bayesian network soft sensor. Further, two BN structures are considered, one is 

two-layered, second one is multi-layered. When process information is unavailable, the two-layer 

structure shown in Figure 2. 11 is used. This structure is similar to the conventional ordinary 

least-squares regression model structure, except that additional hidden layers representing true 

values of the variables are introduced.  
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Figure 2.11: Two-layered Bayesian network structure 

The multi-layered structure given in Figure 2. 12, utilizes prior process knowledge such as the 

flow diagram. When it is difficult to separate two or more variables, the variables having higher 

correlation with the target variable precede the ones having lower correlations.  

 

                             

Figure 2.12: Multi-layered Bayesian network structure 
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Multi-rate and down-sampled BN soft sensors   

In this sub-section, Bayesian network based soft sensors are developed considering both down-

sampled and multi-rate data, and the performances are compared with OLS and PLS. For 

parameter learning of DS-BN-SS, a total of 240 and for MR-BN-SS, a total of 4130 samples are 

used respectively. Trained models are validated on the same set of validation data with 91 lab 

samples. Figure 2. 13 is the graphical result of different proposed approaches. From this result, it 

can be observed that the multi-layered MR-BN-SS has a superior performance to the other 

approaches. Form Table 2. 5 & Table 2. 6, it is evident that BN based soft sensors have better 

accuracy compared to OLS and PLS soft sensors. It can be understood that through multi-layered 

structure, much better predictions can be made both in the DS-BN-SS and MR-BN-SS scenarios. 

On the other hand, data-driven two-layered approach is still better than the conventional soft 

sensors. This is due to the probabilistic nature of BNs and its ability to estimate noise statistics.  

 

 

Figure 2.13: Comparison of different soft sensor performances 



45 

 

 

Approach 

Correlation 

coefficient (2-

layered structure) 

Correlation coefficient 

(multi-layered 

structure) 

MR-BN SS 0.7200 0.7601 

DS-BN SS 0.6957 0.7476 

OLS 0.6673 

PLS  0.6698 

 

Table 2. 5: Correlation coefficients 

 

Approach 

RMSE (2-layered 

structure) 

RMSE (multi-

layered structure) 

MR-BN SS 3.3865 3.2194 

DS-BN SS 3.6408 3.2613 

OLS 4.1703 

PLS 4.1458 

 

Table 2. 6: RMSE values  

 

MR-BN-SS with noisy input 

In this sub-section, key input variable Y1 is artificially injected with strong sensor noise. Figure 

2. 14 shows the performance of MR-BN-SS compared to the conventional OLS and PLS 
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methods. From this figure, one can see the great ability of MR-BN-SS to handle input noise. It 

has higher correlation coefficient (reported in Table 2. 7) and lower RMSE (reported in Table 2. 

8). Once again, multi-layered MR-BN-SS has the best performance.  

 

Figure 2.14: Comparison of different soft sensor predictions 

 

Approach 

Correlation 

coefficient (2-layered 

structure) 

Correlation 

coefficient (multi-

layered structure) 

MR-BN-SS 0.7158 0.7510 

OLS 0.6602 

PLS 0.6623 

 

Table 2. 7: Correlation coefficients 

 



47 

 

 

 

Approach 
RMSE (2-layered 

structure) 

RMSE (multi -

layered structure) 

MR-BN-SS 3.4792 3.2815 

OLS 4.2091 

PLS 4.1789 

 

Table 2. 8: RMSE values  

 

MR-BN-SS with input noise and missing measurement 

In this case, on top of all the assumptions made in the previous trial in section 0, measurement of 

input variable Y4 is completely missing. From Figure 2. 15, it can be seen that even with a 

missing key input variable, MR-BN-SS is able to capture the trend of the lab measurements well. 

Compared to the other soft sensors, as reported in Table 2. 9 and Table 2. 10, multi-layered MR-

BN–SS prediction has higher correlation and smaller RMSE.  
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Figure 2.15: Comparison of different soft sensor predictions 

 

Approach 

Correlation coefficient 

(2-layered structure) 

Correlation coefficient 

(multi -layered structure) 

MR-BN SS 0.6898 0.7316 

OLS 0.6597 

PLS 0.6735 

 

Table 2. 9: Correlation coefficients 
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Approach 
RMSE (2-layered 

structure) 

RMSE (multi -layered 

structure) 

MR-BN SS 4.2534 3.4933 

OLS 4.7251 

PLS  4.5846 

 

Table 2. 10: RMSE values 

 

2.6 Conclusion  

The conventional soft sensors such as OLS, PLS and ANN, which are widely used in 

industry, do not incorporate the causal relationship between the process variables while 

developing a soft sensor. Moreover, these approaches do not always consider noises for the 

input variables. To account for these issues, a novel Bayesian network based soft sensor is 

proposed, which has a flexibility of incorporating prior process knowledge into the soft 

sensor development stage. This approach accounts for noisy input/output and missing data in 

probabilistic framework along with Bayesian inference. Analytical solutions are derived 

under the proposed framework. 

Developed multi-rate Bayesian network soft sensor is validated on simulation and 

industrial cases. From these results, it is observed that for all scenarios considered, the 

proposed approach has demonstrated superior performance compared to the popular OLS and 

PLS. The importance of utilizing prior process knowledge is further demonstrated by 

considering two different BN structures. It is observed that BN soft sensor built through prior 

knowledge has out-performed the data-driven BN soft sensor. Thus, obtaining optimal 
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Bayesian network structure from process data is a challenging problem and will be an 

interesting direction to explore further.  
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Chapter 3  

Robust Bayesian Network Soft Sensor 

Development for Multi-Rate Data 
 

3.1 Introduction 

Outliers are data points appearing noticeably away from the normal operating region. Not 

accounting for the outliers during soft sensor development process can lead to poor soft sensor 

predictions     . Thus, it is vital to account for outliers in the soft sensor development. Chapter 2 

deals with developing a BN based soft sensor under the assumption that data is free of outliers. 

Thus, current chapter extends previous chapter to robust BN soft senor development. Outliers in 

input measurements may occur due to large disturbances, instrument failures or sudden changes 

in operational modes. Outliers in the output variable (lab data) can occur due to human error in 

recording, collecting samples or mis-calibration of lab equipment.   

In literature, researchers proposed different frameworks to robust modeling methods, 

which can be classified into deterministic and probabilistic approaches. In deterministic 

modeling, robust regression by Huber’s M-estimator 42 is widely used, where the weighted least 

squared function or the likelihood function is replaced by a robust function that reduces the 

effect of outliers by assigning appropriate weight to each data point. This weight can be 

calculated through different objective functions; one example could be inverse of a distance 

measure. As the data point moves away from the normal operating region, its effect on objective 

function will be smaller. Robust deterministic approaches belong to this class includes R-

estimates 43, which minimizes sum of score of ranked residuals, and S-estimates 44 that 
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minimizes variance of the residuals. More details of these approaches can be found in 

(Kodamana et al. 2018). Major drawback of this approach is in selecting appropriate tuning 

parameters for the robust functions.  

On the other hand, probabilistic robust modeling approaches address the outlier issue 

systematically 45. Typically, first step is to select model structure. This can be either non-

parametric model (fully data-driven) or parametric model such as Auto Regressive Exogenous 

(ARX) or state space models 46.  For high dimensional data, dimensionality reduction approaches 

are used, such as PCA and PLS. Next step would be selecting appropriate noise model to account 

for the outliers. Common distributions used to model the outliers are mixture of Gaussian 47, flat 

topped t 48 and Student’s t-distributions 49. Once appropriate noise model is chosen, the final step 

is in selecting suitable method for parameter learning, which can be carried out through 

maximum likelihood (ML) or Bayesian frameworks. Under the ML framework, EM algorithm is 

applied when data contains hidden variables 50,51,52,53. Also, in recent literature, EM algorithm is 

successfully used for robust identification of linear variables 54. Meanwhile, Bayesian methods 

calculate the posterior probability distribution of parameters given the prior information 45. 

Examples of such methods are Variational Bayesian (VB) 55, Expectation Propagation (EP) 56 

and Markov Chain Monte Carlo (MCMC) 57 approaches. Although these methods are popular in 

literature, MCMC approach suffers in severe computational intensity, while obtaining explicit 

analytical solution through VB is a difficult task. Further, selecting appropriate prior probability 

for VB approach is challenging as well.  

A few literature on probabilistic robust identification methods include, robust 

identification of ARX models by Kodamana et al. (2018), mixture PPCA58, and more recent 

work by Fan et al. (2018) on robust probabilistic slow feature analysis (PSFA). Fan et al. (2018) 
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proposed a robust probabilistic slow feature analysis PSFA that is used to extract temporally 

correlated dynamic features from high-dimensional data corrupted with outliers. In their work, 

student t-distribution is applied to model the outliers and the problem is formulated in ML 

framework. From this work, authors show that Student’s t-distribution is able to handle outliers 

well due to its heavier tail, size of which is controlled by the degree of freedom variable 𝑣 59.  

From the above discussion it is evident that robust probabilistic approaches, specifically 

student t-distribution, handle outliers in a systematic way and possess several advantages 

compared to robust deterministic modeling. The current chapter focusses on developing robust 

multi-rate Bayesian network soft sensor (RMR-BN-SS) by modeling outliers through student t-

distribution.  

3.2 Modeling assumptions 

Assumption 3. 1: For measurements of any jth variable (i.e. input or quality variable) corrupted 

with outliers, the noise term (𝜀𝑗) of the linear measurement model given by Equation (2.2) is 

assumed to follow student's-t distribution with zero mean, variance (𝜎𝑦𝑗  

 ) and degree of freedom 

(𝑣𝑗) given as follows: 

          𝜀𝑗~𝑡(0, 𝜎𝑦𝑗  

2 ,𝑣𝑗)   (3. 1) 

So, corresponding measurements will follow the same distribution as: 

                                                          𝑝( 𝑌𝑗|𝑋𝑗)~𝑡(𝑋𝑗,𝜎𝑦𝑗  

2 ,𝑣𝑗 )                                                                                     (3. 2)                                        

Mathematically, t-distribution can be seen as scaled Gaussian distribution of unknown variance 

scale 𝑟, which follows a Gamma distribution. This can be expressed as the following:  

 
𝑝 (𝑌𝑗|𝑋𝑗,𝜎𝑦𝑗  

2 , 𝑟𝑗) = ∫ 𝑝 (𝑌𝑗|𝑋𝑗,𝜎𝑦𝑗  

2 , 𝑟𝑗)𝑝(𝑟𝑗|𝑣𝑗) 𝑑𝑟  
(3. 3) 
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where 
𝑝(𝑟𝑗|𝑣𝑗)~Г(

1

2
𝑣𝑗,

1

2
𝑣𝑗) 

𝑝(𝑌𝑗|𝑋𝑗, 𝜎𝑦𝑗  

2 , 𝑟𝑗) ~𝑁(𝑋𝑗,𝜎𝑦𝑗  

2 /𝑟𝑗) 

 

(3. 4) 

     

    (3. 5) 

where unknown latent variance scale variable 𝑟𝑗 is considered as hidden random variable and 

need to be estimated along with hidden states. 

For relations between the hidden states, the linear conditional distribution model 

discussed in Equation (2.5) is considered. For input or quality variables not corrupted with 

outliers, the linear measurement models given by Equations (2.3) - (2.5) are considered.  

Note that the measurement and state noise variances, and degree of freedom variable (i.e. 

𝜎𝑦𝑗

2 , 𝜎𝑥𝑗

2 , 𝑣𝑗) are unknown and need to be estimated along with the unknown model parameters 

between the hidden states 𝜷𝑗 = [𝛽0,𝑗,𝛽1,𝑗 …𝛽𝑁𝑃𝑎 ,𝑗 ]. For any variable j, all the unknown 

parameters can be represented in vector form as: 

 

 𝛩𝑗 = [𝜃𝑚  𝜃𝑒  𝜃𝑜] (3. 6) 

where:  

𝜃𝑚               is the parameters vector representing the model parameters, 𝜷𝑗  

𝜃𝑒               is the parameters vector representing noise variance terms,  𝜎𝑦𝑗

2  ,𝜎𝑥𝑗

2  

𝜃𝑜                is the degree of freedom 𝑣𝑗 coming from the assumed t-distribution 

 

3.3 Development of robust Bayesian network based soft sensor 

By considering the modeling assumptions made in Section 3.2, objective of this study is to 

develop robust BN soft sensor, which is insensitive to the outliers. Thus, robust BN soft sensors 
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for down-sampled/ multi-rate data are developed through the following three steps: (1) 

construction of BN structure, (2) parameter learning and (3) inference. These are discussed 

individually in the following sections.  

3.3.1 Construction of Bayesian network structure 

In this chapter, Bayesian network structure shown in Figure 2. 5 is considered for simulation 

studies, and both the two-layered and multi-layered structures shown in Figure 2. 11 and Figure 

2. 12 are considered for the industrial problem.  

3.3.2 Robust parameter learning for down-sampled data 

Consider for a batch of data with size N, the observed variables 𝑌 = {𝑌1, … , 𝑌𝑚} and hidden 

variables 𝑋 = {𝑋1, … , 𝑋𝑚}, 𝑟 = {𝑟1, … , 𝑟𝑚}. Unknown parameters are shown in Equation (3. 6). 

The unknown parameters 𝛩  can be estimated by maximizing the joint log-likelihood function as 

follows:   

 𝛩∗ = 𝑎𝑟𝑔max
  𝛩

log 𝑝(𝒀, 𝑿,𝒓|𝛩) (3. 7) 

For simple BN structure of flow-network problem, considered in Figure 2. 5, using the 

conditional independence properties, Equation (3. 7) can be further decomposed as given in 

Equation (3. 8). In this Equation 𝑗 = 𝐾  is the node that is corrupted with outliers and 𝑝(𝑿𝒄|𝐼) 

refers to prior information of the source node 𝑋𝑐.  

 

max
𝛩

𝑙𝑜𝑔 𝑝(𝑋, 𝑌, 𝑟)

= max
𝛩

[log𝑝(𝑌𝑗=𝐾|𝑋𝐾 , 𝑟𝐾) + log 𝑝(𝑟𝐾 )

+ ∑ log𝑝(𝑌𝑗|𝑋𝑗) + ∑ log 𝑝 (𝑋𝑗|𝑃𝑎(𝑋𝑗)) +log 𝑝(𝑋𝑐|𝐼)

𝑚−𝑐

𝑗=1

𝑚−1

𝑗=1,𝑗≠𝐾

] 

(3. 8) 
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where 𝑝(𝑌|𝑋, 𝑟) and  𝑝(𝑋|𝑃𝑎(𝑋)) both follow Gaussian distribution, while 𝑝(𝑟) follows a 

Gamma distribution.   

Assumption 3. 2:   The prior distribution for the source node, 𝑝(𝑋𝑐|𝐼), can be utilized if the 

information is available. However, in this work, it is assumed to follow uniform distribution and 

this assumption is considered for remaining part of the derivation.  

 EM algorithm for down-sampled data  

Since the joint density function given in Equation (3. 8) contains hidden nodes (𝑋, 𝑟), direct 

maximization is difficult and may result in sub-optimal solutions. Thus, here we resort to 

expectation maximization (EM) approach to solve joint likelihood function given in Equation (3. 

8).  

E-step: 

In the E-step, given the observations (Y) and parameters (𝛩𝑟) at the rth iteration, expectation of 

the complete log-likelihood function w.r.t all the hidden variables X and 𝒓 is calculated i.e. Q 

function, given as: 

 𝑄(𝛩| 𝛩𝑟) = 𝐸𝑋,𝑟|𝑌,𝛩𝑟
[log𝑝(𝒀,𝑿, 𝒓|𝛩)] (3. 9) 

 

Using the property of D-separation principle and conditional dependencies (or independencies) 

among the m random variables, the Q function can be expressed as follows: 

 

𝑄(𝛩, 𝛩𝑟) = 𝐸𝑋,𝑟|𝑌,𝛩𝑟
[log𝑝(𝑌𝑗=𝐾 |𝑋𝐾 , 𝑟𝐾 , 𝛩 ) + ∑ log 𝑝(𝑌𝑗|𝑋𝑗, 𝛩)

𝑚−1

𝑗=1,𝑗≠𝐾

+ ∑ log 𝑝(𝑋𝑗|𝑃𝑎(𝑋𝑗), 𝛩) + log 𝑝(𝑟𝐾 |𝛩)

𝑚−𝑐

𝑗=1

] 

(3. 10) 
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For a batch of data with size N, and under the assumption that measurements are independent, 

Equation (3. 10) can be expanded as: 

 

Q(𝛩|𝛩𝑟) = 𝐸𝑋,𝑟|𝑌,𝛩𝑟
[∑ ∑ log𝑝(𝑦𝑖,𝑗|𝑥𝑖,𝑗 , 𝛩) + ∑ log 𝑝(𝑦𝑖,𝐾|𝑥𝑖,𝐾 , 𝑟𝑖,𝐾 , 𝛩)𝑁

𝑖=1 +𝑁
𝑖=1

𝑚−1
𝑗=1,𝑗≠𝐾 

∑ ∑ log 𝑝(𝑥𝑖,𝑗|𝑃𝑎(𝑥𝑖,𝑗), 𝛩) + ∑ 𝑙𝑜𝑔𝑝(𝑟𝑖,𝐾|𝛩)𝑁
𝑖=1

𝑁
𝑖=1

𝑚−𝑐
𝑗=1 ]    (3. 11) 

 

where 𝑐 refers to number of source nodes. To further simplify the computation of E-step, the Q 

function can be expressed as follows:   

 𝑄(𝛩, 𝛩𝑟) = 𝑄1(𝛩, 𝛩𝑟) + 𝑄2(𝛩, 𝛩𝑟) + 𝑄3(𝛩,𝛩𝑟) (3. 12) 

where:  

 𝑄1(𝛩, 𝛩𝑟) = 𝐸𝑋,𝑟|𝑌,𝛩𝑟
[ ∑ log 𝑝(𝑦𝑖,𝐾|𝑥𝑖,𝐾 , 𝑟𝑖,𝐾 , 𝛩)

𝑁

𝑖=1

+ ∑ ∑ log𝑝(𝑦𝑖,𝑗|𝑥𝑖,𝑗 , 𝛩)

𝑁

𝑖=1

𝑚−1

𝑗=1,𝑗≠𝐾 

] (3. 13) 

 

 𝑄2(𝛩,𝛩𝑟) = 𝐸𝑋,𝑟|𝑌,𝛩𝑟
[ ∑ ∑ log𝑝(𝑥𝑖,𝑗 |𝑃𝑎(𝑥𝑖,𝑗), 𝛩)

𝑁

𝑖=1

𝑚−𝑐

𝑗=1

] (3. 14) 

 

 𝑄3(𝛩, 𝛩𝑟) = 𝐸𝑋,𝑟|𝑌,𝛩𝑟
[∑ 𝑙𝑜𝑔𝑝(𝑟𝑖,𝐾|𝛩)

𝑁

𝑖=1

] (3. 15) 

 

 

From Assumption 3. 1, for any ith sample and jth variable corrupted with outliers, the conditional 

distributions 𝑝(𝑦𝑖,𝑗 |𝑥𝑖,𝑗, 𝑟𝑖,𝑗, 𝛩)  and 𝑝(𝑟𝑖𝑗|𝛩) can be expressed as: 

 

Measurement 

with outliers 

𝑝(𝑦𝑖,𝑗|𝑥𝑖,𝑗 , 𝑟𝑖,𝑗, 𝛩)    =
1

√2𝜋𝜎𝑦𝑗

2 𝑟𝑗
 ⁄

exp(−
(𝑦𝑖𝑗 − 𝑥𝑖𝑗)

2

2𝜎𝑦𝑗
2 𝑟𝑗

 ⁄
) 

(3. 16) 
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Gamma 

distribution 

𝑝(𝑟𝑖𝑗|𝛩) = −log Г (
𝑣𝑗

2
) +

𝑣𝑗

2
log(

𝑣𝑗

2
) + (

𝑣𝑗

2
− 1) log(𝑟𝑖𝑗) −

𝑣𝑗

2
𝑟𝑖𝑗 (3. 17) 

 

Thus, expanding 𝑄1(𝛩,𝛩𝑟) using Equation (3. 16) gives:  

 

𝑄1(𝛩, 𝛩𝑟) = 𝐸𝑋,𝑟|𝑌,𝛩𝑟

[
 
 
 

∑ ∑

[
 
 
 

log

(

 1

√2𝜋𝜎𝑗
2

)

 −
(𝑦𝑖𝑗 − 𝑥𝑖𝑗)

2

2𝜎𝑗
2

]
 
 
 𝑚−1

𝑗=1,,𝑗≠𝐾 

𝑁

𝑖=1

+ ∑

[
 
 
 

log

(

 1

√2𝜋𝜎𝑗
2 𝑟𝑗

 ⁄
)

 −
(𝑦𝑖𝐾 − 𝑥𝑖𝐾)2

2𝜎𝑗
2 𝑟𝑗

 ⁄
]
 
 
 𝑁

𝑖=1
]
 
 
 

 

 

(3. 18) 

Using Equation (2. 15), 𝑄2(𝛩, 𝛩𝑟) can be extended as: 

 𝑄2(𝛩,𝛩𝑟) = 𝐸𝑋,𝑟|𝑌,𝛩𝑟

[
 
 
 

∑ ∑

[
 
 
 

log

(

 
1

√2𝜋𝜎𝑥𝑗

2

)

 −
(𝑥𝑖𝑗 − 𝛽𝑗 0 − 𝛽𝑗 0+𝑃𝑃𝑎(𝑥𝑖𝑗))

2

2𝜎𝑥𝑗
2

]
 
 
 𝑚−𝑐

𝑗=1

𝑁

𝑖=1
]
 
 
 

 (3. 19) 

 

Using linear property of expectation, the following statistics are required to compute 𝑄1 and 𝑄2 .  

 

 EX,r|Y,𝛩𝑟
[𝑥𝑖𝑗

2 ],          EX,r |Y,𝛩𝑟
[𝑥𝑖𝑗

  𝑟𝑖𝑗],       EX,r |Y,𝛩𝑟
[𝑥𝑖𝑗

2  𝑟𝑖𝑗] 

 

(3. 20) 

 EX,r|Y,𝛩𝑟
[𝑥𝑖𝑗

 𝑃𝑎(𝑥𝑖𝑗
 )],             EX,r|Y,𝛩𝑟

[ 𝑃𝑎𝑝(𝑥𝑖𝑗
 ) 𝑃𝑎𝑝+1(𝑥𝑖𝑗

 )] (3. 21) 
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Assumption 3. 3 The hidden variable introduced form the t-distribution 𝑟𝑗
  is dependent on its 

corresponding hidden state 𝑥𝑗
  as well as its corresponding measurements 𝑦𝑗

 . However, due to 

complex dependencies between these variables, computing the expectation terms i.e. 

𝐸𝑋,𝑟  |𝑌,𝛩𝑟
[𝑥𝑖𝑗

  𝑟𝑖𝑗] will be difficult. Therefore, in this formulation we have assumed that the hidden 

variable 𝑟𝑗 is constant w.r.t variable 𝑥𝑗
  and 𝑦𝑗

 59.  

Utilizing Assumption 3. 3, these statistics can be further simplified as: 

 

EX,r |Y,𝛩𝑟
[𝑥𝑖𝑗

 𝑟𝑖𝑗] = EX,r |Y,𝛩𝑟
[𝑥𝑖𝑗] EX,r |Y,𝛩𝑟

[ 𝑟𝑖𝑗] 

 

(3. 22) 

 

EX,r |Y,𝛩𝑟
[𝑥𝑖𝑗

2  𝑟𝑖𝑗] = EX,r |Y,𝛩𝑟
[𝑥𝑖𝑗

2 ] EX,r |Y,𝛩𝑟
[ 𝑟𝑖𝑗] 

 

(3. 23) 

 

EX,r|Y,𝛩𝑟
[𝑥𝑖𝑗

2 ] = 𝑣𝑎𝑟 (𝑥𝑖𝑗
 ) + EX,r|Y,𝛩𝑟

[𝑥𝑖𝑗
 ] EX,r|Y,𝛩𝑟  

[𝑥𝑖𝑗
 ] 

 

(3. 24) 

 EX,r|Y,𝛩𝑟  
[𝑥𝑖𝑗

  𝑃𝑎(𝑥𝑖𝑗
 )] = 𝑐𝑜𝑣 (𝑥𝑖𝑗

 ,𝑃𝑎(𝑥𝑖𝑗
 )) +  EX,r|Y,𝛩𝑟  

[𝑥𝑖𝑗
 ] EX,r|Y,𝛩𝑟  

[𝑃𝑎(𝑥𝑖𝑗
 )] (3. 25) 

 

For a node with multiple parents, additional statistics concerning relationship between the parent 

nodes will be necessary. These statistics can be obtained as: 

 

EX,r|Y,𝛩𝑟  
[𝑃𝑎𝑝(𝑥𝑖𝑗

 ) 𝑃𝑎𝑝+1(𝑥𝑖𝑗
 )] = 𝑐𝑜𝑣(𝑃𝑎𝑝(𝑥𝑖𝑗

 ),𝑃𝑎𝑝+1(𝑥𝑖𝑗
 ))+

 EX,r|Y,𝛩𝑟  
[𝑃𝑎𝑝(𝑥𝑖𝑗

 )] EX,r|Y,𝛩𝑟  
[𝑃𝑎𝑝+1(𝑥𝑖𝑗

 )]  
(3. 26) 

 

Now, lastly expanding Equation (3. 15), using gamma distribution in Equation (3. 17) gives:  

 𝑄3(𝛩,𝛩𝑟) = 𝐸𝑋,𝑟|𝑌,𝛩𝑟
[∑− logГ (

𝑣𝑗

2
) +

𝑣𝑗

2
log(

𝑣𝑗

2
) + (

𝑣𝑗

2
− 1) log(𝑟𝑖𝑗) −

𝑣𝑗

2
𝑟𝑖𝑗

𝑁

𝑖=1

] (3. 27) 
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Evaluating Equation (3. 27) would result in need of below statistics. 

     EX,r |Y,𝛩𝑟
[𝑟𝑖𝑗]            (3. 28) 

 EX,r |Y,𝛩𝑟
[ln(𝑟𝑖𝑗) 

]            (3. 29) 

 

Thus, the required statistics (i.e. from Equations (3. 22) - (3. 26) and Equations (3. 28) - (3. 29) 

are obtained evaluating posterior distribution of the hidden variables (i.e. 𝑝(𝑿|𝒓,𝒀, 𝛩𝑟),

𝑝(𝒓|𝒀, 𝑿, 𝛩𝑟) ) as illustrated in the following section. 

Computing the statistics from posterior distribution 

A full posterior distribution for the hidden variable 𝑿 via Bayesian rule can be expressed as:  

 𝑝(𝑿|𝒀, 𝒓,𝛩𝑟) =
𝑝(𝑿, 𝒀, 𝒓|𝛩𝑟)

𝑝(𝒀)
 (3. 30) 

Thus, for a batch of data, posterior distribution of the hidden state X is obtained from 

computation of below formulation, where 𝛾 is a normalizing constant that equals 𝑝(𝒀)−1. 

 

𝑝(𝑿|𝒀, 𝒓,𝛩𝑟)

= 𝛾 [𝑝(𝑌𝑗=𝐾|𝑋𝐾 , 𝑟𝐾 , 𝛩𝑟) ∏ 𝑝(𝑌𝑗|𝑋𝑗, 𝛩𝑟)

𝑚−1

𝑗=1,𝑗≠𝐾 

∏ 𝑝(𝑋𝑗|𝑃𝑎(𝑋𝑗), 𝛩𝑟)

𝑚−𝑐

𝑗=1

𝑝(𝑟𝐾 |𝛩𝑟  )𝑝(𝑋𝑐|𝐼)] 
 

 (3. 31)  

Maximizing logarithmic of posterior distribution function w.r.t each hidden state will result in set 

of simultaneous Equations, from which mode of hidden states can be computed. Using 

Assumption 3.2, prior probability term is omitted.  

 𝑿̂ = max log
𝑿

𝑝(𝑿|𝒀, 𝒓,𝛩𝑟) = max
𝑋

[𝑙𝑜𝑔𝑝(𝑌𝑗=𝐾|𝑋𝐾 , 𝑟𝐾 , 𝛩𝑟) + ∑ log𝑝(𝑌𝑗|𝑋𝑗,𝛩𝑟) +𝑚−1
𝑗=1,𝑗≠𝐾  



61 

 

∑ log 𝑝(𝑋𝑗|𝑃𝑎(𝑋𝑗), 𝛩𝑟) + 𝑙𝑜𝑔𝑝(𝑟𝐾 
|𝛩𝑟 

) +𝑚−𝑐
𝑗=1 log(𝛾)]  

 (3. 32)  

For a batch of data with size N, Equation (3. 32) can be expressed as:  

 

𝑿̂ = max log
𝑿

𝑝(𝑿|𝒀, 𝒓,𝛩𝑟) = max
𝑋

[∑ 𝑙𝑜𝑔𝑝𝑁
𝑖=1 (𝑦𝑖𝑗|𝑥𝑖𝐾 , 𝑟𝑖𝐾 , 𝛩𝑟) + ∑ ∑ log𝑁

𝑖=1 𝑝(𝑦𝑖𝑗|𝑥𝑖𝑗, 𝛩𝑟) +𝑚−1
𝑗=1,𝑗≠𝐾

∑ ∑ log𝑁
𝑖=1 𝑝(𝑥𝑖𝑗|𝑃𝑎(𝑥𝑖𝑗), 𝛩𝑟) + ∑ 𝑙𝑜𝑔𝑝(𝑟𝑖𝐾  

|𝛩𝑟 
)𝑁

𝑖=1 +𝑚−𝑐
𝑗=1 log(𝛾)]  

 

 (3. 33)  

 

Considering the first order optimality conditions for Equation (3. 33) i.e. 
𝜕  𝑙𝑜𝑔𝑃 (𝑋,𝑟|𝑌,𝛩𝑟)

𝜕𝑋
= 0, for 

any ith sample and jth variable, the estimates of hidden states can be represented in analytical 

form as given by Equations (3. 34) - (3. 35), where 𝑁𝑐ℎ stands for the number of children that the 

target node has in the Bayesian network structure and 𝐶ℎ(𝑥𝑗) is the child of variable 𝑥𝑗. 

 𝛼 (𝑥𝑗=𝐾
 ) = (

𝑟𝑖𝑗̂

𝜎𝑦𝑗
2

+
1

𝜎
𝑥𝑗|𝑃𝑎(𝑥𝑗)
2

+ ∑
(𝛽𝑐,𝑗

2  )
 

𝜎
𝐶ℎ𝑐(𝑥𝑗)|𝑥𝑗

2

𝑁𝐶ℎ

𝑐=1

)

 

  (3. 34) 

 

 
𝑥 𝑖,𝑗=𝐾

 =

𝑟𝑖𝑗̂  𝑦𝑖𝑗

𝜎𝑦𝑗
2 + ∑

𝛽𝑐 ,𝑗
 (𝛽0,𝑗 + ∑ 𝑃𝑎𝑝(𝑥 𝑖𝑗

 )𝛽0+𝑝,𝑗
𝑁𝑃𝑎 −1
𝑝=1

)
 

𝜎
𝐶ℎ(𝑥𝑗)|𝑥𝑗

2 +
(𝛽0,𝑗 + ∑ 𝑃𝑎𝑝(𝑥 𝑖𝑗

 )𝛽0+𝑝,𝑗
𝑁𝑃𝑎
𝑝=1 )

𝜎
𝑥𝑗|𝑃𝑎(𝑥𝑗)
2  

𝑁𝐶ℎ
𝑐=1

𝛼(𝑥𝑗=𝐾)
  

 

 (3. 35)  

 

Note that for 𝑗 = 1,… ,𝑚 and 𝑗 ≠ 𝐾 (i.e. variables not corrupted with outliers), 𝑟𝑖𝑗̂ = 1. The 

covariance between hidden states is calculated as discussed in section 0.  

Here posterior distribution of 𝑟𝑗 can be calculated from Bayes’ theorem as follows.   
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 𝑝(𝒓|𝒀, 𝑿, 𝛩𝑟) =
𝑝(𝒀|𝑿, 𝒓, 𝛩𝑟)𝑝(𝒓|𝛩𝑟)

𝑝(𝒀)
 (3. 36) 

 

Since 𝑥𝑖𝑗 and 𝑟𝑖𝑗 are independent59, 𝑙𝑜𝑔𝑝(𝑋|𝑃𝑎(𝑋), 𝛩𝑘) term is omitted from the above equation 

and it is expanded as follows, where 𝛾 equals 𝑝(𝒀)−1and is a normalizing constant.  

 𝑝(𝑟𝑗=𝐾|𝑌𝑗, 𝑋𝑗, 𝛩𝑟) = 𝛾 (∏ 𝑁𝑜𝑟𝑚𝑎𝑙

𝑁

𝑖=1

𝑝(𝑦𝑖𝐾|𝑟𝑖𝐾 ,𝑥𝑖𝐾 , 𝛩𝑟)∏𝐺𝑎𝑚𝑚𝑎

𝑁

𝑖=1

𝑝(𝑟𝑖𝐾|
𝑣𝐾

2
,
𝑣𝐾

2
)) (3. 37) 

 

Since Gamma distribution is a conjugate prior of Normal distribution, the posterior is expressed 

as: 

 
𝑝(𝑟𝑗=𝐾|𝑌𝑗, 𝑋𝑗, 𝛩𝑟) = ∏ 𝐺𝑎𝑚𝑚𝑎(𝑟𝑖𝑗|𝑎𝑖𝑗,𝑏𝑖𝑗)

𝑁

𝑖=1

 

 

(3. 38) 

The standard expressions for the 𝑎𝑖𝑗, 𝑏𝑖𝑗  are given as:  

 𝑎𝑖𝑗 =
𝑣𝑗 + 1

2
 (3. 39) 

 𝑏𝑖𝑗 =
𝑣𝑗

2
+

1

2𝜎𝑗
2 (𝑦𝑖𝑗 − 𝑥𝑖𝑗)

2
 (3. 40) 

   

Therefore, it is known that the statistics concerning posterior probability of unknown scale 

variance 𝑟𝑖𝑗 
 can be obtained from the following standard equations60.         

 EX,r |Y,𝛩𝑟
[𝑟𝑖𝑗] =

𝑎𝑖𝑗

𝑏𝑖𝑗

 
(3. 41) 

 

 EX,r |Y,𝛩𝑟
[log (𝑟𝑖𝑗)] = 𝜓(𝑎𝑖𝑗) − log(𝑏𝑖𝑗) (3. 42) 



63 

 

 

where: 

 

𝜓(𝑎𝑖𝑗) =
Г′(𝑟𝑖𝑗)

Г(𝑟𝑖𝑗)
 

(3. 43) 

 

M-Step 

In the M-step, Q function is maximized w.r.t all the unknown parameters. In context of this 

chapter, maximization can be expanded as:  

 
𝜕  𝑄

𝜕𝜃𝑚

= 0  
𝜕  𝑄

𝜕𝜃𝑒

= 0   (3. 44) 

Due to the non-linear dependencies, obtaining a closed form solution for the degree of freedom 

variable 𝑣𝑗 is not possible. Therefore, it is obtained by directly maximizing the Q function as 

given in Equation (3. 46). Closed form solutions for the model parameters and noise variances of 

the variables free of outliers are identical as given in Equations (2. 36) - (2. 39). Only this time, 

noise variance of the measurement corrupted with outliers is given as follows: 

 

 𝜎𝑦𝐾 ,𝑟+1
2 =

𝐸𝑋,𝑟|𝑌,𝛩𝑟
(∑ (𝑟𝑖𝐾)(𝑦𝑖𝐾 − 𝑥𝑖𝐾 )

2𝑁
𝑖=1 )

𝑁
 (3. 45) 

 

 𝑣𝑗,𝑟+1 = max
𝑣𝑗

𝑄3 (𝛩, 𝛩𝑟) (3. 46) 

 

3.3.3 Robust parameter learning for multi-rate/missing data with 

outliers 

In the previous section, robust parameter learning for BN soft sensor is performed under the 

assumption that all the measurements are down-sampled to the sampling instant at which 



64 

 

samples of quality variable are available. In reality, lab samples of quality variable and 

information of some key variables may be missing due to sensor issues. Accounting for this 

information in model development stage will help in obtaining accurate model. Therefore, this 

section formulates robust parameter learning for multi-rate data.  

Consider the quality variable measurements consist of observed and missing data as 𝑌 =

[𝑌𝑜𝑏𝑠 𝑌𝑚𝑖𝑠 ]  and hidden states as 𝑋 = [𝑋𝑜𝑏𝑠 𝑋𝑚𝑖𝑠] and 𝑂 and  𝑀 stands for number of observed 

and missing data in the training data set respectively.  

Based on this assumption, unknown parameters (𝛩) can be obtained by maximizing the 

logarithm of complete likelihood function given as:  

 max
𝛩

log 𝑝(𝒀𝒐𝒃𝒔 , 𝒀𝒎𝒊𝒔 , 𝑿, 𝒓|𝛩) (3. 47) 

Using the property of independency of measurements and from Bayesian network principles 

under the assumption that output variable 𝑌𝐾 is assumed to be slow-rate and corrupted with 

outliers, the joint likelihood function can be factored as follows. One can also formulate for 

outliers in input variable, following similar steps.  

 

𝑝(𝒀𝒐𝒃𝒔  ,𝒀𝒎𝒊𝒔 , 𝑿, 𝒓|𝛩) = 𝑝(𝑌𝐾𝑜𝑏𝑠
|𝑋𝐾𝑜𝑏𝑠

, 𝑟𝐾𝑜𝑏𝑠
, 𝛩)𝑝(𝑌𝐾𝑚𝑖𝑠

|𝑋𝐾𝑚𝑖𝑠
, 𝑟𝐾𝑚𝑖𝑠

𝛩) 

∏ 𝑝(𝑌𝑗|𝑋𝑗, 𝑟𝑗, 𝛩)

𝑚−1

𝑗=1,   𝑗≠𝐾

∏ 𝑝(𝑋𝑗|𝑃𝑎(𝑋𝑗), 𝛩)𝑝(𝑟𝐾 | 𝛩)

𝑚−𝑐

𝑗=1

 

(3. 48) 

 

EM algorithm for robust parameter learning (multi-rate data) 

E-Step  

Expectation of the complete log-likelihood function w.r.t. all the missing data (𝒀𝑚𝑖𝑠),  hidden 

variables (X) and the unknown variance scale variable 𝒓 is evaluated as: 
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 𝑄(𝛩, 𝛩𝑟) = 𝐸𝑿,𝒓,𝒀𝒎𝒊𝒔 |𝒀𝒐𝒃𝒔 ,𝛩𝑟
[log𝑝(𝒀𝒐𝒃𝒔 , 𝒀𝒎𝒊𝒔 , 𝑿, 𝒓|𝛩)] (3. 49) 

 

From the joint density function given by Equation (3. 48), Q function can be expressed as:  

 

𝑄(𝛩, 𝛩𝑟) = 𝐸𝑋,𝑟,𝑌𝑚𝑖𝑠 |𝑌𝑜𝑏𝑠 ,𝛩𝑟
[𝑝(𝑌𝐾𝑜𝑏𝑠

|𝑋𝐾𝑜𝑏𝑠
, 𝑟𝐾𝑜𝑏𝑠

, 𝛩) + 𝑝(𝑌𝐾𝑚𝑖𝑠
|𝑋𝐾𝑚𝑖𝑠

, 𝑟𝐾𝑚𝑖𝑠
𝛩)

+ ∑ 𝑝(𝑌𝑗|𝑋𝑗, 𝑟𝑗, 𝛩)

𝑚−1

𝑗=1,𝑗≠𝐾

+ ∑ 𝑝(𝑋𝑗|𝑃𝑎(𝑋𝑗), 𝛩) + 𝑝(𝑟𝐾| 𝛩)

𝑚−𝑐

𝑗=1

] 

(3. 50) 

 

For simplicity, above Equation is assumed to consist of following three parts.  

 

𝑄1(𝛩, 𝛩𝑟) = 𝐸𝑋,𝑟,𝑌𝑚𝑖𝑠 |𝑌𝑜𝑏𝑠 ,𝛩𝑟
[𝑙𝑜𝑔𝑝(𝑌𝐾𝑜𝑏𝑠

|𝑋𝐾𝑜𝑏𝑠
, 𝑟𝐾𝑜𝑏𝑠

, 𝛩)

+ 𝑙𝑜𝑔𝑝(𝑌𝐾𝑚𝑖𝑠
|𝑋𝐾𝑚𝑖𝑠

, 𝑟𝐾𝑚𝑖𝑠
, 𝛩)] 

 

(3. 51) 

 

𝑄2(𝛩, 𝛩𝑟) = 𝐸𝑋,𝑟 ,𝑌𝑚𝑖𝑠 |𝑌𝑜𝑏𝑠 ,𝛩𝑟
[ ∑ 𝑝(𝑌𝑗|𝑋𝑗, 𝑟𝑗,𝛩)

𝑚−1

𝑗=1,𝑗≠𝐾

+ ∑ 𝑝(𝑋𝑗|𝑃𝑎(𝑋𝑗), 𝛩)

𝑚−𝑐

𝑗=1

] 

 

(3. 52) 

 𝑄3(𝛩, 𝛩𝑟) = 𝐸𝑋,𝑟 ,𝑌𝑚𝑖𝑠 |𝑌𝑜𝑏𝑠 ,𝛩𝑟
[𝑝(𝑟𝐾| 𝛩)] (3. 53) 

 

For notation simplicity, 𝐸𝑋,𝑟,𝑌𝑚𝑖𝑠 |𝑌𝑜𝑏𝑠 ,𝛩𝑟
 is denoted as 𝐸 𝛩𝑟

. Based on previous assumptions, for a 

batch of data with size N, Equation (3. 51) can be further expanded as: 

 

𝑄1(𝛩, 𝛩𝑟) = 𝐸 𝛩𝑟
[∑ [log(

1

√2𝜋𝜎𝐾
2 𝑟𝐾

 ⁄
) −

(𝑦𝐾𝑜𝑏𝑠 ,𝑖 − 𝑥𝐾𝑜𝑏𝑠 ,𝑖)
2

2𝜎𝐾
2 𝑟𝐾

2⁄
]

𝑂

𝑖=1

]

+ 𝐸 𝛩𝑟
[ ∑ [log(

1

√2𝜋𝜎𝐾
2 𝑟𝐾

 ⁄
) −

(𝑦𝐾𝑚𝑖𝑠 ,𝑖 − 𝑥𝐾𝑚𝑖𝑠 ,𝑖)
2

2𝜎𝐾
2 𝑟𝐾

 ⁄
]

𝑁

𝑖=𝑂+1

] 

(3. 54) 
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As per Assumption 3. 3 , the unknown scale variable 𝑟𝐾  is constant57 in terms of 𝑋𝐾𝑚𝑖𝑠
 , 𝑌𝐾𝑚𝑖𝑠

. 

Thus, expectation terms can be further computed as the following:  

 

𝐸 𝛩𝑟
[𝑥𝑗𝑚𝑖𝑠,𝑖

 𝑦𝑗𝑚𝑖𝑠 ,𝑖] = 𝑐𝑜𝑣(𝑥𝑗𝑦𝑗) + 𝐸 𝛩𝑟
[𝑥𝑗𝑚𝑖𝑠 ,𝑖]𝐸 𝛩𝑟

[ 𝑦𝑗𝑚𝑖𝑠,𝑖
] 

 

(3. 55) 

 

𝐸 𝛩𝑟
[𝑦𝑗𝑚𝑖𝑠 ,𝑖  𝑟𝑗𝑚𝑖𝑠,𝑖

] = 𝐸 𝛩𝑟
[𝑦𝑗𝑚𝑖𝑠,𝑖

]𝐸 𝛩𝑟
[ 𝑟𝑗𝑚𝑖𝑠,𝑖

]  

 

(3. 56) 

 𝐸 𝛩𝑟
[𝑦𝑗𝑚𝑖𝑠,𝑖

2 ] = 𝑣𝑎𝑟(𝑦𝑗𝑚𝑖𝑠 ,𝑖) + 𝐸 𝛩𝑟
[𝑦𝑗𝑚𝑖𝑠 ,𝑖]𝐸 𝛩𝑟

[ 𝑦𝑗𝑚𝑖𝑠,𝑖
] (3. 57) 

 

Note that computation of 𝑄2(𝛩|𝛩𝑟) and 𝑄3(𝛩|𝛩𝑟) will result in need of same statistics discussed 

in Equations (3. 20) - (3. 21) and Equations (3. 28) - (3. 29), respectively. The above statistics are 

obtained from evaluation of posterior distribution discussed in following section.     

Posterior distribution computation 

Posterior distribution of the hidden states: 𝑋 (= [𝑋𝑜𝑏𝑠 , 𝑋𝑚𝑖𝑠]), 𝑟 and missing 𝑌𝑚𝑖𝑠  measurement, 

are obtained through following Bayesian formulation. 

From Bayes’ rule, the full posterior probability distribution is: 

 

 
𝑝(𝑿, 𝒀𝒎𝒊𝒔 |𝒀𝒐𝒃𝒔 , 𝒓,𝛩𝑟) =

𝑝(𝒀𝒐𝒃𝒔 |𝑿𝒐𝒃𝒔 , 𝑟, 𝛩𝑟)𝑝(𝒓|𝛩𝑟)𝑝(𝑿, 𝒀𝒎𝒊𝒔|𝐼)

𝑝(𝒀𝒐𝒃𝒔)
 

(3. 58) 

 

Since denominator of the above Equation acts as a normalizing constant, its inverse is marked as 

𝛾 and above posterior distribution is rewritten as: 

 𝑝(𝑿, 𝒀𝒎𝒊𝒔|𝒀𝒐𝒃𝒔 ,  𝒓,𝛩𝑟) = 𝛾𝑝(𝒀𝒐𝒃𝒔 |𝑿𝒐𝒃𝒔 , 𝒓, 𝛩𝑟)𝑝(𝒓|𝛩𝑟)𝑝(𝑿, 𝒀𝒎𝒊𝒔 |𝐼) (3. 59) 
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By using the property of conditional dependence between the nodes, above equation can be 

further decomposed as:  

 𝑝(𝑿, 𝒀𝒎𝒊𝒔|𝒀𝒐𝒃𝒔 , 𝒓,𝛩𝑟)

= 𝛾𝑝(𝒀𝒐𝒃𝒔|𝑿𝒐𝒃𝒔 ,𝒓𝒐𝒃𝒔 , 𝛩𝑟)𝑝(𝒀𝒎𝒊𝒔|𝑿𝒎𝒊𝒔 , 𝒓𝒎𝒊𝒔 , 𝛩𝑟)𝑝(𝒓|𝛩𝑟)𝑝(𝑿|𝑃𝑎(𝑿),𝛩𝑟)𝑝(𝑃𝑎(𝑿)|𝐼) 

(3. 60) 

Note that in the above formulation, 𝑝(𝑃𝑎(𝑋)|𝐼) is prior information of the source node. Thus, 

given the observed measurements (𝑌𝑜𝑏𝑠) and parameter vector (𝛩𝑟), estimates of hidden states 

(𝑋) and missing measurements (𝑌𝑚𝑖𝑠) are obtained by maximizing the log of posterior 

distribution function w.r.t. these variable i.e. 

 

max
𝑋,𝑌𝑚𝑖𝑠

𝑙𝑜𝑔𝑝(𝑿,𝒀𝑚𝑖𝑠 |𝒀𝑜𝑏𝑠 , 𝒓,𝛩𝑟) 

= max
𝑋,𝑌𝑚𝑖𝑠

[𝑙𝑜𝑔𝑝(𝒀𝑜𝑏𝑠 |𝑿𝑜𝑏𝑠 , 𝒓𝒐𝒃𝒔 ,𝛩𝑟) + 𝑙𝑜𝑔𝑝(𝒀𝑚𝑖𝑠 |𝑿𝑚𝑖𝑠 ,𝒓𝑚𝑖𝑠 , 𝛩𝑟)

+ 𝑙𝑜𝑔𝑝(𝒓|𝛩𝑟)+ 𝑙𝑜𝑔𝑝(𝑿|𝑃𝑎(𝑿),𝛩𝑟) + 𝑙𝑜𝑔𝑝(𝑃𝑎(𝑿)|𝐼) + log(𝛾)] 

(3. 61) 

Since 𝑝(𝒓|𝛩𝑟) term is independent of the variables 𝑋 and  𝑌𝑚𝑖𝑠, this term is omitted. Based on 

the Assumptions 2.1 & 2.2 and Assumptions 3.2, Equation (3. 61) can be expanded as: 

 

max
𝑋,𝑌𝑚𝑖𝑠

𝑙𝑜𝑔𝑝(𝑿, 𝒀𝑚𝑖𝑠 |𝒀𝑜𝑏𝑠 , 𝒓, 𝛩𝑟)   = max
𝑋,𝑌𝑚𝑖𝑠

[∑ [
1

√2𝜋 
log (𝜎𝑦𝑗=𝐾

2 ) −𝑂
𝑖=1

𝑟𝐾𝑜𝑏𝑠,𝑖(𝑦𝐾𝑜𝑏𝑠,𝑖−𝑥𝐾𝑜𝑏𝑠 ,𝑖)
2

2𝜎𝑦𝐾
2 ] + ∑ [

1

√2𝜋  
log (𝜎𝑦𝐾

2 )−
𝑟𝐾𝑚𝑖𝑠 ,𝑖(𝑦𝐾𝑚𝑖𝑠 ,𝑖−𝑥𝐾𝑚𝑖𝑠 ,𝑖)

2

2𝜎𝑦𝐾
2 ]𝑁

𝑖=𝑂+1 +

∑ ∑ [
1

√2𝜋  
log (𝜎𝑦𝑗

2 ) −
(𝑦𝑖𝑗−𝑥𝑖𝑗)

2

2𝜎𝑦𝑗
2 ]𝑁

𝑖=1
𝑚−1
𝑗=1,   𝑗≠𝐾 + ∑ ∑ [

1

√2𝜋  
log (𝜎𝑥𝑗

2 ) −𝑚−𝑐
𝑗=1,𝑗≠𝐾 

𝑁
𝑖=1

(𝑥𝑖𝑗−𝛽0,𝑗−∑ 𝑃𝑎𝑝(𝑥𝑖𝑗)𝛽0+𝑝,𝑗
𝑁𝑃𝑎
𝑝=1

)
2

2𝜎𝑥𝑗
2 ] + log(𝛾)]  

           

(3. 62) 



68 

 

 

Considering the first order optimality conditions for Equation (3. 62) (first order derivatives 

w.r.t. hidden states and missing measurement equal to zero), for any ith sample and jth variable, 

the estimates of hidden states and missing measurements can be represented in analytical form as 

follows:  

If the output measurement (containing outliers) is observed, 𝑦𝐾𝑜𝑏𝑠
:  

 
𝑥𝐾𝑜𝑏𝑠,𝑖

 =

𝑟̂𝐾𝑜𝑏𝑠 ,𝑖  𝑦𝐾𝑜𝑏𝑠 ,𝑖

𝜎𝑦𝐾 
2 +  ∑

𝛽𝑐,𝐾
 (𝛽0,𝐾 + ∑ 𝑃𝑎𝑝(𝑥𝐾,𝑖

 )𝛽0+𝑝,𝐾

𝑁𝑝𝑎 −1

𝑝=1
)
 

𝜎𝐶ℎ(𝑥𝐾 )|𝑥𝐾

2 +
(𝛽0,𝐾 + ∑ 𝑃𝑎𝑝(𝑥𝐾,𝑖

 )𝛽0+𝑝,𝐾
𝑁𝑃𝑎
𝑝=1 )

𝜎𝑥𝐾|𝑃𝑎(𝑥𝐾)
2  

𝑁𝑐ℎ
𝑐=1

𝛼𝐾𝑜𝑏𝑠
(𝑥𝐾

) 
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where denominator 𝛼𝐾𝑜𝑏𝑠
(𝑥𝐾) is as given in Equation (3. 34) with 𝑗 = 𝐾 .  

If the measurement is missing, 𝑦𝐾𝑚𝑖𝑠
:  

 

 

𝑥𝐾𝑚𝑖𝑠,𝑖
 =

 ∑
𝛽𝑐,𝐾

 (𝛽0,𝐾 + ∑ 𝑃𝑎𝑝(𝑥𝐾,𝑖
 )𝛽0+𝑝,𝐾

𝑁𝑃𝑎−1
𝑝=1

)
 

𝜎𝐶ℎ (𝑥𝐾
)|𝑥𝐾

2 +
(𝛽0,𝐾 + ∑ 𝑃𝑎𝑝(𝑥𝐾,𝑖

 )𝛽0+𝑝,𝐾
𝑁𝑃𝑎
𝑝=1 )

𝜎
𝑥𝑗|𝑃𝑎 (𝑥𝑗)
2  

𝑁𝐶ℎ
𝑐=1

𝛼𝐾𝑚𝑖𝑠
(𝑥𝐾

) 
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where the denominator is given as follows:  

 
𝛼𝐾𝑚𝑖𝑠

(𝑥𝐾
) = (

1

𝜎𝑥𝐾|𝑃𝑎(𝑥𝐾)
2

+ ∑
(𝛽𝑐,𝐾

2  )
 

𝜎𝐶ℎ𝑐(𝑥𝐾)|𝑥𝐾

2

𝑁𝑐ℎ

𝑐=1

)

 

 
(3. 65) 

 

The covariance between hidden states is calculated as discussed in section 0 through Equation (2. 

30).  
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The posterior probability of 𝑟𝐾 ,𝑖
 is calculated from Bayes’ theorem given in (3. 66) and required 

statistics to compute this posterior probability can be computed from the standard equations 

given in Equations (3. 41) - (3. 42).  

 𝑝(𝒓|𝒀, 𝑿, 𝛩𝑟) =
𝑝(𝒀|𝑿, 𝒓, 𝛩𝑟)𝑝(𝒓|𝛩𝑟)

𝑝(𝒀)
 (3. 66) 

 

Note that the rest of the measurements without outliers are computed from the analytical 

solutions discussed in Equations (2. 27) - (2. 28). Additionally, the statistics related to the 

posterior probability of the unknown scale variable 𝑟𝑖𝑗 is obtained from the standard equation 

given in Equations (3. 41) - (3. 42).  

M-step 

In the M-step, Q function is maximized w.r.t all the parameters 𝛩 as shown in Equation (2. 34). 

This time, the variance of outlier-corrupted output measurement variable is updated as: 

 𝜎𝑦𝐾 ,(𝑟+1)
2 =

𝐸𝛩𝑟
(∑ (𝑟𝐾,𝑖)(𝑦𝐾𝑜𝑏𝑠,𝑖

− 𝑥𝐾𝑜𝑏𝑠,𝑖  
)
2𝑂

𝑖=1 + ∑ (𝑟𝐾,𝑖)(𝑦𝐾𝑚𝑖𝑠 ,𝑖 − 𝑥𝐾𝑚𝑖𝑠 ,𝑖  )
2𝑁

𝑖=𝑂+1 )

𝑁
 (3. 67) 

 

Rest of the model parameters are updated through the previous expressions in Equations (2. 36) - 

(2. 39).  

3.4 Inference in Bayesian networks 

Once parameter learning is carried out, and parameters are estimated, next step is output 

prediction, using the newly available measurements. Here, Bayesian inference is utilized to 

predict the corresponding hidden state node of the quality variable, e.g. 𝑋𝑗=4 in the illustrative 

example.   
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Consider at kth sampling instant, measurements of all the input variables are available as 𝒚𝑘 =

[𝑦1,𝑘 … 𝑦𝑚−1,𝑘]𝑇, only the measurements of quality variable  𝑦𝑗 = 𝑓,𝑘  (𝑤ℎ𝑒𝑟𝑒 𝑗 ∈ 1… .𝑚) is 

unavailable, and the hidden state vector of all the process variables to be inferred is given as  

𝒙𝑘 = [𝑥1,𝑘 … 𝑥𝑚,𝑘]𝑇 .  In this case, inference is carried out through Bayesian inference and 

output can be predicted through analytical solutions given in Equation (2. 73) and Equation (2. 

74).  

On the other hand, if one of the input variables is contaminated with outliers, the analytical 

solution for this variable. 𝑗 = 𝑙, will be of the following form. The rest of the hidden state 

expressions will remain same as discussed in Section 2.4.  

 

𝑥𝑗=𝑙,𝑘
 

=

𝑦𝑗,𝑘 𝑟̂𝑗,𝑘
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  (3. 68) 

where 
𝛼  (𝑥𝑗

 ) = (
𝑟̂𝑗,𝑘

𝜎𝑦𝑗
2

+
1

𝜎
𝑥𝑗|𝑃𝑎(𝑥𝑗)
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+ ∑
(𝛽𝑐,𝑗
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𝜎
𝐶ℎ𝑐(𝑥𝑗)|𝑥𝑗
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𝑁𝐶ℎ

𝑐=1

)

 

 

 

  (3. 69) 

Thus, the developed soft sensor can give predictions of the desired hidden states.  

3.5 Simulation and industrial application 

The performance of the proposed RMR-BN-SS is demonstrated on similar benchmark41 

simulation case study and industrial data as discussed in Section 2.5. Here, following two 

scenarios are considered  

i. Multi-rate data with output outliers   

ii. Multi-rate data with input outliers   



71 

 

In the simulation studies, total of 3000 samples were generated, of which 2200 was used in 

parameter learning step. To compare the efficacy of the proposed robust soft sensor, average root 

mean squared error (ARMSE) is computed through Equation (2.75), based on 10 realizations, 

with 100 data samples for each realization. For industrial case study, all the real-time predictions 

are down-sampled according to the sampling rate of available lab data to compute RMSE 

(Equation (2.76)) and correlation coefficient (Equation (2.77)).  

3.5.1 Flow Network 

Bayesian network structure of the flow network problem in Figure 2. 5 of Chapter 2 is 

considered in this sub-section. Detailed description of the system and noise variances chosen for 

data generation can be found in section 2.5.1.  

Output outliers  

In this simulation study, multi-rate lab measurement 𝑌4 is assumed to be corrupted with different 

percentages of outliers i.e. 3%, 5%, 8% and 10%. Figure 3. 1 shows comparison of the proposed 

robust BN soft sensor with the conventional robust ordinary least squares (ROLS) soft sensor 

predictions for the scenario when training data is corrupted with 3% outliers. From this figure, it 

can be seen that predictions of RMR-BN-SS are closer to the true value compared to ROLS 

predictions. From ARMSE values reported in Table 3. 1, it is evident that from different 

percentage of outliers considered in the training data, proposed approach has significant 

improvement in ARMSE values compared to the popular conventional approach. Further, from 

Table 3. 7- Table 3. 9 (refer to Appendix for Chapter 3), all the noise statistics and parameters 

are able to converge closer to the actual values.  
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Figure 3. 1: Comparison of t robust soft sensor performances for 3% output outliers 

 

Percentage of outliers 3% 5% 8% 10% 

ARMSE   RMR-BN 0.0848 0.0991 0.0842 0.0843 

ARMSE ROLS 0.3035 0.3237 2.3979 1.7515 

 

Table 3. 1: ARMSE of different approaches for increased output outliers 

Input outliers 

In this scenario, measurements of input variable 𝑌2 is assumed to contain different percentages of 

outliers i.e. 10%, 15%, 20% and 25%. Figure 3. 2 shows comparison of different robust soft 

sensor predictions for 10% outliers in the training data. From this figure, it is evident that the 

proposed approach has better performance compared to the conventional ROLS approach. Table 

3. 2 reports ARMSE values, where RMR-BN-SS has lower ARMSE value compared to ROLS 

approach for different percentages of outliers considered in the data.  
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Figure 3. 2: Comparison of robust soft-sensor predictions for 10% input outliers 

 

Percentage of outliers 10% 15% 20% 25% 

ARMSE  RMR-BN 0.1020 0.1099 0.1153 0.1304 

ARMSE ROLS 0.2685 0.2324 0.2331 0.2430 

 

Table 3. 2: ARMSE of different approaches for increased input outlier 

 

3.5.2 Industrial case study 

Industrial process considered in Section 2.5.2 is further analyzed in this section for the scenario 

when training data is corrupted with outliers. Two Bayesian network structures discussed in 

Chapter 2, namely two-layered and multi- layered are utilized for developing RMR-BN-SS and 

the results are compared in the subsequent section.  
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Output outliers 

In this scenario, measurements of multi-rate output variable 𝑌8 are assumed to contains 3% 

outliers, where these outliers were artificially added to the true lab data. Under this assumption 

RMR-BN-SS is developed for both two-layered and multi-layered structures and the 

performance is compared to OLS and ROLS approaches. It can be observed from Figure 3. 3 that 

the predictions of proposed robust soft sensor are closer to the true lab estimates compared to 

ROLS and OLS approaches. Further, from Table 3. 3 & Table 3. 4, RMR-BN-SS has better 

correlation with the lab data and smaller RMSE value compared to the ROLS approach. In 

addition to that, between the different BN structures, multi-layered RMR-BN-SS is able to give 

the best result by capturing the process dynamics well.  

 

Figure 3. 3: Comparison of robust MR-BN soft sensor 
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Approach  Correlation 

RMR-BN (multi-layered structure) 0.7432 

RMR-BN (2-layered structure) 0.6801 

ROLS 0.6208 

OLS 0.5797 

 

Table 3. 3: Correlation coefficient for different approaches 

 

Approach  RMSE 

RMR-BN (multi-layered structure) 3.4820 

RMR-BN (2-layered structure) 4.3724 

ROLS  5.2506 

OLS  10.5608 

 

Table 3. 4: RMSE of different soft sensors 

Input outliers 

To account for outliers in the input variable, in this sub-section it is assumed that measurements 

of input variable 𝑌5 are corrupted with different percentages of outliers (i.e. 10%, 15%, 20% and 

25%). As mentioned earlier these outliers were artificially introduced into the sensor 

measurements.  Performance of the proposed approach was compared with the ROLS approach 

and the graphical result is presented in Figure 3. 4 (10% outliers in training data). From this 

figure, predictions of proposed RMR-BN-SS are accurate compared to the conventional ROLS 

approach. One can observe superior performance of RMR-BN-SS at different percentages of 
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input outliers from Table 3. 5 and Table 3. 6. Further, between the two different BN structures, 

multi- layered RMR-BN-SS has the best correlation and captured the lab-measurement trend 

accurately.  

 

Figure 3. 4: Comparison of robust MR-BN soft sensor for 10% input outliers 

 

Percentage 

of Outliers 

Correlation (2-layered structure) 

RMR-BN 

Correlation (multi-layered 

structure) RMR-BN 

Correlation 

ROLS 

3% 0.7154 0.7463 0.6783 

5% 0.7154 0.7463 0.6758 

10% 0.7148 0.7464 0.6749 

15% 0.7145 0.7463 0.6757 

Table 3. 5:  Correlation coefficient values of different approaches 
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Percentage 

of Outliers 

RMSE (2-layered structure)        

RMR-BN 

RMSE (multi-layered structure) 

RMR-BN 

RMSE 

ROLS 

3% 3.4420 3.5494 4.2154 

5% 3.4429 3.5493 4.2467 

10% 3.4680 3.5491 4.2546 

15% 3.4841 3.5504 4.2558 

 

Table 3. 6: RMSE of different soft sensors 

3.6 Conclusion  

BN based soft sensors proposed in the literature do not account for presence of outliers in the 

measurements while carrying out parameter learning. Not accounting to outliers during model 

development stage can significantly affect the performance of model predictions. Thus, this work 

accounts for developing a robust BN soft-sensor, which is insensitive to outliers in the 

measurements. Since BNs are probabilistic in nature, student's-t distribution, which is a popular 

probabilistic approach for modeling outliers, is chosen in this work for developing a robust BN 

soft sensor. The proposed soft sensor is able to handle both missing data and down-sampled data. 

The performance of proposed RMR-BN SS is demonstrated on benchmark simulation and 

industrial data sets. Through simulation studies and industrial application, it is evident that it is 

evident that the proposed approach is able to mitigate the effect of different percentages of 

outliers contained in input and output, while handling multi-rate data. Further from simulation 

and industrial application results, one can observe that incorporation of prior process knowledge 

(i.e. process model or process flow-sheet) in constructing BN structure can significantly improve 
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soft sensor performance compared to the conventional approaches. In the absence of prior 

process knowledge, it has been shown that robust soft sensor developed through two-layered BN 

structure has improved performance compared to the conventional approaches. Thus, to conclude 

performance of BN soft sensors depend on the chosen BN structure. Soft sensor based on 

optimal BN structure will have much better prediction performance compared to the popular 

conventional approaches.  
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Chapter 4  

Adaptive Multi-Rate Bayesian Network Soft 

Sensor Development 

4.1 Introduction  

BN based soft sensor development is a multi-stage process, where, initial step is to develop soft 

sensor model and then to test the model performance off-line. Once the off-line validation of 

model performance is satisfactory, the model performance is further tested online by 

implementing in open-loop real time DCS platform. Finally, upon satisfactory performance in 

open-loop real time DCS platform, soft-sensor predictions are used for closed loop control and 

process monitoring. Chapter 2 and Chapter 3 addresses common data pre-processing issues 

(which occur at offline soft-sensor development stage) such as multi-rate noisy data and outliers.  

Current chapter focuses on addressing issues concerning online soft sensor implementation stage 

i.e. process and sensor drift.  

Due to time dependency or drifting nature of process, i.e. where the process may slowly 

drift away from its initial operating conditions, soft-sensor validated in offline using the data 

generated from initial operating conditions may give biased predictions when implemented 

online. The main reasons for drift in the data could be due to a sensor drift, a process drift or 

their combination. Drift in the sensor can be due to sensor malfunction, miscalibration of lab 

equipment or any human error in collecting and recording lab measurements. Process drift on the 
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other hand can be due to fouling of heat exchangers, catalyst deactivation or process feed quality 

change and interplay of other important factors. Therefore, this chapter aims to develop adaptive 

multi-rate BN soft sensor (AMR-BN-SS), which accounts for drift in the data and thereby gives 

unbiased model predictions. 

In the literature, adaptive methods are well studied. Popular adaptive data-driven 

approaches are generally categorized under the following three umbrella terms: (1) moving 

windows techniques, (2) recursive approaches  61 and (3) classical bias update approach 62, 63, 64.  

In machine learning literature, one of the research branch developing adaptive data-

driven techniques is known as concept drift theory 61. To deal with drifts, first drift has to be 

detected through symptoms, such as degrading model performance. Once drift is detected, then it 

is handled 65 using either through instance selection (moving window techniques) 66 , instance 

weighting (recursive adaptation techniques 67 or ensemble methods 68. Examples of existing 

moving window based adaptive approaches include: block-wise and sample-wise moving 

widow69 techniques. In the moving window technique, the model is trained using most recent 

batch of data, where the size of data depends on pre-determined window size. User can chose to 

train the model as soon as a new sample point enters the window and oldest one gets deleted 

(sample-wise) 70 or after accumulating a certain number of data points (block-wise approach 71 ).  

Sample-wise recalculation of model can be an effective approach and further can be combined 

with any existing soft sensor models, such as ANN, PCR or PLS. Regardless of which training 

method is used, both the approaches require to train the model frequently for data of chosen 

window size, which could be computationally intensive. Moreover, successful parameter 

estimation depends on the choice of window and step sizes (adaptation intervals between the 
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updates) 61. If these two critical parameters are chosen inappropriately, performance of the 

developed soft sensors can be poor.  

On the other hand, recursive adaptation method is other popular approach to address drift 

in process data. In this approach, the old model predictions in combination with the new input 

measurements are used to retrain the model, where the amount of information carried from the 

past to the present is controlled through a forgetting factor 𝝀. This method is often used in 

adaptive soft-sensors developed through ordinary least squares 71, PCA 72 and PLS 73  

approaches. Drawback of this approach is that there is no suitable method to select the forgetting 

factor for adaptation purposes. Since role of 𝝀 is to determine the rate of forgetting old 

information (the speed of the temporal decay of the samples 61), it is critical to select this variable 

for accurately capturing true drift. If this variable is not selected accurately, the prediction 

performance of the developed soft sensor will degrade over a period.  

Lastly, due to its light computational load and ease of implementation, bias update 

method is widely used to adapt data driven soft sensors to account for drift in the data. Whenever 

a new lab measurement is available, soft-sensor predictions are corrected by adding a bias term, 

where bias is computed as difference between soft-sensor prediction and its actual lab 

measurement. Even though this adaptation method is very common in the industry, due to slow-

rate availability of the quality variable i.e. maybe once or twice in a day, bias update is 

performed only when measurement of the quality variable is available. In the absence of 

measurement of quality variable, calculated previous bias is used for correcting soft-sensor 

predictions until a new lab sample is available, which could lead to inaccurate soft-sensor 

predictions. Thus, for practical and efficient adaptation method, issues of process drift and sensor 

drift are tackled separately in this chapter.  
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            Since BNs are probabilistic graphical models, process drift is assumed to be a random 

variable and is modeled through a random walk model. Thus, with the static model representing 

relation between hidden variables and a dynamic model representing drift in the process, 

Bayesian inference is performed for carrying out predictions of the quality variable. Through this 

approach, soft-sensor predictions are corrected at every time instant by simultaneously 

estimating hidden states and drifting random variable. While sensor drift, which is a slow drift in 

the measurements of quality variable, is modeled through colored noise. Further, these proposed 

approaches do not require re-estimation of all the model parameters at every time instant, unlike 

certain moving window based adaptive models.    

4.2 Adaptive MR-BN soft sensor development 

As discussed in previous two chapters, the proposed AMR-BN-SS development includes 

following three main steps: (1) Construction of Bayesian network structure, (2) Parameter 

learning and (3) Inference.  The BN structure construction and parameter learning steps 

demonstrated in Section 2.3.1 and Section 2.3.2 respectively are considered. However, in this 

chapter, the modeling assumptions of parameter learning step will be changed to accommodate 

the drift introduced in the validation data set. The details are discussed in the following sections.  

4.2.1 Modeling assumptions for adaptive parameter learning 

The modeling assumptions considered in Section 2.2 are utilized in parameter learning step of 

this chapter. The measurement model between measurement node (Y) and hidden node (X) of jth 

variable are given as in Equation (2.2) and between the hidden states, the model is linear 

Gaussian and as given in Equation (2.5).   
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4.2.2 Construction of Bayesian network structure  

If the drift is caused by a process drift, parameter learning and output prediction steps have to be 

formulated under two different BN structures. The static BN structure constructed for the 

parameter learning step, for example BN structure shown in Figure 2. 5 for the flow-network 

problem, has to be converted into a dynamic BN structure by introducing additional time-

dependent variable. However, if the reason of drift is due to sensor problem, the same static BN 

structure can be considered to carry out the two steps.  

4.2.3 Parameter learning of adaptive MR-BN soft sensor 

Parameter learning for AMR-BN-SS is similar to the parameter learning for MR-BN-SS 

development, discussed in Section 2.3.4. As it was concluded, parameters can be estimated 

through the analytical solutions given in Equations (2. 36) and in Equation (2. 65). 

4.2.4 Inference in adaptive MR-BN soft sensor  

The previous two chapters discuss extensively on the off-line development of BN based soft 

sensors. In this chapter, the framework of proposed multi-rate BN based soft-sensor is extended 

to account for drift in the process data. This is achieved by modifying the modeling assumptions 

in the output inference step, depending on the type of drift. In the case of process drift, true state 

as well as its corresponding measurement are assumed to be drifting. On the other hand, in the 

case of a sensor drift, only the measurement is assumed to be drifting, while the true state is 

assumed to be at the initial nominal conditions. Therefore, in the following sections, two separate 

formulations for inference step are discussed for addressing process and sensor drift. 
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Inference for process drift 

In this case, the target state, 𝑥𝑗=𝑓
 , is assumed to be drifting and its measurement 𝑦𝑗=𝑓

  is slow-rate 

and is assumed to be available without any delay. Drift in the process is assumed to be a random 

variable 𝑣 and is modeled through a random walk model as follows: 

 𝑣𝑗,𝑘 = 𝑣𝑗,𝑘−1 + ej,k   (4. 1) 

where ej,k~𝑁(0,𝜎𝑣𝑘

 ) (4. 2) 

 

Thus, the linear model assumed between the jth measurement 𝑦𝑗 and its corresponding hidden 

variable 𝑥𝑗, given in Equation (2.5),  is modified as given below.   

where 

𝑦𝑗,𝑘 = 𝑥𝑗,𝑘 + wj,k  

 

(4. 3) 

 

wj,k~𝑁(0,𝜎𝑤𝑘

 ) 

 

(4. 4) 

By assuming that the drift is modeled through random variable (v) effecting the hidden quality 

variable, linear conditional Gaussian distribution model of quality variable is given as 

 𝑝 (𝑥𝑓|𝑃𝑎(𝑥𝑓))~𝑁(𝑣𝑓 + 𝛽0,𝑓 + ∑ 𝛽0+𝑝,𝑗𝑃𝑎(𝑥𝑓)
𝑝
,

𝑁𝑃𝑎

𝑝=1

𝜎𝑋𝑓

2 ) (4. 5) 

 

With the drifting dynamic model given by Equation (4. 1) and static model Equations (4. 3), the 

BN structure for inference step can be presented as shown in Figure 4. 1. In this figure, common 

cause BN structure shown in Figure 2. 1 is extended by introducing time-dependent variable 𝑣 

and graphed through time. 
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Figure 4. 1: Dynamic Bayesian network structure 

 

From this figure, it can be observed that by considering drift 𝑣  as a time dependent random 

variable, BN structure is no longer static and can be represented in dynamic form. Here, multi-

rate dynamic BN structure for the process variables 𝑋 = [𝑋1,𝑋2, … , 𝑋𝑚] is illustrated across 

three sampling instances, namely, 𝑘, 𝑘 + 1 and 𝑘 + 𝐷, where 𝑘 and 𝑘 + 𝐷 are the sampling 

instances at which lab measurements are available, while 𝑘 + 1 is the sampling instant at which 

measurement of quality variable (𝑦1) is not available. D corresponds to the time gap between 

availability of two lab samples. For simplicity, 𝐷 is assumed to be equal to 1 in this figure 

although in practice, this wait is much longer i.e. may be 12 hr or 24 hr. The measurements of 

lab values (slow rate measurements) therefore can be referred as 𝑦𝑠 ,𝑘
 and 𝑦𝑠,𝑘+𝐷.  

From Bayes’ theorem at sampling instant 𝑘,  posterior probability of the hidden variables can be 

obtained by Equation (4. 6), where 𝛾 equals  𝑝(𝒚𝑘)−1 and is a normalizing constant.   
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 𝑝(𝒙𝑘|𝒚𝑘) = 𝛾𝑝(𝒚𝑘|𝒙𝑘)𝑝(𝒙𝑘|𝑰) (4. 6) 

 

For Equation (4. 6), hidden state vector is 𝒙𝒌 = [𝒙𝒋=𝟏,𝒌 ,… , 𝒙𝒋=𝒎,𝒌 , 𝒗𝒋,𝒌] and measurement vector 

is 𝒚𝒌 = [𝒚𝒋=𝟏,𝒌 ,… , 𝒚𝒋=𝒎,𝒌]. For notation clarity, measurement vector can be written as in 

Equation  (4. 7), consisting of slow-rate measurement denoted as 𝑗 = 𝑠 and all the other fast rate 

inputs denoted as 𝑗 = 𝑓.   

 𝒚𝒌 = [𝒚𝒔,𝒌,𝒚𝒇,𝒌]  (4. 7)  

 

Here, 𝒚𝒔,𝒌 is the slow-rate lab values. The posterior probability distribution function (given by 

Equation (4.6)) can be further decomposed resulting in the following expression: 

 

In this Equation   (4. 8), △ 𝑘 ∈ {𝑘, 𝑘 + 𝐷, 𝑘 + 2𝐷 …. } represents the sampling interval at which 

measurements of quality variable are available, and 𝑘 − 1 is the immediate past sample of the 

fast rate measurements. Thus, estimates of the hidden state variables at the kth sampling instant 

can be obtained by minimizing the negative logarithmic of posterior distribution function i.e.  

 

 

𝑝(𝒙𝑘 , 𝑣𝑘|𝒚𝑘) = 𝛾𝑝(𝑦𝑠,△𝑘|𝑥𝑠,△𝑘)𝑝(𝑥𝑠,𝑘|𝑃𝑎(𝑥𝑠,𝑘),𝑣𝑠,𝑘) 

∏ 𝑝(𝑦𝑓,𝑘|𝑥𝑓,𝑘)

𝑚−1

𝑗=1,𝑗≠𝑠 

∏ 𝑃 (𝑥𝑓,𝑘|𝑃𝑎(𝑥𝑓,𝑘))𝑝(𝑣𝑓,𝑘|𝑣𝑓,𝑘−1)

𝑚−(𝑐+1)

𝑗=1,𝑗≠𝑠

 

  (4. 8) 
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𝒙̂𝑘 , 𝒗𝑘 = min
𝒙𝑘 ,𝑣𝑘

−[log𝑝(𝒙𝑘 , 𝑣𝑘|𝒚𝑘)]

= min
𝒙𝑘 ,𝑣𝑘

−[log𝑝(𝑦𝑠,△𝑘|𝑥𝑠,△𝑘) + log𝑝(𝑥𝑠,𝑘|𝑃𝑎(𝑥𝑠,𝑘), 𝑣𝑠,𝑘)

+ ∑ log 𝑝(𝑦𝑓,𝑘|𝑥𝑓,𝑘) + ∑ log𝑝 (𝑥𝑓,𝑘|𝑃𝑎(𝑥𝑓,𝑘))

𝑚−(𝑐+1)

𝑗=1,𝑗≠𝑠

𝑚−1

𝑗=1,𝑗≠𝑠

+ log 𝑝(𝑣𝑓,𝑘|𝑣𝑓,𝑘−1) + log(𝛾)] 

(4. 9) 

   

where the prior probability distribution of the source node is assumed to be uniform and is 

omitted from Equation (4. 9). Moreover, as per Assumption 2.3 and Equation (2. 41), the lab 

measurements 𝒚𝒔 is assumed to contain an observed and missing counterparts as 𝒚𝒔 =

[𝒚𝒔𝒐𝒃𝒔
  𝒚𝒔𝒎𝒊𝒔

 ].  Therefore, Equation (4. 9) can be further expanded as follows: 

 

 

min
𝒙𝑘 ,𝑣𝑘

−[log𝑝(𝒙𝑘 , 𝑣𝑘|𝒚𝑘)] = 𝒙̂𝑘 , 𝒗𝑘

= min
𝑥𝑘 ,𝑣𝑘

−[
(𝑦𝑠𝑜𝑏𝑠,△𝑘 − 𝑥𝑠𝑜𝑏𝑠,△𝑘)

2

2𝜎𝑦𝑠
2

+
(𝑥𝑠,𝑘 − 𝑣𝑠,𝑘 − 𝛽0,𝑠 − ∑ 𝑃𝑎(𝑥𝑠,𝑘)𝛽0+𝑝,𝑠

𝑁𝑃𝑎
𝑝=1 )

2

2𝜎𝑥𝑠
2

+ ∑
(𝑦𝑗,𝑘 − 𝑥𝑗,𝑘)

2

2𝜎𝑦𝑗
2

+ ∑
(𝑥𝑗,𝑘 − 𝛽0,𝑗 − ∑ 𝑃𝑎(𝑥𝑗,𝑘)𝛽0+𝑝,𝑗

𝑁𝑃𝑎
𝑝=1 )

2

2𝜎𝑥𝑗
2

𝑚−(𝑐+1)

𝑗=1,𝑗≠𝑠

𝑚−1

𝑗=1,𝑗≠𝑠

+
(𝑣𝑓,𝑘 − 𝑣𝑓,𝑘−1)

2

𝜎𝑣𝑓
2

]                                                                                                 

 

 

 (4. 10) 
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In this Equation (4.10), the past value of the newly introduced hidden state, 𝑣𝑠,𝑘−1, can be seen 

as an arrival cost-value, carrying all the past information of the drift to the current time instance, 

so the drifting state can be estimated accurately at present. Thus, analytical expressions to 

compute hidden state value of the slow-rate target node 𝑥𝑠,𝑘  is different, depending on the 

availability of lab data. Using first order optimality conditions (first order derivatives w.r.t. 

hidden states and drifting variable to be equal to zero), estimates of jth variable at k th sampling 

instant are obtained through the following analytical expressions given in Equation (4. 11) & (4. 

12). If the quality variable 𝑦𝑠, is observed i.e. △ 𝑘 ∈ {𝑘, 𝑘 + 𝐷, 𝑘 + 2𝐷 …. }, fast rate estimates of 

the quality variable is given by the following analytical expression 

 

 
𝑥𝑠𝑜𝑏𝑠,𝑘

 =

𝑦𝑠𝑜𝑏𝑠 ,△  𝑘 

𝜎𝑦𝑠
2 + ∑

𝛽𝑐,𝑠
 (𝛽0,𝑠 + ∑ 𝑃𝑎𝑝

(𝑥𝑠
 )𝛽0+𝑝,𝑠

𝑁𝑃𝑎 −1
𝑝=1

)
 

𝜎𝐶ℎ(𝑥𝑠)|𝑥𝑠
2 +

(𝒗̂𝑠,𝑘 + 𝛽0,𝑠 + ∑ 𝑃𝑎𝑝(𝑥𝑠,𝑘
 )𝛽0+𝑝,𝑠

𝑁𝑃𝑎
𝑝=1 )

𝜎𝑥𝑠 |𝑃𝑎(𝑥𝑠)
2  

𝑁𝐶ℎ
𝑐=1

𝛼𝑠𝑜𝑏𝑠

 
 (4. 11) 

 

If the quality variable 𝑦𝑠 is missing i.e. no lab sample is available, fast rate estimates of the 

quality variable can be obtained as follows 

 

 𝑥𝑠𝑚𝑖𝑠,𝑘
 =

 ∑
𝛽𝑐 ,𝑠

 (𝛽0,𝑠 + ∑ 𝑃𝑎𝑝(𝑥𝑓
 )𝛽0+𝑝,𝑠

𝑁𝑃𝑎−1
𝑝=1

)
 

𝜎𝐶ℎ (𝑥𝑠
)|𝑥𝑠

2 +
(𝒗̂𝑠,𝑘+𝛽0,𝑠 + ∑ 𝑃𝑎𝑝(𝑥𝑠,𝑘

 )𝛽0+𝑝,𝑠
𝑁𝑃𝑎
𝑝=1 )

𝜎𝑥𝑠 |𝑃𝑎(𝑥𝑠
)

2  
𝑁𝐶ℎ
𝑐=1

𝛼𝑠𝑚𝑖𝑠
  

 

 

(4. 12) 

Estimates of drifting random variable can be obtained from the following expression 

𝒗̂𝑠,𝑘  

 
=

𝑣𝑠,𝑘−1 
𝜎𝑣𝑠

2 +  
(𝑥𝑠 ,𝑘

 − 𝛽0,𝑠 − ∑ 𝑃𝑎𝑝(𝑥𝑠,𝑘
 )𝛽0+𝑝,𝑠

𝑁𝑃𝑎
𝑝=1 )

𝜎𝑥𝑠 |𝑃𝑎(𝑥𝑠)
2

𝛼𝑣𝑠

 

(4. 13) 
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where 

𝛼𝑠𝑜𝑏𝑠
= (

1

𝜎𝑦𝑠

2
+

1

𝜎𝑥𝑠|𝑃𝑎(𝑥𝑠)
2 + ∑

(𝛽𝑐,𝑠
2  )

 

𝜎𝐶ℎ𝑐(𝑥𝑠)|𝑥𝑠

2

𝑁𝐶ℎ

𝑐=1

)

 

 

 

 

(4. 14) 

 

𝛼𝑠𝑚𝑖𝑠
= (

1

𝜎𝑥𝑠|𝑃𝑎(𝑥𝑠)
2 + ∑

(𝛽𝑐,𝑠
2  )

 

𝜎𝐶ℎ𝑐(𝑥𝑠)|𝑥𝑠

2

𝑁𝐶ℎ

𝑐=1

)

 

 

 

(4. 15) 

 
𝛼𝑣𝑠

= (
1

𝜎𝑣𝑠
2

+
1

𝜎𝑥𝑠|𝑃𝑎(𝑥𝑠)
2

)

 

 
(4. 16) 

 

The rest of the drift-free hidden states with a fast-rate measurements will be computed through 

the analytical solutions in Equations (2. 73) & (2. 74).  

Remark 4.1. The variance 𝜎𝑣𝑠

2  of dynamic node can either be estimated from the validation data 

set or can be tuned. In this work, optimal value of 𝜎𝑣𝑠

2  is chosen by trial and error approach. 

Inference for sensor drift 

Since quality variable sample collection and further laboratory processing involves uncertainty in 

the final reported value, use of such measurements for bias update may result in inaccurate 

predictions. Thus, it is vital to account for drift in the lab measurements to improve the output 

prediction accuracy. For this scenario, measurement of quality variable is assumed to be drifting 

due to sensor issue, while its true state is assumed to have no effect of drift.  Therefore, this 

section aims at developing a Bayesian inference framework for estimating true hidden quality 

variable in the presence of drift in the sensor/lab measurements (𝒚𝒔).  
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The regular measurement model between jth measurement 𝑦𝑗 and its corresponding hidden 

variable 𝑥𝑗 (𝑖. 𝑒. Equation (2.2)) is now assumed to be corrupted with a colored noise (not a white 

noise) as given in Equation (4. 17), where 𝑘 is the current time stamp.  

 

𝑦𝑠,𝑘 = 𝑥𝑠,𝑘  
+

1

1 − 𝑞−1𝑒𝑠𝑦,𝑘 

 

(4. 17) 

Upon further algebraic simplification, Equation (4. 17) can be further written as:  

 𝑦𝑠,𝑘  = 𝑦𝑠,𝑘−△𝑘 + 𝑥𝑠,𝑘−𝑥𝑠,𝑘−△𝑘 + 𝑒𝑠𝑦,𝑘 (4. 18) 

where 𝑒𝑠𝑦 ,𝑘~𝑁(0,𝜎𝑠𝑦
)  

 

For notation simplicity, Equation (4. 18) can be further expressed as: 

 

𝑦𝑠,𝑘 = 𝑯𝒔,𝒌 
+ 𝑒𝑠𝑦,𝑘 

 

(4. 19) 

where 𝑯𝒔,𝒌 = [𝑥𝑠,𝑘   𝑥𝑠,𝑘−△𝑘  𝑦𝑠,𝑘−△𝑘 ] (4. 20) 

 

Also, the linear Gaussian model between hidden states for slow rate quality variable is expressed 

as: 

 𝑋𝑠,𝑘 = 𝑓 (𝑃𝑎(𝑋𝑠,𝑘)) + 𝑒𝑠𝑥,𝑘      ( 4. 21) 

where 𝑒𝑠𝑥,𝑘~𝑁(0,𝜎𝑠𝑥
)  

 

where the error terms, 𝑒𝑠𝑦   and 𝑒𝑠𝑥
 follow Gaussian distributions with zero mean and 

corresponding variances. Thus, using the updated measurement model of quality variable shown 

in Equation (4. 20), posterior probability of hidden states can be obtained from Bayes’ theorem 

as follows. 
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Thus, estimates of the hidden state variables at the k th sampling instant can be obtained by 

minimizing the negative logarithmic of posterior distribution function i.e.  

 

𝒙̂𝑘 = min
𝒙𝑘

−[log𝑝(𝒙𝑘|𝒚𝑘)]

= min
𝒙𝑘

− [log𝑝(𝑦𝑠,𝑘|𝑥𝑠,𝑘 , 𝑦𝑠,𝑘−△𝑘 , 𝑥𝑠,𝑘−△𝑘)

+ ∑ log𝑝(𝑦𝑗,𝑘|𝑥𝑗,𝑘) + ∑ log 𝑝(𝑥𝑗,𝑘|𝑃𝑎(𝑥𝑗,𝑘))

𝑚−𝑐

𝑗=1

+ log(𝛾)

𝑚−1

𝑗=1,𝑗≠𝑠

] 

(4. 23) 

 

Note: prior probability distribution term i.e. 𝑝(𝑥𝑐,𝑘|𝐼) is assumed to be uniform and omitted from 

Equation (4. 23). As it was assumed in previous sections, the lab measurements 𝒚𝒔 contains 

observed and missing counterparts and written as:   

 𝒚𝒔 = [𝒚𝒔𝒐𝒃𝒔
  𝒚𝒔𝒎𝒊𝒔

 ] (4. 24) 

Thus, Equation (4. 23) can be further expanded to the following expression,  

 

min
𝒙𝑘

−[log𝑝(𝒙𝑘|𝒚𝑘)] = 𝒙̂𝑘

= min
𝑥𝑘

− [
(𝑦𝑠𝑜𝑏𝑠,△𝑘 − 𝑦𝑠,𝑘−△𝑘 − 𝑥𝑠𝑜𝑏𝑠,△𝑘 + 𝑥𝑠,𝑘−△𝑘)

2

2𝜎𝑦𝑠
2

+ ∑
(𝑦𝑗,𝑘 − 𝑥𝑗,𝑘)

2

2𝜎𝑦𝑗
2

+ ∑
(𝑥𝑗,𝑘 − 𝛽0,𝑗 − ∑ 𝑃𝑎𝑝(𝑥𝑗 ,𝑘

 )𝛽0+𝑝,𝑗
𝑁𝑃𝑎

𝑝=1 )
2

2𝜎𝑥𝑗
2

𝑚−𝑐

𝑗=1

𝑚−1

𝑗=1,𝑗≠𝑠

] 

 

(4. 25) 

 

 
𝑝(𝒙𝑘|𝒚𝑘) = 𝛾𝑝(𝑦𝑠,𝑘|𝑥𝑠,𝑘 , 𝑦𝑠,𝑘−△𝑘 ,𝑥𝑠,𝑘−△𝑘   ) ∏ 𝑝(𝑦𝑗,𝑘|𝑥𝑗,𝑘)

𝑚−1

𝑗=1,𝑗≠𝑠

∏ 𝑝 (𝑥𝑗,𝑘|𝑃𝑎(𝑥𝑗,𝑘))

𝑚−𝑐

𝑗=1

 (4. 22) 



92 

 

Similar to previous formulation, △ 𝑘 represents the slow-rate sampling interval and 𝑘 −△ 𝑘 

represents the previous slow-rate sampling interval. Thus, using first order optimality (first order 

derivatives w.r.t. hidden states and missing measurement equal to zero), estimates of jth variable 

at k th instance are obtained through the following analytical solutions.  If the quality variable 𝑦𝑠 

is observed, 𝑦𝑠𝑜𝑏𝑠
: 

 
𝑥𝑠𝑜𝑏𝑠,𝑘

 =

𝑦𝑠𝑜𝑏𝑠 ,△𝑘 − 𝑦𝑠,𝑘−△𝑘 + 𝑥𝑠 ,𝑘−△𝑘  

𝜎𝑦𝑠
2 + ∑

𝛽𝑐,𝑠
 (𝛽0,𝑠 + ∑ 𝑃𝑎𝑝

(𝑥𝑠
 )𝛽0+𝑝,𝑠

𝑁𝑃𝑎 −1
𝑝=1

)
 

𝜎𝐶ℎ(𝑥𝑠)|𝑥𝑠
2 +

(𝛽0,𝑠 + ∑ 𝑃𝑎𝑝
(𝑥𝑠

 )𝛽0+𝑝,𝑠
𝑁𝑃𝑎
𝑝=1 )

𝜎𝑥𝑠 |𝑃𝑎(𝑥𝑠)
2  

𝑁𝐶ℎ
𝑐=1

𝛼𝑠 𝑜𝑏𝑠

 
 

     (4. 26)  

If the quality variable 𝑦𝑠, is missing, 𝑦𝑠𝑚𝑖𝑠
: 

 
𝑥𝑠𝑚𝑖𝑠,𝑘

 =

 ∑
𝛽𝑐,𝑠

 (𝛽0,𝑠 + ∑ 𝑃𝑎𝑝
(𝑥𝑠

 )𝛽0+𝑝,𝑠
𝑁𝑃𝑎−1
𝑝=1

)
 

𝜎𝐶ℎ(𝑥𝑠
)|𝑥𝑠

2 +
(𝛽0,𝑠 + ∑ 𝑃𝑎𝑝

(𝑥𝑠
 )𝛽0+𝑝,𝑠

𝑁𝑃𝑎
𝑝=1 )

𝜎𝑥𝑠|𝑃𝑎(𝑥𝑠
)

2  
𝑁𝐶ℎ
𝑐=1

𝛼𝑠𝑚𝑖𝑠

 
(4. 27) 

 

where the denominators are given in Equation (4. 14) & (4. 15) respectively. Remaining fast rate 

nodes without any drift can be obtained from the analytical solutions given in Equations (2. 73) 

& (2. 74). 

4.3 Conventional Bias update approach 

Adaptation of conventional soft sensors through bias correction is widely used approach. To 

explain this approach, let’s assume that 𝑦 is our quality variable to be predicted, and the 

estimated value, using any predictive modeling approach is denoted as 𝑦̂. Due to process drift, 

time dependency and nonlinearity of the process, estimated value may contain some degree of 

uncertainty and can be corrected through bias correction as given in Equation (4. 28). 

 𝑦̂ = 𝑓(𝒙,𝛼) + 𝒃𝒊𝒂𝒔 (4. 28) 
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where 𝒙 is the input variable vector, 𝛼 is the estimated parameter set 72 and model structures are 

assumed to be known. In Equation (4. 28), every time a new measurement 𝑦 is available, the 

adaptation technique can be used by updating the 𝒃𝒊𝒂𝒔 64, 74  as given in Equation (4. 29).  

 

 𝒃𝒊𝒂𝒔 = 𝑦 − 𝑓(𝒙, 𝛼) (4. 29) 

 

For this particular chapter, predictions of OLS soft sensor model are bias updated through 

Equation (4. 30). In this Equation, 𝑦̂𝑘𝑏𝑢
 is bias updated OLS output predictions, 𝑦̂𝑘 is the OLS 

estimate before bias update, 𝑏𝑘  is current bias,  𝑏𝑘−1 is bias computed at the previous at which 

lab samples are available and 𝑦𝑘 is slow-rate measurement of quality variable. 

 

                                                                 𝑦̂𝑘𝑏𝑢
= 𝑦̂𝑘 + 𝑏𝑘  

                                              𝑏𝑘 =  𝛼(𝑏𝑘−1) + (1 − 𝛼)(𝑦𝑘 − 𝑦̂𝑘) 

 (4. 30)                                        

 

The drawback of this approach is that the output predictions are corrected only when lab 

measurements are available and when the lab measurements are absent, old bias is used to 

correct current predictions. Additionally, the forgetting factor 𝛼 needs to be tuned effectively. 

Tuning 𝛼 is a critical step, since the output prediction accuracy mainly depends on this 

parameter. Effectiveness of this approach is further demonstrated through simulation study in 

section 4.4 of this chapter.   

4.4 Simulation study 

Performance of the proposed adaptive approach is demonstrated on the same flow-network 

problem 41 in section 2.5.1. To compare the efficacy of AMR-BN-SS to bias updated OLS, for 

the simulation studies, average root mean squared error (ARMSE) is computed as given in 
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Equation (2. 75), based on 10 realizations with 800 samples for each realization. OLS model is 

bias updated through Equation (4. 30) for fair comparison with the proposed approach, which 

also utilizes available lab measurements to make better predictions.  

4.4.1 Simulation study: flow-network problem 

Description of the flow network system and its operating conditions can be referred from section 

2.5.1. In this section, given all the input variables, quality variable 𝑋4 will be predicted. 

Following three scenarios are considered: 

i. Multi-rate lab data in the presence of process drift  

a. Process drift generated through random walk model  

b. Process drift generated through sudden changes i.e. step changes 

ii. Multi-rate lab data in the presence of sensor drift  

a. Sensor drift generated through slow monotone change 

Process drift through random walk model 

Initially for carrying out parameter learning, 2200 process samples were generated under steady 

state conditions without any drift in the quality variable (𝑋4). Since the problem was formulated 

through random walk model, drift was generated first through the same model in the 800 samples 

of validation data set for variable 𝑋4. Figure 4. 2 shows the drifting variable 𝑋4 (in blue) and its 

corresponding measurement 𝑌4 (in red). Figure 4. 3 illustrates comparison of different adaptive 

approaches. Note that for bias updated OLS approach, forgetting factor is chosen to be 𝛼 = 0.4. 

From Figure 4. 3 it can be observed that the predictions obtained by AMR-BN-SS accurately 

tracks the drifting quality variable (𝑋4) compared to bias updated OLS. Also, from ARMSE 

values shown in Table 4. 1, it is evident that the proposed approach has lower ARMSE. Further, 
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Table 4. 2 demonstrates the sensitiveness of bias updated OLS approach to the choice of 

forgetting factor 𝛼; thus, efficient tuning of this parameter is essential.  

 

Figure 4. 2: Added process drift  

 

Figure 4. 3: Performance of different soft sensors 
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Table 4. 1: ARMSE values 

 

𝛼 0.0001 0.005 0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.99 

RMSE of bias 

updated OLS 
0.4520 0.4506 0.4492 0.4252 0.4018 0.3834 0.3725 0.3729 0.3906 1.0310 

 

Table 4. 2: ARMSE values of the bias updated OLS with different forgetting factor 

 

Process drift through step changes 

In this sub-section, the same 2200 training data set for the previous trial was considered and 

sudden drift or step changes were introduced in the 800 samples of 𝑋4 validation data set.  

Figure 4. 4 shows the drifting variable 𝑋4 (in blue) and its corresponding measurement 𝑌4 (in 

red). Figure 4. 5 compares performances of different adaptive approaches. In this simulation 

example, forgetting factor of bias updated OLS approach is 𝛼 = 0.5. From Figure 4. 5, one can 

see the advantage of the proposed approach, where it is much faster to catch up the sudden 

changes in the process, compared to the bias updated OLS predictions. This is due to the slow-

rate lab measurements for OLS model. OLS predictions are corrected only when new lab 

measurement arrives. On the other hand, the proposed approach does not only depend on the 

Target 

variable 

ARMSE adaptive 

MR-BN-SS 

ARMSE bias 

updated 

OLS 

𝑋4 0.1424 0.3725 
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slow-rate lab measurements, it also takes the remaining input variables and the covariance of the 

hidden states into account, which causes the proposed approach to give accurate predictions 

faster or not long after sudden process change. Figure 4. 6 zoomed into the different adaptive soft 

sensor performances graph and illustrates the profile over the first step change. As it can be 

observed from this figure, AMR-BN-SS is adapting to the change faster, compared to the bias-

updated OLS, which is taking some time to finally come close to the real value.  Also, from 

ARMSE values reported in Table 4. 3, it is evident that the proposed adaptive approach has 

lower ARMSE. Further, Table 4. 4 demonstrates the effect of different values of forgetting factor 

𝛼 to the bias updated OLS soft sensor predictions.   

 

Figure 4. 4: Added process drift profile 
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Figure 4. 5: Performance of adaptive MR-BN soft sensor in fast-rate 

 

 

Figure 4. 6: Performance of different soft sensors zoomed 
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Table 4. 3: ARMSE values 

 

𝛼 0.005 0.01 0.1 0.2 0.3 0.4 0.5 0.6 

RMSE of bias 

updated OLS 
1.0139 1.0136 1.0205 1.0586 1.1306 1.2397 1.3919 1.5975 

 

Table 4. 4: ARMSE value estimates of the bias updated OLS with different forgetting factor 

Sensor drift 

In this scenario total of 2200 samples were generated without drift and artificial slow change or 

monotone drift shown in Figure 4. 7 is added to the validation data set (samples from 2200 to 

3000) of the measurement 𝑌4. From this figure, one can distinguish between the drifting 

measurement (in red) and the true drift-free state (in blue). Since it is assumed that drift is only in 

the measurement, the corresponding hidden state 𝑋4 is within its normal operating range. From 

Figure 4. 8, the performance comparison of different adaptive modeling approaches, and Table 4. 

5 (calculated ARMSE), it is observed that if sensor-drifted measurements are utilized to bias 

update OLS predictions, it can lead to poor performance. Whereas, with the proposed adaptive 

approach, sensor drift is able to be captured by the newly introduced colored noise model 

resulting in accurate output predictions with much lower ARMSE.  

Target 

variable 

ARMSE adaptive 

MR-BN-SS 

ARMSE bias updated 

OLS 

𝑋4 0.3083 1.3919 
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Figure 4. 7: Added sensor drift 

 

Figure 4. 8: Performance of different soft sensors 
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Table 4. 5: ARMSE values 

 

4.5 Conclusion 

Adaptive approaches are necessary when the developed soft sensor is ready for online 

implementation. This could be due to two reasons, a process drift or a sensor drift. In the 

literature, moving window based, recursive and classical bias update approaches are utilized to 

adapt to the drifting process. However, some of these methods are computationally intensive or 

the bias update approach for OLS is only updated when there is a new lab measurement 

available. Through the simulation studies, it was shown the accurate selection of forgetting factor 

is essential for this approach. To overcome these challenges, two separate formulations are 

proposed in this chapter, assuming that the cause of drift is already known. Efficacy of the 

proposed approaches are demonstrated through simulations and proven to be performing better 

than the conventional bias updated OLS under different types of drift. It will be interesting to 

further apply the process drift formulation on actual industrial application and test efficacy of the 

proposed approach on industrial data.   

 

 

 

 

Target 

variables 

ARMSE adaptive 

MR-BN-SS 

ARMSE bias updated 

OLS 

𝑋4 0.2452 2.7951 
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Chapter 5  

Conclusions 

5.1 Summary of thesis research 

This thesis developed a new framework for soft sensing based on popular probabilistic graphical 

model, namely Bayesian networks, which aims to solve common data pre-processing issues as 

well as problems that arise during soft sensor online implementation stage and motivated to 

deliver a complete solution. Summary and conclusions of the three objectives considered in the 

work are listed in detail as follows:    

 Multi-rate Bayesian network soft sensor for noisy data (Chapter 2): This Chapter 

addresses common issues that are faced during off-line soft sensor development stage 

such as noisy, multi-rate data and completely missing data. A Bayesian network soft 

sensor problem is formulated for down-sampled and multi-rate data, and analytical 

solutions are provided. In addition to this, we investigated the possibilities of developing 

different Bayesian network structures for the same batch of data. From the analysis of 

simulation and industrial data set results, we have observed that multi- layered BN 

structure based soft sensor are able to perform the best due to incorporation of prior 

process knowledge. Meanwhile, BN based soft sensors can be constructed based on a 

two-layered BN structure. In this case, no prior process knowledge is necessary and 

utilization of this approach will be as simple as constructing OLS soft sensors. Yet, two-

layered BN based soft sensors are able to perform better than the popular OLS or PLS 

approaches due to its probabilistic nature to estimate measurement noise statistics.   
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 Robust Multi-rate Bayesian network soft sensor (Chapter 3): We further extended 

our work and looked at the input and output outliers in Chapter 3. This is a common 

problem that we face during off-line soft sensor development stage. Robust MR-BN-SS 

is capable of handling not only outliers, but also data pre-pressing issues addressed in 

previous chapter and analytical solutions are also derived in this chapter. Outliers are 

modeled in this chapter through the use of t-distribution and handled through the 

probabilistic framework systematically. From the simulation and industrial applications, 

it is observed that the proposed RMR-BN-SS is able to outperform the existing popular 

ROLS approach at different percentages of input/ output outliers.  

 Adaptive multi-rate Bayesian network soft sensor (Chapter 4): In this, we addressed 

the issue of drift, which is a common problem during online soft sensor implementation 

stage. Here, only the output prediction step of MR-BN-SS was reformulated to account 

for the process or sample drift. A process drift, which reflects time dependency of the 

variables, is formulated through dynamic BN structure by introducing additional time-

dependent node into the static BN structure of parameter learning step. On the other hand, 

sensor drift was formulated simply through static BN structure with assumed colored 

noise model. Analytical solutions are provided for the Bayesian inference step. From the 

simulation studies, it is evident that the proposed formulations are appropriate for 

adapting BN based soft sensor to a drifting data. Due to the probabilistic framework 

AMR-BN-SSs handle both sensor and process drift well, resulting in accurate predictions 

compared to the conventional bias updated OLS soft sensors.  
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From the simulations and industrial applications presented in this thesis, we can clearly observe 

the potential of probabilistic framework for developing soft sensors. The proposed approaches 

were always able to outperform the compared conventional soft sensors. Moreover, the 

flexibility of BN based soft sensors were demonstrated through two different BN structures. In 

which, multi- layered BN structured based soft sensors showed great potential to predict with 

greater accuracy. Exploring the possibilities of constructing different BN structures for a given 

problem and further analyzing their performances will be an interesting direction to go from this 

point.   

5.2 Direction of future work  

1) One of the interesting directions to take from here is to explore different BN structures 

and propose a systematic approach to construct an optimal BN structure for a given 

problem. Surely, core of the problem will be a tradeoff between computational 

complexity and prediction accuracy of developed BN based soft sensors. Therefore, one 

can extend this work into exploring different possibilities. 

2) The assumption of this thesis is that all the variables are continuous and the problem is a 

single mode process. Practically, chemical process is usually multi-model; thus, one can 

extend this work to develop bank of BN based soft sensors for multi-mode problem. In 

this case, there will be addition of a discrete node, a scheduling variable, through which 

different modes will be identified. For the flow-network problem discussed in the 

simulation, the split ratio is kept constant, making the problem single mode. If we 

introduce a discrete node for this variable and assume it to be varying, the problem will 

be multi-model.  
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3) The BN structures are static in this work (except for the adaptive MR-BN-SS for process 

drift). One can make this BN structure dynamic, assuming all the variables are time 

dependent. In reality, process variables are time dependent; thus, this change will make 

the problem more realistic.  

4) Moreover, the prior information of the source node was assumed to be uniform 

throughout the derivation, this information can also be utilized to improve output 

predictions.  

5) Parameter learning was done by using EM algorithm. One can try different algorithms 

such as VB. This will assign distributions to the parameters and one can also utilize prior 

information of parameters.   

6) In this thesis, output predictions are instantaneous and bias update was done whenever 

the newly available lab data is available. The assumption is that these values are arriving 

without any delay. However, in practice, newly arriving lab values have a time delay, 

meaning it is the information of the past; therefore, these are not utilized to make current 

instantaneous predictions. So, to account for this lab delay, one can attempt to implement 

window based inference with window size of N, which is bigger than the known lab 

delay. This way, newly coming lab measurements can be placed in the current window 

and this information can be utilized to make better prediction at the current instance.  
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Appendix A 

Appendix to Chapter 2   

 

Approach True  
down-sampled  

BN-SS 

multi-rate  

BN-SS 


1y
 0.010 0.015 0.0091 


2y
  0.004 0.117 0.0032 


3y
 0.001 0.074 0.0012 


4y

 0.420 0.554 0.566 


5y
 0.001 0.00061 0.00097 


6y

 0.01 0.0036 0.0034 

 

Table 2. 11: Comparison of noise variances true and estimated values 
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Approach True 
down-sampled  

BN-SS 

multi-rate  

BN-SS 


2X
 0.00004 0.0012 0.0012 


3X
  0.00001 0.0017 0.00032 


4X

 

 

0.00005 0.0012 0.0037 


5X
 0.00001 0.00041 0.00034 


6X
 0.0001 0.00041 0.0033 

 

Table 2. 12: Comparison of true and estimated hidden noise variances 

  

Approach True 
down-sampled  

BN-SS 

multi-rate  

BN-SS 

𝛽1 
0 -0.29 0.0034 

𝛽2 
1 1 1 

𝛽3 

 

0 -0.05 0.0018 

𝛽4 
1 1 1 
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𝛽5 
1 1 1 

𝛽6 
0 -0.66 -0.50 

𝛽7 
0.64 0.65 0.65 

𝛽8 
0 0.28 1.01 

𝛽9 
1 1 1 

𝛽10 
0 0.73 0.5 

𝛽11 
0.36 0.35 0.35 

 

Table 2. 13: Comparison of true and estimated parameters 
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Appendix B 

Appendix for Chapter 3 

 

Approach True value RMR-BN estimates 


1y
 0.0409 0.0384 


2y
 0.0164 0.0142 


3y
 0.0052 0.0050 


4y

 0.4117 11.3031 


5y
 0.0052 0.0044 


6y

 0.0376 0.0187 

 

Table 3. 7: Comparison of noise variances true and estimated values 
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Approach True value R- MR-BN estimates 


2X
 0.0002 0.0030 


3X
 0.0001 0.0006 


4X

 

 

0.0002 0.0116 


5X
 0.0001 0.0009 


6X
 0.0004 0.0105 

 

Table 3. 8: Comparison of true and estimated hidden noise variances 

 

 

Approach True value RMR-BN estimates 

𝛽1 0 0.0028 

𝛽2 1 0.9999 

𝛽3 

 
0 0.0072 

𝛽4 1 1.0000 

𝛽5 1 1.0000 
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𝛽6 0 -0.4965 

𝛽7 0.64 0.6449 

𝛽8 0 -0.0029 

𝛽9 1 1.0000 

𝛽10 0 0.4987 

𝛽11 0.36 0.3550 

r - 
0.8907 

 

 

Table 3. 9: Comparison of true and estimated parameters 

 


