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Abstract

This thesis empirically investigates the comparative ease of learning policies and heuristics for bidi-

rectional versus unidirectional search in satisficing classical planning. Our research explores the

potential advantages of bidirectional search in terms of learnability and efficiency of the result-

ing guidance mechanisms. We employ a learning framework where neural networks parameterize

policies and heuristics, trained on solutions generated by bidirectional and unidirectional search

methods across three classical planning domains: Sliding Tile Puzzle, Witness Puzzles (Triangles

and Colours), and Pancake Puzzle. We compare base algorithms that span a spectrum from pure

heuristic-based to pure policy-based approaches. As models improve, they solve more problems

and find different solutions, potentially enhancing the quality of training data. Experimental re-

sults suggest that learning satisficing policies and heuristics for bidirectional search is often easier

and leads to more efficient search guidance. Consistently, during training, bidirectional searches

achieved greater or equal solve rates after seeing fewer problems and using fewer cumulative expan-

sions. The resulting learned bidirectional guidance mechanisms were efficient in terms of expansions

and generalized well to test sets. These findings were particularly pronounced in the Witness and

Pancake domains. We propose several possible explanations for these observations, including the

potential for bidirectional search to yield different solution distributions, allow for complementary

interaction between the two directions predictions, and reduce the effective search depth. This re-

search contributes to the ongoing exploration of learning in planning, raising new questions about

the relationship between search strategies and the ease of learning effective guidance.
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Chapter 1

Introduction

Classical planning is a fundamental area of artificial intelligence that focuses on developing algo-

rithms to find sequences of actions that transform an initial state into a goal state (Fikes & Nilsson

1971; LaValle 2006; Russell & Norvig 2016). While significant progress has been made in this

field, the challenge of efficiently solving complex planning problems remains. One approach that

has gained traction in recent years is the use of machine learning techniques to improve search

algorithms by learning policies and heuristics (Arfaee et al. 2011; Orseau & Lelis 2021; Sakaue &

Oki 2022; Pendurkar et al. 2023; Pendurkar et al. 2024).

Within the broader field of classical planning, satisficing planning has emerged as a practical

approach for tackling real-world problems where finding any valid solution quickly is crucial. This

is in contrast to optimal and bounded suboptimal planning, which often require more time but give

guarantees about the cost of a returned solution.

Traditionally, unidirectional search methods, such as forward search, have been the primary

focus of research in classical planning (Bonet & Geffner 1999; Bonet & Geffner 2001; Hoffmann

2001; Helmert 2006; Richter & Westphal 2010; Segovia-Aguas et al. 2021). However, bidirectional

search, which can simultaneously explore the state space from both the initial and goal states, has

shown promise in certain domains (Torralba et al. 2014). Bidirectional search has the potential to

reduce the effective search depth and quickly connect partial solutions from both ends (Sturtevant &

Felner 2018), which could be particularly advantageous in problems where the connection between

start and goal states is challenging from a single direction.

This thesis aims to address the gap in knowledge regarding the comparative ease of learning

policies and heuristics for bidirectional versus unidirectional search in satisficing classical planning.

We hypothesize that bidirectional search may offer advantages in two key areas: the ease of learning

effective policies and heuristics, and the efficiency of the resulting search processes. To test this

hypothesis, we employ a learning framework using neural networks to parameterize policies and
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heuristics—collectively referred to as guidance mechanisms—trained on solutions generated by

both search methods across three classical planning domains: Sliding Tile Puzzle, Witness Puzzles

(Triangles and Colours), and Pancake Puzzle. We compare unidirectional and bidirectional variants

of three base algorithms: A⋆ Search (Hart et al. 1968), Policy-Guided Heuristic Search (Orseau &

Lelis 2021), and Levin Tree Search (Orseau et al. 2018). These algorithms represent a spectrum from

pure heuristic-based to pure policy-based approaches, allowing for a comprehensive comparison of

learning and performance in bidirectional and unidirectional contexts.

Our research methodology involves an iterative process where neural network models are trained

on solutions generated by bidirectional and unidirectional search methods (Arfaee et al. 2011). As

these models improve, the searches are capable of solving more problems and finding different

solutions to previously encountered ones, potentially enhancing the quality of the training data.

This approach allows us to compare the learning trajectories and final performance of guidance

mechanisms for both search strategies.

In all three domains considered, bidirectional variants achieve similar or greater solve rates,

sometimes significantly so, after seeing fewer problems and using fewer cumulative expansions.

These findings demonstrate the comparative ease of learning bidirectional versus unidirectional

guidance mechanisms.

On held-out test sets, the learned bidirectional guidance mechanisms often have greater or equal

solve rates, and on average require fewer expansions per problem. This demonstrates the efficiency

of the learned bidirectional guidance mechanisms.

Together, these findings suggest that bidirectional search often provides a more favorable learn-

ing environment, allowing for quicker acquisition of effective policies and heuristics. The impli-

cations of this research are significant for the field of satisficing classical planning, as it indicates

potential for developing more efficient and scalable planning algorithms in a learning setting, which

can be particularly beneficial when hand-crafted policies or heuristics are difficult to devise.

By leveraging the advantages of bidirectional search in learning policies and heuristics, we open

up new avenues for improving the efficiency and effectiveness of AI planning systems in diverse

real-world scenarios where finding any solution quickly is crucial.
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Chapter 2

Background

2.1 Notation

We use R for the set of real numbers, and R≥0 for the set of nonnegative real numbers. For arbitrary

sets X and Y , we use X ⊂ Y to mean X is a proper subset of Y , and X ⊆ Y to mean X is a

subset—not necessarily proper—of Y . By |X| we denote the cardinality of X. By f : X ⊸→ Y we

mean f is a partial function fromX to Y . For any positive integerN , we define [N ] := {1, 2, . . . , N},
and XN to be the n-ary Cartesian power of X, Xn := {(x1, . . . , xn) | ∀i∈[n]xi ∈ X}. When X is

countable, we use ∆(X) to denote the set of all probability distributions over X, and 2X to denote

the power set of X. Except where noted otherwise, argmin always returns the set of all minimizing

elements.

2.2 Classical Planning

This thesis examines algorithms for solving instances of the classical planning problem (CP) (Fikes

& Nilsson 1971). Our focus is on finding satisficing solutions (Simon 1956), which in this context

means that solutions of any cost are acceptable. While some authors refer to this as satisficing

classical planning, for brevity, we will use the term “classical planning” throughout this work.

We formalize CP instances using a state-space model (LaValle 2006; Russell & Norvig 2016).

Each CP instance is defined by a start state, a goal function that defines a set of goal states,

a function that returns the set of valid actions for a given state, and a deterministic transition

function that returns the resulting state after applying an action.

A solution to a CP instance is a sequence of valid actions that, when applied in order from the

start state, leads to a goal state. Because we are in the satisficing setting, where given a CP instance

all solutions are equally preferred, we do not introduce a transition cost function, which is typically
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used to define the criteria of an optimal solution. However, when contrasting our approach with

others, we sometimes refer to notions of optimality. In such cases, we use the length of a solution

as a measure of optimality—which is equivalent to assigning cost 1 to all transitions.

Here we provide the formal definition of a CP instance that we use throughout this thesis:

Definition 2.1 (Classical Planning) An instance of CP consists of the following compo-

nents:

• A finite, non-empty set of states S.

• A start state s1 ∈ S.

• A goal function G : S → {true, false} that returns true for at-least one s ∈ S \ {s1},
and false otherwise. This function defines the goal criteria for the problem instance.

For convenience of notation we define S∗ := {s ∈ S | G(s) = true} to be the set of goal

states.

• A finite, non-empty set of actions A.

• An action function A : S → 2A, mapping each state to a set of valid actions.

• A partial function T : S × A⊸→ S, called the transition function, mapping each state

and its valid actions to a resulting state, i.e. T (s, a) = s′ where s, s′ ∈ S and a ∈ A(s).

A solution to a CP instance is any sequence of actions (ai)
l
i=1 ∈ Al, l ≥ 1, satisfying:

• a1 ∈ A(s1).

• for i = 2, . . . , l, ai ∈ A(si) where si = T (si−1, ai−1) and s1 = s1.

• T (sl, al) = sl+1 ∈ S∗.

We refer to sequences satisfying the first two criteria, where s1 may be replaced by any arbitrary

state, as paths. These sequences do not necessarily need to satisfy the third criterion.

The length of a path is defined to be the number of actions it comprises. As previously

mentioned, we take the length of a path as its cost, implicitly assuming all transitions have

cost 1. A solution is then considered optimal if it is minimal in length, i.e. any solution of

length l is optimal if there does not exist a solution of length l′ < l. In this work, we assume

that at least one solution exists for each instance.

Due to the fixed start state and deterministic transitions, each path corresponds to a unique

sequence of states. Thus, with a slight abuse of notation we will sometimes refer to paths as

4



sequences of states or state-action tuples.

With this formulation, each instance of CP can be identified as a pathfinding (PF) (Defini-

tion 2.2) problem instance (Pohl 1970; Pearl 1984; Geffner & Bonet 2022) on a finite, directed

graph G = (N , E), where each state s ∈ S corresponds to a unique node n ∈ N . A directed edge

labelled a exists from node n to n′ if and only if s′ = T (s, a) for some a ∈ A(s), where s and s′

are the states corresponding to nodes n and n′, respectively. Each path in the CP instance corre-

sponds to a sequence of edges, or nodes, in the PF instance, which we also call a path. If our CP

formulation included transition costs, these would correspond to a weight function on the edges.

As mentioned, however, we use the length of a path as its cost. We provide a formal definition of

PF in Definition 2.2.

Definition 2.2 An instance of pathfinding (PF) consists of:

• A directed graph G = (N , E), where N is the set of nodes and E is the set of directed

edges.

• A start node n1 ∈ N .

• A set of goal nodes N ∗ ⊂ N \ {n1}.

A solution to such an instance is a path from n1 to any node in N ∗, i.e. a sequence (ei)
l
i=1,

where ei in E for all i ∈ [l], and e1 = (n1, n) and el = (n′, n∗) for some n, n′ ∈ N and n∗ ∈ N ∗.

Paths and path costs are defined analogously to in CP, and similarly we assume at least one

solution exists.

In the context of CP, we additionally label each edge e ∈ E with the action a ∈ A associated

with its corresponding transition. The set of paths (solutions) in a CP instance corresponds to the

set of paths (solutions) in its associated PF instance. Figure 2.1 illustrates an example of a CP

instance and its associated PF instance.

It is crucial to understand that we wish to avoid explicitly constructing the entire set of states

S, often even S∗, or their corresponding nodes in the associated graph representation. The set S is

presumed to be sufficiently large to preclude complete enumeration. Moreover, in some instances,

computing even a single s ∈ S∗ is equivalent to solving the entire problem—a situation exemplified

by the Witness domains (Section 3.1.2) examined in this study. The graph representation of a CP

instance is implicitly defined using the initial state, the action function, the transition function, and

the goal function. In this thesis, we consider algorithms that construct only the necessary parts of

the graph as required during the search process. Our main criteria for comparing the efficiency of

learned guidance mechanisms is minimizing this portion of the graph.
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Figure 2.1: The left part of the image depicts the initial state of a classical planning problem
where a stick figure is positioned in the bottom square. The right part of the image illustrates the
corresponding graph for this problem, with the node labelled S corresponding to the start state.
Each state in this problem, and therefore also node in the graph, corresponds to a configuration
where the stick figure occupies one of the squares. The possible actions are {up, down, left, right}.
The valid actions at any state are those directions in which there is a square adjacent to the stick
figure, which correspond to outgoing edges in the graph. Executing an action moves the stick figure
to the adjacent square in the specified direction.
The single goal state is achieved when the stick figure reaches the square containing the star, which
corresponds to the node labeled G in the graph. There are bijections between both the graph nodes
and the CP instance states, and the edges and CP instance transitions.
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The state-space model formulation of CP and the associated PF problem is particularly well-

suited to best-first search (BFS) algorithms (Dijkstra 1959; Hart et al. 1968; Nilsson 1982; Pearl

1984; Dechter & Pearl 1985; Korf 1993; LaValle 2006; Russell & Norvig 2016), which we discuss

next.

2.3 Best-First Search

In this section we introduce two classes of graph search algorithms for PF that generalize all

algorithms under our consideration.

2.3.1 Unidirectional Best-first Search

Unidirectional best-first search (UniBFS) (Dijkstra 1959; Hart et al. 1968; Pearl 1984; Dechter &

Pearl 1985; Russell & Norvig 2016) is a class of graph search algorithms that explore a graph system-

atically using a real-valued node priority function (Section 2.4), f , and two sets of nodes: frontier

and visited . The version presented here differs in several aspects from the standard description,

which we will discuss subsequently.

Both sets, frontier and visited , initially contain only the start node. The search proceeds by

iteratively removing a node with minimal f value from frontier , then expanding it. Expanding a

node n involves:

For each successor n′ of n:

• If n′ ∈ visited , continue to the next successor.

• If n′ /∈ visited :

– Add n′ to visited .

– Record n as n′’s parent.

– Check if n′ ∈ N ∗, and return with success if true. Otherwise, evaluate and record f(n′)

then add n′ to frontier .

We say a node has been visited once it is added to the visited set. It can be seen that, absent

some other termination criteria, the last node to be visited is always a goal node. We call a node

expanded once all of its successors have been visited.

This description covers a basic version of UniBFS. Other variations may employ more complex

termination criteria, revisit nodes, or incorporate additional features. Notably, in our approach, the

goal check is performed while visiting a node, rather than expanding it, and a node’s f value, which

may depend on the path taken to reach it, is never re-evaluated. We describe UniBFS this way

7



because we focus on the satisficing setting, where all solutions are equally acceptable. Moreover, we

consider the number of expansions an algorithm uses as our primary measure of efficiency. Given

these criteria, it is reasonable to return solutions at the earliest opportunity.

If one is interested in optimal solutions, priority functions satisfying certain properties can

guarantee optimality. However, this may require checking the goal during expansion rather than

visitation, or re-evaluating a node’s f value (Pearl 1984; Felner et al. 2011). These aspects will be

discussed in more detail in Section 2.4.1.

Upon reaching a goal node, we reconstruct the solution by tracing backward from this node to

the start node using the parent records, collecting the actions along the way. The search may also

terminate without finding a solution when a predetermined computational budget is exhausted; in

this work, we use the number of node expansions as our budget metric.

2.3.2 Bidirectional Best-first Search

Bidirectional best-first search (BiBFS) was first discussed in the literature as early as 1966 (Nichol-

son 1966; Doran 1966). Pohl (1969), however, was the first to introduce goal-directed BiBFS, which

will be a major focus of this thesis.

In BiBFS, the algorithm alternates between two searches: the forward search and the backward

search. Each search utilizes its own priority function f and maintains separate frontier and visited

sets. Throughout this thesis, we will use the subscripts F and B to denote objects belonging to

the forward and backward searches, respectively.

The forward search operates on the original graph, referred to as the forward graph. In contrast,

the backward search operates on a derived graph that we call a backward graph.

A backward graph can always be constructed by keeping the nodes of the forward graph but

reversing all edges while keeping their labels, as in the example shown in Figure 2.2, and two of the

domains considered in this thesis (Section 3.1.1, Section 3.1.3). We will refer to this construction as

a simple backward graph. While it can sometimes be more efficient to use a different construction

of the backward graph (Green 1969; Nilsson 1982; Bonet & Geffner 1999; Alcázar et al. 2013), as

in the Witness domains of Section 3.1.2, for the remainder of this chapter we describe BiBFS using

a simple backward graph.

In the remainder of this chapter we assume the forward and backward graphs satisfy the fol-

lowing:

Assumption 2.1 There is exactly one forward goal node, which corresponds to exactly one

node in the backward graph, n1B.
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Assumption 2.2 For each node in the forward graph, no two incoming edges have the same

label.

Assumption 2.1 allows us to initiate the backward search from a single node in the simple backward

graph. Assumption 2.2 ensures that no node in the simple backward graph has two outgoing edges

with the same label. In Section 2.3.4 we will state requirements for the CP instance so that these

may be satisfied.

The main differences in the search procedure are as follows:

• Initialization: For the forward direction, initialize frontierF and visitedF as in UniBFS, as sin-

gleton sets containing the forward start node. For the backward direction, initialize frontierB

and visitedB as singleton sets containing n1B.

• Search process: In each iteration, select a search direction and remove the node with the

minimal f value from the corresponding frontier set for expansion.

• Expansion: Instead of checking if a successor n′ is the goal node, we now check if n′ is

contained in the visited set of the opposite search direction, in which case a solution can

readily be constructed.

Reconstructing a solution is done similarly to UniBFS, by recording actions as we trace a path

from the goal node up the common visited node and back to the start.

Figure 2.2: The left part of the image depicts the forward graph associated with the CP instance
of Figure 2.1. The right part of the image depicts a simple backward graph. The nodes remain
unchanged, but each edge has been reversed. In our notation the edge labels remain the same.
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As with the description of UniBFS, here we described a simple version of BiBFS. Again, since we

are only interested in satisficing solutions, we do a simple goal-check that returns the first solution

found and do not re-expand nodes.

Throughout most of this thesis, we focus on a specific bidirectional search strategy: after choos-

ing an initial direction arbitrarily, we strictly alternate directions for each subsequent expansion.

Henceforth, we will use BiBFS to refer specifically to this strictly alternating strategy, and will

explicitly mention when we mean another approach.

In Section 2.4 we discuss priority functions, but for now we state an assumption that all priority

functions considered in this thesis satisfy, and that will allow us to get a straightforward upper

bound on the number of node expansions in bidirectional search compared to its unidirectional

counterpart, provided that the strict alternation criteria is also used. This relationship is formalized

in Theorem 2.1. This theorem, along with the experimental results of Appendix A.1, where the

strictly alternating approach outperforms an alternative selection criteria that always selects the

node with minimal f value from either direction’s frontier , provide justifications for our decision

to focus on the strictly alternating approach.

Assumption 2.3 Whenever two priority functions fF and fB are used in bidirectional search

on the forward graph and its associated backward graph, GF and GB, respectively, fF (n) may

depend only on the portion of GF that is constructed at the time n is visited and potentially

also the forward goal node. In particular, fF (n) is independent of the progress of the backward

search and does not depend on frontierB. fB(n) is similarly independent of the progress of the

forward search.

Bidirectional search algorithms that adhere to this assumption are called front-to-end searches

(Barker & Korf 2015). All algorithms examined in this work fall into this category.

Theorem 2.1 Let P be an instance of PF, and fF and fB be two priority functions defined

on the associated forward and backward graphs GF and GB, respectively, that satisfy Assump-

tion 2.3. Then, on P , BiBFS using fF and fB will expand no more than 2 · min{EF , EB},
where EF is the number of expansions UniBFS uses on GF with priority function fF (denoted

UniBFSF ), and EB is the number of expansions UniBFS uses on GB with priority function fB

(denoted UniBFSB).

Proof. Suppose, without loss of generality, that EF ≤ EB, i.e. UniBFSF expands at most as many

nodes as UniBFSB, and let u1, u2, . . . , uEF
be the sequence of nodes expanded by UniBFSF . Since

BiBFS strictly alternates directions and fF and fB are computed independently of the progress of

the opposite search direction, we have two cases:

1. The first expansion of BiBFS is in the forward direction, in which case BiBFS expands node

ui in iteration 2i − 1, so either the searches meet somewhere before node uEF
, or BiBFS

expands 2EF − 1 nodes.
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2. The first expansion of BiBFS is in the backward direction, in which case BiBFS expands node

ui in iteration 2i, so either the searches meet somewhere before node uEF
, or BiBFS expands

2EF nodes.

In either case, BiBFS expands at most 2EF nodes, proving the theorem. □

The bound of Theorem 2.1 is pessimistic, however, and in practice the two searches often meet

after fewer expansions compared to the unidirectional case (Nilsson 1982; Kaindl & Kainz 1997;

Alcázar et al. 2013; Barker & Korf 2015). These potential savings depend on both the structures

of the graphs and the priority functions used to guide the searches (Nilsson 1982). The following

two examples illustrate this.

Example 1 Consider a perfect b-ary tree of height l, where the start node is the root and the

single goal node is a leaf. Assume a simple backward graph. In the worst case, with adversarially

chosen priority functions that maximize the number of expansions:

• A UniBFS algorithm would need to expand all 2l− 1 = O(2l) internal nodes to find the goal.

• For BiBFS, the backward graph is a single chain from the goal to the root. Thus, it expands

at most 2l − 2 = O(l) total nodes.

Example 2 Consider a square grid graph of width n > 2 nodes with bidirectional edges, where

start and goal nodes are at opposite corners. The optimal solution path cost is l = 2(n−1). Again,

consider a simple backward graph and adversarially chosen priority functions:

• In the worst case, a UniBFS algorithm would expand all n2− 3 = O(l2) nodes (excluding the

goal and its immediate neighbors).

• A BiBFS search, in the worst case, can expand at most n2− 2n = O(l2) nodes, since the sets

of expanded nodes in each direction must always be separated by two unexpanded nodes.

This example shows less substantial savings in the worst case for BiBFS compared to the

previous tree example.

In both examples, under the best-case scenario with ideal priority functions that expand nodes

only along a single optimal solution path of cost l, unidirectional and bidirectional searches both

expand l − 1 nodes. This represents the optimal number of expansions any UniBFS or BiBFS

algorithm could achieve, regardless of the direction selection strategy employed. Consequently,

the strictly alternating strategy of BiBFS can, in the best case, match this minimum number of

expansions required to find a solution.
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In contrast, the other direction selection strategy we consider—always selecting a node with

minimal f value from either direction’s frontier—can lead to significantly more expansions in the

worst case. Consider a scenario where one direction’s priority function assigns lower f values to

every node not on a solution path compared to the f values of nodes on solution paths from either

direction. In this case, at least every non-solution path from that direction would need to be

explored before a solution could be discovered, regardless of the number of expansions a UniBFS

from the other direction would use. This scenario illustrates why the upper bound established in

Theorem 2.1 does not apply to this alternative strategy.

2.3.3 Batch Best-first Search

To improve practical efficiency, this work considers a generalization of (Uni/Bi)BFS similar to the

works of Agostinelli et al. (2019) and Orseau & Lelis (2021). Instead of immediately evaluating

the f values of successor nodes and adding them to the frontier set during expansion, we collect

these successors into an evaluation buffer. After each expansion, we check if the buffer contains at

least K nodes, where K is a predefined positive integer. If the buffer has at least K nodes, we then

evaluate all nodes in the buffer, add them to the frontier set, and clear the buffer.

This approach is particularly beneficial when there are computational savings in evaluating the

f values of multiple nodes simultaneously. For example, in our experiments, a neural network (NN)

is used to compute parts of the f values, making batch processing more efficient since several nodes

are evaluated in parallel.

It is important to note that different values of K can affect the order of node expansion, and

hence which solution is found. For instance, with K = 1, the successors of the currently expanded

node are immediately added to the frontier set and can be expanded in the next iteration. However,

with K > 1, a node might not be available for expansion until several iterations have passed, as it

waits for the buffer to reach the required size.

As a consequence, larger values of K result in a more thorough exploration of the current

frontier before growing it further. This approach deviates from strictly adhering to the priority

function order when expanding nodes. Such behavior can be advantageous, as previous research

has demonstrated that incorporating random exploration mechanisms can enhance the likelihood

of finding solutions (Valenzano et al. 2014).

2.3.4 Best-first Search for Classical Planning

Here we formalize requirements on the CP instance so that Assumptions 2.1 and 2.2 are satisfied.

Then present the pseudocode for batch versions of unidirectional and bidirectional BFS for CP, in

Algorithms 1 and 2 respectively.
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First note that in our notation, we use the identifier of an action in the forward direction to

also represent its ‘reverse’ action in the backward direction.

Next, observe that the pseudocode for BiBFS (Algorithm 2) has the following parameters: AF ,

AB, TF , TB, fF , fB, which are not present in the UniBFS pseudocode (Algorithm 1). AF and TF

are the action and transition functions A, T from the UniBFS pseudocode and Definition 2.1. AB

and TB are similarly the action and transition functions corresponding to the backward direction.

We will describe their characteristics in more detail below. fF and fB are the priority functions

for the forward and backward search, respectively. To apply BiBFS to an instance of CP we must

be able to construct these backward objects.

In order for our graphs to satisfy Assumption 2.1, we require that only one s∗ ∈ S is a goal

state. This ensures that we can initiate the backward search from a single backward node.

To satisfy Assumption 2.2, we require that for all s, s′ ∈ S and a ∈ A, TF (s, a) = TF (s
′, a)

implies s′ = s. This is to prevent a situation where TB would need to map a state and valid action

to a set of next states, rather than a single state.

If the CP instance satisfies these requirements, in order to construct nodes in the backward

graph for BiBFS we must further be able to construct AB : S → 2A and TB : S ×A⊸→ S so that

for all s, s′ ∈ S and a ∈ A:

1. a ∈ AF (s) and TF (s, a) = s′ if and only if a ∈ AB(s
′) and TB(s

′, a) = s.

2. a ∈ AB(s) and TB(s, a) = s′ if and only if a ∈ AF (s
′) and TF (s

′, a) = s.

Together, these conditions guarantee that we can uniquely reverse each transition of the CP in-

stance, ensuring that a valid solution can be constructed once the goal condition is met.

Next, we will provide more detail about the behaviour of the CreateNode, CheckGoal, and

EvalBatch functions, which are undefined in the pseudocode. The behaviour of these functions

depends on whether the search is unidirectional or bidirectional.

CreateNode(s′, n, a) creates and returns a search node n′ corresponding to a state s′ and a

parent node n, which has its own corresponding state s. There are at least three things Creat-

eNode must do:

• Store the corresponding state, n′.state← s′.

• Store the parent node, n′.parent← n.

• Store the action a which was applied from s—the state corresponding to the parent node

n—to result in s′, n′.action← a.
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• Set the g attribute of a node, n′.g ← n.g + 1 (or 0 if n is null), which is the cost of the path

the search took to visit n′. The priority functions considered in this work will make use of

this attribute.

The action and parent attributes are used to reconstruct a solution inside the CheckGoal func-

tion. The state attribute is what is used for inclusion checks in the frontier and visited sets. For

BiBFS, we additionally take an argument dir specifying the direction of the search that this node

was visited in, n′.dir ← dir, which is used during EvalBatch to determine how to set the f

attribute of a node and which frontier set to add it to.

CheckGoal(n) checks whether a node n can be immediately used to construct a solution.

In UniBFS,CheckGoal(n) simply checks ifG(n.state) = true. If this is the case, CheckGoal

constructs a solution by recording the action attributes while traversing the parent pointers up to

the start node, then returns it. If G(n.state) = false, CheckGoal returns null.

In BiBFS, CheckGoal(n, visitedotherdir) checks if n ∈ visitedotherdir. In this case, by our

requirements on the backward search objects, we can construct a solution by recording actions and

traversing up the path in each direction from n to the corresponding start node. If n /∈ visitedotherdir,

then we can not yet construct a solution and CheckGoal returns null.

EvalBatch simply computes the f attribute of each node passed in the buffer using its cor-

responding directions priority function, adds it to the appropriate frontier set, then clears the

buffer.

The UniBFS and BiBFS frameworks described here are sufficient to capture a large and diverse

set of searching strategies, each parameterized by the priority functions they use. In the next

section we discuss these in more detail.
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Algorithm 1 Unidirectional Batch Best-First Search

Input:
Start state s1, action function A, transition function T , goal function G.
Priority function f .
Batch evaluation parameter K, expansion budget budget.

Output:
Solution sol, number of expansions exp.

1: n1 ← CreateNode(s1, null, null)
2: exp← 0
3: buff ← ∅
4: frontier ← {n1}
5: visited ← {n1}
6: while exp < budget do
7: n← random node from argmin{n′.f | n′ ∈ frontier}
8: frontier ← frontier \{n}
9: exp← exp+ 1

10: for a ∈ A(n.state) do
11: n′ ← CreateNode(T (n.state, a), n, a)
12: if n′ /∈ visited then
13: visited ← visited ∪{n′}
14: sol← CheckGoal(n′)
15: if sol ̸= null then
16: return sol, exp
17: buff ← buff ∪ {n′}
18: if |buff | ≥ K or | frontier | = 0 then
19: EvalBatch(buff, frontier)
20: return null, exp
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Algorithm 2 Bidirectional Batch Best-First Search

Input:
Start state s1, goal state s∗, action functions AF , AB, transition functions TF , TB.
Priority functions fF , fB.
Batch evaluation parameter K, expansion budget budget.

Output: Solution sol, number of expansions e.
1: exp← 0
2: n1F ← CreateNode(s1, null, null, F )
3: frontierF ← {n1F }
4: visitedF ← {n1F }
5: n1B ← CreateNode(s∗, null, null, B)
6: frontierB ← {n1B}
7: visitedB ← {n1B}
8: dir, otherdir ← F,B
9: while exp < budget do

10: n← random node from argmin{n′.f | n′ ∈ frontierdir}
11: frontierdir ← frontierdir \{n}
12: exp← exp+ 1
13: successors← ∅
14: for a ∈ Adir(n.state) do
15: n′ ← CreateNode(Tdir(n.state, a), n, a, dir)
16: if n′ /∈ visiteddir then
17: visiteddir ← visiteddir ∪{n′}
18: sol← CheckGoal(n′, visitedotherdir)
19: if sol ̸= null then
20: return sol, e
21: buff ← buff ∪ {n′}
22: if |buff | ≥ K or | frontierotherdir | = 0 then
23: EvalBatch(buff, frontierF , frontierB)
24: dir, otherdir ← otherdir, dir
25: return null, exp
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2.4 Priority Functions

In the following subsections, unless otherwise stated, our discussion will focus on the UniBFS

setting, where the priority functions we consider were originally introduced. We will explicitly

mention when discussing their application to the BiBFS setting.

For our purposes, given a PF instance with graph G, we consider a priority function to be a real-

valued function defined on the nodes of G which may depend on: (i) the sub-tree of G constructed

so far, which is defined by the visited set, and (ii) the goal node.

BFS algorithms may be further categorized into two classes: uninformed and informed (Pearl

1984).

Uninformed searches include algorithms such as breadth-first search (Russell & Norvig 2016)

and Dijkstra’s algorithm (Dijkstra 1959), the latter being applicable for graphs with arbitrary

positive real-valued edge weights. The characteristic feature of uninformed BFS algorithms is that

their priority functions depend solely on information about previously visited portions of the graph

and do not incorporate any domain-specific knowledge or information about the goal.

In contrast, informed BFS algorithms utilize domain-specific information in their priority func-

tions and often depend on assumptions about the unexplored portions of the graph, particularly

regarding the goal. This thesis primarily focuses on comparing the learnability of parameterized

priority functions for both unidirectional and bidirectional informed BFS algorithms. A secondary

focus is on the efficiency of the learned priority functions.

The three algorithms we compare are based on A⋆ Search (Hart et al. 1968), Levin Tree Search

(LTS) (Orseau et al. 2018), and a version of Policy-Guided Heuristic Search (PHS⋆) (Orseau &

Lelis 2021). It is important to note, however, that these algorithms were originally described using

a unidirectional best-first search framework that differs slightly from the UniBFS algorithm we

presented in Section 2.3.1. The original framework, outlined in Hart et al. (1968), has two key

differences:

Assumption 2.4 The goal check for a node is performed during its expansion rather than

when it is generated.

Assumption 2.5 Nodes are re-evaluated by updating their g values, g(n) whenever a lower-

cost path to them is discovered, and are then re-added to the frontier.

Under Assumption 2.5, g(n) is not necessarily equal to the g attribute described in Section 2.3.4,

and Algorithms 1 and 2. g(n) is equal to the cheapest cost of a path currently discovered from the

start node to n, while our g attribute is the cost of the first path discovered from the start node to

n.
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To facilitate the following discussion, we define three key quantities:

Definition 2.3 • d(n, n′): The cost of the cheapest path between nodes n and n′.

• g∗(n) := d(n1, n): The cost of the cheapest path from the start node to n.

• h∗(n) := minn∗∈N ∗{d(n, n∗)}: The cost of the cheapest path from n to any goal node.

These quantities are intrinsic to the problem instance (PF or CP) and are independent of the search

algorithm. In contrast, g(n) depends on the order in which nodes are visited, which is additionally

determined by the priority function. The algorithms we consider in this thesis all make use of g(n)

along with a learned quantity; they are all instances of (Uni/Bi)BFS and differ only in the quantity

they learn and how it is combined with g(n). In the following subsections we discuss this in more

detail.

2.4.1 A* Search

A⋆ search (Hart et al. 1968) and its variants (Pohl 1970; Korf 1985; Botea et al. 2004; Koenig et al.

2004; Hansen & Zhou 2007; Harabor & Grastien 2011) are perhaps the most widely used informed

BFS algorithms. A⋆ search makes use of a heuristic function h : N → R≥0 that estimates the

lowest solution cost that can be achieved from n, that is, an estimate of h∗. There are two very

important properties a heuristic function might satisfy:

1. If h(n) ≤ h∗(n) for all n ∈ N , we say h is admissible. Note that this implies h(n∗) = 0 for

any goal node n∗ ∈ N ∗.

2. If h(n) ≤ d(n, n′) + h(n′) for all n, n′ ∈ N , we say h is consistent. It can shown easily be

shown that consistency implies admissibility. Consider any goal node n∗ ∈ N ∗, then we have

h(n) ≤ d(n, n∗) + h(n∗) = h∗(n) (Pearl 1984). The converse is not true.

The priority function used by A⋆ is f(n) = g(n) + h(n) for a given heuristic h. Thus, f(n) can

be interpreted as an estimate of the smallest solution cost achievable from n, considering the path

already taken to n. For excellent discussions of A⋆ in its original setting, we refer the reader to

(Hart et al. 1968; Pearl 1984; Dechter & Pearl 1985; Edelkamp & Schrödl 2011; Russell & Norvig

2016). Briefly, in its original formulation, even relaxing the assumption of unit edge weights, A⋆

with an admissible heuristic is guaranteed to find an optimal solution. Furthermore, A⋆ with

a consistent heuristic is additionally guaranteed to expand the minimum number of nodes when

finding an optimal solution, with a caveat: A⋆ may expand an arbitrary number of nodes that have

an f value equal to the optimal cost (Pearl 1984; Holte 2010; Russell & Norvig 2016).
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While it is interesting to discuss how these guarantees change with the UniBFS framework

described in this thesis, the learning setting we are primarily interested in does not guarantee

consistent or even admissible heuristics, and we omit that discussion here. Of more interest to us

is finding any solution while expanding only a small number of nodes. Perhaps the most widely

used heuristic search algorithm towards this end is Weighted A⋆ Search (WA⋆) (Pohl 1970).

WA⋆ uses the priority function

fA(n) = g(n) + w × h(n),

for some w > 1. When h is admissible, WA⋆ guarantees that the solution it returns has cost no more

than w times the optimal cost. Ebendt & Drechsler (2009) provides a comprehensive treatment

on WA⋆. For our setting, however, where we have no bounds on the degree of inadmissibility and

do not seek bounded suboptimal solutions, our primary interest is in WA⋆’s ability to reduce the

number of expansions. Wilt & Ruml (2012) empirically show that WA⋆ can increase or decrease

the number of expansions in the satisficing setting; their main finding is that while increasing w

typically results in fewer expansions up to a point, when h(n) is poorly correlated with the true path

length from n to the nearest goal (here we mean path length and not the general cost), increasing

w results in requiring more expansions. Because of this, we will perform preliminary experiments

in each domain we consider to determine empirically whether w = 1 or w = 2.5 performs better

(Appendix A.3).

While bidirectional searches employing the A⋆ priority function have been extensively studied,

this research typically focuses on optimal and bounded suboptimal settings, requiring more complex

termination criteria than those described in our BiBFS framework. Although not central to our

current focus, we direct the reader interested in this area to Sturtevant & Felner (2018), which

discusses this among other cost optimal bidirectional search algorithms.

Throughout the rest of this thesis, we will use the terms A⋆ and BiA⋆ to refer to the application

of the priority function fA(n) = g(n)+w×h(n) in the batch BFS frameworks outlined in Algorithm 1

and Algorithm 2, respectively, unless explicitly stated otherwise.

2.4.2 Levin Tree Search

LTS (Levin Tree Search) (Orseau & Lelis 2021) was initially proposed under Assumption 2.4. This

algorithm employs a policy to direct the search process, which we define as follows:

Definition 2.4 Given a CP instance with states S and actions A, a policy is a function

π : S → ∆(A). That is, π defines for each state s ∈ S a probability distribution over actions,

and we write π(a|s) to denote the probability that π(s) assigns to action a.

A policy π induces a probability distribution over all paths beginning from the start state,
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IP((ai)
n
i=1) =

∏︁n
i=1 π(ai|si) where s1 = s1 and si = T (si−1, ai−1) for i = 2, . . . , n.

Consider a CP instance, its associated PF instance, and a policy π. For each node n that is

reachable from the start node n1 there exists a non-empty set of paths Pn such that each p ∈ Pn
begins at n1 and terminates at n. We define the probability of each of these sequences as the

probability of the same sequence of actions in the CP instance, defined above.

LTS expands nodes in order of the quantity minp∈Pn (|p|+ 1)/π(p), which we call the Levin

cost of node n. The minimum exists for the following reasons:

1. Every path p ∈ Pn containing a cycle will have (|p|+1)/π(p) > (|p′|+1)/π(p′), where p′ ∈ Pn
is p with the cycle removed (the numerator decreases while the denominator cannot increase).

Thus the path of minimum Levin cost must be acyclic.

2. Since the graph associated with the PF instance has finitely many nodes and edges, for each

node n there are finitely many acyclic paths beginning from n1 and terminating at n.

Thus, this minimum exists, and the minimizing path p ∈ Pn must contain n exactly once.

Orseau et al. (2018) show that using the priority function

fL(n) =
g(n) + 1

π(n)
,

where, with a slight abuse of notation, π(n) is defined to be π(p): the probability of the path

p of length g(n) that was first taken to visit n, results in n being expanded at its Levin cost.

Therefore, upon first visiting each node n, we have fL(n) = (g(n)+1)/π(n) = (|p|+1)/π(p), where

p ∈ argminp′∈Pn
(|p′|+ 1)/π(p′).

They also prove that when expanding node n, no more than fL(n) nodes have been expanded

in total. Applied to the set of goal nodes, this implies that no more than minn∈N ∗ fL(n) nodes are

expanded before a goal node is expanded. While this bound was derived in the setting where a

node n is goal checked during its expansion (Assumption 2.4), it still holds in our setting where n

is goal checked during visitation.

Consequently, this priority function provides a direct bound on the number of expansions needed

to visit a goal node, dependent only on the probability assigned to paths terminating at that node.

Once a solution is discovered, we can optimize this bound with respect to the policy.

In our BiBFS setting, where each search direction will have its own policy defining its priority

function, using the previous bound together with Theorem 2.1, we have that BiBFS will expand

no more nodes than 2 times the minimum Levin cost of any goal node in either search direction.

Throughout the rest of this thesis, we will use the terms LTS and BiLTS to refer to the appli-

cation of the priority function fL(n) = (g(n) + 1)/π(n) in the batch BFS frameworks outlined in
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Algorithm 1 and Algorithm 2, respectively, unless explicitly stated otherwise.

2.4.3 Policy-Guidied Heuristic Search

Orseau & Lelis (2021) subsequently introduced Policy-Guided Heuristic Search and its variant

PHS⋆, which we focus on in this thesis. PHS⋆ extends LTS to incorporate a heuristic h in addition

to the policy. The priority function for PHS⋆ is:

fP (n) =
g(n) + 1 + h(n)

π(n)1+h(n)/(g(n)+1)
.

This function simplifies to the LTS priority function when h equals zero everywhere. PHS⋆ yields

a bound comparable to that of LTS, but with an additional scaling factor that may be less than,

equal to, or greater than 1. Unlike LTS, practically optimizing π or h to directly minimize this

bound is computationally prohibitive. In their study, Orseau & Lelis (2021) employed the same loss

functions we will use in this work (Section 3.4). They found that PHS⋆, utilizing learned heuristics

and policies within a UniBFS framework, empirically outperformed LTS in two out of three tested

domains.

Throughout the rest of this thesis, we will use the terms PHS⋆ and BiPHS⋆ to refer to the

application of the priority function fP (n) = (g(n) + 1 + h(n))/π(n)1+h(n)/(g(n)+1) in the batch

BFS frameworks outlined in Algorithm 1 and Algorithm 2, respectively, unless explicitly stated

otherwise.
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Chapter 3

Experimental Setup

All of our experiments consist of using either a unidirectional or bidirectional batch BFS algorithm,

described in Algorithms 1 and 2, within the learning framework to be described in Section 3.5

(Algorithm 3), using one of the domains described in Sections 3.1 and 3.2.

3.1 Domains

Using our definition of CP, a domain is defined as a set of CP instances that have the same set of

states, action function, and transition function, but may differ in their start state and goal states.

In the following subsections we describe the domains under our consideration. Each domain will

be described in terms of its CP components.

3.1.1 Sliding Tile Puzzle

In the Sliding Tile Puzzle (STP) domain (Gates & Papadimitriou 1979; Korf & Taylor 1996; Heydari

& Sudborough 1997; Chitturi et al. 2009; Bulteau et al. 2015; Valenzano & Yang 2017) we consider

square grids of width n cells. The states are all configurations of the grid with the n2 cells labelled

with the integers 0, 1, . . . , n2−1. Given a state, the valid actions are the directions {up, down, left,
right} in which there is a cell adjacent to the where 0 is, the result of taking an action swaps the 0

label with the label in that cell. The single goal state is the configuration with 0 in the top left cell

and the remaining cells labelled in ascending order from left to right and top to bottom with the

integers 1, . . . , n2 − 1. The start states are those states that can be reached from the goal state by

taking valid actions; this ensures that all instances are solvable. Figure 3.1 depicts this domain.

In this domain we use a simple backward graph.
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Figure 3.1: Example of a STP of width of 4. The top left figure shows the goal state. The top
right figure shows a state two actions away from the goal. Swapping the blank tile with the tile to
its left twice, as indicated by the purple lines, results in a goal state. The bottom figure shows a
random start state.

3.1.2 The Witness

We consider two domains based on puzzles from the Witness video game. Abel et al. (2020) and

Stevens et al. (2023) discuss such puzzles in more detail. Here, we only briefly describe the domains

used in our experiments. First, we will describe the shared aspects between these domains, then

discuss the particularities of each in the following subsections.

The Witness puzzle domains consist of a square grid of width n cells. In each Witness type

domain, each cell can contain one object from a set of object types defined by the domain. Each

start state is a configuration with a placement of objects in the cells, and empty cell borders. We

can visualize the actions as drawing a line that traces the borders of the cells, beginning at the

bottom left corner of the bottom left cell. The valid actions are the directions {up, down, left,
right} where extending the line will not intersect with itself or leave the grid. The result of taking

an action extends the line; the objects within the cells remain fixed. The goal states depend on

the particular domain and the placement of the objects within the cells, however in each instance

there is a predefined location on the outer border of the grid where the line must terminate. In

our experiments, the required ending location of the line varies from instance to instance, but the

starting location is fixed.

In these domains we do not use a simple backward graph. Rather, the nodes of the backward

graph correspond to a different set of states SB. Specifically, states in SB consist of the same grid

and placement of objects, except now the line segment is visualized as beginning from the location

where it must terminate in a forward goal state. The valid actions and result of applying them are
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the same as in the forward direction. Figure 2.2 illustrates a forward and backward state of the

same instance.

Figure 3.2: Example of a Witness type puzzle of width 4 forward and backward state. The green
and red triangles indicate where the line must start and end in a forward goal state, respectively.
In contrast, the line must begin at the red arrow in the backward states. The left part of the figure
depicts a forward state, with valid actions {up, down, right}. The right part of the image depicts
a backward state, with valid actions {down, left, right}. These two states together satisfy the goal
of a Witness Colours Puzzle (Section 3.1.2.2) instance in a BiBFS setting.

3.1.2.1 Triangles Puzzle

In the Witness Triangles (TRI) domain, each cell can be blank or contain a number of triangles.

The goal states are all configurations where the line begins at the bottom left corner of the bottom

left cell, terminates at the red arrow, and for each cell with a triangle in it, traces exactly as many

edges of the cell as there are triangles. Figure 3.3 illustrates an example.

Figure 3.3: Example of a TRI puzzle of width 4 goal state. The purple begins at the green arrow
and ends at the red arrow. For each cell with a triangle in it, the line traces as many edges of it
as there are triangles. All configurations featuring connected segments of the purple line starting
from the green triangle represent forward states that can be encountered while progressing towards
this goal state. All configurations featuring connected segments of the purple line starting from the
red triangle represent backward states that can be encountered while progressing towards this goal
state.
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3.1.2.2 Colours Puzzle

In the Witness Colours (COL) domain, each cell can contain one of three colours, or no colour.

The line must divide the grid into regions so that all coloured cells within a region share the same

colour. Figure 3.4 illustrates an example.

Figure 3.4: Example of a COL puzzle of width 4 goal state. The line divides the grid into three
regions, one containing blue colours, one containing red colours, and one containing green colours.
All configurations featuring connected segments of the purple line starting from the green triangle
represent forward states that can be encountered while progressing towards this goal state. All
configurations featuring connected segments of the purple line starting from the red triangle rep-
resent backward states that can be encountered while progressing towards this goal state.

3.1.3 Pancake Puzzle

The Pancake (PAN) domain has long been studied in the planning and theoretical computer science

communities (Gates & Papadimitriou 1979; Korf & Taylor 1996; Heydari & Sudborough 1997;

Chitturi et al. 2009; Helmert 2010; Bulteau et al. 2015; Valenzano & Yang 2017). In this domain,

each each state is a permutation of n ‘pancakes’, each of a unique size, arranged on top of one

another in a stack. The start state is a random such permutation. The valid actions in any state

correspond to all but the top pancake. The result of an action flips the portion of the stack above the

chosen pancake. The goal state is the configuration where the pancakes are arranged in decreasing

order of size from bottom to top. Figure 3.5 illustrates an example.

In this domain we use a simple backward graph.

3.2 Datasets

For STP, TRI, and COL, we employ problems of width 4 and 5. For PAN, we utilize stacks of size

10 and 12. In each domain and size category, we distribute a set of 52,000 unique problem instances

into three subsets: a training set of 50,000 problems, and validation and test sets of 1,000 problems

each. The following subsections briefly outline the generation procedure used for each domain.
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3.2.1 Sliding Tile Puzzle Datasets Generation

For STP width 4, we generate all problem sets ourselves using the same procedure outlined in

Orseau & Lelis (2021), which is described below. For width 5, we use their exact training and test

problems, while generating our own validation problems, again following their procedure.

Orseau & Lelis (2021) employ distinct generation procedures for training and test problems,

omitting validation sets entirely. In our approach, we generate validation sets using the same

method as test problems. For training problems, they create instances by executing random walks

of 50-1000 steps (uniformly chosen) from the goal state. In contrast, validation and test problems

utilize random, solvable grid permutations. This distinction serves two key purposes: it ensures

a robust evaluation of learned policies across a spectrum of complexities, and it assesses how the

performance generalizes to a supposedly more difficult problem distribution, consisting of problems

not encountered during the training phase.

3.2.2 Witness Datasets Generation

For TRI and COL of widths 4 and 5, we employ a consistent method to generate training, validation,

and test sets. The line always starts at the bottom left corner of the bottom left cell. We randomly

select a distinct ending location and perform uniform random walks over valid actions until reaching

it or restarting if no valid actions remain. To ensure sufficient complexity, the generated line’s length

must be at least twice the grid’s width.

After generating a valid line, we place objects to create the start state. For COL, we first check

that the line divides the grid into at least 3 regions (width 4) or 4 regions (width 5), otherwise

restarting. We then choose a color for each region and apply it to each cell within that region

with probability 0.75. For TRI, we consider each cell adjacent to the grid and place the number of

triangles adjacent to the line with probability 0.75.

Figure 3.5: Example of a PAN puzzle of size 10. The top left figure shows the goal state. The top
right figure shows a state one actions away from the goal. Flipping the stack at the purple line
results in a goal state. The Bottom figure shows a random start state.
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This approach generates diverse, solvable puzzles with consistent complexities across all problem

sets for both domains.

3.2.3 Pancake Datasets Generation

For the PAN domain with stack sizes 10 and 12, we generate problems similarly to STP. Training

problems are created by taking random walks of 50-1000 steps away from the goal state. For

validation and test sets, we use random permutations of the stack. This approach allows for a diverse

range of problem difficulties and enables assessment of the models’ generalization capabilities.

3.3 Neural Network Architectures

In the unidirectional setting, we decompose a single network into three modules: ψθf : Rn → Rd

(feature module), πθp : Rd → ∆(A) (policy module), and hθh : Rd → R (heuristic module). The

feature module is used by all algorithms, the policy module is used by LTS and PHS⋆, and the

heuristic module is used by A⋆ and PHS⋆. The subscripted θ’s represent the parameters of these

modules.

ψθf takes a state representation s ∈ Rn (detailed in Appendix D) and outputs an embedding

ψθf (s) = x ∈ Rd. This embedding feeds into the policy and/or heuristic modules.

The policy module outputs an action distribution using a fully connected network with a final

Softmax layer of size |A|. Invalid action masking is optional, which Appendix A.2 empirically

investigates.

The heuristic module outputs a real value, clipped to nonnegative during search/inference but

unclipped for loss computation.

In the bidirectional setting, we use two independent networks: forward and backward. For TRI

and COL, these have identical structures. For STP and PAN, however, the backward policy and

heuristic networks are slightly enlarged. This difference arises because STP and PANhave a single,

fixed goal state, allowing the forward network to implicitly encode this in its weights. The backward

network, however, must handle varying start states. Thus, for these domains, we pass embeddings

of both the current and start states to the backward heuristic and/or policy networks, expanding

their domains to R2d. In TRI and COL, this distinction isn’t necessary as the state representations

encode both start and goal conditions.

We use the exact architecture described in Orseau & Lelis (2021) for the STP, TRI, and COL

domains (except for enlarging the backward heuristic and policy modules for STP, as discussed).

For the PAN domain, we replace the convolutional layers of the feature module with linear layers.

The exact architectures are detailed in Appendix C, and Figure 3.6 graphically depicts the
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different modules in the forward and backward networks.

Figure 3.6: Depiction of the neural network architectures. The top figure depicts a network that
takes a single state as input, and the bottom figure depicts a network that takes two states (current
states and forward start state) as input. Each network has a single feature module, and either a
policy module (LTS based searches), a heuristic module (A⋆ based searches), or both a policy and
a heuristic module (PHS⋆ based searched). The network in the bottom figure uses the same feature
module to process both states.

3.4 Loss Functions

We employ the same loss functions as described in Orseau et al. (2018).

• Heuristic module: given the sequence of states along a solution path, we compute the mean-

squared error over it with respect to the true distances from the goal in the trajectory.

• Policy modules: given the sequence of states and actions along a solution path, we compute

the average negative log-likelihood of actions along the trajectory and scale this quantity

with the total number of expansions the search used when discovering this solution. In

Appendix A.2, we explore the impact of masking out invalid actions.

As per Orseau & Lelis (2021), we apply L2 regularization to both losses, and sum them together

when both modules are present.

For bidirectional algorithms, we compute the above loss with full trajectories for both direc-

tions and then sum them together. In this bidirectional scenario, we scale the policy loss by the

cumulative number of expansions across both search directions.
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3.5 Learning Framework

We employ a learning framework similar to that of Orseau & Lelis (2021), which itself draws

from Arfaee et al. (2011). Our study encompasses two problem sizes for each of the four domains

described in Section 3.1.

Each search algorithm we examine uses a priority function, detailed in Section 2.4, which is

parameterized by a neural network (Section 3.3). The learning algorithm accepts as one of its

inputs a chosen search algorithm, with network weights randomly initialized according to a seed

value. The learning process then unfolds as follows:

• The algorithm attempts to solve a batch of B = 32 training problems.

• The search algorithms parameters are updated using the trajectories of any solutions found

during this batch.

• This process repeats for subsequent batches until all training problems have been processed.

• After each complete sweep over the training set (referred to as an epoch), validation is per-

formed.

• The model that expands the fewest total nodes over the validation set is retained.

• Training continues for a total of E = 10 epochs.

• The final model, which used the smallest total number of expansions on the validation set, is

used for testing at the conclusion of the learning process.

The learning algorithm’s pseudocode is presented in Algorithm 3. The training and validation

sets are as described in Section 3.2. ALG is a unidirectional or bidirectional BFS as described in

Algorithm 1, Algorithm 2, and Section 2.3.4, with a particular priority function parameterized by

a NN with weights θ.

The UpdateParams function shuffles the set of solution trajectories, if any are discovered, then

treats each trajectory as a batch of input-target pairs and performs 10 steps of Adam (Kingma &

Ba 2014) to update the NN weights.
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Algorithm 3 Learning Algorithm

Input:
Training dataset DT , validation dataset DV

Search algorithm ALG
Randomly initialized priority function parameters θ.
Number of training epochs E, batch problems parameter B.
Batch evaluation parameter K, expansion budget budget.

Output: Final priority function parameters θ∗.
1: θ∗ ← θ
2: exp∗ ← budget× |DV |
3: for i = 1, . . . , E do
4: Shuffle DT

5: for each batch b of size B in DT do
6: solutions← ∅
7: for p ∈ b do
8: sol, ← ALG(p, θ,K, budget)
9: if sol ̸= null then

10: solutions← solutions ∪ {sol}
11: θ ← UpdateParams(ALG, θ, solutions)
12: ▷ Validation ◁
13: exp← 0
14: for p ∈ DV do
15: , e← ALG(p, θ,K, budget)
16: exp← exp+e
17: if exp < exp∗ then
18: exp∗ ← exp
19: θ∗ ← θ
20: return θ∗

3.6 Hyperparameters

We use the following hyperparameters in all experiments:

Search algorithms (same parameters used for training, validation, and test):

• K = 32: Batch expansion parameter.

• budget: Expansion budget. 2000 for TRI 4, COL 4, and PAN 10. 4000 for STP 4, TRI 5,

COL 5, and PAN 12. 7000 for STP 5.

Learning algorithm:

• Random seeds 7, 17, 31, 53, 97: these determine the NN’s initialization, the shuffling of the

training dataset in each epoch, and the shuffling of each batch of solutions before updating
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the model.

• B = 32: Number of problems per batch.

• E = 10: Number of training epochs.

Optimization parameters:

• 0.001: L2 regularization parameter.

• 0.0001: Learning rate for the Adam optimizer.

• 10: Number of gradient steps per solution.
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Chapter 4

Comparing Unidirectional and

Bidirectional Searches

In this chapter, we present our primary comparisons. For each domain and size configuration,

we compare the best-performing unidirectional version of each algorithm with its best-performing

bidirectional counterpart, as identified in our preliminary studies (detailed in appendix A). In

particular: (i) all bidirectional algorithms strictly alternate search directions with each expansion,

(ii) all policy-based algorithms do not use invalid action masking, (iii) (Bi)A⋆ algorithms use w = 1

for COL and TRI, and w = 2.5 for PAN and STP.

4.1 Training and Validation

Our study’s primary objective is to compare the learnability of effective policies and heuristics in

unidirectional versus bidirectional searches. We investigate how the quality of learned heuristics

and policies evolves with respect to both the number of problems encountered and the cumulative

expansions used. Our metrics for quality are the average number of problems solved and expansions

used per problem. We focus particularly on learning guidance mechanisms that quickly achieve high

solve rates, successfully solving the majority of training and validation problems while minimizing

cumulative expansions.

Although we couldn’t use time as a fair comparison due to hardware variations across exper-

iments, we found that the number of expansions correlates strongly with time. This holds even

in Witness domains where goal checking is more complex than a simple hash lookup (STP and

PAN use simple backward graphs). Moreover, the average expansion time across algorithms re-

mains relatively consistent. While the backward models in PAN and STP domains require larger

architectures, as detailed in section 3.3, this discrepancy could potentially be minimized with more
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efficient hardware utilization.

Our results demonstrate that across all base algorithms, domains, and domain sizes, bidirec-

tional searches learn effective guidance mechanisms more quickly than their unidirectional counter-

parts. This quickness is measured in terms of both problems seen and cumulative expansions. The

learned bidirectional mechanisms either nearly match, exceed, or significantly outperform their

unidirectional counterparts in terms of solve rate. Furthermore, in all cases except STP 5, the

bidirectional variants use fewer expansions to solve problems.

These findings support our hypothesis that learning policies and heuristics is indeed easier in a

bidirectional setting, as evidenced by the reduced total number of expansions and problems required

during the learning process.

We propose several conjectures to explain these results: (i) bidirectional search may yield

more diverse and informative training data through different solution distributions, (ii) the ability

to discover solutions more quickly in bidirectional search could accelerate learning and improve

performance, (iii) bidirectional search may effectively reduce the search depth, simplifying the

learning task for policies and heuristics.

Figures 4.1 to 4.8 illustrate the performance of all algorithms on a particular domain.

The left columns display solve rates (top), and average expansions per problem (middle), versus

batch over all training batches (all epochs). For each batch, we calculate the average number of

problems solved and the average number of expansions used per problem. We smooth the data

using a 500-point fixed-window simple moving average. Solid or dashed lines represent the median

over 5 random seeds, while shaded areas show the min and max. Vertical dotted lines indicate the

ends of each epoch.

The right columns show solve rates (top), and average expansions per problem (middle), at the

end of each training epoch on the validation set. Solid or dashed lines represent the median over 5

random seeds, with shaded areas showing the min and max.

For solve rates versus batch (top left), the bidirectional variants outperform or nearly match

their unidirectional counterparts in every domain and size, often significantly. In all domains, the

solve rates grow quicker for the bidirectional variants. In the TRI and COL domains, BiA⋆ achieves

a significantly greater solve rate at the end of training compared to A⋆. In the PAN 12 domain,

LTS and PHS⋆ barely solve any problems until the last few epochs, where some seeds rapidly learn,

and others still solve barely any problems. In contrast, BiLTS and BiPHS⋆ achieve nearly perfect

solve rates within the first epoch. In this domain, A⋆ is not able to learn at all, while BiA⋆ also

achieves a perfect solve rate within the first epoch. We discuss a possible explanation for this later

on in this section.

The results on the validation set (top right) validate these trends.
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For expansions versus batch (middle left), the results are identical except for one notable ex-

ception: in STP 5, the heuristic-based unidirectional algorithms, A⋆ and PHS⋆, consistently use

slightly fewer average expansions per problem compared to their bidirectional counterparts. Fur-

thermore, the different between the unidirectional and bidirectional A⋆ based searches is greater

than that of the PHS⋆ based searches, indicating that it may be the interplay of the heuristics with

bidirectional search that leads to the poorer expansion efficiency.

The bottom plots display the solve rate versus cumulative expansions over all 10 training epochs,

which is a measure of how quickly the algorithms are able to learn. For each batch of 32 problems,

we calculate the average number of problems solved and the cumulative number of expansions used

in this and all prior batches. These results are averaged over 5 random seeds and smoothed using a

500-point fixed-window simple moving average. Here, we showcase the best-performing version of

each algorithm for the particular domain, as determined in appendix A. (Bi)A⋆ is displayed with

green lines, (Bi)LTS with orange lines, and (Bi)PHS⋆ with purple lines. The unidirectional variants

are displayed with solid lines, and the bidirectional variants use dashed lines.

These plots also show that the bidirectional variant of each algorithm always learns quicker in

terms of the cumulative number of expansions used. The difference is significant in all domains,

and especially pronounced in PAN domains.

We note that the large differences in the PAN domains are likely due to the fixed expansion

budget not being adequate for the unidirectional searches. However, in smaller scale experiments

with an even smaller expansion budget, we observed the same trend. This result may provide

support for conjectures (ii) and (iii).

Another interesting trend is that in the STP and PAN domains, which are similar in that we

use simple backward graphs for both, and their state spaces are both permutation sets, the ordering

of performance from best to worst is generally BiA⋆, BiPHS⋆, LTS, while the situation is reversed

in the Witness domains. These results are similar to those of Orseau & Lelis (2021), where they

considered only unidirectional variants, and it was observed that learning a heuristic versus a policy

is easier in STP domains, and the situation is reversed in the Witness domains. This suggests the

same trend may extend to the bidirectional setting.

In summary, our results consistently demonstrate that bidirectional variants outperform their

unidirectional counterparts across various domains and sizes, both in terms of solve rates and

learning speed during training. Bidirectional algorithms generally achieve higher solve rates more

quickly, measured by both problems seen and cumulative expansions. This advantage is particularly

pronounced in the PAN domain. However, in the STP domain, unidirectional heuristic-based

algorithms solve problems using slightly fewer expansions, though bidirectional variants still achieve

similar solve rates more rapidly. These observations support our initial hypothesis that learning

policies and heuristics is easier in a bidirectional setting.
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These findings suggest that bidirectional search approaches often offer significant advantages in

learning efficiency and problem-solving performance for classical planning tasks, though the relative

ease of learning unidirectional and bidirectional policies versus heuristics may vary depending on

specific domain characteristics.
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Figure 4.1: Comparison of search algorithms and their bidirectional variants on TRI width 4 during
training, using an expansion budget of 2000. Top row shows solve rates vs. batches (training
set, left) and epochs (validation set, right). Middle row displays average expansions vs. batches
(training set, left) and epochs (validation set, right). Bottom row presents solve rates vs. total
expansions. Top and middle rows show median (solid line) and range (shaded area) over 5 random
seeds, while the bottom row shows the mean over 5 random seeds. All data smoothed using a
500-point fixed-window simple moving average.
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Figure 4.2: Comparison of search algorithms and their bidirectional variants on TRI width 5 during
training, using an expansion budget of 4000. Top row shows solve rates vs. batches (training
set, left) and epochs (validation set, right). Middle row displays average expansions vs. batches
(training set, left) and epochs (validation set, right). Bottom row presents solve rates vs. total
expansions. Top and middle rows show median (solid line) and range (shaded area) over 5 random
seeds, while the bottom row shows the mean over 5 random seeds. All data smoothed using a
500-point fixed-window simple moving average.
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Figure 4.3: Comparison of search algorithms and their bidirectional variants on COL width 4 during
training, using an expansion budget of 2000. Top row shows solve rates vs. batches (training
set, left) and epochs (validation set, right). Middle row displays average expansions vs. batches
(training set, left) and epochs (validation set, right). Bottom row presents solve rates vs. total
expansions. Top and middle rows show median (solid line) and range (shaded area) over 5 random
seeds, while the bottom row shows the mean over 5 random seeds. All data smoothed using a
500-point fixed-window simple moving average.
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Figure 4.4: Comparison of search algorithms and their bidirectional variants on COL width 5 during
training, using an expansion budget of 4000. Top row shows solve rates vs. batches (training
set, left) and epochs (validation set, right). Middle row displays average expansions vs. batches
(training set, left) and epochs (validation set, right). Bottom row presents solve rates vs. total
expansions. Top and middle rows show median (solid line) and range (shaded area) over 5 random
seeds, while the bottom row shows the mean over 5 random seeds. All data smoothed using a
500-point fixed-window simple moving average.
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Figure 4.5: Comparison of search algorithms and their bidirectional variants on STP width 4 during
training, using an expansion budget of 4000. Top row shows solve rates vs. batches (training
set, left) and epochs (validation set, right). Middle row displays average expansions vs. batches
(training set, left) and epochs (validation set, right). Bottom row presents solve rates vs. total
expansions. Top and middle rows show median (solid line) and range (shaded area) over 5 random
seeds, while the bottom row shows the mean over 5 random seeds. All data smoothed using a
500-point fixed-window simple moving average.
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Figure 4.6: Comparison of search algorithms and their bidirectional variants on STP width 5 during
training, using an expansion budget of 7000. Top row shows solve rates vs. batches (training
set, left) and epochs (validation set, right). Middle row displays average expansions vs. batches
(training set, left) and epochs (validation set, right). Bottom row presents solve rates vs. total
expansions. Top and middle rows show median (solid line) and range (shaded area) over 5 random
seeds, while the bottom row shows the mean over 5 random seeds. All data smoothed using a
500-point fixed-window simple moving average.
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Figure 4.7: Comparison of search algorithms and their bidirectional variants on PAN size 10 during
training, using an expansion budget of 2000. Top row shows solve rates vs. batches (training
set, left) and epochs (validation set, right). Middle row displays average expansions vs. batches
(training set, left) and epochs (validation set, right). Bottom row presents solve rates vs. total
expansions. Top and middle rows show median (solid line) and range (shaded area) over 5 random
seeds, while the bottom row shows the mean over 5 random seeds. All data smoothed using a
500-point fixed-window simple moving average.
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Figure 4.8: Comparison of search algorithms and their bidirectional variants on PAN size 12 during
training, using an expansion budget of 4000. Top row shows solve rates vs. batches (training
set, left) and epochs (validation set, right). Middle row displays average expansions vs. batches
(training set, left) and epochs (validation set, right). Bottom row presents solve rates vs. total
expansions. Top and middle rows show median (solid line) and range (shaded area) over 5 random
seeds, while the bottom row shows the mean over 5 random seeds. All data smoothed using a
500-point fixed-window simple moving average.
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4.2 Testing

In this section, we present our secondary comparisons: the quality of the learned policies and

heuristics, as measured primarily by their solve rate performance and secondarily by the number

of expansions they use to solve problems. These measurements are conducted on held-out test sets

(section 3.2). We employ the same expansion budgets as in training (section 3.6): 2000 for TRI 4,

COL 4, and PAN 10; 4000 for STP 4, TRI 5, COL 5, and PAN 12; and 7000 for STP 5.

In this section, we present comparisons of the optimal variants of each algorithm for each domain

in Tables 4.1, 4.2 and B.1. These optimal variants were determined in appendix A. All data shown

is averaged over 5 random seeds using during training. For each seed, we use the model that

expanded the fewest total nodes on a validation set during any epoch of training.

In table 4.1 and table 4.2, the top numbers in a row represent the mean over the seeds, while the

bottom numbers (in parentheses) show the standard deviation. The columns are organized in pairs,

presenting unidirectional and bidirectional variants of each base algorithm. Each row corresponds to

a specific domain and size configuration. Within column pairs, bold entries highlight the best mean

performance. Underscored entries indicate the best overall mean performance across all algorithms

for that particular domain and size. Each table uses a different subset of the test problems, which

will be detailed when necessary

Table 4.1 displays the number of problems solved and average expansions per problem on all

test problems, including those that were not solved.

In terms of problems solved, bidirectional variants generally outperformed or matched their

unidirectional counterparts across all domains, with one exception: in STP 5, A⋆ slightly edges out

BiA⋆. However, BiA⋆ surpasses A⋆ in all other domains, with particularly notable differences in

the Witness domains, especially COL. A striking example is PAN 12, where A⋆ failed to solve any

test problems, while BiA⋆ solved all of them. As mentioned in section 4.1, this was likely due to an

inadequate expansion budget for A⋆ to solve enough problems to learn effectively. However, this

observation supports our hypothesis that learning policies and heuristics is easier in a bidirectional

setting. Significant performance gaps are also evident between LTS and BiLTS, as well as between

PHS⋆ and BiPHS⋆, in this domain.

The differences in average number of expansions used are even more pronounced, which is

expected as this metric includes the average expansions on unsolved problems. In Witness and PAN

domains, bidirectional algorithms used significantly fewer expansions, even when a similar number

of problems was solved. Similarly to during training, which used a different problem distribution,

we again we see that A⋆ uses fewer expansions compared to BiA⋆ in the STP domains. Also, in

STP 5, the difference between A⋆ and BiA⋆ is again greater than that of PHS⋆ and BiPHS⋆, giving

more evidence that it may be the heuristic, and lack of a policy, that leads to poorer expansion

44



efficiency of bidirectional algorithms in this domain. On the other hand, in contrast to training,

PHS⋆ now only outperformed BiPHS⋆ on STP 5, and not STP 4. This might suggest that as STP

size grows, mixing a policy and a heuristic, compared to a pure policy based approach, leads to

worse performance scaling of bidirectional versus unidirectional searches. More experiments would

need to be carried out in order to test this hypothesis.

Table 4.2 presents the average number of expansions per problem and the average solution

length, but only for problems commonly solved by all algorithms and all seeds. This comparison of

expansions is more equitable as it only considers problems that were always solved. Although we

are in a satisficing setting and solution lengths (cost) are not a primary concern, it is interesting

to compare whether the solution qualities differ significantly.

In PAN 12, the unidirectional variants did not solve at least 100 problems in all seeds (note the

large standard deviation in table 4.1), thus are excluded from the comparison.

In the Witness type domains, all bidirectional variants use fewer than half the expansions, with

the difference between A⋆ and BiA⋆ being most significant, especially in the COL domains. This

suggests that this domain is particularly challenging for learning unidirectional pure heuristic-based

search algorithms.

In the STP domains, we again observe that unidirectional searches using a heuristic expand

generally expand fewer nodes compared to their bidirectional counterparts. The exception is that

PHS⋆ only outperformed BiPHS⋆ in STP 5, and not STP 4, as mentioned regarding table 4.1 this

might suggest that as STP size grows, mixing a policy and a heuristic, compared to a pure policy

based approach, leads to worse performance scaling of bidirectional versus unidirectional searches.

In all other cases (except BiPHS⋆ in STP), whenever a bidirectional algorithm uses fewer expan-

sions in the smaller domain size, the difference grows in the larger domain size. More experiments

across more diverse domains and sizes should be done to investigate this further.

Solution lengths are very similar (identical after rounding) in the Witness type domains. How-

ever, in STP the unidirectional variants find shorter or equal length solutions in all cases except

LTS in STP 5. Interestingly, BiLTS expands fewer nodes in both STP 4 and 5, but only in STP

5 does it find shorter solutions. It remains unclear whether this trend would continue as we scale

the domain size. If so, it could indicate that also in terms of solution length, bidirectional pure

policy-based search scaled better in this domain.

In PAN 10, the unidirectional variants found short solutions, but in PAN 12 completely failed

to learn. Again, this is likely due to an inadequate expansion budget. This still shows, however,

that in this domain, in our satisficing setting and learning framework, bidirectional search scaled

better.

In summary, these results demonstrate that in our learning framework, the learned bidirectional

guidance mechanisms generally outperformed their unidirectional counterparts in terms of problems
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solved and expansions used, our primary efficiency metrics. This was particularly evident in the

Witness and PAN domains. Exceptions were observed with BiA⋆ in STP, and BiPHS⋆ in STP

5. These results suggest that in certain domains, learned bidirectional search algorithms offer

significant efficiency advantages. However, the primary objective of this thesis is to investigate

whether an adequate guidance mechanism can be learned more quickly using bidirectional search,

in terms of problems seen and cumulative expansions used, which is demonstrated in section 4.1.

The results in this section further illustrate that the resulting learned bidirectional mechanism often

outperforms its unidirectional counterpart, though performance varies depending on the domain.
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A⋆ BiA⋆ LTS BiLTS PHS⋆ BiPHS⋆

TRI 4
Solved

797.6
(18.4)

901.6
(20.3)

998.2
(1.9)

999.2
(0.4)

995.0
(2.8)

998.6
(0.5)

Expansions
633.6
(25.3)

366.9
(37.0)

173.8
(7.3)

74.6
(1.0)

181.8
(4.5)

75.9
(1.5)

TRI 5
Solved

725.2
(40.5)

831.2
(27.0)

990.4
(3.2)

998.0
(1.2)

977.0
(2.9)

992.8
(1.8)

Expansions
1462.9
(167.0)

964.3
(109.2)

278.6
(23.3)

121.3
(4.0)

323.6
(13.0)

139.5
(8.1)

COL 4
Solved

566.0
(28.9)

819.0
(7.2)

998.6
(0.9)

999.2
(0.8)

997.0
(1.2)

998.6
(1.7)

Expansions
1108.5
(58.9)

573.7
(18.0)

138.9
(2.4)

57.3
(2.0)

142.5
(2.7)

60.6
(2.1)

COL 5
Solved

188.0
(12.6)

535.8
(10.1)

996.6
(0.5)

999.4
(0.9)

985.4
(5.3)

996.8
(1.8)

Expansions
3432.7
(42.3)

2243.4
(31.2)

254.6
(9.2)

109.1
(5.6)

297.8
(22.8)

123.7
(7.4)

STP 4
Solved

1000.0
(0.0)

1000.0
(0.0)

1000.0
(0.0)

1000.0
(0.0)

1000.0
(0.0)

1000.0
(0.0)

Expansions
837.0
(4.7)

843.5
(15.0)

887.8
(2.8)

745.7
(5.4)

862.5
(2.9)

772.0
(13.8)

STP 5
Solved

998.8
(1.1)

988.4
(9.0)

995.8
(8.8)

1000.0
(0.0)

1000.0
(0.0)

1000.0
(0.0)

Expansions
2181.6
(73.8)

2793.9
(187.7)

2612.3
(376.3)

1971.1
(40.9)

2210.3
(76.9)

2414.4
(88.4)

PAN 10
Solved

1000.0
(0.0)

1000.0
(0.0)

1000.0
(0.0)

1000.0
(0.0)

1000.0
(0.0)

1000.0
(0.0)

Expansions
30.7
(0.1)

26.8
(0.3)

31.6
(0.1)

26.8
(0.3)

31.0
(0.1)

27.4
(0.7)

PAN 12
Solved

0.0
(0.0)

1000.0
(0.0)

800.2
(446.8)

1000.0
(0.0)

600.0
(547.7)

1000.0
(0.0)

Expansions
4000.0
(0.0)

40.5
(0.5)

837.1
(1766.5)

38.6
(0.1)

1626.2
(2166.9)

39.3
(0.7)

Table 4.1: Comparison of solve rate and average expansions per problem on test sets for optimal al-
gorithm variants for each domain. Data shows means (top) and standard deviations (parenthesized,
bottom) averaged over 5 random seeds. Each seed uses the model with lowest total node expansion
on the validation set after any training epoch. Columns are paired to display unidirectional and
bidirectional variants of each base algorithm. Bold entries indicate best mean performance within
column pairs; underscored entries denote best overall mean performance. Expansion budgets used
are: 2000 for TRI 4, COL 4, and PAN 10. 4000 for STP 4, TRI 5, COL 5, and PAN 12. 7000 for
STP 5.

47



A⋆ BiA⋆ LTS BiLTS PHS⋆ BiPHS⋆

TRI 4
(755.0)

Expansions
235.6
(244.6)

92.5
(94.0)

131.7
(50.3)

52.3
(25.8)

131.3
(50.0)

52.1
(25.4)

Sol. Length
12.0
(2.6)

12.0
(2.6)

12.0
(2.6)

12.0
(2.6)

12.0
(2.6)

12.0
(2.6)

TRI 5
(642.0)

Expansions
339.9
(406.0)

122.4
(132.4)

154.2
(60.0)

63.5
(24.4)

154.3
(62.1)

63.3
(24.6)

Sol. Length
13.8
(2.9)

13.8
(2.9)

13.9
(2.9)

13.8
(2.9)

13.9
(2.9)

13.9
(2.9)

COL 4
(494.0)

Expansions
311.9
(310.0)

62.8
(70.2)

81.4
(25.4)

28.2
(11.6)

80.6
(27.4)

28.8
(22.2)

Sol. Length
9.2
(1.6)

9.2
(1.6)

9.2
(1.6)

9.2
(1.6)

9.2
(1.6)

9.2
(1.6)

COL 5
(148.0)

Expansions
668.5
(613.7)

88.6
(78.4)

103.6
(23.7)

38.8
(9.5)

103.4
(19.9)

38.5
(9.2)

Sol. Length
10.7
(1.1)

10.7
(1.1)

10.7
(1.1)

10.7
(1.1)

10.7
(1.1)

10.7
(1.1)

STP 4
(1000.0)

Expansions
837.0
(103.3)

843.5
(123.3)

887.8
(107.1)

745.7
(100.2)

862.5
(106.7)

772.0
(102.6)

Sol. Length
57.1
(6.5)

61.2
(7.4)

64.7
(7.6)

70.1
(8.0)

62.7
(7.6)

76.6
(9.8)

STP 5
(918.0)

Expansions
2161.8
(300.2)

2735.0
(445.4)

2581.0
(323.5)

1960.7
(203.5)

2199.5
(208.6)

2404.1
(233.7)

Sol. Length
146.1
(14.9)

163.0
(16.5)

199.7
(19.8)

172.8
(15.1)

173.3
(16.2)

220.9
(20.3)

PAN 10
(1000.0)

Expansions
30.7
(5.1)

26.8
(5.6)

31.6
(5.5)

26.8
(6.0)

31.0
(5.3)

27.4
(5.4)

Sol. Length
8.8
(1.2)

9.2
(1.3)

9.0
(1.3)

10.1
(1.6)

8.8
(1.2)

10.8
(1.4)

PAN 12
(1000.0)

Expansions
40.5
(7.0)

38.6
(6.4)

39.3
(4.4)

Sol. Length
12.3
(1.6)

13.2
(1.7)

16.1
(1.5)

Table 4.2: Comparison of average expansions per problem and solution length for optimal algorithm
variants on commonly solved test problems (across all algorithms and seeds) for each domain. Data
shows means (top) and standard deviations (parenthesized, bottom) averaged over 5 random seeds.
Each seed uses the model with lowest total node expansion on the validation set after any training
epoch. Only algorithms solving at least 100 problems each seed are included. Columns are paired to
display unidirectional and bidirectional variants of each base algorithm. Bold entries indicate best
mean performance within column pairs; underscored entries denote best overall mean performance.
Expansion budgets used are: 2000 for TRI 4, COL 4, and PAN 10. 4000 for STP 4, TRI 5, COL
5, and PAN 12. 7000 for STP 5.
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Chapter 5

Related Work

Bidirectional search has been an active area of research in recent years (Sturtevant & Chen 2016;

Sharon et al. 2016; Holte et al. 2017; Shaham et al. 2017; Eckerle et al. 2017; Chen et al. 2017;

Sturtevant & Felner 2018; Barley et al. 2018; Hu & Speck 2022). However, these studies focus on

optimal or bounded-suboptimal settings, in contrast to the satisficing setting we consider in this

work. Additionally, this research does not employ a learning framework as we do.

Xie (2016), Kuroiwa & Fukunaga (2020), and Mohammad Lavasani (2024) present bidirectional

algorithms for satisficing search or classical planning, but the latter two use front-to-front heuristics,

whereas we consider front-to-end heuristics and policies. Furthermore, none of these papers consider

learning the guiding mechanisms as we do.

There is prior work on learning policies or heuristics for search algorithms (Bramanti-Gregor &

Davis 1991; Thayer et al. 2011; Arfaee et al. 2011; Pendurkar et al. 2023; Pendurkar et al. 2024;

Orseau & Lelis 2021; Sakaue & Oki 2022). However, these studies focus on unidirectional search

methods. Our work extends this line of research by comparing the learnability of policies and

heuristics for bidirectional versus unidirectional search in satisficing classical planning.

Our research is most closely related to Orseau & Lelis (2021), which employs a similar learning

framework (Arfaee et al. 2011) and introduces the PHS⋆ algorithm that we utilize in this study.

However, their work does not consider bidirectional variants. Our study builds upon this foundation

by explicitly investigating the potential advantages of bidirectional search in terms of learnability

and efficiency of the resulting guidance mechanisms across multiple classical planning domains.

To the best of our knowledge, our work is the first to systematically compare the learnability of

policies and heuristics for bidirectional versus unidirectional search in satisficing classical planning.
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Chapter 6

Conclusions

Our primary objective was to show that learning policies and heuristics for satisficing classical

planning is easier in a bidirectional setting compared to a unidirectional one, in terms of re-

quiring exposure to fewer problems and requiring fewer cumulative expansions. The results of

Section 4.1, which show the learning trajectories during training, demonstrate this. In all three

domains considered—Sliding Tile Puzzle, Witness Puzzles, and Pancake Puzzle—bidirectional vari-

ants achieve similar or greater solve rates, sometimes significantly so, after seeing fewer problems

and using fewer cumulative expansions.

This was particularly the case in all Witness domains (Triangles and Colours), where the dif-

ference was especially pronounced between A⋆ and BiA⋆, suggesting that these domains may be

challenging for unidirectional learning of pure heuristic-based guidance mechanisms.

In the Pancake 12 domain, unidirectional algorithms exhibited unstable learning, with some

seeds completely failing to learn (all A⋆ seeds completely failed to learn). This was likely due to

an inadequate expansion budget. However, it is notable that all bidirectional variants were able to

quickly achieve perfect solve rates with this same budget. This supports our conjecture that the

ability of bidirectional searches to connect solution paths quicker in terms of expansions can result

in more efficient learning. In preliminary testing with half the expansion budget, bidirectional

algorithms were still quickly able to learn.

These findings support our primary objective of showing the comparative ease of learning bidi-

rectional versus unidirectional guidance mechanisms. The results suggest that bidirectional search

often provides a more favorable learning environment, allowing for quicker acquisition of effective

policies and heuristics.

Our secondary objective was to show that the final learned guidance mechanisms are still

efficient in terms of the number of expansions required to solve a problem, and that they generalize

to problems not seen during training.
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During training and validation (Section 4.1), the bidirectional guidance mechanisms always

used fewer expansions per problem, often significantly so, except in STP where A⋆ and PHS⋆

outperformed their unidirectional counterparts, though the different was only marginal.

On the test sets, we also observed that bidirectional variants require fewer average expansions

per problem, but again A⋆ outperformed BiA⋆in STP. Now, however, PHS⋆ only outperformed

BiPHS⋆ on STP 5 and not STP 4. This suggests that mixing a policy and heuristic in this domain

may become less effective as the problem size increases, potentially due to the increased complexity

of learning both components simultaneously for larger state spaces. More experiments should be

done to investigate this.

The bidirectional solve rates on the test sets were also better in all cases except that A⋆

marginally outperformed BiA⋆ on STP 5.

These results support our secondary objective, showing that the learned bidirectional guidance

mechanisms are efficient in terms of expansions, and generalize to problems not seen during training.

We propose several explanations for the observed benefits of bidirectional search in our learning-

based, satisficing classical planning setting. Bidirectional search may find different solutions than

unidirectional search, yielding different distributions of trajectories used for training which poten-

tially leads to more diverse and informative training data. The structure of the backward graph

might enable finding solutions with fewer expansions, allowing for more frequent model updates.

These advantages may be especially relevant early in the learning process, when untrained models

result in search behavior that more closely resembles breadth-first search. Lastly, the forward and

backward guidance mechanisms can learn to interact in a complementary fashion, for example by

learning different features relevant to the search direction, or allowing each direction to specialize

in different regions of the state space, compensating for plateaus in each other’s prediction quality.

While our results are promising, they primarily serve as a foundation for further investigation

into the potential benefits of bidirectional search in learning for classical planning. Future work

should explore these conjectures in more detail, examining how bidirectional search characteristics

influence the learning process across a wider range of priority functions, and investigate the scalabil-

ity of these benefits to larger and more complex problem domains. A limitation of this study is the

rigid learning framework, which uses fixed expansion budgets and datasets. It would be beneficial

to explore the consistency of these findings in more flexible learning settings. Additionally, future

research should investigate the significant performance differences observed in some domains when

using invalid action masking and the best-first search direction selection criteria. These aspects

could provide further insights into optimizing bidirectional search algorithms and their learning

processes.

In conclusion, this research contributes insights to the ongoing exploration of learning in plan-

ning, raising important questions about the relationship between search strategies and the ease of
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learning effective guidance. The demonstrated advantages of bidirectional search in learning poli-

cies and heuristics for satisficing classical planning open up new avenues for improving the efficiency

and effectiveness of AI planning systems. Our findings show that bidirectional search often leads

to faster learning of efficient guidance mechanisms, though the benefits vary depending on specific

domain characteristics.
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Appendix A

Preliminary Experiments

This appendix presents the results of three preliminary experiments: comparing two criteria for

selecting the direction in bidirectional search, determining the effects of invalid action masking,

and selecting the appropriate (Bi)A⋆ weight value.

The results of these experiments are shown in the plots of figures A.1 to A.6. These plots

display a measure of the solve rate versus the cumulative number of expansions over all 10 training

epochs, which is a measure of how quickly the algorithms are able to learn. For each batch of

32 problems, we calculate the average number of problems solved and the cumulative number of

expansions used in this and all prior batches. These results are averaged over 5 random seeds and

smoothed using a 500-point fixed-window simple moving average. The final results are depicted as

solid or dashed lines in the plots. Each row represents one domain, with the left column showing

the smaller domain size and the right column showing the larger domain size.

In the plots, bidirectional algorithm versions may include ‘BFS’ (solid lines) in their labels,

indicating that the search direction was chosen by always expanding the node of minimal f value

in either of the search directions’ frontiers. When ‘BFS’ is omitted (dashed lines), it signifies that

the search direction was strictly alternated with each expansion.

The (Bi)A⋆ algorithms may have suffixes ’ w1’ (green lines) or ’ w2.5’ (orange lines), denoting

the value of w used in the priority function fA(n) = g(n) + w × h(n).

For the (Bi)PHS⋆ algorithms, suffixes ’ m’ (green lines) or ’ nm’ (orange lines) indicate whether

action masking was used or not, respectively (appendix A.2).

A.1 Search Direction Selection Criteria

The upper bound established in theorem 2.1 demonstrates that strictly alternating variants of

BiBFS cannot perform significantly worse than their UniBFS counterparts when using the same
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priority function, which in our context includes NN weights. The drawback is that if one of

the priority functions is uninformative, in the sense that its expansions are not making progress

towards the other frontier, then this upper bound might be attained. On the other hand, even

in this scenario, utilizing a ‘BFS’ criterion, which consistently expands the node with the lowest

f value in either frontier, has the potential to match UniBFS performance. It is not clear how

will play out in our learning context, where randomly initialized priority functions initially result

in more breadth-first behavior before attuning to previously encountered solutions over time. Our

experiments empirically investigate the effects of each selection criterion across our domains.

Figures A.2, A.4 and A.6 reveal that strictly alternating versions of all bidirectional search

algorithms, represented by dashed lines, consistently outperform their ‘BFS’ counterparts. More-

over, this performance disparity becomes more pronounced in domains that prove challenging for

a particular algorithm (BiA⋆, BiLTS, or BiPHS⋆), characterized by some variants failing to learn.

This is evident in the STP domains for all three algorithms and in the PAN domains specifically

for BiPHS⋆.

A.2 Invalid Action Masking

In the reinforcement learning (Sutton & Barto 2018) problem, which can be seen as a generalization

of the CP problem we describe in this thesis, it has been observed that masking out invalid actions

when computing an action probability distribution can be beneficial (Hou et al. 2023; Huang &

Ontañón 2020). Because two of the base algorithms we examine make sure of a policy (LTS and

PHS⋆), we examine the effect that masking out invalid actions has during learning.

Consider a CP instance and a state s ∈ S. The invalid actions at state s is the set A \Adir(s).

By masking invalid actions, we mean that, before applying Softmax, we explicitly set the policy

modules outputs corresponding to these actions to a large negative number (−1×109). This results

in the probability of these actions effectively being set to 0. Without doing this, the policy module

could assign non-negligible probabilities to these actions. Note, however that these actions could

never be taken, since they are not part of set of valid actions for state s. Several differences arise

when masking invalid actions or not:

• When not masking invalid actions, the valid actions will in general have lower probabilities

compared to when masking invalid actions, particularly in the earlier stages of training when

the model has not yet learned to assign 0 probability to invalid actions.

• Therefore, not masking invalid actions initially results in larger values of fL and fP (sec-

tion 2.4, and also larger values of the negative log-likelihood of a solution during the model

update.
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• When not masking invalid actions, the models will have to learn themselves, through gradient

updates, to assign 0 probability to invalid actions. Meanwhile, when masking invalid actions,

the invalid action outputs will always have 0 gradient.

It is not clear how these differences will play out in our learning framework.

In figures A.3 to A.6, we observe that for the majority of domain and size configurations,

an algorithm’s no-masking variant (orange) outperforms its masking counterpart (green). The

difference is most significant in the STP domains, especially STP 5. An interesting observation is

that in the TRI domains, LTS with masking performs better, but the situation is reversed when

using BiLTS. This supports one of our hypotheses that bidirectional search find different solutions

compares to unidirectional search.

The other exceptions are the ‘BFS’ versions of BiPHS⋆ in COL 5 and PAN 12. In COL 5, the

masked variant shows a slightly higher solve rate in the early stages of learning, while in PAN 12,

the difference in learning speed and final solve rate is substantial. However, these differences are

less apparent in the strictly alternating versions of BiPHS⋆ which outperform (greatly in the case

of PAN 12) their ‘BFS’ counterparts anyway.

While we do not investigate this further, we believe it is an interesting problem for future

research.

Given the overall trend favoring no-masking variants, we decide to utilize no masking for all

policy-based algorithms in our subsequent comparisons of unidirectional and bidirectional counter-

parts. This decision ensures consistency across our experiments.

A.3 A* Weighting

Wilt & Ruml (2012) empirically demonstrate that the w value used in (weighted) A⋆ can either

reduce or increase the number of expansions, depending on the domain. Consequently, we evaluate

two values of w, 1.0 and 2.5, for each domain and size configuration in both A⋆ and BiA⋆. We

do not explore weighting the heuristic in (Bi)PHS⋆, though this presents an interesting avenue for

future research.

Figures A.1 and A.2 illustrate that in the STP domains, A⋆ and BiA⋆ variants with w = 2.5

(orange lines) consistently outperform their w = 1 (green lines) counterparts. Conversely, in the

Witness type domains, w = 1 consistently outperforms w = 2.5.

The PAN domains present a more nuanced picture. In PAN 12, no A⋆ variant learns effectively,

while for BiA⋆, the ‘BFS’ variants fail to learn. However, the strictly alternating versions both

rapidly achieve perfect solve rates, with w = 2.5 reaching this milestone slightly faster. In PAN

10, A⋆ with w = 1 attains a perfect solve rate marginally quicker than w = 2.5. For BiA⋆, the
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situation mirrors that of PAN 12, although the ‘BFS’ versions achieve approximately 20% solve

rate (instead of close to 0%), with w = 2.5 slightly outperforming w = 1.

Given these findings, we will use w = 1 for the Witness type domains, and w = 2.5 for PAN and

STP domains, in both A⋆ and BiA⋆ when comparing unidirectional and bidirectional approaches.
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Figure A.1: Comparison of solve rates vs. total expansions for A⋆ across domains during training.
Left column shows smaller domain sizes, right column larger sizes. Lines represent mean solve rates
over 5 random seeds. All data smoothed using a 500-point fixed-window simple moving average.
Expansion budgets used are: 2000 for TRI 4, COL 4, and PAN 10. 4000 for STP 4, TRI 5, COL
5, and PAN 12. 7000 for STP 5.
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Figure A.2: Comparison of solve rates vs. total expansions for BiA⋆ across domains during training.
Left column shows smaller domain sizes, right column larger sizes. Lines represent mean solve rates
over 5 random seeds. All data smoothed using a 500-point fixed-window simple moving average.
Expansion budgets used are: 2000 for TRI 4, COL 4, and PAN 10. 4000 for STP 4, TRI 5, COL
5, and PAN 12. 7000 for STP 5.
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Figure A.3: Comparison of solve rates vs. total expansions for LTS across domains during training.
Left column shows smaller domain sizes, right column larger sizes. Lines represent mean solve rates
over 5 random seeds. All data smoothed using a 500-point fixed-window simple moving average.
Expansion budgets used are: 2000 for TRI 4, COL 4, and PAN 10. 4000 for STP 4, TRI 5, COL
5, and PAN 12. 7000 for STP 5.
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Figure A.4: Comparison of solve rates vs. total expansions for BiLTS across domains during
training. Left column shows smaller domain sizes, right column larger sizes. Lines represent mean
solve rates over 5 random seeds. All data smoothed using a 500-point fixed-window simple moving
average. Expansion budgets used are: 2000 for TRI 4, COL 4, and PAN 10. 4000 for STP 4, TRI
5, COL 5, and PAN 12. 7000 for STP 5.
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Figure A.5: Comparison of solve rates vs. total expansions for PHS⋆ across domains during training.
Left column shows smaller domain sizes, right column larger sizes. Lines represent mean solve rates
over 5 random seeds. All data smoothed using a 500-point fixed-window simple moving average.
Expansion budgets used are: 2000 for TRI 4, COL 4, and PAN 10. 4000 for STP 4, TRI 5, COL
5, and PAN 12. 7000 for STP 5.
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Figure A.6: Comparison of solve rates vs. total expansions for BiPHS⋆ across domains during
training. Left column shows smaller domain sizes, right column larger sizes. Lines represent mean
solve rates over 5 random seeds. All data smoothed using a 500-point fixed-window simple moving
average. Expansion budgets used are: 2000 for TRI 4, COL 4, and PAN 10. 4000 for STP 4, TRI
5, COL 5, and PAN 12. 7000 for STP 5.
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Appendix B

Comparing Bidirectional Forward and

Backward Metrics

Table B.1 shows bidirectional search metrics across domains on commonly solved test problems

across all seeds and algorithms (number solved shown in parenthesis under the domain name): (i)

fraction of solution path discovered in forward vs. backward direction, (ii) ratio of average forward

action probability to total (forward + backward), and (iii) ratio of forward average absolute heuristic

error to total (forward + backward). The latter two metrics are first averaged per solution path.

Data shows means (top) and standard deviations (parenthesized, bottom) averaged over 5 random

seeds. Each seed uses the model with lowest total node expansion on the validation set after any

training epoch.

In the Witness domains, the fraction of the solution path found in both directions is generally

equally distributed between them, except for BiA⋆ which typically discovers more in the backward

search, particularly in the COL domains. Notably, BiA⋆ and BiPHS⋆ solve significantly more

problems in these domains using fewer expansions. This suggests the backward search problem

may be more challenging for learning pure heuristic-based algorithms in these domains. Heuristic

and policy accuracy’s are generally comparable.

In the STP and PAN domains, a high proportion of the solution is found in the forward direction

across all algorithms. This is somewhat expected, as the backward learning problem is more

difficult, since (i) the policy/heuristic values of a state also depend on the changing start state, and

(ii) backward models in these domains are larger to accommodate the two inputs (current state

and start state), potentially requiring more data to learn equally effective policies or heuristics

compared to the forward direction. While heuristic errors are equally accurate in these domains,

the policy is noticeably more accurate in the forward direction. This indicates that learning a

backward policy is particularly challenging in these domains.
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BiA⋆ BiLTS BiPHS⋆

TRI 4
(998.0)

F-B Sol. Len.
0.456
(0.119)

0.494
(0.054)

0.493
(0.056)

F-B Action Prob.
0.498
(0.010)

0.497
(0.010)

F-B H Error
0.500
(0.006)

0.501
(0.008)

TRI 5
(975.0)

F-B Sol. Len.
0.489
(0.134)

0.498
(0.064)

0.495
(0.064)

F-B Action Prob.
0.499
(0.009)

0.498
(0.009)

F-B H Error
0.502
(0.005)

0.502
(0.007)

COL 4
(996.0)

F-B Sol. Len.
0.423
(0.121)

0.500
(0.041)

0.500
(0.044)

F-B Action Prob.
0.496
(0.012)

0.496
(0.011)

F-B H Error
0.504
(0.010)

0.501
(0.012)

COL 5
(988.0)

F-B Sol. Len.
0.373
(0.132)

0.498
(0.051)

0.498
(0.055)

F-B Action Prob.
0.496
(0.010)

0.496
(0.009)

F-B H Error
0.503
(0.007)

0.504
(0.011)

STP 4
(1000.0)

F-B Sol. Len.
0.920
(0.020)

0.805
(0.032)

0.775
(0.055)

F-B Action Prob.
0.584
(0.006)

0.576
(0.007)

F-B H Error
0.499
(0.006)

0.505
(0.011)

STP 5
(1000.0)

F-B Sol. Len.
0.974
(0.004)

0.889
(0.020)

0.857
(0.036)

F-B Action Prob.
0.594
(0.004)

0.576
(0.004)

F-B H Error
0.493
(0.006)

0.502
(0.007)

PAN
10
(1000.0)

F-B Sol. Len.
0.844
(0.041)

0.750
(0.045)

0.722
(0.054)

F-B Action Prob.
0.677
(0.031)

0.667
(0.023)

F-B H Error
0.499
(0.006)

0.498
(0.007)

PAN
12
(1000.0)

F-B Sol. Len.
0.895
(0.025)

0.808
(0.027)

0.688
(0.040)

F-B Action Prob.
0.713
(0.026)

0.668
(0.017)

F-B H Error
0.499
(0.007)

0.501
(0.007)

Table B.1: Comparison of bidirectional search metrics across domains on commonly solved test
problems across all seeds and algorithms (number solved shown in parenthesis under domain name):
(i) fraction of solution path discovered in forward vs. backward direction, (ii) ratio of average
forward action probability to total (forward + backward) probability, and (iii) ratio of forward
average absolute heuristic error to total (forward + backward). The latter two metrics are first
averaged per solution path. Data shows means (top) and standard deviations (parenthesized,
bottom) averaged over 5 random seeds. Each seed uses the model with lowest total node expansion
on the validation set after any training epoch.
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Appendix C

Neural Net Architecture Details

All fully-connected networks have appropriately sized input layers, that depend on the size of

the inputs fed to them, and have outputs layers of either size 1 (heuristic modules), |A| (policy
modules), or the size of the fully-connected layer they feed into (PAN feature module). A SoftMax

function is applied to the outputs of the policy modules to obtain a probability distribution.

C.1 Forward Networks

The forward networks of STP, TRI, and COL domains use the exact architecture described in

Orseau & Lelis (2021):

• Feature module: 2 convolutional layers, each with 32 kernels of size 2× 2 and no padding.

• Policy module: 2 fully-connected hidden layers, each of size 128 with ReLU activations

(Agarap 2018).

• Heuristic module: Same architecture as the policy module.

For the forward PAN network, we use a feature module with a single fully-connected hidden

layer of size 256 with ReLU activations, and use policy and heuristic modules with a single fully-

connected hidden layers of size 64.

C.2 Backward Networks

The backward feature modules of all domains are the same as the forward feature modules.

• For STP, the backward policy and heuristic modules each use three fully-connected layers of

sizes 256, 198, and 128, all with ReLU activations.

70



• For PAN, the backward policy and heuristic modules each use three fully-connected layers of

sizes 128, 96, and 64, all with ReLU activations.

• For TRI and COL, the forward and backward networks are completely identical.

We implement all networks using PyTorch (Paszke et al. 2019).
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Appendix D

State Representations

In this section we describe the state representations which are passed to the feature modules.

For STP and PAN, each state is represented as an array of one-hot encodings:

• In STP of width n, each state is an n × n array. For grid cell (i, j) with value k, the array

entry (i, j) is a length-n2 array with a 1 at the kth position and 0s elsewhere.

• For PAN with stack size n, each state is an length-n array, where each entry is a one-hot

encoding of one of the n pancakes.

In Witness-type domains of width n, each state is represented as a (n+ 1)× (n+ 1)× (k + 5)

array:

• For TRI, k = 3, with these channels representing positions of 1, 2, or 3 triangles. For

example, the first channel represents the positions of the cells containing 1 triangle, so, if cell

(i, j) contains 1 triangle, then array entry (1, 1, 1) will have a 1, otherwise it will have a 0.

• For COL, k = 4, with these channels representing locations of the four possible colors.

The remaining 5 channels encode the locations on the grid of:

• Vertical line segments.

• Horizontal line segments.

• End point of the line.

• Required ending location.

• Starting location (which does not change from state to state, but is included for consistency

with Orseau & Lelis (2021)).
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These channels require (n + 1) × (n + 1) entries because they encode positions on the corners of

the grid, while the previous channels encode cell locations and do not make use of the the (n+1)st

row or column.
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Appendix E

Additional Results for Preliminary

Experiments

These plots provide further justification for our algorithm variant selections in appendix A, which

we use for the unidirectional and bidirectional comparison (appendix B). They provide a more de-

tailed perspective on the progression of solve rates and average expansions per problem throughout

training batches. By displaying median, minimum, and maximum values, these plots illustrate the

algorithms’ resilience to various random factors (detailed in section 3.6). The observations drawn

from these visualizations corroborate our findings presented in appendix A, reinforcing the validity

of our choices.

Figures E.1 to E.6 show the solve rates versus batch for all variants of one of the algorithms

we consider, on all training batches, across all domains. The data is smoothed using a 500-point

fixed-window simple moving average. The lines show the median over 5 random seeds, while shaded

areas show the min and max.

Figures E.7 to E.12 show the expansions per problem versus batch for all variants of one of the

algorithms we consider, on all training batches, across all domains. The data is smoothed using a

500-point fixed-window simple moving average. The lines show the median over 5 random seeds,

while shaded areas show the min and max.
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Figure E.1: Comparison of solve rate versus batch for A⋆ algorithm variants on all training batches,
across all domains. The data is smoothed using a 500-point fixed-window simple moving average.
The lines show the median over 5 random seeds, while shaded areas show the min and max.
Expansion budgets used are: 2000 for TRI 4, COL 4, and PAN 10. 4000 for STP 4, TRI 5, COL
5, and PAN 12. 7000 for STP 5.
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Figure E.2: Comparison of solve rate versus batch for BiA⋆ algorithm variants on all training
batches, across all domains. The data is smoothed using a 500-point fixed-window simple moving
average. The lines show the median over 5 random seeds, while shaded areas show the min and
max. Expansion budgets used are: 2000 for TRI 4, COL 4, and PAN 10. 4000 for STP 4, TRI 5,
COL 5, and PAN 12. 7000 for STP 5.
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Figure E.3: Comparison of solve rate versus batch for LTS algorithm variants on all training
batches, across all domains. The data is smoothed using a 500-point fixed-window simple moving
average. The lines show the median over 5 random seeds, while shaded areas show the min and
max. Expansion budgets used are: 2000 for TRI 4, COL 4, and PAN 10. 4000 for STP 4, TRI 5,
COL 5, and PAN 12. 7000 for STP 5.
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Figure E.4: Comparison of solve rate versus batch for BiLTS algorithm variants on all training
batches, across all domains. The data is smoothed using a 500-point fixed-window simple moving
average. The lines show the median over 5 random seeds, while shaded areas show the min and
max. Expansion budgets used are: 2000 for TRI 4, COL 4, and PAN 10. 4000 for STP 4, TRI 5,
COL 5, and PAN 12. 7000 for STP 5.
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Figure E.5: Comparison of solve rate versus batch for PHS⋆ algorithm variants on all training
batches, across all domains. The data is smoothed using a 500-point fixed-window simple moving
average. The lines show the median over 5 random seeds, while shaded areas show the min and
max. Expansion budgets used are: 2000 for TRI 4, COL 4, and PAN 10. 4000 for STP 4, TRI 5,
COL 5, and PAN 12. 7000 for STP 5.
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Figure E.6: Comparison of solve rate versus batch for BiPHS⋆ algorithm variants on all training
batches, across all domains. The data is smoothed using a 500-point fixed-window simple moving
average. The lines show the median over 5 random seeds, while shaded areas show the min and
max. Expansion budgets used are: 2000 for TRI 4, COL 4, and PAN 10. 4000 for STP 4, TRI 5,
COL 5, and PAN 12. 7000 for STP 5.
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Figure E.7: Comparison of expansions per problem versus batch for A⋆ algorithm variants on all
training batches, across all domains. The data is smoothed using a 500-point fixed-window simple
moving average. The lines show the median over 5 random seeds, while shaded areas show the min
and max. Expansion budgets used are: 2000 for TRI 4, COL 4, and PAN 10. 4000 for STP 4, TRI
5, COL 5, and PAN 12. 7000 for STP 5.
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Figure E.8: Comparison of expansions per problem versus batch for BiA⋆ algorithm variants on all
training batches, across all domains. The data is smoothed using a 500-point fixed-window simple
moving average. The lines show the median over 5 random seeds, while shaded areas show the min
and max. Expansion budgets used are: 2000 for TRI 4, COL 4, and PAN 10. 4000 for STP 4, TRI
5, COL 5, and PAN 12. 7000 for STP 5.
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Figure E.9: Comparison of expansions per problem versus batch for LTS algorithm variants on all
training batches, across all domains. The data is smoothed using a 500-point fixed-window simple
moving average. The lines show the median over 5 random seeds, while shaded areas show the min
and max. Expansion budgets used are: 2000 for TRI 4, COL 4, and PAN 10. 4000 for STP 4, TRI
5, COL 5, and PAN 12. 7000 for STP 5.
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Figure E.10: Comparison of expansions per problem versus batch for BiLTS algorithm variants
on all training batches, across all domains. The data is smoothed using a 500-point fixed-window
simple moving average. The lines show the median over 5 random seeds, while shaded areas show
the min and max. Expansion budgets used are: 2000 for TRI 4, COL 4, and PAN 10. 4000 for
STP 4, TRI 5, COL 5, and PAN 12. 7000 for STP 5.
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Figure E.11: Comparison of expansions per problem versus batch for PHS⋆ algorithm variants on
all training batches, across all domains. The data is smoothed using a 500-point fixed-window
simple moving average. The lines show the median over 5 random seeds, while shaded areas show
the min and max. Expansion budgets used are: 2000 for TRI 4, COL 4, and PAN 10. 4000 for
STP 4, TRI 5, COL 5, and PAN 12. 7000 for STP 5.
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Figure E.12: Comparison of expansions per problem versus batch for BiPHS⋆ algorithm variants
on all training batches, across all domains. The data is smoothed using a 500-point fixed-window
simple moving average. The lines show the median over 5 random seeds, while shaded areas show
the min and max. Expansion budgets used are: 2000 for TRI 4, COL 4, and PAN 10. 4000 for
STP 4, TRI 5, COL 5, and PAN 12. 7000 for STP 5.
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