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Abstract 

Breast cancer is the most common cancer among women in the developed 

world. The disease results from the combined effects of genetic, environmental, 

reproductive and lifestyle risk factors. Germline DNA variations identified thus 

far by linkage and genome-wide association studies (GWASs) account for less 

than one-third of variability in breast cancer predisposition, suggesting that more 

variants exist. Furthermore, despite advancements in breast cancer therapies 

guided by tumor-based prognostic and predictive factors, approximately 30% of 

breast cancer patients who receive standard guideline-based therapies experience 

disease recurrence within ten years post diagnosis. Consequently, there is a clear 

need of additional markers for disease risk assessment as well as markers of 

potential prognostic values to better guide treatment modalities. In this thesis, I 

adopted a comprehensive approach utilizing single nucleotide polymorphisms 

(SNPs) and germline copy number aberrations (copy number variations (CNVs) 

and copy neutral-loss of heterozygosities (CN-LOHs)) to identify markers for 

breast cancer susceptibility and disease prognosis. I used a multi-stage association 

study design that included cumulative sample sizes of 2,795 invasive breast 

cancer cases and 4,505 healthy controls of predominantly Caucasian in origin 

selected from Alberta, Canada. I identified a novel breast cancer susceptibility 

locus on chromosome 4q31.22 showing a strong statistical significance for overall 

breast cancer (per allele odds ratio=1.28 and P=1.5 x 10
-7

), adjusted for body 

mass index (BMI). I also independently confirmed one literature reported 

association on chromosome 8q24.21-rs13281615 (BMI adjusted-P<3.1 x 10
-3

) 



 

 

 

with breast cancer prognosis. Since epistatic interactions have been hypothesized 

to capture additional heritability for breast cancer, I extended my studies and 

identified interactions involving two SNPs and an interaction involving four 

SNPs. These interactions were from the single-locus effects with weak statistical 

significance in GWAS and/or candidate-gene studies. Finally, I identified 

germline CNAs as potential prognostic markers for the predominant luminal A 

breast cancers (up to 70% of total cases diagnosed), which recur despite the good 

prognosis. Germline DNA-based markers for disease predisposition and prognosis 

is an area in its infancy and clearly more work is warranted to substantiate and 

extend the reported findings to enable eventual translation of research to clinical 

applications.  
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1. Introduction 

1.1 Breast cancer: Epidemiology 

 Breast cancer is by far the most common cancer among women in the 

developed world. Worldwide in 2008, over 1.38 million women were diagnosed 

with breast cancer and more than 458,000 women died from this disease [1]. 

Likewise, in the European Union, more than 332,000 new breast cancer cases and 

approximately 89,800 deaths from breast cancer were estimated in 2008. In the 

United Kingdom in 2010, more than 49,500 women were diagnosed with breast 

cancer while 11,600 women died from it. Similar statistics were observed in the 

United States in 2012, with more than 200,000 new cases and 39,000 deaths due 

to breast cancer [2]. In Canada, approximately 22,700 new breast cancer cases 

and 5,100 breast cancer related deaths were estimated in 2012 [3].  

While the age-standardized incidence rate for breast cancer has increased 

with the introduction of screening measures, breast cancer survival rates have 

been improving for the last twenty years. The current five-year survival rate for 

breast cancer in England is approximately 85% [1]. The five-year survival rate for 

Canadian women diagnosed with breast cancer during 2004-2006 is estimated as 

88% [3]. Similarly, the five-year relative survival rate for breast cancer in the 

United States is approximately 89% however, caution should be exercised while 

interpreting these data as they are based on past treatment responses and do not 

reflect recent advances in breast cancer therapies [2]. Consequently, identification 

of high-risk populations to initiate preventive and prophylactic measures and 

interventions are needed to realize the aim of cancer prevention and control. 
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Current clinical practice for early-stage breast cancer primarily involves 

excision of localized tumor, followed by adjuvant systemic chemotherapies, 

endocrine therapies, and/or radiotherapies to eliminate residual micro-metastatic 

deposits. While systemic chemotherapies and adjuvant endocrine therapies have 

substantially reduced breast cancer recurrences and deaths, they also have 

associated life-threatening toxicities [4]. It is therefore of clinical importance to 

identify patients who benefit the most from these treatments and to spare those 

who are unlikely to benefit from aggressive therapies. At present, decisions 

regarding adjuvant therapies for breast cancer patients are predominantly guided 

by tumor-based prognostic factors such as axillary lymph nodal status, tumor size, 

tumor histologic grade, lymphatic and vascular invasion, proliferative markers, 

estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth 

factor receptor 2 (HER2) status [5,6]. However, success from treatments guided 

by these prognostic factors is limited, in part, due to the molecular heterogeneity 

of breast cancer. Furthermore, approximately 30% of treated early-stage breast 

cancer patients show disease recurrence within ten years [7,8], indicating need of 

improved prognostic and predictive markers with higher sensitivity and 

specificity. 

1.2 Etiology of breast cancer 

Breast cancer is a complex multifactorial disease, which results from an 

interplay of environmental, reproductive, lifestyle and genetic risk factors. It has 

been estimated that approximately one-third of variations in breast cancer 
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susceptibility
1
 is accounted for by inherited genetic risk factors while 

environmental and lifestyle risk factors contribute to the remaining two-thirds [9-

11]. Age is the strongest risk factor for breast cancer after gender [12]. Breast 

cancer risk increases with age; the older the woman, the greater her risk of 

developing breast cancer. Breast cancer risk is also found to be influenced by 

reproductive factors, such as age at menarche, age at first live birth, parity, 

breastfeeding and age at menopause. Early age at menarche and late age at 

menopause have been reported to be associated with increased risk of breast 

cancer [9,13]. In contrast, childbearing at younger age, higher number of full-term 

pregnancies and breastfeeding are reported to reduce breast cancer risk [9]. 

Studies have shown that higher levels of circulating endogenous hormones, 

such as estrogen and progesterone, increases breast cancer risk by approximately 

2-3 times in postmenopausal women [14]. However, the risk caused by these 

hormones in premenopausal women is not fully understood. Further, women who 

use oral contraceptives for birth control are at 24% greater risk of breast cancer 

than those who do not although the excess risk disappears ten years after stopping 

use [9]. Women receiving hormone replacement therapy were found to be at 66% 

greater risk of breast cancer than those who were not. Breast cancer risk will be 

equivalent to non-users five years after stopping use [9]. Studies have shown that 

family history of breast cancer is a strong risk factor. Women with one first 

degree relative diagnosed with breast cancer have two-fold higher risk of 

developing breast cancer than women with no first degree relatives. The risk 

                                                 

1
 Risk of developing a diseased state. 
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becomes five times higher when two affected first degree relatives are present in 

the family [9,15]. Over-weight and obese postmenopausal women are at 10-20% 

increased risk of breast cancer than those with normal body weight [16]. Further, 

physically active women are at 15-20% reduced risk of breast cancer compared to 

non-active women [17]. The effect of physical activity on risk of breast cancer is 

stronger in postmenopausal than in premenopausal women. Epidemiological 

studies have also shown that women with prior diagnosis of ductal or lobular 

carcinoma in situ (non-invasive forms of breast cancer) are at two-fold higher risk 

of developing invasive breast cancer [18]. Detailed description of aforementioned 

and additional environmental, health and lifestyle risk factors for breast cancer is 

beyond the scope of this thesis however, excellent articles by the Collaborative 

Group on Hormonal Factors in Breast Cancer [9] and by Lichtenstein et al. [11] 

are suggested for interested readers.  

1.3 Genetic basis of breast cancer 

While environmental, health and lifestyle risk factors contribute most to the 

variation in breast cancer susceptibility, multiple twin studies have shown a 

substantial contribution (approximately 30%) of genetic factors to disease 

susceptibility [9,11]. Twin studies help to estimate the relative contributions of 

genetic and environmental factors to diseases or traits and generally consist of 

pairs of identical (monozygotic) and non-identical (dizygotic) twins. Identical 

twins are derived from a single zygote and hence share all the genetic material. 

Non-identical twins are derived from two different zygotes and hence share 50% 

of the genetic material. Assuming that pairs of twins share a common 
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environment, identical twins are more likely to develop the same disease than 

non-identical twins, if the disease has an inherited component. The relative 

contribution of the inherited component of a disease can then be estimated by 

statistical modeling, commonly referred to as quantitative genetic analyses [11].  

During the past two decades, genetic linkage and association studies have 

been the predominantly adopted experimental study designs to delineate inherited 

genetic risk factors for complex diseases or traits, including breast cancer. 

1.3.1 Genetic linkage studies 

Linkage studies have been successful in identifying predisposition
2
 factors 

for many diseases, including breast cancer [19]. Basic ideas behind linkage 

studies are (i) closely located genes in chromosomes will co-segregate together 

when passed to offspring and (ii) if a disease is passed to offspring, together with 

some known marker genes or loci (often microsatellite markers
3
 have been 

utilized), then gene(s) responsible for the disease are said to be linked with the 

markers. Such studies require multiple affected families as co-segregation of 

disease and marker genes needs to be examined in multiple generations. A 

statistical test, called LOD (logarithm (base 10) of odds) score is used to measure 

the linkage [20]. The LOD score compares the probabilities of two loci being 

linked with that of not being linked. The presence of linkage is indicated by a 

positive LOD score while the absence of linkage is indicated by a negative LOD 

score. 

                                                 

2
 Risk of developing a diseased state. 

3
 Repeating sequences of 2-6 base pairs of DNA. 
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1.3.1.1 High penetrance
4
 breast cancer predisposition genes 

The first breast cancer predisposition gene to be identified was, BRCA1
5
, 

located on chromosome 17q21 region was found in a linkage study in 1990, with 

a LOD score of 2.35 with a microsatellite marker (D17S74) [21,22]. The linkage 

was stronger in families with early onset of disease (less than 46 years) with LOD 

score of 5.98 while linkage vanished in families with late onset of disease, 

indicating that this gene may not contribute to predisposition to breast cancers that 

are sporadic in nature. A linkage study conducted in 1994 identified another 

breast cancer predisposition gene, BRCA2
6
, located on chromosome 13q12-13 

[23]. Both BRCA1 and BRCA2 genes play crucial roles in maintaining genomic 

stability, by their involvment in repair of DNA double strand breaks. Multiple 

germline mutations in BRCA1 and BRCA2 genes have been detected; however, 

they occur in a small fraction of total breast cancer cases [24]. Studies have 

shown that most breast cancer-associated germline mutations in BRCA1 and 

BRCA2 genes result in premature truncation of encoded proteins, translational 

frame shifts and defective splice sites [25,26].  

Both BRCA1 and BRCA2 are categorized as high penetrant breast cancer 

genes that confer more than ten-fold increase in disease risk [25-28]. Evidence 

from epidemiological studies suggests that breast cancer risk by age 70 may 

                                                 

4
 Penetrance is defined as the fraction of individuals with a gene or an allele expressing a certain 

disease or trait. If a gene or an allele is highly penetrant, almost all individuals carrying that gene 

or allele will express the disease or trait. Penetrance can be equated in terms of relative risk (RR). 

Breast cancer predisposition genes or alleles with RR>10 are classified as high penetrant, with 

2>RR<10 are classified as moderate penetrant and with RR<2 are classified as low penetrant 

[27,31]. 
5
 Breast cancer 1, early onset. 

6
 Breast cancer 2, early onset. 



 

7 

 

increase up to 87% in carriers of BRCA1 mutations and up to 84% in carriers of 

BRCA2 mutations carriers [26-28]. Since germline mutations in BRCA1 and 

BRCA2 genes are very rare, these two predisposition genes could only explain 15-

20% of genetic risk of breast cancer in the overall population [29-32].  

1.3.1.2 Moderate penetrance breast cancer predisposition genes 

Continued research efforts to characterize additional breast cancer 

predisposition genes resulted in identification of multiple genes conferring 

moderate risk for breast cancer. Germline mutational screening of cancer-related 

pathway genes identified two cancer predisposition syndromes: Li-Fraumeni and 

Cowden syndrome [33,34]. Both syndromes were characterized by a variety of 

different individual germline mutations in their causative tumor suppressor genes, 

TP53
7
[34] and PTEN

8
[33], respectively. These syndromes were also found in 

familial breast cancers
9
, conferring increased risks of breast cancer [34,35]. Even 

though the exact associated risks of breast cancer due to germline mutations in 

TP53 and PTEN genes are not certain, these are believed to exhibit moderate 

penetrance for breast cancer predisposition [33,34]. 

Subsequent germline mutational screening of cancer related candidate genes 

identified four additional moderate penetrance breast cancer predisposition genes, 

CHEK2
10

[36], PALB2
11

[37], BRIP1
12

[38] and ATM
13

[39]. Germline mutations in 

                                                 

7
 Tumor protein 53. 

8
 Phosphatase and tensin homolog. 

9
 Cases with family history of breast cancer. 

10
 Checkpoint kinase 2. 

11
 Partner and localizer of BRCA2. 

12
BRCA1-interacting protein 1. 

13
 Ataxia telangiectasia mutated. 
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these genes are also very rare in the general population and confer moderate risk 

for breast cancer predisposition. Together, these mutations were suggested to 

account for an additional 2.3% of genetic risk of breast cancer [37]. 

1.3.1.3 Other high or moderate penetrance breast cancer predisposition 

genes 

The multiple high and moderate penetrance breast cancer predisposition 

genes identified thus far are rare in the general population and explain less than 

25% of variations in the familial component of disease susceptibility. Further 

linkage studies did not yield additional BRCA-like genes conferring higher 

penetrance risk for breast cancer predisposition [40]. Search for moderate 

penetrance genes through germline mutational screenings of cancer-related 

pathway genes was also not successful. The residual or missing heritability
14

 

component for breast cancer is explained in terms of the common disease-

common variant (CDCV) hypothesis, which states that common diseases are 

caused by common variants [41,42]. According to the CDCV hypothesis, multiple 

common low penetrance genes or alleles, either singly or in combination, confer 

breast cancer risk, conforming to a polygenic model of genetic inheritance. Under 

the polygenic model, each of the participating genes or alleles, also known as 

polygenes, has a small additive effect for breast cancer predisposition while 

linkage among loci and possible influence of environmental factors are ignored 

[43-46]. The CDCV hypothesis is the basis for several genetic association studies 

conducted during the last ten years, with an objective of characterizing additional 

                                                 

14
 Phenotypic variations caused by spectrum of genetic variations. 
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predisposition risk factors for many complex diseases or traits, including breast 

cancer [47]. 

1.3.2 Genetic association studies 

Genetic association studies are conducted to determine contributions of 

genetic variants to certain diseases or traits under study. The most commonly used 

strategies to evaluate genetic contributions to breast cancer in populations are 

case-control association studies, wherein frequencies of genetic variants in breast 

cancer cases are compared with those of healthy controls and statistical 

significance of frequency differences is calculated; controls are free from breast 

cancer at the time of enrollment in such studies (Figure 1-1).  

 

Figure 1-1 A typical genetic case-control association study. 

As governed by the CDCV hypothesis, association studies largely rely on 

common genetic variants
15

 with population frequencies >5% as statistically 

significant frequency differences between cases and controls at this cut-off are 

                                                 

15
 Genetic variants occurring at population frequency of more than 5%. 
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more easily demonstrable. Single nucleotide base pair changes known as single 

nucleotide polymorphisms (SNPs) are the predominantly used human genomic 

variation in association studies [48]. 

1.3.2.1 Single nucleotide polymorphism (SNPs) 

The somatic cells of humans are diploid and contain 22 pairs of homologous 

chromosomes (autosomes), where each parent contributes one chromosome each 

and a pair of sex chromosomes (X and Y). These chromosomes are represented by 

double helix DNA of approximately three billion nucleotide base pairs: adenine 

(A), thymine (T), cytosine (C) and guanine (G). SNPs are DNA sequence 

variations at a single nucleotide base between the pairs of homologous 

chromosomes, occurring with more than 1% population frequency. These are the 

most common, typically biallelic
16

, relatively stable and evolutionary conserved 

genetic variations in the human genome. On average, SNPs occur at a frequency 

of one SNP/300 bp in the human genome [49,50].  

The allele that is more common in a given population is called the major 

allele (A), while the allele which is less common is called the minor allele (B). 

Together, the alleles from paternal and maternal chromosomal loci contribute to 

three distinct genotypes. When the alleles inherited from both parents are the 

major allele (AA), the genotype is referred to as wild-type homozygous; when 

both inherited alleles are minor alleles (BB), the genotype is referred to as variant-

type homozygous; and when each parent contribute a major or a minor allele 

(AB), the genotype is referred to as heterozygous. Allele and genotype 

                                                 

16
Having two alleles or genetic forms. 
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frequencies are calculated from the genotype counts of SNPs in a given 

population. Frequency of the minor allele is referred to as minor allele frequency 

(MAF) while the frequency of the major allele is referred to as major allele 

frequency. 

SNPs are the most commonly used human genomic markers in genetic 

association studies to uncover associations of genetic loci in complex diseases or 

traits. As of 26 June, 2012, the National Center for Biotechnology Information 

dbSNP Build 137 reported 187,852,828 SNPs in humans [51]. Using SNPs as 

markers, two primary types of genetic association studies have been used to 

further characterize residual heritability for breast cancer predisposition: 

candidate-gene association studies and genome-wide association studies 

(GWASs). 

1.3.2.2 Candidate-gene association studies 

Initial genetic association studies aimed to uncover common variants for 

breast cancer predisposition were largely focused on genes involved in DNA 

repair processes, apoptosis and cell-cycle regulation, since these had pausible 

roles in breast cancer [52-55]; such genes are also known as candidate genes. In 

candidate-gene association studies, SNPs in or close to candidate genes are 

examined for their roles in breast cancer predisposition, governed by a 

hypothesis-driven approach. Several candidate gene-association studies for breast 

cancer have been conducted during the last ten years [56-62]; however, many of 

these studies were underpowered due to small sample size, variations in the cut-

off imposed for minor allele frequencies for candidate SNPs under study, non-
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adherence to linkage disequilibrium (LD)
17

 among markers, technology platform 

differences in genotyping
18

, differential SNP call rates (missing values) and 

population stratification. These were further compounded by potential bias in 

selection of breast cancer cases and controls, resulting in inconsistent and 

irreproducible findings [43,63]. To date, only one SNP (rs1045485
19

) located in 

the coding region of CASP8
20

 identified by a candidate-gene association study has 

shown promise as a breast cancer predisposition factor [64]. The minor allele of 

the coding SNP conferred 12% less risk for breast cancer than the major allele 

(odds ratio (OR)
21

=0.88, 95% confidence interval (CI)=0.84-0.92 and P=1.1 x   

10
-7

). An independent case-control study also reported breast cancer risk 

reduction due to rs1045485 in BRCA1 and BRCA2 carriers [65]. However, the 

potential causal role of rs1045485 is still not clear. 

1.3.2.3 Genome-wide association studies (GWASs) 

Advances in genotyping technologies, completion of the Human Genome 

Project, the International HapMap Project
22

 and the 1000 Genomes Projects
23

 

have led to the paradigm shift of genetic association studies from a limited 

candidate-gene approach to a genome-wide approach, resulting in more detailed 

                                                 

17
 Non-random associations among alleles that inherit together. 

18
 An experimental technique to determine the genetic makeup of an individual. 

19
 An amino acid substitution of D (Aspartate) to H (Histidine) at residue 302. 

20
Caspase 8. 

21
 A measure of strength of association of a categorical independent variable (i.e., SNP genotype) 

with a dichotomous  dependent variable (i.e., case/control status). 
22

The HapMap Project was designed to capture the patterns of common genetic variations in the 

human genome. 
23

 An international research project launched in 2008 with an objective to provide by far the most 

comprehensive catalogue of human genetic variation, by sequencing whole genomes of 

approximately 1,000 individuals. 
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investigation of the CDCV hypothesis. GWAS premise rely on LD among SNPs, 

which states that many neighboring SNPs are correlated and hence inherited 

together in a LD block
24

 [66]. Although actual sizes of LD blocks are still 

debated, it has been estimated that LD blocks in the human genome range in size 

from a few kilobases to more than 100 kilobases [66]. Such correlations (LD) 

among nearby SNPs enable selection of fewer SNPs (tag SNPs
25

) that essentially 

capture the information inherent to the block [67]. As such, by just genotyping 

500,000 to one million common tag SNPs (with population frequencies >5%), we 

could effectively capture the information content of more than 80% of all 

common SNPs in the human genome [68,69]. As of 16 December 2012, 1,120 

GWASs have identified >4,500 low penetrance common SNPs associated with 

over 700 different diseases or traits [47]. Majority of these GWASs have 

predominantly utilized two types of genotyping platforms: Illumina and 

Affymetrix SNP arrays. Illumina SNP platforms largely array tag SNPs capturing 

the genome while Affymetrix SNP platforms represent SNPs across the genome; 

the SNP arrays capture highly validated SNPs and include representative tag 

SNPs. Even though there are several differences between Illumina and Affymetrix 

platforms, ranging from the content of the arrays to their prices, the choice of 

arrays mainly depends on the application. Illumina arrays are more commonly 

used in association studies due to their predominant tagSNP capture and large 

scale consortia efforts and partnerships with Illumina. In contrast, for an unbiased 

                                                 

24
 A chromosomal region where SNPs are highly correlated with each other or are in high LD. 

25
 A SNP that is highly correlated with neighboring SNPs and that essentially captures the 

information of nearby SNPs in a LD block. 
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detection of copy number variations (CNVs), Affymetrix arrays are popular due 

to uniform distribution of probes (SNPs and CNVs) across the genome. 

1.3.2.4 General experimental design of a GWAS 

The majority of GWASs conducted to date have utilized SNPs as genetic 

markers to identify low penetrance common variants for diseases or traits. 

GWASs representing other types of human genomic variations, especially CNVs, 

also exist and reports using these markers in genetic association studies are slowly 

emerging. Since large-scale GWASs are cost-prohibitive, a typical GWAS 

follows a multi-stage study design [70-73]. In first or exploratory (hypothesis 

generating) stage (stage 1), large numbers of SNPs covering the entire human 

genome are genotyped in a limited number of cases and controls. The number of 

cases and controls in this stage varies from a few hundred to thousands, 

depending on investigator chosen premise for statistical power and allelic or 

genotypic models considered. Frequencies of SNPs in cases and controls are 

calculated and a statistical test is used to estimate significance of difference in 

frequencies between cases and controls. Description of standard statistical tests 

commonly used in GWASs is provided in the next section of this chapter. 

If a SNP demonstrates statistically significant frequency difference between 

cases and controls, it is then considered to be associated with the disease or trait 

under study. Since adjacent SNPs in a chromosome do not segregate 
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independently, but rather as haplotype blocks
26

 [74], the associated SNP acts as a 

surrogate marker for the disease-associated chromosomal locus to which it maps. 

In contrast to candidate-gene association study designs that are limited to SNPs 

related to a few candidate genes of known or inferred functional significance with 

diseases or traits, GWAS approaches allow one to investigate the entire human 

genome and hence are known as hypothesis-free approaches (discovery stage or 

stage 1) [71,73]. In the second or replication stage (stage 2), the most promising 

SNPs from stage 1 showing statistically significant associations with diseases or 

traits are selected and genotyped in a larger but independent set of cases and 

controls [75]. Most GWASs that use Illumina genotyping platforms consider 

SNPs showing the strongest associations with diseases or traits (based on 

significance P values) in stage 1 as the most promising SNPs for replication 

because Illumina platforms array tag SNPs that are surrogate for many nearby 

SNPs in a LD block. GWASs using Affymetrix as their genotyping platforms in 

stage 1 tend to consider those SNPs for replication that show not only the 

strongest associations with diseases or traits under investigation but also are in 

strong LD (Pearson’s correlation coefficient, r
2
≥0.8) with nearby markers. Such 

tag SNPs or SNPs in strong LD with nearby SNPs selected for replication capture 

information from the whole LD block in which they reside in, enabling higher 

coverage of the genome by simply genotyping fewer SNPs [66,67,74].  

                                                 

26
 Haplotype block is a chromosomal region where there is little evidence for historical 

recombination; SNPs or alleles in a haplotype block are in high LD. Haplotypes per se are 

combinations of SNPs or alleles that tend to segregate together from one generation to another.  
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Depending on the availability of samples and genotyping costs, GWASs can 

be extended to stage 3 and stage 4 wherein SNPs showing statistically significant 

associations with diseases or traits in stage 1 and/or stage 2 are re-genotyped in a 

larger but independent set of cases and controls (stages 3 and 4). At the end, cases 

and controls from all independent stages (1, 2, 3 and 4) are assembled together 

and associations of SNPs with diseases and traits are examined in a combined 

sample, using a process commonly referred to as combined analysis [76]. This 

will help increase statistical power to identify possible associations of low 

penetrance common variants with diseases or traits under study [71,73]. A typical 

GWAS with a sample size of approximately 3,000 individuals (1,500 cases and 

1,500 controls) will have 80% power to capture associations of SNPs 

(MAF>10%) with diseases or traits, with odds ratios (effect sizes) ranging from 

1.5 to 2.0 [77]. Larger sample sizes (more than 20,000) are required to identify 

associated risk of SNPs with smaller MAFs (<10%) and odds ratios less than 1.3 

and hence collaborative efforts with large international consortia are required to 

capture such associations. 

1.3.2.5 Quality control and statistical considerations in GWASs 

Even though GWASs have emerged as powerful tools to identify inherited 

genetic risk factors for many complex diseases, one needs to consider many 

aspects and challenges posed by the large amounts of SNP genotype data to 

ensure accurate interpretation of GWASs findings while minimizing the chances 

of false positive associations (type 1 error).  
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A typical workflow for multi-stage association design with quality control 

measures as well as standard statistical tests is illustrated in Figure 1-2. After 

genotyping, genotype data needs to be cleaned up to remove possible genotype 

errors [71,73] and other inconsistencies owing to assay reproducibility across 

genotyping platforms. These include SNPs with low SNP call rates
27

, missing 

genotype data and low MAFs (<5%). Sometimes, samples used for genotyping 

may be of poor DNA quality leading to low sample call rates
28

; removal of such 

samples is highly recommended. 

                                                 

27
 Proportion of SNPs reliably genotyped across all samples assayed. A SNP call rate >99% is 

generally desired. 
28

 Proportion of reliably genotyped SNPs per sample over total number of SNPs arrayed. 
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29
 

Figure 1-2 A workflow for the multi-stage association study with standard 

quality control measures as well as statistical considerations. 

Further, allele and genotype frequencies of SNPs in control subjects need to 

obey the Hardy-Weinberg Equilibrium (HWE) rule of Mendelian Genetics
30

, as 

deviations from this equilibrium would suggest that either or a combination of 

natural selection, mutations, non-random mating or migration in or out of the 

                                                 

29
 Bonferroni correction is the most conservative method to address the problem of multiple 

comparisons. It is calculated by dividing nominal P value of 0.05 by the number of statistical tests 

performed. 
30

 Allele and genotype frequencies remain constant from generation to generation. 
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population under study is occurring [71,73]. Genotype frequencies deviating from 

HWE proportions may contribute to spurious associations. Another challenge in 

GWASs is population structure that may also lead to false positive associations. 

Population structure is the differences in allele or genotype frequencies within a 

population under study due to ancestry differences. Such population structure may 

result in false positive associations that are not actually associated with diseases 

or traits [78,79]. Hence, it is crucial that cases and controls for GWASs are 

selected from the same ethnic background. 

Once the data cleaning step is complete, SNPs or genotype data are analyzed 

for their potential associations with diseases or traits one SNP or genotype at a 

time in a given sample size, resulting in significance P values and ORs. These 

approaches are known as single-locus tests, which estimate significance P values 

from contingency tables
31

. Similar statistical tests can also be used for 

investigating association of haplotypes in a case-control setting, commonly 

referred to as haplotype association analysis, wherein frequencies of haplotypes in 

cases and controls are compared to obtain the statistical significance of the 

frequency difference.  

A 2x3 contingency table is created for evaluating association of a SNP 

assuming either general genotypic
32

 or an additive
33

 models of inheritance while a 

2x2 contingency table is created for examining association of a SNP under 

                                                 

31
 A table in a matrix format that displays frequency distributions of categorical variables. 

32
 Under genotypic model, each genotype is treated equally as potential disease associated 

genotype. 
33

 Under additive model, disease risk is one-fold for heterozygotes and two-fold for variant 

homozygotes. 
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multiplicative (allelic)
34

, dominant
35

 and recessive
36

 genetic models of inheritance 

(Figure 1-3). Both 2x3 and 2x2 contingency tables can be evaluated by standard 

statistical software, such as SPSS, SAS, R, Stata, S-plus or even by Microsoft 

Excel. 

 

Figure 1-3 Contingency tables for genetic case-control studies, by genetic 

model of inheritance. 

Most commonly used statistical tests to estimate significance P values for the 

association of SNPs with diseases and traits include chi-square tests, 

correlation/trend tests and logistic regressions for allelic models and Armitage’s 

test for trend for additive models [71,73]. ORs and corresponding 95% CIs can be 

estimated from contingency tables as well as from unconditional logistic 

                                                 

34
 Under multiplicative or allelic model, disease risk is multiplied i.e., if a minor allele of a SNP 

confers two-fold disease risk, variant homozygote will confer 2x2=four-fold disease risk. 
35

 Under dominant model, one copy of minor allele confers disease risk. 
36

 Under recessive model, two copies of minor allele confer disease risk. 
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regressions implemented in standard statistical software. Whenever the response 

variable is time-dependent such as time to disease recurrence and death after 

diagnosis, potential associations of genetic variants with recurrence-free or overall 

survivals are estimated with the Cox proportional hazards model and represented 

as hazards ratios (HRs) and corresponding 95% CIs. If we only want to test 

whether or not there is difference between survival times
37

 of different groups 

(e.g., groups defined by genes or genetic markers), log rank tests are used; 

however, these tests do not allow other variables (e.g., confounders
38

) to be taken 

into account, unlike the Cox proportional hazards model. 

Individual SNPs analyzed in GWAS for their potential associations with 

diseases or traits easily exceed few hundred thousands, resulting in a multiple 

comparison problem. Bonferroni correction has been the predominantly used 

statistical approach to correct for a multiple comparison problem, in which the 

nominal P (0.05) is divided by the number of SNPs analyzed for their potential 

associations with diseases or traits (e.g., 800,000), resulting in Bonferroni 

corrected significance P=0.05/800,000=6.2 x 10
-8

 (often considered as a stringent 

correction since redundant SNPs, i.e., all those surrogates of tagSNPs from the 

entire LD block, are also included). However, the Bonferroni corrected P can 

change depending on the number of SNPs analyzed in stage 1 of GWASs [80,81]. 

SNPs showing statistically significant associations at Bonferroni corrected 

significance P are known to achieve genome-wide significance level and these 

                                                 

37
 The length of time taken to reach a certain end-point, such as disease recurrence and death. 

38
 In epidemiology, a confounder is a variable that is associated with both response and 

independent (explanatory) variables and may result in spurious association of independent variable 

with response variable if a confounder is not taken accounted for. 
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SNPs are believed to confer single-locus effects
39

to complex diseases or traits 

[71,73]. 

More recently, GWASs for complex diseases have also been extended to 

stratified analyses wherein frequencies of SNPs are compared between specific 

subtypes of cases and healthy controls. Such approaches are commonly referred to 

as subgroup analyses aimed to address disease heterogeneity [82,83]. These 

subgroup analyses have been commonly adopted to GWASs for breast cancer to 

identify SNPs associated with subtypes of breast cancer (e.g., estrogen and 

progesterone receptor status or amplification of human epidermal growth factor 

receptor 2/Her2 status) based on known clinicopathological characteristics 

[83,84]. 

1.3.2.6 GWASs for breast cancer predisposition 

To date, more than 40 low penetrance common breast cancer susceptibility 

SNPs have been identified by multiple GWASs and by independent investigators. 

A brief summary of breast cancer GWASs is provided in Table 1-1. The data 

presented in the table was retrieved from the National Human Genome Research 

Institute catalog of published GWASs on 16 December 2012 [47]. The table only 

shows SNPs conferring single-locus effects for breast cancer at or near 

conventional genome-wide significance level. 

 

 

                                                 

39
 Disease risk conferred by an individual locus. 
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Table 1-1 A brief summary of breast cancer GWASs conducted during 2007-

2012. 

 

Study
Discovery Stage

(Cases/controls)

Replication Stage

(Cases/controls)
SNPs Region MAF P  value ORs 95% CI

rs2981582 10q26.13 0.38 2.00E-76 1.26 [1.23-1.30] 

rs3803662 16q12.1 0.25 1.00E-36 1.20 [1.16-1.24] 

rs889312 5q11.2 0.28 7.00E-20 1.13 [1.10-1.16] 

rs13281615 8q24.21 0.4 5.00E-12 1.08 [1.05-1.11] 

rs3817198 11p15.5 0.3 3.00E-09 1.07 [1.04-1.11] 

Hunter et al., 

2007

1,145/1,142

Sporadic, 

postmenopausal/

Caucasian

1,176/2,072 rs1219648 10q26.13 0.4 1.00E-10 1.20 [1.07-1.42] 

rs3803662 16q12.1 0.27 6.00E-19 1.28 [1.21-1.35] 

rs13387042 2q35 0.5 1.00E-13 1.20 [1.14-1.26] 

rs4415084 5p12 0.43 6.40E-10 1.16 [1.10-1.21]

rs1219648 10q26 0.47 1.30E-17 1.23 [1.17-1.29]

rs10941679 5p12 0.24 2.90E-11 1.19 [1.13-1.26]

Gold et al., 

2008

249/299

Familial/Ashkenazi 

Jews

1,193/1,166 rs2180341 6q22.33 0.21 3.00E-08 1.41 [1.25-1.59] 

rs4973768 3p24 0.46 4.10E-23 1.11 [1.08-1.13]

rs6504950 17q23 0.27 1.40E-08 0.95 [0.92-0.97]

rs2981579 10q26.13 0.41 2.00E-10 1.17 [1.07-1.27] 

rs11249433 1p11.2 0.39 7.00E-10 1.16 [1.09-1.24] 

rs3803662 16q12.1 0.27 1.00E-09 1.16 [1.07-1.27] 

rs13387042 2q35 0.51 2.00E-08 1.25 [1.15-1.37] 

Zheng et al., 

2009

1,505/1,522

Sporadic/Chinese
1,554/1,576 rs2046210 6q25.1 0.37 2.00E-15 1.29 [1.21-1.37] 

Antoniou et al., 

2010

1,193/1,190

Familial/Caucasian
3,012/2,974 rs8170 19p13.11 0.17 2.00E-09 1.26 [1.17-1.35] 

Gaudet et al., 

2010

899/804

Familial/Caucasian
1,264/1,222 rs2981575 10q26.13 0.42 1.00E-08 1.28 [1.18-1.39] 

rs2981579 10q26.13 0.42 4.00E-31 1.43 [1.35-1.53] 

rs3803662 16q12.1 0.26 3.00E-15 1.30 [1.22-1.39] 

rs614367 11q13.3 0.15 3.00E-15 1.15 [1.10-1.20] 

rs10995190 10q21.2 0.85 5.00E-15 1.16 [1.10-1.22] 

rs13387042 2q35 0.49 2.00E-10 1.21 [1.14-1.29] 

rs704010 10q22.3 0.39 4.00E-09 1.07 [1.03-1.11] 

rs889312 5q11.2 0.28 5.00E-09 1.22 [1.14-1.30] 

rs1011970 9p21.3 0.17 3.00E-08 1.09 [1.04-1.14] 

Long et al., 

2010

2,073/2,084

Sporadic/Chinese
13,395/10,917 rs4784227 16q12.1 0.24 1.00E-28 1.24 [1.20-1.29] 

Cai et al., 

2011

2,062/2,066

Sporadic/Chinese
15,091/14,877 rs10822013 10q21.2 0.47 6.00E-09 1.12 [1.06-1.18] 

rs1219648 10q26.13 0.42 1.00E-30 1.31 [1.25-1.37] 

rs1562430 8q24.21 0.6 3.00E-11 1.16 [1.11-1.22] 

rs4415084 5p12 0.42 8.00E-11 1.17 [1.11-1.22] 

rs865686 9q31.2 0.61 2.00E-10 1.12 [1.09-1.18] 

rs13387042 2q35 0.52 2.00E-10 1.16 [1.11-1.22] 

rs3112612 16q12.2 0.43 4.00E-10 1.15 [1.10-1.21] 

rs4973768 3p24.1 0.49 2.00E-08 1.14 [1.09-1.19] 

Ahmed et al., 

2009

390/364

Familial/Caucasian
41,002/43985

Turnbull et al., 

2010

3,659/4,897

Familial/Caucasian
12,576/12,223

Fletcher et al., 

2011

2,839/3,507

Familial/Caucasian
7,317/8,124

390/364

Familial/Caucasian
26,646/24,889

Easton et al., 

2007

Stacey et al., 

2007

1,599/11,546

ER+ve/Icelandic
2,934/5,967

Stacey et al., 

2008

2,277/26,199

ER+ve/Icelandic
6,643/12,922

Thomas et al., 

2009

1,145/1,142

Sporadic,postmenop

ausal/Caucasian
8,625/9,657
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Table 1-1 Continued.. 

 
 

The first breast cancer GWAS conducted in 2007 by Easton et al. 

interrogated a total of 227,876 SNPs arrayed in a custom-designed Perlegen 

platform
40

 in familial breast cancer cases and healthy controls from the United 

Kingdom and identified five breast cancer susceptibility loci [84]. Of these, four 

SNPs are located in gene regions of FGFR2
41

, TNRC9
42

, MAP3K1
43

 and LSP1
44

 

while the fifth SNP is located in an intergenic region on chromosome 8q. Two 

additional novel breast cancer susceptibility loci on chromosomes 3p24 and 

17q23.2 were also identified by further data mining and follow-up of familial 

breast cancer GWAS comprising Caucasian women from the United Kingdom 

reported by Easton et al. [84,85]. Subsequently, Stacey et al. genotyped 

approximately 300,000 SNPs arrayed in IlluminaHap300 platform for familial 

breast cancer cases and healthy controls from Iceland and identified two breast 

                                                 

40
 A genotyping platform developed by Perlegen Sciences, Inc.  

41
 Fibroblast growth factor receptor 2. 

42
Trinucleotide repeat-containing 9. 

43
 Mitogen-activated protein kinase kinase kinase 1, E3 ubiquitin protein ligase. 

44
 Lymphocyte-specific protein 1. 

Haiman et al., 

2011

2,722/6,415

ER-ve/Caucasian, 

African

2,222/16,363 rs10069690 5p15.33 0.26 1.00E-10 1.18 [1.13-1.25]  

Kim et al., 

2012

2,273/2,052

Familial/Korean
4,049/3,845 rs13393577 2q34 0.051 9.00E-14 1.53 [1.37-1.70] 

Long et al., 

2012

2,918/2,324

Sporadic/Chinese
16,173/18,282 rs9485372 6q25.1 0.55 4.00E-12 1.11 [1.09-1.15] 

rs9383938 6q25.1 NR 2.00E-10 1.28 NR

rs2284378 20q11.22 0.31 1.00E-08 1.16 [1.10-1.22] 

rs8100241 19p13.11 NA 4.00E-08 1.14 NR

rs10771399 12p11 0.12 2.70E-35 0.85 [0.83-0.88]

rs1292011 12q24 0.41 4.30E-19 0.92 [0.91-0.94]

rs2823093 21q21 0.27 1.10E-12 0.94 [0.92-0.96]

Sapkota et al., 

2013*

302/321

Sporadic/Caucasian
2,447/4,149 rs1429142 4q31.22 0.18 1.50E-07 1.28 [1.17-1.41]

MAF, minor allele frequency; OR, odds ratio; CI, confidence interval; NR, not reported; *this study is one of the very few 

GWASs for sporadic breast cancer predisposition utilizing Caucasian study subjects (Chapter 2 of this thesis)

Siddiq et al., 

2012

4,670/28,864

ER-ve/Caucasian, 

African

946/8,404

Ghaoussaini 

et al., 2012

10,052/17,765

Familial/Caucasian
~60,000/~50,000
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cancer susceptibility loci on chromosomes 2q35 and 16q12 [86]. In another breast 

cancer GWAS, Stacey et al. identified novel breast cancer susceptibility locus on 

chromosome 5p12 using familial breast cancer cases and controls from Iceland 

[87]. The association was stronger for breast cancer cases with estrogen receptor 

(ER)-positive than ER-negative tumors. FGFR2 SNPs recently reported by Easton 

et al. also showed stronger associations for ER-positive than ER-negative breast 

tumors [84,87]. 

As part of the National Cancer Institute Cancer Genetics Markers of 

Susceptibility (CGEMS), Hunter et al. conducted a second breast cancer GWAS 

by genotyping 528,252 SNPs in postmenopausal sporadic breast cancer cases and 

healthy controls of European ancestry in IlluminaHapMap500 array
45

 [88]. The 

findings from this GWAS confirmed association signals from intron 2 of the 

FGFR2 gene reported by Easton et al. [84]. Similarly, Thomas et al. conducted a 

follow-up genetic association study of postmenopausal sporadic breast cancer 

GWAS reported by Hunter et al. that included study subjects of European 

ancestry and identified two additional breast cancer susceptibility loci on 

chromosomes 1p11.2 and 14q24.1 [89]. The reported loci also showed stronger 

associations in cases with ER-positive than ER-negative breast tumors. Results 

from this study also confirmed previous breast cancer susceptibility signals 

reported by Easton et al., Hunter et al. and Stacey et al. [84,86-88]. Fletcher et al. 

identified a novel breast cancer susceptibility locus on chromosome 9q31.2 by 

                                                 

45
 Contains approximately 500,000 SNPs. 
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further data mining and follow-up of the postmenopausal sporadic breast cancer 

GWAS reported by Hunter et al. [88,90]. 

Turnbull et al. conducted a breast cancer GWAS by genotyping familial 

breast cancer cases and healthy controls from UK on IlluminaInfinium660K 

array
46

 and identified five additional breast cancer susceptibility loci not reported 

previously [91]. This study also confirmed associations of previously reported 

breast cancer susceptibility loci reported by Easton et al., Hunter et al., Stacey et 

al., Thomas et al. and Ahmed et al. [84-89,92] in their study populations. 

Gold et al. interrogated 150,080 SNPs arrayed on IlluminaGoldenGate 

platform in breast cancer cases and controls among non-BRCA1/2mutation 

carriers from a genetically isolated population, Ashkenazi Jews, and identified a 

novel breast cancer susceptibility locus on chromosome 6q22.33 [93].  

Antoniou et al. interrogated 620,601 SNPs on IlluminaInfinium 610K array
47

 

using BRCA1 mutation carriers of European ancestry with and without breast 

cancer diagnoses and identified a novel breast cancer susceptibility locus on 

chromosome 19p13 [94]. The observed association was stronger in cases with 

triple-negative breast tumors. Gaudet et al. genotyped 592,163 SNPs on 

Affymetrix SNP 6.0 using BRCA2 mutation carriers of European descent with and 

without breast cancer diagnoses and identified a breast cancer susceptibility SNP 

in FGFR2 intron 2, a locus reported and confirmed by many independent 

association studies [95].  

                                                 

46
 Contains approximately 660,000 SNPs. 

47
 Contains approximately 610,000 SNPs. 
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Haiman et al. interrogated 3,154,485 SNPs genotyped on Illumina550-Duo 

SNP array and imputed
48

 in ER-negative breast cancer cases and healthy controls 

of European ancestry and identified a novel susceptibility locus for ER-negative 

breast cancer on chromosome 5p15 [96]. A meta-analysis of multiple breast 

cancer GWASs conducted by Siddiq et al. identified two novel breast cancer 

susceptibility loci on chromosomes 20q11 and 6q14 in women of European 

ancestry [97]. Of these, rs2284378 on 20q11 showed stronger associations in ER-

negative breast cancers as compared to ER-positive and breast cancer cases 

unselected for ER status. 

Zheng et al. analyzed 607,728 SNPs genotyped on Affymetrix 500K
49

 and 

SNP 6.0
50

 arrays using breast cancer cases and healthy controls of Chinese 

ancestry and identified a breast cancer susceptibility locus on chromosome 6q25.1 

[92]. An additional breast cancer susceptibility SNP on chromosome 6q25.1 for 

East-Asian women (Chinese, Japanese and Korean) was identified by Long et al. 

through data mining and follow-up of breast cancer GWAS reported by Zheng et 

al. [92,98]. Further data mining and follow-up of breast cancer GWAS by Zheng 

et al. identified a potential causal breast cancer susceptibility SNP in Chinese 

women at a chromosomal locus reported earlier by Stacey et al. (16q12.1) 

[86,92,99]. Cai et al. conducted breast cancer GWAS by genotyping breast cancer 

cases and healthy controls of Chinese ancestry on Affymetrix SNP 6.0 array and 

                                                 

48
 Imputation is a process by which missing values (i.e., missing genotype calls) are replaced with 

best possible substitution values.  
49

 Arrays approximately 500,000 SNPs for genotyping. 
50

 Arrays over 900,000 SNPs and 900,000 copy number probes for both SNP and copy number 

genotyping. 
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identified a novel breast cancer susceptibility locus on chromosome 10q21.2, 

which contained a zinc finger protein encoded by the ZNF365
51

 gene [100]. Kim 

et al. interrogated 555,525 SNPs genotyped on Affymetrix SNP 6.0 array using 

breast cancer cases and healthy controls of Korean ancestry and identified a novel 

breast cancer susceptibility locus on chromosome 2q34, which contained the 

ERBB4
52

 gene [101]. This study also successfully reproduced previously GWAS-

identified breast cancer susceptibility loci reported by international consortia
53

 

[84,85,87,88,91].  

More recently, Ghoussaini et al. combined data from multiple independent 

breast cancer GWASs and conducted a large-scale replication study that identified 

three novel breast cancer susceptibility loci on chromosomes 12p11, 12q24 and 

21q21 in women with European ancestry [102]. SNPs on 12q24 and 21q21 

showed stronger associations for susceptibility to ER-positive than to ER-negative 

breast cancers whereas a SNP on 12p11 conferred similar risk for both ER-

positive and ER-negative breast cancers. This was by far the largest GWAS 

conducted for breast cancer predisposition until early 2013.  

1.3.2.7 Common variants for breast cancer prognosis
54

 

Successes from GWASs in identifying low-penetrance common variants for 

breast cancer predisposition led to investigations examining potential roles of 

                                                 

51
 Zinc finger protein 365. 

52
 v-erb-a erythroblastic leukemia viral oncogene homolog 4 (avian). 

53
 The CGEMS, the Breast Cancer Association Consortium (BCAC), the Effectiveness of 

Additional Reductions in Cholesterol and Homocysteine Collaborative Group, the Nurses’ Health 

Study (NHS) and the National Heart, Lung and Blood Institute Framingham Heart Study. 
54

 Natural progression of a disease in absence of treatments. 
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GWASs-identified breast cancer susceptibility SNPs for breast cancer prognosis. 

None of the breast cancer susceptibility loci reported by GWASs showed 

significant associations with breast cancer prognosis, except for a SNP 

(rs13281615) on chromosome 8q24 reported by Easton et al., which showed 

statistically significant association with overall survival (P=0.009) in an 

independent study comprising 13,527 invasive breast cancer cases [103]. In 2010, 

Azzato et al. conducted the first GWAS for breast cancer survival after diagnosis 

using the follow-up and genotype data of 528,252 SNPs for 1,145 

postmenopausal sporadic breast cancer cases from the CGEMS initiative 

[88,104]. However, the results did not find any SNPs statistically significantly 

associated with breast cancer prognosis. The authors concluded that a different set 

of low penetrance common alleles, rather than susceptibility alleles, may be 

responsible for variations in breast cancer prognosis. In the same year, Azzato et 

al. conducted a second GWAS for breast cancer prognosis by using existing stage 

1 GWAS data from Easton et al. that consisted of 3,761 invasive breast cancer 

cases genotyped for 10,621 SNPs on custom-based Perlegen platform [84,105]. 

The authors reported a SNP (rs4778137) on chromosome 15q13.1 as statistically 

significantly associated with breast cancer survival for triple-negative breast 

cancer cases (P=5.0 x 10
-5

) and the association was successfully replicated in an 

independent set of 14,096 invasive breast cancer cases. Subsequently, a third 

GWAS for breast cancer prognosis was conducted by Shu et al. in 2012 by 

interrogating 613,031 SNPs genotyped on Affymetrix SNP 6.0 array for 6,110 

invasive breast cancer cases of Chinese ancestry [106]. The results indicated two 
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SNPs, rs3784099 and rs9934948, located on chromosomes 14 and 16, 

respectively, as significantly associated with breast cancer survival (P<5.0 x10
-6

). 

Overall, these three studies have shown that inherited germline genetic variations 

may contribute to the observed variations in breast cancer prognosis and hence 

larger GWASs in future are warranted to identify additional common variants for 

breast cancer outcomes. 

1.3.2.8 Summary of genetic risk accounted to date and the search for 

missing heritability 

Over the last five years (2007-2012), several GWASs and a candidate-gene 

association study conducted for breast cancer led to identification of multiple low 

penetrance common variants conferring single-locus effects for breast cancer risk, 

lending credence to the CDCV hypothesis and polygenic model of risk for 

complex diseases [42,43,64]. Except for a breast cancer susceptibility locus at 

chromosome 2q34 (MAF~5%) reported by Kim et al. in the Korean population 

[101], breast cancer associated SNPs were common in the study population with 

MAF>10% [64,84-99,102]. However, the effect sizes of these associations were 

very small, ranging from 1.07 to 1.53 (expressed as ORs), and explain 

approximately 10% of additional genetic risk for breast cancer predisposition 

[102]. Taken together, known high and moderate penetrance genes identified 

through linkage studies and mutational screenings of candidate genes, in addition 

to recently identified low penetrance common SNPs by genetic association 

studies, only account for less than 35% of variations in breast cancer 

predisposition, suggesting that more variants exist.  
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One of the major challenges to uncover the remainder of breast cancer 

heritability is the sample size needed for sufficient statistical power since the (yet 

unidentified) common variants are expected to confer much smaller effect sizes 

(ORs<1.3). International consortia such as the BCAC, the NHS, the CGEMS and 

the Breast and Prostate Cancer Cohort Consortia have already made an effort to 

increase the number of studied individuals to approximately 150,000 by including 

breast cancer cases and healthy controls from several individual research centers 

[102]. However, results from such giant consortia were also limited to SNPs with 

very small effect sizes, indicating that future GWASs are unlikely to identify 

common variants with very large individual effect sizes (ORs>1.5), regardless of 

sufficiently large sample sizes. Consequently, there is a clear need to explore 

other forms of genetic variations contributing to breast cancer predisposition.  

Current debates suggest that one of the possible sources for “residual or 

missing heritability” for breast cancer are contributions of structural variations, 

such as copy number variations (CNVs), and genetic interactions (gene-gene and 

gene-environment interactions), in addition to the contributions from strong 

single-locus effects through continued efforts for sufficiently powered systematic 

GWASs [107-115]. Such comprehensive approach may identify a larger 

proportion of breast cancer heritability, leading to possibilities for population 

level screening and prophylactic interventions in the near future. 

1.3.2.9 Copy number variations 

One possible source of residual heritability for breast cancer is the 

contribution of copy number variations (CNVs). CNVs are the most common type 
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of structural variations in the human genome. These are DNA segments of more 

than one kilobase in size that vary in their copy numbers due to gains or losses 

(Figure 1-4) [116-118]. Throughout this thesis, I refer to literature and my own 

results from germline CNVs
55

 (and not CNVs from tumor cells/somatic origins) 

as is my focus with SNPs for their potential value in disease susceptibility or 

prognosis. As of November 2012, there were 291,801 CNVs reported in the 

Database of Genomic Variants, Toronto, Canada, a curated catalog of human 

genomic structural variation and more CNVs may be identified in the coming 

years. This catalogue is by no means a complete database, but is continually 

evolving. CNVs are believed to affect expression of many genes, either through 

gene dosage (gains or losses) or by cis-acting regulatory activities [116,119,120]. 

Studies have shown that germline CNVs may predispose to many complex 

diseases and SNPs are generally underrepresented in genomic regions harboring 

CNVs and therefore, GWASs utilizing CNVs are slowly emerging [121-125].  

                                                 

55
The DNA an individual is born with, which does not change in one’s lifetime is referred to as 

germline (or constitutive) DNA. DNA extracted from blood lymphocytes is considered 

representative of the germline status. There is ample literature on the CNVs from cancerous cells 

and is not the focus of this thesis. 
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Figure 1-4 Illustration of copy number variations and copy neutral-loss of 

heterozygosities. 

The first large-scale GWAS investigating potential roles of CNVs for genetic 

susceptibility to complex diseases was conducted by the Welcome Trust Case-

Control Consortium in 2010 [126]. The study investigated 3,432 common CNVs 

for their roles in seven diseases and found no strong evidences for CNVs as better 

(than SNPs) sources of residual heritability for complex diseases. Even though the 

study reported lack of associations of common CNVs with complex diseases, 

perhaps due to limited number of common CNVs considered in the analysis, the 

study certainly opened possibilities for more systematic and comprehensive 

analysis (larger coverage) of germline CNVs as predisposition factors for 

complex diseases. 
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Another study that evaluated germline CNV profiles between BRCA1-

associated and sporadic ovarian cancer patients reported substantial differences in 

copy number gains and losses between these two groups of cancer patients [127]. 

Germline CNVs were also reported to be associated with susceptibility to familial 

pancreatic and breast cancers [128].  

More recently with the application of high-throughput SNP genotyping 

arrays, large chromosomal lesions characterized by loss of heterozygosity (LOH) 

but with diploid copy numbers were observed (as were also in many 

malignancies), possibly resulting from non-homologous recombination during 

meiosis, trisomic rescue or mitotic recombination [129-134]. These chromosomal 

defects, also known as copy-neutral loss of heterozygosities (CN-LOHs) or 

uniparental disomies (UPDs), are characterized by loss of one allele with 

simultaneous replacement by an exact copy of another allele, resulting in retention 

of diploid copy number but loss of polymorphic differences (both alleles are from 

the same parent) (Figure 1-4). CN-LOHs have been reported to be associated 

with gain of oncogenic alleles and inactivation of tumor suppressors and may be 

an important mechanism in cancer development [131-134]. With the advent of 

SNP genotyping platforms that can measure both CNVs and CN-LOHs, it is now 

possible to investigate potential roles of these large chromosomal defects as 

genetic determinants for complex diseases using germline DNA. This aspect will 

be addressed in Chapter 5 of this thesis. 
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1.3.2.10 Genetic interactions 

GWASs representing common SNPs and emerging studies of CNVs or CN-

LOHs primarily focus on single-locus effects (also known as main genetic 

effects). However, risk for complex diseases, including breast cancer, is also 

attributed to two types of genetic interactions: gene-gene and gene-environment 

interactions. At present, GWASs inclusive of these genetic interactions are limited 

because of the need for large sample sizes to achieve the statistical power as well 

as the need for exposure data (health, lifestyle and reproductive) that are difficult 

to obtain and, where available, may not have banked DNA in most cohorts.  

1.3.2.10.1 Gene-gene interactions 

The etiology of complex diseases includes substantial proportion of gene-

gene interactions, commonly referred to epistasis. Epistasis is a ubiquitous 

phenomenon that describes how genes or loci interact to affect phenotypes 

[114,115]. Such interactions are believed to explain a large proportion of genetic 

heritability of complex diseases.  

Let us assume that SNP A has an effect size of 1.5 and SNP B has an effect 

size of 1.5. According to the additive model of genetic inheritance, the cumulative 

genetic effect from SNP A and SNP B would be 1.5+1.5=3. However, if epistasis 

is present between SNP A and SNP B, the cumulative genetic effects would not 

be 3 but rather something more or less than 3. In other words, epistasis is a 

departure from a simple additive model that considers the combined effects of 

individual single-locus effects.  
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At present, epistatic interactions involving two loci or SNPs can be evaluated 

using logistic regressions. However, it has been limited to candidate-gene studies 

with a small number of SNPs [135]. Testing every combination of pairwise 

interactions or even extending to multi-SNPs (multi-way) interactions in a GWAS 

is computationally intensive. More recently, logic regressions have been proposed 

for testing multi-way interactions among SNPs and have been successfully 

applied to GWAS of Crohn’s disease and a candidate-gene association study of 

cervical cancer [136,137]. Consequently, future studies that focus on potential 

epistatic interactions among SNPs, in addition to single-locus effects, in a GWAS 

or a candidate-gene association study may identify additional heritability for 

complex diseases, including breast cancer. Chapters 3 and 4 will address this form 

of genetic interaction for breast cancer predisposition. 

1.3.2.10.2 Gene-environment interactions 

Complex diseases such as breast cancer also result from combined effects of 

both genetic and environmental risk factors. Even though these forms of genetic 

interactions are believed to explain a large proportion of heritability for breast 

cancer, especially for sporadic breast cancer, investigations of such interactions 

are limited due to difficulty in obtaining the environmental, lifestyle and 

reproductive data.  

Recently, the Breast and Prostate Cancer Cohort Consortium conducted a 

comprehensive study to evaluate possible interactions between the common breast 

cancer susceptibility loci reported earlier by GWASs and the established breast 

cancer risk factors, such as age at menarche, parity, age at menopause, use of 
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hormone replacement therapy, body mass index, smoking habit, alcohol 

consumption, family history and height using data from 8,576 cases and 11,892 

controls [138]. The study findings indicated that the common breast cancer 

susceptibility loci (single-locus associations) do not affect the associations of the 

examined established risk factors with breast cancer. These findings were also 

supported by another study conducted by the BCAC that evaluated possible 

interactions among common breast cancer susceptibility loci and known breast 

cancer risk factors, using genotype and questionnaire data from 26,349 cases and 

32,208 controls from 21 case-control studies [139]. These results indicate that 

there would be a different set of common SNPs involved in gene-environment 

interactions contributing to breast cancer predisposition than the susceptibility 

SNPs. Once sufficient exposure data becomes readily accessible to incorporate in 

GWAS, future studies may also focus on this form of genetic interaction to 

address the residual heritability of breast cancer and is currently beyond the scope 

of this thesis. 

1.4 Hypothesis  

Common germline DNA variations (SNPs, CNVs and CN-LOHs) are genetic 

determinants and hence contribute to breast cancer predisposition and disease 

prognosis, either through single-locus or epistatic effects. 

1.5 Specific objectives  

Specific objectives of this thesis were as follows: 
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 To identify common breast cancer susceptibility loci for sporadic breast 

cancer using a multi-stage association study design (addressed in Chapter 

2) 

 To evaluate variations in breast cancer susceptibility based on known 

clinicopathological characteristics, such as hormonal status, menopausal 

status, family history, tumor stage and grade (addressed in Chapters 2 and 

3) 

 To identify germline markers (SNPs and structural variations) for breast 

cancer prognosis (addressed in Chapters 2 and 5) 

 To evaluate potential epistatic interactions contributing to breast cancer 

susceptibility (addressed in Chapters 3 and 4) 

1.6 Organization of the thesis 

The thesis has been organized into four distinct chapters that will address the 

specific objectives of this thesis. 

Earlier, the Damaraju Laboratory conducted a GWAS for sporadic breast 

cancer (late onset of disease and absence of family history of breast cancer) by 

genotyping 906,600 SNPs on Affymetrix SNP 6.0 array in 348 invasive breast 

cancer cases and 348 healthy controls of predominantly Caucasian origin from 

Alberta, Canada [140]. After removing potential non-Caucasian subjects during 

the population stratification step (data clean-up process), the discovery stage 

included 302 cases and 321 controls for the final analysis (stage 1). After 

performing the data clean-up step, a total of 782,838 SNPs were considered for 

single-locus tests, which resulted in 35,859 SNPs at statistical significance 
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P<0.05. Of these, the 35 most promising SNPs (with the strongest statistical 

significance P values among the analyzed SNPs and in strong LD with nearby 

markers) were replicated in an independent set of 1,153 breast cancer cases and 

1,215 controls (stage 2). Six SNPs survived the replication showing statistical 

significant associations for breast cancer susceptibility.  

 

Figure 1-5 An overview of two-stage GWAS for sporadic breast cancer 

conducted by the Damaraju Laboratory. 
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An overview of GWAS for sporadic breast cancer conducted in the Damaraju 

laboratory is illustrated in Figure 1-5. The stage 1 data shown in Figure 1-5 was 

used in the discovery stage for data mining and further follow-up described in 

Chapters 2 and 3. 

In Chapter 2, I further investigated the observed associations of six putative 

sporadic breast cancer susceptibility loci using an independent set of 1,294 breast 

cancer cases and 2,934 controls (stage 3). A combined analysis (stages 1+2+3) 

was also performed to increase the statistical power. Two SNPs showed statistical 

significant associations for breast cancer predisposition and of these, a SNP 

attained commonly adopted genome-wide significance level in combined 

analysis, adjusted for BMI. Further, I also investigated the robustness of 

associations of 11 common breast cancer susceptibility SNPs with breast cancer 

reported by large consortia during the years 2007-2009 in Alberta women. In an 

attempt to evaluate variations in risk conferred by common breast cancer 

susceptibility SNPs, I conducted stratified analyses based on luminal A
56

 status, 

menopausal status, family history of breast cancer, tumor stage and grade. 

Potential associations of common breast cancer susceptibility SNPs with breast 

cancer outcomes, such as recurrence-free survival and overall survival were also 

examined. An overview of the study design is provided in Figure 1-6. 

 

                                                 

56
 Breast cancer cases with either ER or PR status positive and HER2 status negative were 

considered as luminal A cases. 
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Figure 1-6 An overview of the study design adopted for Chapter 2 of the 

thesis. 

In Chapter 3, I attempted to investigate potential epistatic interactions among 

common SNPs. I hypothesized that SNPs showing consistently reproducible 

moderate single-locus effects with weak statistical significance in both discovery 

and independent replication stages may be useful candidates for evaluating 

epistatic interactions. This definition for qualifying SNPs for investigations of 

epistasis interaction analyses were also reported by others [135,141]. Therefore, I 

first selected 215 SNPs in or close to DNA repair, modification or metabolism 

pathway related genes for their overall role in breast cancer, from the list of 

35,859 SNPs at P<0.05 in the single-locus tests of stage 1 GWAS reported by the 

Damaraju Laboratory [140]. Of these, 22 SNPs (with the strongest statistical 

significance P values among the 215 SNPs and in strong LD with nearby SNPs) 

were replicated in an independent set of 1,178 breast cancer cases and 1,314 
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healthy controls from Alberta, Canada. A combined analysis comprising stages 

1+2 was also performed to increase statistical power. Six SNPs showed consistent 

moderate single-locus effects with weak statistical significance for breast cancer 

across stages 1 and 2 and hence are likely candidates for epistatic interaction 

analyses. Subgroup analyses based on luminal A status, family history and 

menopausal status were also performed to examine variations in observed breast 

cancer susceptibility. An overview of the study design is provided in Figure 1-7. 

 

Figure 1-7 An overview of the experimental design used in Chapter 3 of the 

thesis. 

In Chapter 4, I attempted epistatic interaction analyses among the six SNPs 

identified in Chapter 3, in addition to 11 candidate DNA repair SNPs with prior 

evidence of their association with breast cancer [45,142-149], using 2,795 breast 
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cancer cases and 4,505 controls. Logistic regressions were used to assess two-way 

interactions among the 17 SNPs whereas logic regression was implemented to 

evaluate interactions involving more than two SNPs. A total of six SNPs were 

observed in two two-way interactions and a SNP-SNP interaction involving four 

SNPs were observed. These six SNPs also showed moderate effects with weak 

statistical significance in single-locus tests. An overview of the study design is 

provided in Figure 1-8. 

 

Figure 1-8 An overview of study design used in Chapter 4 of the thesis. 

In Chapter 5, I conducted a GWAS utilizing germline CNVs and CN-LOHs 

(hereafter referred to as copy number aberrations, CNAs) for breast cancer 

recurrence, using 155 recurred cases and 214 non-recurred cases (a cut-off of at 

least three years of follow-up for inclusion criteria for a case as non-recurred). I 

focused on common CNAs (>10% frequency of occurrence) for their potential 
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associations with breast cancer recurrence. Ten CNAs (two copy number gains 

and eight CN-LOHs) showed statistical significance difference in recurrence-free 

survival probabilities in cases with and without the CNA. Of these, I validated 

three CN-LOHs in a subset of randomly selected cases using real-time 

polymerase chain reaction. An overview of the study design is provided in Figure 

1-9. 

 

Figure 1-9 Study design for Chapter 5 of the thesis. 

In Chapters 6 and 7, I discuss in brief about the overall findings of the thesis, 

in addition to future work that may be carried out to explore more about the 

genetic predisposition for breast cancer.  
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2. Identification of a breast cancer susceptibility locus at 4q31.22 

using a genome-wide association study paradigm
57

 

2.1 Introduction 

Breast cancer is the most common cancer in women in the developed world, 

with 22,700 new cases and 5,100 deaths anticipated in Canada for 2012 [1]. While 

environmental and lifestyle risk factors contribute to most of the variation in 

breast cancer risk, twin studies have shown substantial contribution of inherited 

genetic risk factors to disease susceptibility [2,3]. Linkage and family-based 

studies have identified high and moderate penetrance mutations in genes such as 

BRCA1
58

 [4], BRCA2
59

 [5], PTEN
60

 [6], ATM
61

 [7], TP53
62

 [8], BRIP1
63

 [9], 

PALB2
64

 [10] and CHEK2
65

 [11] contributing to hereditary breast cancer; 

however, these mutations occur rarely in the general population. Further, linkage 

studies failed to identify additional genes/mutations associated with high or 

moderate risk of breast cancer. Therefore, it has been hypothesized that most of 

the genetic risk of breast cancer, for both familial and sporadic cases in the 

general population, may involve a combination of multiple low penetrance 

genes/loci, each contributing to an overall genetic risk of breast cancer [12]. 
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 Breast cancer 1, early onset. 
59

 Breast cancer 2, early onset. 
60

 Phosphatase and tensin homolog. 
61

 Ataxia telangiectasia mutated. 
62

 Tumor protein p53. 
63

 BRCA1 interacting protein C-terminal helicase 1. 
64

 Partner and localizer of BRCA2. 
65

 Checkpoint kinase 2. 
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Over the past five years, several genome-wide association studies (GWASs) 

have reported breast cancer susceptibility variants (i.e., single nucleotide 

polymorphisms, SNPs) at multiple loci [13-22]. A large-scale candidate gene 

study also identified an additional locus (caspase 8 coding SNP, rs1045485) 

associated with breast cancer risk [23]. The low penetrance common SNPs 

identified to date explain less than 10% of the genetic risk of breast cancer [22]. 

Taken together, pathogenic germline mutations and low penetrance variants 

identified thus far only account for a small fraction of the genetic risk of breast 

cancer, suggesting that additional variants remain to be identified [24]. 

Recently, we conducted a two-stage GWAS using sporadic breast cancer 

cases and healthy controls and identified six SNPs (located at chromosomes 4, 5, 

16 and 19) that appeared to be associated with breast cancer susceptibility [21]. In 

a combined sample size of 1,455 breast cancer cases and 1,536 healthy controls 

from two independent stages, these SNPs showed modest risk of breast cancer 

(observed odds ratios (ORs) range: 1.22 – 1.45).  

It is an internationally accepted practice to replicate GWAS findings in 

multiple independent studies with cases and controls of both similar and diverse 

ethnic backgrounds to assess the robustness and generalizability of the identified 

associations, respectively. Therefore, in the current study, we further investigated 

the six putative breast cancer susceptibility SNPs that we have reported 

previously [21] by conducting an independent replication study (stage 3), using 

breast cancer cases and controls. The study subjects were predominantly of 

Caucasian origins, and were drawn from the same geographical region in Canada 
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as in our previous study. We also evaluated the GWAS variants for breast cancer 

susceptibility reported by various consortia (including the Breast Cancer 

Association Consortium [13,18], the Effectiveness of Additional Reductions in 

Cholesterol and Homocysteine Collaborative Group [13], the Nurses' Health 

Study [14], the National Cancer Institute Cancer Genetic Markers of 

Susceptibility Project [14] and the National Heart, Lung, and Blood Institute 

Framingham Heart Study [15]) in our study population to explore the extent of 

conformity to previous findings in Caucasian populations, and for the strengths of 

associations for the sample size utilized in this study. Since obesity is a well-

established risk factor for post-menopausal breast cancer [25] and is a heritable 

trait [26], we also adjusted the identified variant-breast cancer associations for 

body mass index (BMI
66

) to examine whether the variants are associated with 

breast cancer risk, through BMI or through different pathways. We assessed 

variability in disease susceptibility by clinicopathological characteristics such as 

menopausal status, family history of breast cancer, luminal A status of tumors, 

tumor grade and tumor stage. Finally, we explored the associations of the six 

putative susceptibility SNPs identified in our earlier study and the previously 

published consortia SNPs with breast cancer outcomes. 
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 BMI is an estimation of an individual’s body shape and is calculated based on weight and 

height. BMI=mass(in kg)/(height(in meter))
2
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2.2 Materials and methods 

2.2.1 Study participants 

All breast cancer cases (n=2,750) used in this study had a confirmed 

diagnosis of breast cancer in the province of Alberta, Canada, and participated in 

provincial tumor bank projects in operation since 2001 (the PolyomX Project, 

2001-2005 and subsequently merged with the Canadian Breast Cancer Foundation 

(CBCF) Tumor Bank, 2005 to present; http://www.abtumorbank.com/), Alberta, 

Canada) [21,27].  The tumor bank accrue tumor tissue and blood samples from 

patients with confirmed diagnoses of breast and other cancer types, through eight 

regional hospitals in Edmonton and Calgary in the province of Alberta, Canada 

and are the comprehensive publicly funded cancer care centres managed by 

Alberta Health Services (AHS). These centres provide guideline based cancer 

treatments under the Universal Health Care plan federally legislated in the Canada 

Health Act. These tumor banks contain well-annotated clinicopathological 

information for the stored samples. The CBCF Tumor Bank currently holds blood 

from more than 8,000 individuals from various cancer types, as a source of 

germline DNA for genotyping. Apparently-healthy (i.e., confirmed not to have 

had a diagnosis of any cancer) controls (n=4,472) were obtained from the 

Tomorrow Project (http://in4tomorrow.ca) and were frequency matched to cases 

based on ten-year age group. The Tomorrow Project is a large prospective cohort 

study that started in 2000 and successfully recruited approximately 42,000 

Albertans (64% women) by 2012 using a combination of random digit dialling 

(RDD), and random mail-outs, augmented by email campaigns and social media.  

http://www.abtumorbank.com/
http://in4tomorrow.ca/
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Inclusion criteria for initial recruitment to the Tomorrow Project were as follows: 

(i) aged 35-69 years; (ii) no personal history of cancer, other than non-melanoma 

skin cancer; (iii) able to complete written questionnaires in English and (iv) 

currently living in Alberta.  Upon enrolment to the Tomorrow Project, 

participants completed a health and lifestyle questionnaire (including family 

history of major diseases), and gave written consent to be contacted in the future 

to provide a blood sample for banking to support research in cancer or chronic 

diseases, receive invitations to provide updated health and lifestyle information or 

additional samples in the future, and to linkage with administrative health data to 

understand patterns of health services utilization and disease occurrence [28].  

Absence of prior history of cancer upon study enrolment was confirmed by 

performing linkage with the Alberta Cancer Registry 

(http://www.albertahealthservices.ca/poph/hi-poph-surv-cancer-alta-cancer-

registry-2009.pdf).  As of late 2012, approximately 19,000 Tomorrow Project 

participants from across Alberta had given a 50 ml non-fasting venous blood 

sample for banking in multiple aliquots of buffy coat, serum, plasma and red 

blood cells.  Breast cancer cases in this study were of predominantly Caucasian 

ancestry, and resided in the Edmonton and Calgary regions (sites of tertiary 

cancer centres in Alberta).  The population in these regions accounts for two 

thirds of the total population of the province of Alberta.  Thus, in addition to age 

matching, the controls were selected from the Tomorrow Project using the same 

ethnicity and geographic location criteria. Even though socio-economic status 

(SES) plays a role in health outcomes, differences between SES of cases and 
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controls used in this study and underlying assumptions need to be validated 

independently. However, given the universal access to health care as a model 

adopted in Canada, the influence of SES was therefore considered as minimal, if 

any. A brief description of demographic characteristics of breast cancer cases and 

controls is presented in Table 2-1. Written informed consent to use banked 

samples to support research was obtained from all the study participants, and the 

study was approved by the Alberta Cancer Research Ethics Committee, Alberta, 

Canada. 

Table 2-1 Distribution of age and BMI of breast cancer cases and controls 

used in the study 

 

2.2.2 SNPs and samples used 

In this replication study (stage 3), we investigated associations of the six 

putative breast cancer susceptibility SNPs (4q31.22-rs1429142, 5p15.2-
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rs1092913, 16q23.2-rs1981867, ZNF577
67

-rs10411161, ZNF577-rs3848562 and 

ZNF577-rs11878583) [21], that we reported in our previous two-stage GWAS. 

Stage 3 (total n=4,228) of the study used an independent set of breast cancer cases 

(n=1,294) and healthy controls (n=2,934). In the combined analyses of all three 

stages, a cumulative sample size (total n=7,219) was used. We also assessed the 

strengths of 11 breast cancer susceptibility SNPs that had been reported by 

consortia until 2009 (SLC4A7
68

-rs4973768 [18], 5p12-rs4415084 [16], 5p12-

rs10941679 [16], 5q11.2-rs889312 [13], 8q24.21-rs13281615 [13], FGFR2
69

-

rs2981579 [19], FGFR2-rs1219648 [14], FGFR2-rs2420946 [14], FGFR2-

rs2981582 [13], TNRC9
70

-rs3803662 [13] and COL1A1
71

-rs2075555 [15]). A 

cumulative sample size of 2,672 breast cancer cases and 4,470 healthy controls 

were genotyped for these 11 consortia SNPs. Genotype data are available upon 

request. 

2.2.3 SNPs genotyping and quality control 

Germline DNA was extracted from peripheral blood samples of both cases 

and controls using commercially available Qiagen (Mississauga, ON, Canada) 

DNA isolation kits. All genotyping assays were performed on the Sequenom 

iPLEX Gold platform (San Diego, CA, USA) using services from the McGill 

University and Genome Quebec Innovation Center, Montreal, Canada. Within-

stage (stage 3 for the six SNPs from our previous GWAS and a single stage for 
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 Solute carrier family 4, sodium bicarbonate co-transporter, member 7. 

69
 Fibroblast growth factor receptor 2. 

70
 Trinucleotide repeat containing 9. 

71
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the 11 consortia SNPs) genotype concordance was assessed with 66 duplicate 

samples (8 cases and 58 controls). Cross platform (Affymetrix vs. Sequenom i.e., 

stage 1 vs. stage 3 for the six SNPs) was assessed with 17 duplicate samples (5 

cases and 12 controls). Between-stage (stage 2 vs. stage 3 for the six SNPs) 

genotype concordance was assessed with 632 cases and 452 controls. Duplicate 

samples used for assessing genotype concordances among various stages were 

randomly selected. Very stringent criteria of SNP call rate >99% was considered 

to minimize false positive associations due to missing genotype counts and HWE 

criteria of P>10
-6

 in control subjects were adopted.  

2.2.4 Association analyses and statistical considerations 

2.2.4.1 Overall analyses 

Allelic associations of SNPs with breast cancer susceptibility were evaluated 

with correlation/trend tests with one degree of freedom (d.f.). The strengths of 

allelic and genotypic associations were estimated using unconditional logistic 

regressions and reported as ORs and 95% confidence intervals (CIs). To increase 

sample size and hence the statistical power to better capture SNP-breast cancer 

associations, cases and controls from all independent stages were pooled together 

and combined analyses were conducted. BMI was included as a covariate in the 

logistic models to calculate adjusted ORs, 95% CIs and P values in Stage 3 and in 

combined stages. 

2.2.4.2 Subgroup analyses 

To evaluate variations in SNP-breast cancer associations by 

clinicopathological characteristics, hence addressing potential heterogeneity in the 
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observed overall associations, we conducted subgroup analyses (unconditional 

logistic regressions adjusted for BMI) within the combined breast cancer cases 

based on menopausal status, luminal A status, family history of breast cancer 

(captured under the single category representing cases with first, second or third 

degree relatives), tumor stage and grade. A common set of healthy controls was 

used to test the SNP-breast cancer associations in these subgroup analyses. Breast 

tumors that were either estrogen receptor (ER) or progesterone receptor (PR) 

positive and human epidermal growth factor receptor 2 (HER2) negative were 

classified as luminal As, and the remainder were classified as non-luminal As. 

The cases with unknown ER, PR or HER2 status were excluded from the luminal 

A subgroup analyses. Breast tumors with operable tumor stages (I-IIIA) were 

classified as one subgroup while tumors with non-operable tumor stages (IIIB, 

IIIC) were classified as the other subgroup. Heterogeneity in ORs between the 

subgroups was assessed using multinomial logistic regressions (‘mlogit’) and 

linear combination of estimators (‘lincom’) implemented in Stata 12.0 

(www.stata.com). Statistical significance of this heterogeneity test was reported as 

P for heterogeneity (Phet). 

2.2.4.3 Associations of SNPs with breast cancer outcomes 

We also evaluated the potential prognostic values of SNPs with breast cancer 

outcomes, such as recurrence-free survival (RFS) and overall survival (OS), by 

fitting Cox proportional hazards models available in the “survival” package [29] 

implemented in R 2.15.1 [30], adjusted for BMI. The associations were reported 

as hazard ratios (HRs), 95% CIs and adjusted P values. Genotypes were recoded 

http://www.stata.com/
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to 0 (wild type homozygotes), 1 (heterozygotes) and 2 (variant homozygotes) 

before fitting the Cox models. 

All statistical tests were two-sided. We assumed an additive model of genetic 

inheritance to calculate power, as described earlier [21]. As such, our study had 

adequate power (>80%) to detect associations that were larger than genotypic 

relative risk of ≥1.2. Whenever multiple SNPs were tested, correction for multiple 

hypotheses testing was performed by P=0.05/number of tests. We considered all 

SNPs from our stage 1 GWAS (782,838 SNPs) to calculate genome-wide 

significance (P<6.4 x 10
-8

) for the six replicated SNPs. Correlation/trend tests 

were carried out using SNP and Variation Suite v7.6.11 (Golden Helix, Inc., 

Bozeman, MT, www.goldenhelix.com) [31]. The observed and adjusted allelic 

and genotypic ORs and 95% CIs and adjusted P values were estimated using 

logistic models in PLINK (http://pngu.mgh.harvard.edu/~purcell/plink/) [32]. All 

the general statistical analyses were conducted using R 2.15.1. 

2.3 Results 

Genotyping assays of the 17 SNPs considered in this study were successful 

with a SNP call rate of >99%. Average within-stage genotype concordance was 

100% while cross-platform genotype concordance was >99%; between-stage 

average genotype concordance was also 100%. We reasoned that this negligible 

percentage (<1%) of discordance was unlikely to influence SNP-breast cancer 

associations and hence all the genotype data were considered for the downstream 

association analyses. The genotype distributions from the six SNPs (our previous 

work) showed conformity with Hardy-Weinberg Equilibrium (HWE) criteria in 

http://www.goldenhelix.com/
http://pngu.mgh.harvard.edu/~purcell/plink/
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control subjects. Similarly, the genotype distributions from the 11 consortia SNPs 

were also in agreement with HWE. Minor allele frequencies (MAFs) of the six 

SNPs across all stages and the 11 consortia SNPs were comparable with the 

published MAFs, reflecting the robustness of the genotyping platform vis-à-vis 

negligible genotyping errors (Tables S2-1 and 2-2) and confidence in the 

reported associations. 

Table S2-1 Associations of the previously identified (consortia SNPs) breast 

cancer susceptibility loci in the current study. 

 

Table S2-1 Continued.. 
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2.3.1 Association of previously identified (consortia SNPs) breast cancer 

susceptibility loci  

Except for COL1A1-rs2075555, we successfully replicated the association of 

ten consortia reported breast cancer susceptibility loci in our study population at 

P<0.05 (Table S2-1). These SNPs remained statistically significant after 

correction for multiple hypothesis testing (P<0.05/11=0.004). Four FGFR2 SNPs 

and TNRC9-rs3803662 showed the strongest associations attaining the commonly 

adopted genome-wide significance level (P<5.0 x 10
-8

), with similar ORs to the 

original study findings [13,14,19]. After adjusting for BMI, five SNPs remained 

statistically significant (adjusted P<4.2 x 10
-8

) (Table S2-1). The adjusted per 

allele ORs and 95% CIs were also similar to the observed ORs and 95% CI 

(Table S2-1), indicating that these SNP-breast cancer associations are 

independent of the pathway linking BMI and risk of breast cancer. 
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2.3.2 Replication of the six putative SNPs in stage 3 analyses 

Of the six putative breast cancer susceptibility SNPs that we reported earlier, 

4q31.22-rs1429142 showed consistent reproducibility across all three stages. The 

variant at 5p15.2-rs1092913 also retained statistical significance for increased 

breast cancer risk in the current independent replication stage 3 study at P<0.05 

(Table 2-2), and remained statistically significant after correction for multiple 

hypothesis testing (P<0.05/6=0.008). The magnitude and direction of per allele 

ORs and 95% CIs of both SNPs were consistent with our previous findings [21] 

while slightly elevated ORs and 95% CIs were observed for heterozygotes and 

variant homozygotes (Table 2-2), conforming to the additive model of genetic 

inheritance. After adjustment for BMI, both 4q31.22-rs1429142 and 5p15.2-

rs1092913 remained statistically significant at adjusted P<0.05, while both 

adjusted per allele and genotypic ORs and 95% CIs of 4q31.22-rs1429142 were 

larger than the observed ORs. The remaining four SNPs did not show statistical 

significance at P<0.05 in this stage 3 study. 
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Table 2-2 Replication of the six putative breast cancer susceptibility loci in 

independent stage 3. 
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Table 2-2 Continued.. 

 

2.3.3 Combined analyses of the six putative SNPs (stages 1+2+3) 

In the combined analyses (stages 1+2+3), five of the six SNPs were 

significantly associated with increased breast cancer risk at P<0.05, the exception 

being 16q23.2-rs1981867 which showed marginal statistical significance 

(P=0.06) (Table 2-2). Again, 4q31.22-rs1429142 and 5p15.2-rs1092913 showed 

the strongest associations after multiple hypotheses correction. The five SNPs 

retained statistical significance after adjusting for BMI. Interestingly, 4q31.22-

rs1429142 achieved near genome-wide significance level with greater per allele 

and genotypic ORs and 95% CIs (adjusted P=1.5 x 10
-7

, adjusted per allele OR 

and 95% CI=1.28 [1.17-1.41], adjusted ORheterozygote and 95% CI=1.32 [1.17-1.48] 

and adjusted ORhomozygote and 95% CI=1.52 [1.16-2.00]), indicating that the 

4q31.22-rs1429142-breast cancer association may be linked to the BMI pathway 
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of breast cancer risk elevation (Table 2-2). 5p15.2-rs1092913 also showed a 

strong association with breast cancer risk (adjusted P=2.0 x 10
-4

, adjusted per 

allele OR and 95% CI=1.21 [1.10-1.34], adjusted ORheterozygote and 95%=1.20 

[1.05-1.36] and adjusted ORhomozygote and 95% CI=1.53 [1.13-2.06]). 

2.3.4 Subgroup analyses 

The previously reported GWAS variants (consortia SNPs), except COL1A1-

rs2075555, remained statistically significant in subgroups with both pre and 

postmenopausal women, luminal A cases, cases with or without family history of 

breast cancer, low tumor grade and operable tumor stage at adjusted P<0.05 

(Table S2-2). The adjusted per allele ORs, 95% CIs and P values were also 

comparable to the overall analyses, with similar magnitudes and directions of risk 

(Tables S2-1 and S2-2).  

Table S2-2 Subgroup analysis of the 11 previously GWAS-identified SNPs 

based on menopausal and luminal A status, family history of breast cancer, 

tumor grade and stage. 
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Table S2-2 Continued.. 

 

Table S2-2 Continued.. 
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Table S2-2 Continued.. 

 

Table S2-2 Continued.. 

 

Of these, the four FGFR2 SNPs retained genome-wide significance level in 

subgroups with luminal A cases, cases with family history of breast cancer, low 

tumor grade and operable tumor stage while 8q24.21-rs13281615 and TNRC9-

rs3803662 showed genome-wide significance level associations only in cases 
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with low tumor grade and operable tumor stage, respectively. SLC4A7-rs4973768, 

5q11.2-rs889312, 8q24.21-rs13281615 and TNRC9-rs3803662 showed marginal 

associations in subgroup with non-luminal A cases. Similarly, 5q11.2-rs889312 

and TNRC9-rs3803662 showed significant associations in cases with high tumor 

grade. None of the SNPs showed significant associations in cases with non-

operable tumor stage, with the possible exception of 5q11.2-rs889312 which 

showed a marginally statistically significant association (adjusted P=0.04). 

The associations of the six GWAS-identified putative SNPs from our 

populations with breast cancer were consistent across the subgroups, without any 

substantial modifications in SNP-breast cancer associations observed in overall 

analyses (Table 2-2). 4q31.22-rs1429142 and 5p15.2-rs1092913 remained 

significantly associated in subgroups with both pre and postmenopausal women, 

luminal and non-luminal A cases and cases without family history of breast 

cancer, high and low tumor grades and operable tumor stage at adjusted P<0.05 

(Tables 2-3 and 2-4). Moreover, 4q31.22-rs1429142 attained genome-wide 

significance level in subgroups with premenopausal women (adjusted P=6.2 x  

10
-10

), while a strong statistical association was also observed in cases with 

operable tumor stages (adjusted P=1.6 x 10
-7

). The ZNF577 SNPs (rs10411161, 

rs3848562 and rs11878583) also showed statistically significant associations in 

subgroups with postmenopausal women, luminal A cases, cases without family 

history and operable tumor stages (Tables 2-3 and 2-4).  
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Table 2-3 Subgroup analyses of the six putative breast cancer susceptibility 

SNPs (Table 2-2) based on menopausal and luminal A status and family 

history of breast cancer. 

 

Table 2-3 Continued.. 
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Table 2-3 Continued.. 

 

Table 2-4 Subgroup analyses of the six putative breast cancer susceptibility 

SNPs (Table 2-2) based on tumor grade and stage. 
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Table 2-4 Continued.. 

 

2.3.5 Association of SNPs with breast cancer outcomes 

Of the 17 SNPs tested for their associations with breast cancer outcomes, 

8q24.21-rs13281615 was significantly associated with reduced risk of both RFS 

(adjusted P=0.001 and adjusted per allele HR and 95% CI=0.77 [0.65-0.90]) and 

OS (adjusted P=0.003, adjusted per allele HR and 95% CI=0.76 [0.64-0.91]) 

(Table S2-3). The remaining 16 SNPs did not show statistically significant 

associations with breast cancer outcomes at adjusted P<0.05. 

2.4 Discussion 

In this independent replication study in Canadian women involving 2,750 

breast cancer cases and 4,472 healthy controls, we successfully reproduced the 

associations of ten previously GWAS-identified breast cancer susceptibility loci, 

indicating the robustness of the consortia identified SNPs with breast cancer. In 

addition, two of the six putative breast cancer susceptibility SNPs (4q31.22-
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rs1429142 and 5p15.2-rs1092913) from our previous two-stage GWAS also 

showed robust associations in an independent set of breast cancer cases and 

healthy controls (stage 3). After adjusting for BMI, 4q31.22-rs1429142 attained 

near genome-wide significance level (adjusted P=1.5 x 10
-7

) (Table 2). A major 

strength of this study is the consideration of BMI, which allowed confirmation 

that the genetic contributions to breast cancer are independent of one of the major 

risk factors for breast cancer.  An additional strength was our evaluation of the 

SNP-breast cancer associations as potential prognostic factors for RFS and OS 

after diagnosis and their relationships with breast cancer clinical and molecular 

subtypes. 

Table S2-3 Association of the 17 SNPs with breast cancer outcomes. 
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The most notable associations among the ten previously GWAS-identified 

breast cancer susceptibility loci replicated in this study were with four FGFR2 

SNPs (rs2981579, rs1219648, rs2420946 and rs2981582) and TNRC9-rs3803662 

(observed P<7.0 x 10
-10

 and adjusted P<4.2 x  10
-8

) (Table S2-1). The magnitude 

and direction of the associations were similar to those reported in the original 

GWASs (observed per allele OR ranges: 1.17 – 1.26) [13-16,18,19], suggesting 

the robustness of these associations with breast cancer susceptibility. Further, 

results from the subgroup analyses were consistent with the previous reports [33-

35], supporting the hypothesis that FGFR2 loci (rs1219648, rs2420946 and 

rs2981582) are associated with increased risk of breast cancer, especially in 

familial breast cancer cases (Phet<0.02), and associated with the better prognosis 

luminal A type or estrogen receptor positive breast cancers (Phet<0.001) (Table 

S2-2) [33-35].  

Of the six putative breast cancer susceptibility SNPs reported in our previous 

two-stage GWAS, our independent stage 3 analyses successfully replicated the 

associations of 4q31.22-rs1429142 and 5p15.2-rs1092913 with increased risk of 

breast cancer. In the combined analyses, five of the six reported associations from 

our previous GWAS retained statistical significance, the exception being 16q23.2-

rs1981867. These five SNPs should be further tested independently in additional 

cases and controls to assess their role in breast cancer etiology. When adjusted for 

BMI, we observed near genome-wide significant association for 4q31.22-

rs1429142 (adjusted P=1.7 x 10
-7

) while 5p15.2-rs1092913 remained statistically 

significant (adjusted P=1.9 x 10
-4

). For 4q31.22-rs1429142, there was a 
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substantial increase from the observed ORs (per allele=1.22, ORheterozygote=1.26 

and ORhomozygote=1.36) to adjusted ORs (per allele=1.28, ORheterozygote=1.32 and 

ORhomozygote=1.52). These results indicate that the 4q31.22-rs1429142-breast 

cancer association may be linked to the BMI pathway of breast cancer risk 

elevation. This observation is in contrast to  the ten GWAS-identified consortia 

reported SNP-breast cancer associations, and hence requires replication in 

independent set of breast cancer cases and controls, probably through 

collaborative efforts involving large international consortia. Both 4q31.22-

rs1429142 and 5p15.2-rs1092913 showed statistically significant  associations 

with breast cancer in subgroups with pre and postmenopausal women, cases with 

luminal and non-luminal A tumors, with and without family history of breast 

cancer, low and high tumor grade and operable tumor stage at adjusted P<0.05 

(Tables 2-3 and 2-4). However, the association of 4q31.22-rs1429142 was 

stronger in pre than postmenopausal women (Phet=0.002), suggesting that 

4q31.22-rs1429142-breast cancer association may vary by menopausal status. 

Except for 8q24.21-rs13281615, none of the breast cancer susceptibility 

SNPs, including 4q31.22-rs1429142, showed significant association with breast 

cancer outcomes. 8q24.21-rs13281615 was significantly associated with better 

RFS and OS (adjusted P<3.1 x 10
-3

) (Table S2-3). Similar results for 8q24.21-

rs13281615 were also observed in another study involving 13,527 invasive breast 

cancer cases [33]. To our knowledge, this is the second study to identify the 

potential prognostic value of 8q24.21-rs13281615 and hence this locus merits 

further investigation. These results provide further evidence supporting the 
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hypothesis that the SNPs with prognostic value are yet to be identified using 

whole genome approaches and that the SNPs associated with breast cancer 

susceptibility (etiology) are distinct. 

4q31.22-rs1429142 is located in a gene desert, with the closest gene 

endothein receptor type A (EDNRA) (Figure 2-1) located ~112 kb downstream of 

the SNP. EDNRA gene encoded protein is a cell surface bound receptor involved 

in several fundamental cellular processes by interacting with endothelins (widely 

expressed cytokines in various tissues) [36]. SNPs in or near the EDNRA gene 

have been associated with intracranial aneurysm risk [37], hypertension [38] and 

migraines [39]. This SNP is ~112 kb away from the EDNRA gene locus and we 

therefore queried the SCAN database [40], which uses HapMap human 

lymphoblastoid cell lines to identify putative expression quantitative trait loci. We 

found that 4q31.22-rs1429142 is associated with differential expression of five 

other genes (quantitative transmission disequilibrium test P<0.0001, implemented 

in the SCAN database) involved in at least one type of cancer – i.e., kinesin 

family member 3B (KIF3B) [41], paxillin (PXN) [42], general transcription factor 

IIA, 12 kDa (GTF2A2) [43], PTPRF interacting protein, binding protein (liprin 

beta 2) (PPFIBP2) [44] and tumor protein p63 regulated 1-like (TPRG1L) [45]. 

However, the allele of 4q31.22-rs1429142 responsible for these is unknown and 

future fine mapping studies to identify the causal variant and to investigate its 

allele specific effects are warranted.   
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Figure 2-1 Regional association plot (top panel) for 4q31.22-rs1429142 using 

LocusZoom [48], with the association P values (-log10 P) on the y-axis and 

the chromosomal position (hg18) on x-axis. The association of 4q31.22-

rs1429142 in stage 1 is shown in purple circle while association in combined 

stages (1+2+3) after adjusting for BMI is shown in purple diamond. Pair-

wise linkage disequilibrium (LD) of 4q31.22-rs1429142 with adjacent SNPs 

are measured by r
2
 values (from HapMap Phase II CEU data) and 

represented by the color of each circle. Neighbouring Refseq genes are shown 
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below the plot. LD profiles (bottom panel) among SNPs located within 100 kb 

up and downstream of the 4q31.22-rs1429142, using HapMap Phase II CEU 

data are presented. 

5p15.2-rs1092913 is also located in a gene desert. The closest gene is 

rhophilin associated tail protein 1-like (ROP1NL) located ~2.5 kb upstream of the 

polymorphism. ROP1NL gene encodes a sperm protein, which is reported to 

interact with A-kinase anchoring protein. Recently, an independent study (n= 

4,325 cases and controls) also showed significant association of 5p15.2-

rs1092913 with breast cancer risk in estrogen receptor positive breast cancer of 

Korean ethnicity, suggesting the potential generalizability of this SNP-breast 

cancer association in the Korean population [46]. Furthermore, a meta-analysis of 

two GWASs also found multiple SNPs within the ROP1NL locus associated with 

the phenotype of BMI at 5p15.2, suggesting that this region is important for both 

breast cancer susceptibility and BMI [47].  

In summary, our study not only provided supportive evidence for the 

robustness of the breast cancer susceptibility SNPs previously identified by 

consortia, but also identified a new locus at 4q31.22-rs1429142 for contributing to 

breast cancer susceptibility, lending credence to the continued research efforts in 

search of common variants for breast cancer. 
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3. A two-stage association study identifies methyl-CpG binding 

domain protein 2 gene polymorphisms as candidates for breast 

cancer susceptibility
72

 

3.1 Introduction 

Breast cancer is a multi-factorial, polygenic disease resulting from the 

interplay of genetic, environmental and lifestyle risk factors. Linkage studies have 

revealed that breast cancer tends to cluster in families and disease prevalence is 

two-fold higher among the first degree relatives of affected individuals [1]. 

Familial clustering is characterized by early onset of disease often mediated by 

high-to-moderate penetrance mutations in genes such as those encoding breast 

cancer (BRCA1 and BRCA2) [2,3], ataxia telangiectasia mutated (ATM) [4], cell-

cycle checkpoint kinase 2 (CHEK2) [5], tumor protein 53 (TP53) [6], partner and 

localizer of BRCA2 (PALB2) [7], BRCA1 interacting protein C-terminal helicase 

1(BRIP1) [8] and phosphatase and tensin homolog (PTEN) [9]. Nonetheless, these 

genes in aggregate account for less than 25% of the observed familial genetic risk 

[10]. A polygenic model has been proposed to explain the remaining genetic risk 

in non-BRCA familial and sporadic breast cancer cases [11]. Single nucleotide 

polymorphisms (SNPs)-based genome-wide association studies (GWASs have 

identified low-risk conferring common variants in several complex diseases. For 

European, Ashkenazi Jewish  and Asian population-based GWASs, more than 40 

breast cancer susceptibility loci in several genes and intergenic regions have 
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already been reported and a subset of these associations have reached genome-

wide significance level [12-14].  These variants account for a small proportion of 

overall genetic risk of breast cancer, leaving open the question of hidden or 

missing heritability. Current debates suggest that this may be further explained by 

rare variants, epistasis, epigenetics, gene-environment interactions and copy 

number variations [15,16]. 

In a typical GWAS, the frequencies for each SNP (single-locus tests for 

association) [17] are compared between cases and controls to catalogue 

polymorphisms potentially associated with the phenotype of interest. The most 

promising SNPs, sorted based on p-value ranking (highest significance) and/or 

showing significance in haplotype association analysis [18], are selected and 

replicated in a larger but independent set of cases and controls. In this process, 

SNPs that are not top-ranked because of their modest p-values are ignored and, as 

a result, potentially informative markers may have been missed. It has been 

proposed by others [19,20] that even modest associations (p-value based), if 

highly reproducible in independent cohorts, may still be pertinent to the 

phenotypes under investigation presumably through epistatic interactions 

(interactions of alleles or genes), a phenomenon strongly implicated in the 

etiology of breast cancer and the heritable component of genetic risk. Because the 

majority of the published GWASs concentrate on single locus strategies to 

identify novel breast cancer susceptibility loci, a candidate gene approach 

restricted to specific pathway related gene polymorphisms to more effectively 

mine GWAS data is presented considering moderately associated SNPs. If 
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reproduced in further independent studies, these may serve as putative candidates 

for epistatic effects. 

Previously reported studies focused on common variants in the genes 

involved in DNA repair/metabolism pathways and cell cycle regulation, and the 

markers were selected based on candidate gene approaches [21,22]. In this study, 

I extend this premise using SNPs in or flanking the DNA repair, modifications 

and metabolism pathway related genes from the Affymetrix 6.0 array (Stage 1 of 

GWAS [23]) for independent replication, Stage 2 of the association study design, 

to identify additional breast cancer susceptibility loci not previously reported. 

3.2 Materials and methods 

3.2.1 Study population and DNA isolation 

I used Stage 1 results of breast cancer GWAS published earlier by the 

Damaraju Laboratory, described elsewhere [23]. Briefly, sporadic breast cancer 

cases (n=348), characterized by late onset of disease and controls (n=348) who 

had no documented history of breast cancer in the first and second degree 

relatives were selected for Stage 1 of the GWAS [23]. All subjects were 

predominantly of Caucasian origin. Breast cancer cases (median age=51 years; 

age range=26-90 years with no. of cases <40 years=35; 40-60 years=241;>60 

years=72) were from Alberta, Canada, recruited by the PolyomX Program [24] 

and the Canadian Breast Cancer Foundation-Tumor Bank (CBCF-TB) [24] during 

the years 2001-2005 and since 2005-2008, respectively. The two projects, 

PolyomX Program and CBCF-TB are funded by different granting agencies and 

nomenclature adopted merely indicates this and in no way reflects bias in 
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sampling of population. All cases had a histologically confirmed diagnosis of 

invasive ductal breast carcinoma at the time of enrolment in the study. Gender 

matched healthy controls (median age=50 years; age range=36-70 years with no. 

of controls<40 years=50; 40-60 years=226;>60 years=72), also from Alberta, 

Canada (accessed from the Tomorrow Project [25]), were frequency matched to 

cases based on age. The proportions of cases and controls for three different age 

groups (<40 years, 40-60 years and >60 years) were not statistically significant 

(two-tailed z-test; data not shown). All control subjects enrolled here were free 

from cancer at the time of recruitment in the study. Potential population 

confounders were removed leaving cases (n=302) and controls (n=321) for 

association analysis [23]. Informed consents were obtained from all study 

participants and the study was approved by Research Ethics Board of Alberta 

Health Services, Alberta, Canada. Genomic DNA was extracted from the 

peripheral blood samples of both cases and controls using commercially available 

Qiagen
TM

 (Mississauga, Ontario, Canada) DNA isolation kits. 

3.2.2 SNP selection, genotyping and platform specific genotype 

concordance 

Data filtering and call rate clean-up (Hardy-Weinberg Equilibrium, HWE 

p>0.001 and SNPs call rate>99%) were carried out as described earlier [23]. Of 

the 906,600 SNPs genotyped using Affymetrix SNP 6.0, a total of 782,838 SNPs 

qualified for the downstream analysis. The associations of SNPs with breast 

cancer were evaluated using correlation/trend tests with 1 degree of freedom 

(d.f.). Correlation/trend test is similar to chi-square test of independence except 
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that it is also believed to be a trend test which evaluates correlation of a minor 

allele with the case status using Pearson’s correlation coefficient. The allelic tests 

with 782,838 SNPs (Stage 1) showed a total of 35,519 SNPs statistically 

significantly associated with breast cancer at p<0.05. Of the 35,519 SNPs, I 

identified 215 polymorphisms (minor allele frequency, MAF>10%) within or in 

close proximity to 49 gene regions implicated in pathways or of relevance to 

DNA repair, modifications and metabolism based on National Center for 

Biotechnology Information human genome build 37. Six of 215 SNPs were 

statistically significantly associated with breast cancer at p<0.001 

(correlation/trend tests with 1 d.f.) and were included for Stage 2 replication 

study. To reduce the redundancy among the remaining 209 SNPs, I then 

calculated the pair-wise LD (r
2
) among the markers and found that 73 SNPs were 

strongly correlated (r
2
≥0.8). Of these 73 short-listed SNPs, 16 were in strong LD 

(r
2
≥0.8) with at least one SNP contained within the identified 3,903 haplotype 

blocks (p<0.05) in haplotype association analysis. All haplotypes at a frequency 

threshold of 1% or more were tested together against the reference haplotype for 

their associations with breast cancer. The haplotype association analysis per se 

was carried out as described elsewhere [23]. Since my primary objective in this 

study was to evaluate the moderately associated SNPs from Stage 1 GWAS 

results, I relaxed the significance threshold in haplotype association analysis to 

p<0.05 as compared to the previous study (p<0.001) [23]. Overall, I used allelic 

tests and haplotype association tests to select SNPs for replication study in an 
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independent set of 1,178 invasive breast cancer cases and 1,314 healthy 

individuals serving as controls (Stage 2).  

Genotyping assays were performed on Sequenom® iPLEX® Gold platform 

(services from the McGill University, Genome Quebec Innovation Center, 

Montreal, Canada).Within- (Sequenom only) and cross-platform (Affymetrix vs. 

Sequenom) SNP concordances for 22 SNPs were assessed using 205 and 551 

duplicate samples, respectively. 

3.2.3 Statistical considerations 

Allelic associations were evaluated using correlation/trend tests with one d.f. 

and their corresponding odds ratios (ORs) and 95% confidence intervals (CIs) 

were estimated using unconditional logistic regression implemented in the SNP & 

Variation Suite v7.3.1 (Helix Tree Software) [26]. Genotypic associations were 

also considered for gaining insights in to relative contributions from individual 

genotypes to breast cancer risk using unconditional logistic regression with two 

d.f. using the freeware, SNPstats [27] and the results from co-dominant models 

were summarized in the study. A combined analysis with all samples from Stages 

1 and 2 (a total of 1,480 cases and 1,635 controls) was performed to increase the 

statistical power. The associations for the allelic tests in combined analysis were 

further examined with 1000-times permutation tests and false discovery rates to 

identify observations by chance alone (type 1 error) using Helix Tree.  

Subgroup analyses were undertaken (correlation/trend tests with 1 d.f.) to 

identify associations with sub phenotypes within the combined breast cancer cases 

using a common reference (combined controls) as described previously [28]. The 
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sub phenotypes examined were family history of breast cancer, menopausal status 

and luminal A status. Subgroup analyses helps interrogate potential confounding 

influence of disease heterogeneity on the observed associations and to improve 

statistical power. Tumors were classified as luminal A based on estrogen and 

progesterone receptor status (ER
+
/PR

+
, ER

-
/PR

+
 and ER

+
/PR

-
) and human 

epidermal growth factor receptor 2 status (HER2
-
) [29]. All the remaining cases 

were classified as non-luminal A tumors.  

The current sample size conferred more than 80% power to detect 

associations using a co-dominant model for a SNP with 10% MAF, disease 

prevalence at 1/10 in population for breast cancer, a relative risk of 1.3, type I 

error of 0.05 and with the LD between markers at r
2
 of 0.8 [30].  

The LD patterns for regions showing the strongest and consistent associations 

across Stages 1 and 2 and combined analyses were examined using Haploview 

v4.2 [31]. For the three methyl-CpG binding domain protein 2 (MBD2) SNPs, 

haplotype frequencies were estimated using SNPstats [27]. The software 

implements the expectation-maximization algorithm coded into haplo.stats 

package to calculate the estimated relative frequencies for each haplotype [32]. 

Haplotype association analyses for MBD2 SNPs were performed with 

unconditional logistic regression using the default setting of a log-additive model 

and expressed in terms of ORs and 95% CI (feature available in SNPstats).  
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3.3 Results 

3.3.1 Initial assessment of the data quality 

Of the 22 SNPs selected for replication in Stage 2, genotyping for one SNP 

(rs17519016) was not successful. The cross-platform (Affymetrix vs. Sequenom) 

SNP call concordance for the remaining 21 SNPs using 551 duplicate samples 

from Stage 1 was more than 98%. Within-platform (Sequenom) SNP call 

concordance among the 205 duplicates used in Stage 2 was more than 99.4%. Per 

sample and per SNP call rates for Stage 2 were >98.3% and >98.4%, respectively, 

and all 21 SNPs were in HWE proportion at p>0.001 in controls (Table 3-1). 

Cross-platform and within-platform discordances were very low (<2%) and 

are in agreement with previously reported GWAS studies [12,23]. Further, the 

MAFs were consistent among the two stages and also comparable to HapMap 

Central Europeans (CEU) population (data not shown), indicating that the scope 

of false positive associations due to genotyping errors (systematic or random) was 

effectively minimized. 
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Table 3-1 SNPs characteristics used in the study. 

 

 

 

 



 

109 

 

Table 3-1 Continued.. 

a
From NCBI human genome build GRCh37; DHX15, DEAH (Asp-Glu-Ala-His) box polypeptide 

15;  ERCC4, excision repair cross-complementing rodent repair deficiency, complementation 

group 4; LIG4, ligase IV, DNA, ATP-dependent; MBD2, methyl-CpG binding domain protein 2; 

MBD5, methyl-CpG binding domain protein 5; MGMT, O-6-methylguanine-DNA 

methyltransferase; MYH15, myosin, heavy chain 15; RAD21, RAD21 homolog (S. pombe); 

RPAP1, RNA polymerase II associated protein 1; TNFAIP8, tumor necrosis factor, alpha-induced 

protein 8;  TP63, tumor protein 63; TPRG1, tumor protein p63 regulated 1; VEGFC, vascular 

endothelial growth factor C; 
b
(302 cases and 321 controls); 

c
(1178 cases and 1314 controls); 

d
(1480 cases and 1635 controls); MAF, combined minor allele frequency in both cases and 

controls; ecombined SNP call rate in both cases and controls 

 

3.3.2 Stage 2 analysis 

In Stage 2, six SNPs showed suggestive associations with breast cancer 

(Table 3-2).Three SNPs (rs8094493, rs4041245 and rs7614) were from MBD2 

gene regions and were marginally associated with reduced risk for breast cancer 

(ORs, 0.90, 0.91 and 0.92, respectively) (Table 3-2). The other three SNPs 

rs13250873, rs1556459 and rs2297381 were located in or close proximity of 

RAD21 homolog (S. pombe) (RAD21), O-6-methylguanine-DNA 

methyltransferase (MGMT) and RNA polymerase II associated protein 1 (RPAP1) 

gene regions, respectively, and showed suggestive associations with increased 

risk for breast cancer.  
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Table 3-2 Six SNPs with the strongest and consistent associations with breast 

cancer susceptibility across stages 1, 2 and in combined analysis. 
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Table 3-2 Continued.. 

 

 
 

The association test results for the remaining 15 SNPs are summarized in 

Table S3-1. Fourteen of these showed no statistical significance and one SNP 

(rs7636114) showed suggestive association trend in Stage 2 (but in opposite 

direction to the Stage 1 results) and is therefore not considered for further 

analysis. 



 

112 

 

Table S3-1 Fifteen SNPs and their association statistics from stages 1, 2 and 

in combined analysis. 

a
(302 cases and 321 controls); 

b
(1178 cases and 1314 controls); 

c
(1480 cases and 1635 controls); 

OR, odds ratio; CI, confidence interval; 
d
p-values calculated from correlation/trend test with 1 

degree of freedom using multiplicative model and unconditional logistic regression with 2 degrees 

of freedom using co-dominant genotypic model; FDR, false discovery rate for observed 

associations in joint analysis using multiplicative model; 
e
1000-times permutation p-value for 

observed associations in joint analysis using multiplicative model. 
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3.3.3 Combined analysis (Stages 1 and 2) 

I combined the results for six SNPs from Stages 1 and 2 and conducted a 

combined analysis and found similar in direction of risk but also stronger 

association signals for all six variants (Table 3-2). The MBD2 SNPs rs8094493 

(OR:0.85, p<0.0021), rs4041245 (OR:0.86, p<0.0026) and rs7614 (OR:0.86, 

p<0.0041) were significantly associated with reduced risk of breast cancer. The 

observed false discovery rates (FDR) of 0.045, 0.027 and 0.029, respectively, for 

the allelic associations in combined analysis provided confidence in the study 

findings. I also subjected the data to permutation testing (1000-times) and 

observed permutation p-values of 0.038, 0.048 and 0.069, respectively, an 

indication that the reported findings may not be attributed to associations by 

chance alone. The heterozygote and variant homozygote genotypes of MBD2 

SNPs from co-dominant models also conferred similar trends of reduced risks of 

breast cancer (ORs:0.76-0.79).  

The remaining polymorphisms analyzed (rs13250873, rs1556459 and 

rs2297381, Table 3-2) also showed significant associations, except the direction 

of risk for breast cancer (allelic ORs, 1.13-1.20) were in opposite direction to the 

ones observed for MBD2 SNPs. The association signals for all three SNPs were 

characterized by low FDR values (0.023 to 0.054); the 1000-times permutation 

tests also showed marginal significance for rs13250873. In the co-dominant 

genotypic models, variant homozygotes (OR >1.28) showed stronger associations 

than heterozygotes (OR 1.07 to 1.14) in the combined analysis for rs13250873, 

rs1556459 and rs2297381. 
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3.3.4 Subgroup analyses 

Due to potential for genetic risk determinants to be associated with specific 

clinical and molecular subtypes of breast cancer, I reviewed clinicopathological 

characteristics of the cases in both Stages 1 and 2 and conducted stratified 

analyses (Table 3-3). I evaluated allelic associations for six SNPs with the 

following subgroups: without and with family history of breast cancer, pre- and 

post-menopausal status and luminal A and non-luminal A (i.e., good and poor 

prognostic groups, respectively) breast cancer status of the tumors, using 

correlation/trend tests with one d.f. I found associations between 

clinicopathological characteristics and the polymorphisms considered, and the 

observed ORs were consistent across subgroups (Table 3-3). 

None of the observed associations were stronger than the single locus effects 

and hence it is less likely that these clinicopathological characteristics (potential 

confounders) have significant effects on initial observed associations with 

unstratified cases (Table 3-2). 

3.3.5 Pair-wise LD profiling between markers 

I examined LD profiles for the six identified variants (Table 3-2) using 

HapMap II CEU genotype data (available from www.hapmap.org). I found that 

three MBD2 SNPs (rs8094493, rs4041245 and rs7614) in intron 3, intron 6 and 

the 3` untranslated region, respectively, were in strong LD with D`=1 (Figure 3-

1a) and these profiles were also observed in the curent study population (Figure 

3-1b). rs7614 and rs4041245 were located in a LD block spanning ~6 kb region 

and rs8094493 was located in a LD block of ~9 kb region.  



 

115 

 

Table 3-3 Subgroup analyses based on family history of breast cancer, 

menopausal status and luminal A tumors. 

 
 

Table 3-3 Continued.. 

 

  



 

116 
 

 

 

Figure 3-1 Pair wise LD profiles between SNPs from MBD2 gene region. (a) 

LD profile of whole MBD2 isoform 1 spanning ~70.58 kbps. The gene is in 

reverse orientation (3`- 5`) on chromosome 18q arm. Five SNPs (three from 

the current study, shown in black and two from Zhu et al. [35], shown in red) 

in MBD2 gene regions are shown based on their relative position on HapMap 

CEU dataset (Phase 1 & 2-full dataset). LD blocks were defined using 

"confidence interval" method as explained by Gabriel et al. [42]. D` values 

are given for LD between the markers. The darker the cell, the greater the D` 

value between the SNPs. (b) LD profile for three MBD2 SNPs from the 

current study based on the current study population. 
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3.3.6 Haplotype analysis for MBD2 gene polymorphisms 

I reasoned that the highly correlated SNPs from the MBD2 gene region may 

form distinct haplotypes that could potentially explain the population diversity. 

Polymorphisms, rs8094493, rs4041245 and rs7614 formed two major haplotypes, 

one with common alleles (major allele) and other with variant alleles (minor 

allele). The common haplotype had a population frequency of 0.58 (0.60 for cases 

and 0.56 for controls) and the variant haplotype had a population frequency of 

0.40 (0.38 for cases and 0.42 for controls). The variant form was significantly 

associated with the reduced risk of breast cancer (OR:0.86, p<0.003) (Table 3-4). 

The population diversity that could be explained by the two major haplotypes 

identified in this analysis was 98%. 

Table 3-4 Haplotypes for three MBD2 SNPs and their associations with 

breast cancer risk. 

 

3.4 Discussion 

In this study, I identified SNPs associated with breast cancer among genes 

related to DNA repair, modifications and metabolism. A total of six loci were 

identified using a two-stage association study design, and these were not 

previously reported in published GWASs for breast cancer [12-14,23] as putative 

markers for breast cancer susceptibility. The identified loci were highly 
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reproducible in an independent study (Stage 2) and the statistical significance of 

the findings were consistent across study stages, in the combined analysis, and 

across clinicopathological subtypes of breast cancer. These loci are promising 

markers and warrant independent validation in Caucasian population or in diverse 

ethnic cohorts to evaluate the generalizability of my findings.   

The six loci identified were from four chromosomes 18, 15, 10 and 8. Both 

single locus and haplotype association analyses indicated that MBD2 gene loci 

(rs8094493, rs4041245 and rs7614) conferred protection against breast cancer.  

The magnitude and the direction of the association signals in both stages were 

consistent between allelic and genotypic models (Table 3-2). The allelic risk 

effects were enriched in combined analysis with stronger association p-values of 

<10
-3

. Low FDR values and permutation testing provided further confidence in 

my findings by ruling out the observations as false positives.  Mechanistic 

relationships to breast carcinogenesis are suggested because MBD2 is a well 

characterized gene and the encoded protein binds methylated promoter regions 

and mediates transcriptional repression of tumor suppressor genes [33]. DNA 

(cytosine-5)-methyltransferase 1 (DNMT1) is reported to interact with the methyl-

CpG binding protein complex, MBD2 and MBD3 at late S-phase replication foci 

and as such, these interactions may direct DNMT1 to hemimethylated sequences 

following DNA replication and silencing of genes in S-phase [34]. 

Earlier, Zhu et al. reported the associations of two SNPs (rs1259938 and 

rs609791) in MBD2 gene regions with the reduced risk of breast cancer in pre-

menopausal Caucasian women [35]. I evaluated for possible LD between the 
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distinct MBD2 SNPs reported here and those reported by Zhu et al. [35] The 

polymorphisms reported by earlier investigators were not in LD with the SNPs 

reported here (Figure 3-1a). The notable differences between our study and those 

by Zhu et al. [35] are (i) the SNPs rs1259938 and rs609791 in the previous study 

did not show association with the breast cancer phenotype in unstratified cases 

although they showed statistical significance when cases were stratified by pre- 

and post-menopausal status; (ii) I identified distinct MBD2 gene SNPs and these 

were all statistically significantly associated with breast cancer as a phenotype 

even in both unstratified (Table 3-2) and stratified cases (Table 3-3); (iii) sample 

sizes were substantially larger in the curent study (total sample size of 1480 cases 

and 1615 controls) as opposed to 393 cases and 436 controls from the nested case-

control study with a Caucasian population reported by Zhu et al. [35] In 

summary, observations with a larger sample size (this study) showed association 

with breast cancer even without stratification of cases and the haplotypes 

associated were also distinct. However, it is important to note that the magnitude 

and direction of risk and the gene identified is similar in both studies. I did not 

genotype the polymorphisms reported by Zhu et al. [35] at this time, and may 

therefore require independent validation. The SNPs analyzed by Zhu et al. [35] 

were not present in the Affymetrix SNP 6.0 array. 

Other genes/loci were identified for breast cancer risk in this study. 

rs2297381 was located in intron 5 of RPAP1 and was associated with the risk of 

breast cancer. RPAP1 is a poorly understood gene possibly involved in the 

interaction of RNA polymerase II and its regulators of protein complex formation 
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[36]. To my knowledge, this is the first report on RPAP1gene SNP associated 

with breast cancer risk. rs13250873 and rs1556459, located ~52 kb downstream 

of RAD21 and ~454 kb upstream of MGMT, respectively, were significantly 

associated with the risk of breast cancer across both stages and in combined 

analysis. Both RAD21 and MGMT are well-studied genes with significant roles in 

carcinogenesis. The RAD21 protein is involved in double-strand breaks repair as 

well as chromatid cohesion during mitosis [37,38]. Intronic polymorphisms in 

RAD21gene have been associated with breast cancer in high-risk population [39]. 

Similarly, MGMT repairs the alkylated guanine due to carcinogenic effects 

induced by alkylating agents [40]. Coding SNPs of MGMT gene are reported to be 

associated with breast cancer risk [41]. MGMT SNP reported in this study is ~454 

kb upstream of the MGMT gene. Although rs13250873 and rs1556459 were not 

located in the gene regions, further replication of these findings and fine mapping 

of these loci is required to determine if the identified polymorphisms exert their 

action through regulation of the nearby RAD21 and MGMT genes. 

None of the associations reached genome-wide significance level in this two-

stage association study with the combined sample size of 1,480 cases and 1,635 

controls. However, confidence in the reported associations stems from the 

stringent quality control parameters employed (>98% SNP and sample call rates, 

HWE p>0.001 and >98% SNP concordance in replicates and good call rate 

concordance across platforms). Furthermore, the low FDR values and results from 

permutation testing should favour considering the reported polymorphisms for 

replication in independent studies.  In summary, I identified additional breast 
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cancer susceptibility loci in Caucasian women by focusing on genes related to 

DNA repair, modifications and metabolism. The curent study supports the 

concept of investigating moderate association signals from Stage 1 GWAS using 

a candidate gene approach restricted to specific pathway related gene 

polymorphisms. In this study I did not consider all related DNA 

repair/modifications/metabolism pathway gene polymorphisms or their potential 

associations with other subtypes of breast cancer (basal, HER2
+
 and luminal B) 

due to limitations in sample size. Other reported DNA 

repair/modifications/metabolism gene polymorphisms (that did not reach genome-

wide significance) in previously published studies, if replicated in independent 

cohorts, should also be considered along with the six reported variants here as 

putative candidates for epistatic models to gain insights to the missing heritability 

of sporadic breast cancer.  
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4. Assessing SNP-SNP interactions among DNA repair, 

modification and metabolism related pathway genes in breast 

cancer susceptibility
73

 

4.1 Introduction 

Breast cancer is a multifactorial disease, which results from combined effects 

of genetic, reproductive, environmental, and lifestyle risk factors. Linkage and 

twin studies reveal familial clustering of breast cancer, giving an approximately 

two-fold higher risk for first-degree relatives with family history [1,2]. Although 

some familial clustering is explained by germline mutations in high or moderate 

penetrance genes such as BRCA1
74

[3], BRCA2
75

[4], ATM
76

[5], PTEN
77

[6], 

TP53
78

[7], BRIP1
79

[8], PALB2
80

[9] and CHEK2
81

[10], such mutations are rare in 

the general population [11-13]. Hence, a polygenic model has been proposed to 

explain the bulk of genetic susceptibility in sporadic and non-BRCA breast 

cancers [13]. Under this model, a combination of multiple low penetrance 

loci/genes across the genome would contribute to overall genetic risk.  

Several genome-wide association studies (GWASs) identified multiple single 

nucleotide polymorphisms (SNPs) statistically significantly associated with breast 

cancer susceptibility [12,14-21], supporting the polygenic model. However, these 
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75

 Breast cancer 2, early onset. 
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low penetrance variants, together with known predisposition genes (e.g., BRCA1 

and BRCA2), explain only a small proportion of the total genetic risk of breast 

cancer [16], suggesting that more variants exist. Identifying additional low 

penetrance variants is difficult because the effect size is expected to be smaller 

than the GWAS variants reported thus far, requiring large sample sizes. 

Collaborative efforts are now underway from international consortia to profile 

additional low penetrance variants. Current GWAS approaches largely rely on 

single-locus effects of SNPs with the disease of interest, studied one SNP at a 

time, while ignoring potential SNP-SNP interactions at two or more loci (i.e., 

epistatic effects) [22,23]. Epistasis is a ubiquitous phenomenon that describes how 

genes/loci interact to affect phenotypes. Such interactions are assumed to 

contribute to breast cancer. In search of the putative genes or SNPs contributing to 

epistasis, I reasoned that a study design exclusively addressing the value of 

GWAS or candidate gene SNPs with single-locus effects with weak statistical 

significance (hereafter referred to as “weak single-locus effects”) but acting 

within a common biological pathway would provide mechanistic support for such 

a premise, which otherwise might be overlooked in less constrained genetic 

association studies. There is support for the premise that SNPs with weak single-

locus effects are indeed of value to explore for epistatic effects, which in turn may 

contribute to a substantial proportion of the overall heritable risk [24,25]. While 

GWAS approaches are still crucial to initially scan genomes to identify variants 

with appreciable single-locus effects, further analyses capturing the combined 

effects of two or more SNPs with weak but reproducible single-locus effects in 
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independent stages/studies may shed light on the unexplained heritability of breast 

cancer. 

In Chapter 3, I conducted a two-stage association study using SNPs selected 

from GWAS for sporadic breast cancer (recently published [26]). The SNPs 

selected were located in or close to DNA repair, modification and metabolism 

pathway related genes and showed weak single-locus effects for breast cancer.  In 

a combined sample size of 1,480 breast cancer cases and 1,635 healthy controls 

from two independent stages, I observed six SNPs (located on chromosomes 8, 

10, 15 and 18) showing weak but consistently reproducible single-locus effects 

for breast cancer susceptibility (per allele odds ratio (OR) ranged 0.85-0.86 for 

three protective SNPs and 1.13-1.20 for three risk elevating SNPs). I hypothesized 

that these variants may be optimal candidates to investigate potential SNP-SNP 

interactions at two or more loci contributing to breast cancer etiology. 

Furthermore, I also investigated the single-locus effects of SNPs considered in 

this study to examine their reproducibility in an independent study population, 

while adjusting for body mass index (BMI), a known risk factor for breast cancer. 

To enable a more comprehensive evaluation of epistatic interactions among 

SNPs, I also considered additional SNPs from cancer related DNA repair genes, 

with prior evidence of their weak single-locus effects for breast cancer [27-35]. 

Genetic variations in DNA repair genes are extensively studied in the context of 

breast cancer since inter-individual variations in DNA repair capacity are thought 

to contribute to heritable component of breast cancer [11,36]. Despite large efforts 

by investigators/consortia, DNA repair genes/loci identified from GWASs that 
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contribute to breast cancer susceptibility are limited. This further strengthens the 

premise that DNA repair related SNPs may potentially contribute through the 

epistatic mechanisms. The bulk of the literature from biochemical 

characterizations of DNA repair proteins indicate that these gene products are 

involved in protein-protein and DNA-protein interactions to repair damage to 

DNA by carcinogens and radiation induced effects.  To my knowledge, this is the 

first study attempting to assess potential SNP-SNP interactions at two or more 

loci implicated in breast cancer susceptibility, using systematically selected SNPs 

based on functional criteria from both GWAS and candidate gene approaches.  

4.2 Materials and methods 

4.2.1 Study participants 

Breast cancer cases (n=2,795) used in this study were accessed from the 

provincial tumor bank  located at the Cross Cancer Institute, Edmonton, Alberta, 

Canada (http://www.abtumorbank.com/), and the description of these has been 

presented in detail elsewhere [19,26]. This tumor bank contains well-annotated 

clinicopathological characteristics of the samples stored. The breast cancer cases 

included in this study had a pathologically confirmed diagnosis of invasive breast 

cancer predominantly characterized by late onset of disease (i.e., median age and 

range at diagnosis=54 and 21-92 years, respectively, with >92% of the cases aged 

40+ years at the time of diagnosis). The median BMI of breast cancer cases at the 

time of diagnosis was 27.4 and range 15.6-80.4. Healthy controls (n=4,505) were 

accessed from the Tomorrow Project (http://in4tomorrow.ca/) [19,26], Edmonton, 

Alberta, Canada, which aims to capture lifestyle factors and DNA of 

http://www.abtumorbank.com/
http://in4tomorrow.ca/
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approximately 50,000 healthy Albertans enrolled in the prospective cohort study. 

The median age and range at blood draw were 54 and 34-78 years, respectively, 

with >92% of the controls aged 40+ years at the time of blood draw. The median 

BMI of healthy controls at the time of enrollment in the study was 25.5 and range 

10.4-60.4. The breast cancer cases and controls were predominantly of Caucasian 

origin based on their self-declared ethnicity and the overall demographics of the 

region. All participants provided informed consent and the study was approved by 

the Alberta Cancer Research Ethics Committee, Alberta, Canada. 

4.2.2 SNPs and samples considered 

A total of 17 candidate SNPs located in or close to 14 DNA repair, 

modification and metabolism pathway related genes (RAD21, MGMT, RPAP1, 

MBD2, PARP1, MLH1, MSH3, ERCC6, MDM2, BRCA2, ERCC5, APEX1, 

XRCC3 and XRCC1) were considered (Text S4-1 and Tables S4-1 and S4-2).  

Of these, six SNPs (8q24.11-rs13250873, 10q26.3-rs1556459, RPAP1
82

-

rs2297381, MBD2
83

-rs7614, MBD2-rs4041245 and MBD2-rs8094493) were 

selected from GWAS and previously replicated in an independent set of breast 

cancer cases and healthy controls [19,26]. These SNPs were genotyped as part of 

a stage 3 study in additional breast cancer cases (n=1,315) and healthy controls 

(n=2,861) and were evaluated for their single-locus effects for breast cancer (Text 

S4-1 and Table S4-1). Overall, I present my findings from a combined sample 

size of 2,795 breast cancer cases and 4,663 controls from all three stages to meet 

                                                 

82
RNA polymerase II associated protein 1. 

83
methyl-CpG binding domain protein 2. 
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the statistical rigor. The remaining 11 candidate DNA repair SNPs (PARP1
84

-

rs1136410, MLH1
85

-rs1799977, MSH3
86

-rs184967, MSH3-rs26279, ERCC6
87

-

rs2228528, MDM2
88

-rs769412, BRCA2
89

-rs1799943, ERCC5
90

-rs17655, 

APEX1
91

-rs1130409, XRCC3
92

-rs1799796 and XRCC1
93

-rs25487) were selected 

based on published DNA repair gene polymorphisms and their association with 

breast cancer susceptibility [27-35], the pilot study by the Damaraju Laboratory 

screening for more than 100 SNPs from 59 genes showing high minor allele 

frequency, concordance of genotypes to Hardy-Weinberg Equilibrium (HWE) in 

controls, statistical significance for the association in overall case-control analysis 

or promising associations (allelic and/or genotypic) for subtypes of breast cancer 

addressing the inherent heterogeneity, and high SNP call rates (data not shown). 

These 11 SNPs were genotyped in 2,720 breast cancer cases and 4,505 controls 

and were evaluated for their single-locus effects for breast cancer. To evaluate 

SNP-SNP interactions, I used genotype data of the 17 SNPs represented in a 

common set of breast cancer cases (n=2,718) and healthy controls (n=4,496). The 

finite discrepancies between the numbers of samples used for genotyping of the 

profiled SNPs and those used for SNP-SNP interactions were expected due to 

multiplexing assays for SNPs and the panels designed for the genotyping 

                                                 

84
poly (ADP-ribose) polymerase 1. 

85
mutL homolog 1, colon cancer, nonpolyposis type 2 (E. coli). 

86
mutS homolog 3 (E. coli). 

87
excision repair cross-complementing rodent repair deficiency, complementation group 6. 

88
Mdm2, p53 E3 ubiquitin protein ligase homolog (mouse). 

89
 Breast cancer 2, early onset. 

90
excision repair cross-complementing rodent repair deficiency, complementation group 5. 

91
APEX nuclease (multifunctional DNA repair enzyme) 1. 

92
 X-ray repair complementing defective repair in Chinese hamster cells 3. 

93
 X-ray repair complementing defective repair in Chinese hamster cells 1. 
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experiments on the Sequenom iPLEX Gold platform. An overview of the study 

design is presented in Figure 4-1. 

 

Figure 4-1 An overview of the study design. 

4.2.3 Text S4-1 Methodology and pertinent discussion for single-locus 

association analyses of the 17 SNPs considered in the current study 

I initially investigated the single-locus effects of the 17 SNPs considered for 

potential epistatic effects. Both allelic and genotypic single-locus effects of SNPs 

for breast cancer were determined. Associations of SNPs with breast cancer 

susceptibility were evaluated with correlation/trend tests with one degree of 

freedom (d.f.). The magnitude of allelic and genotypic effects of the six putative 

breast cancer susceptibility SNPs (previous work from Chapter 3) [26] were 

estimated using unconditional logistic regression and reported as odds ratios 
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(ORs) and corresponding 95% confidence intervals (CIs). Cases and controls 

from all three independent stages were pooled together and combined analysis 

was conducted. BMI was included as covariate in the logistic regression models: 

I, therefore, report BMI-adjusted ORs, 95% CI and P values of the six 

susceptibility SNPs and the additional 11 DNA repair SNPs. 

Corrections for multiple comparisons were performed by conventional 

P=0.05/number of single-locus tests. Correlation/trend tests were performed using 

SNP and Variation Suite v7.6.11 (Golden Helix, Inc., Bozeman, MT, 

www.goldenhelix.com) [45]. The observed and adjusted allelic and genotypic 

ORs and 95% CI and adjusted P values were estimated using logistic models 

available in PLINK [37]. R.2.15.1 was used for general statistical analyses. 

The results from the single-locus tests and combined analyses across three 

stages of the study are briefly summarized - In stage 3, associations of the six 

SNPs (previous work Chapter 3) [26] showed consistency in terms of the 

magnitude and direction of associations in both allelic and genotypic tests but did 

not show statistical significance at P<0.05 (Table S4-1). However, in combined 

analysis, all SNPs demonstrated weak single-locus effects for breast cancer at 

P<0.05, and were independent of BMI. The three MBD2 SNPs showed more 

statistically significant associations than the rest and were significant even after 

correction for multiple comparisons (combined unadjusted P<3.4 x 10
-3

 and 

adjusted P<1.8 x 10
-2

) (Table S4-1). Four DNA repair SNPs (MLH1-rs1799977, 

MDM2-rs769412, BRCA2-rs1799943 and XRCC1-rs25487) showed significant 

associations with breast cancer susceptibility at P<0.05 (Table S4-2). Of these, 

http://www.goldenhelix.com/
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MLH1-rs1799977 and MDM2-rs769412 conferred reduced risk of breast cancer 

with allelic and genotypic ORs ranged from 0.79 to 0.94 while BRCA2-rs1799943 

and XRCC1-rs25487 indicated risk-elevating effects with allelic and genotypic 

ORs ranged from 1.08 to 1.32. These weak single-locus effects were independent 

of BMI. BRCA2-rs1799943 showed a more statistically significant association and 

was significant even after correction for multiple comparisons, with per-allele 

ORs and 95% CI= 1.15 [1.06-1.25], ORheterozygote and 95% CI= 1.15 [1.03-1.28], 

ORhomozygote and 95% CI= 1.32 [1.08-1.61] and P=9.8 x 10
-4

, adjusted for BMI. 

Table S4-1 Associations of the six putative breast cancer susceptibility loci in 

stage 3 and in combined stages. 
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Table S4-1 Continued.. 
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Table S4-2 Eleven Candidate DNA repair SNPs and their associations with 

breast cancer susceptibility in 2,720 breast cancer cases and 4,505 healthy 

controls. 

 

Table S4-2 Continued.. 
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4.2.4 SNP genotyping and quality control 

Genotyping assays of the 17 SNPs were designed and performed on the 

Sequenom iPLEX Gold platform (San Diego, CA, USA) using services from the 

McGill University and Genome Quebec Innovation Center, Montreal, Canada. 

Genotype concordance among SNPs was assessed using 66 duplicate samples (8 

cases and 58 controls). Thresholds for SNP call rates of >99% and HWE P>10
-6

 

in controls were adopted. 

4.2.5 Statistical considerations 

I evaluated potential interactions among the select 17 candidate SNPs at two 

loci using logistic regression and multiple loci using logic regression. Logistic 

regression models with command ‘-epistasis’ in PLINK 

(http://pngu.mgh.harvard.edu/~purcell/plink/) [37] were used to assess two-way 

interactions and reported as ORs, 95% confidence intervals (CIs) and P values 

associated with the b3 coefficient of the following model: 

logit(E[Y])= b0 + b1A + b2B + b3A×B, Y ~ Bernoulli(E[Y]) 

where b3 captures the two-way interaction between SNP A and SNP B. To correct 

for multiple comparisons, I calculated the Benjamini-Hochberg False Discovery 

Rate (FDR) [38].  

Logic regression is a method to assess SNP-SNP interaction among multiple 

loci, and it has been successfully applied to a GWAS SNP data recently [39], in 

addition to a candidate-gene approach [40]. Logic regression searches for a set of 

predictors that are Boolean combinations of binary SNP covariates using 

intersection (“AND”) and union (“OR”) operations. To explore potential multi-

http://pngu.mgh.harvard.edu/~purcell/plink/
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way SNP-SNP interactions among the 17 SNPs considered in this study, a logic 

regression model was fitted using the LogicReg package [41] available in R 2.15.1 

[42]. 157 (2.1%) subjects were excluded due to missing genotype as the LogicReg 

does not allow missing data. Since SNPs can have three possible genotypes (e.g., 

AA, AB, BB), the 17 SNPs were first recoded into two sets of binary covariates 

by using both dominant (e.g., AA=1, AB=1, BB=0) and recessive (e.g., AA=0, 

AB=0, BB=1) and fitted the logic regression of the following form: 

logit(E[Y]) = b0 + b1L1 + b2L2 + … + bnLn, Y ~ Bernoulli(E[Y]) 

where Li is a Boolean combination of the binary SNP covariates such as [(SNP 

A=AA OR SNP B=AA) AND SNP C=AB or BB], also known as a logic tree. A 

score function (deviance of the model) was then used to evaluate models with the 

number of trees, n, in the range of [2, 5] and the total number of SNPs in the 

range of [2, 17] using a 10-fold cross validation approach to determine the 

optimal tree/SNPs size. The statistical significance of a final model was evaluated 

with the optimal tree/SNPs size using a permutation test with 10,000 permutations 

of the case control labels. All statistical tests were two-sided.  

4.3 Results 

Genotyping assays for each of the 17 SNPs were successful with a SNP call 

rate of >99% and the SNPs also passed HWE (P>10
-6

) in controls (Tables S4-1 

and S4-2). Average genotype concordance was 100% for the 17 SNPs. Single-

locus association tests in independent stages or in combined stage, adjusted for 

BMI were also profiled. Overall, SNPs considered in this study conferred weak 

single-locus effects for breast cancer, as I expected.  I also analyzed the SNP-
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breast cancer associations by removing subjects from cases and controls with 

extreme ages (<35 yrs. and >80 yrs.) and BMI (<18.5 and >40). The associations 

did not change materially, suggesting that the small fraction (~6.4% or 468 

subjects) of extreme subjects may not have modified the observed overall SNP-

breast cancer associations, data not shown. 

4.3.1 Two-way SNP-SNP interactions 

Logistic models were used to assess all SNP pairs among 17 candidate SNPs. 

Of these, two SNP pairs (APEX1-rs1130409 * RPAP1-rs2297381 and MLH1-

rs1799977 * MDM2-rs769412) showed the strongest statistical association with 

breast cancer (P<7.3 x 10
-3

), with modest FDR values of 0.30 and 0.49, 

respectively (Table 4-1). Both SNP pairs showed increased risks towards breast 

cancer with ORs and 95% CIs of 1.16 [1.06-1.28] and 1.33 [1.08-1.64], 

respectively. The observed risks were similar for cases with luminal A tumors 

(~70% of the total cases), while the interactions were not statistically significant 

when analyses were restricted to cases with luminal B, HER2+ and triple negative 

tumors, data not shown. 

Table 4-1 Two-way interactions identified among DNA repair pathway 

related SNPs. 
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4.3.2 SNP-SNP interactions involving multiple SNPs using Logic regression 

Logic regression including the 17 SNPs identified a logic structure 

representing a SNP-SNP interaction involving four SNPs and was statistically 

significant (P=2.4 x 10
-3

) (Table 4-2). The logic structure contained two logic 

trees, one with three SNPs and another with one SNP.  The first logic tree 

consisted of an intersection of a union of MBD2-rs4041245 and MLH1-rs1799977 

and MDM2-rs769412 while the second logic tree contained BRCA2-rs1799943. 

These logic trees formed four logic-based risk groups; a reference group 

(OR=1.00) and two low risk groups, with ORs 0.79 and 0.90, respectively and a 

high risk group with OR 1.18. The observed logic structure was tested in 

subgroups of tumors.  It was statistically significant for the subgroup of cases with 

luminal A tumors (P=3.3 x 10
-3

), while it was not in other subgroups (luminal B, 

HER2+ and triple negatives tumors, data not shown). 

Table 4-2 Multi-way SNP-SNP interactions identified by logic regression. 

 

4.4 Discussion 

In this study of more than seven thousand women, I evaluated the 

contribution of epistasis to breast cancer susceptibility among 17 SNPs located in 

 
rs4041245 

AA 

rs1799977 

AA 

rs769412 

AA 

rs1799943 

AA/AG 

Logic-based 

Risk Groups  Genotype 

Frequency 

Cases 
N=2662 

952 

(35.77%) 

1329 

(49.92%) 
2373 

(89.14%) 

1306 

(49.06%) 

Controls 
N=4395 

1405 

(31.97%) 

2071 

(47.12%) 
3845 

(87.49%) 

1990 

(45.28%) 

Logic 1             (     OR     )        AND  Frequency Odds 

Ratio Logic 2   Cases Controls 

Logic-based Risk 

Groups 

Logic 1 = No      Logic 2 = No 527 1076 0.79 

Logic 1 = Yes      Logic 2 = No 829 1329 1.00 

 Logic 1 = No      Logic 2 = Yes 500 895 0.90 

 Logic 1 = Yes      Logic 2 = Yes 806 1095 1.18 
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or close proximity to 14 DNA repair, modification and metabolism pathway 

related genes. I identified two SNP pairs and interactions involving four SNPs 

among seven candidate SNPs located in seven genes. Except for APEX1-

rs1130409, the SNPs participating in SNP-SNP interactions also showed weak 

single-locus effects (both allelic and genotypic) for breast cancer, independent of 

BMI (Text S4-1 and Tables S4-1 and S4-2). Of these, BRCA2-rs1799943 

showed the strongest single-locus effects. Overall, my findings support the notion 

that SNPs with reproducible weak single-locus effects are useful candidates for 

studying their potential epistatic effects contributing to breast cancer 

susceptibility. 

I identified two SNP pairs that demonstrated significant interactive effects on 

breast cancer risk and carried modest FDR values.  Of these, one was MBD2 SNP 

I reported earlier (Chapter 3) and the other three were from the candidate DNA 

repair SNPs considered in this study. The first pair consisted of APEX1-

rs1130409 and RPAP1-rs2297381, with an OR of their interaction as 1.16, which 

was greater than their individual single-locus effects of 1.00 and 1.07, 

respectively. Similarly, another pair included MLH1-rs1799977 and MDM2-

rs769412, with an OR of their interaction as 1.35 conferring risk. Interestingly, 

their individual single-locus effects were in opposite direction with ORs of 0.94 

and 0.86, respectively and deserve further independent replication of findings.  

Using a logic regression model, I also detected SNP-SNP interactions 

involving four (MBD2-rs4041245, MLH1-rs1799977, MDM2-rs769412 and 

BRCA2-rs1799943). Interestingly, one of the SNPs I entered in this analysis and 
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was predicted to participate in epistatic effects from a previous study [26] was 

also identified to partner with three other SNPs I profiled from the DNA repair 

genes considered in this study. Except for MLH1-rs1799977 and MDM2-

rs769412, this model captured distinct set of SNPs from the ones profiled in the 

two-way epistatic interactions, suggesting a possible convergence of multiple 

DNA repair pathways while conferring breast cancer risk. Future independent 

studies through large international consortia are warranted to further evaluate the 

contributions of the observed SNP-SNP interactions to breast cancer 

predisposition and to understand the underlying important biology of breast 

cancer. I believe these findings reflect important biology, rather than simply 

statistical artifacts because of the unprecedented amount of literature indicating 

DNA-protein and protein interactions involved in DNA repair process. 

I further investigated for possible biological insights in to the observed SNP-

SNP interactions using a Cytoscape plugin, GENEMANIA [43]. For a given set 

of genes, GENEMANIA predicts their functional relationships, such as genetic 

and protein interactions, pathways, co-expressions, co-localization and similar 

protein domains from mining publicly available knowledgebase (e.g., PubMed, 

BioGRID, Pathway Commons and Pfam). I observed that the SNP-SNP 

interactions I identified were also complimented by observed/predicted 

interactions among the proteins encoded by participating genes. Proteins encoded 

by APEX1 and RPAP1 genes were not in direct cross talk but were mediated by a 

third protein, cyclin O protein (CCNO). Similarly, protein-protein interactions 

between proteins encoded by MLH1 and MDM2 genes were predicted to be 
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mediated by cyclin G1 protein (CCNG1). It was noteworthy that CCNG1 was 

acting as a central molecule interacting with proteins encoded by the four genes 

involved in the two-way SNP-SNP interactions and the mediating CCNO gene. 

Further, protein-protein interactions facilitated by CCNG1 and GATA zinc finger 

domain containing 2A (GATAD2A) proteins were also predicted to mediate 

interactions among proteins encoded by MDM2, MLH1, MBD2 and BRCA2 

genes. I was limited in my ability to draw any finer conclusions since the number 

of genes considered for the study does not represent a comprehensive view of all 

DNA repair/metabolism genes on the human genome. To-date, the total number 

of human DNA repair genes annotated is around 130 [44]. The summarized work 

here merely provides a previously unexplored rationale and may generate 

hypothesis to test under various experimental designs, both for genetic and 

biological relevance beyond the provided statistical paradigm. Since the 

GENEMANIA network analysis is based on experimentally determined 

functional relationships, it is reasonable to speculate that both the two-way and 

multi-way SNP-SNP interactions and the known biological relationships among 

the proteins encoded by corresponding genes suggest possible cross talk and 

convergence of DNA repair, modification and metabolism pathways contributing 

to breast cancer etiology; this is consistent with the polygenic nature of complex 

diseases. The effect sizes from the SNP-SNP interactions were consistent with the 

predicted polygenic models (small but finite effect sizes from diverse gene/loci) 

and findings from GWASs to-date (ORs<1.5). Since a majority of breast cancer 

risk is explained by the intersection of life style factors with genetic 
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predisposition, future studies may benefit by considering these additional risk 

factors to comprehensively account for the breast cancer risk in populations. 

However, caution should be exercised while interpreting the results from the 

interaction analyses until independent replication by other research groups could 

as well demonstrate the validity of statistical approaches to this emerging 

discipline of epistasis as a model to explain the additional missing heritable 

components of genetic risk. 

In summary, I demonstrated both two-way and multi-way SNP-SNP 

interactions contributing to breast cancer risk, among candidate SNPs related to 

DNA repair, modification and metabolism pathway genes. The interactions were 

not previously reported and were mostly among the SNPs with weak but 

reproducible single-locus effects. My results suggest SNP-SNP interactions 

among SNPs with weak but reproducible single-locus effects in a typical multi-

stage GWAS or candidate-gene studies may identify cross talk among members 

of multiple cancer-related pathways, and help account for the heritability for 

complex diseases.  
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5. Germline DNA Copy Number Aberrations Identified as 

Potential Prognostic Factors for Breast Cancer Recurrence
94

 

5.1 Introduction 

Breast cancer is the most common epithelial malignancy among women in 

the developed world, with more than 200,000 new cases and 39,000 deaths 

estimated in the United States in 2012 [1]; comparable statistics were also 

observed in Canada in 2011 [2]. While age-adjusted breast cancer incidence has 

increased with the introduction of screening measures, there has been a steady 

decline in breast cancer mortality rates over the last two decades. During the years 

1998-2008, cancer related death rates have decreased by more than 1% per year in 

North American women and breast cancer explains one-third of this total decline 

[1].  

Advances in early diagnosis, increased public awareness and improved 

adjuvant treatment modalities have contributed to the improvements in prognosis 

of early-stage breast cancer. Standard guideline-based therapy for non-metastatic 

breast cancer typically includes surgical excision of localized tumor and involved 

lymph nodes, followed by adjuvant systemic and radiotherapies to eradicate any 

residual micro-metastatic deposits. Both systemic chemotherapy and adjuvant 

                                                 

94
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endocrine therapy have reduced breast cancer recurrence and death [3]. However, 

currently used adjuvant therapies have life-threatening and life-altering toxicities, 

and it therefore is of clinical importance to identify patients who would most 

benefit from aggressive adjuvant therapies, and to spare those patients unlikely to 

benefit from aggressive therapy. At present, the determination of those  breast 

cancer patients  who are most likely to benefit  from adjuvant therapies is 

primarily guided by  tumor-based prognostic factors such as axillary lymph nodal 

status, tumor size, tumor histologic grade, lymphatic and vascular invasion, 

proliferative markers, ER/progesterone receptor (PR) and human epidermal 

growth factor receptor 2 (HER2) status [4,5]. However, clinicopathological 

characteristics of tumors remain imperfect prognostic classifiers, in part due to the 

molecular heterogeneity of breast cancer.   

While genomic signatures derived from tumor transcriptome studies such as 

21-gene and 70-gene profiles may provide some improvement in prognostic 

power when added to standard clinicopathologic prognosticators, there are still 

patients who experience recurrence who are categorized as having an excellent 

prognosis, and others who remain recurrence free who are categorized as having a 

very poor prognosis [6,7]. Furthermore, despite incremental improvement in 

breast cancer therapies, approximately 30% of the treated breast cancer patients 

(who are non-metastatic at the time of diagnosis) show disease recurrence within 

ten years [8,9]. Consequently, there remains continued need to identify improved 

prognostic and predictive markers with higher performance for clinical validation 

in prospective studies.   
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Recent studies show that germline DNA variations contribute to disease 

susceptibility [10-12], prognosis [13-15] and response to therapies [16,17]. The 

majority of these studies have adopted widely accepted multi-stage association 

study designs using single nucleotide polymorphisms (SNPs) from candidate 

genes/pathways or whole genome scans. As a result, thousands of SNPs have 

been identified that are significantly associated with susceptibility to breast cancer 

and its subtypes [12,18,19] and some of these are likely to predict overall disease 

survival [13-15]. In addition to SNPs, germline copy number variations (CNVs) 

are also found to be an important source of genetic predisposition to many 

complex phenotypes, including breast cancer [20-24]. CNVs are the most 

common type of genetic structural variations and by definition show gains or 

losses of DNA segments comprising more than one kb [21,22]. These DNA 

variations are believed to exert their affects through gene expression either 

through gene-dosage or cis-acting gene regulatory activities [25,26]. More 

recently with the application of high-throughput SNP-arrays, large chromosomal 

lesions characterized by loss of heterozygosity (LOH) but with diploid copy 

number were observed in many tumor types, possibly resulting from mitotic 

recombination [27-29]. These unique regions are referred to as copy neutral-loss 

of heterozygosities (CN-LOHs) or uniparental disomies (UPDs). Interestingly, 

large CN-LOH regions were also found in germline DNA and these genomic 

signatures may also be of value as potential markers for susceptibility and 

prognosis of complex diseases, such as cancers [30-33]. 
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In the present study, I analyzed germline CNVs and CN-LOHs (hereafter 

referred to as copy number aberrations, CNAs) genotyped with Affymetrix 

Genome-Wide Human SNP Array 6.0 (Santa Clara, CA, USA) for their role as 

potential prognostic markers using 369 breast cancer patients from Alberta, 

Canada, treated with standard guideline-based therapies and followed over 

extended periods to capture the disease recurrence. I confirmed select CNAs 

identified from Affymetrix SNP 6.0 array data by independent technology 

platforms; TaqMan real-time quantitative polymerase chain reaction (RT-qPCR) 

(Carlsbad, CA, USA) for copy number determination and Sequenom iPLEX Gold 

Platform (San Diego, CA, USA) for assessing the fraction of heterozygosity in a 

subset of samples, using services from the McGill University, Genome Quebec 

Innovation Center, Montreal, Canada. 

5.2 Materials and Methods 

5.2.1 Patients 

Breast cancer cases were accessed from the PolyomX and Canadian Breast 

Cancer Foundation (CBCF) Tumor Banks, located at the Cross Cancer Institute, 

Edmonton, Alberta, Canada [10,11]. The subject recruitment criteria and 

geographic populations of the PolyomX Tumor Bank and its successor, the CBCF 

Tumor Bank, (accrual during 2001-2005 and 2005-present, respectively) were the 

same. These tumor banks contain flash frozen tumor specimens, matching buffy 

coat samples (from over 2,000 subjects, diagnosed between the years 1987 to 

2012) and clinicopathological information for breast and other cancers in the 

province of Alberta (http://www.abtumorbank.com/). In this study, I included 369 

http://www.abtumorbank.com/
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Caucasian women (median age=51 years) with a confirmed diagnosis of early-

stage non-metastatic breast cancer predominantly characterized by late onset of 

disease and with the criteria identified below for case selection. Despite standard 

adjuvant therapy, 155 patients (median follow-up time from diagnosis=6.30 years; 

range=0.60-21.78 years) experienced recurrence and 214 did not, after a 

minimum duration of follow up of three years (median follow-up time from 

diagnosis=8.60 years; range=3.08-13.57 years). Of the 214 cases, follow-up time 

for (i) 32 (14.95%) was between three to five years, (ii) 40 (18.69%) was between 

five to seven years, (iii) 105 (49.06%) was between seven to ten years and (iv) 37 

(17.29%) was more than ten years.  

Of 369 individuals, 286 (77.50%) were ≥45 years old. Following diagnosis, 

these women received curative-intent primary treatments (surgical resection, 

chemotherapy with anthracyclines and/or taxanes, trastuzumab, hormonal therapy 

and radiotherapy) as per standardized provincial breast cancer care.  A detailed 

description of clinicopathological characteristics of breast cancer patients is 

presented in Table 5-1, and the outcome data reflects database updates up to 21st 

February 2012. Written informed consents were obtained from all study 

participants and the study was approved by the Research Ethics Board of Alberta 

Health Services. 

Breast cancer patients enrolled in the study were further classified into tumor 

subtypes based on immunohistochemistry score-based ER, PR and HER2 status 

of tumors as recorded in pathology reports. Using conventional guidelines 

commonly used in epidemiological studies [34], tumors were categorized as (i) 
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luminal A for ER
+
 and/or PR

+
 and HER2

-
, (ii) luminal B for ER

+
 and/or PR

+
 and 

HER2
+
, (iii) HER2 type for ER

-
, PR

-
 and HER2

+
, (iv) triple negative for ER

-
, PR

-
 

and HER2
-
. There were 211 luminal A cases (170 with ER

+
 and/or PR

+
 and 

HER2
-
 and 41 with both ER

+
 and PR

+
 and unknown HER2 status but 

characterized by low tumor grade). Among the remaining cases, there were 62 

luminal B, 25 HER2 type, and 42 triple negative cases. There were 29 cases with 

unknown HER2 status and varying combinations of ER and PR (+ or – status) and 

tumor grades (high or low) that were, therefore, classified as others and excluded 

from the finer analyses based on stratification of the molecular subtypes of breast 

cancer. I adhered to the Recommendations for Tumor Marker Prognostic Studies 

(REMARK) [35] for the results reported, where applicable. 

5.2.2 DNA extraction, whole genome genotyping and quality control 

DNA was extracted from the buffy coat fractions using commercially 

available Qiagen
TM

 (Mississauga, Ontario, Canada) DNA isolation kits. Buffy 

coat fractions collected were stored at -80 ºC until use. Following guidelines 

provided by manufacturer, whole genome genotyping was conducted using 

Affymetrix Genome-Wide Human SNP Array 6.0, which consisted of over 1.8 

million probes (906,600 SNPs and 946,000 copy number probes) with an overall 

inter-marker distance of 680 bp. I used Affymetrix recommended contrast quality 

control (CQC), a measure of performance of genotyping experiments, to assess 

sample quality. All 369 samples used in this study showed CQC>2.0, a value 

greater than the default CQC threshold of ≥1.7. 
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5.2.3 Identification of CNAs 

I used Nexus Copy Number 6.0 genomics software to process Affymetrix 

generated signal intensity or CEL files. A reference genome created using 270 

HapMap samples was used as a baseline to calculate log2ratios and B-allele 

frequencies (BAF) in each sample followed by quantile normalization [36]. Probe 

to probe variance was calculated and reported as quality control (QC) scores to 

remove extreme outliers due to copy number break-points. I used a default setting 

for outlier removal, a combined value of 3% at the two extremes, 1.5% at each 

end. Using these normalized log2ratio and BAF values, CNAs were identified 

with the SNP-Fast Adaptive States Segmentation Technique 2 (SNP-FASST2) 

segmentation algorithm in conjunction with quadratic wave correction 

implemented in the Nexus software. The SNP-FASST2 segmentation algorithm is 

a Hidden Markov Model-based approach, which uses log2ratio values of ~1.8 

million probes to make a CNV call while it considers both log2ratio and BAF 

values to detect LOHs. Significance threshold for segmentation was set at P<5 x 

10
-7 

with minimum number of ten probes per segment and a maximum probe 

spacing of 1,000 kb. Single copy gains and losses were defined with log2ratio 

values of 0.2 and -0.2, respectively while two or more than two copies of gains 

and losses were defined by log2ratio values of 0.7 and -1.1, respectively. A 

chromosomal region was called a LOH if ≥95% of the SNP probes in a DNA 

segment of at least 500 kb exhibited BAF≥0.8 or ≤0.2 -- i.e., ≥95% of the SNP 

probes in that region are homozygous probes (e.g., AA or BB). Auto gender 

correction available in Nexus software was applied to call CNAs in X 
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chromosomes. LOHs with diploid copy number of two were considered as CN-

LOHs or UPDs. 

5.2.4 Quality control parameters for CNA calling 

Pre-processing of CEL files was conducted using the settings described 

above. Six (three luminal A, two luminal B and one HER2 type tumors) out of 

369 samples exhibited very high QC scores (>0.40) and were excluded from final 

analyses as higher QC scores suggest for elevated noise to signal ratio. Average 

QC score of remaining 363 samples (152 BCR and 211 non-BCR) was 0.17 

(range: 0.08-0.32), acceptable values recommended by the Nexus Copy Number 

6.0. 

5.2.5 Survival analysis of CNAs and statistical considerations 

Of the CNAs identified by the SNP-FASST2 segmentation algorithm, I 

restricted my analysis to relatively high frequency common CNAs to evaluate 

their potential role in breast cancer recurrence because common CNVs often 

harbour cancer-related genes [37]. I excluded LOHs due to copy number losses 

and more than two copy number gains from the analysis as these were already 

captured as copy number losses and copy number gains, respectively. I used a 

frequency cut-off of ≥10% in either group (BCR and non-BCR) or in both to 

select relatively common CNAs in the curent study population. When overlaps 

between CNAs selected in BCR and non-BCR groups were noted, I considered 

the intersecting common CNA regions present in both groups.  

Univariate survival analyses showing relationships between select germline 

CNAs and recurrence-free survival (RFS) were performed using Kaplan-Meier 
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survival curves. RFS probabilities with and without CNAs in 363 samples were 

estimated using log-rank tests with one degree of freedom (d.f.). Correction for 

multiple hypotheses testing was carried out using the Benjamini-Hochberg False 

Discovery Rate correction method and represented as Q value [38]. Association of 

germline CNAs with BCR was determined with univariate Cox proportional 

hazards model and reported as hazard ratios (HRs) and corresponding 95% 

confidence intervals (CIs). Tumor stage and grade were then included as 

covariates in the Cox proportional hazards model to estimate the adjusted HRs 

and corresponding 95% CIs. 

I also conducted subgroup survival analyses (log-rank tests with one d.f.) to 

identify additional common CNAs specific to luminal A subtype of breast cancer 

wherein I compared RFS probabilities with and without CNAs in 208 luminal A 

samples only. CNAs for association testing were selected using the approach 

mentioned above (i.e., I focused on relatively common CNAs with ≥10% 

frequencies in at least one group or in both). Association analyses per se were 

carried out by fitting Cox proportional hazards models as explained earlier. 

Subgroup analyses restricted to luminal B, HER2 type and triple negative samples 

were not attempted due to limited sample size. 

All statistical analyses were carried out, either singly or in combination using 

R 2.14.1 (R Development Core Team, 2011) and SAS software, version 9.3 of the 

SAS system for Windows. Copyright© 2002-2010 SAS Institute Inc. Cary, NC, 

USA. 
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5.2.6 Validation of candidate CNAs using independent genotyping 

platforms 

Potential candidate CNAs were validated in a representative subset of 

samples. Using services from the McGill University, Genome Quebec Innovation 

Center, Montreal, Canada, I quantified the copy number of candidate CNAs using 

pre-designed TaqMan® copy number assays on a RT-qPCR instrument (Applied 

Biosystems, Foster City, CA, USA). Primers and probes targeted for individual 

copy number assays were from within the candidate CNA sequence boundaries 

identified in Nexus. 2 µL per assay of genomic DNA at a final concentration of 

20ng/µL was used. All reactions were run in quadruplicates in MicroAmp® 

optical 96-well plates with barcode sealed with optical adhesive film. Thermal-

cycling (7900HT) conditions were: 10 minutes at 95ºC followed by 40 cycles of 

15 seconds at 95ºC and 60 seconds at 60ºC. Real-time data was exported to 

CopyCaller v2.0. RNaseP was used as a reference to calculate the ∆Ct values for 

each sample. Copy numbers were determined using the comparative ∆∆Ct cycle 

threshold method, assuming most frequent sample copy number of two. For CN-

LOHs, SNPs (ten per CN-LOH) were also genotyped for same DNAs used in 

copy number assays using the Sequenom iPLEX Gold Platform to measure 

percentages of heterozygosity in CN-LOHs. Using HapMap release 24 Central 

Europeans genotype data, tagSNPs for CN-LOHs were selected with minor allele 

frequency (MAF) and pair-wise correlation (r
2
) cut-offs of 10% and 0.8, 

respectively, to ensure the large CN-LOH region SNPs selected were non 

redundant. Whenever number of tagSNPs was less than ten, additional SNPs with 

≥10% global MAF (1000 Genomes Project phase 1 population of 629 individuals) 
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from NCBI dbSNP build 136 were randomly selected ensuring that none of these 

additional SNPs was tagged by previously selected tagSNPs (see Table S5-1 for 

probe selection and relevant assays). 

Table S5-1 Details of TaqMan copy number assays and SNPs genotyped for 

validation. 
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5.3 Results 

5.3.1 Patients’ clinical characteristics 

I identified 369 cases as meeting the criteria for the study of BCR and non-

BCR, as described in the methods. I investigated if the clinical characteristics for 

study subjects (BCR and non-BCR cases) were different and how these might 

contribute to potential confounding effects. I did not find statistically significant 

differences for age at diagnosis, menopausal status and family history of breast 

cancer between BCR and non-BCR while molecular subtypes, tumor overall 

grade and stage were significantly different between BCR and non-BCR (Table 

5-1). The identified potential confounders were taken into consideration for the 

data analysis and interpretations. 
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Table 5-1 Clinicopathological characteristics of 369 breast cancer cases 

enrolled in the study. 
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5.3.2 Summary of CNAs identified 

SNP-FASST2 algorithm identified 19,591 CNAs (516 copy number gains, 

869 copy number losses and 18,206 CN-LOHs) in 363 samples (Table S5-2). Of 

these, 18,561 CNAs (475 copy number gains, 773 copy number losses and 17,313 

CN-LOHs) were of ≥one kb (Figure 5-1). Majority of copy number gains 

(n=465), copy number losses (n=746) and CN-LOH (n=15,682) were in 

chromosomes 1 to 22 while very few events (10 copy number gains, 27 copy 

number losses and 1,631 CN-LOHs) were observed in X-chromosomes. A total of 

7,450CNAs were of >1kb-10kb, 9,523 CNAs were of >10kb-100kb and 1,588 

CNAs were very large regions (>100kb-5Mb).  

Table S5-2 A total of 19,591 CNVs and CN-LOHs identified in 363 samples. 

chrX:99,255,055-99,258,822 3,767 q22.1 CN-LOH 0 0

chrX:99,298,476-99,319,493 21,017 q22.1 CN-LOH 0 0

chrX:99,341,414-99,370,268 28,854 q22.1 CN-LOH 0 0

chrX:99,590,744-99,607,799 17,055 q22.1 CN-LOH 1 0

chrX:99,656,110-99,664,689 8,579 q22.1 CN-LOH 1 0

chrX:99,689,236-99,693,366 4,130 q22.1 CN-LOH 0 0

chrX:99,747,680-99,765,078 17,398 q22.1 CN-LOH 0 0

chrX:99,839,586-99,847,707 8,121 q22.1 CN-LOH 1 0

 

Note: This is an Excel worksheet with more than 19,500 rows. Alternative on-line 

source for the complete data can be found at Sapkota et al., 2013, PLoS ONE, 

Table S2. 
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Figure 5-1 Absolute counts of CNAs stratified by overlap with germline 

CNVs in DGV and their length. Shown in the histograms are total numbers 

of copy number losses (CN Loss), copy number gains (CN Gain) and copy 

neutral-loss of heterozygosities (CN-LOHs) identified in 363 samples 

stratified by their lengths (≥1KB-10KB,  >10KB-100KB and >100KB-5MB) 

and their overlap with known germline CNVs in the Database of Genomic 

Variants (DGV), Toronto. A 100% overlap is shown as ‘Complete’, less than 

100% but more than 0% is shown as ‘Partial’ and no overlap is shown as 

‘Absent’.  

I observed three copy number gains (two in chromosome 14 and one in 

chromosome 2) that were present in all 363 samples. Moreover, 9,123 

(approximately 50%) of the CNAs identified in the 363 samples exhibited either 
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complete (100%) or partial overlap (more than 0% but less than 100%) with 

known germline CNVs reported in the Database of Genomic Variants (DGV), 

Toronto (http://projects.tcag.ca/variation/). There were 9,438 (69 copy number 

gains, 138 copy number losses and 9,231 CN-LOHs) observed in the current 

study that are absent in the DGV (0% overlap) and hence may be novel 

chromosomal aberrations that merit independent replication. 

5.3.3 CNAs associated with BCR 

Of the 18,561 CNAs with more than one kb (152 BCR and 211 non-BCR), I 

found 9,164 CNAs (145 copy number gains, 241 copy number losses and 8,778 

CN-LOHs) with ≥10% frequency either in the BCR or non-BCR groups or in 

both. When I compared RFS probabilities with and without these CNAs in 363 

samples, I found that 585 CNAs (33 copy number gains, 33 copy number losses 

and 519 CN-LOHs) showed statistically significant differences in RFS 

probabilities at nominal P<0.05 (Figure 5-2).  

http://projects.tcag.ca/variation/
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Figure 5-2 Chromosome-wide distributions of 9,164 CNAs tested for 

association with BCR in unstratified samples. Shown on the x-axis are 

middle points of chromosomal start and end positions (NCBI Build 37) of 

9,161CNAs and on the y-axis are –log10 P values for their association with 

the phenotype of BCR in unstratified 363 samples. P values were obtained 

from log-rank tests with one d.f. 

Of these, two copy number gains and five CN-LOHs showed the strongest 

differences in RFS probabilities (P<2.01 x 10
-5

, Q<0.03) (Figure 5-2, Table 5-2) 

and all seven CNAs (three CNAs at chromosome 11, two at chromosome 17 and 

one CNA each at chromosomes 16 and 19) were also associated with increased 

risk of recurrence. 
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Table 5-2 Chromosomal aberrations statistically significantly associated with 

BCR in 363 samples. 

 

Chromosome 11 CNAs. (i) A CN-LOH of 31,501 bp at chromosome 

11q13.1 indicating significant differences in RFS probabilities (P=5.46 x 10
-6

, 

Q=0.02) was associated with BCR (HRunadjusted, 95% CI=2.98 [1.82-

4.88];HRadjusted, 95% CI=2.28 [1.35-3.85]). I did not observe any germline CNVs 

in the DGV overlapping with this CNA. (ii) A CN-LOH of 29,810bp at 

chromosome 11q13.1 indicating significant differences in RFS probabilities 

(P=1.39 x 10
-5

, Q=0.02) was associated with BCR (HRunadjusted, 95% CI=2.52 

[1.64-3.88];HRadjusted, 95% CI=2.08 [1.32-3.26]). There were no overlapping 

known CNVs reported in the DGV. (iii) Another CN-LOH of 95,617 bp at 
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chromosome 11q13.1 (exhibiting partial overlap with germline CNVs in DGV) 

showing significant differences in RFS probabilities (P=2.01 x 10
-5

, Q=0.03) was 

associated with BCR (HRunadjusted, 95% CI=2.74 [1.69-4.43];HRadjusted, 95% 

CI=2.15 [1.29-3.58]). 

Chromosome 17 CNAs. (i) A CN-LOH of 11,969 bp at chromosome 

17q11.2 showing significant differences in RFS probabilities (P=7.79 x 10
-6

, 

Q=0.02) was associated with BCR (HRunadjusted, 95% CI=2.20 [1.54-3.13]; 

HRadjusted, 95% CI=2.09 [1.46-2.99]). I did not find any known germline CNVs in 

the DGV that overlapped with this CN-LOH, suggesting that it could be a novel 

CNA. (ii) A CN-LOH of 143,751 bp at chromosome 17q11.2 (exhibiting 

complete overlap with germline CNVs in DGV) with significant differences in 

RFS probabilities (P=6.90 x 10
-6

, Q=0.02) was also associated with BCR 

(HRunadjusted, 95% CI=2.19 [1.54-3.12]; HRadjusted, 95% CI=2.06 [1.45-2.94]). 

Chromosome 16 CNA. A copy number gain of 46,109 bp at chromosome 

16q22.1 (with complete overlap with germline CNVs in DGV) that showed 

significant differences in RFS probabilities (P=1.02 x 10
-10

, Q=9.35 x 10-7) was 

associated with BCR (HRunadjusted, 95% CI=4.49 [2.73-7.40]; HRadjusted, 95% 

CI=3.88 [2.35-6.41]). 

Chromosome 19 CNA. A copy number gain of 18,692bp at chromosome 

19q13.41 (with complete overlap with germline CNVs in DGV) showing 

significant differences in RFS probabilities (P=1.44 x 10
-5

, Q=0.02) was 

associated with BCR (HRunadjusted, 95% CI=2.35 [1.58-3.50]; HRadjusted, 95% 

CI=2.34 [1.56-3.51]).  
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I then compared the RFS probabilities of the above seven CNAs (i.e., with 

similar start and end positions) in each of the molecular subtypes of breast cancer 

using log-rank tests with one d.f. to examine for possible overlap of these 

genomic signatures across molecular subtypes. Differences in RFS probabilities 

and magnitude and direction of associations (HRs and corresponding 95% CIs) of 

all seven CNAs with BCR in 208 luminal A samples (80 BCR and 128 non-BCR) 

were comparable to those observed in entire 363 samples (Table 5-3).  

Table 5-3 Association of top seven CNAs (Table 5-2) with BCR in 208 

luminal A samples. 

 

However, the differences in RFS probabilities were statistically non-

significant in other subtypes (luminal B, HER2 type and triple negative), except 

for a copy number gain at chromosome 16q22.1 (P<6.15 x 10
-3

) in luminal B and 

triple negative subtypes, for a CN-LOH at chromosome 17q11.2 (P=2.63 x 10
-3

) 

in the luminal B subtype and for a CN-LOH at chromosome 11q13.1 (P=5.35 x 

10
-4

) in the triple negative subtype (Table S5-3).Thus, the seven CNAs reported 

here appeared to be relatively specific to the luminal A subtype of breast cancer, 
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as would be expected of the sample composition with luminal A cases as a major 

subset. 

5.3.4 Subgroup analysis restricted to luminal A samples (n=208) 

In an attempt to identify additional CNAs, I estimated the differences in RFS 

probabilities with and without CNAs in the luminal A subtype (80 BCR and 128 

non-BCR) of breast cancer. I identified 7,218 CNAs (142 copy number gains, 258 

copy number losses and 6,818 CN-LOHs) with ≥10% frequency either in at least 

one group or in both. Of these, 4,379 CNAs shared commonality with 9,164 

CNAs observed in the entire 363 samples while 2,839 CNAs were distinct, owing 

to the variant start and end positions, chromosomal locations or the indicated 

frequency threshold of >10% in BCR or non-BCR cases or in both. I identified a 

total of 484 of 7,218 CNAs (27 copy number gains, 32 copy number losses and 

425 CN-LOHs) showing statistically significant differences in RFS probabilities 

with and without CNAs at nominal P<0.05 (Figure 5-3). Of these, three CN-

LOHs showed the strongest statistically significant differences in RFS 

probabilities in the luminal A subtype of breast cancer (Table 5-4), vis-à-vis from 

the 2,839 distinct CNAs in this sub group.  
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Figure 5-3 Chromosome-wide distribution of 7,218 CNAs tested for 

association with BCR in 208 luminal A cases. Shown on the x-axis are middle 

points of chromosomal start and end positions (NCBI Build 37) of 7,218 

CNAs and on the y-axis are –log10 P values for their association with the 

phenotype of BCR in 208 luminal A cases. P values were obtained from log-

rank tests with one d.f. 

The three distinct CNAs identified in this sub group showed the following 

characteristics. (i) A CN-LOH of 57,590 bp at chromosome 11q13.1 showing 

significant differences in RFS probabilities (P=3.25 x 10
-7

, Q=7.82 x 10
-4

) was 

associated with increased risk of BCR (HRunadjusted, 95% CI=3.84 [2.20-6.69]; 

HRadjusted, 95% CI=2.82 [1.54-5.14]). (ii) A CN-LOH of length 9,850 bp at 

chromosome 11q13.4 indicating significant differences in RFS probabilities 

(P=1.62 x 10
-5

, Q=0.03) was associated with increased risk of BCR (HRunadjusted, 
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95% CI=3.58 [1.93-6.66]; HRadjusted, 95% CI=2.60 [1.27-5.31]). (iii) And lastly, a 

CN-LOH of length 91,670 bp at chromosome 6q24.1 showing significant 

differences in RFS probabilities (P=2.86 x 10
-5

, Q=0.04)was associated with 

increased risk of BCR (HRunadjusted, 95% CI=2.54 [1.62-3.98]; HRadjusted, 95% 

CI=2.38 [1.50-3.76]). I did not find any known germline CNVs in the DGV that 

overlapped with these three CN-LOHs. 

Table 5-4 Additional CNAs statistically significantly associated with BCR in 

208 luminal A samples. 

 

I did not find statistically significant differences in RFS probabilities with 

and without above three CN-LOHs (11q13.1, 11q13.4 and 6q24.1) in luminal B, 

HER2 type or triple negative subtypes suggesting that these CN-LOHs were 

relatively specific to the luminal A subtype of breast cancer (Table S5-3). 

Overall, chromosome 11 appears to harbour multiple CN-LOHs (identified 5 

CNAs in total, Tables 5-2 to 5-4 and Table S5-3) and these showed increased 

risk of BCR in the luminal A subtype of breast cancer. 

Moreover, adjustment in HRs and 95% CI for tumor grade and stage in the 

analyses presented thus far revealed minimal or no evidence of potential 
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confounding effects. Hence, these clinicopathological characteristics are less 

likely to significantly modify the observed associations of identified CNAs with 

BCR at the indicated sample size (Tables 5-1 to 5-4). 

Table S5-3 Relationship of top ten CNAs (Tables 5-2 and 5-4) with BCR in 

luminal B, HER2 type and triple negative subtypes of breast cancer samples. 

 

5.3.5 RT-qPCR validation of select CNAs in representative samples 

Of the ten CNAs (eight CN-LOHs and two copy number gains) showing 

statistically significant association with the phenotype of BCR, I chose to validate 

three relatively longer CN-LOHs (143,751 bp at 17q11.2, 57,590 bp at 11q13.1 

and 91,670 bp at 6q24.1) in a subset of 363 samples (a combination of randomly 

selected samples harbouring the CN-LOHs plus approximately equal proportion 

of samples without these CN-LOHs as evaluated by the Nexus Copy Number 6.0) 

by RT-qPCR and Sequenom genotyping. There is a growing consensus that CN-

LOHs are important in the genomes profiled using germline DNA in the recent 
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literature [27-29,32] and this formed the basis for validating the most predominant 

chromosomal aberrations in this study. These newly emerging chromosomal 

aberrations (CN-LOHs), if confirmed, may be included in future investigations 

alongside the copy loss or gain aberrations for a comprehensive catalogue of 

CNAs relevant for complex/polygenic phenotypes. Remaining two CN-LOHs 

were shorter in size and were not considered for validation. First, the copy 

number status of these three CN-LOHs was quantified using copy number assays 

(Hs00138078_cn and Hs02495547_cn for CN-LOH at 17q11.2 in 38 samples 

(interrogated using two assays in this region, largest of the CN-LOH identified in 

this study), Hs06324464_cn for CN-LOH at 11q13.1 in 33 samples and 

Hs06809880_cn for CN-LOH at 6q24.1 in 36 samples).  Concordance between 

copy number calls made from Nexus read-out and RT-qPCR was 100% showing 

copy number of two (Table S5-4). Second, 24 of 30 SNPs initially selected for 

three CN-LOHs in the same DNA samples used for copy number assays were 

successfully genotyped to measure percentage of heterozygosity in each CN-

LOH; assays of six SNPs were not successful. Percentages of heterozygosity were 

calculated using seven SNPs for CN-LOH at 17q11.2, nine SNPs for CN-LOH at 

11q13.1 and eight SNPs for CN-LOH at 6q24.1. Pearson correlations coefficients 

between heterozygote frequencies measured from Affymetrix SNP 6.0 array data 

and from Sequenom iPLEX Gold Platform for CN-LOH at 17q11.2, CN-LOH at 

11q13.1 and CN-LOH at 6q24.1 were 0.97, 0.98 and 0.99, respectively (Table 

S5-4). 
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Table S5-4 Validation of three CN-LOHs in subset of 208 samples using RT-

qPCR and Sequenom genotyping. 
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Table S5-4 Continued.. 
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Table S5-4 Continued.. 
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5.4 Discussion and Conclusion 

 

In this study, I identified ten germline CNAs as potential prognostic factors 

for disease recurrence in the early-stage non-metastatic breast cancer. These 

germline signatures were particularly relevant to the luminal A subtype as large 

number of breast cancer cases with luminal A tumors experience disease 

recurrence despite their good prognosis based on tumor characteristics. Using a 

sample size of 363 breast cancer patients who received standard guideline-based 

therapy upon diagnosis, I demonstrated statistically significant associations of ten 

CNAs (two copy number gains and eight CN-LOHs) with the phenotype of BCR 

in both univariate and multivariate analyses (adjusted for tumor stage and grade). 

Three CN-LOHs (17q11.2, 11q13.1 and 6q24.1) were validated in a subset of 363 

samples using RT-qPCR and Sequenom iPLEX Gold Platform technologies. 

Adjustment for tumor stage and grade did not influence the direction or effect size 

reported in terms of the HRs and 95% CI, suggesting that these 

clinicopathological characteristics did not influence the observed association 

results. As such, these germline CNAs may offer significant prognostic value for 

breast cancer, independent of tumor clinicopathological characteristics considered 

in this study. 

While many studies have evaluated potential role of copy number gains, copy 

number losses and classical LOHs, only a few have investigated the impact of 

CN-LOH in complex diseases such as cancer [27-29]. This may be due to 

inadequate karyotyping technology as conventional cytogenetics (array-CGH) and 

fluorescence in situ hybridization (FISH) cannot detect these small unique 
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chromosomal aberrations. However, with the availability of high-resolution SNP-

arrays containing both copy number and SNP probes, it is now possible to identify 

previously hidden CN-LOHs. Mitotic recombination between pairs of 

homologous chromosomes is believed to be the underlying mechanism generating 

CN-LOHs [32,33]. Studies have shown that CN-LOHs tend to localize within 

fragile sites, previously known regions of frequent genomic instability [32,33]. 

Potential clinical utility of CN-LOHs is recently being appreciated, as CN-LOHs 

are associated with duplication of oncogenic alleles with simultaneous loss of 

normal functional alleles.  

I have validated three CN-LOHs in an independent genotyping platform and 

with the following generalized features:  

(i) A CN-LOH at 17q11.2 showed significant associations with BCR in 

unstratified 363 samples while comparable log-rank P values and HRs (increased 

risk) were also observed in the molecularly stratified 208 luminal A samples. The 

CN-LOH also demonstrated entire overlap with multiple germline CNVs in DGV, 

including both copy number gains and losses. This CN-LOH harboured three 

known genes such as suppressor of zeste12 homolog (Drosophila) (SUZ12), 

leucine rich repeat containing 37B (LRRC37B) and SH3-domain GRB2-like 1 

pseudogene 1 (SH3GL1P1). SUZ12 is a zinc finger gene often found at the 

breakpoints of recurrent chromosomal translocation in endometrial stromal 

sarcoma [39]. It has also been shown to act as a transcriptional repressor of 

Homeo box protein Hox-A9 gene in primary breast cancers through DNA 

hypermethylation and recruitment of DNA methyltransferases [40]. Protein 
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encoded by LRRC37B gene is not well-characterized yet. However, a recent study 

has reported that the LRRC37B locus may harbour non-allelic homologous 

recombination hotspot, a major mechanism involved in chromosomal 

rearrangements [41]. SH3GL1P1is a pseudogene with no known function. 

Chromosome 17q11.2 region is also known to harbour CNVs as this loci is a hot 

spot for segmental duplications [42].  

The CN-LOH was more specific to the luminal A subtype of breast cancer as 

log-rank P values and HRs were comparable in luminal A samples only but were 

statistically insignificant in other sub-phenotypes such as HER2 type and triple 

negative, except in the luminal B subtype (albeit at the limited sample size for 

other subtypes of breast cancer). Recently, distinct CNA profiles were reported 

for molecular subtypes of breast cancer [43] and the findings from the curent 

study not only support such a premise but also extend these observations to the 

disease outcomes. On the other hand, intrinsic molecular similarities between the 

luminal A and luminal B subtypes of breast cancer, especially in terms of ER and 

PR status, may be attributed to similar log-rank P values in both groups; 

(ii) The two remaining CNAs at 11q13.1 and 6q24.1 were detected in 

subgroup analyses restricted to luminal A cases (BCR=80, non-BCR=128) 

showing significant differences in RFS probabilities and conferred risk to BCR. 

Both CN-LOHs at 11q13.1 and 6q24.1 are novel and did not harbour any known 

genes; however, these may still influence the phenotype through cis-acting 

regulatory activities. CN-LOH at 11q13.1 did not contain any known genes but 

solute carrier family 22 (organic anion/urate transporter) (SLC22A11) was located 
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~37.19 kb down-stream of the CNA. The integral membrane protein encoded by 

the SLC22A11 gene acts as an organic anion transporter, which mainly involves in 

transfer of estrone 3 sulfate through plasma membrane [44]. CN-LOH at 6q24.1 

also did not contain any known genes; however, microRNA 3668 (MIR3668) and 

microRNA 4465 (MIR4465) were found ~105.18 kb upstream and ~281.64 kb 

down-stream of this CNA. Both MIR3668 and MIR4465 encode microRNAs, 

short non-coding RNA molecules involved in post-transcriptional modifications 

of eukaryotic organisms. 

Even though I did not perform independent survival analysis with the non 

luminal A molecular sub-phenotypes of breast cancer (luminal B, HER2 type and 

triple negative) owing to limited sample size, my results provide a rationale for 

conducting such analyses to identify germline CNAs specific to these molecular 

subgroups. Analyses based on finer classification of molecular subtypes of breast 

cancer encompassing ki67 marker in addition to the cell surface receptor (ER, PR 

and HER2 status) based classifications described here and the newly described 

molecular subtypes in breast cancer [43,45], may help identify more informative 

germline CNAs that potentially explain larger proportion of heterogeneity in 

breast cancer prognosis. Clinical utility of the identified germline CNAs showing 

strong prognostic value will be favorable if these markers are reproduced in larger 

but independent studies.  
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Figure 5-4 Relationships between RFS and three CN-LOHs validated by RT-

qPCR and Sequenom genotyping. Using the data from 208 luminal A cases, 

Kaplan-Meir survival plots were generated to evaluate the predictive power 

of three CN-LOHs validated in independent platform for RFS.  The x-axes in 

all three plots show recurrence time in days and the y-axes show RFS 

probabilities with and without CN-LOHs. Differences in RFS probabilities 

were assessed by log-rank tests with one d.f. HRs and 95% CIs were 

estimated by Cox proportional hazards model adjusted for tumor stage and 

grade. 

In summary, I found multiple germline CNAs at chromosomes 6, 11 and 17 

(results confirmed from independent genotyping platforms,  Figure 5-4 and 

Table S5-4) with potential prognostic value, independent of tumor grade and 
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tumor stage for early-stage non-metastatic luminal A subtype of breast cancer. 

Despite the large collection of recurrent cases from a single source (derived from 

Alberta) with extensive follow-up and outcomes data, the sample size needed for 

independent replication of these findings therefore warrant large international 

collaborations. Further investigations in to the biochemical and molecular basis 

for the prognostic significance of the genomic signatures may aid in the 

development of targeted therapeutics and molecularly driven strategies to reduce 

the risk of BCR. 
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6. Discussion and conclusions 

In this thesis, I evaluated potential contributions of germline common 

variants (SNPs, CNVs and CN-LOHs) for breast cancer predisposition and 

disease prognosis using well-established fundamentals of population genetics and 

GWAS paradigm. Analyses of these variants for their single-locus as well as 

epistatic effects have led to the following three primary conclusions: 

1. A SNP (rs1429142) at chromosome 4q31.22 is a disease predisposition 

risk factor for sporadic breast cancer. The SNP-breast cancer association 

was stronger in premenopausal than postmenopausal women. To my 

knowledge, such a report for sporadic breast cancer in Caucasian 

population is first of its kind in Canada and third in the world. 

2. SNP pairs (APEX1
95

-rs1130409 and RPAP1
96

-rs2297381; MLH1
97

-

rs1799977 and MDM2
98

-rs769412) and SNP-SNP interactions involving 

four SNPs (MLH1-rs1799977, MDM2-rs769412, BRCA2
99

-rs1799943 and 

MBD2
100

-rs4041245) confer risk to breast cancer. 

3. Multiple germline CNAs showed promising associations as potential 

prognostic factors for breast cancer.  

These results have stressed the potential utility and continued search for 

germline common variants as breast cancer predisposition and prognostic factors, 

in addition to currently used tumor-based prognostic and predictive markers. 

                                                 

95
 APEX nuclease (multifunctional DNA repair enzyme) 1. 

96
 RNA polymerase II associated protein 1. 

97
 mutL homolog 1, colon cancer, nonpolyposis type 2 (E. coli). 

98
 Mdm2, p53 E3 ubiquitin protein ligase homolog (mouse). 

99
 breast cancer 2, early onset. 

100
 methyl-CpG binding domain protein 2. 
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Moreover, small effect sizes observed for SNPs conferring breast cancer 

susceptibility, (ORs<1.5) either through single-locus effects or by epistatic 

interactions, further support the notion of polygenic nature of breast cancer.  

Using a multi-stage association study design (combined sample size=7,219 

cases and controls), I identified two breast cancer susceptibility loci at 4q31.22 

and 5p15.2. When adjusted for BMI, SNP at 4q31.22 showed a strong statistical 

significane for overall breast cancer (P=1.5 x 10
-7

) while achieved genome-wide 

level of statistical significance (P=6.2 x 10
-10

) in premenopausal women. The 

SNP at 5p15.2 showed strong statistical significance for breast cancer (P=2.0 x 

10
-4

). These SNPs showed stronger associations for premenopausal than 

postmenopausal women and in cases with operable (I-IIIA) than non-operable 

tumor stages (IIIB, IIIC). In addition, I also successfully replicated common 

breast cancer susceptibility SNPs reported by international consortia between the 

years 2007 and 2009, suggesting the robustness of these associations. These 

results indicate that more common SNPs may be identified through systematic 

GWASs that may explain additional residual heritability of breast cancer. 

In addition to single-locus effects of common SNPs, I also evaluated epistatic 

interactions among SNPs selected from a breast cancer GWAS and candidate 

gene-association studies as a potential source of inherited genetic contribution for 

breast cancer. I focused on SNPs in or close to cancer related pathway (DNA 

repair, metabolism and modification) genes as an exploratory attempt that showed 

reasonably consistent moderate single-locus effects with weak statistical 

significance in both discovery and replication stages in GWAS and/or candidate-
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gene association studies. Epistatic interaction analyses led to the identification of 

two two-way SNP-SNP interactions (APEX1-rs1130409 and RPAP1-rs2297381; 

MLH1-rs1799977 and MDM2-rs769412) as well as an interaction involving four 

SNPs (MLH1-rs1799977, MDM2-rs769412, BRCA2
101

-rs1799943 and MBD2
102

-

rs4041245) that conferred risk for breast cancer. Known biological interactions 

involving DNA-protein and protein-protein interactions in DNA repair process, in 

addition to epistatic interactions observed among multiple SNPs, indicate possible 

cross talk and convergence of multiple DNA repair pathways. These results also 

indicate that potential epistatic interaction analyses, in addition to the single-locus 

tests of association primarily adopted in GWASs and candidate-gene association 

studies, may explain larger proportion of heritability for breast cancer. 

Identification of large number breast cancer predisposition factors (usually 

common SNPs), either with single-locus or with epistatic effects, could be of use 

for breast cancer risk assessment. In 2011, Wacholder et al. for the first time 

attempted to assess the disease risk conferred by common breast cancer 

susceptibility variants [1]. The authors demonstrated that inclusion of ten 

common breast cancer susceptibility variants identified through GWASs into the 

widely used Gail model moderately improved the performance of risk models for 

breast cancer from 58.0% to 61.8%, as measured by the area under the curve. 

While this scant improvement in risk assessment may not be sufficient for 

inclusion of common variants to identify women who might benefit from 

prophylactic intervention, it is possible that many more variants remain to be 

                                                 

101
 breast cancer 2, early onset. 

102
 methyl-CpG binding domain protein 2. 
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identified that could eventually improve clinical risk assessment for breast cancer. 

More recently, Sawyer et al. evaluated associated familial breast cancer risk 

conferred by 22 common breast cancer susceptibility variants identified through 

multiple GWASs, using a polygenic risk score (PRS), calculated as the sum of the 

log odds ratio for each allele [2]. Using PRS for risk assessment, the 22 common 

variants could explain 18.5% of genetic risk for breast cancer while predictive 

power of PRS in non-BRCA1/2 familial breast cancer cases was 65.4%, as 

measured by area under the curve. These results also indicated that PRS was 

significantly higher among individuals with familial breast cancer than in healthy 

controls (P=1.0 x 10
-16

). Moreover, the PRS was significantly higher among 

familial cases without BRCA1/2 mutations than cases with mutation carriers 

(P=2.3 x 10
-6

). Women who tested negative for BRCA1/2 mutations but higher 

PRS were more likely to have early-onset of disease before 30 years of age 

(OR=3.37) and higher chance of second breast cancer (OR=1.96) as compared to 

women with low PRS.  

Presently, the current model of genetic testing for familial breast cancer only 

identifies BRCA1/2 mutations in approximately one in five women. The test is 

uninformative for familial cases that test negative for BRCA1/2 mutations. 

However, after addition of common variants (i.e., PRS) into the current model of 

genetic testing, it may be now possible to subdivide non-BRCA1/2 familial breast 

cancer cases into high, intermediate and low risk groups, as described by these 

investigators. Similar model of genetic testing, also taking into account genetic 

interactions (gene-gene and gene-environment interactions), can be attempted for 
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risk assessment of sporadic breast cancer when sufficient common variants will 

be identified through more GWASs and candidate-gene association studies aided 

by large international consortia.  

In this work, I also identified common germline variants with potential 

prognostic values for breast cancer.  SNP rs13281615 on chromosome 8q24.21 

[3,4] was for the first time shown to be of prognostic value with breast cancer 

outcomes (RFS and OS) by independent investigators and I confirmed these 

findings. In GWAS literature, corroborative evidence of this kind is highly 

recommended in diverse ethnic groups. Even though the prognostic SNP 

replicated here in this study is also from Caucasian subjects, its replication in 

other ethnic groups is awaited. While the SNP profiled here is located in non-gene 

region, this locus warrants further investigation for mechanistic insights. In 

addition, I also identified multiple CNAs (two copy number gains and eight CN-

LOHs) showing statistically significant differences in RFS probabilities in breast 

cancer cases with and without these CNAs. Of these, three CN-LOHs were 

validated by an independent platform, RT-qPCR in a proof of concept study. 

These findings indicate the importance of germline common variants as potential 

prognostic markers for breast cancer. More research is needed to identify 

additional germline variants of potential prognostic and predictive values. The 

most promising markers that show consistent statistically significant associations 

with breast cancer prognosis can be further evaluated in prospective clinical trials. 

If successful, these germline markers, in addition to currently utilized tumor-

based prognostic and predictive factors, may help us realize practical value of 
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breast cancer prevention and control through applications of genetically stratified 

populations to benefit from emerging genomics medicine. 
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7. Future directions 

1. This thesis work has explored several aspects of the genetic predisposition 

to breast cancer and disease prognosis and showed excellent replication in 

independent stages of the study. These results upon further validation 

would help generalize the findings (Chapters 2 and 5). Other aspects of the 

work that warrant further investigations are summarized below -  

a. The identified association of rs1429142 on chromosome 4q31.22 

may be further investigated to identify causal variant(s) through 

either fine mapping or targeted deep sequencing within 

approximately 250 kb up and downstream of the locus.  

b. The association of this locus was observed to be influenced by 

BMI. Hence, the connection among BMI, rs1429142 and breast 

cancer requires further investigation. 

2. I identified the statistical significant single-locus effect of rs1092913 on 

chromosome 5p15.2 in breast cancer (Chapter 2). The independent 

replication in a larger but distinct set of breast cancer cases and controls 

may be conducted to further evaluate its association with breast cancer. 

3. I also provided a framework to evaluate risk conferred by potential 

epistatic interactions among SNPs showing moderate single-locus effects 

with weak statistical significance in GWAS and/or candidate-gene 

association studies for breast cancer (Chapters 3 and 4). Our analyses 

identified two two-way interactions and an interaction involving four 

SNPs conferring risk for breast cancer. These interactions warrant 
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replication in an independent set of cases and controls. Further, this 

approach can be extended to larger datasets as well as to other phenotypes. 

4. In an exploratory analysis, I also identified germline CNAs with potential 

prognostic value for breast cancer. These markers showed stronger 

associations for luminal A type breast cancer than for others. Further 

investigation of these markers in independent breast cancer cases is 

warranted. A similar approach could also be adopted to identify germline 

CNAs with potential prognostic value for other types of breast cancer such 

as luminal B, HER2 and triple negative. 

5. Finally, the comprehensive approach used in this thesis, which included 

SNPs, their potential interactions, and CNAs may be applied to other 

complex diseases or traits in order to identify germline DNA variations for 

susceptibility and disease prognosis.  


