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Abstract

In order to enhance bitumen recovery from deeply bedded oilsand
formations, electrically preheating the oilsand with radio-frequency guided
clectromagnetic energy to reduce its viscosity has been suggested. Prior
investigations done in the AEL (Applied Electromagnetics Laboratory) in
the Electrical Engineering Department at the University of Alberta have
identified horizontal electrode placement as a preferred geometry. This
scomelry car. ve closely approximated by a parallel-plate waveguide. For
waveguides longer than a fraction of the guided wavelength. standing wave
effects will occur which lead to non-uniform ohmic heating patterns that are
destructive to efficient bitumen recovery. If a region around each electrode
(modelled as a layer in the waveguide) is depleted of moisture, then two
important effects occur. Firstly, the typical TEM standing wave pattern
associated with a homogeneously loaded waveguide disappears and an
interleaving of different electric field components creates a more uniform
clectric field (and heating) distribution within the moisture-saturated region
of the waveguide. Secondly, the depleted region acts to increase the guided
wavelength and decrease the wave attenuation, resulting in deeper energy
penetration, thereby allowing larger volumes of oilsand to be effectively
heated. By proper termination of the parallel-plate waveguide and close
examination of its analytic field solution, it has been found that the efficiency
of the energy placement in the oilsand formations and thus, overall bitumen
recovery, may be improved.

Research conducted at the University of Alberta has also shown that,
under certain conditions, the familiar TEM transmission line equivalent
circuit can in fact be used to describe the non-TEM wave behaviour of the

parallel-plate waveguide under study. An investigation of this initial



discovery and its application to the aforementioned waveguide heating

problem is alse given.
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1. Background and Problem Identification

1.1 General Background

Of the 2100 billion barrels of oil contained in oilsand formations in
the world today, 980 billion barrels are resident in Alberta.! The bulk
(approximately 78%) of the comparatively moist Alberta oilsand lies below
150m of overburden and cannot be readily surface mined. It is generally
sandwiched between layers of watersands and shale. At the average in-situ
temperature of 10-15°C the oil is very viscous. The oilsand also has fow
thermal conductivity and permeability and, therefore, cannot readily
transport heat. This renders conventional steam and fluid injection
recovery methods relatively ineffective. Since the viscosity of the oil
decreases rapidly with an increase in temperature (a rise in temperature
from 15°C to 100°C reduces viscosity from 100 centipoise to several
hundred centipoise), preheating the oilsand prior to steam or fluid injection
recovery has been proposed. Converting electrical energy to heat the
formation is an obvious possibility. Two approaches to electrical precheat
have been considered: low frequency (60 Hz and below) and radio-
frequency (generally greater than a few hundred kilohertz) electromagnetic

methods.
1.2 Electromagnetic Heating
1.2.1 Heating Mechanisms

Given a volume of material subjected to a time-harmonic

electromagnetic field, two kinds of current are generated. Current that is in



time-phase with the applied electric field is classified as conduction current,
while current that is in time-quadrature with the applied electric field is
known as displacement current. If the conduction current is greater than
the displacement current, the material is termed a conductor. If the
displacement current dominates, the material is termed a dielectric.
Because electrical heating of a material is solely dependent on conduction
cuirent, the present interest in heating oilsand requires study of the
conduction current within the oilsand.

For any given material, the conduction current density is related to
the applied electr:c field by

J=cE
where ¢ is the conductivity of the material, J is the current density ana E
is the electric field strength. In general, two mechanisms contribute to the
conductivity of a substance. If the substance contains free charge carriers,
as in the form of ions in water, then the applied electric field will
accelerate the ions whose collisions with other molccules will increase the
random thermal motion, and thus increase the temperature of the material.
If the material contains polar molecules, the application of an electric field
will tend to turn and align the molecules with the field against rotational
friction. Turning of the molecules dissipates energy as heat and, therefere,
also results in an increase in temperature of the materiai.

The water-wet Athabasca oilsands have a conductivity which is
dependent on both ionic and polarization contributing factors. At lower
frequencies (<1MHz), the conductivity of the oilsands is mainly due to
ionic conduction in the connate water. However, at frequencies above about

10 MHz, it has been found that losses due to polarization of the ions in the



connate water are dominant.

Depending on the contribution to the conductivity of a material by
each of these mechanisms, an optimal frequency of operation for heating
may generally be chosen. Materials exhibiting low ionic conductivity but
containing polar molecules, can generally be heated effectively with high
frequency electromagnetic energy. On the other hand. materials with high
ionic conductivity would generally be heated most effectively with low

frequency electromagnetic energy.

1.2.2 Low Frequency Methods

Initially, 60 Hz methods were considered for oilsand preheating,
mainly due to the ready availability of large amounts of power at this
frequency. These methods usually involve placing electrodes into or near
the formation to be heated. This method however, may exhibit highly non-
uniform current distributions, mainly near the electrodes. where the high
current densities tend to drive off the connate water in the oilsand. Since
the connate water present is responsible for the curres: passage in the
oilsand, the depleted regions near the electrodes art to effectively decouple
the formation and prevent further heating. nit::: a very short time after
power is first applied. Several methods hav: *x..a devised to resolve this
problem, such as pressurizing the electrode-::isand interface to increase the
water vapourization point or pumping fluid down to cool the electrode and

replace the lost formation moisture.2

1.2.3 High Frequency Methods

Pioneered by the Illinois Institute of Technology Research Institute

W



(II'TR 1), radio-frequency methods have gained considerable attention
recently. The IITRI group used electrode configurations that were excited
at frequencies greater than 1 MHz to heat in-situ, the low moisture, low
electrical conductivity oilsand formations found in Utah.3
The Utah oilsands are dry and exhibit very low electrical

conductivity at frequencies below a few hundred kilohertz. This translates
to low wave attenuation and deep, uniform energy deposition in the
formation at low frequencies. However, the power dissipated within the
formation per-unit-volume is given by

olE?
where o is the formation conductivity and E is the rms electric field
strength. Theiefore, at low frequencies, extremely large tields must be
excited in the formation in order to heat the formation in a reasonable
length of time. The electrical conductivity of these low-moisture oilsands,
however, increases with frequency.4 By operating at relatively high
frequencies, the electric field strength can be reduced without diminishing
the power dissipated. The IITRI scheme operated at frequencies sufficiently
high that the length of the guided wave excitor was comparable to the so-
called electrical skin-depth5 given by

=4/ —
nflo

The Alberta oilsands are of high moisture content and as a result the

electrical conductivity is relatively large and the skin depth is often less
than a few metres at high frequencies. Overcoming this limited depth of
penetration is a major hurdle to the successful application of radio-
frequency picheating to the Alberta oilsands.

The Electrical Engineering Department at the University of Alberta

has identified three possible schemes of heating high loss oilsand using



horizontal transmission lines in the formation to be heated (sce Figure 1)
These schemes effectively increase the depth of penetration of the
electromagnetic energy, thus allowing large channels of oilsand to be
heated.

The first method, termed partial evaporation boring, uses an
appropriate frequency and power level to dry out a small cylindrical shell
around each transmission line conductor by applying radio-frequency
power to the line. Each transmission line consists of two conductors, one
placed vertically above the other in the formation as shown in Figure 1.
The drying initially begins near the power feedpoint and progresses down
the line. The result is an effective gradual decoupling of the two electrodes.
thus permitting deeper and deeper penetration of wave energy into the
formation. This scheme is sometimes referred to as electromagnetic flood
heating or simply as EMF.0

The second approach, referred to as production controlled heating,
operates in a manner similar to partial evaporation boring. Here however,
the bottom electrodes are perforated hollow tubes designed to collect and
produce bitumen that once having been heated, drains by gravity towards
the lower wells. A reduced power level is used to heat the oiisand to
temperatures below the steam point so as to promote a depletion region
around the upper electrodes primarily due to bitumen drainage and not due
to moisture evaporation. The draining bitumen may then be recovered
from the lower wells by conventional techniques. An advantage of this
method over the other two is that the oil is collected as the formation is
being heated. No other recovery methods are necessary subsequent to the

electrical heating process.
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The final method is again similar to the above ones, but instead of
using electromagnetic energy to create a depletion region, one or both of
the electrodes of each electrode pair are precoated with a dielectric
material. This partially decouples the transmission line trom the formation
and allows immediate deep uniform energy penetration into the formation.

All of the above methods, when viewed in cross-section, result in a
region surrounding each electrode that is of lower electrical conductivity
than the bulk of the formation, as suggested by Figure 2. For arrays of
transmission lines situated side by side, the overall configuration may be
approximated by a parallel-plate waveguide with a two-layer medium
between the plates, the upper layer being the moisture-free depleted region
with low conductivity, and the lower layer being the high conductivity
water-wet oilsand, as illustrated in Figure 3. In actuality, depending on
which of the three previously discussed heating schemes is used, the region
between the plates may be divided into three layers: a dried-out layer ncar
each electrode and the moisture-saturated region in-between. A solution fcr
this configuration can be obtained from the solution to the two-layer model
by noting the line of symmetry which runs along the waveguide at the
midpoint between the plates. The problem may be divided into two
identical parts which may be solved by the two-layer model. The two-layer
model of Figure 3 may be used as a model to study RF heating to
determine if it is a possible and viable means of economically preparing
deeply bedded oilsand payzones for further oil recovery. The great depth
of penetration effected by the introduction of a depleted fayer mto the
parallel-plate geometry allows much larger volumes of oilsand to be heated

much more uniformly than would otherwise be possible.



moisture rich oilsand

moisture depleted oilsand

Figure 2. Cross-sectional view of a single electrode surrounded by
an insular region of depleted oilsand.
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configuration.



1.2.4 Heating Uniformity of Standing vs. Travelling Waves

Research done in the Applied Electromagnetics Laboratory has
investigated the use of forward travelling waves as the energy source for
radio-frequency heating of oilsand formations. For horizontal electrode
pairs whose lengths are comparable to or less than the ‘effective’ skin depth
of the guided wave, highly uniform axial power deposition can be achieved
by utilizing a mat.!=d load to terminate the electrode pair and thereby,
eliminate or minimize wave reflections. Such an approach is not, however,
necessarily cost effective. For example, consider the case of a matched load
connected to a transmission line of length comparable to the skin depth of
the guided electromagnetic wave. As the heating proceeds, system
properties, such as the saturated oilsand conductivity change with
temperature and affect other parameters such as the transmission line
characteristic impedance. Consequently, the matched load would require
retuning. This would likely require physical access to the load through an
additional mine shaft, a costly further expense.

On the other hand, open or short-circuit waveguide terminations,
which would result in a standing wave field distribution along the
electrodes, could be impiemented for a relatively low or no additional cost.
At first appearance this would seem to be self-defeating, for a typical
standing wave pattern would normally create undesirable non-uniform
heating. However, the presence of an axial field due to the layered medium,
creates an additional axial electric field standing wave pattern which
interleaves with the transverse electric field standing wave pattern and is

shifted one-quarter wavelength spatially with respect to the latter, as
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iliustrated in Figure 4. The field distributions shown were computed at
x=13.2m for a waveguide as illustrated in Figure 3 with properties:
a=15m, d=13.5m, 6,=10" S/m, pi=po, £1=11-€0, 02=10° S/m, pr=piy, €2=3-€0
This interleaving tends to even out the overall heating pattern along the
length of the waveguide.

The potential for uniform formation heating and substantial cost
saving of the standing wave system configuration over the travelling wave

configuration is a major motivation for the work described in this thesis.

1.3 Transmission Line Equivalent Circuit

A preliminary analytical investigation of the fields of the parallel-
plate waveguide loaded with a layered medium was conducted by R. G.
McPherson.’ A notable result was that a lumped element TEM (transverse
electromagnetic, no axial fields) equivalent circuit could be used to
calculate the propagation constant even for waveguide configurations with
large axial field components, provided the plate separation was not too
large. A very desirable feature of the transmission line solution was a
closed form expression for the axial propagation constant in terms of the
basic physical system parameters. This permitted calculation of the
dominant mode propagation constant for a given waveguide configuration
quickly and effortlessly. Further, knowledge of the propagation constant
allowed easy calculation of the axial power deposition along the guide for a

forward travelling wave.

1.4 Research Objectives
The research presented involves detailed examination of the modified

standing wave ohmic heating pattern in the two layer medium between the
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parallel-plate transmission line. Short and open-circuit waveguide
terminations will be used to create the standing wave effects. In addition, a
more rigorous investigation will be made of the TEM distributed
impedance circuit than that conducted by McPherson.” The ability of the
TEM distributed impedance circuit to predict the wave propagation
constant and thus, the axial power deposition within the waveguide under
certzin conditions, will also be studied. Also, it will be closely con:pared to
results obtained from the application of a small argument condition to the
exact solution of the boundary value problem posed by the 2-layer medium

parallel-plate waveguide configuration.

13



2. Discussion of Field Solutions

2.1 General

As mentioned earlier, the desired formation electrode configuration
can be readily modelled by a parallel-plate transmission line loaded with a
2-layered medium, the upper layer representing the moisture-depleted
oilsand and the lower layer representing the moisture-saturated oilsand. To
obtain accurate results, it is essential to use system parameters
representative of actual in-situ heating configurations. The inherent
horizontal wellbore geometry, as shown in Figure 1, could be accurately
modelled by a parallel-plate waveguide of infinite width, or practically
speaking, a very large width in comparison with the plate separation. With
all electrode pairs excited in phase, no field variation would occur across
the width of the waveguide. Consequently, no y-dependence would appear
in the field solution. To ensure a reasonable amount of axial field variation.
the waveguide length from the source to the load was generally chosen to
be one to two guided wavelengths, and thus ranged from as low as 50m to
over 1000m. Present drilling technology allows horizontal wells of up to
1000m length to be drilled. Table 1 gives the relevant geometrical
dimensions of the waveguide configuration as they are illustrated in Figure
3.

The electrical properties of the media in between the parallel-plates
were also carefully chosen to approximate the actual properties of oilsand.
Both layers were accurately modelled as exhibiting both conductive and
dielectric behaviour. The actual electrical properties were obtained from

data collected at the Applied Electromagnetics Laboratory at the University



SYSTEM
PARAMETER

Saturated Region
Conductivity 6

Depleted Region
Conductivity 63

Saturated Region
Dielectric Const:nt €4

Depleted Region
Dielectric Constant €4

Magnetic
Permeability 1, &,

Plate Separation 'a’

Saturated Region
Thickness 'd’

Frequency

Waveguide
Length

properties.

VALUE

102-10™ S/m

10 S/m

11-g0

3-€0

10-80m

1.5-14.995m

50kHz - 3MHz

A-20

Table 1. Summary of the waveguide system
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of Alberta and were values typical of Athabasca oilsand. i} the syste
parameters used in this investigation are summarized in Tabie 1.

To create a data base of heating behaviour of oilsand, heating cros.-
sections were calculated for different combinations of plate separations,
region thicknesses, electrical conductivitia~, svaveguide lengths and
frequencies of operation. The remaining system: parameters, such as the

magnetic permeability and the dielectric constants, were held fixed.

2.2 The Equivalent Circuit Approach

The main purpose of this research was to analyze the resistive
heating behaviour in the parallel-plate waveguide to show that large
volumes of oilsand could be fairly uniformly heated with radio-frequency
power. Before the resistive heating could be studied, knowledge of the
electromagnetic fields present in the waveguide was necessary. In order to
gain some initial insight into the problem, analysis began with the
development of an approximate solution. Following McPherson8, the
simplest model to consider was the familiar transmission line equivalent
circuit model which is based on a TEM field pattemn and is shown in Figure
5. The actual field pattern in the waveguide is not of the TEM form but,
subject to certain system constraints (to be discussed later), the simple
equivalent circuit transmission line model has been found to accurately

predict the wave propagation constant, k.

2.2.1 Development of the Equivalent Circuit
The following is the derivation of the transmission line model.

Figure 5 shows the inhomogeneously loaded parallel-plate waveguide and
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Figure S. The TEM transmission line equivalent circuit for the
parallel-plate waveguide configuration shown.



the corresponding equivalent circuit. This circuit is based on modelling
each medium with a parallel resistor(R)/capacitor(C) component
combination and modelling the line inductance as two series
inductances(L/2).

The shunt impedance per-unit-length of waveguide is given by
- d o (ad)
*(o1+jwe)b  (Oa+jwex)b
(where b is the plate width and is equa! to one metre) from which the shunt

admittance can be found using

y=1
S Zs

The series reactance per-unit-length is
joL=jou()
From transmission line theory, for perfectly conducting plates, the

propagation constant y=o+jB, is given by

v2=ijYs="§“=-k§

s

Substitution of the expressions for Z and joL into the above

equations results in the final expressiun for k,

jopr(o+jwe)( %)

kz:z:' 2=- +j 22
Ve s eenE)

(G2t+jwez)d

This is the final expression for the propagation constant k, as a
function of physical system parameters. With its calculation, important
quantities such as the wave attenuation a and the phase constant  are

known.
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2.3 The Analytic Field Solution

2.3.1 General

The preceding result is a first order solution and is meant to
approximate the axial field behaviour in the waveguide. However, to
thoroughly study the exact field behaviour, derivation of the analvtic
solution is required. Then, comparisons could be made with the first order
transmission line solution. As a first step, the forward travelling wave
solution is sought. This corresponded to the case of a matched load
termination of the waveguide. Then, the standing wave field solutions
corresponding to open and short-circuited waveguide terminations, as
mentioned in section 1.2.4, are obtained. These were viewed as the
superposition of forward and reverse travelling waves on the transmission
line combined so as to obey the appropriate waveguide load boundary
conditions. The solution procedure follows Harrington's approach9 of
solving the vector Helmholtz equation for the vector potentials from which

the electric and magnetic field expressions are finally determined.

2.3.2 Derivation of the Vector Helmholtz Equation

Maxwell's equations may be stated in phasor form as

VxH=(o+jwe)E ila]
VxE=-jopH [ 1]
V.E=() [Ic]
V-H=0 [1d]

Any vector with zero divergence is the curl of some other vector.
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This leads to the definition of a magnetic vector potential A and an electric

vector potential F, which can be related to the fields by the relations
VxA=H [2a]
VxF=-E [2b]

From now on only the magnetic vector potential A will be used in the
derivations. Since A and F are duals, derivation for one will automatically
apply to the other. (Note: The negative sign introduced in [2b] is for later
convenience.)

Substituting H=VxA into the second of Maxwell's equations[1Db] gives

-VXE=jop(VxA) [3a]
or
Vx(E+jopA)=0 [3b]
By a vector identity, any vector whose curl is zero is the gradient of
some scalar, so
E+jouA=-Vo (4]
where @ is defined as the electric scalar potential.
Substituting equation [4] and [2a] into the first of Maxwell's

equations [la] yields

VxVxA=-(6+jwe) jopLA+V D) (5]
Defi.iing -jop(o+joe)=k* and using the identity
VxVxA=V(V-A)-V2A [6]
in equation [5] results »
V(V-A)-V2A-k*A=-(c+joe) VO (7

V-A has not yet been specified. To simplify equation [/] use
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V-A=-(c+jwe)d 8]
This leaves the equation
V2A+k?A=0 (91
This is the Vector Helmholtz equation for the magnetic vector

potential A. Because A and F are duals, an identical equation applies to the

electric vector potentia! F. In general, any field pattern can be expressed in

terms of a superposition of fields derived from A and F.

2.3.3 Derivation of the Analytic Field Expressions
An equation has now been derivea om which the magnetic - -
electric vector potential (A or F) for an electromagnetic problem can be
obtained. It remains to find a general relationship between these potentials
and the electric and magnetic field intensities E and H for a z-travelling
wave in the waveguide configuration shown in Figure 3.
In a problem where the region is bounded, one can represent the
field in terms of A or F or both, regardless of the actual source.
From the first two Maxwell equations, [1a] and [1b], the ficlds are
given by
E=(VxH)/(c+jnE)
and
=-(VxE)/jop
where substitution of H=VxA and E=-VxF, results in the following
equations
=(VxVxA)/(c+jwe)
and
H=(VxVxF)/jou

Adding the contributions to E and H from both A and F, gives the
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fields due to both the electric and magnetic vector potentials
E=-VxF + (VxVxA)/(c+jwE) [10]
H=VxA + (VxVxF)/jou [11]
for a bounded source-free region.

If F=0 and A=¥.7 are chosen as the potential functions, where ¥ is a
scalar and 7 is a unit vector in some given direction, then evaluation of the
above expressions yields fields which are TM (transverse magnetic) to .
Similarly, if A=0 and F=¥ 7 are chosen, the resulting fields are TE
(transverse electric) to a.

In order to minimize the possibility of searching for non-existent
solutions, some common sense may be applied. Consider an
inhomogeneously loaded parallel-plate waveguide configuration as shown
in Figure 3. Current flows away from the source in the top plate, passes
through the formation and returns through the bottom plate. The current
through the infinitely wide plates creates a y-directed magnetic field
between the plates. Therefore, no solutions TM to y are expected. For the
same reasons, solutions TE to x can also be ruled out. Finally, the
difference in the electrical properties of the two media necessitates axial
currents to satisfy the interface boundary conditions, thus discounting field
solutions which are TE to z.

Three remaining possibilities exist. TE w0 y, TM to x and TM to z. A
vector potential corresponding to any one of these may be chosen to obtain
the correct field expressions. In fact, it has 7een found that the actual fields
obey all three of the above stipulations. However, finding solutions TM to
x proves to be the easiest route. This r-uires choosing F=0 and A= X.

The field equations for this choice are
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E=(VXxVxA)/(c+jwe)

and
H=VxA
Expanding, we obtain
2
S S -k UV H, =0 112a)
(o+jwe) oJx?
PR Y oW .
E =+ = 2
Y (o+jwe) 9xady Hy % [12b]
2
=._.__1___ a \P H. =-a\P lﬂ"
g (o+jco8)[axaz] “ oy 2]

2.3.3.1 Travelling Wave solution
Now it is required to find solutions to the Vector Helmholtz cquation
VZA+k?A=0

The solution of the equation can be found by the implementation of
the separation of variables technique in rectangular co-ordinates.

Two media are present in the waveguide. Different potentials and
consequently, different field expressions are expected in each. Because the
tangential E and H fields in each medium must match at all points on the
media interface, the z-propagation constant k,, must be the same for cach
medium.

For medium 1, the saturated medium, the form of the forward
travelling wave may be found by assuming a solution of the form

A=¥Y=X(x)Z(z)
where X(x) and Z(z) are harmonic functions of their respective variables.
As mentioned, appropriate waveguide excitation and a waveguide width
much larger than the plate separation are sufficient conditions to neglect

any y-coordinate dependence of the field solution.
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Substituting the assumed solution back into the Helmholtz equation

and dividing through by X(x)Z(z) yields
1% 122y 2
i(axz)+2(822)+k 0 U

Fach term depends on only one coordinate which may vary

LU3]
[

independently of the others. Therefore, a solution to equation [13] requires
each term to be set equal to a constant. In addition, as mentioned
previously, the boundary conditions at the media interface require the z-
dependence of the fields in both regions to be equal. Therefore, for a
forward travelling wave, the z-dependence of the field expressions for both
media has the form e-k:z,

The x-dependence of the fields may be sought. Although completely
arbitrary, for later convenience the x-dependent term in equation [13] is

equated to a negative constant -k,;%. Thus

The natural solution of this equation is
X (x)=Ksin (ky1x)+Lcos (kyix)
However, the boundary condition for E, at x=0 using equation [12c]

1S

o1 o,
27 (0+jwE) 9x9Z  x=0
Therefore
oX .
- = ka]COS (kx10) - kalsm (kx10) =0
OX x=0

which demands
K=0
and leaves
X(x) = Lcos (kx1x)
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Combining the X(x) and Z(z) solutions for the torward travelling

wave results in the scalar potential
¥,* = Ci cos (kyjx)e- Kz

where the positive superscript denotes a forward travelling wave and
C:* is a constant which depends on the excitation applied.

For medium 2, the depleted region, the same vector Helmholtz
equation applies.

The general solution of the partial differential equation describing
the x-dependence has the form

X(x) = Mcos (ky2x) + Nsin (kg2x)
The boundary condition states that E;=0 at x=a. Thus
2
E.=0= (o+;(oe) {gx;; x=d

This boundary condition wiil not eliminate any terms in the ratural

solution describing the x-deper.dence of the fields. Therefore, a variable
transformation of x — (a-x) is made. Now
X(x) = Mcos (kx2(a-x)) + Nsin (kx2(a-x))
and
oX

— =0 =Mk,3sin (ky2-0) + NV scos (ky2:0)
ox X=a

Therefore
N=0
and the complete solution for the potential describing the forward
travelling wave in region 2 is
Yot = Cytcos (kyo(a-x))e k2
If the constants -k, and -k,,? are substituted back into equation [13]
for their respective medium, relations between the x-propagation constants

kx1 and ky,, the z-propagation constant k,, and a constant of each medium,
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k. result. The relations are known as the separation equations and have the
form
ka? + k2 =k [14a]
keo? + k2 = ko? [14b]
where k;2=-joop; (6 +joe;) and ko?=-jop(c2+0e)) -

By exactly the same procedure, but using Z(z) =e*¥*:* to describe
waves directed in the negative z-direction, the scalar potentials for these
waves are found to be

¥," = Cycos (kxjx)etke?
W, = Cycos (kyz(a-x))etk:z

Substitution of the above potentials into equations [12] results in the

electric and magnetic field expressions. The positively z-directed travelling

waves have the form

For medium 1

Eq* = [Ci*/(01+jwe)) 1k, cos (kyix)eksz [15a]
E,i* = [jC1 (o1 +jwer) Tkxikzsin (kqax)eF? [15b]
Hy]+ = ‘jC1+k7_COS (kx]X)C'j(IZ [ lSC]

For medium 2

Ex2’ = [Ca (oa+jwer) 1k, “cos (kxa(a-x))eke [16a]
E,2" = [-jC2T(Oa+j0er) Tkxak,sin (kea(a-x))eke? (16b]
Hy2' = -jCa kzcos (kya(a-x))e-ke? [16¢]

The negatively z-directed waves have the form

For medium 1

Eq = |C /(0 +j0er) Tk, cos (kgx)etk:z [17a)



E,1 = [-jCi/(o1+jiwe) Tkyik,sin (kg x)e+ikes [17b]

Hy1 = jCikoc0s (kyix)etike? 117¢)
For medium 2
Ex2 = [ Co/(02+j0e2) [k, cos (kya(a-x))erke? [18a]
E.2" = [jC2/(02+jwer) Ikyok,sin (kxa(a-x))e*H? [18b}
Hy2 = jCakzcos (kya(a-x))etik? [ 18¢)

2.3.3.2 Short-Circuit Field Solution

Obtaining a travelling wave in an actual physical system requires
either a matched load or a line length much greater than the skin depth of
the guided wave. Neither of these conditions is practical nor cost effective
in actual practice. When both positively and negatively z-dirccted waves
occur simultaneously, they result in the formation of standing waves. In
general, standing waves imply very non-uniform field distributions along
the waveguide. However, as previously mentioned, the presence of axial
electric fields in addition to the transverse electric fields, acts to level out
these non-uniformities.

Both open-circuit and short-circuit waveguide terminations create
similar overall electric ficld patterns. An open-circuit load on the buricd
electrode configuration is easier to build than a short-circuit. However, a
short-circuit load can be modelled much more accurately than an open-
circuit might. Leakage currents and radiation of energy at a buried open-
circuit load may cause the load to behave differently than an ideal open-
circuit. However, if the ratio of plate separation to waveguide width is very
small, as is the case for this thesis, then the load approaches an ideal open-
circuit and can be accurately modelled with a simple open-circuit. For this
reason, the open-circuit solution will be emphasized when discussions of

27



waveguide heating commence in Chapter 5.
The short-circuit gives rise to the boundary condition that Ex=0 at
z=0. If this is so then
E,=0=E," +Ey atz=0

Substitution of the field expressions for region 1 yields

Ci*k,2cos (kxix)ed0  -Cik,%cos (kxix)etik:0
(G1+jweq) (o1+jwer)

which leaves
" =-C
The standing wave fields may then be calculated by the addition of
the forward and reverse wave contributions and may be expressed in terms
of only one constant, C7. The fields then have the form
Ey =Exq® +Ex = [§2C " (o1+jwer) Tk, 2cos (kax)sin (k,z)  [19a]
E, = E," +E, = [j2C T (01+j0er) 1kik,sin (kxix)cos (k,z)  [19b]
Hy1 = Hy1 " + Hy1” = -j2C "k, c0s (kqx)cos (k.2) [19¢]
The same boundary condition applies for region 2.
Ex; =0=Ex" + Ex2 atz=0
Substitution of the field expressions into the above equation yields

Cakz2c0s (kxa(a-x))ed0 _ -Cyk,2cos (kxp(a-x))etiks0

(o2+jweR) (02+jwEL)
which leads to

Cyr =-Cy
and the standing wave field expressions in terms of one constant C,”
become
Eq =Eo" +Eqg = [-j2C* (02+j0er) 1k, 2cos (ka(a-x))sin (k,z)  [20a]
E,»=E, 2" +E,o =[-j2C /( 62+jwer) Tkxak, sin (kea(e-x))cos (k,z)  [20b]

Hy2 = Hya" + Hyo' = - 28"k, cos (kya(a-x))cos (k,z) [20c]
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2.3.3.3 Open-Circuit Field Solution

Termination of the transmission line with an open-circuit and
neglecting fringing allows use of the boundary condition stating Hyz() at
z=0. In region 1

Hy; =0 =Hy,” + Hyy at z=0
which, when the field expressions are substituted, gives,
-jCitkzcos (kyx)ek0 = -jC k c0s (kqx)etik O
which leads to:
C\"=Cy

NSt

and the standing wave fields in region 1 in terms of one constant ¢,

take on the form:

E,; = Eq* +Exi” = [2C1 o1+jwey) |k, cos (kxx)cos (k,z) [21a]
E,1 = Ey* + Enr = [2C17 (01 +jwer) [kaik,sin (kax)sin (k,z) [21b]
Hy = Hy1* + Hyp = -2C; Tk c0s (iq1x)sin (k,z) [21¢]

Similarly in region 2,
G =Cy
and the standing wave fields in region 2 in terms of one constant C,

4

take on the form,

Ewx =Eo" +Ex = [2C" (02+jwEr) lk,,zcos (kya(a-x))cos (k,z) [224]
E,o=E,0" + B, = [-2Cy" (Oa+jwez) Tkaak,sin (kxz(a-x))sin (k,z)  [22b]
(22¢]

Hy2 =Hyp" +Hyp' = -2C "k cos (kxa(a-x))sin (k,z)

The final forms of the fields have been found for both the open and
short-circuit terminations. Examination of the field expressions reveals that
the field magnitudes for both cases differ only in their axial dependence.

For instance, whereas a particular field component for the short-circuit



case may vary cosinusoidally, the corresponding field component for the
open-circuit case will vary sinusoidally. What remains to be determined are
the constants present in the field expressions. They are dependent on

boundary conditions and the excitation applied.

2.3.3.4 Development of the Transcendental Equation
The propagation constants kyxi.kx2 and k, shall be determined through
application of the boundary conditions. At the plane interface between the
two media, the tangential components of the electric fields must be
continuous.
E, " =E;" at x=d

Substitution of the electric field expressions into the relation yields
-Cr*kqsin (kyid) _ Cotkyosin (kxa(a-d))
(01+jwe;) (Go+jwey)
The tangential components of the magnetic field must also be

continuous at the media interface
C*cos (kgd) = Cy cos (kxa(a-d))
Division of the second equation into the first leads to the desired

relationship

-kygptan (keid) _ kyotan ( kyo(a-d)) (23]
(0} +jwey) (op+jwey) ‘

The above transcendental equation, together with the separation
equations derived earlier [14], which are repeated here for convenience,
form a system of three equations in three unknowns (ky,ky2,k;).

ka? + k2 = ki [14a]
kya? + kp? = ko [14b]
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This system of equations cannot, however, be solved algebraically
and solutions must be found numerically. In addition, after the propagation
constants are found, the constants C, which are dependent on the wavegutde
excitation, must also to be determined. It is convenient to express all the
field expressions in terms of one of these constants. This can be done by
using the continuity of the magnetic field at the media nterface to yicid

C17/Cy" = cos (kxz2(a-d))/cos (kyd) [24]

Having calculated the analytic solutions, some comparisons can then
be made with the TEM transmission line equivalent circuit. Examination of
the exact field solutions has shown that the fields approach a TEM form
when the x-directed propagation constants, ky; and k., become sufficiently
small. With regard to the transcendentai system of equations discussed
above, constraining the magnitudes of the propagation constants allows the
replacement of the tangent functions by their respective arguments. This
results in an algebraic system of equations which can be readily solved as

discussed below.

2.4 The Small Argument Solution

2.4.1 The Small Argument of the Complex Tangent

Function

In order to confidently replace the complex tangent function with its
argument, the limiting behaviour o1 the complex tangent function must be
considered. It can be shown that the complex tangent function and its
complex argument are in agreement to within 10% error when the
magnitude of both the real and imaginary components of the argument is

not greater than 0.3. Subject to this restriction, comparison of the resultant



fields using exact and approximate propagation constants has shown that

they are also in agreement to within 10% error.

2.4.2 The Small Argument Prcpagation Constant
Expressions
Given the transcendental equation [23], and limiting the ¢ "guments

k. d and ke(a-d) to the small argument limits results in the expression

-kx1(kx1d) _ka(kXZ(a'd)
O1+jWE) Co+i0E2

Using the separation equations [14] allows the derivation of the

expressions for the propagation constants ky,kx2 and k.

Ky 2R O1+jWwe;)-(G2+jWes)) 25]
. (o+jwer)d
(o1+jwe)(a-d)

kx22_'jmu(( (51+ij1)+( O2+jWEL)) [26]
1+(<51+quz-:1)(a-d)
(oot+jwer)d
jop(o+joe)d
= d (27]

L (o1tjeer)(a-d)
(op+jwer)d

2.5 Comparison of the Approximate Model Field Solutions

Two models for approximating the wave propagation constants have
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been presented: the transmission line and small argument models. Although
each model corresponds to fundamentally different field contigurations.
both models predict identical expressions for the axial propagation
constant, k,. The transmission line approximation is based on the
assumption of perfect TEM (transverse electromagnetic) ficlds within the
waveguide. On the other hand, the small argument approximation does not
assume a particular field pattern. It is merely a simplitication of the exact
analytic field solution. Therefore, the fields associated with it are
approximately those of the .nalytic solution.

Although both models predict the same axial propagation constant,
subtle differences also exist between the two solutions. For instance. the
TEM assumption of the transmission line equivalent circuit stipulates that
no transverse field variations occur. As a result, the equivalent circuit
cannot theoretically predict the transverse propagation constants ky; and
k.;. On the other hand, the small argument approximation, which is based
on the analytic solution, accounts for transverse field variation and
consequently, gives expressions for ki and kya.

Practical application of either model requires knowledge of its
region of validity. The transmission line model is based on pure TEM wave
propagation. Thus, in theory, it can only be valid for situations of pure
TEM wave behaviour. In the case of the small argument approximation.
the model is valid provided the arguments of the complex tangent fu xctions
do not exceed the previously mentioned limiting value. These limits for the
tangent arguments may be translated to limits in physical system
parameters through the process of monitoring the tangent arguments as a

function of system parameters. The important point is that since the axial

(€8]
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propagation constant expressions for both models are identical, the range
of validity of the small argument model can be directly applied to the
transmission line equivalent circuit model. In other words, the TEM model
may be valid for non-TEM field distributions. Finally, it should again be
emphasized that both the TEM and small argument models are able to
predict the axial heating distribution for forward travelling waves.
However. the small argument model reveals the correct transverse heating
distribution, whereas the TEM model does not. In fact, the TEM model

assumes uniform heating of any cross-section.
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3. Calculation of the Propagation Constants

3.1 General

In order for the electromagnetic field expressions derived in
Chapter 2 to accurately describe the field behaviour within the waveguide
for all possible combinations of system parameters, more accurate values
of the prcpagation constants ky;, kx2 and k, must be known. These
propagation constants determine the quantitative properties the
electromagnetic fields inside the waveguide will have. They are complex
numbers which contain information about wavelength and wave
attenuation. In any waveguide problem, the propagation constants are
determined by application of boundary conditions to the electromagnetic
field expressions. As shown in Chapter 2, application of field boundary
conditions at the plane interface between the waveguide media has resulted
in equation [23]. Equations [23] and [14] form a system of equations which
auantily the propagation constants kg, kx2 and k.

The periodicity of the complex tangent functions in equation {23]
means that an infinite nimber of solutions exist. These solutions cannot he
found analytically. They must be found using numericai methods. There
are several techniques which can be used to solve for them. A common
technique, known as the Muller methodlo, has been chosen because i1t 1§
known to work reliabi; s well documented, and is easily implemented.
(More information will be given on Muller's method in a later section)
Muller's method is designed to solve a single transcendental equation in once
variable having the form f(a)=0 where both 'a’ and the function may he

complex. Therefore, for the problem under study here, it is necessary to



choose which of the 3 propagation constants should initially be determined.
(The remaining two are found through back-substitution into equations
[14]) Most wave propagation problems are concerned with the propagation
constant describing wave behaviour in the direction of wave propagation.
Thus, the axial propagation constant k, is solved for. The resultant

transcendental equation is

Vi Vi d] Vg anVig g @al _, (28]

C1+j0e] O2+jWEy

With an infinite number of solutions for k, existing, a merthod of
organizing them must be found. This will simplify the search for solutions
and also help determine which solutions are important. In waveguide
theory, a common graph used to organize the field configurations found in
a typical waveguide consists of a plot of the frequency (f) versus the axial
phase constant (B) as given in standard engineering textbooks. Figure 6
shows a graph of f vs. B for a waveguide with properties: a=15m, d=0.8a,
01=0 S/m, 0,=0 S/m, g;=11gp, £2=3€0, and pi=pUr=yo. The graph consists of
several curves which represent different sets of solutions for the phase
constant (B). Each curve corresponds to a particular mode in the
waveguide. The curve designated (a) is referred to as the dominant mode,
curve (b) corresponds to the second order mode, curve (c) corresponds to
the third order mode, and so on. Although curves up to only the third
order mode are shown, in theory an infinite number of mode branches
exist for a single waveguide.

Because a propagation constant is generally complex, with one

component being the phase constant (B) and the other corresponding to the
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wave attenuation (a), a plot of the frequency (f) versus the wave
attenuation (o) also exists. This plot, although very important to the
understanding of wave propagation, is often omitted in textbooks. It
consists of a set of curves which correspond to the wave attenuation (a) of
the distinct modes present within a waveguide. Figure 7 shows a typical
plot of frequency (f) versus axial attenuation (o) for a waveguide with the
same properties as the one in Figure 6. The curve or branch lying directly
on the vertical (f) axis and labelled (a) corresponds to the dominant mode.
The curve marked (b) corresponds to the second order mode, and so on. If
both the f vs. p and f vs. o graphs are shown together, they form a mode
plot. Such a plot gives detailed information about the characteristics of the
electromagnetic fields within a waveguide. Figure 8 shows such a plot for
the same waveguide associated with Figures 6 and 7. However, to make the
graph more compact, the negative of the attenuation (-a), has been plotted,
thereby allowing a common frequency axis to be used.

A large amount of information concerning the field behaviour within
the waveguide may be extracted from the mode plot in Figure 8. Firstly, if
the dominant mode curves (labelled (a)) are examined, it is seen that the
wave attenuation is very small for all frequencies. Thus, the dominant
mode fields are not significantly attenuated for any frequency shown. In
addition, the corresponding phase constant () is linearly related to the
frequency (f and has a positive finite value (except at f=0 where =0
always). In terms of the electromagnetic fields, the dominant mode
propagates. It has a positive and finite phase constant () and, therefore, a
positive and finite wavelength (A=2x/8) for all frequencies except {=0. If

the second order mode (designated (b)) is examined, a different behaviour
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is observed. Below a certain frequency of approximately 3 MHz, the phase
constant (8) has a value that drops rapidly to zero at lower trequencies and
the attenuation (o) has a finite, non-zero value. Below 3 MHz, the second
order mode has a very large wavelength (1) and is significantly attenuated.
The mode does not truly propagate but rather exhibits only pure
exponential decay. It is termed an 'evanescent' mode. However, above

3 MHz the opposite occurs. The attenuation (o) becomes very small and
the phase constant (B) becomes large and positive. The second order mode
propagates. The frequency 3 MHz is called the ‘cutoff frequency’ of the
second order mode. The behaviour of higher order modes 1s similar, as
shown by the third order mode curve (designated (c)).

To transmit energy down the waveguide in the most easily
predictable fashion, it can be easily seen from Figure 8 that the operating
frequency should be below 3 MHz. Only the dominant mode will then have
a positive and finite phase constant and propagate energy down the
waveguide. An analysis of the electromagnetic fields inside the waveguide
(excluding the vicinity of the waveguide feedpoint where fields due to
evanescent modes may be present) would require the evaluation of the ficld
expressions with only the dominant mode propagation constants. For
operating frequencies above 3 MHz, the dominant, second, and possibly
higher order modes would propagate and, thus, the total field inside the
waveguide would consist of a superposition of several modes. IFor most
waveguide applications it is desired to operate in a frequency range such
that only the dominant mode propagates.

Before proceeding, a brief word will be said conceming the common

view of waveguide modes. In parallel-plate waveguides filled with a singlce
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medium, the transverse propagation constants are determined solely by
application of the perfectly conduciing plate boundary conditions. This
results in transverse propagation constants for a given mode, which are
dependent only on waveguide geometry and not on waveguide material
properties or the frequency of operation. Therefore, in a parallel-plate
waveguide filled with only one medium, only the axial propagation
constant k,, changes with frequency. The transverse propagation
constant.k,, is fixed for a given mode, However, if a second layer of
material is introduced into the waveguide so that the plane interface
between the two media is parallel to the conducting plates, the solution
becomes more involved. The form of the transverse ficld variations still
depends on the plate boundary conditions. However, each medium has its
own distinct transverse propagation constant which can only be determined
from the field boundary conditions at the media interface. Because the
boundary conditions must be satisfied at all points on the interface, the
wave velocities and, thus, the axial propagation constants for both media,
must be equal. The axial propagation constants are frequency dependent.
Therefore, examination of the separation equations (egns. [14]) shows that
the transverse propagation constants must be frequency dependent as well.
This results in transverse field patterns which are not identical for ali
points on a particular mode branch. In conclusion, for a waveguide filled
with more than a single medium, the transverse field pattern is not a
signature for a particular mode. The transverse field pattern changes with

frequency for any given mode branch.
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3.2 The Muller Complex Rootfinding Method

A well known and widely used method for solving complex-valued
transcendental functions is the Muller method. For purposes of
understanding, the Muller method can be thought of as an extension of the
Secant method for solving real-valued functions. As the 1.ame suggests, the
Secant method is based on convergence to a function root by approximation
of the function with successive secants, with each successive secant more
accurately approximating the function in the vicinity of its root.

The Muller method improves upon this scheme by approximating
function behaviour with successive paizuolas. Not only does this improve
convergence, it also allows complex roots to be determined through
application of the familiar quadratic root finding formula. A parabola is
only uniquely determined if three points on it are known. Therefore, three
initial guesses must be supplied to the Muller algorithm. Experience has
shown that the Muller method is almost always effective for the calculation
of the complex roots of complex-valued functions as well as for the
calculation of real roots of real functions.

It should be mentioned that a danger exists when solving for a root
of a complex-valued function. It generally involves the calculation of
complex square-roots. When performing the operation of ‘complex squarc-
root' on a complex number, an infinite number of valid solutions exist, all
differing in their phases by an integer multiple of . It is essential that the
correct root be calculated. Generally, the root of interest is the principal
root. It is the root which differs from its radicand by the smallest phase
angle and whose imaginary component retains the same sign as the

radicand. To arrive at the principal root, check statements are inserted at
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critical points within each - omplex root-solving pr. -;ram. The statements
check the sign of the root and compare i i < radicand to ensure that the
signs of the imaginary components are the same. This is - :ivalent to
saying that the principal root is found. When solving the transcendental
equation [28], the generation of non-principal roots generally results in
subtle changes in the final answer. Axr: unexpected sign change could occur
in either the real or imaginary component, as well as a slight change in

magnitude of the final answer.

3.3 The Numerical Procedure for Generation of
Mode Plots

3.3.1 Dominant Mode Branch

Calculation of the dominant mode branch is the initial step in the
construction of a mode plot. As detailed in Chapter 2, for the range of
system parameters shown in Table 1, the approximate waveguide models
result in closed form expressions which accurately predict the dominant
mode propagation constants for frequencies of up to a few 100kHz. A
computer program called ‘RepeatingMuller’ uses these models (eqn. [27])
for sources of initial guesses when calculating the dominant mode branch
using the Muller algorithm. However, three distinct initial guesses are
required by the algorithm, so two simple arithmetic algorithms are applied
to eqn. [27] to generate two additional guesses. RepeatingMuller calculates
the function roots over a range of frequencies, usually beginning at low
frequencies (=100 kHz). A complete documented listing of the program is

given in Appendix 3.



3.3.2 Location of Higher Order Mode Branches

After calculation of the dominant mode branch, the higher mode
branches remain to be mapped. As a first step, single points on each higher
order mode branch must first be found. A program called
'SingleStepMuller’ has been developed for this. It is similar to the program
RepeatingMuller. However, it calculates roots only at singular frequencies
using root approximations for k, which are user entered. A documented
program listing is given in Appendix 3.

It is logical to assume that the behaviours of the mode plots for the
cases of interest here have essentially the same form as the mode plot for
the air-filled waveguide shown in Figure 8. By carefully choosing initial
guesses for k, very near the dominant mode branch and then progressively
moving in the direction of the higher order mode branches, points on the
second and third order mode branches can be easily located. After thesc

points are found, the entire branches may be generated.

3.3.3 Completion of Higher Order Mode Branches

With roots on the second and third order mode branches located, the
entire branches may be constructed. If frequency is carefully changed in
small increments from the known root, it is expected that the new root will
not change significantly. By beginning at a frequency very near the the
known root and using that root as an initial guess, the point on that branch
at the nearby frequency can be found. This principle can be applied to
generate the branch segments above and below a known root. The program
developed for this purpose was another variation of RepeatingMuller and

was called 'FillingMuller'. The segments either above or below the known



point on a branch are calculated by carefully incrementing or decrementing
the frequency and 'self-generating’ that segment. A complete program

listing is given in Appendix 3.

3.4 Discussion of Actual Mode Plots

By applying the procedure outlined in section 3.3 to waveguide
configurations of interest, their mode plots were generated. These plots had
a general form similar to the mode plot for the lossless waveguide shown in
Figure 8. However, because of differences in the waveguide properties, the

mode plot behaviour for the cases studied here also differed from Figure 8.

Figure 9 shows the mode plot for a parallel-plate waveguide with properties:

a=30m, d=0.5a, 6,=10"4S/m, 6,=10-0S/m, &,=11eo, £2=3e0, and p=po=to.
The dominant, second and third order mode branches are shown and are
labelled (a), (b) and (c), respectively. Regions which wouid correspond to
the mode cutoff frequencies for the modeplot in Figure 8 are labelled the
second and third order 'cutoff regions'. If the modeplots shown in Figures 8
and 9 are qualitatively compared, it is clear that the second and third order
mode branches behave differently than those of Figure 8. For the lossless
waveguide modeplot shown in Figure 8, the second and third order mode
branches exhibit a very sharp transition at cutoff. Below cutoff, the phase
constants are zero, and above cutoff the attenuation constants are zero. For
the low loss case shown in Figure 9, the second and third order mode
branches are slightly curved at cutoff. Slightly above cutoff the attenuation
curves approach some minimum non-zero value, and then begin to slowly
diverge as frequency increases. Below cutoff the phase constant branches
asymptotically approach zero as frequency decreases. Theoretically wave

cutoff is defined as the transition point between wave evanescence
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(B=0,a0) and wave propagation (a=0,8=0). It only truly exists for lossless
waveguides. If a lossy medium is introduced into the waveguide, no definite
transition point occurs. Regardless of frequency, the attenuation constant (o)
and the phase constant (B) never become exactly zero (except at d.c. where
must be zero). If the losses are small, as for the waveguide with the
modeplot shown in Figure 9, an approximate cutoff frequency can be
defined. The waveguide behaviour will be very similar to the lossless case if
it is not operated too near the cutoff frequencies.

If waveguide losses are increased, then the effects on the mode: plot
discussed above are intensified. Figure 10 shows the mode plot for a
parallel-plate waveguide with properties: a=15m, d=0.85a, 61=10-38/m,
0,=10°0S/m, ¢,=11¢g, £=3¢0, and p;=p1o=pty. The dominant, second and third
order modes are shown and are designated (a), (b) and (c), respectively.
Cutoff frequencies are difficult to determine because the second and third
.. ~der mode branches do not exhibit a sharp transition. Determination of a
ct.ioff regior is more appropriate for this case. All modes generally exhibit
significant attenuation at all frequencies, above or below the cutoff region.
Therefore, even the deminant mode, propagating at a frequency well below
the second order mode cutoff, would significantly attenuate. With high
losses, the difference in attenuation constants between the dominant mode
and the second order mode can become small enough so that the second
order mode can no longer be neglected. This requires any calculation of
resistive heating in the waveguide to include dominant and second order
contributions. For the cases studied in this thesis, however, the attenuation
constants of second order modes were generally much greater than the

dominant mode propagation constants. They could therefore be neglected.
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4. Numerical Evaluation of the Analytic Electromagnetic
Field Expressions

Before resistive heating inside the parallel-plate waveguide can be
studied, the electric field behaviour must be known. Analysis of the electric
fields may start by analyzing the forward travelling wave fields in a
parallel-plate waveguide filled with only saturated oilsand. Then, a layer of
dried oilsand may be introduced and the changes in the fields studied. This
provides a starting point from which to proceed with more complicated
wave scenarios. For instance, the phasor standing wave fields may then be
examined. These are important fields because they directly relate to the
time-averaged resistive heating behaviour in the waveguide. Finally, the
time-domain standing waves, which provide valuable information about the
current patterns inside the waveguide, can be evaluated. Examining these
different forms of the fields gives important information about the resistive
heating in the waveguide.

In order to calculate the various forms of the electric tields, several
parameters must be determined. All of the physical system parameters are
restricted to the values given in Table 1. Examination of all the field
expressions derived in Chapter 2 reveals that all of the variables are known
except Ct and C3. These constants are not independent and are related
through equation [24]. To set the constants requires the waveguide
excitation to be set. The simplest method is to perfectly excite the dominant
mode. For the cases studied here, the waveguide excitation is chosen to be a

IkV potential placed across the plates at the waveguide input.
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{.1 Evaluation of the Time-Domain
Forward Travelling Wave Electric Fields

For any waveguide, the forward travelling wave electromagnetic
fields are the most simple. Analysis begins by examining the forward wave
fields for the parallel-plate waveguide filled with a single lossy medium,
say, saturated oilsand. The electric field is purely TEM and decayvs
2xponentially as it propagates down the waveguide. Now, consider the
introduction of a layer of a different medium placed adjacent to the top
conducting plate as shown schematically in Figure 3. Let this medium be
given the electrical properties of dried-out oilsand as given in Table 1. The
fields now will no longer be of the TEM form. Figure 11 shows a picture
of these fields at an arbitrary instant in time inside a waveguide with
properties: a = 15m, d = 0.85a, o) = 1073 S/m, 62 = 10°0 S/m. &) = 1 1.
ea = 3-€9, U1 = U2 = Uo, f = 340 kHz and L = 400m. Each line segment
represents the electric field magnitude and direction at that coordmate
inside the waveguide. The program used to generate the data for the plot in
Figure 11 is called 'ForwardE'. It evaluates the time-domain forward
travelling axial and transverse electric tield expressions given in Chapter 2
at a given time and at pre-determined gridpoints throughout the waveenide
x-z plane. The plot shown in Figure 11 was generated using a program
called 'Efields’, which creates a picture of the electric field lines within the
waveguide. At each gridpoint, the electric field is represented by a line
segment of length proportional to the field magnitude and orientation
corresponding to field direction. Complete program listings and operating
information for the aforementioned programs is given in Appendix 3.

The electric field is predominantly transverse in the depleted region.
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In the saturated region, the transverse and axial field components are more
comparable in magnitude. Near the media interface, the axial field
component is generally the largest. As the lower conducting plate is
approached, the axial electric field decreases until it is forced to zero at the
lower plate by the perfectly conducting boundary condition. In simple
terms, the increase in the ratio of the axial to transverse electric field
components in the saturated region as compared to the depleted region may
be explained by viewing the saturated region as a thick conducting plate
adjacent to the depleted region. Thus, current from the upper plate,
flowing through the depleted region, tends to return to the source through
the highly conducting saturated region. If the bottom plate were absent, the
field would not become transverse at the bottom of the satuiated region but
rather, would become entirely axial. The prcsence of the lower plate, with
its inherent boundary conditions, forces the axial field to become zero at
the bottom plate as Figure 11 shows.

Because of the simple and easily understood form of the travelling
wave (i.e. the fields exhibit no axial magnitude variation other than simple
wave decuy), it may be used to extrapolate the behaviour of the more
complex standing wave fields. For instance, the relative amount of axial
current present in the saturated region can be measured via the ratio of
axial to transverse electric field magnitudes, |E,J{E«|. A ratio of onc
denotes equal axial and transverse field magnitudes. A ratio greater than
one denotes a comparatively larger axial field and a ratio less than onc
denotes a larger transverse field. The usefulness of the ratio | E,|{E,| for the
forward travelling wave comes from the possibility of it being used as a

criterion for predicting the occurrence of uniform axial heating for the



standing wave case. This is further discussed in Chapter 5.

4.2 Evaluation of the Phasor Standing Wave Electric
Fields

An objec.ive of ¢his thesis is to analyze resistive heating due to
standing waves in the parallel-plate waveguide. The standing waves are
created by terminating the waveguide with either an open or short-circuit.
The field solutions for both cases are very similar. However, for practical
reasons mentioned in Chapter 2, emphasis has been placed or: he open-
circuit solution.

The introduction of a low-loss layer of material into an oilsand filled
open-circuited parallel-plate waveguide creates an axial E-field interleaving
effect which results in an overall levelling of the electric field magnitudes
throughout the saturated region. The low-loss layer also acts to reduce the
overall axial wave attenuation of the guide, therefore allowing energy to
penetrate deeper to more effectively heat a greater volume of oilsand than
would otherwise be possible. Figure 12 shows the squared electric field
variations as a function of the axial distance inside a parallel-plate
waveguide with parameters: a = 15m, d = 0.85a, 61 = 10-3 S/m. Ga = 10-6
S/m. e =11-€y, € =3-€), U1 = U2 = Yo, I = 340 kHz and L = 400m. Plot
(a) shows the transverse squared electric field magnitude variation, plot (b)
gives the axial squared electric field magnitude variation and plot (¢) gives
the total squared electric field magnitude variation. The squared electric
field magnitude in plots (a) and (b) show large vanations versus axial
distance along the waveguide. The resistive heating which would occur
from each component separately would result in very non-uniform axial

heating. However, turther examination of plots (a) and (b) reveals that the
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axial and transverse squiu=d field componeats have their maximum values
at alternate points along the waveguide. They are out of phase spatially by
a/4. Plot (c) shows the squared electric field resulting from a superposition
of the two standing wave squared component fields from plot (a) and (b).
The overall axial field variation is levelled out. If the axial and transverse
standing wave electric fields are of comparable magnitude, then an optimal
interleaving will occur which will lead to an optimally uniform axial
heating pattern.

The electric field components inside the waveguide also interleave in
the tran-verse coordinate direction. However, because the plate separation
is generally much smaller than a wavelength, the interleaving is generally
not apparent. Figure 13 shows the transverse variation of the field
components in a waveguide with properties: a=15m, d=0.9a.0,=10" S/m. G>
=10°S/m. e, = 11-gy, € = 3-gg and W; = W = Yo. In the saturated region.
the axial electric field has a value of zero at the bottom plate (x=0) in order
to match the perfect conductor boundary condition there. (see eqn. [19]) It
then increases as a complex sine function to a maximum value at the media
interface. On the other hand, the transverse electric field exhibits a
maximum value at the bottom plate and decreases as a complex cosine
function until it reaches its minimum value at the media interface. The
combined effect of both of these components generally results in a
maximum value of electric field ratio |E,|{Ex| near the media interface,
aradually decreasing to a minimum value at the bottom plate. In the
depleted region, both electric field components experience a similar axial
and transverse variation. However, the transverse field component

generally has a much greater magnitude than the axial field and the effect is
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masked. In Figure 13, the transverse field component magnitude in the
depleted region is approximately constant at 23 V/m.

The data for Figures 12 and 13 was generated using a program called
'StandingE."' The values of the transverse and axial electric fields were
calculated over a user specified grid of the x-z plane in an open-circuited
waveguide. Program input consisted of the physical system parameters (as
outlined in Table 1) and the number and spacing of points in a rectangular
grid. Complete program listings and operating information is given in

Appendix 3.

4.3 Evaluation of the Time-Domain Standing Wave
Electric Fields
To further understand the behaviour of the fields in the waveguide,

the form of the lines of current for the standing wave case were

investigated. However, because of the lossy nature of the waveguide media.

pure standing waves did not occur. Instead, a mixture of standing and
travelling waves resulted. Thus, the lines of current within the waveguide
were not simple in form as for the case of the forward travelling wave
shown in Figure 11. They were a function of axial position, z, and time.

In order to determine the lines of current within the waveguide, the
time-domain expressions of the standing wave electric fields had to be
evaluated. A program called 'TimeStandingE' was developed for this. The
program calculates the time-dependent axial and transverse electric field
magnitudes over a specified grid density of the waveguide x-z plane. This
data was then displayed using the graphics program Efields explained

carlier. Field line plots were generated for 24 equal time increments
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spanning o< complete time cycle and strung together using a special
program caliea VideoWorks!! to create an animation of the electric ficld
behaviour inside the waveguide versus time.

Observation of the electric field animation revealed several
important characteristics of the fields. Figure 14 is a 'snapshot’ of the
electric field lines at t=0.83 usec. inside a waveguide with properties: a =
15m, d = 0.9a, 6, = 10-3 S/m, 65 = 100 S/m, &1 = 11-g0. £2 = 3-tq.

L] = U2 = o, £ = 150 kHz and L = 400m. It does not show any of the time
dependent behaviour but it does give some indication of the forms of the
fields. In the low-loss depleted region, the current is very ncarly TEEM. In
the high-loss saturated region, current does not flow in a simple way from
the media interface to the bottom plate. Currents also appear to tlow from
points on the bottom plate, through the saturated medium, to other points
on the same plate. The overall field behaviour as a function of time is a

complex mixture of standing and travelling waves.
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Figure 14. A picture of the forward wave electric field



5 Resistive Heating Within the Waveguide

5.1 General

The main objective of this research is to explore the nature of the
distribution of power within the waveguide structure and to show that
radio frequency power can be used to heat reasonably large volumes of
oilsand with satisfactory uniformity. However, before discussion of the
actual waveguide heating, a short, but necessary, explanation of the various
methods of power calculation is presented.

Several methods exist for calculating the power dissipated within the
waveguide structure. The simplest of methods calculate the power lost per-
unit-length for forward travelling waves and only require the axial
attenuation constant, a. In their region of validity, both the transmission
line equivalent circuit model and the small argument model accurately
predict a, and thus the power loss per-unit-length along the waveguide.
However, as discussed in Chapter 4, each model is based on very different
field forms, and thus predicts different volumetric heating distributions.
The TEM nature of the transmission line solution predicts incorrectly
uniform transverse power placement. On the other hand, the small
argument model, which is based on the analytic field solution, more
accurately predicts the transverse power placement.

For a forward travelling wave, the total dissipated power between
two axial points along a waveguide can be calculated from the wave
attenuation constant, a. If the power flow at the point nearest the source.
Pin, 1S known, then the total power dissipated in the waveguide length Az is

given by



Paiss=Pin(1-€-2042)

In its region of validity, the equivalent TEM transmission line
circuit shown in Figure 5 can also approximate the power dissipated in the
same volume. The resistive power loss in the transmission line circuit
occurs in the shunt resistors representing each lossy layer of media. Given
the excitation applied to the waveguide, the shunt current through each
resistor may be calculated and the dissipated power found through the
relation

PHI’R

These expressions give fast and accurate results for the power
dissipated in a particular length of waveguide. Unfortunately, they can only
be used for forward travelling waves and cannot predict the volumetric
heat distribution in the transverse plane. Most of the research undertaken in
this project is concerned with standing wave fields and the associated axial
and transverse power distribution and the above methods are, therefore, of
limited usefulness.

More useful methods exist for calculation of the power transferred
to the waveguide media. Unlike the previous methods, they are able to
calculate the power distribution for forward or standing waves as a
function of both the x (transverse) and z (axial) coordinates.

The first method uses Poynting's vector which describes the power
flow density through a plane.

P=1Reql(ExH")

If the electromagnetic field expressions are known, the total

dissipated power in a given volume can be calculated by integrating

Poynting's vector over the entire surface bounding the volume. The



difference between inflowing and outflowing power, as calculated by the
integration procedure, results in the total dissipated power within the
volume.

The second method involves direct integration of the dissipated

power density over the volume of interest within the waveguide.

p= I o|E[>-dV
vaune

This method for calculating the dissipated power is best suited 1o a

computer solut‘on »~ :se it essentially sums the power dissipated at ali

points inside a vowun. : " “erefore is capable of easily providing
information ab«+* « :.ver distribution within a volume.

5.2 The Analytic Power Dissipation Expressions

The direct integration method has been chosen to calculate the
resistive heating of the waveguide configuration shown in Figure 3. With
the aid of a computer, a picture of the power distribution can be created by
dividing the waveguide volume into grid blocks and calculating the
resistive heating in each one separately. The total power dissipated within a
volume of waveguide can then be calculated by simply summing the power
dissipated in all the gridblocks within the volume.

The resistive power density is given by the expression

| olE[?

For a short-circuit terminziion, the power density in the lower and upper

oilsand regions is given respectively by

61E1P=61( Ex1 P4 E,: )= 6 [-2C; /(01 Hwer) Ik, 2cos (kyixsin (k,z) "+

G| [j2C /(o 1+jme ) kxi kysin (keix)cos (k,z)|? [29]



and
01 E2P=020 ExaPHE 2= 04 [-j2Co /(Ga+jweg) ]k, 2cos (kxa(a-x))sin (kyz)i™+

09l [-2Co " H(o+jwen) Ikxakysin (kya(a-x))cos (k,2)1? (30]
In the case of an open-circuit termination, the expressions have the form

ol E =0 Eq P HE, )= 01][2C1*/(01+jw£1)1k13cos (kyyx)cos (k,z)~+
ol [2C /(o1 +jwe) [kxikysin (kepxdsin (kqz)} [31]
and

EslP=ca( Exa 24 E22|3)= (5;4' [2C2*/(02+jw82)szzcos (kya(a-x))cos (k,z)j2+

G2

022G /(G2+j0er) [kyak,sin (kea(a-x))sin (k2) [32]

‘The heating profiles wr> similar for the open and short-circuit but are
shifted axially with respect to one another by one-quarter wavelength.
Because an open-circuit is more easily physically realized and would likely
be used in practice, the open-circuited waveguide solution 1s emphasized in

the tollowing discussion.

5.3 Justification for High-Frequency Heating

Intuitively one might expect that a good method for uniformly
heating a large oilsand formation would be to excite a set of electrodes, as
shown in Figure I, with low-frequency (60 Hz) power. This would create
very uniform electric fields throughout the bulk of the formation and. thus.
aive very uniform power dissipation. Figure 15 clearly indicates the degree
of uniformity of heating achievable in such a configuration. It shows the

relative power dissipation through a profile of a homogeneously-filled
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parallel-plate waveguide with physical properties: plate separation a=1 Sm.
oilsand electricei conductivity a=103S/m, oilsand dielectric constant e=11-€;.
oilsand magnetic permeability u=p1), waveguide length L=400m,
terminated with an open-circuit and excited with 1kV between the plates at
60Hz. The data for Figure 15 was generated using a program called
'HMeater.” Complete information pertaining to and a listing of the program
are given in Appendix 3.

Although the bulk of the formation would experience relatively
uniform current density as Figure 15 shows, in actuality the regions near
the cylindrical electrodes would experience much higher than average
current densities. These would tend to rapidly evaporate the current-
carrying moisture in these regions, effectively decoupling the electrodes
froin the formation and halting any further heating.

In order to re-establish the heating rates experienced before the
creation of the dried out region, prohibitively high excitation voltages
would have to be applied. For instance, consider the waveguide
confizuration described in Figure 3, excited with 1kV across the plates al
60Hz. The creation of a layer ot moisture-depleted oilsand
(o=10"S/m. e=3-€y) near the top electrode only 10cm thick woAuld require
the excitation voltage to be approximately 8kV to resume heating of the
moisture-saturated region at the previous rate. Almost ali of the input
power would be dissipated in the 10cm 'gap.' So, for any reasonable
applied voltage, insignificant (albeit uniform) heating would occur in the
moist oilsand region. Figure 16 shows the resistive power dissipation for
the waveguide configuration of Figure 15, but with the 10cm moisture-iree

cap region introduced near the top plate. The dark regions near the top
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plate signify intense heating in the gap regicn while heating of the water-
caturated oilsand region has effectively ceased. (Note: Although the gap
region is only 10cm thick, the finite grid spacing in the calculation and
araphing routines has shown the intense heating to be over a larger
thickness.)

The low frequency method does give the best heating uniformity.
However, for practical applications, high current densities near the
clectrodes generally create non-conducting gap regions around each
electrode. These gaps decouple the formation and make it very difficult to
significantly raise the temperature of a formation in a reasonable time.
However, if the frequency of operation were to be increased sufficiently.
then current could be capacitively coupled across the gap, and heating of
the moist oilsand could be resumed.

Consider exciting the system described above at higher frequencies.
[nitially, before any gap has been created by moisture evaporation, the
ficlds decay very rapidly in the axial direction as induced eddy currents act
to shield the bulk of the material between the plates from the applied field.
Figure 17 shows the axial variation of the electric field and the
corresponding resistive heating for an oilsand-filled parallel-plate
waveguide with physical properties: plate separation a=15m, oiisand
conductivity o=107$/m, oilsand dielectric constant e=11-g5 ., magnetic
permeability u=ug . waveguide length L=200m, terminated with an open-
circuit and excited with 1kV between the plates at 200kHz. (A waveguide
length of 200m is used, instead of the 400m length used in other graphs, to
more effectively illustrate the wave decay effect.) As can be seen, the fields
decay very rapidly in the axial direction and a very small volume of the

formation is eftectively heated even though it is now possible to continue
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continue heating after the formation of a dried-out zone.

However, once a dried out gap region has formed around each
buried electrode, the guided wavelength is increased and the axial wave
attenuation is sharply reduced. Figure 18 shows the axial variation of the
clectric fields and the corresponding resistive heating for the same
waveguide system as that of Figure 17, but with a moisture-free oilsand
gap of thickness=1.5m introduced adjacent to the top plate. It is evident that
the creation of the dried out gap has significantly increased the depth of
penetration of the signal and much larger volumes of oilsand can be
effectively heated.

Thus, operation at high frequencies has permitted heating to be
continued after the formation of a dried region. The changes in effective
wavelength and depth-of-penetration associated with the presence of the
oap then result in extensive heating of the formation between the plates.
The following sections will examine the nature of this heating more
closely. It should be noted again that it may be advantageous to design a
system with a dielectric insulating region around the electrodes in order to
take advantage of the improved heating, without having to rely on the self-
generation of a dried-out zone to provide the appropriate increase in wave

penetration.

5.4 Biscussion of the Electric Field and Heating Behaviour
The standing wave field expressions for both the open and short-
circuit termination are given as equations [19]-[22]. Examination of these

equations reveals that the electric field components vary axially and

transversely in a sinusoidal or cosinusoidal fashion. Figures 12 and 13
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show typical behaviour of the electric field components along each
coordinate direction. Figure 13 shows typical transverse electric field
variation, which is identical for both travelling and standing waves. The
variation of Ey is cosinusoidal with a maximum value at each parallel-plate
and the variation of E; is sinusoidal with a value of zero at each plate.
Figure 12 shows a typical axial standing wave occurring in the waveguide.
It consists of interleaved Ex and E; standing waves positioned a quarter
wavelength out of phase with each other. Uniformity of heating along the
waveguide axis depends on the relative peak magnit iies of these waves. If
the peak magnitude of one component is much stroi 2.~ than the other, then
a non-uniform axial heating pattern occurs. If boti: ;' i«s are relatively
equal in magnitude, then the superposition of both standing waves tends to
level out the overall electric field as the bottom graph in Figure 12
illustrates. This leads to more uniform axial heating.

If only the forward wave component of the standing wave is examined
teqns. [ 15]-[16]), it can be seen that both electric field components vary
axially in an identical manner. Examination of the forward and standing
wave field expressions reveals that ihe ratio of the forward wave tield

E. ) Ex|=l[kx1/Kz)tan kyd], is the same as the

component magnitudes at x=d,
ratio of the peak magnitudes for the standing wave field components if the
axial decay. which is common for both components, is momentarily
nealected. A ratio of forward wave field components |E,[{E| = 1 signifies
equal standing wave peak component magnitudes. A ratio of |E,J{Ey| > |
corresponds to a standing wave where the axial electric field component
peak magnitude is greater than the transverse electric field peak magnitude

and vice-versa.



All of the waveguide configurations studied, for both travelling .+ 1
standing waves, have revealed a special feature of the actual transverse
field vanations in the saturated region. In the frequency range of interest,
their sine or cosine variation is generally smaller than a quarter-cyvele. as
exemplified in Figure 13. In the saturated region, the ratio of the fickd
component magnitudes (| E,J{E|) experiences a maximum value at the

media interface (x=d) and monotonically decrease« to a value of zero at the

tower plate (x=0). A ratio |E,|/{E«| = 1 in the saturated medium ncar the
interface signifies uniform axial heating near the interface. The trend of
'E,lE.] to decrease towards the bottom conducting plate means a
progressively weaker axial electric field, and consequently less uniform
heating of the saturated region towards the lower electrode. |E, /| >1

near the interface results in non-uniform axial heating near the interface

where the axial field dominates. Further down, where | E,Ji E,| approaches
unity, a region of uniform axial heating occurs. Near the lower conducting
plate, the transverse field dominates and the axial heating again becomies
non-uniform. |E,J{Ex|<1 near the media interface results in non-unitorm
heating throughout the saturated region because the axial and transverse
standing wave peaks are never comparable in magnitude.

To dJdetermine some basic conditions for which axially uniform heating
E A Ex (as

measured in the saturated region at x=d) was plotted as a function of

could occur in the saturated medium of the waveguide,

several variables such as the plate separation 'a’, saturated region thickness
'd" and the operating frequency 'f." Typical saturated zone parameters were
chosen (6,=107S/m, g,=11-gy , 1=po), as were typical gap region
parameters (62=10"°S/m, e5=3-€¢, Ua=H0).

Figure 19 shows plots of | E, || Ex| vs. f while varying the plate
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separation ‘a’ and the saturated region thickness 'd." The data for Figure 19
was generated using a Fortran program called ERatioMuller which iy listed
in Appendix 3. The upper graph in Figure 19 shows the behaviour of
|E.||Ex| vs. f for plate separations equal to 10, 15 and 20m with the
saturat=d region thickness d = 85% of the plate separation. The lower
graph in Figure 19 shows |E,|[|E,]| vs. f for saturated region thicknesses
d=30, 50, 80, 85 and 90% of the plate separation a=15m.

In order to show that relatively uniform heating can be achieved at
radio frequencies, one particular system configuration will be chosen and
its electric field forms and heating will be examined as a function of
frequency. In addition, by plotting the heating as a function of frequency.
other factors which affect heating uniformity and etficiency can be
identified. Examination of the plots in Figure 19 reveal that a parallel-plate
waveguide with properties, a=15m, d=0.85a, 6,=103S/m, 52=10 °S/m,
g1=11€q , 82=3-€9 , and p;=po=po will exhibit a ratio |E,J{E|=1 at the media
interface over the entire frequency range of interest (except ncar f=()
where |E,|[|Ex|—0). This waveguide configuration, terminated with an open-
circuit and excited with 1kV between the parallel-plates at various
frequencies, will be analyzed in the remainder of this section.

We begin by examining the waveguide configuration at the power
frequency of 60Hz. Figure 20 shows the transverse and axial field
variations along with the resistive power dissipation for this waveguide
configuration. The middle graph of this figure and all following figures
plots the transverse variation of the fields for the forward travelling case
and only shows the relative tield magnitudes. The axial field variation and

heating plots of this figure and all following figures do, however, present
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actual numerical values that correspond to the aforementioned 1kV
excitation between the plates.

The middle graph of Figure 20 reveals that the field variation is very
TEM-like. In the saturated region, the transverse electric ficld magnitude is
reiatively large while the axial electric field magnitude is almost zcro. In
the gap region, this effect is magnified. The value of the transverse electric
field cc nponent, which is too large to be included in the plot, has an
average magnitude of approximately 0.003 V/m or approximately 1000
times the magnitude of the transverse field in the suturated region.

The TEM-like behaviour is also reflected in the axial electric field
variation in the saturated region, as measured near the gap interface and
snown in the upper graph of Figure 20. Because the wavelength is very
large at this frequency, little axial variation is evident. The transverse
electric field exhibits a finite non-zero value of about 0.44 V/m which
remains relatively constant along the waveguide length while the axiai
electric field component is near zero everywhere.

The resistive power dissipation is depicted in the lower graph of
Figure 20. At 60Hz, effectively all of the heating occurs in the gap region,
No heating occurs in the saturated region because the dried out gap layer
has decoupled the moisture-saturated region from the electrodes. If the
waveguide is modelled by the TEM equivalent circuit of Figure S, then it
can be said that the impedance of the resistor-capacitor combination
representing the gap region is much larger than that of the saturated
region. Thus, most of the applied voltage is dropped across the gap. Also,
the capacitive impedance of the gap region is much larger than its resistive

impedance. Most of the current flows through the resistor and results in
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high power dissipation. At low frequency, the intended or accidental
introduction of a gap region near the electrode terminates the heating of
the saturated region.

Figure 21 shows the transversc and axial field variation a - well as the
power dissipation for the waveguide excited at 10kHz. The electric tield
variation along the transverse direction is shown in the middle graph of
E L

is approximately one near the gap interface in the saturated region. Thus,

Figure 21. It reveals that ths ratio of the electric field magnitudes

the necessary criterion for possible uniform heating of the saturated region
is satisfied. The form of the transverse variation of the fields cian be
explained by applying the small argument condition to the for-»ui.l wave
field expressions (eqns. [15]-[16}). The small argument condition states that
a complex trigonometric function can be replaced by its argument if the
magnitude of the argument's real and imaginary componen:s does not
exceed 0.3. For this waveguide configuration the value ky;d=0.008-j0.004
satisfies the small argument condition. When subjected to the small
argument, the transverse variation of the transverse electric field
component is cos kyx=1, and the transverse variation of the axial clectric
field is sin ky x=ky x. This behaviour is clearly seen in the middle graph of
Figure 21.

The axial behaviour of the electric fields of Figure 21 (upper graph)
shows a change from the 60Hz case of Figure 20. The wavelength has
decreased from 157790m to 6472m and the axial variation of the ficld
componenis is now apparent.

The tower graph of Figure 21 shows the resistive power dissipation

for the waveguide excite1 at 10kHz. The saturated region is still almost
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completely decoupled from the electrodes and any heating which may be
occurring there is negligible compared to the excessive heating in the gap
region.

The field behaviour and heating pattern for the waveguide excited
a higher frequency of 100kHz is shown in Figure 22. The ficld behaviour
along the transverse direction, shown as the middle graph, is similar to that
of Figure 21. However, the magnitudes of the electric field coi * onents in
the saturated region have increased. This increase may be explained in the
context of the equivalent circuit of Figure 5. As a result of the increase in
frequency, the diminishing capacitive impedance of the gap rcgion is
beginning to short-circuit the parallel resistor. This results in less current
effectively flowing through the resistor and also a higher proportionate
voltage drop across the moisture-saturated region. The higher voltage
yields stronger electric fields and, thus, greater power dissipation in the
moist region and less in the gap.

The electric field variation along the waveguide axis shows expected
differences from the 10kHz case of Figure 21. For instance, a further
decrease in wavelength from 6477m to 680m results in the axial
interleaving, as measured in the saturated region near the gap, to become
visible. The equality of the separate standing wave component reveals that
axial heating should be relatively uniform, at least near the gap.

The heating pattern shown in the lower graph of Figurc 22 for a
frequency of 100kHz shows that heating in the saturated region is
beginning to occur. Heating of the gap has decreased significantly, but it is
still very strong and overshadows most of the heating occurring the
saturated region. The important effect to note is that current is beginning

to couple across the gap and cause significant heating in the saturated
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Figure 22. The transverse variation of the electric field (middie graph),
the axial variation of the electric field measured at x=12.6m
(upper graph) and the corresponding resistive heating pattern
in Watts per cubic metre (lower graph) for the parallel-
plate waveguide configuration excited at 100kHz. Note: Ex in
the gap region (middle graph) is 5 V/m.
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region Although its uniformity is not as good as could be achieved by
heating at 60Hz as shown in Figure 15, it is much more reliable heating
since it does not critically depend on moisture near the electrodes for the
passage of curent through and, therefore, heating of the formation.

The electric field variations and the heating patterns for the same
waveguide excited at 160kHz are shown in Figure 23.

The middle plot of Figure 23, showing the transverse variation of
the electric field components, has the same form as for the frequencies of
10kHz and 100kHz. As explained previously, the magnitudes of the electric
field components have increased with frequency, as expected.

The axial variation of the electric field components is shown in the
upper plot of Figure 23. The wavelength has decreased from 680m to
432m as compared to the 100kHz case of Figure 22. In addition, the wave
decay effect is becoming noticeable. An examination of the mode plot
shown in Figure 10 shows that the axial wave decay increases with
frequency for the dominant mode. As the frequency 1acreases, more
current is coupled across the gap and more power is dissipated in the
saturated region. However, as a consequence, there is an increase in the
axial wave decay constant and corresponding reduction in the wave depth-
of-penetration.

The lower plot in Figure 23 shows the heating pattern for the
waveguide configuration at 160kHz. Heating of the gap region has been
reduced significantly. Moreover, the non-uniform heating normally
resulting from TEM standing waves in a homogeneous system, has been
levelled out over most of the saturated region as a result of the gap. Also,

by taking into account the non-zero thermal conductivity of the saturated
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oilsand, the improved uniformity and depth-of-penetration achicved by the
introduction of the gap is further enhanced. The heat generated in warmer
regions will have shorter distances to travel than in the TEM case to
distribute itself uniformly throughout the formation. This will improve
efficiency by reducing the time needed to heat all parts of a formation to a
required minimum temperature.

This plot shows the very good uniformity which can be achieved by
introducing a low-conductivity region adjacent to the formation electrodes
and then operating at radio frequencies. Introduction of the gap also
greatly increases the effective depth-of-penetration over what would be
achieved if a homogeneous medium were excited at radio frequencies (i.c.
see Figure 17).

If the frequency were to be increased even more, more current
would be coupled across the gap and less heating would occur there.
However, at the same time, heating uniformity in the saturated region
would be diminished because of the decreased wave skin-depth.

Figure 24 shows the axial and transverse field variations and the
corresponding resistive heating for the waveguide excited at 250kHz. The
middle plot shows the familiar transverse variation of the fields and is
consistent with the trend shown in previous plots.

The axial variation of the field components (upper graph) shows an
intensification of the wave decay effect. The field magnitude at the open-
circuit is much lower than at the waveguide input. This excessive decay has
partially negated the benefits of having the interleaving of the electric ficld
components 2}~ng most of the waveguide. The wave decay eftect has

essentially put an upper bound on the frequencies which can be used 10
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achieve uniform heating over the indicated volume.

The resistive heating pattern of Figure 24 retlects the behaviour of
the axial variation of the fields discussed above. Although less heating
occurs in the gap region, better heating uniformity in the saturated region
cannot be achieved with this higher frequency because of the significant
decrease in the depth-of-penetration.

We have shown that relatively uniform heating of volumes ol oilsand
with dimensions much larger than the skin-depth of a plane wave in the
saturated ression can be achieved. By introducing a low-foss region of
material adjacent to the formacon electrodes and operating at radio
frequencies, relatively uniform heating can be obtained without fear of
decoupling the forrnation and terminating the heating process. The
previous discussion has also shown some of the concems that are associated
with this heating scheme. By operating at too low a frequency, current will
not effectively couple across the gap region. Consequently, the majority of
heating will occur in the gap and heating of the saturated region will be
minimal. On the other hand, by operating at too high a frequency. skin-
depth effects may limit the depth-of-penetration of the electromagnetic
energy and reduce the volume of formation being effectively heated.
Although these effects are of concern, it has been seen that it is possible to
heat large blocks of oilsand relatively uniformly and efticiently.

Depending on which oilsand heating and bitumen recovery scheme is
used, the thickness of the gap region may increase as heating proceeds. As
the gap region becomes larger, a higher operating frequency will be
necessary to ensure coupling of current across the gap and heating of the
saturated formation. At the same time, a larger gap region results in a

decrease in the wave attenuation constant. This decrease tends to counteract



the increase in the attenuation constant attributed to the increase in
operating frequency. The overall effect is to shift the frequency range of
uniform heatirg higher. So, if a heating scheme using, say, gravitational
drainage were to be used, then the excitation frequency would have to
increase with increases in gap thickness to preserve optimal heating. It
should be noted, however, that ne condition of [EZ{Ex21 in the satarated
region x=d still must be satisfied. If not, then heating uniformity wi:l
suffer. In addition, operating at too high a frequency may allow highzr
order modes to propagate, in which case a more complex analysis of the

heating would have to be undertaken.

5.5 System Design Using Electromagnetic Scaling

With knowledge of a waveguide configuration which effectively
heats a formation of given properties, such 2s the one shown in Figure 23.
other waveguide systems may be designed to heat oilsand formations of
different electrical properties (i.e. conductivity) through the

implementation of electromagnetic scaling theory. The design procedure

system, followed by application of ele:trornagnetic scaling theory to the
known base case to determine the reinaining parameters required for the
new system. The design parameters cannot be chosen independently and
must be chosen with reference to the scaling equations. For example, the
choice of one parameter may result in another parameter becoming fixed
by the scaling equations. The following paragraph states the necessary
equations for electromagnetic scaling.12

The electrical parameters for a full scale system are denoted by o, €
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and u. For the corresponding scale model, the system parameters are
denoted by o', ¢ and u'. x=px', y=py'. and z=pz' relate the tull scale and
model geometries and the operating frequencies are determined by the
relation w'=yw. The saturated regions of the model and full scale system

achieve electromagnetic similtitude if their parameters satisty the equations

provided that c»/we; {( 1 and o)/we, )) 1. A complete example of the scaling

procedure, as applied to an oilsand filled parallel-plate waveguide is given

in Appendix 1.
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6. Conclusions and Further Work

Nearly all of the Athabasca oilsand formations in place are deeply
buried under 150m or more of overburden and can.:ot be readily surface-
mined. At their average in-situ temperature of 10-15° C, the oilsand
formations are very viscous and have a low permeability and thermal
conductivity. These conditions render it very difficult to recover the
biiumen by conventional steam and fluid injection techniques. Prior
research has shown that the viscosity of the oil in the oilsand decreases
dramatically with moderate temperature increases. Therefore, preheating
the oilsand prior to steam or fluid injection recovery has been suggested.
Due to the low thermal conductivity and injectivity of oilsand, electrical
heating, which does not rely on thermal conduction or diffusion of hot
fluids in a medium, has been suggested as a possible heating method.

In general, two methods of electrical preheating have emerged.
These are low frequency (60 Hz) and radio-frequency methods. Prior
research done in the Applied Electromagnetics Laboratory at the
University of Alberta has shown that radio-frequency heating methods can
theoretically be applied to heat reasonat iy large volumes of deeply buried
oilsand formations efficiently.

Initial investigations done at the University of Alberta have shown
horizontal electrode placement to be preferred. Two rows of electrodes,
each straddling the top and bottom of the oilsand payzone, can readily be
approximated by a parallel-plate waveguide. Filling the waveguide is a
layered lossy medium, the upper layer representing the moisture-depleted
oilsand region and the lower layer represe iting the saturated oilsand

region. For waveguides longer than the guided wavelength, standing wave



guided wavelength, standing wave effects may create highly non-uniform
heating patterns which result in inefficient bitumen recovery. With proper
waveguide termination and careful ;ystem design, the normally detrimental
standing wave effects may be modified to create uniform field strengths
and heating rates throughout much of the saturated oilsand volume, and
thus maximize the efficiency of the following bitumen recovery stage.
This research begai with the derivation of the analytic solution for
the electromagnetic fields inside the parallel-plate waveguide. This allowed
the calculation of the resistive heating patterns in the waveguide.
Evaluation of the 1asistive heating patterns required numerical solution of a
complex-valued transcendental equation describing the wave propagation
constants. Two models were developed to approximate the propagation
constants and, thus, simplify the solution procedure. A TEM transmission
line equivalent circuit describing the parallel-plate waveguide led to a
simple expression for the dominant mode propagation constant in terms of
various physical system parameters. A second model, based on the analytic
field solutions, but constraining the transverse propagation constants ky
and ky, to small values, gave identical expressions for the waveguide
propagation constants but made no field assuinptions for the waveguide.
Better than 90% accuracy was achieved by the approximate expressions if
the complex arguments k,d and ky2(a-d) appearing in the transcendental
equation were limited in magnitude to no more than 0.3 in real and
imaginary components. The waveguide models also accurately predicted
the total power dissipated within a section of waveguide for forward
travelling waves. However, the transmission line model incorrectly

predicted uniform transverse heating within the waveguide, whereas the
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small argument approximation, which is based on the analytic field
solutions, predicted the correct power distribution as described by the field
expressions themseives.

The majority of the research work done involved detailed
investigation of the resistive heating behaviour in the waveguide as
govern:d by the analytic field solutions. Investigation of the resistive
heating patterns for a given waveguide configuration as a function of
frequency has revealed that relatively uniform power dissipation in the
saturated region of the waveguide may be achieved. Obtaining uniform
heating, however, requires proper line termination and careful choice of
system parameters and frequency. System design can also be carried out if
a system configuration exhibiting uniform heating is known. Then systems
with desired properties can be designed through application of
electromagnetic scaling theory. For instance, given a waveguide
configuration exhibiting uniform heating (see Figure 23), a system
designed to heat oilsand of different conductivity can be found easily
through application of electromagnetic scaling theory.

Proper initial system design is very important. Adjusting individual
system parameters such as frequency in efforts to compensate for non-
uniform heating can be effective. However, heating uniformity is very
dependent on, for instance, saturated region conductivity. Therefore,
knowledge of such factors as the temperature dependence of oilsand
conductivity is very important in designing a system to optimize the overall
preheat efficiency.

As well as providing some answers to questions concerning the

heating of oilsand formations, the research presented nas given rise to



many further questions which merit additional research. The waveguide
system investigated has been idealized. In order to form a clearer picture
of the power dissipation behaviour in an actual in-situ heating scenario,
several aspects of the waveguide excitation must be addressed. Beginning
with the waveguide input, the form of the excitation fields play a major
role in the heating adjacent to the waveguide input. The type of excitation
applied to the waveguide affects which higher order modes are launched in
addition to the dominant mode and, thus, consequently determines the
evanescent heating pattern near the waveguide input. Determination of this
heating is important to the overall understanding of the waveguide heating
behaviour and also helps to determine preferred methods of excitation. In
addition to using the generation of higher order modes as a criterion for
choosing a particular form of waveguide input, the efficiency of power
transfer from the source to the waveguide requires examination. In order
to maximize the efficiency of the overall system, using a waveguide
excitation which is matched to the waveguide is also necessary. Further,
given that the waveguide input network has been chosen, questions
concerning the actual power levels to be applied and the resultant heating
times and temperatures in the saturated oilsand need to be addressed.
Design of a system to give the required temperature rise in the oilsand in a
reasonable period of time will, in turn, determine the size and type of
radio-frequency electrical generators and related hardware required, such
as electrode sizes, matching hardware, connecting cable specifications, clc.
For proper application of the oilsand preheat methods to practical
situations, the above system design parameters must be known and,
therefore, merit further research.

Again, it is emphasized that the research done has been for an



idealized parallel-plate waveguide geometry. Obtaining heating results for
non-ideal systems requires the use of numerical programs. An important
step in further research concerning radio-frequency heating of oilsand
formations, or any medium that is to be heated, is the development of a
numerical program for calculation of the resistive heating within a
parallel-plate waveguide loaded with an arbitrarily inhomogeneous
medium. Further enhancements to account for such factors as thermal
conduction, fluid flow and temperature sensitive electrical parameters
should also be incorporated into the program. A basic version of such a
program has been developed and is presented in Appendix 2. Comparison

of the results from the numerical program to those from the analytic

solution reveals excellent agreement between the two. Many more questions

require attention. However, the ones mentioned here are of main concern
for the eventual successful application of radio-frequency heating to

various media.
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Appendix 1.
Electrrmagnetic Scaling Example
This appendix gives a detailed example of the electromagnetic
scaling procedure used for the design of parallel-plate waveguide

systems which will exhibit uniform heating.

Consider an inhomogeneously loaded parallel-plate waveguide

configuration akin to the one shown in Figure 1 in Chapter 1. The

electrical conductivity of region 1, the saturated oilsand region, is

dependent on the grade of oilsand being heated. Having obtained a sct

of system conditions required to achieve uniform heating in a
saturated oilsand layer of particular conductivity, a method of
choosing system parameters to achieve uniform heating for a
saturated region of different conductivity is desirable. One available
method is to use electromagnetic scaling theory to quantify the new
system.12

For the problem considered here, only two scaling equations

x _ - _%1" [E
S EPEgrA
X 1V egg

where the primed quantity denotes the model and the

are necessary.

unprimed quantity denotes the full scale system. p is the mechanical
scale factor relating the x,y and z dimensions of the model and full
scale system.

The second equation is
L _01ey _ o

r= o8 @
where o is the radian frequency and v is termed the frequency
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scaling factor.
For illustrative purposes, we may choose a system

configuration with the following properties:

61=10" S/m 62=10"° S/m
g1=11-€ £2=3€
H1=He H2=He
a=15m d=0.5a
L=400m f=150kHz

The system may represent a configuration with desirable
heating characteristics. If it is wished to heat a formation of saturated
region conductivity of 6,=10"2S/m (for which &;’=3-go and €,'=30-g¢ )

with the same heating pattern, we may apply the scaling equations as

follows
_o /& _10%_ o
PToV e 107
therefore
x = 10x’
SO
L =400 _ 40m
10
a= 52 1.5m
10
d =212 =0.75m
10

Applying the second scaling equation gives
' _o1'gr _ 102 3¢ _

. = 10
ci1€2"  103.3.e

SO

t' = 10f = 10(150kHz) = 1.5MHz
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This new system will accurately reproduce the heating pattem
of the original system provided

0,
we, » 1

and
02
0E, (1
For typical oilsand, the electrical conductivity varies from
10210 S/m. However, the conductivity of depleted oilsand is

generally constant at about 10 S/m. Thus, in the present case

O1 . o _
0E; 10.9  and o 4

and

Oy _ . o2 _
0e; - 0.04 and e 0.004

The scaling approximation becomes less accurate for smaller
saturated region conductivities since the loss tangents of the model
and full-scale saturated regions becomes prohibitively small. FFor the
cases considered here though, the application of scaling theory can

generally be applied with accurate results.
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Appendix 2.
Numerical Field-Solving Program CARHERTZ

This appendix is devoted to explanation of the numerical field-
solving program CARHERTZ. The program has been developed by
the author to numerically calculate the electromagnetic fields for a
parallel-plate waveguide loaded with an arbitrary medium. This
program represents the basic version of a program ultimately
capable of calculating the electromagnetic heating within a parallel-
plate waveguide taking into account such factors as temperature
dependent material properties, thermal conduction and fluid flow.
The two-dimensional Cartesian coordinate based program divides the
solution domain into grid blocks of specified size (see Figure A).
Then an equation describing the magnetic field H for a given grid
block is generated from the difference form of Maxwell's curl
equations. Applying the equation to every grid block in the domain
creates a coefficient matrix for a linear equation in H. With a
suitable excitation vector applied to the waveguide, the eigenvalue
problem can be solved by Gaussian elimination to yield the magnetic
field solution. The corresponding electric fields may be found by
back substitution.

In order to numerically calculate the fields in the parallel-plate
waveguide, the domain of interest and a strip of the surrounding
medium are firstly divided into grid blocks. The surrounding or
'phantom’ blocks are assigned the appropriate properties, in this
case, the properties of the perfectly conducting waveguide walls. The

nature of the co-efficient generating algorithm is that it deals with all
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Figure A. General grid arrangement and field conventions for the
numerical program CARHERTZ.
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domain blocks in the same fashion. There are no special algorithms
to handle special cases(i.e. boundary blocks). When the program
evaluates the co-efficients for a boundary block, it uses the
properties of the adjacent phantom blocks directly, as if they were
ordinary blocks.

The derivation of the general equations for a grid block

follows. Consider the general picture of the grid arrangement shown

in Figure A.

For the grid block in question we can write the central

f E-dl = -jou f H-dS

or, in difference form applied to the block

equation

Ez; jAz;+EX;j+18%i-EZis BzrEX; jAx=-jou;Hi AXAZ;
Rearranging gives
EZ;JAZJ'+EX;J+]AX1-EZH1 JAZJ'-EX;JAXi+jwuiJHiJAXiAZj=()

For the same block we may write the perimeter equation

J H.dl = j (o+jwe)E-dS

or in difference form
A

Hi,iAY'Hi~1JA)'=(G+jm€)i,j(A—;(i‘AY)EZi,j"'(G'*'ij)i-l,j( );MAY)EZi,j
Rearranging gives

HijHiy

EZiJ"
(0'+j(’)8)i,j("A‘;’(i)+(G+ij)i-l J(g:;'—l

We may write the perimeter equation for the rest of the
surrounding grid blocks

. Az; . Az;
H;Ay-Hije IA)"—'(G"'Jma)iJ(‘;‘J‘A)’)Exi,j+1+(°'+Jm5)i;+l(—;‘tl—A)’)Exi,jH
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Rearranging gives
Hi;Hi;

Exijj1=
AZjH
2

)

. Az; .
(0+Jm€)ig(—2—1)+(0+J(D€)i¢+l(

A

Hi,jAY‘Hi-o-lIgAy='(0+jm£)i‘i(é;'(—iA)’)Ezi+1J‘(0+jw€)i+lJ( X;HAY)EZMJ

Rearranging gives
HijHis1y
AX;

(6+j0e); (=1 +(o+jwe)i+1

-Eziq1 7

d

AXiy) )
2

~

. Az . Az;.
H; Ay-H;;14y=-(c+jwe) ili(“,f_lA)’)Exi‘j'(o‘*'Jma)ili-l("—,;‘lA)’) Ex;;

Rearranging gives
Hi;-Hij

Exig Az; Az;
(+jor); (S D+ o+H0e)i 1 (=)

The perimeter equations may be substituted into the central
equation which results in a linear equation in H.

{ i Hijor+{ Hiv g+ Hia+ JHi=0
where { } designates the various coefficients.

This equation may be written for every domain block in terms
of the properties of the surrounding blocks, including phantom
blocks. Doing this results in a matrix equation in H with a voltage
excitation applied at each grid block; however, in practice usually
only blocks at the waveguide input are excited. The matrix may then
be solved numerically for the magnetic fields with all the remaining
fields obtained tlirough back-substitution.

All of the relevant system parameters such as the electrical

properties for each grid block (including phantom blocks), grid

dimensions, operating frequency and waveguide excitation vectors
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are entered at the beginning of the program. A detailed explanation
of the variables is also given there. Further clarification can be made
with reference to Figure A. Theoretically, any domain grid block
may be excited. However, the present form of the program allows
for the common excitation of the waveguide input grid blocks only.
In addition, although electric or magnetic field excitation is possible,
the current program provides for transverse electric field excitation.
Finally, the waveguide termination is short-circuited for the reason
that it can be accurately modelled numerically.

CARHERTZ was developed in Fortran and taylored for
execution using MPW Fortran and Fortran 77 with no modification
and also using MacFortran 020 with slight I/O modification.

The program output occurs on two levels: one for monitoring
intermediate results for obvious programming errors and one for the
outp .t of final results. On output unit 7, intermediate program
results such as the co-efficient matrix for the magnetic field system
of equations and the grid block electrical properties are displayed for
troubleshooting purposes. The solution set for the transverse and
axial electric fields with the corresponding grid co-ordinates are
output to unit 9. Unit 9 output is formatred for direct transfer of the
data to Macintosh graphics programs such as 'Cricketgraph’ or

SYSTAT.
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€ PROGRAM CARRERTZ
c
C

PROGRAM CAHERZ

THIS PROGRAM CALCULATES THE 2-DIMENSIONAL TIME-HARMONIC MAGNETIC
AND ELECTRIC FIELD DISTRIBUTIONS FOR PARALLEL-PLATE WAUEGUIDE
PROBLEMS IN CARTESIAN CO-ORDINATES. NO UARIATION ACROSS THE
WIDTH OF THE IDAVEGUIDE IS ASSUMED. THE DIRECTION PERPENDICULAR
TO THE PLATES IS TERMED EITHER THE H OR R DIRECTION AND THE

AXIAL DIRECTION 1S 2. THE PROBLEM DOMAIN IS SUBDIUIDED INTO
GRIDBLOCKS HAUVING VARIABLE RADIAL AND ARIAL DIMENSIONS. THE
ELECTRICAL CONDUCTIUITY, RELATIVE DIELECTRIC CONSTANT, AND
RELATIVE MAGNETIC PERMEABILITY OF EACH GRID BLOCK ARE
SPECIFIED. THE GRID BLOCKS MAY HAUE ARBITRARY ELECTRICAL
PROPERTIES.

A SINGLE LAYER OF "PHANTOM" GRID BLOCKS BORDERS ON EACH OF THE
FOUR SIDES OF THE PROBLEM DOMRIN., EACH OF THESE GRID BLOCKS 1S
ASSIGNED A "PHANTOM" ELECTRICAL CONDUCTIUITY AND RELATIVE
DIELECTRIC CONSTANT, WHOSE YALUES DEPEND UFON THE LOCAL BOUNDARY
CONDITION. A COMMON ALGORITHM 1S NOW REPEATEDLY USED TO
GENERATE AS MANY EQUATIONS FOR THE MAGNETIC FIELD H AS THERE
AARE GRID BLOCKS IN THE PRGSLEM DOMAIN. THESE EQUATIONS HAVE THE
FORM KK*H=F, WHERE KK IS THE CO-EFFICIENT MATRIX AND F 1S THE
EHCITATION VECTOR. THE CO-EFFICIENTS KK OF THESE EQUATIONS

ARE STORED IN 8 COMPRESSED CO-EFFICIENT MATRIK K WHICH IS THEN
USED TG SOLUE THE EQUATIONS BY GAUSSIAN ELIMINATION TO

YIELD H. THE MAGNETIC FIELD DISTRIBUTION H IS THEN USED TO SOLUE
FOR THE ELECTRIC FIELD DISTRIBUTION E.

MOOOCOO0OOOOOO00O0OOO0O0O00O0O000O0O00O0n

c****************#tt#*****‘*#****ﬁ#*&‘-*****ﬁt#t“t*##*“##*#‘&v#tttt‘t

C INPUT UARIABLES

c*****‘*‘######**#***#***#**#**#***v#***#‘*#**###*t*‘#**t#t##*b‘tt**#tt

NR - NUMBER OF TRANSUERSE GRID BLOCKS IN THE PROBLEM DOMRIN
NZ - NUMBER OF RHIAL GRID BLOCKS IN THE PROBLEM ROMAIN
* DELTAR(NR) - DECTGR CONTAINING THE BLOCK DIMENSIONS IN THE
TRANSUERSE DIRECTION, STARTING WITH THE BLOCK
NEAREST THE ARIS (M).
DELTAZ(N2) - UECTOR CONTAINING THE BLOCK DIMENSIONS IN THE
AXIAL DIRECTION, STARTING WI1TH THE BLOCK NEARESY
THE EXCITATION.(M)
NREG - THE NUMBER OF REGIONS OF DIFFERENT ELECTRICAL PROPERTIES
THAT ARE QUERLAID TO DEFINE THE ELECTRICAL PROPERTIES
OF THE PROBLEM DOMAIN.
BOMIND(NREG,4) - ARRAY THAT DEFINES THE GRID INDITES OF THE
BOGUNDARIES OF ALL REGIONS. ITS N'TH ROW
CONSISTS OF MINT, MAHI, MINJ, MAHJ OF THE

OO0 00 000



N'TH REGIGN, WHERE

MINI - THE INTEGER INDEH THAT DEFINES FOR ANY
REGION THE LINE OF GRID BLOCKS PRRALLEL
T0 AND NEAREST THE AHIS.

MAH| - THE INTEGER INDEH THAT DEFINES FOR ANY
REGION THE LINE OF GRID BLOCKS PARALLEL
T0 AND FURTHEST FROM THE AHIS.

MINJ - THE INTEGER INDEH THAT BEFINES FOR ANY
REGION THE LINE OF GRID BLOCKS PERPENDICULAR
T0 THE AXIS AND NEAREST THE ORIGIN.

MAKJ - THE INTEGER INDER THAT DEFINES FOR ANY
REGION THE LINE OF GRID BLOCKS PERPENDICULAR
TO THE AHIS AND FURTHEST FROM ORIGIN.

DOMPRAP(NREG,3) - ARRAY WHASE N'TH ROW CONSISTS OF SIGMA

(ELECTRICAL CONDUCTIUITY §/M), EPSREL (RELATIVE

DIELECTRIC CONSTANT), AND MUREL (RELRTIVE

MAGNETIC PERMEABILITY) OF THE N‘TH REGION.

FREG - FREQUENCY OF QPERATION (H2)

EXCMAG(NR) - UECTOR CONTAINING THE MAGNITUDES OF THE TRANSUERSELY
DIRECTED ELECTRIC EHCITATION FIELDS IN i PLANE
PERPENDICULAR TO THE AXIS AND THROUGH THE ORIGIN.
THE FIRST VECTOR COMPONENT CORRESPONDS TO THE
Lt 'TATIGN FIELD AT THE GRID BLOCK NEAREST THE
DY 5 AND THE LAST UECTOR COMPONENT CORRESPONDS T0
THE ERCITATION FIELD AT THE GRID BLGCK FURTHEST
FROM THE ARTS (U/M).

EXCANG(NR) ~ UECTOR CONTAINING THE PHASES CORRESPONDING TC
EHCMAG(NR) (DEGREES)

s EuEzEsEs RN el N e el e N w2 i e B o B o B o B or B or B or B or S or B oo 2 on 2N ov ]

c*t##t**t*****#t******t*****ﬁ‘*********#***#*‘********#*******#****#**

C OUTPUT UARIABLES
c*‘*#***#*#*&*#***#‘*##*******#‘*#*‘#“‘t**#**#********‘******ﬂ*******
c

¢ HMAG(NR,NZ) - RRRAY CONTAINING THE MAGNITUDES OF MAGNETIC

c FIELD INTENSITIES AT THE CENTERS OF ALL GRIJ BLOCKS (A/M)

c HANG(NR,N2) ~ ARRAY CONTARINING THE ANGLES OF MAGNETIC FIELD

c INTENSITIES AT THE CENTERS OF ALL GRID BLOCKS (DEGREES)

C ERMAG(NR,N2) - ARRAY CONTAINING THE MAGNITUDES OF RADIAL ELECTRIC
€ FIELD INTENSITY COMPONENTS AT THE CENTERS OF ALL

c GR1D BLOCKS (U/M)

c ERANG(NR,N2) - RRRAY CONTAINING THE ANGLES OF TRANSUERSE ELECTRIC
C FIELD ENTENSITY COMPONENTS AT THE CENTERS OF ALL

c GRID BLOCKS (DEGREES)

c E2ZMAG(NR,N2) - ARRAY CONTAINING THE MAGNITUDES OF ARIAL ELECTRIC
c FIELD INTENSITY COMPONENTS AT THE CENTERS OF ALL

c GRID BLOCKS (D/M) ‘

C E2ANG(NR,N2) - ARRAY CONTARINING THE ANGLES OF AXIAL ELECTRIC

c FIELD INTENSITY COMPONENTS AT THE CENTERS OF ALL

C GRID BLOCKS (DEGREES)
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C HTRATE(NR,N2Z) - HEATING RATE AT THE CENTERS OF ALL GRID
c BLOCKS (WJ/M**3)
C

c0**t*#‘—i*#*t#*‘*#&*#*‘ﬁ#**#*‘*‘t‘**t*‘#*“V*“*#‘l*#tt*‘t‘tt‘#t#‘#‘.t

C UARIABLES USED WITHIN THE PROGRAM

c***#*#*‘****t**t**i‘##***ii*‘**'ﬁ***&‘*#“#‘#*#tt#tt‘ti‘tt*tt‘t‘tttttt

NR1 - NR+1

NZ1 - N2+1

NANZ - NR*N2

SIGJWE(O:NR1,0:N21) - ARRAY CONTAINING SIGMA + JIW*EPSILON OF

EUERY DOMAIN AND PHANTON GRID BLOCK

IBMU(NR,N2Z) - RRRAY CONTAINING W*MU OF EVUERY DOMAIN GRID BLOCK

R(O:NR1) - UECTOR THAT CONTAINS ALL THE RADIAL DISTANCES FROM
THE ARIS TO THE CENTER OF EDERY GRID BLOCK. ARBITRARY
UALUES FOR THE RADIAL DISTANCES TG THE CENTERS OF THE
INNERMOST AND GUTERMOST PHANTOM GRID BLOCKS ARE
LOCATED IN R(0) AND R(NR1).

2(0:N21) - VECTOR THAT CONTAINS ALL THE ARIAL DISTANCES FROM
THE ARIS TO THE CENTER OF EBDERY GRID BLOCK. ARBITRARY
UALUES FOR THE ARIAL DISTANCES TO THE CENTERS OF THE
INNERMOST AND OUTERMOST PHANTOM GRIO BLOCKS ARE
LOCARTED IN 2(G) AND 2(N21).

ARBITRARY TRANSUERSE GRID BLOCK DIMENSIONS FOR THE
INNERMOST AND OUTERMOST PHANTOM GRID BLOCKS ARE IN
DELR(0) AND DELR(NR1),
DELZ(0:N21) - UECTOR THART CONTAINS ALL AHIAL GRID BLOCK BIMENSIONS.
ARBITRARY ARIAL GRID BLOCK DIMENSIONS FOR THE
INNERMOST AND OUTERMOST PHANTOM GRID BLOCKS
ARE IN DEL2(0) AND DEL2(N21).
KK(NRNZ,NRN2) - ARRAY OF COMPLER CO-OFFICIENTS KK OF THE EQGUATIGNS
KK*H = F. THE CO-EFFICIENT MATRIH KK IS COMPUTED
AND STORED ONLY FOR INITIAL TESTING OF TH1S PROGRAM.
K(NRNZ,NR1} - ARRAY OF THE COMPLER CC-OFFICIENTS OF THE COMPRESSED
MATRIH K. NOTE THAT NR1 IS THE HALF BANDWIDTH OF THE
MATRIX KK (INCLUDING THE DIAGONAL).
F(NRNZ) - COMPLER VECTOR F IWHOSE FIRST NR ELEMENTS CONSIST OF
THE REAL AND IMAGINARY PARTS OF THE COMPLEH EXCITATION
UOLTAGES CONSTRUCTED FROM EHCMAG(NR), AND EHCANG(NR)
AND DELTRR(NR). THE REMAINING ELEMENTS ARE ZERO.
H(NRNZ) - COMPLER UECTOR H WHOSE ELEMENTS ARE THE SOLUTION
T80 KK*H = F

OO0 O0OOO0O000O0000000000

c#t************#*****‘#‘#ﬁ*ﬁl#U@*****t&ﬁ#t*#&*t‘&*#*““#tbt***‘t‘**tttt

C DIMENSIONING AND DECLABARTIGN GF INPUT AND OUTPUT URRIABLES

c**#*#***********ﬁ*‘*“***&‘v‘**‘m“#“‘ﬁt*tt“‘*t‘*t*t*#t‘*#‘#‘tﬁttt‘tt

INTEGER NR,NZ,NREG
PARAMETER (NR=20,N2=25,NREG=2)

DELR(O:NR1) - VECTOR THAT CONTAINS ALL RADIAL GRID BLACK DIMENSIONS.
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INTEGER DOMIND(NREG,4)
REAL DELTAR(NR), DELTAZ(N2Z), DOMPRP(NREG,3)
REAL FREQ, ERCMAG(NR), ERCANG(NR)
REAL HMAG(NR,N2), HANG(NR,N2), ERMAG(NR,NZ), ERANG(NR,NZ)
REAL EZMAG(NR,N2), EZANG(NR,NZ), HTRATE(NR,N2}
c

c*t*‘**#t*#t*‘*#ﬁt#t“ﬁ#i*#*tﬁ**‘##*#*#***t*#t*‘**#***#t***********t*#**

C DIMENSIGONING AND DECLARATION GF UARIABLES USED WITHIN THE PROGRAM
c******#*****‘##***‘***‘****‘****‘*‘*‘#‘*##*#***********‘********#******
C

INTEGER NR1,N21

PARAMETER (NR1=NR+1, N21=N2+1)

COMPLEH SIGJWE(B:NR1,0:N21)

REAL WMU(O:NR1,0:N21), R(0:NR1),2(0:N21)

REAL DELR(O:NR1),DELZ(B:N21),MU

PARAMETER (NRNZ=NR*N2)

COMPLEH KK(NRNZ,NRN2)

COMPLEH K(NRNZ,NR1),KCOPY(NRNZ,NR1}, F(NRNZ2),FCOPY(NRN2), H(NRNZ)

C THESE ARE DUMMY UARIABLES
COMPLEX ER(NR1,N21), EZ(NR1,N21), HH(O:NR1,0:N21)
COMPLER EXAUG(NR,N2), EZAUG(NR,N2)
CHARACTER™*1 TAB
TAB=CHAR(9)
c

c**#‘***#t**ﬁ**‘***#‘*#‘#***‘#*W***************************************0

C INPUT OF REMAINING DATA
c#*#****“‘##‘***‘**#*##***‘*‘****ﬁ*************#*‘*#**‘********‘******‘
C

DATA DELTAR /20*0.?5/

DATA DELTAZ /25%16./

DATA ((DOMIND(1,J),J=1,4),1=1,NREG)
C  NERT LINE: MINI,MARI,MINJ,MAHJY

€ /1, 2, 1,25,

C 3, 20, 1, 25/

DATA ((DOMPRP(1,d),J=1,3),1=1,NREG)
C NEXTLINE: SIGMA,EPSREL,MUREL

c /0.01, 11.0,1.0,

C 0.000001, 3.00, 1.0/

DATA FREQ /9.ES/

DATA P1/3.141592654/
DATA EHCMAG /1*0.,100.,18*0./
DATA EXCANG /20%0./

GPEN(UNIT=? FILE="MRTRIK',STRTUS="NELJ’)
OPEN(UNIT=10,FILE="OUTH', STATUS="NEW"')
OPEN(UNIT=11,FILE='OUTEH',STARTUS='NELL')
OPEN(UNIT=12,FILE='OUTEZ',STATUS="NEID')
OPEN(UNIT=13,FILE='"PDENS',STATUS="NELL')

OO0
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c

c****t**‘ﬁ‘*#‘#‘*‘**#*##*‘*‘*‘##t*“"*##t#*t‘*t““‘i“#“tt#t‘*t‘#‘t‘t

C MAIN PRGGRAM
c‘***#**#***ﬁ*‘*##***‘**#*#*****“***#“‘#‘*“*#iit#tﬁ.&#t*‘*‘*‘#‘*t*t##
€
C ASSIGNMENT OF ELECTRICAL PROPERTIES T0 ALL DOMAIN AND PHANTOM BLOCKS
c
CALL ASSIGN
€ (NR,NR1,N2,N21,NREG,B0MIND,DOMPRP,FREQ,SIGJIVE,WMU)
€
C CALCULATICN OF RADIAL DISTANCES TO CENTERS OF GR1D BLOCKS
c
suM=0.0
Do 10 I=1,NR
R(1)=SUM+DELTAR(1}/2.0
SUM=SUM+DELTAR(I)
10 CONTINUE
<
C CALCULATION OF ARIAL BISTANCES TO CENTERS OF GRID BLOCKS
c
SUM=0.0
B0 20 1=1,N2
2(1)=SUM-+DELTAZ(1)/2.0
SUM=SUM+DELTRZ(1)
20 CONTINUE
C
C ASSIGNMENT OF ARBITRARY RADIAL AND AXIAL DISTANCES TO THE CENTERS OF
¢ PHANTOM GRID BLOCKS THAT ARE ADJACENT TO THE AXES AND FURTHEST
€ FROM THE AHES
c
R(0)=1.0
R(NR1)=1.0
2(0)=t.0
2(N21)=1.0
c
C CONSTRUCTION OF DELR(O:NR1) FROM DELTAR(NR}
c
D0 30 I=1,NR
DELR(1)=DELTAR(1)
30 CONTINUE
DELR(0)=1.0
DELR(NR1)=1.0
c
C CONSTRUCTION OF DEL2(0:N21) FROM DELTAZ(NZ)
c
00 40 I=1,N2
DEL2(1}=DELTAZ(})
40 CONTINUE
DELZ2(0)=1.0



BELZ(N21)=1.C

()

COMPUTATION OF THE REGULAR COEFFICIENT ARRAY KK

(o M el

CALL KAK(NR,NRT,N2,N21 ,NRNZ,DELR,DELZ,S1GJWE,WWMU,KK)

COMPUTATION OF THE COMPRESSED COEFFICIENT RRRAY K

OO0

CALL COEFFK(KK,NR,NR1,NRNZ,K)
c
C CREATE A COPY OF K TG BE USED BY 'GAUSEL
C
00 21 J=1,NRI
00 22 I=1,NRN2
KCOPY(1,J)=K(1,J)
22 CONTINUE
21 CONTINUE
C
C COMPUTATION OF THE COMPLEX EXCITATION UOLTAGES F
C
CALL VOLTF(EXCMAG,EHCANG,NR,NRNZ,DELTAR,F)
C
C CREATE A COPY OF F TO BE USED BY 'GAUSEL'
c
DO 24 1=1,NRN2
FcopPy()=F(1)
24 CONTINUE
c
€ COMPUTATION OF THE UECTOR H BY GAUSSIAN ELIMINATION
C
CALL GAUSEL(NRNZ,NR1,KCOPY,FCOPY,H)
c
C CALCULATE HMAG AND HANG FROM H
c
D0 330 M=1,NRN2Z
I=M-((M-1)/NR)*NR
J=(M-1)/NR+1
HMAG(1,J)=SART((REAL(H(M))**2)+(AIMAG(H(M)}**2))
REELH=REAL(H(M)}
c
C IF THE REAL PART OF H IS VERY SMALL THEN TAKE THE ABSOLUTE
C UALUE OF IT WWHEN CALCULATING THE ANGLE TO AVOID POSSIBLE PHASE ERRARS
C DO TO COMPUTER ROUNDOFF
c
IF(REELH.LE.1.E-20) REELH=ABS(REELH)
HANG(1,J)=180/PI*ATAN(AIMAG(H(M))/REELH)
330 CONTINUE
c
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o000

COMPUTATION OF EX(NR,N2) AND E2(NR,NZ) FROM H

CALL EFIELD(NR,NR1,N2,N21 ,NRNZ,S1GJWE,ILMU,
*ZRMAG,ERANG,EZMAG,E2ANG,H,DELR,DELZ,EHCMAG,ERCANG,
*ER,E2,HH,EXAUG,E2QUG)
COMPUTATION OF THE RESISTIUE HEATING RATE

CALL POWER(NR,NR1,N2,N21,ERMAG,EZMAG,S1GJIWE,HTRATE)

QUTPUT OF THE PROGRAM RESULTS T0O THE SCREEN

ﬁﬁﬂﬁﬁﬂﬂﬁ(")ﬁﬂﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬂﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ‘ﬂﬁ")ﬁ

PRINT OUT THE COEFFICIENT MATRIH KK

D0 5 1=0,NR1
S WRITE(?,102)(SIGJIVE(],J),J=0,N21)
102 FORMAT(' ',24E10.3)

Do 6 I1=0,NR1
6 WRITE(?,103}(WMU(,4),4=0,N21)
103 FORMAT(' ',12E10.3)

DO 50 1=1,NRN2

S0 WRITE(?,100)(KK(1,J),J=1,NRN2)

100 FORMAT(' ',40E10.3)

PRINT OUT THE COEFFICIENT MATRIX K
00 51 1=1,NAN2

S1 WRITE(?,101)(K(1,J),d=1,NR1)

101 FORMAT(' ',22£10.3)

PRINT OUT THE EXCITATION UECTOR F
D0 52 1=1,NR

52 WRITE(?,104)(F(1))

104 FORMAT(' *,2E10.3)

PRINT OUT THE SOLUTION UECTOR H
DO 56 1=1,NRN2

56 WRITE(?,106)1,(H(1))

166 FORMAT(' ',13,2E10.3)

QUTPUT THE MATRIR EH
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C DO060I=I,NR

€ 6¢ WRITE(?,200)(R(1),(2{J),ERME(1,J),ERANG(1 i} Sy

C 200 FORMAT(' ','AT (",F2.3,',,F7.3,} ER="E12.5.' AT ,F6.2, LGS}

c

C OUTPUT THE MATRIH E2

c

C Do70!=1NK

c 70 lllRITE(?.300)(R'{l],(Z(J),EZMﬂG(I.J).EZHNG(I,J]].J-=l,NZ)

C 300 FORMATC ','AT (,F?.3,,,F7.3,) E2="E12.5," AT "F§.2.' BEGS"

C

€ OUTPUT THE HEATING RATE

c

cC DO8O0I=1I,NR

C 80 WRITE(?,400)(R(1),(2(J3,HTRATE(1,J)),d=1,N2)

C 400 FORMAT(' ','AT (,F2.3,,,F2.3,’) THE HERTING RATE="E12.5/ w/M39

C

C

C e . e e
€ FILES FOR OUTPUT TO CRICKETGRAPH

C
C

C

C PRINT THE MAGNETIC FIELD TO FILE 'OUTH' FOR OUTPUT ON CRICKETGRAPH
c

DO 199 M=1,NRNZ

1=M-((M-1)/NR)*NR

J=(M-1)/NR+1

WRITE(10,*} R(1),TAB,2(J),TAB,HMAG(1,4),TAB,HANG(1,J)
199 CONTINUE

PRINT THE H-ELECTRIC FIELD TO FILE 'QUTEH' FOR GUTPUT ON CRICKETGRAPH

Do 201 1=1,NR

00 202 J=1,N2

WRITE(1 1,*) R(}),TRB,2(J),TAB,ERMAG(1,J),TAB,ERANG(1,J)

C 202 CONTINUE

€ 201 CANTINUE

c

C PRINT THE 2-ELECTRIC FIELD TO FILE 'OUTEZ' FOR QUTPUT ON CRICKETGRAPH
C

C D0 203 t=1,NR

¢ 002044J=1,N2

C IWRITE(12,*) R(1),TAB,2(J),TAB,EZMAG(1,J),TAB,E2ANG(I,J)

C 204 CONTINUE

C 203 CONTINUE

c

C PRINT THE HEATING RATE TO FILE 'PDENS' FOR OUTPUT ON CRICKETGRAPH
c

C
C
C
c
c
C
C
C
c
C
C

00 205 1=1,NR
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06 206 J=1,N2

WRITE{13,*) R(1),TAB,2(J),TAB,HTRATE(1,J)
206 CONTINUE
205 CONTINUE

sTOP
END
C

c#***ﬁ**********ﬁ*****##‘**i‘ﬁ#tt*t‘#**##‘*“*&‘*t*t*“‘***“*#‘*#‘#*##t

C SUBROUTINES
c****##*******#**"*t*i****‘***#***Ui*i*tﬁ**‘*t#‘#ﬁ“***t*ttt***‘t‘tt*tt
c
SUBROUTINE ASSIGN
c (NR,NR1,N2,N21,NREG,DOMIND,DOMPRP,FREQ,SIGJWE,WMY)
COMPLEY SIGJIDE(O:NR1,0:N21),CMPLH
REAL WMU(O:NR1,0:NZ21), DOMPRP(NREG,3), MU
INTEGER DOMIND(NREG,4)
c
C INITIALIZE ALL BLOCKS T0 HAUE S1GJWE="INFINITY"
c
DO 18 i=0,NR1
Do 19 J=0,N21
SIGJIWE(1,J)=CMPLH{1.£30,1.E30)
19 CONTINUE
18 CONTINUE
C
C INITIALIZE ALL BLOCKS TO HAUE WMU="WMU-NOT"
c
RO 10 11=0,NR1
DO 20 JJ=0,N21
IWMU(11,dJ)=2*(3.141592654**2)*FREQ*4*1.E-7
20 CONTINUE
10 CONTINUE
c
C ASSIGN TO ALL BLOCKS THE APPROPRIATE PARAMETERS
c
DC 30 I=1,NREG
MINI=DOMIND(I,1)
MAXI=BOMIND(L,2)
MINJ=DGMIND(,3)
MARJ=DOMIND(I,4)
W=2*3.141592654*FREQ
S1G=DOMPRP(1,1)
EPS=DOMPRP(1,2)*8.8542E-12
MU=DOMPRP(1,3)*4*3.141592654*1.E-?
D0 21 K=MINI,MAH!
D0 11 J=MINJ,MAHJ
SIGJWE(K,J)=CMP  HisiG,W*EPS)
IPMU(K,J)=W*MU
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11 CONTINUE

21 CONTINUE

30 CONTINUE
RETURN
END

(e}

SUBROUTINE KAK(NR,NR1,N2,N21,NRN2,DELH,DELZ,SIGJWE,IWMU,KK)
COMPLEH SIGJWE(O:NR1,0:N21),KK(NRNZ,NRNZ),DEN1,DEN2,BEN3,DEN4
REAL DELH(Q:NR1),DEL2(0:N21),WMU(O:NR1,0:N21)
COGMPLER CMPLH
C
C INITIALIZE THE MATRIR KK
c
DO 8 K=1,NRN2Z
D0 ? L=1,NAN2
KK(K,L)=CMPLH(0.0,0.0)
7 CONTINUE
8 CONTINUE

D0 S M=1,NRNZ
I=M-((M-1)/NR)*NR
J=(M-1)/NR+1

BEN1=(SIGJWE(I,J)*DELK(1)+SIGSWE(I-1,J)*DELR(1-1))/2
DEN2=(SIGJWE(! ,J)*DEL2(J)+SIGIIWE(I,J+1)*DEL2(J+1))/2
DEN3=(SIGJIWE(I,J)*DELR(1)+SIGJWE(I+1,J)*DELR(1+1))/2
DEN4=(SIGJWE(I,J)*DEL2(J)+SIGJWE(,J-1)*DELZ(J-1))/2

IF(1.EQ.1) GOTO 10
KK(M,M~-1)=-DEL2(J)/DENI

10 1F(1.EQ.NR) GOTO 20
KK(M,M+1)=-DELZ2(J)/DEN3

20 I1F(J.EQ.1) GOTO 30
KK(M,M-NR)=-DELH(1)/DEN4

30 IF(J.EQ.N2) GOTO 40
KK{M,M+NR)=-DBELH(1}/DEN2

40 KK(M,M)=DEL2(J)/DENT+DELH(1)/DEN2+DELZ(J)/DEN3+DELH(1)/ENG
c +CMPLR(0.0,lUMU(1,J))*DELR(1)*DEL2(J)

S CONTINUE
RETURN
END

(@]

SUBROUTINE COEFFK(KK,NR,NR1,NRNZ,K)
COMPLEY KK(NRN2,NRNZ), K(NRNZ,NR1},CMPLH
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C INITIALIZE THE MATRIH K
c
DA 17 11=1,NRN2
D0 16 JJ=1,NR1
K(11,44)=CMPLH(0.0,0.0)
16 CONTINUE
17 CONTINUE
c
D0 20 J=1,NR1
B0 10 1=1,NRN2
IF(1.GT.(NRNZ-J+1)) GO TO 100
K(1,J) = KK(l,1+J-1)
GOoTa 10
100 K(1,4) = CMPLH(0.0,0.0)
10 CONTINUE
20 CONTINUE
RETURN
END

o O

SUBRGUTINE VOLTF(EHCMAG,EHCANG,NR,NRNZ,DELTAR,F)
REAL EXCMAGINR),EXHCANG(NR),BELTAR(NR)
COMPLEXR F(NRNZ),CMPLR

P1=3.141592654

o0

INITIALIZE ALL F'S TO ZERO

DG 10 I=1,NRN2
F(1)=CMPLH(0.0,0.0)
10 CONTINUE

C
C CONUDERT EXCMAG AND AHCANG TO RECTANGULAR FORM AND
C THEN CALCULATE F
C
D0 20 I=1,NR
R=EHCMAG(1)*COS(EHCANG(1)*P1/180)
B=EHCMAG(I)*SIN(EHCANG(1)*P1/180)
F(1}=CMPLH(A,B)
F(B=F(1)*DELTAR()
20 CONTINUE
RETURN
END
c
c
c
SUBROUTINE GAUSEL(NSIZE,MBAND,K,F,R)
C
c THIS ROUTINE SOLUES THE LINEAR ALGEBRAIC SYSTEM OF
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EQUATIONS K*A=F BY GAUSSIAN ELIMINATION WITHOUT PIUOTING.

THE MATRIA K IS SYMMETRIC, POSITIVE-DEFINITE, AND BANDED;

ROWS IN THE UPPER TRIANGLE ARE SHIFTED TO THE LEFT UNTIL

DIAGONAL TERMS ARE IN THE FIRST COLLUMN. THE SCLUTION 1S RETURNED
IN UECTOR A.(ALL ENTRIES MUST BE IN RECTANGULAR FORM)

INPUT UARIABLES
NS12E - ORDER OF MATRIX KK
MBAND - HALFBANDIBIDTH OF KK (INCLUBING DIAGONAL)
K(NSI2E,MBAND) - COMPRESSED MATRIR
F(NSIZE) - EXRCITATION VECTOR
OUTPUT UARIABLES

A(NSIZ2E) - SOLUTION DECTOR

MHEOOOOOOOMOOOO0000

COMPLEH K(NS1ZE,MBAND},A(NSIZE),F(NSI2E),C

(3]

NS1ZM1=NSIZE-1

(]

FORWARD REDUCTION OF MATRIH

(]

D0 30 N=1,NSIZM1
D0 20 L=2,MBAND
1=N+L-1
IF(K(N,L).EQ.(0.0,0.0).0R.1.GT.NSI2E) GO TO 20
C=K(N,L}/K(N,1)
J=0
DO 10 M=L,MBAND
J=J+1
K(i,4)=K(1,d)-C*K(N,M)
10 CONTINUE
K(N,L)=C
20 CONTINUE
30 CONTINUE
C
€ SOLUE THE REDUCED MATRIH
c
DO 60 N=1,NSIZM1
Do sc¢ 3=2,MBAND
I=N+L-1
IF(1L.LE.NST1ZE) F(D)=F(1)-K(N,L)*F(N)
50 CONTINUE
F(N)=F(N)/K(N,1)
60 CONTINUE
FINSI2E)=F(NSIZE)/K(NSI2E,1)
c
C BACK SUBSTITUTION
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ANSIZE}=F(NSIZE)
DO 90 N=1,NSIZM1
J=NSIZE-N
Al =F)
0o 80 L=2,MBAND
M=d+L~1
IF{M.LE.NSI1ZE) A(J)=A{J)-K(J,L)*A(M)
80 CONTINUE
90 CONTINUE
RETURN
ENB

(

SUBROUTINE EFIELD(NR,NR1,N2,N21,NRN2Z,SIGJWE,WMU,
*EHMAG,ERANG,E2MAG,E2ANG,H,DELK,DELZ,ERCAG,ERCANG,
“EH,E2,HH,EHAVG,EZAUG)

COMPLEH H(NRN2),ER(NB1,N21),E2(NR1,N21),DENT,DEN2,DEN3,DENS
COMPLEH HH(O:NR1!,0:N21),SIGJIBE(O:NR1,C:N21)

COMPLEH EXAUG(NR,NZ), EZAUG(NR,N2),CMPLR,EXCITE

REAL EZMAG(NR,NZ),EZANG(NR,NZ},EHMAG(NR,N2) EHANG(NR,N2)
REAL DELH(O:NR1),DELZ(G:NZ21),lUMU(0:NR1,0:N21)

REAL EHCMAG(NR),EXCANG(NR)

Pi=3.141592654
C
C SET ALL H'S IN THE PHANTOM BLOCKS EQUfi. T0 2ERO
c
DG 10 J=0,N21
HH(0,J)=CM?PLH(0.0,0.0)

16 HH(NR1,J)=CMPLH(0.0,0.0)
DO 20 I=1,NR
HH(1,0)=CMPLH{0.0,0.0)

20 HH(I,N21)=CMPL}(0.0,0.0)

c
C CONUERT H(M) TO H(I,J4)
C
DO 30 M=1,NRN2
1=M-{(M-1)/NR)*NR
J=(M-1)/NR+1
HH(1,J) = H(M)
30 CONTINUE
c
C CALCULATE THE E FIELDS FROM THE H'S
c
06 40 M=1,NRNZ
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I=M-({M-1)/NR)*NR
J=(i-1)/NR+1
DEN1=(SIGGWE(I,J)*DELH(1)+SIGJWE~1,J)*DELR(I-1))/2
DEN2=(S1GJWE(1,J)*DEL2(J)+SIGJWE(1,J+1)*DEL2(J+1))/2
DEN3=(S1GJWE(!,J)*DELR(1)+SIGJIWE(I+1,J)*DELR(1+1))/2
DENG=(SIGJIWE(],J)*DEL2(J}+SIGJWEN ,J-1}*DELZ2(J-1))/2
c
C TH!IS CODE CORRECTS THE TRANSUERSE E-FIELD NEAR TKE EXCITATION
C i.e. THE APPLIED EXCITATION FIELD HAS TO BE SUPERIMPOSED OVER THE CALCULATED FIELD
C TO YIELD THE CORRECT ANSIVER
c
REHCIT=EHCMAG(1)*COS(P!/180*ERCANG(1))
AIMHCT=EHCMRG(1)*SIN(P1/180*EHCANG(1))
EXCITE=CMPLR(REHCIT,AIMHCT)

E2(1,4)=(HH(1,J)-HH(1-1,J))/DEN1
ER(1,J+1)=(HH{1,J)-HH(1,J+1)}/DEN2
E2(1+1,8)=-(HH(1,d)-HH(1+1,4))/BEN3
EX(1,d)=-(HH(1,J)-HH(},d-1))/DENS

IF(J.EQ.7) EX(I,J)=EHCITE

E2AUG(1,d) = (E2(1,J)+E2(1+1,4))/2
EXADG(1,J} = (ER(1,J)+ER(1,d+1))/2
E2ZMAG(1,J) = ABS(EZAVG(1,J))
EZANG(1,J) = 180/P1*ATAN(RIMAG(EZAVG(1,4))/REAL(EZAVG(1,J)))
c
C IF RE(EZAVG)=0 THEN ASSIGN A DEFAULT URLUE OF 2ERO DEGREES TO EZANG
IF(REAL(EZAVG(1,J)).EQ.0.0) EZANG(1,J)=0.0
C
EXMAG(1,4) = ABS(ERAVG(1,J))
EHANG(1,J) = 180/P1*ATAN(RIMAG(EXARVUG(],J))/RERL(ERAVG(1,4)))
c
C IF RE(EHADG)=0 THEN ASSIGN A DEFAULT URLUE OF 2ER0 DEGREES TO EHANG
IF(REAL(EXAUG(1,J)).EQ.0.0) ERANG(1,4)=0.0

40 CONTINUE
c
€ PRINT OUT THE URLUES OF E2 AND ER AS CALCULATED
c
C DO7??1H=I,NR
C D088 JJ=1,N2
C WRITE(?,111) 11,J4,E2(11,0J)
C  WRITE(?,112) 11,J4,ER(11,4J)
C 838 CONTINUE
C 77 CONTINUE
C 111 FORMAT(' ','E2(",213,')=",2E12.5)
€ 112 FORMAT(' ','ER(,213,')=",2E12.5)
c
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o0

RETURN
END

SUBROUTINE POWER(NR,NR1,N2,N21,EXMAG,EZMRAG,SIGJWE,HTRATE)}

REAL EXMAG(NR,N2),E2ZMAG(NR,N2),HTRATE(NR,N2)
COMPLEH SIGJIBE(O:NR1,0:N21)

DO 20 I=1,NR

DO 10 J=1,N2

ETSQRD = (ERMAG(1,J)**2)+(E2ZMAG(1,J)}**2)

HTRATE(I,J) = 0.5*REAL(SIGJWE(],J))*ETSQRD
10 CONTINUE
20 CONTINUE

RETURN

END
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Appendix 3.
Program Listings

This appendix contains fully documented listings of all the
computer programs referred to in this thesis. They are listed in the
order of mention in the main thesis body and are consecutively
numbered as shown in the Table of Contents. All of the program
listings in this appendix were written in either Fortran or Pascal and
executed on a Macintosh SE/30 personal computer. Programs 1-5
and 7 were written in Pascal and executed using TurboPascal 1.00A
(Borland International 1986, 1987, 1988). The remaining programs
were written in Fortran and executed using MPW Fortran 3.1
(Apple Computer Inc. 1985-89).

Several graphing programs have been used to generate the
figures presented in this thesis. The majority of the figures have been
generated in two steps. The plots appearing in the figures were
generated initially and then inserted into pagemaking programs after
which the legends were added. A short mention of these programs
and a listing of the figures for which they were used follows.

The most commonly used graphing program was Cricketgraph
1.3 (Cricket Software 1986, 1987, 1988). It was used to generate the
plots in Figures 4, 6,7, 8, 9, 10, 12, 13 and 19 and the field
variation plots appearing in Figures 17, 18 and 20-24. The greyshade
plots of Figures 15-18 and 20-24 were generated using SYSTAT 5.0
(Systat Inc. 1990).

The graphs of Figures 11 and 14 were generated using a

specially developed program called Efields whose source code is
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program listing 7 in this appendix. The actual figures were created
by inserting the plots into a drawing program called Superpaint 2.0
(Silicon Beach Software Inc. 1986, 1988, 1989) and then adding the

legends.
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{ Program 1. RepeatingMuller }

program Muller;

This program is a modified version of the original copyrighted program -}
‘Muller’ (TurboPascal Numerical Methods Toolbox (¢) 1987, Borland -}
International). It uses Muller's method to generate the dominant mode -}
solution set of the transcendental system of equations describing the -}

propagation constants k1, kx2 and kz within the parallel-plate -}
weveguide. The dominant mode solution set is generated incrementally -}
over a desired range of frequencies. The program generates the 3 -}

required initial guasses iniernaily. The small argument approximation -}
is used to generate the first guess after which 2 simple arithmetic -}
algorithms operate en the first guess to generate the remaining 2. -}
This program is the driver program for the Muller rootfinding -}
subroutine. The transcendental function, the variable declarations -}
and all the 1/0 statements are all taken care of here. The actual -}
Muller subroutine is called 'Roots0fEquat’ and is listed as -}
program 5. Al the information concerning the transcendental -}
equation and the system carameters is contained in the body of the -}
teut of the accompanying thesis. -}

-}
Program input consists of physical system parameters which are located -}
at the beginning of the program under the heading 'ENTRY OF SYSTEM -}
PARAMETERS.' ‘freq'=frequency(Hz), 'sig1'=electrical conductivity of -}

regioni ($/m), 'sig2'=electrical conductivity of region2 ($/m), -}
‘eps1'=permittivity of regiont (H/m), 'eps2'=permittivity of -}
region2 (H/m), 'mu'=magnetic permeability, ‘a'=plate separation(m)} and -}
'd'=seturated region thickness(m). -}

-}
Program output is given to 3 files. The file called ‘outfile’ is -}

displayed on the screen and shows the frequency, the caiculated roots -}
kaul, kx2 and kz and the value of the transcendental function calculated-!}
at the roots. The file called 'plotfile’ contains frequency and the -}

3 propagation constants in rectangular form and formatted to he -}
directly read by plotting routines such as 'Cricketgraph.’ Finaily, -}

the file called 'smallfile’ contains the same information as 'plotfile’-}

however, the smali argument propagation constants are given. -}
Copyright (c}) 1990 Richard Maslowski -}
fill Rights Reserved =)
-}
-}
Units used: I(0Selection var QutFile : text; -}
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{- OutName : string; -}

{- InFile : teut; -}

{- inName : string; -}

{- 10err :boolean; -}

{- procedure DisplaylWarning -}

{- procedure DisplayError -)

{- procedure 10Check -}

{- procedure Getinputfile -}

{- procedure GetOutputfFile -}

{- -}

{- RootsOfEquat procedure Muller -}

{- -}

{- -}

( ___________________________________________________________________________
( _____________________________________________________________________________
{$1-) { Disable 1/0 error trapping )

{$R+} { Enable range checking }

{$S+) { Enable segmentation of code }

{$R 10Selection.rsrc} { Resource file for 10Selection unit )
{$u 10Selection}
{$U RootsAfEquat)}

uses
MemTypes, QuickDraw, 0Sintf, Toolintf, PackIntf, PasPrinter,
RootsOfEquat,

{$s SecondSegment)

10Selection;

const
{ enter the saturated region conductivity (S/m) )
sigl = 0;

{ enter the depleted region conductivity (S/m) }
sig2 = 0;

{ enter the saturated region dielectric constant (F/m) )
eps! = 9.7394e-11; { normally eps! = 9.7394e-11}

({ enter the depleted region dielectric constant (F/m} }
eps2 = 2.6562e-11;
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{ enter the magnetic permeability for both regions (H/m)
mu = 12.5664e-7?;

{ enter the paraliel-plate separation (m} }
a =15;

{ enter the saturated region thickness (m)}
d =12.753;

{ URRIABLE DECLARATIONS }

var
Guess : TNcomplex; { Initial approximations }
Tol : Exntended; { Tolerance in answer )}
iter : integer; { Number of iterations }
Startfreq : Extended; { starting frequency }
Endfreq : Extended { Ending frequency }
Stepfreq : Extended { Frequency step }
Maslter : integer; { Max number of iterations allowed }
Answer, yAnswer : TNcomples; { Root and function evaluated at root }
Error : byte; { Flags an error}

k1sqr,k2sqr: TNcompley;

dum,dumi,dum2: TNcomplesx;
Asqr.krisqr,ku2sqr,ky1,kx2: TNcomples;
freq,omega: Extended;

Plotfile: tent;

Smalifile: text;

E_File: tent;
a_over.d,smallnum,a_m_d_over—_d,dumratio,multdumratio,one: INcompiex;
smalldenom,smallkzsqr,smallkz: TNcomplex;
dcomp,tanarg,Etan,coef,Eratio: TNcomplex;
Emag: extended;

( HERE ARE SOME COMPLEX OPERATIONS }

procedure Conjugate(C1 : TNcompley; var C2 : TNcompleR);
begin

C2.Re := Cl.Re;

C2.tm:=-Cl.lm;
end; { procedure Conjugate }

procedure Real2Complex(realnumber: extended; var complesnumber: TNcomplex);

begin
complexnumber.Re:= realnumber;
complexnumber.im:= 0;

end; ( procedure Real2Complex }

function Modulus(var C1 : TNcompien) : Extended;
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begin
Modulus := Sqrt(sqr(C1.Re) + Sqr(C1.1m));
end; { function Modulus }

procedure Add(C1, C2 : TNcomplex; var €3 : TNcomplex);
begin

C3.Re := C1.Re + C2.Re;

C3.im:=Ct.Im + C2.1m;
end; { procedure Add )

procedure Sub(Ct, C2 : TNcomplex; var C3 : TNcompiex};
begin

C3.Re :=Ct.Re - C2.Re;

C3.Im:=Ct.lm - C2.Im;
end; { procedure Sub }

procedure Mult(C1, C2 : TNcomplex; var C3 : TNcomplen);
begin

C3.Re:=Ct.Re* C2.Re - Cl.Im * C2.Im;

C3.Im:=Cl.Im * C2.Re + C1.Re * C2.1m;
end; { procedure Mult }

procedure Divide(Ct, C2 : TNcomplex; var €3 : TNcomplen);
var
Dumti, Bum2 : TNcompley;
E : Extended;
begin
Conjugate(C2, Buml);
Muit(c1, Dum1, Dum2);
E := Sqr(Modulus(C2});
C3.Re := Dum2.Re / E;
C3.im := Dum2.lm / E;
end; { procedure Divide )

procedure SquareRoot(C1 : TNcomples; var C2 : TNcomplex);
var
R, Theta : Extended;
begin
R := Sqrt(sqr(C1.Re) + Sqr(C1.1m));
if ABS(C1.Re) < TNNearilyZero then
begin
if C1.lm < 0 then
Theta:=Pi/ 2
else
Theta := -Pi/ 2;
end
else
if C1.Re < 0 then
Theta := fircTan(C1.im / C1.Re} + Pi
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else
Theta := ArcTan(C1.lm / C1.Re);
C2.Re := Sqrt(R) * Cos(Theta / 2};
C2.1m := Sgrt(R) * sin(Theta / 2);
end; { procedure SquarefRoot )

procedure ComplexSIN(C1: TNcompley; var C2: TNcomplexn);
begin
C2.Re:= SIN(C1.Re) * (EHP(-C1.1m) + ERP(C1.1m))/2;
C2.1m:= -COS(C1.Re) * (EXP(-C1.Im) - EXP(C1.1m)})/2
end; { procedure ComplexSIN )}

procedure ComplexC0S(C1: TNcompley; var C2: TNcomplex);
begin
C2.Re:= COS(C1.Re) * (EXP(-C1.im) + EXP(C1.1m)}/2;
C2.1m:= SIN(C1.Re) * (ERP(-C1.1m) - EHP(C1.1m})/2
end; { procedure ComplexC0S }

procedure CompleRTAN(C1: TNcomplesd; var C2: TNcomplen);
var
Dum1,0um2: TNcompley;
begin
ComplexSIN(C1,0umi);
ComplexC0S(C1,0um?2);
Divide(Dum1,Dum2,C2);
end; { procedure ComplexTAN }

procedure ComplexEHP(C1: TNcomplen; var C2: TNcomplex);
begin

C2.Re:= EHP(C1.Re) * COS(CT1.Im);

C2.lm:= EXP(C1.Re) * SIN(C1.1m)
end; { procedure ComplesERP }

procedure ComplexSqr(Ci: TNcomplex; var C2: TNcompled);
begin

C2.Re:= SQR(C1.Re) - SQR(C1.im]};

C2.!lm:=2*Cl.Re *Cl.Im
end; { procedure ComplexsSqr)}

procedure TNTargeif(kz : TNcomplex; var ¥ : TNcomples);

var
kzsqr: TNcomplex;
cnst,cnstsgr,konst,konstsqr,C1,C2: TNcomplex;
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decomplex,acomple,a_minus_d,argl,arg2: TNcomples;

tani,tan2,termt,term2: TNcomples;

original,root1,rootfactori,root2,rootfactor2,vinter: TNcompiex;
begin

complexrsqr(kz,kzsqr);

sub(k1sqr,kzsqr,cnstsqr);
squareRoot(cnstsqr,cnst);

Sub(k2sqr,kzsqr.konstsqr);
squareRoot(konstsqr,konst);

Divide(cnst,dum1,C1);
Bivide(konst,dum2,C2);

dcomplen.Re:= d; dcomples.im:= 0;
acomplex.Re:= a; acomplex.im:= 0;

sub(acomplex,dcomplex,a_minus_d);

Mult(cnst,dcomplexn,argt);
Mult(konst,a_minus_d,arg2);

complexTAN(arg1,tani); complexrTAN(arg2,tan2j;
Mult(Ct,tani,term1); Muit(C2,tan2,term2);
Add(term1,term2,v);

{ FACTOR1ZATION OF CALCULATED ROOTS (disabled} }

{root1.Re:= 1.639964e-2;
rootl.im:= -2.518189e-3;

Sub(kz,rootl,rootfactort);

root2.Re:= -1.639964e-2;
root2.im:= 2.518189e-3;

sub(kz,root2,rootfactor2);
Divide(original,rootfactort,Yinter);
Divide(Yinter,rootfactor2,v);)

end; { procedure TNTargetF }
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{ INPUT TOLERANCE, MRHIMUM ITERATIONS, FREQUENCY ENDPOINTS AND STEPSIZE )

procedure GetTolerance(var Tol : Extended);
begin
Tol := 1E-8;
Writeln;
repeat
Write('Tolerance (> 0): ');
Readin(Tol);
10Check;
if Tol <= 0 then
begin
Igerr := true;
Tol := 1E~-8;
end;
until not i0erT;
end; { procedure GetTolerance )

procedure GetMaxlter(var Maxlter : integer);
begin
Mazsxlter := 100;
Writeln;
reneat
Write('Maximum number of iterations (> 0):');
Readin(Maxiter);
10Check;
if Mastlter < 0 then
begin
10err := true;
Masiter := 100;
end;
until not 10err;
end; { procedure GetMaxiter)

procedure GetStartfreq(var Tol : Extended);
begin
Startfreq := 1E+5;
Writeln;
repeat
Write('Starting frequency (Hz):');
ReadIn(Startfreq);
10Check;
if Startfreq <= 0 then
begin
10err := true;
Startfieq := 1E+5;
end;
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until not 10ern;
end; { procedure GetStartfreq}

ptocedure GetEndfreq(var Tol : Extended);
begin
Endfreq := 2E+6;
Writeln;
repeat
Write'Ending frequency (Hz):');
Readin{Endfreq);
i0Check;
if Endfreq <=\ then
begin
10err := true;
Endfreq := 2E+6;
end;
until not 1Qerr;
end; { procedure GetEndfreq }

procedure GetStepfreq(var Tol : Ertended);
begin
Stepfreq := 1E+4;
Writeln;
repeat
Write('frequency stepsize (+ or - in H2):');
feadin(Stepfreq);
10Check;
if Stepfreq <= 0 then
begin
i0err := true,
Stepfreq := 15+4;
end;
until not 10err;
end; { procedure GetStepfreq)

{ CALCULATE KH1 ANB KH2 FROM K2}

procedure Calculatekx{inputvalue: TNcomplen);
begin
Complexsqr(inputvalue,Asgr);
Sub{(kisqr,Asgr,kxisqr);
Sub(k2sqr,Asqr,ku2sgr);
SquareRoot(kxlsqr,kx1);
SquareRoot(kx2sqr,kx2);
if kxt.Re < 0.0 then
begin
kit1.Re:= ~kH1.Re;
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kut.im:= -kxl.lm
end;
if k2.Re < 0.0 then
begin
ku2.Re:= -kx2.Re;
kH2.lm:= -kx2.lm
end;
end; { procedure Calculateks }

procedure Results(Guess :TNcomplex;
Answer : TNcomplex;
yAnswer : TNcomplex;
Tol :Extended;
Maslter: integer;
Iter :integer;
Error :byte);

begin
Writeln(OutFile);
Write(OutFile, 'frequency: ' : 30);
Writeln(QuiFile, freq/1000:7:1, ' kHZ');
Writein(QutFile);
if Errorin [1, 2] then
Displayllarning;
if Error>= 3 then
Displaykrror;

case Error of

1 : Writeln{OutFile, 'This will take more than ', Maslter,' iterations.');

2 : begin

Writeln(outFile, ‘A parabola which intersects the x-axis can not');
Writeln(QutFile, ‘be constructed through these three points.’);

end;

3 : Writeln(OutFile, 'The tolerance must be greaiar than zero.);

4 : Writein(GutFile,

The maximum number of iterations must be greater than zero.');

end; ( case )

if Error <= 2 then
begin
Calculatekx(Answer);

131



Writeln(OutFile);
Writeln(0utFile, 'Nuinber of iterations:': 26, Iter:2);
Write(QutfFile, 'Calculated root (kz2): ' : 26);
Writelin(GutFile, Answer.Re:23, ' + *, Answer.Im:23, ' i');
Write(QutFile, ' kxi 1':26);
Writein(OutFile, kx1.Re:23, ' + ', kxl.Im:23,"'i');
Write(QutFile, ' kx2 :'126);
Writeln(OutFile, kx2.Re:23, ' + ', k12.1m:23, 'i');
Writeln(QutFile, 'Value of the function ': 26);
Write(QutFile, 'at the calculated root: ' : 26);
Writeln(QutFile, yAnswer.Re:23, ' +', yanswer.1m:23, ' i');
Writeln(0utFite);
Writeln(PlotFile,freq/1000:7:1,Chr(9),Answer.Re:23,Chr(9),Answer.Im:23,
chr(9),kst1.Re:23,Chr(9),kx1.lm:23,Chr(9),k%2.Re:23,Chr(9),kx2.tm:23);
end;
end; { procedure Resuits )

begin { program Muller }
GetTolerance(Tol);
GetMaxlter(Maxiter);
GetStartfreq(Startfreq);
GetEndfreq(Endfreq);
GetStepfrea(stepfreq);
GetOutputFile(QutFile);
GetOutputFite(PlotFile);
GetOutputFile(SmallFile);

Real2Complex(a/d,a_over_d);
Real2Complex((a-d)/d,a_m._d_over—d);
Real2Complex(1,one);
freq:= Startfreq;
repeat
Writeln;Writein;
i:riteln(’'now working on frequency = ', freq/1000:7:1, ' kHZ');
{ CALCULATE THE SMALL ARGUMENT APPROKIMATION CONSTANTS )

amega:= 2*Pi*freq;

dum1!.Re:= sigl; { forktlsgr)
dumt.lin:= omega*epst;

dum2.Re:= sig2; { for k2sqr)



dum2./m:= omega*eps2;

dum.Re:= 0; { for both k1sqr and k2sqr}
dum.im:= ~omega*mu;

Mult(dum1,dum,k1sgar);
Mult(dum2,dum,k2sqr);

Mult(k1sqr,a—over—d,smallnum);
Bivide(dum1,dum2,dumratio);
Mult(dumratio,a_m_d_over—_d,multdumratio);
fidd(one,multdumratio,smalldenom);
Bivide(smallnum,smalldenom,smallkzsar);
squareRoot{smallkzsqr,smallkz2);
if smallkz.Re < 0 then
begin
smallkz.Re:= -smalikz.Re;
smallkz.im:= -smallkz.im
end;
Calculatekx(smallkz);
Writein(SmallFile,freq/1000:7:1,Chr(9),smallkz.Re:23,Chr(9),smalikz.1m:23,
Chr(9),kul.Re:23,Chr(9).kxl.Im:23,chr(9),kH2.Re:23,Chr(9),kxz.lm:23);

Guess:= smallkz;

( Use Muller's method with deflation to find a root }
Muller(Guess, Tol, Maglter, Answer, yAnswer, Iter, Error, @INTargetF);

{ Output the results from the root finder}
Results(Guess, Answer, yAnswer, Tol, Maglter, lter, Error);

freq:= freq + Stepfreq;
until freq > Endfreq;
Close(QutFile);
Close(PlotFile);

Close(SmailFile);

WaitReturn0OrClick;
end. { program Muller }
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{ Program 2. Sing!eStepMuller }

program Muller;

{- This program is a modified version of the original copyrighted program -}

{- 'Muiler (TurboPascal Numerical Metheds Toolbox {¢) 1987 Borland -}
{- International). This program accepts one user-entered initial guess -}

(- at a particular frequency and calculates the corresponding exact -}
{- root of the transcendental function. An internal algorithm generates -}
{- 2 required additional guesses from the user-given one. -)

{- -}

{- This program is the driver program for the Muller rootfinding -}

{(~ subroutine. The transcendental function, the variable declarations -}
(- and all the 1/0 statements are all taken care of here. The actual -}

{- Muller subroutine is called ‘Roots0fEquat’ and is listed as progream 5 -}

{- in this appendix. Ail the information concerning the transcendental -}

(- equation and the system parameters is contained in the body of the -}

{- text of the accompanying thesis. -)

(- -}

{- Program input comnsists of physical system parameters which are located -}
{- at the beginning of the program under the heading 'ENTRY OF SYSTEM -}

(-~ PARAMETERS.' 'freq’'=frequency(Hz), 'sigl’'=electrical conductivity of -}

{- regiont (S/m), 'sig2'=electrical conductivity of region2 (S/m), -)

(- ‘eps!'=permittivity of regiont (H/m), 'eps2'=permittivity of -}

{- region2 (H/m), 'mu'=magnetic permeability, 'a'=piate separation(m) and -}
{- 'd'=saturated region thickness(m). ~)

{- -}
{- Program output is displayed on the screen and consists of th frequency-)
(- the calculated roots kx1, kx2 and kz in rectangular form, and the value-)

{- of the transcendenta! function at the calculated root. -}
(- -}

(- Copyright (c} 1990 Richard Maslowski -)
{- Al Rights Reserved -}

{- -}

{- Units used: {0Selection var GutFile : text; -}
{- OutName : string; -)

{- InFile : text; -}

{- InName : string; -}

{- ICerr : boolean; -}

(- procedure Displaylarning -}

{- procedure DisplayError -)

{- procedure 10Check -}

{- procedure GetinputFile -}

{- procedure GetQutputfile -}

(- -}



(- RoolsOfEquat procedure Muller -}

(- -}

- -}

PR Sttt }
{$1-) ( Disable 1/0 ervor trapping }

{$R+) { Enable range checking )

{§s+) { Enable segmentation of code }

($R 10Selection.rsrc} { Resource file for t10Selection unit }

{$U 10Selection)}

($U RootsOfEquat)

uses

MemTypes, Quicklraw, osintf, Toollntf, Packintf, PasPrinter,
RootsOfEquat,

{$s SecondSegment}

f0Selection;

{ BECLARATION OF UARIABLES }

ver
Guess : TNcomplex; { tnitial approximations }
Tol : Extended; { Tolerance in answer }
{ter:integer; { Number of iterations }
Maslter : integer; { Max number of iterations allowed )
Answer, yRnswer : TNcomplex; { Root and function evaluated at root}
Error: byte; { Flags an error }

k1sqr,k2sqr: TNcomplex;
Asar.kulsar,kx2sqr,kul kn2: TNcemples;

{ HERE ARE SOME NECESSARY COMPLEH PROCEDURES )

procedure Conjugate(C1 : INcomplex; var €2 : TNcomplex};
begin

C2.Re := Cl.Re;

Cz.lm:=-Cl.Ilm;
end; ( procedure Corjugate }

function Modulus(uar C1 : TNcomplex) : Extended;
begin

Modulus 3= Sqri(sqr(C1.Re) + sqr(C1.im}};
end; { functisn Modulus }

procedurs Rdd(C1, €2 : TNcompley; var C3 : INcomplex);
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begin
C3.Re := C1.Re + C2.Re;
C3.lm = Cl.Im + C2.1m;
end; { procedure Add )

procedure Suu(Cl, €2 : TNcomplex; var C3 : YNcomples);
begin

C3.Re :=C1 Re - C2.Re;

Ci.im:=Cl.lm - C2.1m;
end; { procedure Sub }

procedure Mult(C1, €2 : TNcomplex; var C3 : TNcomples);
begin

C3.Re:= Ci.Re* C2.Re - Cl.Im * C2.Im;

C3.im:=Ct.lm * C2.Re + Cl.Re * C2.1m;
end; { procedure Mult )

procedure Divide(C1, €2 : TNcomplex; ver L3 : TNcompler);
var
Buml1, Bum2 : TNcomples;
£ : Extended;
begin
Conjugate(€2, Bum!t);
Mult(Ci, Dumi, Dum?2);
E := Sqr(Modulus(C2));
C3.Re := Dum2.Re / E;
€3.1m := Bum2.1m / E;
end; { procedure Divide )

procedure SquareRoot(C! : TNcomples; var C2 : TNcomples);
var
R, Theta : Extended;
begin
R := Sqrt(sqr(c1.Re) + Sqr(C1.1m));
if ABS(C1.Re) < TNNearlyZero then
begin
ifCl.Im < 0 then
Theta:= Pi/ 2
else
Theta := -Pi / 2;
end
eise
if C1.Re < 0 then
Theta := ArcTan(C!.Im / Ci.Re) + Pi
else
Theta := ArcTan(Cl.lm / Ct.Re);
C2.Re := Sqrt(R} * Cos(Theta / 2};
C2.1m := Sqrt(R) » Sin(Theta / 2);
end; { procedure SquareRoot }



procedure CompledSIN(C1: TNcompled; var C2: TNcomplen);
begin
C2.Re:= SIN(C1.Re) * (ERP(-C1.Im) + ERP(C1.1m)})/2;
C2.1m:= -C0S(C1.Re)} * (EXP(-C1.1m) - ERP(C1.1m))/2
end; { procedure ComplexSIN }

procedure ComplexC0S(C1: TNcompley; var C2: TNcompley);
begin
C2.Re:= COS(C1.Re) * (EKP(-C1.1m) + EXP(C1.Im)}/2;
€2.1m:= SIN(C1.Re) * (EXP(-C1.lm) - EXP(C1.1m))/2
end; { procedure ComplerC0S }

procedure ComplexTAN(C1: TNcompley; var C2: TNcomplnn);
var
Dum1,Dum2: TNcomples;
begin
ComplexSIN(C1,Dumti);
ComplexC0S(C1,0um2);
Divide(Dum1,0um2,C2);
end; { procedure ComplexTAN }

procedure CompleREXP(C1: TNcomplex; var C2: TNcomplexn);
begin

C2.Re:= EXP(C1.Re) * COS(Ct.Im);

C2.im:= ERPIT1.Re) * SIN(C1.1m)
end; { procedure ComplexEHP )

procedure Complexsgr(Ci: TNcomplex; var C2: TNcomplesn);
begin

C2.Re:= SQR(C1.Re) - SQR(C1.1m);

C2.lm:=2*Cl.Re * C1.Im
end; { procedure Compiensqr}

{ ENTRY OF SYSTEM PARAMETERS }

procedure TNTargetF(kz : TNcomplex; var ¥ : TNcomplex);
const

freq = 60.0;

sig! = 1.e-3;

sig2 = 1.e-6;

eps! = 9.7394e-11;

eps2 = 2.6562e-11;

mu = 12.5664e-7;
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a=15.0;
d=14.9;
var
omega: extended;
dum,dum1,dum2,kzsqr: TNcomplex;
cist,cnstsqr,konst,konstsqr,C1,C2: TNcomplex;
dcomplex,acomplex,a_minus_d,arg!,arg2: TNcomplex;
tar . ,tan2,termi,term2: TNcomplex;
eriginal,root1,rootfactort,root2,rootfactor2,vinter: TNcomples;
besin
omega:= 2*Pi*freq;

dumi.Re:= sigi, { for kisqr)
duml.im:= omega*epsi;

dum?2.Re:= sig2; { for k2sqr)
dum2.lm:= omega*eps2;

dum.Re:= 0; { for both kisqr and k2sqr}
dum.!m:= -omega*mu;

Mult(dum1,dum,k1sqr);
Mult(dum2,dum,k2sqr);

complensSqr(kz,kzsqr);

sub(k1sqr,kzsqr,cnstsqr);
sSquareRoot(cnstsqr,cnst);

sub(k2sqar,kzsqr,konstsqr);
squareRoot{konstsqr,konst};

Divide(cnst,dumi,C1);
Divide(konst,dum2,C2);

dcomples.Re:= d; dcomplex.Im:= G;
acomplen.Re:= a; acomplex.Im:= 0;

sub(accinpled,dcomplest,a_minus_d};

Mult(cnst,dcomplex,arg!);
Mult(konst,a_minus_d,arg2);

complexTAN(arg1,tant); complexTAN(arg2,tan2);
Muit(C1,tani,term1); Mult(C2,tan2,term2);

fidd(term?i,term2,v);



{ FACTOK!ZATION OF CALCYLATER HOOTS FROM THE FUNCTION (disabled) }

{root1.Re:=1.625410e-1;
roott.im:= -4.399160e-2;

Ssub(kz,root!,rootfactort);

root2.Re:= -1.625410e-1;
root2.Im:= 4.399160e-2;

Sub(kz,root2,rootfactor2);
Divide(original,rootfactort,Yinter);
Divide(YVinter,rootfactor2,¥);}

end; { procedure TNTargetf }

procedure Userinput(var Guess :TNcompleH;
var Tol :Extended;
var Maniter : integer);

(- Output: Guess, Tol, Masulter -}

{- -}

{- This procedure assigns values to the above variables. -}
{- The initial appronimation of the guess (Guess) is -}

(- enetered from keyboard input. Tolerance (Tol) is -}
{- automatically set to 10**-8 and the maximum number -}
{- of iterations (Maxliter) is set to 100 -}

procedure GetlnitialGuess(var Guess : TNcomplex);
var
Answer: TNcomplex;
begin
Writein;
Writeln('Initial approximation to the root: ');
repeat
Write(Re(Approximation) = ');
Readin(Guess.Re);
18Check;
until not 10err;
repeat
Write('Im(Approximation) =');
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ReadIn(Guess.Im);
10Check;
until not i10ern;

TNTargetF(Guess,Answer);
Writeln(f(initial guess) = ',Answer.Re:.3," + ,Answer.im:23,'\');

end; { procedure GetinitialGuess }

procedure GetTolerance(var To! : Extended);
begin

Tol := 1E-8;
end; { procedure GetTolerance }

procedure GetMaxlter(var Maslter : integer);
begin

Magxlter == 100;
end; { procedure GetMasxliter}

begin { procedure Userinput }
GetlinitialGuess(Guess);
GetTolerance(Tol);
GetMaslter(Maxlter);
GetQutputFile(OutFile);

end; { procedure Userinput )

procedure Resuits(Guess :TNcomplex;
Answer :TNcompleH;
yfinswer : TNcompley;
Tol :Extended;
Masxlter : integer;
Iter :integer;
Ervor :byte);

begin
Writein(0OutFile);
Write(OutFile, 'Initial approximation: ' : 30);
Writeln(0utFile, Guess.Re:23, ' +', Gyess.Im:23, 'i');
\Writeln(QutFile, 'Tolerance:' : 30, Tol:23);
Writein(CutFile, 'Maximum number of iterations: ' : 30, Masnlter:2);
Writein{0QutFile);
if Error in [1, 2] then
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Displaytarning;
if Error >= 3 then
Displaykrror;

case Evrror of
1 - Writeln(0utFile, 'This will take more than’, Maslter, ' iterations.');

Z : begin
iriteln(OutF: ., 'A parabela which intersects the H-ayis can not');
Writein(0utFile, 'Be construsted through thesc :ree points.’);
end;

3 - Write!n{OutFile, 'The tolerance must be ~; -I*2r than zero.');

4 : Writein(Outfile,
The masimum number of iterations must be great:r than zero.'};
end; { case )

{ CALCULATE KH1 AND KH2 FROM K2 }

if Error <= 2 then
begin

ComplexsSqr(Answer,Asqr);

sub(k1sgr,Asqr,kxlsqr);

sub(k2sqr,Asqr,kx2sqr);

squareRoot(kx1sqr,kx1);

squareRoot(kx2sqr,k:2);

if k#1.Re < 0.0 then

begin
ku1.Re:= -ksti.Re;
kxtl.lm:= -kgl.lm
end;
if ku2.Re < 0.0 then
begin
k#2.Re:= ~-kx2.Re;
k#2.lm:= -kx2.Im
end;
Writeln(OutFile);
Writeln(CutFile, ‘Number of iterations: ' : 26, 1ter:2);
Write(OutFile, 'Calculated root (kz): ': 26);
Writein(0utFile, Answer.Re:23, ' + ', Answer.Im:23, ' i');

Write(OutFite,' kxn! 1 26);

Writeln(0utFile, kx1.Re:23, ' + ', kul.lm:23," [BH

Write(0utfile,' kx2 :':26);

Writeln(QutFile, kx2.Re:23, ' + ', kx2.Im:23, "' i');
Writeln(QutFile, 'Value of the function ':26);
Write(OutFile, 'at the caiculated root:': 26);
Writeln(GutFile, yAnswer.Re:23, ' +°, yfAnswer.1m:23, ' i');
Writeln(QutFile);
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end;
end; { procedure Results }

begin { program Muller }

{ RETRIEUE THE INPUT DATA }
Userinput(Guess, Tol, Maulter);

{ USE MULLER'S METHOD WITH DEFLATION TO FIND A ROOT )
Muller(Guess, Tol, Maxlter, inswer, yAnswer, iter, Error, @INTargetf);

{ QUTPUT THE RESULTS )
Results{Guess, Answer, yAnswer, Tol, Maxl ter, Iter, Error);

Close(QutFile);
WaitReturnOrClick;
end. { program Muller }
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{ Program 3. FillingMulter }

program Muller;

{ }

{- This program is @ modified version of the original copyrighted program -}
(- ‘Muller (TurboPascal Numerical Methods Toolbox (c) 19872 Borland ~}
{- International). !t calculates higher order mode branch solutions =)

{- of the transcendental function provided one solution belonging to the -}
(- higher order mode set is known. The solution subset at frequencies -}
{- above the known point are calcuialed by incrementing the frequency -}
(- and using initial guesses based on the exact roots found at previous -}
(- frequencies. Similarly, the solution sub-set for frequencies below -}

(- the known point are found by decrementing the frequency. -}
{- -}

(- This program is the driver program for the Mulier rootfinding -}
{(- subroutine. The transcendental function, the variable declarations -}
(- and all the 1/0 statements are all taken care of here. The actual -}

{- Muller subroutine is called ‘Roots0fEquat’ and is listed as program -}

(- S in this appendix. All the information concerning the transcendental -}
(- equation and the system parameters is contained in the body of the -}
{- tent of the accompanying thesis. ~}

- -)

{- Program input consists of the physical system parameters entered in -}
(- the section titied 'ENTRY OF THE PHYSICAL SYSTEM PARAMETERS.' The -}

(- known point (kz), its frequency (starting frequency), the frequency -}

(- increment and the ending frequency are all prompted for when the -}
{- program is run. -}

{- -}

{- Program output is given in 2 files. The file called ‘outfite’ is -}

{- displayed on the screen and shows the frequency, the calculated -}

(- roots k1, kx2 and kz and the value of the transcendental function -}
{- calculated at the root. The file called 'plotfile' contains frequency -)
(- and the 3 propagation constants in rectangular form and is formatted -)

{- to be directly read by plotting routines such as 'Cricketgraph.’ -}
{- -}

(- Copyright (c) 1990 Richard Maslowski -}
{- All Rights Reserved -}

{- -}

{- Units used: I0Selection var OutFile : text; -}
(- GutName : string; -}

{- InFile : text; -}

{- inName : string; -}

{- ICerr :boolean; -}

{- procedure DisplayWarning =)
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{- procedure DisplaykError -}

{- procedure 10Check -}

{- procedure GetinputFile =i

{- procedure GetOutputFile -}

{- -}

{- Roots0fEquat procedure Muller -}

{- -}

(- Note: One condition statement in the main program may have to be altered-}
{- depending on whether frequency steps are + or -. -}

{- -}

e T L L L L Db b bbbt iaiedeie }
{$1-} { Disable 1/0 error trepping )

{$R+} { Enable range checking )

{§s+} { Enable segmentation of code )

{$R 10Selection.rsre} { Resource file for 10Selection unit )

{$U l10Seiection}

{$U RootsOfEquat)

uses
MemTypes, QuickDBraw, 0Sintf, Toolintf, Packintf, PasPrinter,
RootsOfEquat,

{$S SecondSegment)

10Selection;

const
{ enter the saturated region conductivity ($/m) }
sigl = 0;

( enter the depleted region conductivity (S/m) }
sig2 = 0;

{ enter e saturated region dielectric constant (F/m) }
ersi ~ 9.7394e-11; { normally epst = 9.2394e-11}

{ enter the depleted region dielectric constant (F/m) )
eps2 = 2.6562e-11;

{ enter the magr.ztic permeabitity for both regions (H/m)
mu = 12.5664e-7;

{ enter the paraliel-plate separation (m) }
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a =15

{ enter the saturated region thickness (m) }
d =12.75;

{ UARIABLE DECLARATEIONS }

var
Guess : TNcompley; { Initial approximations }
Tol : Extended; { Tolerance in answer }
iter : integer; { Number of iterations }
Maslter : integer; { Masx number of iterations allowed }
Endfreq : Extended { Ending frequency }
Stepfreq : Exter led { Frequency step }
Answer, yAnswer : TNcomplen; { Root and function evaluated at root }
Error : byte; { Flags an error }

ktsqr,k2sqr: TNcomplex;

dum,dumi,dum2: TNcomples;
fisqr,ksxlsqr,ku2sqr,ksi, kx2: TINcomplex;
freq,omega: Extended;

PlotFile: text;

SmallFile: text;

E_File: text;
s_over—d,smallnum,a_m_d_over_d,dumratio,muitdumratio,one: TNcomples;
smalldenom,smallkzsqr,smallkz: TNcomplex;
dcomp,tanarg,Etan,coef,Eratio: TNcomples;
Emag: extended;

{ HERE ARE SOME NECESSARY COMPLEHX PROCEDURES }

procedure Conjugate(Ci : TNcompiex; var €2 : TNcomplex);
begin

C2.Re = L1.Re;

Cz.itm=-Cl.Im;
end; { procedure Conjugate }

procedure Real2Compler(realnumber: extended; var compiernumber: TNcomplex);
begin

complexnumber.Re:= realnumber;

compilexnumber.im:= 0;
end; { procedure Real2Complex }

function Medulus(var C1 : TNcomplex) : Extended;
begin

Modulus := Sqri(Sqr{Ci.Re) + SqriC1.Im));
end; { function Modulus }

procedure Add(C1, C2 : TNcomplex; var C3 : TNcomplex);
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begin
C3.Re := C1.Re + C2.Re;
Ci.im:=Ct.Im + C2.Im;
end; { procedure Add }

procedure Sub(C1, C2 : TNcompley; ver C3 : TNcomplen);
begin

C3.Re:= Cl1.Re - C2.Re;

C3.!m:=Ct.Im - C2.1m;
end; { procedure Sub }

procedure Muit(Ct, C2 : TNcomplex; var C3 : TNcomplen);
begin

C3.Re:=Cl1.Re * C2.Re - C1.lm * C2.Im;

C3.im:=Cl.Im * C2.Re + C1.Re * C2.im;
end; { procedure Mult }

procedure Divide(C1, C2 : TNcompiex; var €3 : TNcompien);
var
Dumt, Dum?2 : TNcompley;
E : Extended;
begin
Conjugate(C2, Dumi);
Mult(Ct, Duml1, Dum2);
E := Sqr(Modulus(C2));
C3.Re := Dum2.Re / E;
C3.lm := Dum2.Im / E;
end; { procedure Divide }

procedure SquareRoot(C1 : TNcomplex; var C2 : TNcompiex);
var
R, Theta : fxtended;
begin
R := Sqrt(sqr(C1.Re) + Sqr(C1.1m));
if ABS(C1.Re) < TNNeariyZero then
begin
ifCt.im< 0 then
Theta := Pi/ 2
else
Theta := -Pi / 2;
end
else
ifCl.Re < G then
Theta := ArcTan(C1.im / C1.Re) + Pi
else
Theta := ArcTan(C1.Im / C!.Re);
C2.Re := Sqrt(R) * Cos(Theta / 2);
€2.1m := Sqrt(R) * Sin(Theta / <;
end; { procedure SquareRoot }

146



~rocedure ComplexSIN(C1: TNcoinplex; var C2: TNcomplen);
begin
Cz.Re:= SIN(C1.Re) * (EHP(-C1.1m) + EHP(C1.1m))/2;
C2.im:= -COS(C1.Re) * (EXP(-C1.tm) - ERP(CL.Im))/2
end: { procedure ComplexSIN }

procedure ComplerC0S{C1: TNcompley; var C2: TNcomplex);
begin
C2.Re:= COS(C1.Re) * (EHP(-C1.1m) + EXP(C1.1m})/2;
C2.1m:= SIN(C1.Re) * (ERP(-C1.1m) - EXP(CT1.Im)), 2
end; { procedure ComplexC0S }

procedure ComplexTAN(C1: TNcompley; var €2: TNcomplex);
var
Oum1,0um2: TNcomplex;
begin
ComplenSIN(C1,Dum1);
ComplexC0S(C1,0um2);
Divide(Dum?',Dum2,C2);
end; ( procedure ComplerTAN }

procedure ComplexEXP(Ct: TNcompley; var C2: TNcomplesn);
begin

C2.Re:= EXP(C1.Re) * COS(C1.1m);

C2.!m:= EXP(C1.Re) * SIN(CI.lm)
end; { procedure CompleRERP }

procedure ComplexSqr(C1: TNcomplex; var C2: TNcompiex);
begin

C2.Re:= SQR(C1.Re) - SQR(C1.Im);

C2.lm:=2*C1.Re *C1.Im
end; { procedure Complexsar}

procedure TNTargetF(kz : TNcomplex; var ¥ : TNcomplen);

var
kzsqr: TNcomplex;
cnst,cnstsqr,konst,konstsqr,C1,C2: TNcompley;
dcomplex,acompiest,a_minus_d,arg!,arg2: TNcomples;
tanl,tan2,termi,term2: TNcomples;
origina’,roott,rootfactor!,root2,rootfactor2,Yinter: TNcompleH;

begin
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complensSqrikz,kzsqr);

Sub(ktsqr.kzsqr,cnstsqrl;
SquareRoot(cnstsqr,cnst);

Sub(k2sqr,kzsqr,konstsqr);
SquareRoot(konstsgr,konst);

Divide(cnst,dumt,Ct);
Divide(konst,dum2,C2);

dcomplex.Re:= d; dcomplex.Im:= 0;
acompled.Re:= a; acomplex.lm:= 0;

sub(acomplex,dcompley,a_minus_d};

Mult(cnst,dcomplex,argl);
Mult(konst,a_minus_d,arg2);

complexTAN(arg1,tan1); complexrTAN(arg2,tan2);
Mult(C1,tant,term1}; Mult{C2,tan2,termz2};
Add(termi,term2,¥};

{ FACTORIZATIGN OF THE CALCULATED ROOTS (disabled) )

{root1.Re:= 1.639964e-2;
roott.Im:= -2.518189%e-3;

Sub(kz,root1,rootfactori);

root2.Re:= -1.639964e-2;
root2.im:= 2.518189e-3;

Sub(kz,root2,rootfactor2);
Divide(original,rootfactori,¥inter);
Divide{(Yinter,rootfactor2,¥);}

end; { procedure TNTavgetf ;

procedure GetTolerance(var Tol : Extended);
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begin
Tol := 1E-8;
Writeln;
repeat
Write('Tolerance (> 0): ');
Readin(Tol);
I0Check;
if Tol <= 0 then
begin
I10err := true;
Tol := {E-8;
end;
until not 10err;
end:; ( procedure GeiTolerance }

procedure GetMaxiter(var Maxlter: integer);
begin

Masxlter := 100;

Writeln;

repeat

Write(Maximum number of iterations (> 0}:');

Readin(Masxlter);

10Check;

if Masxtlter < 0 then

begin
i0err := true;
Maxiter := 100;

end;

until not 10err;
end; ( procedure GetMaslter}

procedure GetEndfreg(var Tol : Extended);
begin
Endfreq := 2E+6;
Writeln;
repeat
Write('Ending frequency (Hz): ');
ReadIn(Endfreq);
I0Check;
if Endfreq <= 0 then
begin
10err := true;
Endfreq := 2E+6;
end;
until not 10err;
end; { procedure GetEndfreq )

procedure GetStepfreq(var Tol ; Extended);
begin
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Stepfreq := 1E+4;
Utriteln;
repeat
Write('frequency stepsize (+ or - in Hz)');
Readin(Stepfreq);
10Check;
if Stepfreq <= 0 then
begin
10err := true;
Stepfreg ;= 1E+4;
end;
until not 10err;
end; { procedure GetStepfreq )

{ CALCULATE KX1 AND KR2 FROM K2 )

procedure Caiculatekx(inputvalue: TNcomplex);
begin
ComplexnsSqgr(inputvalue,Asgr);
Sub(k1sqr,Asqr,kxlsqr);
Sub(k2sqr,Asqr,kx2sqr);
SquareRoot(k®1sqr,kxn1);
squareRoot(kx2sqr,k®2);
if kil.Re < 0.0 then
begin
kxl.Re:= -kxi.Re;
kul.lm:= -kxl.im
end;
if kt2.Re < 0.0 then
begin
kx2.Re:= -kx2.Re;
kx2.im:= -kx2.im
end;
end: { procedure Calculateiy )

procedure Userinput{var Guess :TNcomplex;
verTol :Eitended;
var Maxlter: integer);

{- Sulput: Guess, Tol, Maxlter -3
{- -}

{- This procedure assigns< values to the above variatles
{- from keyboard input. The initiai approsimation of the -}
{- guess (Guess), tolerance (Yo!), and maximum number of -}

(- iterations (Maxlter) are all input here.
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procedure GetlnitialGuess(var Guess : TNcomplexr);

ver

Answer: TNcomplex;
begin

Writeln;

Writeln(‘Initial approximation to the root: B H

repeat
Write(Re(Approximation) = ');
Readin(Guess.Re);
10Check;

until not 10err;

repeat
Write('im{BRpproximation) = ');
Readln(Gyess.im);
10Check;

until nat terr;

INTargotF (Guess. Answer);

Writeln(flinitial guess) = ,Answer.Re:23," + SAnswer.lm:23,'i');

end: { procedure GetlnitialGuess }

begin { procedure Userinput )
GetlnitialGuess(Guess);
end; { procedure Userinput }

procedure Results(Guess : TNcomples;
finswer :TNcomplex;
yAnswer . INcomplex;
Tol :Extended;
Mauiter : integer;
1ter nteger;
Errer : byte);

begin
Write!n(OutFile);
Write(autfile, 'frequency: ' : 30);
Writein(Outfile, freq/1000:7:2, ' kH2');
Writeln(CutFile);
if Errorinit, 2] then
Dispiaytlarning;
if Erroy>= 3 then
DisplayErvor;
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case Error of
1 : Writeln(OutFile, 'This will teke more than ', Maulter, ' iterations.’);

2 : begin
Writeln(OutFile, ‘A parabola which intersects the x-axis can not');
Writein(QutFile, 'be constructed through these three points.’);
end;

3 : Writeln(QutFile, 'The tolerance must he greater than zero.');

4 : Writein(QutFile,
‘The maximum number of itérstions must be greater than zero.'};
end; { case )

if Error <= 2 then
begin
Calculatekn(Answer);
{Real2Complesn(d,dcomp); cealculate the ratio ot Ez over Exl
Muit(kx1,dcomp,tanarg);
ComplexTAN(tanarg,Etan);
Divide(kxt1,Answer,coef);
Mult(coef,Etan,Eratio);
Emag:= Modulus(Eratio);}
Writeln(0utFile);
Writein(0utFile, 'Number of iterations: ' : 26, 1ter:2);
Write(OutFile, 'Calculated root (k2z): ' : 26);
Writein(Outfile, Answer.Re:23, ' + ', Answer.Im:23, ' i');
Write(OutFile,' ku! :':26);
Writeln(OutFile, kx1.Re:23, '+, kx1.Im:23, ' i'};
Write(Outfile, © kx2 1t 26);
Writeln(QutFile, ku2.Re:23, ' + ', ku2.1m:23, ' i');
Writein(OutFile, 'Value of the function ' : 26);
Write(OutFile, 'at the calculated root: ' : 26);
Writeln(QutFile, yAnswer.Re:23, ' + *, yAnswer.im:23, ' i');
Writeln{OutFile);
Writein(PlotFile,freq/1000:7:2,Chr(9),Answer.Re:23,Chr(9),Answer.Im:23,
Chr(g),km.Re:23,Chr(9).kHI.lm:23,Chr(9),ku2.Re:23,Chr(9).kuz.Im:23l;
end;
end; { proceduyre Results }

begin { program Muller }
GetTolerance(Yol);
GetMaxtter(Maxliter);



GetOutputFile(QutFile);
GetOutputFile(PlotFile);
GetEndfreq{Endfreq);

GetStepfreq(Stepfreq);

repeat
Writeln;Write!n;
Write('Starting frequency (H2) =);
Readin(freg);
10Check;
until not l0err;

repeat
Writeln;WBriteln;
Writein('Starting guess vaiue');
Write(' real part =");
ReadIn(Answer.Rel;
Write( imaginary part ='j;
Readin(Answer.Im);
i0Check;

until not i0err;

repeat
Writeln;Writein;
Writein('now working on frequency = ', freq/1000:2:1 , ‘' ¥H2');

. £ LCULATE THE SMALL ARGUMENT PROPAGATION CONSTANTS }
omega:= 2*Pi*freq;

dumi1.Re:= sigl; { for kisqr)
dum!.Ilm:= omega*epsl;

dum2.Re:= sig2; { for k2sgqr)
dum2.lm:= omega*eps2;

dum.Re:= 0; { for both k1sqr and k2sqr )}
dum.!m:= -omega*mu;

Mult(dum1,dum,ktsqgr);
Mult(dum2,dum,k2sqr);

{(Muit(kt sqr,a_over—d,smallnum); the following calculates small kz
Divide(dum1,dum2,dumratio);
Mult(dumratio,a_m_d_over_d,muitdumratio);
Add(one,multdumratio,smalldenom);
Divide(smallnum,smalldenom,smallkzsqr};
squareRoot(smallkzsqr,smallkz);

if smallkz.Re < 0 then
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begin
smallkz.Re:= -smallkz.Re;
smallkz.im:= -~smallkz.lm
and;
Calculateks(smallkz);
Writeln(SmallFile,freq/1000:?:1,Chr(9),smallkz.Re:23,Chr(9), smallkz.tm:23,
Chr(9),kx1.Re:23,Chr(9),kx1.1m:23,Chr(9),kx2.Re:23,Chr(9),kxk2.1m:23);)

Guess:= Answer;

{ USE MULLER'S METHOD WITH DEFLATION T6 FIND A ROOT )
Muller(Guess, Tol, Ma#lter, inswer, yAnswer, ter, Error, @TNTargetF);

{ QOUTPUT THE RESULTS )
Results(Guess, Answer, yAnswer, Tol, Maslter, lter, Error);

freq:= freq + Stepfreq;
until freq > Endfreq; {> or < depending on whether Stepfreq = + or -}
Close(QutFile);
Close(PlotFile);

IWaitReturn0rClick;
end. { program Muller }
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{ Program 4. ERatioMuller }

program Muller;

This program is a modified version of the original copyrighted program -;
‘Muller' (Turbo Pascal Numerical Methods Toolbes (c) 1987, Borland -}
International) It calculates roots of the transcendental equation -}
describing the propagation constants for the paralliel-plate waveguide -}
under study.This program is essentially similar to FillingMuller -}
except that the ratio of axial to transverse electric field magnitudes,-}
as measured at the media interface in the saturated region, are -}
calculated at each frequency after calculation of the propagation -}
constants. -)

-}
This program is the driver program for the Muller rootfinding -}
subroutine. The transcendental function, the variable declarations -}
and all the 1/0 statements are all taken care of here. The sactual -}
Muller subroutine is called ‘Roots0fEquat’ and is listed as program 5 -}
in this appendix. All the information concerning the transcendental -}
equation and the system parameters is contained in the body of the -}
tent of the accompanying thesis. -}

-}
Program input consists of the physical system parameters entered in -}
the section titied ‘ENTRY OF THE PHYSICAL SYSTEM PARAMETERS.' The -)
xnown point (k2), its frequency (starting frequency), the frequency -)
increment and the ending frequency are all prompted for when the -)
program is run. -}

-}
Program output is given in 2 files. The file called ‘outfiie’ is -}
displayed on the screen and shows the frequency, the caiculated -}
roots ki i, kx2 and kz and the value of the transcendental function -}
calculated at the root. The file called 'plotfile’ contains frequency, -}
the transverse coordinate %, and the ratio of the E-field magnitudes -}
at that coordinate formatted to be directly read by plotting routines -}

such as 'Cricketgraph.’ -}
-}
Copyright (c) 1990 Richard Maslowski -}
fAll Rights Reserved -}
-~}
Units used: l0Selection var OutFile : tent; -}
OutName : string; -}
InFile : tent; =)
InName : string; -}
i0err :boolean; -}
procedure DisplaylWarning -}
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- procedure DisplayError -}

i procedure 10Check -}

{- procedure GetinputFile -}

{- procedure GetOutputFile -}

{- -}

{- RootsO0fEquat procedure Muller -}
{- -}

{- -}

I e e Uikl ettt )
{$1-} { Disabte 1/0 error trapping )

{$R+} { Enable range checking }

{$8+) { tnable segmentation of code }

{$R 10Selection.rsrc) { Resource file Tor 10Selection unit )

{$U l0Selection)}

{$U RootsOfEquat)

uses
MemTypes, QuickDratw, 0SIntf, ToolIntf, Packintf, PasPrinter,
RootsOfEquat,

{$¢ SecondSegment}

I0Selection;

{ UARIABLE DECLARATIONS }

var

Guess : TNcomplex; { Initie) approximations )

To! : Extended; { Tolerance in answer }

iter: integer; { Number of iterations )

Maulter: integer; { Max number of iterations ailowed }
Endfreq : Extended; { Ending frequency }

Stepfreq : Extended; { Freguency stepsize }

Answer, yAnswer : INcomplex; { Root and function evaluated at root !
Error : byte; { Flags an error }

k1sqr,k2sqr: TNcomplex;
dum,dum,dum2: TNcomplex;
Asqr,ksi1sqr,k®2sqr,kit kx2: TNcomplex;
freq,omega: Extended;

PlotFile: tent;

Ext,E21,Ex2,E22: TNcompleX;

{ SOME NECESSARY COMPLEH PROCEDURES }

procedure Conjugate(C1 : TNcomplex; var C2 : TNcomplex);
begin
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C2.Re := Cl.Re;
€2.1m := -Cl.lm;
end; { procedure Conjugate }

procedure CMPLR(realpart,imagpart: extended; var cmplinum: TNcomplen);
begin

cmpignum.Re:= realpart;

cmplxnum.lm:= imagpart;
end; { procedure CMPLH }

function Modulus(var C1 : TNcomplex) : Extended;
begin

Modulus := Sqrt(Sqr(Ct.Re) + Sqr{C1.im});
end; { function Modulus }

function Phase(var C1: TNcomplex): Extended;
begin
if C1.Re = 0 then Phase:= -%0 else
Phase:= arctan(C1.1m/C1.Re)*180/pi;
end; ( function Phase )

procedure Add(C1, €2 : TNcomplex; var €3 : TNcomplex);
begin

C3.Re := C1.Re + C2.Re;

C3.Im:=Cl.lm + C2.Im;
end; { procedure Rdd }

procedure Sub(Ct, C2 : TNcomplesx; var C3 : TNcompleyn);
begin

C3.Re := C1.Re - C2.Re;

C3.im:=Cl.lm - C2.1m;
end; { procedure Sub )}

procedure Mult(C1, €2 : TNcomplex; var C3 + TNcomplen);
begin

C3.Re := C1.Re * C2.Re - C1.lm * C2.Im;

C3.im:=Cl.Im * C2.Re + C1.Re * C2.Im;
end; { procedure Muit )

procedure Divide(C1, C2 : TNcompleX; var C3 : TNcompley);
var

Dumi, Dum2 : TNcomplex;

£ : Extended;
begin

Conjugate(C2, Duml);

Mutt(C1, Dum1, Dum2);

E := Sqr(Modutus(C2});

C3.Re := Dum2.Re / E;

C3.Im := Dum2.im / E;
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end; { procedure Divide }

procedure SquareRoot(C1 : TNcomples; var C2 : TNcomplex);
var
R, Theta : Extended;
begin
R := Sqrt(Sqr(Ci.Re) + Sqr(C1.1m)};
if ABS(C1.Re) < TNNearlyZero then
begin
ifCi.im <0 then
Thetg := Pi/ 2
else
Theta := -Pi / 2;
end
else
if C1.Re < 0 then
Theta := ArcTan(Ctl.im / C1.Re) + Pi
else
Theta := ArcTan(C1.lm / C1.Re);
C2.Re := Sqrt(R) * Cos(Theta / 2);
C2.im := Sqrt(R) * Sin(Theta / 2);
end; { procedure SquareRoot }

procedure ComplexSIN(C1: TNcompies; var C2: TNcomplen);
begin
C2.Re:= SIN(C1.Re) * (EXP(-C1.lm) + EXP(C1.I1m))/2;
C2.1m:= -COS(C1.Re) * (ERP(-C1.1m) - ERP(C1.1m}}/2
end; { procedure ComplenSIN}

procedure ComplexCOS(C1: TNcomples; var C2: TNcomplex);
begin
C2.Re:= COS(C1.Re) * (EHP(-C1.1m) + EHP(C1.1m))/2;
C2.1m:= SIN(C1.Re) * (EXP(-C1.1m) - EHP(C1.1m}}/2
end; { procedure ComplexCo0s )

procedure ComplexTAN(C1: TNcomples; var C2: TNcomplex);
var
Dum!,Bum2: TNcompies;
begin
ComplexSIN(C1,Dumi};
CotplexnCOS(C1,0um2);
Divide(Dum1,0um2,C2);
end; { procedure ComplexTAN }

procedure ComplesEHRP(C1: TNcomplex; var C2: TNcomplen);
begin

C2.Re:= EXP(C1.Re) * COS(C1.Im);

C2.1m:= EYP(C1.Re) * SIN(C1.Im)
end; { procedure ComplesEHP }
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procedure Complexsqr(Ct: TNcomples; var C2: TNcomplen);
begin

€2.Ke:= SQR(C1.Re) - SQR(C1.Im);

c2.lm:=2*Cl.Re * Cl.Im
end; { procedure ComplexuSar }

const
{ enter the saturated region conductivity (§/m) }
sig! = 1.e~3;

{ enter the depleted region conductivity (S/m) }
sig2 = l.e-6;

{ enter the saturated region dielectric constant (F/m) }
eps! = 9.7394e-11; { normally eps! = 9.7394e-1%)

( enter the depleted region dielectric constant (F/m) )
eps2 = 2.6562e-11;

{ enter the magnetic permeability for both regions (H/m)
mu = 12.5664e-7?;

{ enter the parallel-plate separation (m) }
a~=~15.0;

{ enter the saturated region thickness (m) }
d=15.0;

var
kzsqr: TNcomplex;
cnst,cnstsqr,konst,konstsqr,C1,C2: TNcompled;
dcomplex,acomplest,a_minus_d,argl,arg2: TNcomplex;
tant,tan2,termi,term2: TNcomplex;
original,root!,rootfactor! ,yoot2,rootfactor2,Yinter: INcomplex;

begin
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complensqr(kz,kzsqr);

Sub(k1sqr,kzsqr,cnstsqr);
SquareRoot(cnstsqr,cnst);

Sub(k2sqr,kzsqr,konstsqr);
squareRoot(konstsqr,konst);

Divide(cnst,dum1,C1);
Divide(konst,dum2,C2};

dcomplex.Re:= d; dcomples.lm:= 0;
acomplex.Re:= a; acomplex.Im:= 0;

Sub(acomples,dcomples,a_minus_d);

Mult(cnst,dcomplex,argl);
Mu't(konst,a_minus_d,arg2);

complexTAN(argi,tan!); complexTAN(arg2,tan2);
Mult(C1,tant,term1); Mult(C2,tan2,term?2);
Add(termt,term2,v);

{ FACTORI1ZATION OF CALCULATED RGOTS FROM THE FUNCTION (disabled) }

{root!1.Re: - .- TN
rooti.lm:=-2..+2 . i
Sub(kz,ry00.* .- = el

root2.Re:= -1.639964e-2;
root2.im:= 2.51818%e-3;

sub(kz,root2,rootfactor2);
Divide(original,rootfactori,Yinter);
Bivide(Yinter,rootfactor2,¥);)

end; { procedure TNTargetF }

procedure GetTolerance(var Tol ;: Extended);
begin
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Tol := 1£-8;
Writeln;
repeat
Write('Tolerance (> 0): ');
Readin(Tol);
10Check;
if Tol <= 0 then
begin
IGerr := true;
Tol := 1E-8;
end;
until not i0err;
end; { procedure GetToierance )

procedure GetMaxiter(var Maxlter : integer);
begin
Maslter := 100;
Writeln;
repeat
Write('Maximum number of iterations (0 0):');
ReadIn(Manlter);
I0Check;
if Maglter < 0 then
begin
i0err ;= true;
Masiter := 100;
end;
until not 10err;
end; { procedure GetMasulter )}

procedure GetEndfreq(var Tol : Extended);
begin ’
Endfreq := 2£+6;
Writein;
repeat
Write('Ending frequency (H2): ');
ReadIn(Endfreq);
I0Check;
if Endfreq <= 0 then
begin
I0err := tiue;
Endfreq := 2E+6;
end;
until not 10err;
end; { procedure GetEndfreq )

procedure GetStepfreq(var Tol : Extended);

begin
Stepfreq := 1E+4;
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Writeln;
repeat
Write('frequency stepsize (+ or - in H2):');
Readin(Stepfreq);
10Check;
if Stepfreq <= 0 then
begin
18err := true;
Stepfreq := 1E+4;
end;
until not {0err;
end; { procedt.ie GetStepfreq )

{ CALCULATE KH1 AND KH2 FROM K2 }

procedure Calculatekx(inputvalue: TNcomplex);
begin
ComplexsSqr(inputvalue,Asqr);
Sub(k1sqr,Asqr,kx1sqr);
Sub(k2sqr,Asqr,kx2sqr);
SquareRoot(kx1sqr,kxt);
SquareRoot(ku2sgr,kx2);
if knt.Re < 0.0 then
begin
kx1.Re:= -kx1.Re;
kxt.im:= -kgt.im
end;
if kH2.Re < 0.0 then
begin
ku2.Re:= -kH2.Re;
kx2.im:= -kn2.lm
end;
end; { procedure Calculateky }

{ CALCULATION OF EX IN REGION 1 )

procedure CalculateEx!(x: extended);
var
scomplex,Robert,Mike: TNcomples;
begin
CMPLH(R,0,4complexr);
Mult(rcompley, kil ,Robert);
ComplexC0S5(Robert,Mike);
Mult(Mike,Answer,Robert);
Mult(Robert,Answer,Mike);
Divide(Mike,dumi, Ext);
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end; { procedure CalculateExl)
{ CALCULATION OF E2 IN REGION 1)}

procedure Calculatefz1(x: entended};
var
ncomplen,Robert,Mike,imunity: TNcompiex;
begin
CMPLH(%,0,8complexr);
Mult(gcomples,kx1,Robert);
ComplexSIN(Robert,Mike);
Mult(Mike,Answer,Robert);
MultiRobert,kx1,Mike);
Divide(Mike,dum1,Robert);
CMPLH(0,1,imunity);
Mult(Robert,imunity,E21});
end; { procedure CalculateEz! }

{ CALCULATION OF EX IN REGION 2}

procedure CalculateEx2(x: entended);

var
wcomplen,Robert,Mike,dcomplex,C2num,amdcomplex: TNcomplex;
argdenom,C2denom: TNcompley;
a_minus_H,a_minus_.d: extended;

begin
a_minus_x:= a - H;
CMPLR(a_minus—_%,0,Hcomplest);
Mult(scomplen,kx2,Robert);
ComplexCOS(Robert,Mike);
Mult{Mike,Answer,Robert};
Mult(Robert,Answer,Mike);
Divide{Mike,dum2,Robert);

CMPLH(G,0,dcomplen);

Mult(dcomplex, k11 ,Mike};
ComplerC0S(Mike,CZnum);
Mult(C2num,Robert,Mike);

a_minus_d:= a - d;
CMPLH(a_minus.d,0,amdcomples);
Mult(ks2,amdcomples,argdenom};
ComplexC0S(argdenom,C2denom);
Divide(Mike,C2denom,EX2)

end; { procedure CalculateEx2 )

{ CALCULATION OF E2 1N REGION 2}

procedure Calculatefz2(4: extended);
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var
scomplex,Robert,Mike,imunity,dcompliex,C2num,amdcomplex: TNcomp'ex;
argdenom,C2denom: TNcomplex;
a_-minus_H,a_minus_d: extended;

begin
a.minus_y:= a - H;
CMPLH(a_minus_x,0,5complex);
Mult(xcompiex,kn2,Robert);
ComplexSiN(Robert,Mike);
Mult(Mike,Answer,Robert);
Mult{Robert,k®2,Mike);
Divide(Mike,dum2,Robert);
CMPLH(0,-1,imunity);
Mult(Robert,imunity,Mike);

CMPLH(d,0,dcomplexn);
Mult(dcomplen,kx1,Robert);
ComplexC0S(Robert,C2numj;
Mult(€2num, Mike,Robert);

a-minus_d:= a - d;
CMPLH(a_minus_d,0,amdcomplexn);
Mult(kx2,amdcomplex,argdenom);
ComplexC0S(argdenom,C2denom);
Divide(Robert,C2denom,E22)

o4t ! procedure CalculateEz2 )

procedure Userlnput{ver Guess :TNcompley;
varTcl :Extended;
par Masxlter : integer);

{- Output: Guess, Tol, Maxiter -)

{- -}

{- This procedure assigns values to the above variables -)
{- from keyboard input. The initial approximation of the -}
{- guess (Guess), tolerance (Tol), and maximum number of -
{- iterations (Maxiter) are all input here. -}

procedure Ge'ilnitiaiGuess(var Guess : TNcomplen);
.var
finswer: TNcomples;
begin
Writein;
Writetn('Initial approximation to the root: ');
repeat
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(o)}



Write('Re{(Approximation) =');
Readin(Guess.Re);
10Check;

until not 10err;

repeat
Write('Im(Approximation) = '};
Readin(Guess.Im);
10Check;

until not l0err;

TNTargetfF(Guess,Answer);
Writeln{'f(initial guess) = ",Answer.Re:23, + LAnswer.im:23,'t');

end; { procedure GetlritialGuess }

begin { procedure Userinput}
GetinitialGuess{Guess);
end; ( procedure Userlnput)

procedure Results{Guess :TNcomplex;
Answer :TNcompleX;
yAnswer : TNcomplex;
Tol :Extended;
Maxlter : integer;
iter :integer;
Error :byte);

ver
H: extended;
Eulmag,Ealph,Ezlmag,Ezlph,Eu2mag,Eprh.EzZmag,Ezth.El,E2,Eratiol ,Eratio2:
estended;

begin
Writeln(0utfile);
Wrive(Outfile, 'frequency: ' : 38);
Write!n(QutFile, freq/1000:7:1, ' kHZ');
Writeln(QutFile);
if Errorin [1, 2] then
DisptayWarning;
if Error >= 3 then
Displaytrror;

case Error of
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1 : Writeln(CutFile, 'This will take more than ', Maxliter, ' iterations.’);

2 : begin
Writeln(OutFile, 'A paraboia which intersects the k-axis can not');
Writeln(OutFile, ‘be constructed through these three points.'};
end;

3 : Writeln(OutFile, 'The tolerance must be greater than zero.’);

4 : iWritein(QutFile,
‘The maximum number of iterations must be greater than zero.'});
end; { case }

it Error <= 2 then
begin
Calculatekn(Answer); { kx1 and k12 are calculated from kz }

Writeln(0utFile);
Writeln(OutfFile, 'Number of iterations: ' : 26, Iter:2);
Write(OutFile, 'Caiculated roct (k2): ' : 26);
Writein(Outfile, Answer.Re:23, ' + ', Answer.Im:23, ' i');
Write(OutFile,' kxl t'26);
Writeln(ButFile. kx1.Re:23, - ' kxl.Im:23, ' i');
Write{0utFile,' ku2 S h
Wri:zin(OutFile, kw2.Re:2:. " -, x®2.1m:23, ' i');
Writeln(OutFile, 'Value of th¢ :unction ':26};
Write(QutFile, 'at the calculaiad root: ' : 26);
Writeln(0utFile, yAnswer.Re:23, ' + ', yAnswer.lm:23, ' i');
Writeln{GutFile);

{ =========== EYR.UATION OF THE FIELDS =========)
= 0;
while (4 <= a ) do
begin
if # <= d then
begin

CalculateEz1(s);
CalculateExr1(x);
Ez1mag:= Modulus(Ezi);
Ez1ph:= Phase(E2!);
Exlmag:= Modulus(Ex1);
Extph:= Phase(Exl);
E1:= sqr(Ez!mag) + sqr(Eximagl;
Eratiol:= E2Z1mag/Eximag;

Writeln(PlotFile,freq/1000:7:1,Chr(9),::4:1,Chr(9),Exlmag:23,Chr(9),Exlph:2 3,
Chy(9),E21 mag:Z.’;.Chr(Q),Eziph:23.Chr(9).E! :23,Chr(9),Eratiol:23};
end
eise
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begin
CalculateEz2(x);
CalculateEx2(s);
£z2mag:= Modulus(Ez2);
Ez2ph:= Phase(Ez2);
Ex2mag:= Modulus(Ex2);
En2ph:= Phase(En2};
E2:= sqr(Ez2mag) + sqr(Ex2mag);
Eratio2:= Ez2mag/Ex2mag;

Writeln(PlotFile,freq/1000:7:1,Chr(9),1:4:1,Chr(9),Ex2mag:23,Chr{(9),Ex2ph:23,
Chr(9),Ez2mag:23,Chr(9),Ez2ph:23,Chr(9),£2:23,Chr(9),Eratio2:23);
end;
Hi=H+ |
end;
end;
end; ( procedure Resuits }

begin { program Muller }
GetTolerance(Tol);
GetMaulter(Masl ter);
GetEndfreq(Endfreq);
GetStepfreq(stepfreq);
GetOutputfile(QutFile);
GetautputFile(PlotFile);

repeat
Writeln;Writein;
Write('starting frequency(Hz) = );
Readin{freq);
10Check;
until not 13err;

repeat
Writeln;:Writein;
Writeln{'Starting guess vaiue');
Write(' real part =');
ReadIin(Answer.Re);
Write(’ imaginary part =°);
Readin{Answer.!m);
f0Check;

until not 1Cerr;

repeat

167



Writeln;Writein;
Writeln('now tworking on freguency =, freq/1000:2:1 , ' kHz');

{ CALCULATIGN OF THE SMALL ARGUMENT PROPAGATION CONSTANTS }
omega:= 2*Pi*freq;

dum1.Re:
duml.im:

sigl; { forklisqr}
omega*epsl;

dum2.Re:= sig2; { for k2sqr}
dum2.im:= omega*eps2;

dum.Re:= 0; { for both k1sqr and k2sqr}
dum.im:= -omega*mu; {*** emega*mu)

Muit(dumt,dum,k1sqr);
Mult(dum2,dum,k2sqr);

{UserinputfGuess, Tol, Maxlter};}
Guess:= finswer,;

{ USE MULLER'S METHOD WITH GEFLATION TO FIND A ROOT)
Muller(Guess, Tol, Maulter, Answer, yAnswer, iter, Error, @TNTargetf);

{ OUTPUT THE RESULTS }
Results(Guess, Answer, yAnswer, Tol, Maxlter, Iter, Error);

freq:= freq + Stepfregq;

unti! freq > Endfreq; (> o: < depending on whether Stepfreq = + or - }

Close(0QutFile);

Close(PlotFile};
iYaitReturnOrCiick;
end. { program Muller}



{ Program S. Subroutine RootsOfEquat }

unit Roots0fEquat(2000);

{- This subroutine is a modified version of the Roots0fEquat -}

{- subroutine (Turbo Pascal Numerical Methods Toolbax -}
{- (c) Borland International). It is common to the programs -}
{~ RepeatingMuliler, SingleStepMulier, FillingMuller and -}

{~ ERatioMuller. This subroutine implements the Muller -}

(- method for soiving for comniex roots of complex functions -)
{- and is documented throughout for easy understanding. -}

{($R+} { Enable range checking )
interface

uses
Memlypes;

const
TNNearlyZero = 1E-015;  { Close to zero )
INArraysSize = 30; { Mastimum size of vectn: « !

type
TNvector = arrayl0.. TNArraySize] of Extended:

TNIntUector = arrayl0..TNArraySize] of integer;

record
Re, Im : Extended;
end;

TNcomplex

INCompUector = arrayl0..TNArraysSize] of TNcompley;

procedure Muller(Guess :TNcompley;

Tol :Extended;
Masxliter: integer;

var Answer : TNcompley;

var yAnswer : INcomplex;

var Iter :integer;

var Error :byte;
FuncPtr: ProcPtr);
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{- Input: Guess, Tol, Mau!ter, FuncPtr -3

{- OQutput: Answer, yAnswer, iter, Error -)

(- -}

{- Purpose: This program uses Muller's method to find a root -}
{- of a user defind function Y=TNTargetf given an -}
{- initial approXimaution. The root may be complex. -)
{- -}

{- -)

{- User-Defined -}

{- Procedures: TNTargetf(H : TNcompiex; URR ¥ : TNcomplexr); 2
(- -}

{- Pre-Defined Types: TNcomplex = record -}

{- Re, Im : Extended; -}

{- end; -}

{- -}

{- Dariables: Guess : Extended; initial guesc -)

{- Toi :Extended; tolerance in the -}

{- answer -}

{- Mastlter : integer; maximum number of -}
{- iterations -}

{- finswer :TNcomplex; a root of the -}

{- polynomial -}

{- yAnswer : TNcomplex; value of the -}

{- polynomial at the -)

{- root (close to zero) -}

{- iter :integer; number of iterations -}

{- it took to find root -}

{- Error : byte; flags an error =)

{- -}

{- Errors: 8: No errors -}

{- 1: Iter> Mastter -}

{- 2: parabela could not -}

{- be formed -)

{- 3:Tol<=10 -}

(- 4: Maxlter<o -)

{- The following inline procedure and function are used to call the user -}
{~ defined procedures and functions pointed to by the ProcfAddr parameter. -}

function Userfunction(R : Extended; ProcAddr : ProcPtr) : Extended;
inline
$205F, { MAUE.L (A?)+, A0 }
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$4E90; (JSR (RO) }

procedure UserProcedure(H : TNcomplex; var ¥ : TNeompien; ProcAddr

inline
$205F, { MOUE.L (AR?)+, AG )
$4E£90; { JSR (A0) }

procedure Muiler{(Guess : TNcomgplex;

Tol :Extended;
Masxlter : integer;

var Answer : TNcomplex;

var yAnswer : TNcomplex;

var Iter :integer;

var Error : byte;
FuncPtr : ProcPtrl});

type
TNquadratic = record
R, 8, C : TNcompley;
end;

var
RO, Hi, GlidApprox,
NewApprox, yNewfpprox : INcomplex; ( iteration variabies )
Factor : TNquadratic; { Factor of polynomial }
Found : boolean; { Flags that @ factor}
{ has been found }

procedure Conjugate(C! : TNcompiex; var €2 : TNcomples);
begin

C2.Re := C1.Re;

C2.lm:=-Cl.Ilm;
end; ( procedure Conjugate )

function Modulus(var C1 : TNcomplex) : Extended;
begin

Modulus := Sqrt(Sqr(C1.Re) + Sqr(C1.1m)};
end; { function Modulus }

procedure Rdd(C1, C2 : TNcomplex; var C3: TNcomplex);
begin

C3.Re := Ci.Re + C2.Re;

C3.im:=Cl.lm + C2.Im;
end; ( procedure Add )

s FeacPtr);
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procedure Sub(C1, C2 : INcomplex; var €3 : TNcomplexn);
begin

C3.Re:=C1.Re - C2.Re;

C3.lm:=Cl.lm - C2.1m;
end; { procedure Sub )

procedure Mult(C1, C2 : TINcomplex; var C3 : TNcompleX);
begin

C3.Re:=Cl1.Re* C2.Re - Cl.lm * C2.lm;

C3.lm:=Ct.lm * C2.Re + C1.Re * C2.Im;
end; ( procedure Mult }

procedure DBivide(C1, C2 : TNcompiex; var C3 : TNcomplex);
ver
Dumi, Dum?2 : TNcomplex;
E : Extended;
begin
Conjugate(C2, Dum1);
Mult(C1, Dumt, Dum2);
E := Sqr(Modulus(C2));
C3.Re := Dum2.Re / E;
C3.lm := Dum2.lm / E;
end; { procedure Bivide }

procedure SquareRoot(C1 : TNcomplex; var C2 : TNcomple#);
var
R, Theta : Extended;
begin
B := Sqri(Sqr(Ct.Re) + Sqr(C1.im));
if ABS(C1.Re) < TNMearlyZero then
begin
ifCl.lm <0 then
Theta:= Pi/ 2
else
Theta := -Pi / 2;
end
else
if Ci.Re < 0 then
Theta := ArcTan(C1.lin / C1.Re) + Pi
else
Theta := ArcTan(C1.!m / C1.Re);
C2.Re := Sqrt(R) * Cos(Theta / 2);
C2.lm := Sqrt(R) * Sin(Theta / 2);
end; { procedure SquareRoot }

procedure MakeParabola(H0 :TNcomples;
Hi : TNcompley;
Approx : TNcompiex,
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var Factor : TNquadratic;
var Error : byte);

{- tnput: HO, R1, Approx -}

{- output: Factor, Error -}

{- -}

(- This procedure constructs a parabola to fit the -}

(- three points HO, H1, Approx. The intersection of -}
(- this parabola with the #-axis will yield the next -}
(- approximation. If the parabola is a horizontal line -}

{- then Error = 2 since a horizontal line will not -}

{- intersect the x-asis. -}

ettt et }
var

H1, H2, H3, H : TNcomplex;
Deltal, Deita2 : TNcomplex;
Dum?, Rum2, Dum3, Bum4 : INcomplex; { Dummy variables }

begin

with Factor do

begin
Sub(X0, Rpprox, H1);
Sub(R1, Approx, H2);
Sub(Ho, H1, H3);
Mult(H2, H3, Dum1);
Mult(H1, Bumi, H);
if Modulus(H} < TNNeariyZero then

Error := 2; { Can't fit a quadratic to these points }
UserProcedure(Ht, Bumi, FuncPir);
Sub(Dumt, C, Deltal); { C was passed in}

UserProcedute(R@, Duml, Func®tr);
Sub(Dumi, C, Delta2);

if Error = @ then { Calculete coefficients of quadratic }
begin
Mult(H1, H1, Dumt); { Calculate B }

Mult(Dum1, Deitatl, Dum2j;
Mult(H2, H2, Bum1);
Mult(Dum1, Delta2, Dum3);
Sub(Bum2, Dum3, Bum4);
Bivide(Dum4, H, B);

Mult(H2, Delta2, Buml); { Calculate A}
Mult{H1, Deltal, Dum?2);
Sub(Dum1, Dum2, Dum3);
Divide(Dum3, H, A);
end;
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if (Modulus(A) <= TNNearlyZero) and (Modulus{(B) <= TNNeertyZero} then

Error:= 2; { Test if parabola is actually a constant }
end; { with}
end; { procedure MakeParabola |

procedure Initial{(Guess : TNcomples;

Tol : Extended;
Mauxiter :integenr;

par trror : hyte;

var Iter tinteger;

var Found : boolean;

var Newfpprox : TNcomplex;

var yNewfpproy : TNcomples;

var HO : TNcomplex;

var Ri : TNcomples;

var 0ldApprox : TNcompley;

var Factor . TNquadratic);

{- Input: Guess, Tol, Mastlter -}

{- Qutput: Error, 1ter, round, NewApprox, yNewApprox, -}
{- Ho, H1, CldApprox, Factor -}

{- -}

{- This procedure initializes all the above variables. It -}

{- sets 0ldApprox equal to Guess, HO and Xt are set close to -}
{- Guess. The procedure also checks the tolerance (Tol) and -}

]

{- maximum number of iterations (Maxlter) for errors. =Y

var
cZero, y0ldApprox : TNcomples;

begin
cZero.Re :=0; { Complex zero}
cZero.lm := 0; { Compiex zero}
Error := 0;
Found := false;
Iter := 0;
NewApproy := c2ero;
yNewfApprox := cZero;

{ H0 and X1 are points which are close to Guess }
HO.Re := Guess.Re + 0.005; HO.Im := Guess.im;
H1.Re := Guess.Re - 0.005; H1.im := Guess.Im;
OldApprox := Guess;

UserProcedure(8ldApprox, yoOldApprox, FancPtr); { Evaluate the function at OidApprow |

Factor.f := c2ero; :
Factor.B := c2ero;
Factor.C := yOidApprox;
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MakeParatola(H0, #1, OidRpprox, Factor, Error);
if Tol <= 0 then
Error := 3;
if Magiter <0 then
Error := 4;
end; { procedure Initial }

procedure QuadraticFormula(Factor :TNquadratic;

OldApprox : TNcompley;
var NewApprox : TNcompleyn);

{- Input: Factor, 0ldApprox -}

{- Gutput: NewARApprox -)
{- -}
{- This procedure applies the complex quadratic formula -}

{~ to the queadratic Factor to determine where the perabola -)
{- represented by Factor intersects the x-axis. The solution -}
{- of the quadratic formula is suhtracted from OldApprox to -}
{- yield Mewapprosx. -)

var
Discrim, Difference, Dumt, Dum2, Dum3 : TNcomplex;

begin

with Factor do

begin
Mult(B, B, Dum1); {B~2)
Mult(A, C, Dum?2);
Discrim.Re := Bumi.Re - 4 * Dum2.Re; (8°2 - 4AC )}
fiscrim.Im := Dumt.im - 4 * Dum2.im;
SquareRoot(Discrim, Discrim);
Sub(B, Discrim, Durp); {B+/-sqrt(B~2 - 4AC) }
Add(B, Discrim, Dum2);
{ Choose the root with B +/- Biscrim greatest }
if Modulus(Dum1) < Moddsilus(Dum?2) then

Bum! := Dum2;

Add(c, C, Dum3);

if Modulus(Dum1) < TNN=ariyZero then (ifB +/- sqrt(B~2 - 48C) = 0 }

begin
Newflppros.Re := 0;
NewaApprod.im := 0;

end

else

begin {2c/18 +/- sqrt(8°2 - 4A0)] }
Divide(Dum3, Dum1, Difference):
{ Calculate NewRpprox }
Sub(0ldApproy, Difference, NeiuApprox);
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end;
end; ( with }
end; { procedure QuadraticFormula }

function TestForRoot(H :TNcomplex;
0ldR : INcomplen;
¥ :TNcompley;
Tol : Extended) : boolean;

var
Dif, FracDif : TNcomples;

{- These are the stopping criteria. Four different ones are -}

{- provided. If you wish to change the active criteria, simply -)

{- comment off the current criteria (including the preceding 0OR) -}
{- and remove the comment brackets from the criteria (including -}
{- the fotlowing OR) you wish to be active. =)

begin
Sub(H, 01dH, Dif);
FracDif.Re := H.Re * Tol;
FracDif.lm := K.Im * Tol;

TestForRoot := {rommmmmm e }
(Moduius(Y) <= TNNearly2ero} (-v=0 -}
{- ~}
or {- -}

{- -}

(Modulus(Dif) < Modulus(FracBif)) (- Relative change inH -}
(- -}
{- -}

(8 or *) (- -}

( *) (- -}

(* (Modulus(Dif) < Tol) *) {- Absolute change in ¥ -}

(* *) {- -}

(+ or *) (- -}

- *) {- -}

(* Modulus(¥} <= Tol) *} {- Absolute changein ¥ -}
{--=—mmmemm e )

( _______________________________________________________________________

{- The first criteria simply checks to see if the value of the -}

{- function is zero. You should probably always keep this criteria -}

{- active. -}

{~ -}
{- The second criteria checks the relative error in %. This criteria -}
{- evaluates the fractional change in & between interations. Note -}
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{- that &% has been multiplied through the inequality to avoid Divide -}

{- by zero errors. -}

{- -)

{- The third criteria checks the absolute difference in ¥ between -}
{- iterations. -}

{- -}

{- The fourth criteria checks the absoiute difference between -}
{- the value of the function and zero. -}

end; { function Test¥orRoot )

begin { procedure Muller}
Initial(Guess, Tol, Maslter, Error, Iter, Found, Newfpproy, uNewApprox,
H0, K1, CldApprox, Factor);

while not Found and (Error = 0) and (lter < Maxlter) do

begin
Iter := Succ(iter);
QuadraticFormula(Factor, 01dApprox, NewApprox);
UserProcedure(NewApprox, yNewRpprox, FuncPtr); ( Calculate a new yNewAppros )
Found := TestForRoot(NewApprox, BidApprox, yNewApnrox, Tol);
HO := H1;
H1 := O0ldApproy;
O0ldApprox := Netmfipproy;
Factor.C := yNewfipproy;
MakeParabola(H0, {1, 6ldApprox, Factor, Error);

end;

Answer := NewApprox;

yAnswer := yNewApprox;

if Found then

Error:=0
else
if (Error = 0) and (Iter >= Maxl!ter) then
Error:= 1;

end; { procedure Muiler )

begin
end. { RootsOfEquat )
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C Program 6. forwardE

C

c

C This 2-dimensional program calculates the time-dependent forwara-

€ travelling electric fields over a grid in the H-Z cross-section of a

C paraliel-plate wavegquide filled with either a homogeneous or 2-layered

C medium and terminated with a matched load. z is directed along the guide

C axis from source to load; # is directed from bottom to top piate; yis
C directed across the waveguide following a RH coordinate system.

C The origin of coordinates is located at the lower right hand corner

C of the problem domain.

C Note: The layers of media must be parallel to the parailel plates.

c

C Cata input consists of the system parameters which are clearly

€ identified in the program section: 'Entry of System Parameters.’

C Note: For more information see Figure 3. in the thesis text.

c

C Program output is written te output unit 8 and into a file called

C 'ELFIELD.' Output consists of the z and # coordinate and the

€ correspending axia! and transverse electric field magnitudes according
C to the foilowing collumn format:

c

c z(m) w(m) Ez(V/m) Ex(D/m)

c

C The output is formatted to be directiy read by the graphing program
C tfields whose source code appears as program 7 in this appendi.

c

c
C DECLARATION STATEMENTS AND INPUT OF PARARMETERS
C
C
INTECER 2D1V,HDIV
REAL F,A,D,REEL,FAKE,CIREAL,C1IMAG,C2REAL,C2IMAG
REAL SI61,S1G2,EPS1R,EPS2R,L,MU,REH1,IMERT, T,EMAR
COMPLEH CMPLH,EHI
INTEGER M
c
COMMGON S§161,S162,EPS1R,EPS2R,MU
C
C
C ENTRY OF SYSTEM PARAMETERS
C
c

C INPUT THE NUMBER OF DIUISIONS DESIRED FOR THE PRGBLEM
C DOMAIN IN BOTH THE H AND 2 DIRECTIONS. 2DIU IS THE NUMBER
C OF GRID DIUVISIONS ALONG THE 2-ARIS. DIV IS THE NUMBER OF
C GRID DIUISIONS ALONG THE H-AHIS.
c

PARAMETER(Z2D1U=25,4D1U=25)
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REAL ER(0:KDIV,0:2010),E2(0:XD1D,0:2D1V)
:I: ENTER THE FREGUENCY OF QPERATION (HERTZ2).
‘ PARAMETER(F=340.E3)
E ENTER THE PLATE SEPARATION (A) AND THE SATURATED
C REGION THICKNESS (D) (METRES)
‘ PARAMETER(A=15.0,0=12.75)
:':.‘ ENTER THE WAVEGU!DE LENGTH (METRES)
- PARAMETER(L=400.0)
E ENTER THE TIME OF FIELD OBSERUATION (SECONDS)...NOTE: T=1/(=2*pi/w
‘ PARAMETER(T=0./(24*150E+3))
E ENTER THE REAL(REEL) AND IMAGINARY(FAKE) PARTS
C OF THE Z-PROPAGATION CONSTANT K2=(BETR-J*ALPHA)=(REEL+J*FAKE)
‘ PARAMETER(REEL=2.898E-2,FAKE=-5.567E-3)
g ENTER THE CONDUCTIUITIES OF REGIGON! {SATURATED REGION)
€ AND REGION2 (DEPLETED REGION) (SIEMENS/METRE)
- DATA §161,5162 /1.E-3,1.E-6/
E ENTER THE RELATIVE DIELECTRIC CONSTANTS OF REGION1
€ AND REGION2 (DIMENSIONLESS)
‘ DATA EPS1R,EPS2R /11.0,3.0/

c
C ENTER THE APPLIED EXCITATION UOLTAGE BETWEEN THE
C PRRALLEL-PLATES (MAGNITUDE AND PHASE(DEGREES))
c

PARAMETER(EHIMAG=1080.0,EH1ANG=0.0)
c
€ ENTER THE MAGNETIC PERMEABILITY OF BOTH REGIONS (H/M)
C

PARAMETER(P1=3.141592654)

MU = 4*PI*1.E-?
c
Cc

C MAIN PROGRAM
C

c
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OPEN(UNIT=8,FILE="ELFIELD',STATUS="NELW)')
C
C CALCULATE THE EXCITATION VECTOR IN RECTANGULAR FORM
c
REHI1=EHIMAG*COS(EXTANG*P1/180)
IMER1=EHIMAG*SIN(EH1ANG*P1/180)
EH1=CMPLH(REHI,IMEH1)

W=2*PI*F
CALL FCRWARD(W,A,D,L,T,HDIV,2DIU,EX1 ,REEL,FAKE,ER,E2)
c
€ PRINT THE NUMBER OF GRIDBLGCKS IN THE WAVEGUIDE
c
IDRITE(S,*) (HDID+1)*(2D1V+1)
C
C FIND EMAX, THE MARIMUM ELECTRIC FIELD FOR SCALING PURPOSES
c
EMAX=0.0
Do 1101 =0,H01U
Do 1004J = 0,201V
IF(EH(1,J).GT.EMAH) EMAR=EH(I1,J)
IF(E2(1,4).6T.EMRH) EMAX=E2(1,J)
109 CONTINUE
110 CONTINUE
c
C PRINT THE ELECTRIC FIELDS FOR PLOTTING
C
00 20 I=0,KD1V
2=0.
00 15 4=0,2D1V
WRITE(8,90) 2,4,E2(1,J)/EMANER(1,J)/EMAR
90 FORMAT( ',F9.3,34,F9.3,54,615.7,31,615.7)
15 2=2-L/2010
20 K=H+A/KDIV
C

C PRINT THE RATIO OF HEIG+ 7 70 WIDTH AND THE WINDOGW LIMITS ON THE PLOT

C
WRITE(8,*) -L,0.0,0.0,A
C
STOP
END
c
C

C SUBROUTINE FOR THE CALCULATION OF THE FORIWARD TRAVELLING WAUE
C ELECTRIC FIELDS IN BETWEEN THE PLATES FOR A MATCHED WAUEGUIDE

€

C
SUBROUTINE FORWARD(WD,8,D,L,T,HDIV,2D1U,ERT,REEL,FAKE,EH,E2)
c
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C UARIABLE DECLARATIONS

c
INTEGER ZDIU,HDIU
REAL L,MU,ER(6:RDIV,0:201D},E2(0:XD1V,0:201U),MAGE2
REAL S161,S1G2,EPY,EPSIR,EP2,EPS2R,T,H,2, REEL,FAKE
COMPLER CMPLR,CCOS,CSIN,CSQRT,XE,K2,K2,C,C2,CERF
COMPLER MEDI,MED2,K22,KH1,KH2,EHT,J4,TIME,2UAR
COMPLER TERM1 ,TERM2

C
COMMON SIG1,S16G2,EPSIR,EPS2ZR,MU

C

C PRELIMINARY CALCULATIONS

C
EP1=EPSIR*8.8542E-12
EP2=EPS2R*8.8542E-12
K1=CMPLR(0.,-W*MU)*CMPLR{SIGI1,W*EP1)
K2=CMPLR(0.,-W*MU)*CMPLR(SIG2,IU*EP2)
MED1=CMPLR(SIGI W*EP1)
MED2=CMPLHR(S1G2,W*EP2)
K2=CMPLHR(REEL,FAKE)
KZ22=KZ*K2
KR1=C5:3RT(K1-K22)
KR2=CSQRT(K2-K22)
JJ=CMPLH(0.0,1.0)
TIME=CMPLR(COS(W*T),SIN(W*T))

c
C CALCULATION OF C1 AND C2 FROM THE EHCITATION FIELD
c
TERM1=CSIN(KR1*D)/(MED1*KH1)
TERM2=(CCOS(KH 1*D}*CSIN(KH2*(R-D)))
TERM2=TERM2/(CCOS(KH2*(A-D))*MED2*KH2)
CI1=EX1/(2*K22*CCOS(KZ2*(-L})*(TERM1+TERM2)
€2=C1*CCOS(KR1*B)/CCOS(KH2*(R-D))
c
C FIELD CARLCULATIONS
c
H=0.
DO 110 1=0,8DIV
2=0.
00 100 J=0,2BIV
ZURR=CERP(-JJ*KZ*2)
IF(K.GT.D) GO TO 0
EH(1,J)=REAL(C1*KZ22*CCOS(KHT*H)*2UAR*TIME/MED1I)
E2(1,0)=REALWJ*CI*KRI*K2*CSIN(KR1*H)*2UAR*TIME/MED1)
GG T0 20
10 EX(1,J)=REAL((C2*K22*CCOS(KK2*(R-K))*ZUAR*TIME/MED2)/10)
E2(1,J)=REAL((-JJ*C2*KH2*K2*CSIN(KH2*(A-H))*2VUAR*TIME/MED2)/10)
20 IF(1.£Q.0) E2(1,4})=0.0
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IF(1.EQ.HDID) E2(1,4)=0.0
100 2=2-1/2D11
110 H=H+A/HDIU
RETURN
END
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{ Program 7. Efields }

{ This program generates the eicc'ric field line plots inside the parallel- )
{ plate waveguide as shown in Figures 11 and 14 in this thesis. The }
{ waveguide #-2z cross-section is divided into grid blocks with the total )
( electric field magnitude and direction at the center of each grid-block !
( computed from information provided to the program through a data input !
{ file. The line segment length in each grid-block is proportional to the )
{ electric field magnitude there and the orientation of the segment }
{ corresponds to the electric fieid direction at that grid-block. }
{ }
{ This program consists of the main program shewn below and 3 sybroutines |
{ whose source codes are named Uinput, UDisplayRoutines and UGlobals. The )
{ subroutine UInput reads the data file ELFIELD and also prompts the user )
{ for certain parameters wher the program is run. The subroutine )
{ UDisplayRoutines generates the electric field line plot from the input )
{ data. The subroutine UGlobals is responsible for refreshing the plot }
{ output on the screen and for monitoring and identifying keystrokes. }
{ }
{ Program input consists of an input data file whose name is prompted for )}
{ when the program is run. This data file is generated by the program }
{ ForwardE or TimeStandingE and is called 'ELFIELD.' The data file consists )
{ of the axial and transverse coordinates and the corresponding axial and |}
{ transverse electric field magnitudes in collumn format as itllustrated below)
}
z(m) xw(m} E2(l/m) Ex(V/m) }
)
{ Program output consists of the field line plot displayed on the screen. )
{ The plot can be copied directly to a file which is readable by the drawing )
{ program Superpaint 2.0. Pressing the keys <shift-command-3> will save the )
{ piot. }

{ ® Edmund Sumbar, Applied Electromagnetics Lab, U of A, 1990 )
program Etfields;

uses
Globats, Input, DisplayRouytines;

begin
new(H);
new(v);
new(Ex_over__Emay);
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end.

“#(Ey—over—_Emary;

2pareTextWindow;
.eadGata;
rawMesh;
Huwidlt;

PrintMesh;

dispose(H);
dispose(¥);
dispose(Ex_over_Eman);
dispose(Ey_over_Emasn);
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{ Subroutine Uinput}

{ This subroutine reads the data from the input fite ELFIELD and also }
( prompts the user for graph preferences such as scaling and line segment !
{ appearance. )

{ ® Edmund Sumbar, AEL, University of Alberta, 1990 )
unit Input;
interface

uses
Globals;

procedure ReadDates;
implementation

var
datafile: text;
fileName: string;

procedure Getinput;
forward;

procedure GetParameters;
forward;

procedure ReadData;

begin
fileName := OldFileName('Select an existing data file');
{ This function is THINK-specific. }
reset(dataFile, fileName);
Writein('Reading input file...');
Getlnput;
Writein('Done.');
GetParameters;
close(datafFile):;

e,

wiceddre Getinput;
var
irinteger:
begin
Read!in(datafFile, n);
fori:= 1 tondo
Readin(dataFile, R~{il, ¥ "[i], Ex_over_Emax li}, Ey_over_Emax 1)),
end;

[Re]
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procedure GetPerame~ters;

begin
Writeln;
Write(' H-coordinate scale: ');
Readin(Hscale);
Write(’ ¥-coordinate scale: ');
Readin(Yscale);
Write(' field scale: ');
ReadIn(Escale);
Write('Display 1-fines or 2-arrows: ');
ReadIn(plotChoice);

end;

end.
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{ Subroutine UDisslayRoutines }

{ This subroutine generates the electric field lire plot from the input data }
{ © Edmund Sumbar, iEL, University of Alberta, 1990 )

unit DispiayRoutines;

interface

uses
Globals, PrintTraps;

procedure PrepareTextWindow;
procedure OrawMesh;
procedure PrintMesh;

implementation

var
displayRect: Rect;
HPoint, yPoint, ExPoint, EyPoint: arrayl1..MAH_N] of integer;

procedure SetCoordinates;

forward;

procedure GetScaledMesh;

forward;

procedutre doTheDrawingWithLineSegments;
forward;

procedure DoTheBrawingWithArrows;
forward;

procedure PrepareTextlWindow;
begin
displayRect := screenBits.bounds;
displayRect.top := displayRect.top + 36;
InsetRect(displayRect, 4, 4);
SetTextRect{displayRect); { These are THINK-specific procedures. |
ShowTexnt;
end; { end of PrepareTextWindow )

procedure DrawMesh;
begin
{ Some of these are THINK-specific procedures. )
SetDrawingRect(displayRect);
{ DisplayRect is set during the call to PrepareTextiWindow. }
ShowDrawing;
SetCoordinates;
GetScaledMesh;
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case plotChoice of
LINES:
DoTheDrawingWithLineSegments;
ARROLS:
DoThelrewingWithArrows;
end;
end; { end of DrawMesh )}

procedure PrintMesh;

var
printRecordH: THPrint;
printPort: TPPrPort;
statusRec: TPrstatus;
begin

{ Set up the variables for printing. )
printRecordH := THPrint(New!andle(sizeof(TPrint)));
PrGpen;
PrintDefault(printRecordH};
{ Display the printer SetUp and Print diaiog boxes. }
if not (PrStiDialog(printRecordi)) then
Exit(PrintMesh);
if not (PrdobDialog(printRecordH)) then
Extit(PrintMesh);
printPort := PropenDoc(printRecordH, nil, nil);
PropenPage(printPort, nil);

{ Do the drawing of the mesh on the printer GrafPort, )
SetCoordinates;
GetScaledMesh;
case plotChoice of
LINES:
DoTheDrawinglWithLineSegments;
ARRGLUS:
DoTheDrawingWithArrows;
end;

{ Finished printing. Now clean up. }
PrClosePage(printPort);
PrCloseDoc(printPort);

PrPicFile(printRecordH, nil, nil, nil, statusRec);
PrClose;
end; { end of PrintMesh }

procedure SetCoordinates;
{ Ad justs the coordinate system so that 0,0 is in vhe lower left part of the}
{ window (not at the corner!). Positive & goes to the right and neg. y goes up.)
{ The clipping region is inset from the edges of the pori rectangle by 3.}
( Arrange for the minimum % and y values to be transiated to zero. !}
{ Calculate the coords. of the mesh as offsets from the minimums and use }



{ a negsative y for plotting )
var
newb: integer;
begin
newl := -(thePort~.portRect.bottom - 36);
{ The hor. scroll bar *s 16 pixels tall. )
SetOrigin(-20, newl);
displayRect := thePort~.portRect;

{ The clipping region moves with SetOrigin so change it.
InsetRect(disptayRect, 3, 3);
displayRect.right := displayRect.right - 16;

{ Allow for the scroll bars with a factor of 16. }
displayRect.bottom := displayRect.bottotn - 16;
ClipRect(displayRect);

end; { end of SetCoordinates }

procedure GetScaledMesh;
var
windowAspect: extended;
s#iidth, yHeight: exntended;
windowlWidth, windowHeight: integer;
rOffset, yorfset: integer;
scale: extended;
it integer;
begin

H#Ma# := 0.0;
yMau := 0.0;
®Min = le?;
yMin := te?;
fori:=1 ton do
begin
if H°[i]l > ¥Max then
#Max = H~[il
else if K~[i] < ¥Min then
r’Min == R~{il;

if ¥~[il > yMaxu then
yMax = ¥-1i]
eise if ¥~[il < yMin then
yMin := ¥~[il;
end;

s#llidth = (¥Max - ¥Min) * Hscale;

{ Note assignment compatihiiity, p.246 manual. )
yHeight := (yMag - yMin) * Yscale;
gridAspect := yHeight / nwidth;

with ispiayRect do
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begin
windowWid'h := (right - left - 40);
{ Use a slightly smaller window size. }
windowXeight := (bottom - top - 40);
end;
windowAspect := windowHeight / windowWidth;

{ Evaluate the scale factor depending on the difference in aspect ratios.)
{ Calculate offsets so as to center the mesh. )
if gridAspect <= windowAspect then
begin
scale := windowlidth / aWidth;
HOffset := 0;
yoffset := trunc((windowHeight - ykoight * scale) / 2);
end
else if gridAspect > windowAspect then
begin
scale := windowHeight / yHeight;
#0ffset := trunc((windowWidth - yWidth * scale) / 2);
yofrset := 0;
end;

{ Fill integer arrays with the displaced and scaled grid points. }
fori:=1tondo

begin
s#Pointli] := trunc((H~[i] - ¥Min) * scale * Hscale) + nOffset;
yPointfi] := -trunc((Y~[i] - yMin) * scale * Yscal2) - yoffset;
ExPointlil := trunc(Escale * Ex._over_Emax“[il);
EyPointlil := -trunc(Escale * Ey_over_Emasx ~lil});

end;

end; { end of GetScaledMesh }

procedure DoTheDrawingWithLineSegments;
var
it integer;
pointRect: Rect;
begin
fori:=1tondo
begin
with pointRect do
begin
top := yPointlil - 2;
left := ¥Point[i] - 2;
bottom := yPoint(il + 2;
right := #Pointli] + 2;
end;
MoveTo(xPointli]l - 2, yPointlil - 2);
PaintOval(pointBect);
Move(2, 2);
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end;

Line(ExPointli], EyPointlil);
end;
{ end of DoTheDrawinglWithLineSegments }

procedure DoTheDrawingilithArrows;
const

var

ARROW_UNIT = 1;

i: integer;

thefirrow: PolyHandle;

newd, newy: integer;

theta, angle: extended;

Hi, Y1, H2, ¥2, H3, V3, K4, V4, H6, Y6, H?, ¥Y7: integer;
arrowScale: integer;

pi: estended;

startPoint: point;

function HRotate (&, y: esitended): integer;
begin

end;

HRotate := trunc(s * cos(theta) + y * sin(theta));

function YRotate (x, y: exttended): integer;
begin

end;

YRotate := trunc(-x * sin(theta) + y * cos(theta));

function GetAngle: extended;
begin

begin

if (Ex_over_Emax“[i] = @) and (Ey_over_Emax~[il > 0) then
GetAngle := 0;

if (Ex_over_Emax“[i] = 0) and (Ey_over_Emax~lil < 0) then
GetAngle := pi;

if (En_over_Emax-[i} > 0) and (Ey_over_Emax~lil > 0) then
Getfingle := arctan(abs(Ey_over_Emax-[i] /
Er_over_Emax ~[il)) - pi / 2;

if (Ex_over_Emax*~[il < 0) and (Ey_over_Emax~[i] > 0) then
Getfingle := pi / 2 - arctan(abs(Ey_over_Emau{i] /
Exn_over—_Emax-[iD);

if (Ex_over_Emaxn~lil > 0) and (Ey_over—Emax il < 0) then
GetAngle := -(pi / 2 + arctan(abs(Ey_over_Emaxnli} /
Ex_over_Emax~[il)));

if (En_over_Emax“[i] < 0) and (Ey_over_Emax~[il < 0) then
Getfingle := pi/ 2 + arctan(abs(Ey_over_Emau~[il /
Ex_over_Emax "[il));

end;

pi:= 4* arctan(1);
fori:=1 tondo
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begin
{ Set the angle here! )

{ set the arroiv scale here! The basic arrow unit is 1. Use a madimum scale of about }
{ 10. Don’t forget that the field is scaled when the plotting points are calculated. }
arrowsScale := trunc(Escale * sqrt{sqr(Ex_over_Emax"[i]) +

{ Rotate the corners of the arrow from its initial vertical orientation. }

theta := GetAngle; ( in radians.}

sqr(Ey_over_Emax~[i}}));

{ Positive angles go CCIU. }

end;

H1 := HRotate(-2 * ARROW_UNIT * arrowScale, 0};
V1 := YRotate(-2 * ARROW_UNIT * arrowScale, 0);
H2 := HRotate(-ARROW._UN.T * arrowScale, 0);

V2 := YRotate(-ARROLW_UNIT * arrowScale, 0);

H3 := HRetate(3 * ARROW_UNIT * arrowScaie, -2 *
ARROW._UNIT * arrowScale);

¥3 := YRotate(3 * ARROW_UNIT * arrowScaie, -2 *
ARROW_UNIT * arrowsScale);

H4 := HRotate(3 * ARROW_UNIT * arrowScale, 2 *
ARRGW_UNIT * arrowScale);

¥4 := YRotate(3 * ARRCW_UNIT * arrowScale, 2 *
ARROI_UNIT * arrowsScale);

H6 := HRotate(0, 2 * ARROW_UNIT * arrowsScale);
V6 := YRotate(Q, 2 * ARROW_UNIT * arrowsScale);
H7? := KRotate(-4 * ARROW._UNIT * arrowsScale, 0);
¥? := YRotate(-4 * ARROW_UNIT * arrowscale, 0);
thefirrow := OpenPoly;

MoveTo(sPointlil, yPointlil);

Move(}1, ¥1);

GetPen(startPoint);

Line(H2, ¥2);

Line(#3, ¥3);

Line(H4, v4);

Line(¥2, v2);

Line(#s6, v6);

Line({?, v?);

LineTo(startPoint.h, startPoint.v);

CiosePoly;

FillPoly(thefirrow, white);

FramePoly(thefirrow);

KillPoly(theArrow);

end; { end of DoTheDrawingWithArrows )

end.
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{ Subroutine t:Globals }

{ This subroutine refreshes the screen output and monitors and identifies !
{ keystrokes . )

{ ® Edmund Sumbar, AEL, University of Atberta, 1990 }

unit Globals;
interface
const
MAK_N = 26 * 26;
LINES = I;
ARROLWS = 2;
type

Coordinatefirray = arrayl 1.MAH_N] of entended;

var
n:in.egar;
R, ¥, Ex_over_Emax, Ey_over_Emasx: “Coordinaiefrray;
gridAspect, ¥Min, uMan, yMin, yMax: extended;
Hscale, Yscale, Escale: extended;
plotChoice: integer;

procedure Holdlt;
implementation
procedure Holdlt;

{ Puts the program into a loop. The knit applications needs this to retain i
{ the drawing window on screen before program termination. i

const
CR = $0D; { Character code (in Hex) for the carriage-return key. }
ETH = $03; { Character code (in Hex) for the enter key. }

var
Done: boolean; {Flag used in the mini-event loop.}

myEvent: EventRecord;
function Get_Return: boolean;
{Determines whether or not keystroke is the return-key or enter-key.)
begin
Get_Return := false;
if BitAnd{myEvent.message, charCodeMask) = CR then
Get_Return := true;
if BitAnd{myEvent.message, charCodeMask) = ETH then
Get_Return := true;
end;
begin
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Oone := false;
{The following is a mini-event loop which waits for a mouse click or carriage return.}
repeat
SystemTask;
if GetNextEvent(everyEvent, myEvent) then
case mytvent.what of
mouselown:
Done := true;
keybDown:
if Get_Return then
Done := true;
otherwise
; {Do ncthing in the case of other events.}
end;
until Done;
end; { end of HoldIt }

end.

194



C Program §. StandingE

C

c

€ This 2-dimensional progrem calculates the phasor stending-wave electric
C fields over a grid of an ®-2 cross-section of a parailel-plate waveguide
C filled with either a homogeneous or 2-layered medium and terminated with
C an open or short-circuit. z is directed along the wavequide axis

C from source to load; x is directed from bottom to top plate: yis

C directed across the waveguide following a RH coordinate system.

C The origin of coordinates is at the right hand bottom of the

C 2-D problem domain.

C Note: The layers of media must be paraliel to the paraliel piates.

c

C Data input consists of the system parameters which are clearly

C identified in the program section: 'Entry of System Parameters.’

C Note: For more information, see Figure 3. in the thesis teut.

c

C Program output is written to output unit 8 and into a file called

C 'ELFIELD.' Output consists of the z and ¥ coordinate and the

C corresponding axial and transverse phasor stending-wave electric field
C magnitudes according to the following collumn format:

c

c zim) ®(m) Ez(U/m) Ex(U/m)

C

C The output is formatted to be directly read by the graphing program

C Cricketgraph.

c
c
C DECLARATION STATEMENTS AND INPUT OF PARAMETERS
C
c
INTEGER 2D1U, XDV
REAL F,A,D,REEL,FAKE,C1REAL,CT1IMAG,C2REAL,C2IMAG
REAL SIG1,S162,EPS1R,EPS2R,L, MU, RER1,IMER T, T,EMAY
COMPLER CMPLH,EX1
INTEGER M
CHARACTER*1 TAB
c
COMMON SI61,5162,EPS1R,EPS2R,MU
c
c
C
C ENTRY OF SYSTEM PRRAMETERS
c
c

C INPUT THE NUMBER OF DIUISIONS DESIRED FOR THE PROBLEM

C BOMAIN IN BOTH THE X AND 2 BIRECTIONS. 201U 1S THE NUMBER
C OF GRID DIUISIONS ALONG THE Z-ARIS. HDIU IS THE NUMBER OF
C GRID DIUISIONS ALONG THE H-AHIS.
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PRRAMETER(2DIVU=25,801U=25)
RERL EX(0:HDIV,0:2010),E2(0:HDI1V,0:2D1V)

C
C ENTER THE FREQUENCY OF OPERATION (HERTZ).
€

PARAMETER(F=250000.0)
c
C ENTER THE PLAT™ SEPARATION (A) AND THE SATURATED
C REGION THICKNESS (D) (METRES)
c

PARAMETER(A=15.0,0=12.75)
c
C ENTER THE WAVEGUIDE LENGTH (METRES)
€

PARAMETER(L=400.0)
C
C ENTER THE PHASE(REEL) AND ATTENUATION(FAKE) COMPONENTS
€ OF THE 2-PROPAGATION CONSTANT KZ=(BETA-J*ALPHA}=(REEL +J*FAKE)
c

PARAMETER(REEL=2.298E-2,FAKE=-3.473E-3)
c
C INDICATE WHETHER THE IDAUEGUIDE TERMINATION 1S AN
C GPEN CIRCUIT(0) OR A SHORT CIRCUIT(1)
c

PARAMETER(M=0)
c
C ENTER THE CONDUCTIDITIES OF REGIONT (SATURATED REGION)
C AND REGION2 (BEPLETED REGION) (SIEMENS/METRE)
c

DATA S161,5162 /1.E-3,1.E-6/
C
C ENTER THE RELATIVE DIELECTRIC CONSTANTS OF REGION1
C AND REGION2 (DIMENSIONLESS)
€

DATA EPSIR,EPS2R /11.0,3.0/

c
C ENTER THE APPLIED EHCITATION UOLTAGE BETWEEN THE
C PARALLEL-PLATES (MAGNITUDE AND PHASE(DEGREES))
c

PARAMETER(ERIMAG=1000.0,EH1ANG=0.0)
C
C ENTER THE MAGNETIC PERMEABILITY OF BOTH REGIONS (H/M)
C

PARAMETER(PI=3.141592654)
MU = §*PI*1.E~7

(o]
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C MAIN PROGRAM
C

C
OPEN(UNIT=8,FILE="ELFIELD', STRTUS="'NELY)')
c
C CALCULATE THE EXCITATION UECTOR IN RECTANGULAR FORM
C
RER1=ERIMAG*COS(ER1ANG*PI/180)
IMERT1=ERIMAG*SINIER1ANG*PI/180)
ER1=CMPLR(RERI,IMER1)
c
C CALL THE APFROPRIATE SUBROUTINES BEPENDING ON WHETHER THE LOAD
C 1S OPEN OR SHORT CIRCUITED
c
W=2*PI*F
IF(M.EQ.1) GO TO 10
CALL OPENN(W,A,D,L,T,HDIB,2DIU,EH1,REEL,FAKE,EH,E2)
GOTO 11
10 CALL SHORT(W,A,D,L,T,HD1V,2DIU,EX1,REEL,FAKE,ER,E2)
11 #=0.
C
C FIND EMAR, THE MAXIMUM ELECTRIC FIELD FOR SCALING PURPOSES
c
EMAR=0.0
Do 1101 =0,8DIV
Do 1004J = 0,201V
F(ER(1,J).6T.EMAH) EMAX=EH(I,J)
IF(E2(1,J).GT.EMAH) EMAK=E2(1,J)
100 CONTINUE
110 CONTINUE
c
C PRINT THE ELECTRIC FIELDS FOR PLOTTING
c
TAB=CHAR(9)
c
D¢ 20 (=0,HD1Y
2=0.
0015 .=0,2D1V
WRITE(8,90) 2,TAB,H,TAB,E2¢(i,J),TAB,EX(1,J)
90 FORMAT( ',F9.3,A,F2.3,A,615.7,A,615.7)
15 2=2-1L/20%%
20 H=H+A/HDIV
c
STOP
END
C
c

C SUBROUTINE FOR THE CALCULATION GF THE OHMIC HEATING RATE
C INBETWEEN THE PLATES FOR A SHORT-CIRCUITED WAUEGUIDE
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c

C
SUBROUTINE SHORT(W,A,D,L,T,KDIV,2DIU,EX1,REEL,FRKE,EH,E2)
c
C URRIHBLE DECLARATIONS
c
INTEGER 2D/U,KGIV
REAL L,MU,EH(0:HDIV,0:2010),E2(0:HDIV,0:201V),MAGE2
REAL $1G1,SI1G2,EP1,EPSIR,EP2,EPS2R,T
COMPLEH CMPLR,CC0OS,CSIN,CSQRT,K1,K2,K2,C1,C2
COMPLER MED1,MED2,K22,KH1,KH2,ERT,JJ, TERM1,TERM2
€
COMMON S161,S162,EPSIR,EPS2R,MU
c
C PRELIMINARY CALCULATIONS
C
EP1=EPSIR*8.8342E~-12
EP2=EPS2R*8.8542E-12
K1=CMPLH(0.,-W*MU*CMPLH(SIG!,W*EF1)
K2=CMPLR(0.,~W*MU)*CMPLR(SIG2,IW*EP2)
MED1=CMPLH(SIG1,W*EPT)
MED2=CMPLH(SIG2,W*“EP2)
K2=CMPLR(REEL,FAKE)
K22=K2*K2
KH1=CSQRT(K1-K22)
KR2=CSQRT(K2-K22)
JJd=CMPLH(0.0,1.0)
C
C CALCULATION GF C1 AND C2 FROM THE EHCITATION FIELD
C
TERM 1=CSIN(KH1*D)/(MED1*K81)
TERM2=(CCOS(KH1*D)*CSIN(KH2*(R-D)))
TERM2=TERM2/(CCOS(KH2*(R-D))*MED2*KH2)
Ci1=EH1/(2*K22*CCOS(K2*(-L))*(TERM1+TERM2))
€C2=C1*CCOS(KH1*D)/CCOS(KH2*(A-D))
c
C FIELD CALCULATIONS
C
H=0.
D0 110 1=0,KDIV
2=0.

00 100 J=0,2D1V
IF(R.GT.D)GOTO 10
EX(1,J)=CABS(-JJ*2*C1*K22*CCOS(KH1*H)*CSIN(K2*2)/MED1)
E2(1,J)=CABS(JJ*2*C1*KH1*KZ*CSIN(KH1*H)*CCOS(K2*2)/MED1)
60 To 20
10 ER(1,J)=CRBS(-JJ*2*C2*K22*CCOS(KH2*(A-R))*CSIN(KZ*2)/MED2)
E2(1,J}=CABS(-JJ*2*C2*KH2*KZ*CSIN(KH2*(R-H))*CCOS(K2*2)/MED2)
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20 IF(1.EQ.0) E2(1,4)=0.0
IF(1.LEQ.RDIY} E2(1,4)=0.0
IF(J.£Q.0) EX(i,4)=0.0
100 2=2-1/2D1U
110 H=H+8/HDIV
RETURN
END
C
C

C SUBROUTINE FOR THE CALCULATION GF THE OHMIC HEATING RATE
C BETIVEEN THE PLATES FOR AN OPEN-CIRCUITED WAVEGUIDE
C

C
SUBROUTINE OPENN(W,A,D,L,T,HDIU,2DIU,ERT,REEL,FAKE,EX,E2)
c
C DECLARATIONS
c
INTEGER 2DIU,RDIU
REAL L,MU,ER(0:XDIV,0:2D10),E2(0:HDIV,0:2D1U),MAGE2
REAL SI1G1,S1G2,EP1,EPSIR,EP2,EPS2R
COMPLER CMPLR,CCOS,CSIN,CSQRT,K1,K2,K2,C1,C2
COMPLER MED1,MED2,K22,KHt ,KH2,EH1,TERM1,TERM2
C
COMMON SI1G1,S162,EPSTR,EPS2R,MU
C
C PRELIMINARY CALCULATIAONS
C
EP1=EPSIR*8.8542E-12
EP2=EPS2R*8.8542E-12
K1=CMPLR(Q.,~W*MU)*CMPLH(SIG1,IV*EP1)
K2=CMPLR(0.,-W*MU)*CMPLH(SI1G2,lW*EP2)
MEBT1=CMPLR(SIG1,IV*EP])
MED2=CMPLH(S1G2,ID*EP2)
KZ=CMPLR(REEL,FAKE)
K22=K2*K2
KH1=CSQRT(K1-K22)
KH2=CSQRT(K2-K22)
c

C CALCULATION OF C1 AND C2 FROM THE EXCITRTION FIELD
c
TERM1=CSIN(KX1*D)/(MEDI*KH1)

TERM2=(CCOS(KH1*D)*CSIN(KH2*(R-D)))
TERM2=TERM2/(CCOS(KK2*(R-D))*MED2*KH2)
C1=ER1/(2*K22*CCOS(K2*(~L))*(TERM 1 +TERM?2))
C2=C1*CCOS(KR1*0)/CCOS(KH2*(A-D))

c

C FIELD CALCULATIONS

c
H=0.
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00 110 I1=0,XDIV
2=0.
D0 1060 J=0,201V
IF(R.GT.0) GO TO t0
EH(1,J)=CABS(2*C1*KZ22*CCOS{KH1*R)*CCOS(K2*2)/MED1)
E2(1,J)=CABS(2*CI*KHI*KZ2*CSIN(KHI*H)*CSIN(K2*2)/MED1}
GO 70 20
10 ER(1,J)=CABS(2*C2*K22*CCOS(KH2*(A-H))*CCAS(K2*2)/MED2)
E2(1,4)=CABS(-2*C2*KH2*K2*CSIN(KH2*(A-R})*CSIN(KZ*2)/MED2)
20 iF(1.EQ.0) E2(1,4)=0.0
IF(1.EQ.HDIV) E2(1,4)=0.0
100 2=2-L/2D1U
110 H=R+A/HDIV
RETURN
END
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- Pregram 9. TimeStandingt
L
c
€ This 2-dimensional program calculates the time-dependent electric
f fields over the 1-z cross-sectional grid of a parallel-plate waveguide
[ filled with either a homogeneous or 2-layered medium and terminated with
C an 09¢n or short-circuit. z is directed along the waveguide axis
C frot. source to load; s is directed from bottom te top plate; yis
C dit :cted across the waveguide following a RH coordinate system.

<P+ origin of coordinates is iocated at the lower right hand

.ner of the problem domain.

L Note: The layers of media must be paraliel to the parallel plates.
C
C Data input consists of the system parameters which are clearly
Cidentified in the program section: ‘Entry of System Parameters’
c
C Program output is written to output unit 8 and into a file called
C 'ELFIELD. Output consists of the z and ¥ coordinaie and the
C corresponding axial and transverse time-dependent standing-wave electric
C field magnitudes according to the following collumn formot:
C
C z(m) x(m) Ez(U/m) Ex(D/m)
c
C The output is formatted to he directly read by the graphing program
€ SYSTAT.

c
c ———
C DECLARATION STATEMENTS AND INPUT OF PARAMETERS
C S
€
INTEGER 2DIU,HDIY
REAL F,A,0,REEL,FAKE,CIREAL,CT1IMAG,C2REAL,C2IMNG
REAL SIG1,SIG2,EPSIR,EPS2R,L,MU,RER],IMER T, EMAK
COMPLEH CMPLH,EN
INTEGER M
€
COMMON SIGT,S1G2,EPSIR,EPS2R,MU
C
c S
C ENTRY OF SYSTEM PRRAMETERS
c
c

C INPUT THE NUMBER OF DIUISIONS DESIRED FOR THE PROBLEM
C DOMAIN IN BOTH THE B AND 2 DIRECTIONS. 2DIU IS THE NUMBER
€ OF GRID OIUISIONS ALONG THE 2-AHIS. HDIU IS THE NUMBER OF
C GRID DIUISIONS ALONG THE H-AHIS.
C
PARAMETER(2DIU=25,8D1U=25)
REAL EH(0:KBIV,0:201V),E2(0:HD1D,0:2D11)
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E ENTER THE FREQUENCY OF OPERATION (HERTZ).

‘ PARAMETER(F=150.E3)

E ENTER THE PLATE SEPARATION (A) AND THE SATURATED

C REGION THICKNESS (D) (METRES}

- PARAMETER(A=15.0,0=13.5)

E ENTER THE WAVEGUIDE LENGTH (METRES)

- PRRAMETER(L=400.0)

E ENTER THE TIME OF FIELD OBSERUATION (SECONDS)...NOTE: T=1/f=2*pi/w
‘ PARAMETER(T=3/(24*150E+3))

E ENTER THE REAL(REEL} AND It AGINRRY(FAKE) PARTS

C OF THE 2-PROPAGATIGN CONSTANT K2=(BETA-J*RLPHA)=(REEL+J*FRKE)
- PARAMETER(REEL=1.6399E-2,FAKE=~2,518E~-3)

E INDICATE WHETHER THE WAVEGUIDE TERMINATION IS AN

C OPEN CIRCUIT(0) OR A SHORY CIRCUIT(1)

: PARAMETER(M=1)

E ENTER THE CONDUCTIVITIES OF REGION1 (SATURATED REGION)
C AND REGION2Z (DEPLETED REGION) (SIEMENS/METRE)

- DATA S1G1,S1G2 /1.E-3,1.E-6/

E ENTER THE RELATIVE DIELECTRIC CONSTANTS OF REGION

C AND REGION2 (DIMENSIGNLESS)

- DATA EPSIR,EPS2R /11,0,3.0/

c
C ENTER THE APPLIED ERCITATION UOLTAGE BETWEEN THE
C PARALLEL-PLATES (MAGNITUDE AND PHASE(DEGREES))
c

PARAMETER(ERIMAG=1000.0,ER1ANG=0.0)
c
C ENTER THE MAGNETIC PERMEABILITY OF BOTH REGIONS (H/M)
c

PANRAMETER(P1=3.141592654)
MU = 4*PI*1.E-7?
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C

€ MAIN PROGRAM
C

C
OPEN(UNIT=8,FILE="ELFIELD',STATUS="NEIl')
c
€ CALCULATE THE ERCITATION UVECTOR !N RECTANGULAR FORM
C
REH1=EHIMAG*COS(ERTANG*P1/180)
IMEHT=ERTMAG*SIN(ER1HANG*P1/180)
ER1=CMPLR(RER1,IMEH1)
C
€ CAL). THE APPROPRIATE SUBROUTINES DEPENDING ON WWHETHER THE LOAD
C 1S OPEN OR SHORT CIRCUITED
c
W=2*PI*F
IF(M.EQ.1) GO TO 10
CALL OPENN(W,A,D,L,T,HD1V,2D1V,EH1,REEL FAKE,EX,E2)
6070 11
10 CALL SHORT(W,A,D,L,T,¥D1U,2D1U,EH 1, REEL,FAKE,EX,E2)
11 8§=0.
U
C PRINT THE NUMBER OF GRIDBLOCKS IN THE WADEGUIDE
c
WRITE(8,*) (HDIV+1)*(2DBID+1)
c
C FIND EMAH, THE MARIMUM ELECTRIC FIELD FOR SCALING PURPOSES
c
EMAR=0.0
DO 1101 =0,%DIY
D0 1004 = 0,2D1D
IF(ER(,J).GT.EMAR) EMAR=ER(],J)
{F(E2(1,J).6T.EMAR)} EMAR=E2(1,J)
100 CONTINUE
110 CONTINUE
c
C PRINT THE ELECTRIC FIELDS FOR PLOTTING
c
DO 20 I=0,XDIV
2=0.
DO 15 J=0,2D1V
WRITE(8,90) 2,4,E2(1,J)/EMAH,ER(1,J)/EMAH
90 FORMAT(' ',F9.3,34,F9.3,54,615.7,34.615.7)
15 2=2-L/2D011
20 H=H+A/RDIU
c

C PRINT THE RATIO OF HEIGHT TO WIDTH AND THE WINDOW LIMITS ON THE PLOT

c
WRITE(8,*) -L,0.7,0.0,R
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stop
END
C
€

C SUBROUTINE FOR THE CALCULATION OF THE OHMIC HEATING RATE
C IN BETWEEN THE PLAYES FOR A SHORT-CIRCUITED WAVEGUIDE

c
c
SUBROUTINE SMORT(W,A,D,L,T,RDIV,2DIU,EXH1,REEL,FAKE,ER,E2)
C
C UARIABLE DECLARATIONS
C
INTEGER 2DI1U,8DIV
REAL L,MU,ER(0:RDIV,0:2D1V),EZ:0.4D11,0:2D1U),MAGE2
REAL S161,51G2,EPY,EPSIR,EP2,EPS2R,T
COMPLEH CMPLH,CCOS,CSIN,CSGRT,K1,K2,K2,1,C2
COMPLEY MED1,MED2,K22,KH1,KH2,EH1,JJ,TIME
COMPLER TERM ! ,TERM2
c
COMMAON SIG1,S162,EPS1R,EPS2R,MU
c
C PRELIMINARRY CRLCULATIONS
C
EP1=EPSIR*8.8542E-12
EP2=EPS2R*8.8542E-12
K1=CMPLR(O.,~W*MU)*CMPLR(SIG1,ID*EP1)
K2=CMPLH(0.,~-W*MU)*CMPLH(S162,lb*EP2)
MED1=CMPLHR(SIGI1,lW*EP1)
MED2=CMPLH(S162,lV*EP2)
KZ=CMPLH(REEL,FAKE)
K22=K2*K2
KH1=CSQRT(K1-K22)
KH2=CSQRT(K2-K22)
JJ=CMPLH(0.0,1.0)
TIME=CMPLR(COS(W*T),SIN(W*T))
c

C CALCULATION OF C1 AND C2 FROM THE EHCITATION FIELD
c
TERM1=CSIN(KR1*D)/(MED1*KR 1)

TERM2=(CCOS(KR1*D)*CSIN(KH2*(R-D)))
TERM2=TERM2/(CCOS(KH2*(A-0))*MED2"KH2)
Ci=EX1/(2*K22*CCOS(KZ*(-L))*(TERM1+TERM2)
C2=C1*CCOS(KR1*D)/CCOS(KH2*(A-D))

c

C FIELD CALCULATIONS

c
R=0.
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D0 110 1=0,HDID
2=0.
B0 100 J=0,201V
IF(X.GT.D) GO TO 10
ER(1,J)=REAL(-JJ*2*C1*K22*CCOS(KH1*K)*CSIN(KZ2*2)*TIME/MED1)
E2(1,J)=REAL(JU*2*C1*KRI1*K2*CSIN(KH1*R}*CCOS(K2*2)*TIME/MED)
GO0 10 20
16 EH(1,J)=REAL((-JJ*2*C2*K22*CCOS(KH2*(A-H))*CSIN(KZ*2)*TIME/MED2)/30)
E2(1,J)=REAL((-JJ*2*C2*KH2*K2*CSIN(KH2*(A-R))*CCOS(KZ*2)*TIME/MED2)/30)
20 IF(1.EQ.0) EZ2(1,4)=0.0
IF(1LEQ.XDIV) E2(1,4)=0.0
IF(J.EQ.0) ER(1,4)=0.0
160 2=2-L/201V -
110 H=H+A/RDIV
RETURN
END
c
c

C SUBHOUTINE FOR THE CALCULATION GF THE SHMIC HEATING RATE
C BETIWEEN THE PLATES FOR AN OPEN-CIRCUITED WAVEGUIDE

c
c
SUBROUTINE OPENN(W,A,D,L,T,RD1V,2B10,EX1,REEL,FAKE,EX,E2)
c
C DECLARATIONS
c
INTEGER 2DIU,HDIU
REAL L,MU,EX(0:HDIU,0:2D1V),E2(0:HDiV,0:2D11),MAGE2
REAL SIG1,SIG2,EP1,EPSIR,EP2,EPS2R
COMPLEX CMPLR,CCOS,CSIN,CSORT,K1,K2,K2,C1,C2
COMPLER MED1,MED2,KZ2,KH1,KH2,EH1,TIME,TERM! ,TERM2
C
COMMON SI161,S162,EPS1R,EPS2R,MU
c
C PRELIMINARY CALCULATIONS
c
EP1=EPSIR*8.8542E-12
EP2=EPS2R*8.8542E-12
K1=CMPLR(0.,-W*MU)*CMPLH(SIG1,W*EP1)
K2=CMPLH(0.,-I*MU}*CMPLHR(S1G2,WW*EP2)
MED1=CMPLH(SIG1,IU*EP1)
MED2=CMPLR{SI1G2,IU*EP2)
K2=CMPLH(REEL,FAKE)
K22=K2*K2Z
KH1=CSQRT(K1-K22)
KH2=CSQRT(X2-K22)
TIME=CMPLR(COS(W*T),SIN(WW*T))
c

C CALCULATION OF C1 AND C2 FR2M THE EXCITATION FIELD
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TERM I =CSIN(KR1*D)/(MED1*KHI1)
TERM2=(CCOS(KH1*D)*CSIN(KH2*(A-D))}
TERM2=TERM2/(CCOS(KH2*(R-D})*MED2*KR2)
Cl=EH1/(2*KZ22*CCOS(K2*(-L))*(TERM I +TERM2)
€C2=C1*CCOS(KH1*D)/CCOS(KR2*(R-D))

c
C FIELD CALCULATIONS
c
R=0.
Do 110 1=0,HDIV
2=0.

0o 100 J=0,2810
IF(H.GT.0) GO TO 10
ER(1,4)=REAL(2*C1*KZ2*CCOS(KHT*H)*CCAS(K2*2)*TIME/MEDI)
E2(1,J)=REAL(2*CI1*KR1*KZ*CSIN(KH1*H)*CSIN(K2*2)*TIME/MED1)
GO To 20
10 ER{1,J)=RERL(2*C2*K22*CCOS(KR2*(R-H))*CCOS(K2*2)*TIME/MED2)
E2(1,d)=REAL(-2*C2*KK2*KZ*CSIN(KH2*(A-R))*CSIN(K2*2)*TIME/MED2)
20 IF(1.EQ.0) E2(1,J)=0.0
IF(1.LEN.RD 1Y) E2(1,4)=0.0
100 2=2-i /2040
110 B=H+A/HDIV
RETURN
END
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C Program 10. Heater
c

c —~

C This 2-dimensional program calculates the time-averged resistive heating

C rate over a grid in the %~ cross-section of a parallel-plate

€ waveguide filled with either a homogeneous or 2-layered medium and
C terminated with an open or short-circuit. z is directed along the guide
C aris from source to load; X is directed from bottom to top piete; y is
C directed across the waveguide following a RH coordinate system.

C The origin of coordinates is located at the bottom right hand corner
C of the problem dccnain.

€ Note: The layers of media must be parallel to the parallel plates.

c

C Data input consists of the system parameters which are clearly

€ identified in the program section: 'Entry of System Parameters.’

C Note: For more information, see Figure 3. in the thesis text.

c

C Program output is written to output unit 8 and into a file called

C 'DPOIJER.' Outpul consists of the z and % coordinate and the

C corresponding volumetric heating rate in Watts per cubic metre

C according to the following collumn format:

c

c z(m) s(m) Power(l/m**3)

c

C The output is formatted to be directiy read by the graphing program
C SYSTAT,

C
c
C DECLARATION STATEMENTS AND INPUT OF PARARMETERS
C
c
INTEGER 2DIU,HDIV
REAL F,A,D,REEL,FAKE,C1REAL,C11MAG,C2REAL,C2IMAG
REAL S16G1,S162,EPSIR,EPS2R,L,MU,REHT IMEX1
COMPLEHR CMPLH,ER1
INTEGER M
C
COMMON Si61,5162,EPS1R,EPS2R,MU
C
c
C ENTRY OF SYSTEM PARAMETERS
C
c

C INPUT THE NUMBER OF RIUISIONS BESIRED FOR THE PROBLEM
C DGMAIN IN BOTH THE H AND 2 DIRECTIONS. 2DIU 1S THE NUMBER
C OF GRID DIUISIONS ALONG THE 2-ARIS. HOIV IS THE NUMBER OF
C GRID DIUISIONS ALONG THE H-AHIS.
€

PARAMETER(ZDIV=25,4DIU=25)
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REAL HEAT(0:XDI1U,0:201V)
C
C ENTER THE FREQUENCY OF GPERRTION (HERT2).
c
PARAMETER(F=250000.0)
C
C ENTER THE PLATE SEPARATION (A) AND THE SATURATED
C REGION THICKNESS (D) (METRES)
c
PARAMETER(A=15.0,0=12.75)
c
C ENTER THE WAVEGUIDE LENGTH (METRES)
c
PARAMETER(L=400.0)
c
C ENTER THE REAL(REEL) AND IMAGINARY(FAKE) PARTS
C OF THE 2-PROPAGATION CONSTANT KZ2=(BETA-J*ALPHA)=(REEL+J*FAKE)
C
PARAMETER(REEL=2.208E~2,FAKE=-3.473E-3)
c
C INBICATE WHETHER THE IWDADEGUIDE TERMINATION 1S AN
C OPEN CIRCUIT(0) OR A SHOHT CIRCUIT(1)
c
PARAMETER(M=0)
c
C ENTER THE CONDUCTIUITIES OF REGION1 (SATURATED REG!ON)
C AND REGION2 (DEPLETED REGION) (SIEMENS/METRE)
c
DATA 51G61,5162 /1.E-3,1.E-6/
c
C ENTER THE RELATIVE DIELECTRIC CONSTANTS OF REGIGON1
C AND REGION2 (DIMENSIONLESS)
C
DATA EPS1R,EPS2R /11.0,3.0/

C
C ENTER THE APPLIED EHCITATION VOLTAGE BETWWEEN THE
C PARALLEL-PLATES (MAGNITUDE AND PHASE(DEGREES))
c

PARAMETER(EX I1MAG=1000.0,EX1ANG=0.0)
€
C ENTER THE MAGNETIC PERMEABILITY OF BOTH REGIONS (H/M)
C

PARAMETER(P1=3.141592654)

MU = 4*PI*1.E-7
c
c

C MAIN PROGRAM BODY
C
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C
OPEN‘UNIT=8,FILE="DPOWER",STATUS="NELY')
C
C CLACULATE THE EXCITATION VECTOR IN RECTANGULAR FORM
C
RER1=EHIMAG*COS(EH1ANG*P1/180)
IMEXT=ERIMAG*SIN(EX1ANG*P1/180)
CHI=CMPLR(REH1,IMEH]1)
c
C CALL THE RPPROPRIATE SUBROUTINES DEPENDING ON WHETHER THE LOAD
C IS OPEN 07t SHORT CIRCUITED
c
W=2*pPI*F
IF(M.EQ.1) GO TO 10
CALL OPENN(W,A,D,L,BDIV,2D1U,E41 ,REEL,FAKE,HEAT)
GOT0 11
10 CALL SHORT(W,A,D,L,R0IV,2D1D,ERT,REFL, FREE, HEAT)
11 H=0.
C
C PRINT THE RESULTS
c
B0 20 1=0,HDIU
2=0.
D0 154J=0,2D10
WRITE(8,90) 2,4,HEAT(1,J)
90 FORMAT(' ',F9.3,34,F9.3,54,615.7)
152=2-1/2D1V
20 H=H+A/HDIU
sTopP
END
C
c

C SUBROUTINE FOR THE CALCULATION OF THE OHMIC HEATING RATE
C IN BETIVEEN THE PLATES FOR A SHORT-CIRCUITED IAVEGUIDE
c

c
SUBROUTINE SHORT(W,A,D,L . HDID,Z2DHJ,ERT ,REEL,FAKE,HERT)
c
C UARRIABLE DECLARATIAONS
c
INTEGER 2DIU, HDIV
REAL L,MU,HEAT(G:HDIV,0:2D1V),MAGE2
REAL SIG1,S162,EP1,EPS1R,EP2,EPS2R
COMPLER CMPLR,CCOS,CSIN,CSQRT,K1,K2,K2,C1,C2
COMPLER MED1,MED2,K22,ER,E2,KH1T,KH2,EX1,JJ
COMPLEH TERM 1, TERM2
c
COMMON S161,S162,EPS1R,EPS2R,MU
C
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C PRELIMINARY CALCULATIONS

C

c

C CALCULATION OF C1 AND C2 FROM THE EHCITATION FIELD

c

c

EP1=EPSIR*8.8542E-12
EP2=EPS2R*8.8542E-12
K1=CMPLH(0.,-W*MU)*CMPLH(SIGT,W*EP1)
K2=CMPLR(0.,-W*MU)*CMPLH(S162,I/*EP2)
MED1=CMPLH(SIG1,IV*EP1)
MED2=CMPLH(SIG2,5*EP2)
KZ=CMPLH(REEL,FAKE)

K22=K2*K2

KH1=CSQRT(K1-K22)

KH2=CSQRT(K2-K22)

JJ=CMPLH(0.0,1.0)

TERM 1 =CSIN(KH1*D}/(MED1*KH1)

TERM2=(CCOS(KR1*D)*CSIN(KH2*(A-D)))

TERM2=TERM2/(CCOS(KH2*(A-D))*MED2*KH2)
Ci=ER1/(2*K22*CCOS(KZ2*(-L))*(TERM1+TERM2))

C2=C1*CCOS(KH1*D)/CCOS(KH2*(R-D))

C FIELD CALCULATIONS

€

C

H=0.

Do 110 1=0,RDID
2=0.

pe 190 4=0,2010
'F(H.GT.D) GO TO 10

ER=-005*2*C1*K22*CCOS(KHT1*R)*CSIN(KZ*2)/MED1
E2=JJ*2*C1*KRI*K2*CSIN(KH1*H)*CCOS(K2*2)/MED

GO0 TG 20

10 E¥=-dJ*2*C2*K22*CCOS(KH2*(A-R))*CSIN(KZ*2)/MED2
E2=-JJ*2*C2*KR2*K2*CSIN(KR2*(R-H))*CCOS(K2*2)/MED2

20 IF(1.EQ.0) E2=CMPLH(Q.,0.)
IF(}.EQ.HDID) E2=CMPLH(0.,0.}

1F(J.EQ.0) EH=CMPLH(G.,0.)

C POWER DISSIPATION CALCULATIONS

c

MAGE2=(CABS(ER)**2)+(CABS(E2)**2)

IF(R.6T.D) GOTa 50
HEAT(1,J)=S1G1*MAGE2
GOTO 100

50 HEAT(1,J)=S1G2*MAGE2
100 2=2-1/2010
110 H=H+A/HDIV

RETURN

END
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C
c

C SUBRGUTINE FOR THE CALCULATION OF THE OHMIC HEATING RATE
C BETWEEN THE PLATES FOR AN OPEN-CIRCUITED LUAUEGUIDE
C

c
SUBROUTINE OPENN(WW,R,D,L,HDIV,2DIU,EX1,REEL,FAKE,HEAT)

C

C DECLARATIGNS

c
INTEGER 2D{IU,XDIV
REAL L ,MU,HEAT(0:HDID,0:2D 1V}, MAGE 2
RERAL S161,5162,EP1,EPS1R,EP2,EPS2R
COMPLER CMPLH,CCOS,CSIN,CSQRT,K1,K2,K2,C1,C2
COMPLEHX MED1,MED2,K22,EH,E2,KH1,KH2,EHT
COMPLEHR TERM 1,TERM2

C
CUMMON S161,S162,EPSIR,EPS2R,MU

C

C PRELIMINARY CALCULRTIONS

c
EP1=EPS1R*8.8542E-12
EP2=EPS2R*8.8542E-12
K1=CMPLH(0.,~10*MU)*CMPLH(SIG1,WW*EP 1)
K2=CMPLR(0.,-W*MU)*CMPLR(S162,IV*EP2)
MED1=CMPLH(SIG],WW*EP1)
MED2=CMPLH(S162,WB*EP2)
KZ=CMPLR(REEL,FAKE)
K22=K2+*K2
KR1=CSQRT{K1~K22)
KH2=CSQRT(K2-K22)

c

C CALCULATIGN OF C! AND C2 FROM THE EXCITATION FIFLD
c
TERM1=CSIN(KR1*D}/(MED1*KH1}
TERM2=(CCOS(KHR1*D)*CSIN(KH2*(A-D)))
TERM2=TERM2/(CCOS(KH2*(A-D))*MED2*K}42)
C1=EH1/(2¥K22*CCOS(KZ2*(-L))*(TERM1+TERM2))
C2=C1*CCOS(KH1*D)/CCOS(KK2*(R-D))

C
C FIELD CALCULATIGNS
c
H=0.
DO 110 1=0,%01V
2=0.

Do 100 J=0,201V

IF(4.GT.D) GoTO 10
EX=2*C1*K22*CCOS(KH1*H)*CCOS(K2*2)/MED1
E2=2*C1*KHI*KZ*CSIN(KH1*H)*CSIN(K2*2)/MED1



G0 70 20
10 EX=2*C2*K22*CCOS(KH2*(A-H})*CCOS(K2*2)/MED2
EZ=-2%C2*KH2*K2*CSIN(KR2*(R-H))*CSIN(K2*2)/MED2
20 IF(1.E0.0) E2=CMPLH(0.,0.)
IF(1.EQ.HDIV) E2=CMPLH(0.,0.)
C
C POIVER DISSIPATION CALCULATIONS
c
MAGE2=(CABS(ER)**2)+(CABS(EZ)**2)
IF(H.GT.D) 60TO 50
HERT(1,4)=SI1G1*MAGE2
607G 100
50 HEAT(1,J)=S1G2*MAGE2
100 2=2-L/2DIU
110 H=R+A/HDIV
ARETURN
END
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