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Abstract

This work is an introductory study of dynamic implicit informative labelling schemes, a topic suggested
by Kannan et al. (Kannan et al., STAM J Disc Mat, 1992) but not explored in their work. In particular,
we define what is meant by a dynamic implicit informative labelling scheme and develop a dynamic implicit
adjacency labelling scheme for line graphs.

1 Introduction

Consider a finite simple undirected graph G = (V, E¢) with n vertices and m edges. Typically, we represent G
using an adjacency matrix or a series of adjacency lists, labelling the vertices from 1 to n. These rudimentary
labels serve only to distinguish between the vertices and do not tell us anything about the structure of G. In
particular, the adjacency of any pair of vertices must be determined from the adjacency matrix or the adjacency
lists, both of which are usually maintained as global resources.

What if we could determine the adjacency of two vertices of G in a more local manner, that is, by using only
the labels given to them? One way to do this is by labelling each vertex with a unique prelabel from {1,...,n},
along with its corresponding row of the adjacency matrix whose indices are based on these prelabels. Given this
labelling scheme, we can determine the adjacency of two vertices having prelabels v; and vy using only their
labels by looking up the bit corresponding to v in the row of the adjacency matrix found in the label of vy, or
vice versa. In this labelling scheme each vertex has a label of size ©(n), the sum of the sizes of all the vertex
labels is ©(n?), and adjacency queries can be handled in ©(1) time. Another approach is to label each vertex
with a unique prelabel from {1,...,n}, along with a list of the prelabels of the vertices to which it is adjacent.
Given this labelling scheme, we can determine the adjacency of two vertices having prelabels v; and vy using only
their labels by determining if vy is in the adjacency list found in the label of vy, or vice versa. In this labelling
scheme a vertex v has a label of size ©(deg(v)logn) C O(nlogn), the sum of the sizes of all the vertex labels is
O((m+n)logn), and adjacency queries can be handled in O(logn) time providing the adjacency lists are sorted.
Upon extension to families of finite graphs these labelling schemes based upon adjacency matrices and adjacency
lists are examples of informative (adjacency) labelling schemes as defined by Peleg [18].

Definition 1.1 (Peleg) Consider a function f(S,G) defined on sets of vertices S of fived but arbitrary finite
graphs G. An implicit f-labelling scheme of a family G of finite graphs is a pair (M, D) defined as follows.

e M is a vertex labelling algorithm whose input is a graph G in G. Note that M mneed not be deterministic;
accordingly, let Mq be the set of all vertex labellings of Vi which can be assigned by M.

e D is a polynomial time deterministic evaluation algorithm whose input is a set of vertex labels. Given any
labelling Le of Vi, let Lg ¢ denote the subset of these labels corresponding to a subset S of V. For any
graph G in G we define Lg to be (D, f)-correct if D(Ls,c) = f(S,G) for every subset S of Vi on which
[ is defined. Given this definition, we require that Mg be (D, f)-correct for all G in G and for all Mg in
M. Note that D is a function of the labels only.

Allowing sufficiently large labels we can create informative labelling schemes for any such function f, however,
in doing so we may overlook two desirable characteristics, namely, space-optimality and balance. If we define the
size of a labelling of a graph to be the sum of the sizes of its vertex labels, then by a space-optimal f-labelling
scheme of G we are referring to an f-labelling scheme which generates labellings of asymptotically smallest size
over all f-labelling schemes of G. By “asymptotically smallest size” we mean that the sizes of the graph labellings
are considered asymptotically with respect to the number of vertices in the graph. If the size of a vertex labelling
of a graph on n vertices is ©(S), then by a balanced f-labelling scheme of G we are referring to an f-labelling
scheme which generates vertex labels of size O(%), thus distributing the information about f across the graph.
To date, balanced space-optimal informative labelling schemes have been developed for a variety of functions over
certain graph classes, such as adjacency over interval graphs [12], distance over rings [17], and center of three
vertices over trees [18].
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The seminal works of both Muller [15] and Kannan et al. [12] presented a narrower version of adjacency
labelling schemes in the form of what Spinrad [22] defines as the the implicit representation problem. A family G
of finite graphs is said to have an implicit representation if there is an adjacency labelling scheme for G such that
the members on n vertices have vertex labels of size O(logn). To date, implicit representations have been found
for many classes of graphs including trees, bounded degree graphs, planar graphs, and interval graphs. In his
recent text on graph representation, Spinrad [22] has generalized the idea of an implicit representation by asking
if families of graphs with 22(¢(")) members on n vertices have adjacency labelling schemes using O(@) bits per
vertex. We observe that an adjacency labelling scheme of a family of graphs provides a unique representation
for each of the members of the family, so the number of bits required by an adjacency labelling scheme is at
least the number of bits required to represent all of the members uniquely; in particular, a family of graphs with
20(¢(") members on n vertices requires a labelling of size ©(#(n)) to uniquely represent each of the members on n
vertices. Therefore, generalized implicit representations are balanced space-optimal adjacency labelling schemes.
Note that the previously described adjacency labelling scheme devised from adjacency matrices is a generalized
implicit representation, and hence a balanced space-optimal adjacency labelling scheme, for any family of graphs
having 29("*) members on n vertices. Such families include bipartite graphs, chordal graphs, and the class of all
graphs.

The terms “generalized implicit representation” and “adjacency labelling scheme” used by Spinrad [22] and
Peleg [18], respectively, do not precisely capture the essence of what they are intended to define when considered
in the context of one another. The term “generalized implicit representation” directly references the ability
to determine the adjacency of two vertices implicitly from their labels, however, put in the wider context of
informative labelling schemes, it is no longer evident that adjacency is the property on which we are being
informed. Moreover, the term “generalized implicit representation” is used to capture the properties of space-
optimality and balance, neither of which are evident from the term itself. On the other hand, the term “adjacency
labelling scheme” makes evident the underlying interest in vertex adjacency, but overlooks the fact that the
adjacency of two vertices can be determined implicitly from their labels. As such, what is defined by Peleg to
be an “adjacency labelling scheme” might more accurately be called an “implicit adjacency labelling scheme”;
similarly, what Spinrad defines to be a “generalized implicit representation” might more accurately be termed a
“balanced space-optimal implicit adjacency labelling scheme”. Although longer, these terms better capture the
properties of what is being defined and in doing so offer a unified terminology for researchers unfamiliar with the
subject area. We will use this new terminology throughout the remainder of this article, except when referring
to earlier works in a historical context.

In many applications the underlying topology is constantly changing and we desire algorithms which can
accommodate these changes without having to process the new topology from scratch. At present, algorithms
for finding implicit adjacency labelling schemes are static; that is, if the graph provided to the algorithm is
changed then the algorithm must process the new graph from scratch. The dynamic version of this problem was
mentioned by Kannan et al. [12] in their original work on implicit representations, however, no formulation of
the problem is attempted. At most, the authors suggest that the addition or deletion of a vertex or an edge
should require only a “quick” update of the labels in order to obtain an implicit representation of the new graph.
To date, the paper of Brodal and Fagerberg [9] stands as the only publication on this dynamic problem. Their
work handles the addition and deletion of single edges and vertices in graphs of bounded arboricity, providing
the bounded arboricity is maintained. As a continuation of their work, there is a need for the development of
dynamic implicit adjacency labelling schemes for more classes of graphs as well as a refinement of what is meant
by a “quick” update of the labels of the vertices. Moreover, algorithms developed for dynamic implicit adjacency
labelling schemes should incorporate some form of error detection; that is, the algorithms should recognize when
the modified graph is no longer a member of the family under consideration. For example, Brodal and Fagerberg
present an algorithm which handles an unspecified arboricity bound, however, the focus of the paper is on a
more efficient algorithm which must be provided with a fixed bound on the arboricity of the graph that is being
modified.

By further studying dynamic implicit adjacency labelling schemes we hope to expand the applicability of
implicit labelling schemes to real world problems. In particular, implicit labelling schemes have direct applications
to the efficiency of XML (Extensible Markup Language) search engines [13]. Web documents conforming to the
XML standard can be viewed as a tree with nested nodes corresponding to individual words, phrases, or sections
of the document. Using implicit informative labelling schemes, an XML search engine can assign labels to each
of these nodes allowing relationships such as ancestor, parent, and sibling to be determined using only the labels
of the nodes. This allows the search engine to answer web queries without repeatedly accessing the file itself.
Moreover, by employing dynamic schemes the search engine will no longer have to recalculate the labels of
the nodes when a small change is made to the XML document. Applications of implicit labelling schemes to



communication networks have also been discussed in [13], [17], and [23].

2 Dynamic Implicit Adjacency Labelling Schemes
We begin by defining a dynamic implicit f-labelling scheme.

Definition 2.1 Consider a function f(S,G) defined on sets of vertices S of fized but arbitrary finite graphs G.
A dynamic implicit f-labelling scheme of a family G of finite graphs is a tuple (M, D, A, C) defined as follows.

e (M, D) is an implicit f-labelling scheme of G.
e A is a set of functions which map graphs in G to other graphs.

e C is a polynomial time relabelling algorithm whose input is a pair (5, Lg), whered € A, G € G, and L¢ is a
(D, f)-correct labelling of Vi from L (defined shortly); in particular, providing 6(G) € G, C assigns a new
(D, f)-correct labelling to V) based upon the labelling La of G. Note that C' need not be deterministic;
accordingly, let Cs,r.. be the set of labellings of V) which can be assigned by C' on input (6, Lg). For each
G in G we define the family La of (D, f)-correct labellings of Vi by Lg € Lg if and only if Lg € Mg or
there exists G* in G, 6 in A, and Lg- in Lg- such that 6(G*) = G and Lg € Cs, 1. -

Moreover, we say that the dynamic implicit f-labelling scheme is error-detecting if, given any input (5, Lg), C is
able to determine when 0(G) & G.

In aless formal context, C' can be considered as the composition of algorithms required by the graph operations
found in A. For instance, if A permitted the addition or deletion of any edge from a graph, we might consider
C to be comprised of two algorithms, INSERTEDGE(e,L) and DELETEEDGE(e,L¢), which use a labelling Lg
to relabel G + e and G — e, respectively. Again, note that the algorithms INSERTEDGE and DELETEEDGE are
provided input about the graph only in the form of vertex labels; in turn, these algorithms output labellings
of the vertices of G + e and G — e, respectively. Moreover, in practice we are not interested in maintaining
a labelling for every graph in the family, rather, we use the labelling of a graph to determine a labelling of a
slightly modified graph, discarding the labelling of the original graph in the process. In this sense we can omit the
labelling from the input of the algorithms as these algorithms are directly modifying the labelling of the graph
under consideration; that is, the above algorithms might be presented as INSERTEDGE(e) and DELETEEDGE(e).

We have seen how an implicit f-labelling scheme can be created for any function f when we allow sufficiently
large labels; similarly, sufficiently weak choices of M, A, and C will result in a dynamic implicit f-labelling
scheme for any function f. As a result, there are several ways in which one might judge the quality of a dynamic
implicit f-labelling scheme. First of all, we might judge a dynamic scheme according to the time taken by C
on input (4, Lg) relative to the time taken to label 0(G) by the fastest labelling algorithm of a non-dynamic
implicit f-labelling scheme. Specifically, the purpose of the dynamic scheme is to provide quick updates of the
labels, thereby, if there is a non-dynamic scheme which can generate the labels in equal or better time, even from
scratch, then there is no advantage gained by using the dynamic scheme. Secondly, since a dynamic implicit
f-labelling scheme includes an implicit f-labelling scheme, we might also judge a dynamic scheme according to
the size of the labels generated by M and C'. For example, consider that the implicit adjacency labelling scheme
developed using adjacency matrices can be further developed into a dynamic implicit adjacency labelling scheme.
Since this dynamic scheme uses vertex labels of size O(n), any other dynamic implicit adjacency labelling scheme
using labels of size Q(n) would only be advantageous if it permitted faster updates of the labels than can be
achieved using the dynamic scheme developed from adjacency matrices. Finally, we might judge a dynamic
scheme according to the operations contained in A. Preferably, A will contain the addition and deletion of a
single edge or vertex (along with the incident edges with this vertex) which are four fundamental dynamic graph
operations. Moreover, using the operations found in A, we would like to be able to transform any member of
G into any other member of G without escaping the class G; however, this may require more than these four
fundamental dynamic graph operations.

It should be noted that if G is a hereditary graph class then these fundamental graph operations are sufficient
to transform any member of G into any other member of G without escaping the class G. For each member G
of G there is a sequence Sg = {Go = 0,G1,...,G|vy|-1,G|v,| = G} of members of G for which G, = G —v;,
where v; is a vertex of G; and 1 < i < |Vg|. Thereby, given G, G?) € G we can construct G from G
by using the vertex deleting algorithm to transform G(!) into () via the members of S5, then using the vertex
adding algorithm to transform § into G*) via the members of Sg).



Continuing with the idea of transforming one graph into another, there is a connection between error-detecting
dynamic implicit f labelling schemes and the problem of recognizing whether a graph belongs to a certain family.
Consider a family of graphs G for which there exists a dynamic implicit f-labelling scheme (M, D, A, C) and the
recognition problem is polynomial on G. If f allows us to determine the structure of a graph G from any labelling
in L¢, then on any input (§, Lg) C can use f to determine the structure of G and, hence, the structure of 6(G),
in polynomial time. In turn, C' can apply a polynomial time recognition algorithm to determine if §(G) is in
G; thereby, the dynamic implicit f-labelling scheme is error-detecting. For example, consider the family of line
graphs which will be explored further in Section 3. Since the recognition problem has been shown polynomial for
the class of line graphs [14] [19], any dynamic implicit adjacency labelling scheme for line graphs can be made
error-detecting.

On the other hand, it is more complicated to develop recognition from error-detection. Consider a family
of graphs G for which there exists an error-detecting dynamic implicit f-labelling scheme (M,D,A,C). If
for any graph G in G there exists a graph G* in G which can determine in polynomial time a polynomial
length sequence S¢ = {Gy = G*,G4,...,Gr_1,G; = G} of members of G and a polynomial length sequence
GA = {80,01,...,0r_1} of members of A such that §;(G;) = Gy,1, for 0 < i < k—1 and there is a polynomial time
function for determining a labelling of G* which belongs to Lg~, then the recognition problem is polynomial on
G. The reason being that we can determine Sg, G®, and the labelling for G* in polynomial time, then transform
the labelling of G* into a labelling for G,_; using a polynomial number of calls of the polynomial time algorithm
C, namely {Co,C1,...,Ck_1}, where Cy = C(do, Lg+) and C; = C(8;,Ci—1), for 1 <1i < k—1, and finally resolve
the membership of G in G according to the action of C' when it attempts to determine a labelling of G from the
labelling of Gj,_1. If G € G then C will determine a labelling of G, otherwise, it will output that G € G since it
is an error-detecting algorithm. For example, consider a hereditary graph class with an error-detecting dynamic
implicit f-labelling scheme whose graph operation set includes the addition of vertices (along with incident edges).
For each member G of the class there is a sequence Sg = {Go =0, G, ... ,Glvg|-1,G v = G} of members of G
for which G;_; = G; — v;, where v; is a vertex of G; and 1 < i < |Vz|. We have a polynomial time labelling for
(0 and a means to achieve G|y, |y from () using operations in A, thereby, the recognition problem is polynomial
for the hereditary class.

Given that the algorithms which change the labellings are functions of the change and the labelling only, the
vertex labels used in dynamic implicit labelling schemes must contain sufficient information to allow algorithms
to update the labellings. In general, the labels used in implicit adjacency labelling schemes do not contain enough
information to be used in dynamic implicit adjacency labelling schemes, however, the implicit adjacency labelling
schemes of some classes are inherently dynamic.

For instance, consider the following implicit adjacency labelling scheme for trees. Let T be a tree on n vertices.
We arbitrarily assign to T" a root and give each vertex a unique prelabel from {1,...,n}. We now obtain an implicit
adjacency labelling scheme for T' by giving each vertex v of T the label (prelabel(v), prelabel(parent(v))). The
adjacency of two vertices v; and vs can be determined using only their labels by a polynomial time algorithm D
which checks if prelabel(v;) = prelabel(parent(vs2)) or prelabel(vs) = prelabel(parent(vy)). Moreover, each label
is of size O(logn), thus making the scheme space-optimal and balanced as the number of trees on n vertices is
20(nlogn) If o new vertex is added to a tree such that the resulting graph is still a tree, then its only neighbour
is its parent. Therefore, we can give it the label (prelabel, prelabel of parent) so that the labelling is still
(D, adjacency)-correct on the new graph. If a vertex is deleted such that the resulting graph is still a tree, then
the vertex must have been a pendant vertex. Therefore, it was not the parent of any other vertex and so deleting
the vertex keeps the labelling (D,adjacency)-correct on the remaining tree.

Although the maintenance of this space-optimal implicit adjacency labelling scheme for trees seems straight-
forward, there are some underlying shortcomings. One such problem is that when a vertex is added and given
a prelabel there must be some way of determining an acceptably small unused prelabel to assign to it. An-
other such problem is that it is possible to delete too many vertices causing the remaining prelabels to ruin the
space-optimality of the labelling. In the work on line graphs presented in Section 3 we make assumptions which
eliminate these problems.

As mentioned, the only work on dynamic implicit adjacency labelling schemes is by Brodal and Fagerberg
[9] who develop such schemes for graphs of bounded arboricity. Fundamental to their work is the relationship
between arboricity and outdegree orientations where, in particular, a graph with arboricity ¢ has an outdegree-c
orientation. Their algorithm keeps an outneighbourhood list for each vertex v, denoted by adj[v], however, it
also includes a mechanism to handle outdegree lists which get too big. On a graph with n vertices and arboricity
bounded by ¢ Brodal and Fagerberg’s representation supports adjacency testing in O(c) time, edge insertions in
O(1) time, and edge deletions in O(c + logn) time. We present their algorithms for handling the addition and
deletion of a single edge from a graph of bounded arboricity ¢ in Figure 1. Unfortunately, these algorithms are
built on the assumption that the changes to the graph do not cause its arboricity to exceed ¢. In their article,



Brodal and Fagerberg do describe modified algorithms which can handle unspecified arboricities, however, this
results in increased time bounds.

INSERT((u, v))
1 adjfu] «+ adju] U {v}
2 if |adj[u]| = 4c+1
then S + {u}
while S # 0
do w < Pop(S)
for = € adj[w]
do adj[z] + adj[z] U {w}
if |adjz]| = 4c+1
then Push(S, )
adjlw] < 0

w

O © 00~ O Uk

1

DELETE((u, v))
1 adj[u] < adj[u] \ {v}
2 adj[v] « adj[v] \ {u}

Figure 1: Algorithms for dynamic implicit representations of graphs of bounded arboricity c.

3 Error-Detecting Dynamic Implicit Adjacency Labelling Schemes
for Line Graphs

In the remainder of this work we consider error-detecting dynamic implicit adjacency labelling schemes for line
graphs which are defined as follows [6].

Definition 3.1 Given a graph G = (V, E), its line graph is the graph L(G) = (E,E") for which {u,v} € E" if
and only if u and v are incident edges in G.

We observe that by adding isolated vertices we can obtain infinitely many graphs which give rise to the same line
graph. As such, if a graph G has no isolated vertices we will refer to it as a base of L(G). Just as an unlabelled
graph “generates” an unlabelled line graph, we can say that an edge labelled graph “generates” a vertex labelled
line graph. As such, the term base will also be used to refer to an edge labelled graph, with no isolated vertices,
which “generates” a particular vertex labelled line graph.

In [24] Whitney has shown that every connected unlabelled line graph has a unique base, up to isomorphism,
except for K3 which has two bases, namely, K3 and K; 3. Our work on line graphs requires a concept similar
to that of isomorphism, but involving edge labellings. Given an edge labelling ¢ of a graph, for each edge label
a let PY denote the partition of the labels incident with « that is determined by endpoints of a. We define
two bases of a vertex labelled line graph L(G), having edge labellings 1)1 and s, to be partition isomorphic if
PY1 = P¥2_for all edge labels a. For example, consider the two bases shown in Figure 2(d); in one of these bases
the partition corresponding to a is {{b}, {c}}, while in the other it is {{b,c},#}. Therefore, these bases are not
partition isomorphic. When we consider the above theorem of Whitney in the context of labelled line graphs we
arrive at the following theorem which will be useful when we add a vertex to a line graph.

Theorem 3.2 FEvery vertex labelled connected line graph, except for K3 and the three line graphs shown in Figure
2(a), has a unique (edge labelled) base, up to partition isomorphism. For each of the four exceptions, a vertex
labelled graph has two bases that are not partition isomorphic.

Proof. Consider a vertex labelled connected line graph L(G) which has two (edge labelled) bases, G; and G5,
that are not partition isomorphic. Fundamental to this proof is the fact that the edge incidences in GG; and G2
are identical; that is, two edges are incident in G if and only if they are incident in Gs.

If G, is not isomorphic to G2, then L(G) is K5. Therefore, it remains only to consider when GG; and G2 are
isomorphic but not partition isomorphic. Let the labellings of GG; and G2 be v; and 1)y, respectively, and let a
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graph which are not partition isomorphic. graph which are not partition isomorphic.
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(e) Two edge labelled bases of a vertex labelled (f) Two edge labelled bases of a vertex labelled
graph which are not partition isomorphic. graph which are not partition isomorphic.

Figure 2: Partition isomorphism of graphs.

be a label for which P¥1 # P¥2. Moreover, let PY* = {Qy,, Ry, } and P¥2 = {Qy,, Ry, }. Trivially, observe that
|Qu, | + |Ry,| > 2, otherwise P¥1 = P2,

Now consider when one of |Quy,|, |Ry.|, |Qusl, OF |Ry,| is at least three; without loss of generality, let
b,c,d € Qy,. We first consider the case when {b,c,d} C Qy, or {b,c,d} C Ry,; without loss of generality,
assume the former. Since PY' # PY2, there must be a label e in @y, but not in Qy,, or vice versa; again,
without loss of generality, assume the former. Given that e € Qy,, e is incident with each of b, ¢, and d in both
G and G2. Yet e € Ry,, so G must contain each of the three cycles of edges abe, ace, and ade, which is not
possible unless b = ¢ = d. Next, consider the case when {b,c,d} Z Qy, and {b,c,d} € Ry,; without loss of
generality, assume that {b,c} C Qy, and {d} C Ry,. A similar argument gives that G> must contain both of the
three cycles of edges abd and acd, which is not possible unless b = c.

Having shown that neither Qy,, Ry,, Qy., nor Ry, can contain three edges, we observe that the only way
PY1 £ PY2 s if, without loss of generality, there exist edges b and ¢ such that {b,c} = Qy,, b € Qy,, and ¢ € Ry,.
Since b and c are adjacent in (1, they are also adjacent in G5; as such, the edges a, b, and ¢ form a K; 3 in G
and a K3 in Gs.

Since the edges a, b, and c form a K3 in G2, each edge in Ry, must be incident with exactly one of b or c. If
Ry, contains two edges, f and h, both of which are, without loss of generality, in @y,, then both of these edges
are incident with b. As such, GG; contains both of the cycles of edge abf and abh, which is not possible unless
f=h.

Finally, without loss of generality, consider if there exists some edge d incident with b but not a. Since b € Qy,
and G, contains the three cycle of edges abc, d is incident with ¢. Therefore, G; contains the three cycle of edges
bdc.

Given the constraints we have developed, G must be isomorphic to one of the graphs pictured in Figure 2(b).
Therefore, L(G) must be isomorphic to one of the graphs pictured in Figure 2(a). O

In [15], Muller presents the following balanced space-optimal implicit adjacency labelling scheme for the class
of line graphs. Consider a line graph L(G), with base graph G. To each vertex in G we assign a unique prelabel
from {1,...,|Vg|}. The implicit adjacency labelling scheme labels each vertex v of L(G) as (e1, e2), where e;
and e are the prelabels of the endpoints of the edge of G' corresponding to v. The evaluation algorithm can
determine the adjacency of two vertices in polynomial time using only their labels by checking if the labels share
a common entry, which happens if and only if the corresponding edges are incident in the base. Since G has



no isolated vertices, |Va| < 2|Eg| = 2|V(g)l, so each label is of size O(log|Va|) = O(log [VL(g)l). Since there
are 20(n10g7) ine graphs on n vertices, this labelling scheme is space-optimal and balanced. Presumably, the
labelling algorithm, M, knows the structure of the base graph as well as the correspondence between edges in
the base and vertices in the line graph; otherwise, it can use an algorithm like those found in [14] or [19]. An

example of a line graph with such an implicit adjacency labelling is given in Figure 3.

(1,3)
1 2 (1,2) (2,3)
1 3 (1.4) (3.4)
(a) G. (b) Labels of L(G).

Figure 3: An implicit adjacency labelling of a line graph.

Given aline graph L(G), our dynamic scheme will assign each vertex a unique prelabel pre from {1,...,[Vy(a)}-
Having assigned this prelabelling we select a edge labelled base G of the prelabelled graph from which we will
derive the remainder of our labelling. Like the implicit adjacency labelling scheme of Muller [15], we assign
each vertex of G a unique prelabel from {1,...,|Vg|}, however, we label each vertex of L(G) with the following
information.

pre.epg,pre.ep;: The edge of G corresponding to pre has two endpoints; pre.epy and pre.ep; are the prelabels
of these endpoints.

pre.nng, pre.nny: The values of |N(pre.epg)| and |N(pre.ep;)| (in G), respectively, where N(z) denotes the
open neighbourhood of the vertex .

pre.nzy, pre.nz;: Using the vertex labels we maintain a circular (singly) linked list of the edges incident with
each vertex of G. With pre as the present edge, pre.nz;, i € {0,1}, is the prelabel of the next edge in the
circular linked list about pre.ep;. These circular linked lists allow the information about the neighbourhood
of a vertex in the line graph to be distributed over the labels of the neighbours themselves. This information
is sufficient to allow both depth first and breadth first searches [6] on both G and L(G).

In particular, the label of a vertex with prelabel pre is (pre: pre.epg; pre.ep;; pre.nng; pre.nny; pre.nxy; pre.n; ).
As an example of this labelling consider the line graph presented in Figure 4. Observe that, the circular linked lists
about the endpoints of an edge e of G uniquely partition the edges of G that are incident with e. Consequently,
for any given graph labelling produced in our dynamic scheme, there is a unique edge labelled graph, up to
partition isomorphism, from which our labelling is derived; in this sense we will refer to edge labelled base G as
the core of our labelled graph. To compare, the core of a line graph labelled in our dynamic scheme is unique,
up to partition isomorphism; however, an edge labelled base determined from the prelabelling of the vertices of
the line graph may not be.

As with Muller’s implicit adjacency labelling scheme for line graphs presented previously, we presume that
the labelling algorithm, M, knows the structure of a base graph as well as the correspondence between edges in
this base and vertices in the line graph; again, if this is not known then we may use an algorithm like those found
in [14] or [19]. As well, given the labels of two vertices v; and vs of the line graph an evaluation algorithm can
determine their adjacency in polynomial time by checking if {vi.epg,v1 .ep; } N {vs .epp,v2.ep; } = 0.

The success of our dynamic scheme lies in the ability to change the labelling of a graph to reflect a new core.
In particular, if a vertex prelabelled line graph has a connected component with two edge labelled bases that
are not, partition isomorphic, it is possible that the selection of one of these bases as the core will permit certain
dynamic operations while the other will not. For instance, consider the two bases depicted in Figure 2(d). If we
wish to add a new vertex v to the corresponding line graph such that its neighbours are a and b, the equivalent
operation in the base is the addition of an edge which is incident only with the edges labelled a and b. This
can be done using one of the bases, but not the other. Again, we note that in any implicit informative labelling
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Figure 4: An error-detecting space-optimal dynamic implicit adjacency labelling of a line graph.

scheme we have access to the vertex labels only; as such, the core is an artificial construct which help us interpret
and manipulate the labels. Consequently, when we say that we change the core of a line graph we ultimately
mean that we change the labelling of the graph so as to reflect a new core.

Even more critical to the success of our dynamic scheme is the inclusion of sufficient information in the labels
to deduce, at least partially, the structure of the core. Upon modification of the line graph, our knowledge of
the original core will allow us to determine the core of the new line graph and, in turn, the labels of the new
line graph. To illustrate this need for knowledge about the core, consider the line graphs presented in Figure
5. Even though the line graph 0(L(G)) is formed by deleting a single edge from L(G), the change in the core,
from G to G’ is substantial; in particular, the required change affects much more than just the edges of the core
which correspond to the endpoints of the deleted edge in the line graph. If the label of a vertex v were to use
the labels of the non-dynamic scheme of Muller [15], then it would be impossible to deduce the neighbourhood
of v without checking the label of every vertex w in the graph to see if the edges of the base corresponding to u
and v share a common endpoint. For simplicity we will hereafter refer to §(L(G)) as L(G"), the line graph with
base G', however, we implore the reader to recognize that it is the graph L(G) to which the operation ¢ is being
applied; we are not applying 0 to G to get G’, rather, G’ is the resulting base graph of L(G") = 0(L(G)).

() G'. (d) L(G") = 6(L(G)).

Figure 5: Deleting an edge from a line graph.



Counsider a line graph which, through some series of modifications, now contains exactly n vertices. If [(string)
is used to denote the size of the representation of string then the size of a label is

O(l(pre) + l(pre.epg) + l(pre.ep;) + l(pre.nng)
+ l(pre.nny ) + l(pre.nzy) + l(pre.nz;))
= O(l(pre) + l(pre.epg) + l(pre.nng) + l(pre.nzyp)).

In an earlier discussion on trees we have observed that if the deletion of vertices is permitted, it may result in the
prelabels of the remaining vertices not being space-optimal. The same is true for any labelling in which prelabels
are assigned. To this effect, let the largest prelabel of a vertex in the line graph be L and let the largest prelabel
of a vertex in the core be B; thereby, I(pre),l(pre.nzy) € O(log L) and I(pre.epy) € O(log B). Additionally, since
the core has no isolated vertices, |Va| < 2|Eg| = 2|V ()| = 2n, so [(pre.nng) € O(logn) and the size of a vertex
label is O(log L + log B + logn). Providing L, B € O(n), the size of a vertex label reduces to O(logn), making
the vertex labels space-optimal. We will assume that L, B € O(n) hereafter.

In the remainder of this work we discuss the graph operations included in our dynamic implicit adjacency
labelling scheme for line graphs. In particular, the permitted operations are the deletion of a vertex (along with
its incident edges), the addition of a vertex (along with some incident edges), the deletion of an edge, and the
addition of an edge. Since the class of line graphs is hereditary, these four graph operations are sufficient to
transform any line graph into any other line graph, without escaping the class of line graphs. It should be noted
that we will only present algorithms to deal with the deletion of a vertex in the body of this work; the algorithms
for the other operations will be contained in an appendix due to their length.

3.1 Deleting a vertex from the line graph

One change we can make to a line graph is to delete a vertex along with its incident edges. The resulting change
in the core is the deletion of the corresponding edge as depicted in Figure 6. The algorithm DELETEVERTEX
presented in Figure 7 can be used to maintain the vertex labels in this situation. Letting pre be the prelabel
of the vertex of the line graph to be deleted, DELETEVERTEX traverses the circular linked lists at each of the
endpoints of the edge corresponding to pre so as to decrement by one the the number of edges incident with these
endpoints, then removes pre from the circular linked lists of its endpoints and frees the prelabel pre for future
use. DELETEVERTEX runs in O(|N(pre)|) time, which is O(1) per edge deleted from the line graph. We observe
that any such algorithm is error-detecting as any induced subgraph of a line graph is a line graph.

(a) A vertex is deleted from (or added to) L(G) (b) The corresponding change in G

Figure 6: A vertex is deleted from (or added to) the line graph.

DELETEVERTEX:
Input: pre, the prelabel of a vertex to be deleted from the line graph.

Output: None, however, DELETEVERTEX changes the labels of the present graph in order to produce a labelling
of the modified graph.

1: The counter 7 is used for the endpoints of pre in the core. We must process both of these endpoints.

2,3: If pre.ep; is incident only with pre, then it will become an isolated vertex once pre is deleted. The function
FREECORE frees the prelabel of pre.ep; for future use.

4-8: If pre.ep; is incident with more than just pre, then we must update the information about pre.ep; contained
at each of these edges. We use the circular linked list structure to do this. The variable end tells us which



DELETEVERTEX (pre)
1 fori+ Otoldo
2 if pre.nn; = 1 then
3 FREECORE(pre.ep;)
4 else J < GETINCIDENTNEIGHBORS(pre, i)
5 (last,j) + Popr(I)
6 last.nz; < pre.nz;
7 PusH(I, (last, 7))
8 DECREMENTNN(T)
9  FREELINE(pre)

FREECORE(corepre)
1 free corepre for future use as a prelabel of a vertex in the core

GETINCIDENTNEIGHBOURS(start, endpt)
1 S+« N
2 u ¢+ start

3  end < endpt

4 PusH(S, (u, end))

5 while u.nze,q # start do

6 U 4 U.NTepnd

7 end < FINDEND(u, start.ependpt)

8 PusH(S, (u, end))

9 return S

FINDEND(edge, vert)
1 if edge.epyp = vert then
2 num < 0
3 else num + 1
4 return num

DECREMENTNN(S)
1  while S # NiL do
2 (u,end) < PoP(S)
3 U.NNend < UNNepg —1

FREELINE(linepre)
1 free linepre for future use as a prelabel of a vertex in the line graph

Figure 7: The algorithm DELETEVERTEX associated with the deletion of a vertex from a line graph. FINDEND
is a function called by DELETEVERTEX; it has been isolated as it is also called by the algorithms associated with
the other graph operations.

endpoint of the present edge in the circular linked list is pre.ep; and, as such, end has value 0 or 1. This
value is determined by FINDEND, a function which will also be used in our other algorithms.

9: For each edge u in the circular linked list at pre.ep; we must decrement the number of edges incident with
U.€Peng Dy One.

10: At this point u is the edge preceding pre in the circular linked list for pre.ep;. We eliminate pre from the
circular linked list of pre.ep; by letting u.nz.,q be pre.nx;.

11: Once the circular linked list has been processed we delete pre using FREELINE which frees its prelabel for
future use.

FinDEND:
Input: edge and vert. We wish to know which endpoint of edge is vert.
Output: num, the endpoint of edge which is vert.

1-4: If the “0” endpoint of edge is vert we return 0, otherwise, the “1” endpoint of edge is vert so we return 1.
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3.2 Adding a vertex to the line graph

Adding a vertex, along with its incident edges, to the line graph is the same as adding an edge to the core; this
is depicted in Figure 6. In this situation we use the algorithm ADDVERTEX found in Appendix A in order to
maintain the vertex labels. It should be noted that in adding a vertex with prelabel pre to the line graph we
must specify the set of prelabels of neighbours of pre.

The endpoints of the edge in the core corresponding to pre must not only cover all of the edges of the core
corresponding to the members of N (pre), but, they must be incident only with edges corresponding to vertices in
N (pre). If N(pre) = (), then ADDVERTEX creates two new vertices in the core and puts the edge corresponding
to pre between them. If N(pre) # 0 then we are looking for a set S of vertices in the core for which each of the
following conditions hold.

e 1<|S|<2.
e cach edge of the core corresponding to a vertex of N(pre) has exactly one endpoint in S.
e 1no edge of the core corresponding to a vertex not in N(pre) has an endpoint in S.

We will call such a set valid and illustrate this concept in Figure 6.

To find a valid set, ADDVERTEX relies on a subroutine called FINDVALID. First, FINDVALID selects an edge
of the core, edgey, from N(pre) and chooses endpoint 0 of edgey to be in the valid set. Letting R be the set of
edges in N (pre) not incident on edgey.epy, we observe that if there is another vertex in the valid set then it must
come from an edge in R. We initially set R to N(pre), then use the circular linked list structure at edgeg.epy
to eliminate edges from R. If at any point we find a vertex which does not belong to N(pre) then edgey.epy
cannot belong to the valid set, so we backtrack and try endpoint 1. If endpoint 1 is similarly problematic then we
cannot find a valid set in the core. However, before concluding that the vertex cannot be added to the line graph
we must determine if the graph has another base which is not partition isomorphic; in particular, the algorithm
CHANGECORE is used to change the core of the component containing the vertex corresponding to edgey. If this
component has another base then we must repeat our efforts on edge, using the new core.

Providing that edgey, does not prevent us from finding a valid set, FINDVALID now selects an edge, edge;,
from R and attempts to include endpoint 0 of edge; in the valid set. Letting R; be the set of edges in R not
incident on edge;.epy, we observe that R; must be () in order to have a valid set. We initially set R; to R, then
use the circular linked list structure at edge;.epy to eliminate edges from R;. If at any point we find a vertex
which does not belong to R, or if R; does not finish as (), then edge;.epy cannot belong to the valid set, so we
backtrack just as we did with edgey. In this manner, FINDVALID exhausts all possible combinations of bases and
endpoints in its attempt to find a valid set, where, in particular, backtracking is accomplished by first trying a
new endpoint and then, if necessary, by changing the core.

If a valid set is found then we use the members of the valid set to add the edge corresponding to pre to the
core. If the valid set contains two vertices then these become the endpoints of the edge corresponding to pre; if
it contains only one vertex then ADDVERTEX makes the edge of the core corresponding to pre incident with this
vertex as well as a new vertex which it creates. Regardless of the size of the valid set, ADDVERTEX concludes
by inserting pre into the circular linked lists of its endpoints, then updating the labels of the vertices in these
circular linked lists by incrementing the number of edges incident with these endpoints.

From Theorem 3.2 we see that each component of the line graph has at most two bases which are not
partition isomorphic; moreover, if a component has two bases which are not partition isomorphic then the size
of the component is O(1). Therefore, FINDVALID requires only O(1) backtracks, where each core change takes
O(1) time, so the running time of FINDVALID is dominated by the time taken to traverse the circular linked lists
when eliminating edges from R and R;. Consequently, the running time of FINDVALID is O(|N (pre)|) time and,
as such, ADDVERTEX runs in O(|N(pre)|) time as well.

3.3 Deleting an edge from the line graph

Consider the act of deleting an edge from a line graph as depicted in Figure 8. This is equivalent to “pulling
apart” two incident edges in the core. If there are additional edges incident with w, the vertex of the core at
which these two incident edges were joined, then it becomes increasingly difficult to determine the new core.
Fortunately, there are a finite number of cases to be considered; we enumerate these cases as a corollary of the
theorem that follows.

Theorem 3.3 Let L(G) and L(G') be line graphs where L(G") = L(G) —e, e = {a,b}. Moreover, let the edges of
G corresponding to a and b be {w,x} and {w,y}, respectively. We make the following observations on the graph

G.

11
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(a) An edge is deleted from (or (b) The resulting change in G.
added to) L(G)

Figure 8: An edge is deleted from (or added to) a line graph.

1. The degree of w is at most four.
2. If d = {z,y} is an edge of G, then deg(w) < 3.

3. Let ¢ = {w, z} be an edge of G, where ¢ # a,b. If f = {z,t} is an edge of G, f # c, then either t = x or
t=uy.

4. If d = {z,y} and c = {w, z} are edges of G, where c # a,b, then there can be no edges incident with ¢ other
than a and b.

5. If c={w,z} and f = {z,x} are edges of G, where ¢ # a,b, then deg(z) < 3. Moreover, if deg(x) = 3 then
x is incident with an edge g = {x,p}, where p # w, z,y, such that deg(p) < 2; if deg(p) = 2 then the edge
i = {p,w} belongs to G.

6. Let ¢ = {w,z} be an edge of G, where ¢ # a,b. If there exist distinct edges f = {z,t1}, h = {z,t2}, where
c# f,h, then {t1,t2} = {x,y}. Moreover, deg(z) = deg(y) = 2.

7. If H is a subgraph of G then L(H) — e is a line graph.

Proof. Fundamental to the proofs of each of these observations is the additional observation that the only edge
incidence that changes from G to G' is that of a and b which are incident in G but not in G’. To aid in the
visualization of these proofs the reader is encouraged to consult the diagrams in Table 1. It should be noted
that, although there is a direct correspondence between edges of G and G', the same correspondence cannot be
made between the vertices as it is only the edge incidences which are important, not the specific vertices at which
edges are incident. Consequently, any references to vertices in the following arguments will be in the context of
the graph G.

1. Assume that w is incident with at least five edges in G, say a, b, ¢, i, and j. Now ¢, i, and j must be
incident with both a and b in G’ because they had been so in G. However, in a simple graph, any set of
three edges between two disjoint edges, such as a and b in G’, must also contain two disjoint edges. Without
loss of generality, let these disjoint edges be ¢ and j. This implies ¢ and j were not incident in G, which is
a contradiction, as they were both incident with w.

2. Assume that w is incident with at least four edges in G, say a, b, ¢, and i. Now d must be incident with
both @ and b in G’ because it had been so in G. Yet a and b are disjoint in G', so G’ must contain the path
a,d,b of edges. Similarly, ¢ must be incident with both a and b in G’ because it had been so in G. Yet a
and b are disjoint in G’, so G' must contain the path a, ¢, b of edges. Additionally, ¢ must be disjoint from
d in G' as it had been so in G; thereby, G’ must contain the four cycle a,d, b, ¢ of edges. However, G’ must
contain the four cycle a, d, b, of edges as the arguments made for ¢ can also be made for ¢. Thereby, ¢ =i,
which is a contradiction.

!

3. Using an argument identical to that for the edge d in (2), G’ must contain the path a,c, b of edges. Yet f
must be incident with ¢ in G’ because it had been so in G. Therefore, f is incident with at least one of a
or b in both G' and G. Without loss of generality, let f be incident with a. If ¢ = w, then f = ¢; therefore,
t = x as desired. This scenario is depicted in case E of Table 1.

4. By (2) the only edges incident with ¢ at w (in G) are a and b, so it remains to show that deg(z) = 1.
Assume that there is another edge incident with ¢ at z, namely f = {z,t}. By (3), ¢t € {z,y}, so without
loss of generality let ¢ = x. Using the argument found in (2) we know that G' contains the four cycle
a,d, b, c of edges as shown in case B of Table 1. However, G' must contain the four cycle f,d, b, c of edges
as the arguments made for a can also be made for f. Thereby, f = a, which is a contradiction.

12



5. Consider when deg(z) > 2, that is, there exists some edge g = {x,p} for which p & {w,z} (i.e. g # f,a).
Since p ¢ {w, z}, g is not incident with ¢ in G, nor in G'. Yet g must be incident with both a and f in G’
as it had been so in G, thereby, ¢ must exist in G’ as shown in case F of Table 1. Since g is required to be
a specific edge of G' we get deg(z) < 3. Moreover, from (4) we observe that the edge {z,y} cannot exist in
G, so p # y as desired.

Finally, consider when deg(p) > 1, that is, there exists some edge i = {p, s} for which i # ¢g. Now ¢ must
be incident with g in G’ as it had been so in G. But G’ contains the three cycle g, a, f of edges as depicted
in case F of Table 1, so 7 must be incident with either a or f in G' and, subsequently, in G. If ¢ is incident
with f in G then i # g gives s = z, so i is incident with ¢ and f but not b in G and, subsequently, in G'.
However, i is also incident with g in G’, thereby forcing i = a as can be seen in case F of Table 1, which is
a contradiction. On the other hand, if i is incident with @ in G then i # ¢ gives that s = w as seen in case
J of Table 1. Since ¢ is required to be the specific edge {p,w} we get deg(p) < 2.

6. The first part of this statement follows directly from (3); this in turn gives that deg(x), deg(y) > 2. Without
loss of generality, let f = {z,2} and let h = {z,y}. Now f is incident with @ and h, but not b, in G" as
it had been so in G; similarly, h must be incident with b and f, but not a, in G’ as it had been so in G.
Thereby, G' must contain the path a, f, h,b of edges. As well, ¢ must be incident with each of a, b, f, and
h as it had been so in G, so G' is as depicted in case G of Table 1. Note, in particular, that the edges ¢, f,
and h form a triangle in G'.

Assume that deg(x) > 2, that is, z is incident with some edge | = {z, ¢} for which ¢ & {w, z} (i.e. | #a, f).
Now [ ¢ {w,z} gives that [ is not incident with ¢ in G and, subsequently, in G'. As well, from (4) we
observe that the edge {z,y} cannot exist in G, so ¢ # y which combined with ¢ # z gives that [ is not
incident with h in G and, subsequently, in G'. Since the edges ¢, f, and h form a triangle in G’, [ cannot
be incident with f in G’ as it is incident with neither ¢ nor h in G'. Thereby, [ is not incident with f in G,
which is a contradiction as [ and f are incident in G at z. A similar argument gives that deg(y) < 2.

7. Given that H is a subgraph of G, L(H) is an induced subgraph of L(G). However, L(G') = L(G) — e, so
L(H) — e is an induced subgraph of L(G'). Thereby, L(H) — e is a line graph.

O

Corollary 3.4 Table 1 enumerates all of the possible core graphs, up to symmetry, for which the edge {a,b} can
be deleted from the corresponding line graph to produce a new line graph. For each core G the core of the new
line graph is given by G'.

| Case | G G’
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Table 1: Possible cases for the deletion of an edge from a line graph.

In light of Corollary 3.4 the reader should observe that, unlike the addition of a new vertex, the choice of base
as core of a line graph is irrelevant when it comes to deleting an edge from the line graph. Specifically, given a
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component of a line graph with two bases that are not partition isomorphic, if one base has a pair of incident
edges that lead to one of the configurations presented in Table 1 then so too will these edges in the other base.
In Table 2 we present all such pairs of bases that are not partition isomorphic in which the edge {a,b} is to be
deleted from the line graph, as well as the corresponding case of Table 1 to which each base belongs so that the
reader can confirm that the choice of base is irrelevant.

| Casein Table 1 | Base 1 | Base?2 | Case in Table 1 |

none none

none none

NIV
D0 IY Y

Table 2: Pairs of bases in which the edge {a,b} is to be deleted from the line graph.

Since the circular linked list structure distributes the information about the neighbourhood of a vertex across
its neighbourhood, the vertex labels are sufficient to determine the local structures as depicted in Table 1 in
O(1) time. As such, an algorithm used to update the labels upon the deletion of an edge need only identify the
structure of the core then alter the labels to represent the new core. The algorithm DELETEEDGE presented in
Appendix A does this in O(1) time.

3.4 Adding an edge to the base graph

The act of deleting an edge from a line graph is depicted in Figure 8. Since the process of adding an edge is
exactly the reverse of deleting an edge, as such, Table 1 enumerates all the possibilities. Just as we saw with the
deletion of an edge, the choice of base as core of a line graph is irrelevant when it comes to adding a new edge
to the line graph. Specifically, if a component of a line graph has two bases that are not partition isomorphic,
no pair of non-incident edges in the core will lead to one of the configurations presented in Table 1. A judicious
examination of the bases shown in Figure 2(b) will confirm this.

Again, the labels of the vertices in the line graph are sufficient to determine the local structures as depicted
in Table 1 so the algorithm for updating the labels need only identify the structure of the core, then alter the
labels to represent the new core. Such an algorithm would be similar to that presented for the deletion of an
edge from a line graph and could be designed to run in O(1) time.
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4 Conclusion

Over the last fifteen years the concept of an implicit informative labelling scheme has evolved through the efforts
of several authors, including Muller [15], Kannan et al. [12], Spinrad [22], and Peleg [18]. We define what is
meant by a dynamic implicit f-labelling scheme and present a dynamic scheme for the class of line graphs. In
particular, the graph operations which are permitted in this dynamic scheme for line graphs are the deletion of a
vertex (and its incident edges), the addition of a vertex (and some incident edges), the deletion of an edge, and
the addition of an edge. It is hoped that by studying the dynamic versions of these schemes we will increase the
applicability of implicit informative labelling schemes to their real world problems.

Future research on dynamic implicit informative labelling schemes will reveal dynamic schemes for additional
classes of graphs. It is expected that the circular linked list structure employed herein will also prove to be
useful for these other classes of graphs as it allows the information about the neighbourhood of a vertex to be
distributed over the labels of the neighbours.
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Appendix A

A.1 Adding a vertex to the line graph

ADDVERTEX (N (pre))
1 pre + GETPRELABELLINE()
switch
case |N(pre)| = 0:
NONEIGHBOURS()
case |N(pre)| > 1:
(validy , vpty , valid; , vpt;, good) < FINDVALID(N (pre))
if good =1 then
EsTABLISHEDGEINBASE(validy , vpty, valid; , vpt;)
else error “this is no longer a line graph”

© 00~ O Ui Wi

EsTABLISHEDGEINBASE(edgey, endy, edge; , end;)

1 if edge; = NIL then

2 size <1

3 VALIDSETOFSIZEONE()

4  else size + 2

5 for i<+ 0 to size—1 do

6 pre.ep; < edge;.epeng,

7 pre.nz; < edge; NTend,

8 pre.nn; < valid; nn,py;,

9 edge; NTepd, < pre
10 I < GETINCIDENTNEIGHBORS(pre, i)
11 INCREMENTNN ()
INCREMENTNN(S)

1  while S # NIL do

2 (u,end) + Pop(S)

3 U.NNepd < U-NMepg +1
NoNEIGHBOURS()

1 pre.epy < GETPRELABELCORE()
pre.ep; < GETPRELABELCORE()
pre.nng < 1

pre.nng <1

pre.nxy < pre

pre.nry; — pre

DU W N

VALIDSETOFSIZEONE()
1 pre.ep; < GETPRELABELCORE()
2 pre.nx; < pre
3  prenng 1

FINDVALID(NV)
done < 0
edgey < some member of N
endy < 0
ischangedy < 0
while done = 0 and endy <1 do
(R, done) <~ ELIMINATE(N, edgey, endp)
if done = 1 then
if R = then
edge; < NIL
else done «+ 0
edge; < some member of R

— O © 00 ~JO Utk Wi =

—
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12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

end; < 0
ischanged; < 0
while done = 0 and end; <1 do

(Ry, done) < ELIMINATE(R, edge;, end; )

if done =0 or Ry # () then
done <+ 0
end; < end; +1

if ischanged; = 0 and end; = 2 then
(C,ch) + CHANGECORE(edger )

ischanged; + 1
if ch =1 then
if edgey € C then

(C, ch) < CHANGECORE(edge,)

else end; < 0
if done = 0 then

endy < endy +1

if ischangedy = 0 and endy, = 2 then
(C,ch) + CHANGECORE(edgey)
ischangedy < 1
if ch = 1 then

endy < 0
return (edgey, endy, edge;, end;, done)

ELIMINATE(R», edge, )

1 wal +1
2 u < edge
3 end<+1
4 Ry + Ry — {’LL}
5 while u.nz.ng # edge and val =1 do
6 U < U.NTend
7 end < FINDEND(u, edge.ep;)
8 if u € Ry then
9 Ry + Ry — {u}
10 else val < 0
11 return (Rs, val)
CHANGECORE(a)
1 changed < 0
2  switch
3 case a.nng = 2 and a.nn; = 2:
4 b < a.nxy
5 eb < 1 — FINDEND(b, a.epy)
6 C 4+ a.nx;
7 ec + 1 — FINDEND(c, a.epy)
8 if b.epey = c.epe. then
9 if b.nn., = 2 then
10 SwiTcHK3T0oK13()
11 comp < {a,b,c}
12 changed + 1
13 elseif b.nn., = 3 then
14 if ¢ = b.nz., then
15 d + c.nTe.
16 else d + b.nz,
17 ed < 1 — FINDEND(d, b.epep )
18 if d.nn.q = 1 then
19 SwITCH(a, d)
20 comp + {a,b,c,d}
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21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
20
o1
92
33
54
35
o6
o7
98
29
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78

changed < 1

case (a.nng =3 and a.nn; = 1) or (a.nng =1 and a.nn; = 3):

if a.nny = 3 then
ea =0
else ea =1
b+ a.nx.,
eb < 1 — FINDEND(b, a.epe,)
c 4+ b.nxiep
ec < 1 — FINDEND(c, a.epeq)
if b.nng, = 1 and c.nne. = 1 then
SwiTcHK13ToK3()
comp <+ {a,b,c}
changed + 1
elseif b.nn., = 2 and ¢.nn.. = 2 then
d < b.nwze
ed < 1 — FINDEND(d, b.ep.s)
if d.ep.q = c.ep.. then
SwiTcH(a, d)
comp + {a,b,c,d}
changed + 1

case (a.nng = 3 and a.nn; = 2) or (a.nng =2 and a.nn; = 3):

if a.nny = 3 then
ea =0
else ea =1
b« a.nze
eb < 1 — FINDEND(D, a.epeq)
c+ b.nzi_ep
ec < 1 — FINDEND(c, a.epe,)
f+ anz; g
ef + 1 — FINDEND(f, a.epi_cq)
if f.epesr = b.epep then
if b.nn., =2 and c.nn,. = 1 then
SwiTcH(e, f)
changed + 1
elseif b.nn., = 3 and c.nn.. = 2 then
d = ¢c.nTec
ed < FINDEND(d, c.ep,.)
if d.ep;_.q = b.epep, then
SwitcH(c, f)
comp + {a,b,c,d, f}
changed + 1
elseif f.ep.s = c.ep.. then
if b.nn., =1 and c¢.nn,. = 2 then
SwiTcH(b, f)
comp « {a,b,c, f}
changed + 1
elseif b.nn., = 2 and c.nn.. = 3 then
d = b.nzep
ed < 1 — FINDEND(d, b.ep.s)
if d.epeq = c.epe. then
SwitcH(b, f)
comp < {a,b,c,d, f}
changed < 1
case a.nnyg = 3 and a.nn; = 3:
b <« a.nxy
eb < 1 — FINDEND(D, a.epg)
¢4+ b.nxiep
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79 ec < 1 —FINDEND(c, a.epy)

80 f < a.nx
81 ef «+ 1 — FINDEND(f, a.ep;)
82 h < f.nzi of
83 eh < 1 — FINDEND(h, a.ep;)
84 if f.epey = b.epey and h.epe, = c.epe. then
85 if b.nn., = 2 and c.nn.. = 2 then
86 SwiTcH(c, f)
87 comp < {a,b,c, f,h}
88 changed + 1
89 elseif b.nn., = 3 and c.nn.. = 3 then
90 if f = b.nz,, then
91 d + f.nze
92 else d «+ b.nxep
93 ed < 1 — FINDEND(d, b.epep )
94 if d.ep.g = c.ep.. then
95 SwiTcH(e, f)
96 comp <+ {a,b,c,d, f,h}
97 changed + 1
98 elseif f.ep.s = c.ep.c and h.epep, = b.epep then
99 if b.nng, = 2 and c.nne. = 2 then
100 SWITCH(c, h)
101 comp <+ {a,b,c, f,h}
102 changed + 1
103 elseif b.nn., = 3 and c¢.nn.. = 3 then
104 if h = b.nz., then
105 d < h.nx.p,
106 else d + b.nz,,
107 ed < 1 — FINDEND(d, b.ep.s)
108 if d.ep.q = c.epe. then
109 SwITCH(c, h)
110 comp <+ {a,b,c,d, f,h}
111 changed < 1

112 return (comp, changed)

SwiTcHK3ToK13()

1 FRrREECORE(a.epy
2  FREECORE(a.ep;
3  FREECORE(b.epy
4  FREECORE(b.ep;
5 FREECORE(c.epy
6
7
8

A~ N N
— —

FREECORE(c.ep;
a.epg + GETPRELABELCORE
a.ep; + GETPRELABELCORE
9  b.epy < a.epy
10 b.ep; + GETPRELABELCORE
11 c.epg < a.epy
12 c.ep; + GETPRELABELCORE
13 a.nxy ¢
14  cnzp < b
15 b.nzg < a
16  a.nz; < a
17 bz, < b
18 cnx; ¢
19 a.nng < 3
20 b.nnp < 3
21 c.nng < 3
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22 a.nng +1
23 b.nng; + 1
24 cnng 1
SwiTcHK13T0oK3()
1 FreEeCORE(a.epy)
2 FREECORE(a.ep;)
3  FREECORE(b.epy)
4  FREECORE(b.ep;)
5 FREECORE(c.epy)
6 FREECORE(c.ep;)
7 a.epp + GETPRELABELCORE
8 a.ep; + GETPRELABELCORE
9  b.epy < a.epy
10 b.ep; < GETPRELABELCORE
11 c.epy ¢ a.ep;
12 c.ep; + b.ep;
13 a.nzp < b
14  b.nxg < a
15  b.nx; < ¢
16 cnx; + b
17 a.nx; +c
18 c.nzy <+ a
19 a.nng < 2
20 b.nnp < 2
21 c.nng « 2
22 a.nng <2
23 b.nn; + 2
24 c.nng 2

SwiTCH(eg, e1)

1

= O © 00 ~1O Ut ik W

—

for < 0to1do
for i < 0to 1do
U <= €;
end < i
while u.nz.,q # e; do
U 4 UNTeng
end < FINDEND(u, e;.ep;)
U.NTepd < €1—j
temp < ep
ep < €e;
ey < temp

ADDVERTEX:

Input: N(pre), the set of prelabels of neighbours of a vertex to be added to the line graph.

Output: None, however, ADDVERTEX changes the labels of the present graph in order to produce a labelling of

the modified graph.

1: As the new vertex does not yet have a prelabel, the function GETPRELABELLINE is used to assign one. This

3-9:

4,5:

6,7:

prelabel will be pre.

The new vertex, pre is isolated. Consequently, a new isolated edge corresponding to pre must be added to
the core.

In adding an isolated edge to the core we must assign prelabels to its endpoints. GETPRELABELCORE
determines a prelabel for each new vertex of the core.

As pre is an isolated edge in the core, the number of neighbours of each of the endpoints of pre is one.
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8,9: Since each of the endpoints of pre is incident only with pre, the next edge in the circular linked lists at
these endpoints of is pre.

10-30: The new vertex pre has at least one neighbour; this is depicted in Figure 6 of Section 3. In order to add
the corresponding edge to the core we must determine a valid set for N(pre).

11-13: FINDVALID is the routine used to determine a valid set for N(pre). If good = 0 then no valid set can be
found, so we cannot add pre to the graph. If good # 0 then the valid set can be obtained using the values
validg, vptg, valid; , and vpt; which are returned by FINDVALID. At this point the reader may wish to skip
ahead to the description of FINDVALID.

14-18: Given that there is a valid set, if valid; = NIL then the valid set contains only one vertex ; the variable
size is used to represent the size of the valid set. Since the valid set is of size one we must create a new
vertex in the core for one of the endpoints of pre, namely, pre.ep;. This endpoint is incident only with pre,
therefore, pre.nz; = pre and pre.nn; =1

19: Given that there is a valid set, if it is not of size one then it must be of size two.

20-30: For each vertex in the valid set we set one of the endpoints of pre to be that vertex. Lines 22 and 23
insert, pre into the circular linked list of each vertex in the valid set, while lines 24 through 29 increase by
one the size of the neighbourhoods of each vertex in each of these circular linked lists. Finally, in line 30
we assign the number of neighbours of endpoints of pre. The addition of pre to the core is illustrated in
Figures 9 and 10.

. pre.epg = validp . epopt,

validy .
pre.epy

Figure 9: Having found a valid set of size one (this diagram is in the core).

- pre.epo = validg.epupt,
pre.ep; = validy .epupt,

validy valid;

Figure 10: Having found a valid set of size two (this diagram is in the core).

FINDVALID

Input: N, a set of prelabels for which we must find a valid set. Recall that the members of N can be considered
as vertices in the line graph or as edges in the core.

Output: The five-tuple (edgey, endy, edge; , end;, done) with values as follows.

e If N has a valid set then done will have value 1, otherwise it will have value 0.

e If NV has a valid set then edgey is a member of N and edgep.epenq, is a vertex in the valid set.

e If IV has a valid set of size two then edgey and edge; are distinct members of N, where edge.epend,
and edgey.epenq, are the vertices in the valid set. If the valid set is of size one then edge; = NIL.

1: The variable done is used to indicate if we have found a valid set. Although there are some exceptions, if
done = 1 then we have found a valid set; otherwise, done = 0 and we must continue searching.

2: If N has a valid set then every member of N will have exactly one endpoint in the valid set. As such, we
choose a member of IV, namely edgey, so as to include one of its endpoints in the valid set.
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3: We first try to include the 0' endpoint of edge; edgey.epy, in the valid set. If we later determine that
edgeg.epy cannot be included in any valid set, then we will try to include edgeg.ep;. The value of endy
indicates whether we are considering edgey.epg or edgeg.ep; .

4: In Section 3 we discussed how a component of a line graph can have two bases which are not partition
isomorphic; in particular, for a given set of prelabels, one of the bases may yield a valid set while the other
may not. It may be necessary to change the core of a component in order to find a valid set. The variable
ischangedy is used to indicate if we have attempted to change the core of the component containing edgey.
If ischangedy = 1 then we have previously attempted to change the core; otherwise, ischangedy, = 0 and we
have not tried to change the core. Recall that when we say that a core is changed we ultimately mean that
the labelling of the line graph has been changed so as to reflect the new core.

5-32: As previously mentioned, we continue to look for a valid set providing done = 0 and providing there is at
least one of edgey.epy and edgey.ep; which we have not tried to include in a valid set.

6: Letting R be the subset of edges in IV that are not incident with edgeg.epend,, we observe that if there is
another vertex in the valid set then it must come from an edge in R; in order to determine R, FINDVALID
uses the function ELIMINATE. If the circular liked list at edgeg.epenq, contains an edge which is not in N
then ELIMINATE will set done to 0; otherwise, it will set done to 1 and return R. At this point the reader
may wish to skip ahead to the description of ELIMINATE.

7-25: If done = 1 then the circular liked list at edgep.epeng, did not contain any edges not in N. As such, we
may continue trying to place edgeg.epenq, in the valid set.

8,9: Given that we have not yet found any reason to exclude edgey.epeng, from the valid set, if R # ) then all of
the edge in N are incident with edgeg.epenq,; therefore, {edgeg.epeng, } is a valid set. As such, FINDVALID
sets edgey, the second edge from which we might draw a vertex for the valid set, to NIL, then returns the
appropriate values to ADDVERTEX.

10-25: If R # 0 then there are members of N which are not incident with edgeg.epenqg, so we must include a
second vertex in the valid set.

10: Although ELIMINATE has set done to 1 on line 6, we have not yet found a valid set so we assign done the
value 0.

11-13: As we did with edgey, we choose an edge edge; from R and try to include one of its endpoints in the
valid set. Like edgey, edge; has corresponding variables end; and ischanged; .

14-25: As we did with edgey, we continue to look for a valid set providing done = 0 and providing there is at
least one of edge;.epy and edge;.ep; which we have not tried to include in the valid set. We first check if
{edgep.epena,, edge;.epp} is a valid set, if it is not then we will try {edgey.epend,, edges.eps }.

15: Letting R; be the subset of edges in R that are not incident with edge; .epenq, , we observe that {edgey.epend, , edges .epend, }
is a valid set if and only if Ry = ) and the circular linked list at edge;.epenq, does not contain any edges
which are not in R. To determine R; FINDVALID uses the routine ELIMINATE just as it did to determine
R.

16-25: If done = 1 and Ry = () then {edgeg.epeng,, edges.epeng, } is a valid set so FINDVALID does nothing else
before returning the appropriate values to ADDVERTEX. Otherwise, {edgeg.epend,, edges-epend, } is not a
valid set, so we will need to try another endpoint of edge; or perhaps another base for the core component
containing edge; .

17: If ELIMINATE determined that all of the edges adjacent to edge;.epend, were in R, then it would set done
to 1; however, if Ry # () then we have not found a valid set so we should set done to 0 accordingly.

18: As we have determined that {edgey.epend,, edges.epenqg, } is not a valid set, we try to include a different
endpoint of edge; in the valid set; this is achieved by incrementing end; by one. If end; now has value 1
then return to line 15 and try to include edge;.ep; in the valid set.

19-25: If end; = 2 then we have already tried to include edge;.ep; in the valid set so we must now try changing
the core of the component containing edge;. This is only allowed if the core has not been changed, that is,
if ischanged; = 0.
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20: To change the core of the component containing edge; , FINDVALID relies on a function called CHANGECORE.
C is the set of prelabels of all the vertices in the same component as edge; ; ch is a variable used to represent
whether or not the core was changed. If ch = 1, the core was changed; otherwise, ch = 0 and the core was
not changed.

21: We set, ischanged; to 1 in order to indicate that an attempt was made to change the core of the component
containing edge;. The reader should note the distinction between ch and ischanged;; ischanged; merely
indicates that an attempt was made to change the core, whereas ch indicates if a change was actually made.

22-25: If the core of the component containing edge; was changed there are two possibilities; either C' contains
edgeg or it does not. If it does, then we change the core of the component containing edge; back to its
original state as we do not wish to change the core of the component containing edgey at this time; if it
does not, then we set endy to 0 and repeat the process of trying to include an endpoint of edge; in the
valid set along with edgey.epena, -

26-32: If done = 0 then either the call of ELIMINATE in line 6 found an edge in the circular linked list at
edgeg.epend, Which was not in N or, in choosing an edge edge; from R, neither endpoint of edge; could
be put in a valid set with edgey.epena, regardless of the base used to represent the component containing
edge; . Either way, edgep.epend, cannot belong to a valid set using the present base. This segment of the
algorithm is similar to that involving edge; in lines 17 though 25.

33: FINDVALID returns the values of edgey, endy, edge;, end;, and done to ADDVERTEX.
ELIMINATE

Input: A triple (R, edge, i), where Rs is a set of prelabels from which we will eliminate the edges belonging to
the circular linked list about edge.ep;.

Output: The pair (Rs, val), whose values are as follows.

e If all of the members of the circular linked list about edge.ep; are in Ry then wal = 1; otherwise,
val = 0.

e Providing wal = 1, the output R, is the input Ry less the edges of the circular linked list about
edge.ep;.

1: As mentioned above, the variable wval is used to indicate if any of the members of the circular linked list
about edge.ep; are not in Ro. The default value of val is set to 1 and will be changed to 0 if there is an
edge in the circular linked list that is not in R».

2,3: The variables v and end are placeholders that allow us to traverse the circular linked lists about edge.ep;.
4: Since edge is in the circular linked list about edge.ep; we eliminate it from Ra.

5-10: We proceed through the circular linked list eliminating prelabels from Rs. If an edge in the circular linked
list is found not to be in Ry we set val to be 0, which causes us to break out of the while loop.

11: We return the values of Ry and val to FINDVALID as described above.
CHANGECORE:

Input: A prelabel a. Recall that a can be considered as a vertex in the line graph or as an edge in the core;
in the majority of the description of this algorithm a is considered as an edge in the core. If possible,
CHANGECORE will change the labelling of the line graph such that it corresponds to a new core in which
the component of the core containing a has been changed to another base which is not partition isomorphic.
Observe that we may consider either the core of the component containing a or the component of the core
containing a; the preciseness of each phrasing depends on whether a is considered as a vertex in the line
graph, or as an edge in the core.

Output: The pair (comp, changed), where comp is a set of prelabels and changed is a value, either 0 or 1. The
variable changed will have value 1 and comp will be the set of prelabels belonging to the vertices of the
component containing a if and only if the component of the core containing a is one of the graphs listed in
Theorem 3.2. Again, if possible, CHANGECORE changes the component of the core containing a to another
base which is not partition isomorphic. In particular, CHANGECORE need only modify the labels of the
vertices in the component containing a.
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1: As mentioned, the variable changed is used to indicate if the core has been changed. The default value of
changed is 0 and will be set to 1 when the core is changed.

2-157: In determining if the core can be changed we consider a series of cases based upon the degrees of the
endpoints of a.

3-44: In this case each endpoint of a is incident with exactly one other edge besides a.

4-7: We let b and ¢ be the edges, other than a, incident with a.epy and a.ep;, respectively. The endpoints
b.epep and c.epe. are set to be the endpoints of b and ¢, respectively, which are furthest from a.

8-44: Either b.epep and c.epe. are the same vertex or they are not. If they are not, then the condition a.nny =
a.nn; = 2 guarantees that the component of the core containing @ has an induced P, or Cy; since none of
the bases of the graphs found in Theorem 3.2 (i.e. the graphs in Figure 2(b)) has an induced Py or Cy, the
core cannot be changed.

9-35: If b.nn., = 2 then b.epep is incident only with b and ¢. Thereby, the component of the core containing a
is the K3 shown in Figure 11(a) so we change it to the K3 3 shown in Figure 11(b).

Figure 11: Two bases of the same graph which are not partition isomorphic.

36-44: If b.nn., = 3 then b.ep.y is incident with b, ¢, and another vertex which we will call d. Observe that if
b.nne, > 3 then the core cannot be changed as none of the graphs found in in Figure 2(b) has a vertex of
degree greater than three.

37-40: We ensure that d is distinct from b and ¢, then set d.ep.q to be the endpoint of d that is furthest from b.

41-44: If d.nney = 1 then the core is as shown in Figure 12(a); using the function SWITCH we change the core to
the graph depicted in Figure 12(b). Furthermore, observe that if d.nneg > 1 then the conditions a.nny = 2
and b.nn., = 3 guarantee that the component of the core containing a has an induced P, which prevents
the core from being changed.

Figure 12: Two bases of the same graph which are not partition isomorphic.

45-86: We now consider the case when one endpoint of a is incident with two additional edges besides a, and
the other endpoint is incident with only a itself.

46-48: We set a.epe, to be the endpoint of a with degree three.

49-52: We let b and c be the edges, other than a, that are incident with a.ep.,. Moreover, we let b.ep., and
c.epe. be the endpoints of b and ¢, respectively, that are furthest from a.

53-86 Given that a.nn;.., = 1 and a.nn., = 3, the only way that the core can be changed is if b.nne, = c.nne. =
1 or if b.nney, = c.nng. = 2. Otherwise, the component of the core containing a has an induced Py which
prevents the core from being changed.
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53-79: In this case the core is the K 3 shown in Figure 11(b) so we change it to the K3 shown in Figure 11(a).
80-86: In this case both b.ep., and c.ep.. are incident with another edge besides b and ¢, respectively.

81,82: We let d be the edge, other than b, that is incident with b.ep.,. Moreover, we let d.ep.qs be the endpoint
of d that is furthest from b.

83-86: If d.epeq # c.epe. then the condition that a.nn;_., = 1 guarantees that the component of the core
containing a has an induced Py which prevents the core from being changed. On the other hand, if
d.epeq = c.epec then the core is as shown in Figure 12(b) so we change it to the base shown in Figure 12(a).

87-120: We now consider the case when one endpoint of « is incident with two additional edges besides a, and
the other endpoint is incident with one additional edge besides a.

88-90: We set a.ep, to be the endpoint of a with degree three.

91-94: We let b and ¢ be the edges, other than a, that are incident with a.ep.,. Moreover, we let b.epe; and
c.epe. be the endpoints of b and ¢, respectively, that are furthest from a.

95-96: We let f be the edge, other than a, that is incident with a.ep;..,. Moreover, we let f.ep.s be the endpoint
of f that is furthest from a.

97-120 If neither b.epey = f.epes, nor c.epec = f.epes, then the component of the core containing a has an
induced P, which prevents the core from being changed.

97-108 Given that a.nn., = 3, the only way that the core can be changed is if b.nn., = 2 and c.nne. = 1 or if
b.nney, = 3 and c.nne. = 2. Otherwise, the component of the core containing a has an induced P; which
prevents the core from being changed.

98-101: If b.nnep, = 2 and c.nne. = 1 then there are no additional edges in the graph; the core is as shown in
Figure 13(a) so we change it to the base shown in Figure 13(b).

Figure 13: Two bases of the same graph which are not partition isomorphic.

102-108: In this case both b.ep.; and c.epe. are incident with another edge besides b and ¢, respectively.

103-104: We let d be the edge, other than ¢, that is incident with c.ep... Moreover, we let d.ep;_.q be the
endpoint of d that is furthest from c.

105-108: If d.eps.cq # b.epep then the condition that a.nn., = 3 guarantees that the component of the core
containing @ has an induced P; which prevents the core from being changed. On the other hand, if

d.epj-cq = b.epep then the core is as shown in Figure 14(a) so we change it to the base shown in Figure
14(b).

a C a f
(a) (b)

Figure 14: Two bases of the same graph which are not partition isomorphic.
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109-120: This case is analogous to that found in lines 97 through 108, except that c.ep.. = f.epes not b.ep.y =
f-epef .

121-157: We now consider the case when both endpoints of a are incident with two additional edges besides a.

122-129: We let b and c be the edges, other than a, that are incident with a.epy. Moreover, we let b.ep.;, and
c.epe. be the endpoints of b and ¢, respectively, that are furthest from a. The edges f and h are defined
similarly for a.ep;.

130-157 If b.epep # f.epef OF c.ePec 7 h.epen, and b.epep 7 h.epep, Or c.epec 7# f-epes then the component of the
core containing a has an induced P, or C4 which prevents the core from being changed.

130-143 Given that a.nng = a.nn; = 3, the only way that the core can be changed is if b.nne, = c.nne. = 2
or if b.nnegy, = c.nne. = 3. Otherwise, the component of the core containing a has an induced P which
prevents the core from being changed.

131-134: If b.nne, = c.nne. = 2 then there are no additional edges in the graph; the core is as shown in Figure
14(a) so we change it to the base shown in Figure 14(b).

b c b f

(a) (b)

Figure 15: Two bases of the same graph which are not partition isomorphic.

135-143: In this case both b.ep.; and c.epe. are incident with another edge besides b and ¢, respectively.

135-139: We let d be the edge, other than b and f, that is incident with b.ep.,. Moreover, we let d.ep.q be the
endpoint of d that furthest from b.

140-143: If d.ep;_cq # c.epe. then the component of the core containing a has an induced Py which prevents
the core from being changed. On the other hand, if d.ep;..q = c.epe. then the core is as shown in Figure
16(a) so we change it to the base shown in Figure 16(b).

(a) (b)

Figure 16: Two bases of the same graph which are not partition isomorphic.

144-157: This case is analogous to that found in lines 130 through 143, except that c.ep,. = f.ep.s and
b.epep = h.epep, not b.epey = f.eper and c.epec = h.epep.

158: When CHANGECORE is finished it comp and changed as described in the output section above.
SWITCH:

Input: A pair of prelabels (eg,e1). We will change the labellign of the graph to reflect a new core in which the
edges ep and e; are switched. Recall that both ey and e; can be considered as vertices in the line graph or
as edges in the core.

Output: None, however, we will change the labelling of the graph to reflect a new core in which the edges eq
and e; are switched.
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1-3: We switch the two labels.

4-11: The critical part of SWITCH, we ensure that the circular linked lists about the endpoints of ey and e;
contain the correct information. For each endpoint of each of ey and e; we determine the edge in the
circular linked list at the endpoint which points to the corresponding edge, then replace it with the other.

A.2 Deleting an edge from the line graph

DELETEEDGE(a, b)

1 fori+ 0Otoldo
2 for < 0to1do
3 if a.ep; = b.ep; then
4 ea 1
5 eb <+ j
6 switch
7 case a.nnNg, = 2:
8 CASEAC()
9 case a.nNNg, = 3:
10 if a.nz., = b then
11 c < b.nwe
12 else ¢ < a.nz.,
13 ec < 1 — FINDEND(c, a.ep,)
14 switch
15 case ¢.nNe. = 1
16 CASEBD()
17 case C.NNe. = 2
18 [+ conze
19 ef < 1 — FINDEND(f, c.epec)
20 switch
21 case f.eper = a.ep;_,,
22 switch
23 case f.nng >4
24 error “this is no longer a line graph”
25 case f.nng = 3:
26 if f.nzs = a then
27 g4 A.NT{ cq
28 else g < f.nzes
29 eg < 1 — FINDEND(g,f.epef)
30 if g.nne, =1 then
31 CASEF()
32 else error “this is no longer a line graph”
33 case f.nng = 2:
34 CASEE()
35 case f.eper = b.ep; oy
36 switch
37 case f.nng > 4
38 error “this is no longer a line graph”
39 case f.nng = 3:
40 if f.nz.s = b then
41 g b.nxiep
42 else g < f.nzes
43 eg < 1 — FINDEND(g, f.epes)
44 if g.nngy =1 then
45 CASEFSYMMETRIC()
46 else error “this is no longer a line graph”
47 case f.nng = 2:
48 CASEESYMMETRIC()
49 case f.eper = a.ep,_,, and f.eper = b.ep, .y
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50 error “this is no longer a line graph”
51 case C.NNe. = 3:

52 if a.nnjcq #20r b.nng_¢p # 2 then
53 error “this is no longer a line graph”
54 else f < a.nT . ¢
55 h< b.nxi
56 ef < FINDEND(f, a.ep;_.,)
57 eh <~ FINDEND(h, b.ep,_.;)
58 if f.ep; o4 # c.€pec OF h.ep; .y # c.epec then
59 error “this is no longer a line graph”
60 else CASEG()
61 case C.NNee > 3:
62 error “this is no longer a line graph”
63 case a.nne, = 4:
64 if a.nz., # b then
65 C 4 0.NTe,
66 else ¢ « b.nx,y
67 ec < 1 — FINDEND(c, a.ep,)
68 if a.nxe # b or a.nx.. # ¢ then
69 14 G.NTeq
70 elseif b.nz., # a or b.nzey # ¢ then
71 1 < b.nzey
72 else i + c.nz; o
73 ei < 1 — FINDEND(4, a.epe, )
74 switch
75 case C.NNee > 2 0r 1.0Ng; > 2
76 error “this is no longer a line graph”
77 case c.nn.. = 1 and i.nn. =1
78 if a.nn;.., =1 then
79 CaseH()
80 elseif b.nn; ., =1 then
81 CASEHSYMMETRIC()
82 else error “this is no longer a line graph”
83 case c.nng. = 2 and i.nny = 2
84 [+ cnxe
85 g < 1.NTe;
86 ef «+ 1 — FINDEND(f, c.epe.)
87 eg < FINDEND(g, i.ep.;)
88 if f.epey = g.€pi-eg = a.ep,_,, and f.nn., = 3 then
89 CaseJ()
90 elseif f.ep.r = g.epicg = b.ep,_,, and f.nne = 3 then
91 CASEJSYMMETRIC()
92 else error “this is no longer a line graph”
93 case i.nn.; = 1 and c.nng. = 2:
94 [+ conxe.
95 ef <+ 1 —FINDEND(c, ¢.epec)
96 if f.epes = a.ep,_,, and f.nne = 2 then
97 CasEgl()
98 elseif f.ep.s = b.ep;_ ., and f.nn., =2 then
99 CASEISYMMETRIC()
100 else error “this is no longer a line graph”
101 case i.nng; = 2 and c.nne. = 1:
102 g 1.NTe;
103 eqg < FINDEND(g, i.ep.;)
104 if g.epj.eq = b.ep, ., and g.nn;..,y =2 then
105 CASEISYMMETRIC()
106 elseif g.ep;.¢cy = a.ep, ., and g.nn;_, = 2 then
107 CASEISYMMETRIC()
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108 else error “this is no longer a line graph”

109 case a.nng, > 4
110 error “this is no longer a line graph”
CASEAC()

1  FREECORE(a.ep.,)
FREECORE(b.epep)

a.epeq < GETPRELABELCORE()
b.epep < GETPRELABELCORE()
Q.NTeq — O

b.nze, < b

a.NNeg 1

Q.MM eq & G.NN1_gq

b.nne, < 1

b.nnj ep < b.nng_ep

O © 00~ O Utk Wi

—

(a) G (b) &

Figure 17: Deleting the edge {a, b} from the line graph L(G) (case A of Table 1). The vertices labelled ex in G
are as prescribed in the algorithm DELETEEDGE; the vertices labelled ex in G’ are as prescribed in the algorithm
CAseAC.

(a) G (b) &'

Figure 18: Deleting the edge {a, b} from the line graph L(G) (case C of Table 1). The vertices labelled ex in G
are as prescribed in the algorithm DELETEEDGE; the vertices labelled ex in G’ are as prescribed in the algorithm
CAseAC.

CaseBD()

1 FREECORE(a.ep.,)

FREECORE(b.epep)

FREECORE(c.epe.)
FREECORE(c.epj_cc)
a.epeq < GETPRELABELCORE()
b.epey ¢ GETPRELABELCORE()
C.€Pec < G.€P¢q

~ O U W N
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10
11
12
13
14
15
16
17
18

C.€Pi-ec < b-epeb

4. NLey  C

C.NTee < G

b.nxep < ¢

CNLicc < b

Q.NMNeg — 2
A.NMN g oq 4 QNN cq
b.nnep < 2
b.nni_ep < b.nnq_gp
C.NMge ¢ 2

C.NN e & 2

Figure 19: Deleting the edge {a, b} from the line graph L(G) (case B of Table 1). The vertices labelled ex in G
are as prescribed in the algorithm DELETEEDGE; the vertices labelled ex in G’ are as prescribed in the algorithm
CASEBD.

Figure 20: Deleting the edge {a, b} from the line graph L(G) (case D of Table 1). The vertices labelled ex in G
are as prescribed in the algorithm DELETEEDGE; the vertices labelled ex in G’ are as prescribed in the algorithm
CASEBD.

CaseE()

1

— O © 00~ O Ot Wi

—_

FREECORE(a.€peq)
FREECORE(a-€ps_cq)
FREECORE(b.ep.p)
FREECORE(c.epe.)
FREECORE(c.epj_cc)
FREECORE(f.epey)
FREECORE(f.ep;.f)

a.epeq < GETPRELABELCORE()
a.ep;_,, & GETPRELABELCORE()
b.epey < GETPRELABELCORE()
f.epes < GETPRELABELCORE()
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12 c.epec ¢ G.€peq
13 c.epiec < b.epep
14 f.epicf < a.€pe,
15 b.nze < ¢

16 cnZjiee b

17 cnxe. < a

18  a.nze, «+ f

19 fnz, 4+ c

20 f.nme — f

21 a.nTi.eq < a

22 a.nng <+ 3

23 annie, 1

24 b.nng, < 2

25 b.nngep < b.nnq_ep
26 c.nng. < 3

27 N 2

28  fng 1

29 fonng g3

Figure 21: Deleting the edge {a, b} from the line graph L(G) (case E of Table 1). The vertices labelled ex in G
are as prescribed in the algorithm DELETEEDGE; the vertices labelled ex in G’ are as prescribed in the algorithm
CASEE.

CASEESYMMETRIC()
1 FREECORE(a.ep.,)
2 FREECORE(b.ep.p)
3  FREECORE(b.ep;-cp)
4  FREECORE(c.epe.)
5 FREECORE(c.epj_ec)
6 FREECORE(f.epcf)
7  FREECORE(f.ep;.cf)
8  a.epeq < GETPRELABELCORE()
9 b.epep +— GETPRELABELCORE()
10 b.ep, ., < GETPRELABELCORE()
11 f.epes < GETPRELABELCORE()
12 c.epec ¢ G.€peq
13 c.epiec < b.epep
14 f.epicf < a.€pe,
15 b.nze <
16 cnTie+ f
17 f.n:vl_ef «—b
18  cnze. ¢ a
19 a.nx, < c
20  f.nme — f
21 b.nwiep < b
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22 a.nng, 2

23 a.nNNieq & NN ¢y
24 b.nng, < 3

25  b.nngep — 1

26 c.nng. + 2

27 c.nNjee 3

28  fng +1

29 fonng g3

Figure 22: Deleting the edge {a,b} from the line graph L(G) (symmetric to case E of Table 1). The vertices
labelled ex in G are as prescribed in the algorithm DELETEEDGE; the vertices labelled ez in G’ are as prescribed
in the algorithm CASEESYMMETRIC.

CASEF()
1 FREECORE(a.ep.,)
2 FREECORE(a.€p;s-cq)
3  FREECORE(b.epep)
4  FREECORE(c.epe.)
5 FREECORE(c.epj_ec)
6 FREECORE(f.epes)
7  FREECORE(f.ep;.cf)
8 FREECORE(g.epeg)
9 FREECORE(g.eps.¢)
10 a.epe, + GETPRELABELCORE()
11 a.ep,;.,, ¢ GETPRELABELCORE()
12 b.epey < GETPRELABELCORE()
13 f.epe < GETPRELABELCORE()
14 c.epec < G.€peq
15 c.epi.ec < b.epep
16 f.epicf < a.€peq
17 g.epeg < a.€pi-ca
18 G-€P1-eg <_f'epef
19 b.nxe < ¢
20 CcnTiee b
21 c.nTee ¢+ a
22 a.nTey — f
23 f.n:vl_ef —c
24 fonmeg g
25 gnx ., f
26 g.nTe —a
27 ANTi.cq < ¢
28  a.nng <+ 3
29 a.nngg, <+ 2
30 b.nng, + 2
31 b.nngiep < b.nnq_ep
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32 c.nne. +— 3
33 cnnge. +— 2
34 f.nneg <2
35 fonng 3
36 g.nngy < 2
37 gnng g, 2

Figure 23: Deleting the edge {a, b} from the line graph L(G) (case F of Table 1). The vertices labelled ex in G
are as prescribed in the algorithm DELETEEDGE; the vertices labelled ex in G are as prescribed in the algorithm
CASEF.

CaseG()

1 FREECORE(a.ep.)
FREECORE(a.€p;-cq)
FREECORE(b.ep.p)
FREECORE(c.epe.)

(
(
(
(

FREECORE(f.epef)
FREECORE(f.ep;.f)
FREECORE(h.epen)
9 FREECORE(h.eps_cpn)

10 a.epes + GETPRELABELCORE()

11 a.ep,;.., ¢ GETPRELABELCORE()

12 b.epep + GETPRELABELCORE()

13 b.ep, . < GETPRELABELCORE()

14  f.epef < GETPRELABELCORE()

15 c.epec ¢ G.€peq

16 c.epy o < bepi-cp

17 f.ep ¢ < G.€peq

18  h.epen < f.epes

19 h.oep,_., < b.epep

20 b.nzep + c

21 cnTiee < h

22 h.nZiep < b

23 C.NTee — a

24 a.nTe, — f

25 fomggc

26 f.nmep < h

27 h.nzep < f

28 a.nTieq ¢+ a

29 b.nziep b

30 a.nng <3

3l annge, <1

32 b.nng < 3

33 b.nnge 1

2
3
4
5 FREECORE(c.epj_ec)
6
7
8
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34
35
36
37
38
39

C.NNee — 3
CNNy_gc < 3
f.nnes < 2
fonng g 3
h.nnep, < 2
honng ep + 3

ea, ec

ef , eh

eb

(b) &

Figure 24: Deleting the edge {a, b} from the line graph L(G) (case G of Table 1). The vertices labelled ex in G
are as prescribed in the algorithm DELETEEDGE; the vertices labelled ex in G’ are as prescribed in the algorithm

CASEG.

CaseH()
1 FREECORE(a.ep.,)
2 FREECORE(a.€ps-cq)
3  FREECORE(b.epep)
4  FREECORE(c.epe.)
5 FREECORE(c.epj_ec)
6 FREECORE(i.epe;)
7  FREECORE(i.eps_e;)
8  a.epey + GETPRELABELCORE()
9 a.ep,.., — GETPRELABELCORE()

10 b.epep + GETPRELABELCORE()

11 c.epec ¢ G.€peq

12 c.epi.ec < b.epep

13 i.epei ¢ G.€P1_eq

14 d.epyei < b.eprep

15 b.onze, <10

16 i.nxie < cC

17 cnZjiee < b

18  cnze. ¢ a

19 a.nx, < c

20 1.nze — a

21 anTi.eq <+ 1

22 a.nNe, + 2

23 a.nMi_g, < 2

24 b.nng, + 3

25 b.nngep < b.nng_ep

26 c.nng. + 2

27 c.nNg_ge ¢+ 3

28 i.nng < 2

29 innge 3

CAsEgl()
1 FREECORE(a.ep.,)
2 FREECORE(a.€ps-cq)
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ea, ec
4

Figure 25: Deleting the edge {a, b} from the line graph L(G) (case H of Table 1). The vertices labelled ex in G
are as prescribed in the algorithm DELETEEDGE; the vertices labelled ex in G’ are as prescribed in the algorithm

CAseH.

3 FREECORE(b.epep)

4  FREECORE(c.epe.)

5 FREECORE(c.epj-cc)

6 FREECORE(f.epcf)

7  FREECORE(f.ep;.es)

8 FREECORE(i.epe;)

9 FREECORE(i.ep;_¢;)
10 a.ep., + GETPRELABELCORE()
11 a.ep,.., ¢ GETPRELABELCORE()
12 b.epep < GETPRELABELCORE()
13 f.epes < GETPRELABELCORE()
14 c.epec ¢ G.€peq
15 c.epiec < b.epep
16 i.epei ¢ G.€P1_eq
17 d.epiei < b.eprep
18  f.epicf < a.€peq
19 b.nzep <0
20 inTie —cC
21 cnTiec b
22 ANT ey — 0
23 i.nTe < a
24 c.nTee — a
25 a.nTey — f
26 f.n:vl_ef —c
27 fonme — f
28  a.nng <+ 3
20 a.nmig, < 2
30 b.nng < 3
3L b.nnjep < b.nng_ep
32 c.nne. +— 3
33 cnnge. +— 3
34 f.nng + 1
35  fonng g3
36 i.nng <+ 2
37 innge 3
CaseJ()

1 FREECORE(a.ep.,)

2 FREECORE(a.€ps-cq)

3  FREECORE(b.epep)

4  FREECORE(c.ep.)
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Figure 26: Deleting the edge {a, b} from the line graph L(G) (case I of Table 1). The vertices labelled ez in G
are as prescribed in the algorithm DELETEEDGE; the vertices labelled ex in G’ are as prescribed in the algorithm
Casgl

5 FREECORE(c.epj_ec)
6 FREECORE(f.epes)
7  FREECORE(f.ep;.cf)
8 FREECORE(g.epeg)
9 FREECORE(g.eps.¢)
10 FREECORE(i.epe;)

11 FREECORE(i.€p;.¢;)

12 a.ep., ¢ GETPRELABELCORE()
13 a.ep,.., ¢ GETPRELABELCORE()
14 b.ep.y < GETPRELABELCORE()
15  f.epes < GETPRELABELCORE()
16 c.epec ¢ G.€Peq

17 c.epiec < b.epep

18  i.epei ¢ G.eP1_eq

19 d.epyei < b.eprep

20  f.epi-ef < G.€Peq

21 g.epeg < f.epes

22 g.epi.eg & 1.€Pei

23 b.nze +— 0

24 InT . —cC

25  C.NTiee < b

26 c.nTee — a

27 a.nTey — f

28 f.n:vl_ef —c

29 inxe g

30 gnr; < a

3l anTieq 1

32 gnzey — f

33 fonmeg g

34 a.nne, + 3

39 a.nNji_e, < 3

36 b.nng, < 3

37 b.nnjiep < b.nnq_ep

38  c.nng. + 3

39 cnnge. 3

40 f.nng 2

41 fonng g+ 3

42 g.nney < 2

43 gnng <3

44 i.nng <+ 3

45  i.nnge <+ 3
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Figure 27: Deleting the edge {a,b} from the line graph L(G) (case J of Table 1). The vertices labelled ez in G
are as prescribed in the algorithm DELETEEDGE; the vertices labelled ex in G’ are as prescribed in the algorithm
Casel.

DELETEEDGE
Input: a and b, the prelabels of endpoints of the edge to be deleted.

Output: None, however, DELETEEDGE changes the labels of the present graph in order to produce a labelling
of the modified graph.

1-5: We must first determine the endpoint in the core at which a and b intersect. In particular, we need to know
the value of ea and eb, for which a.ep., = b.ep.;,. Later we will introduce the variables ec, ef, eg, eh, ei,
ej, to denote particular endpoints of ¢, f, g, h, i, and j, respectively.

6-110: We determine the structure of the core graph around a and b through a series of case statements, these
will allow us to determine which of the cases in Table 1 we must deal with.

7,8: Recall that a.ep., is the endpoint of a at which a intersects with b. If the only edges of the core incident
with a.ep., are a and b themselves then we are dealing with either case A or case C. Both cases are handled
by the function CASEAC.

9-62: There is exactly one additional edge incident with a.ep, other than a and b themselves. We call this edge
¢ and let ec be the value (0 or 1) for which c.epec # a.€peq-

10-12: We determine which edge is ¢ using the circular linked list at a.epeq.-
13: As in the algorithm DELETEVERTEX we use the function FINDEND to determine the value of ec.

15,16: If ¢ is the only edge incident with c.epe., then we are dealing with either case B or case D. Both cases
are handled by the function CASEBD.

17-50: There is exactly one other edge incident with c.ep.. other than c itself. We call this edge f and let ef
be the value for which f.ep.s # c.ep... The possibility exists that the modified graph is not a line graph,
however, if it is then we are dealing with cases E or F, or symmetric variants thereof.

21-34: The edge f is incident with both ¢ and a where, in particular, f.ep.s = a.ep;_.,. Again, the possibility
exists that the modified graph is not a line graph, however, if it is then we are dealing with cases E or F.

23: If there are more than three edges incident with f.epc; then the modified graph is not a line graph.

25-32: There is exactly one other edge incident with f.ep.s other than a and f themselves. We call this edge g
and let eg be the value for which g.ep., # f.epes. The possibility exists that the modified graph is not a
line graph, however, if it is then we are dealing with case F.

30-32: If g is the only edge incident with g.epey, then we are dealing with case F which is handled by the
function CASEF. Otherwise, the modified graph is not a line graph.

33-34: If the only edges incident with f.ep.s are a and f themselves, then we are dealing with case E which is
handled by the function CASEE.
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35-48: The edge f is incident with both ¢ and b where , in particular, f.ep.s = b.ep,_,,. This case is similar to
lines 21 through 34.

49,50: The edge f is incident with ¢ but neither of a nor b; consequently, the modified graph is not a line graph.

51-60: There are exactly two additional edges incident with c.ep.. other than ¢ itself. If the modified graph is
still a line graph, then the original core must have been as pictured in case G of Table 1.

52,53: The base graph is as pictured in case G of Table 1 only if a.nn;.cq = b.nn;p = 2. Otherwise, the
modified graph is not a line graph.

54-57: Providing a.nn . = b.nni..p = 2, we let f be the edge incident with a.ep,_,, other than a and we
let h be the edge incident with b.ep,_,, other than b. Moreover, we let ef and eh be the values for which
f.epef = a.ep;_ ., and h.epe, = b.ep;_ .

58-60: The core is as pictured in case G of Table 1 if and only if f.ep, s = h.ep; ., = c.epe.. Providing this
condition holds it is handled by the function CASEG.

61,62: If there are more than three edges incident with c.ep.. then the modified graph is not a line graph.

63-108: There are exactly two additional edges incident with a.ep., other than a and b themselves. The
possibility exists that the modified graph is not a line graph, however, if it is then we are dealing with cases
H, I, or J, or symmetric variants thereof.

64-73: We denote by ¢ and ¢ the edges incident with a.ep., other than a and b themselves. The circular linked
list at a.epe, is used to determine ¢ and i where, moreover, we denote by ec and ei the values for which

C.€Pec, 1-€Pei F 0.€Peq-

74-76: We require that c.ep.. and i.ep.; be incident with at most one edge other than ¢ and i themselves,
otherwise, the modified graph is not a line graph.

77-82: We first consider when c.ep.. and i.ep.; are incident only with ¢ and 4, respectively. The possibility
exists that the modified graph is not a line graph, however, if it is then we are dealing with case H or a
symmetric variant thereof.

78-82: The modified graph is a line graph if and only if at least one of a.nn; ., = 1 or b.nn; o = 1. If
a.nnq..q = 1, then we are dealing with case H which is handled by the function CASEH. If a.nn;_, > 1,
but b.nn;_, = 1, then the situation is symmetric to case H.

83-92: We now consider when c.ep.. and i.epe; are both incident with exactly one edge in addition to ¢ and ¢,
respectively. The possibility exists that the modified graph is not a line graph, however, if it is then we are
dealing with case J or a symmetric variant thereof.

84-87: We denote by f and g the edges incident with ¢ and i, respectively, other than ¢ and i themselves. The
circular linked lists at c.ep.. and i.ep.; are used to determine f and g where, moreover, we let ef and eg
be the values for which f.ep.; # c.epec and g.epey = i.epe;.

88-92: The modified graph is a line graph if and only if either f.eper = g.€ps.cq = b.€p,_.;, where f.nn, =3, or
f-epef = g.ep1.cg = a.€py_.,, Where f.nng = 3. If the latter holds then we are dealing with Case J which
is handled by the function CASEJ. If the latter does not hold but the former does, then the situation is
symmetric to Case J.

93-100: We now consider when i.ep.; is incident only with i itself and c.epe. is incident with exactly one edge
other than c¢. The possibility exists that the modified graph is not a line graph, however, if it is then we
are dealing with case I or a symmetric variant thereof.

94,95: We denote by f the edge incident with ¢, other than ¢ itself. The circular linked list at c.ep.. is used to
determine f where ef is the value for which f.eper # c.epec.

96-100: The modified graph is a line graph if and only if either f.ep.s = a.ep,_,,, where a.nn;_ ., = 2, or
f-epes = b.epy_p, where b.nn;_, = 2. If the latter holds then we are dealing with Case I which is handled
by the function CASEIL. If the latter does not hold but the former does then the situation is symmetric to
Case 1.
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101-108: We now consider when c.ep.. is incident only with c itself and i.ep.; is incident with exactly one edge
other than 7. This case is similar to that found in lines 93 through 100.

109,110: Finally, we consider when there are exactly at least three additional edges incident with a.ep., other
than a and b themselves. In this case the modified graph is not a line graph.
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