Capstone Project Report

Linux Traffic Control in Virtual Environment

Master of Science in

Internetworking

University of Alberta,
Edmonton, Alberta

Submitted by: Project Advisor:
Kanwar Pal Singh Dr. Mike MacGregor

ACKNOWLEDGEMENT

I take immense pleasure in thanking Dr. Mike MacGregor, Professor and Chair in Department
of Computing Science, University of Alberta, for giving me an opportunity to carry out this project
work. I am thankful to him for his guidance and constant supervision, as well as for providing
necessary information regarding the project .

A special thanks to Mr. Shahnawaz Mir for all the help extended by him in the MINT lab.

Master of Science in Internetworking 2

ABSTRACT
Virtual environment is an environment in which the old “one server, one application” model is

removed and multiple machines are run on each physical machine.

Traffic control is the name given to the sets of queueing systems and mechanisms by which packets are
received and transmitted on a router. This includes deciding which packets to accept at what rate on the
input of an interface and determining which packets to transmit in what order at what rate on the output
of an interface.
The main purpose of this setup was to create a virtual infrastructure and then using Linux, implement
traffic control on different virtual machines and physical machines (Traffic Control utility like HTB). It
involved the study of throughput and latency as a function of round-trip time and queue discipline.
The study involved implementation of a virtual network by first installing the ESXi server and then
installed various OS on that server. These Virtual machines were connected to other Ubuntu machines
that were present in a virtual environment on a desktop. After that physical network was introduced to
this virtual network using router/switches and then traffic control was done using Ubuntu PC with two
NIC's as a router.
The main tasks for setting up virtual environment were:

* Installation of ESX/ESXi server.

* Installing various Virtual Machines on the server (Including Linux).

* Creating a network of connecting ESXi server to other Virtual machines on laptop using routers

and switches.
* Running various applications between the virtual machines and physical machines and
implementing Traffic Control.

Traffic control may involve various scenarios like:

e Limit bandwidth to a known rate.

* Limit bandwidth of a particular user.

* Reserve bandwidth for a particular application.

» Prefer latency sensitive traffic.

Iperf tool was used to check bandwidth and throughput of the network for all the experiments done.

Master of Science in Internetworking 3

Table of Contents

1. Introduction to VIrtualiZation...........cceeevuiiiiiiiiiiiieciee et e e e e e e eaae e e aae e 5
2. Introduction to Linux Traffic Control...........ccceeeveriiniiiiiiiniieneeeeeee e 7
3. Introduction t0 IPErfi.....cccoiiiiiiiiiieee e et 9
4. Bandwidth & round trip latency for network without routers............ccceevvveeeeiveireeeeieeeeen, 11
5. Bandwidth & latency test latency for network with TOUters...........cccveeeciiieeciieniieecee e, 14
6. Queue discipline on network WithoUt TOULETScceevviieiieriiieiieeiieie e 19
6.1 htb to limit bandwidth..........c..ociiiiiiiii 19
6.2 htb With PIIfO....eeiiiiiiee e 22
6.3 htb WIith STQu.eecceiiiiiieeee e e 24
6.4 htb with sfq perturb value............ooocooiiiiiiiiiii 26
7. Queue discipline on network With TOULETS...........ccveiiiiiiieriiieiiecie e 28
7.1 it With PIITO coeeeeeieiieee e 31
7.2 htb with sfq perturb value..........c.oooiiiiiiiieiieceeee e 33
S T 1 o) OO PO TSRO PO PORUSORPPRUPRPO 35
A o) 4 1o T SO URTRURORUSURTRRPRP 36
8. Limit bandwidth of @ partiCular USET...........c..ceeiiieiiieiiieeeeeee e e 40
8.1 Scenario WithOUL TOULET..........cccuiiiiiieeciie ettt eaae e 40
8.2 Scenario With TOULETS.......couiriiiiiiiieeiceteeee e 45
9. Limit bandwidth of a particular application............ccceeeeuierieeiierienieeeeee e 52
9.1 Scenario WIthOUL TOULET.......c.c.ceiiiiiiiiiieiiertee et 52
9.2 Scenario With TOULETS.ccciieeieecieeeie et e e e e 55
10. Prefer latency SeNSItive data...........c.eeviiiiiieiiiiiieiie ettt et 60
10.1 Scenario WithOUt TOULET.........cuiiiiriiriiriieieeiescee e 60
10.2 Scenario With TOULETS.eeiuiiiiiiiiieiie ettt 63
L O] 4 Te] 11 3 1o) s WO USRS 67
RETETEINCES. ...ttt ettt et sttt et e b et e e naeens 68

Master of Science in Internetworking

1.Introduction to Virtualisation:
Virtualization is mostly concerned about Server virtualization. There are many other types of
virtualization but the most widely used is the Server virtualization. They are:

* Server Virtualization

» Storage Virtualization

* Network Virtualization

* Application Virtualization
* Desktop Virtualization

Server virtualization is a process of consolidating multiple physical servers onto a single physical
server. Say we have around 15 physicals servers in a data centre; we can consolidate all of these servers
onto a single physical server. Saving lots of resources and will require very less resources to manage
one physical server than managing around 15 physical servers.

We will need less Network switches, less power utilization, small ups, less cooling required, less
management required etc.

The easiest form of virtualization is Desktop virtualization as we can implement it on our laptop or
desktop. We don’t need a separate piece of hardware for this; we will be running another OS on our
current OS using a software like VMware Workstation. This will allocate specific hardware to the
Virtual OS from the existing OS.
Approaches used in virtualization:

» Virtualization management layer approach, also called hosted approach.

* Dedicated virtualization approach.

Virtualization Management Layer approach:
In this we have our desktop or laptop, we have our

hardware like CPU, RAM etc. We can install any Operating system on that, and further on that OS we
can install an Virtualization software which will help us to install multiple OS's on that single piece of
hardware. Our Virtual OS will not be using the hardware directly, but will be interacting with the
hardware through the Virtualization host VMware Workstation, the OS installed on the host will called
guests. The guest OS's have to go through the Host Operating System to get to the hardware, causing
little overhead.

wirtual Machine1 Virtual Machine 2 Wirtual Machine 3

Virtualization Software

Host Cperating System

Hardware
(CPLU, RAM, Disk etc)

Master of Science in Internetworking 5

The overhead from Virtualization software can be removed if this software is installed directly over the
hardware, which is termed as Dedicated Virtualization approach.

Dedicated virtualization approach:
In this approach Virtualization software like VMware ESX/ESXi are

installed directly on the hardware, i.e. it has direct control over the physical hardware as shown in the
image below.

Virtual Machine Wirtual Machine 2 Virtual Machine 3

Virtualization Software

Hardware
(CPU, RAM, Disk etc)

Here VMware ESX/ESXi act as the operating system.

The above two types of Virtualization approaches will be used in our scenario, in which we will have
multiple guest machine installed on ESXi 4.1 server and multiple guest machines installed in VMware
Workstation 7 on a Ubuntu laptop.

We are having one physical server on which ESXi 4.1 is installed and will have Ubuntu Virtual
Machines installed on it. Then on a laptop with Ubuntu OS, VMware workstation will be installed and
it will have at least 3 Ubuntu machines (one will act as Ubuntu router with 2 NIC's, other two will be
acting as clients for the Ubuntu Machine on ESXi) and one Win XP Virtual machine to access the
Ubuntu Machine on ESXi through VMware VSphere Client.

The Scenario will be more clear in the experiments performed.

Master of Science in Internetworking 6

2.Introduction to Linux Traffic Control:

Traffic control means controlling the transmission of packets at an interface of an operating system.
There is Linux networking code present in each Linux operating system that helps to manage the traffic
on the various Ethernet ports on that particular system.

The Linux networking code receives the packets from one interface networking driver and sends it to
the required interface networking driver to be forwarded to another node.

When a packet is received at the input interface it is policed over there. This may include discarding the
packets if the rate of receiving is too fast for the interface to handle all the incoming packets, then these
packets may be routed directly to other interface of the system, if it is acting like a router or they may
be transferred to upper layers to do some processing on the packets. These layers may add some data of
their own on the packets to transfer them on the network.

If the packets were not sent to the upper layers, then the packets will follow the path from left to right
as:

Input interface...Ingress Policing...Input De-multiplexing... Forwarding..Output Queueing...Output Int.

Traffic control can be applied on the packets at Ingress Policing and Output queueing. At Ingress
policing the packets can only be discarded if not required or we can put an upper limit to restrict the
rate of receiving those packets, but at output queueing packets can be delayed, dropped, queued or

prioritized as required.

So in all the next experiments, traffic control will be applied at output queueing.

Upper layers (TCP, UDP, ...}
L

-

.
= - 1) g
Input = Ingress ~ Input - ~ Fowarding % Output " output
| Interfaces . Policing muttiplexing Queuing | Interface
Traffic control

(Ref: http://opalsoft.net/qos/DS-21.htm)

The main components of traffic control are as follows:
* queue Disciplines

e classes
e filters
e policers

Master of Science in Internetworking 7

http://opalsoft.net/qos/DS-21.htm

Queue discipline: These are the algorithms that control the way the packets will be sent out on the
network through the exit interface. These can be classful or classless.

Classless: these contain no classes and no filters can be attached to them to filter the traffic on
basis on IP addresses, port numbers etc. They only define the way traffic is sent out
on the network (pfifo, stochastic fairness queueing).

Classful: these contain classes, which provide handles to which filters can be attached to get
desired traffic control on basis of port numbers, ip addresses etc.

Class: classes exist inside classful queue discipline; they may have children classes to further classify
the traffic. They can have multiple filters to filter traffic.

Classes also help to define what rate should particular type of traffic should follow, further classes may
contain children classes which can be used to implement classless queue disciplines like pfifo on the

Filters: Filters are used to decide that which packet should follow which class. Filters can use port
numbers, source address or destination address to classify traffic.
Classifiers are used in filters to select packets based on their attributes.

More explanation about queue disciplines, classes and filters is given along with their
implementation.

Master of Science in Internetworking 8

3. Introduction to Iperf:

Iperf is a free tool available to measure the bandwidth of the network. To measure the bandwidth
between two systems we need to install iperf on both the systems. One of them will be acting as an
Iperf Server and the other will be Iperf client. By default iperf uses TCP connections.

For making a system as Iperf server we need to give this command: iperf -s

This command will make that system a iperf server and will open port number 5001 looking for iperf
client, whenever a pc gives the command: iperf -c¢ <IP add of server>; it will start looking for iperf
server on the network with given ip address. By default it will communicate with that server for 10
seconds and will give us the bandwidth available between the two PC’s.

I have used Iperf to calculate bandwidth of the network with and without routers.

Iperf can be used with different port numbers using -p argument with both server and client commands:

On server: iperf-s -p 5002
On client: iperf-c <IP add of server> -p 5002

I have used different ports with iperf to check priority implemented in the experiments.

Master of Science in Internetworking 9

Linux Traffic Control in Virtual Environment

Master of Science in Internetworking

10

4. Bandwidth and round trip latency of network without routers:

First step is to check the bandwidth of the environment. The environments used were with routers and
without routers:

Scenario without routers:

Ubuntu Machine on ESXi
with ip 10.3.31.88

S Patch Panel
0.3.31.250

Vmware ESXi with
Ubuntu virtual machines

Ubunut PC with VMware
worstation

Here we have an Ubuntu virtual machine (U1) on ESXi server, which is connected to a laptop though a
series of patch panels and a hub as shown in above diagram.

The laptop used has three Virtual machines installed on it using VMware Workstation. The machines
are as follows:

The first machine is an Ubuntu machine (U4) that has two NIC's and will act as a router to connect the
ESXi server to the client machines.

This Ubuntu router (U4) will be connected to a Ubuntu machine (U5) which will act as a client for
most of the time to connect with Ubuntu machine (U1) on ESXi server.

The router is connected to another XP machine that is used to access the VM's through VMware Client.
VMware workstation allows us to create a private network for XP and Ubuntu machine.

The IP addressing is as follows:
Ubuntu Machine on ESXi: 10.3.31.88/24 (eth0)

Ubuntu Router (U4) : 10.3.31.77/24 (eth0)
Ubuntu Router (U4) :10.3.34.22/24 (ethl)
Ubuntu Machine (U5) :10.3.34.11/24 (eth0)
Windows XP :10.3.34.252/24 (eth0)

Network is established with an Ubuntu PC Ul on ESXi server, U4 is a Linux router present on a
VMware workstation, and this router connects the ESXi server and another U5 system present on
workstation through different networks.

Master of Science in Internetworking 11

Ubuntu 4 has Ip_forwarding enabled on it with command:
sysctl -w net.ipv4.ip_forward=1

kanwar@ubuntu:~$ sudo sysctl -w net.ipv4.ip_forward=1
[sudo] password for kanwar:
net.ipv4.ip_forward = 1

It will enable forwarding the packets between the two interfaces and will make the Ubuntu PC act as a
router.

Now the network connectivity is complete. Ping from any machine to any other machine is successful.

Default configuration on the ethO and ethl of Ubuntu router(U4):
kanwar@ubuntu:~$ sudo tc -s qdisc ls dev eth0

qdisc pfifo_fast 0: root refcnt 2 bands 3 priomap 1222120011111111
Sent 174218911 bytes 115328 pkt (dropped 0, overlimits 0 requeues ()
backlog 0b Op requeues 0

kanwar@ubuntu:~$ sudo tc -s qdisc Is dev ethl

qdisc pfifo_fast 0: root refcnt 2 bands 3 priomap 1222120011111111
Sent 693899 bytes 10310 pkt (dropped 0, overlimits 0 requeues ()

backlog 0b Op requeues 0

Above outputs shows that pfifo (First in, First out) is the default queueing discipline on the interfaces
eth0 and eth1 of the Ubuntu router.

Install iperf on both Ubuntu on ESXi-1(U1) and Ubuntu 5 PC using:
sudo apt-get install iperf

Make U1 as an iperf server with a command: iperf -s
So now it will open port number 5001 and will be looking for incoming connections from iperf clients.

On US5 used this command:
ubuntu@ubuntu:~$ iperf-c 10.3.31.88

Client connecting to 10.3.31.88, TCP port 5001
TCP window size: 16.0 KByte (default)

[3] local 10.3.34.11 port 42966 connected with 10.3.31.88 port 5001
[ID] Interval Transfer Bandwidth
[3] 0.0-10.0 sec 86.1 MBytes 72.2 Mbits/sec

Above results tell us the bandwidth with which two systems can communicate is around 72Mbits/sec.

On US:
ubuntu@ubuntu:~3$ iperf-c 10.3.31.88 -t 20 -i 2

Client connecting to 10.3.31.88, TCP port 5001
TCP window size: 27.0 KByte (default)

Master of Science in Internetworking 12

[3] local 10.3.34.11 port 51402 connected with 10.3.31.88 port 5001

Transfer

[ID] Interval

Bandwidth

[3] 0.0-2.0sec 14.4 MBytes 60.2 Mbits/sec
[3] 2.0-4.0sec 15.9 MBytes 66.8 Mbits/sec
[3] 4.0- 6.0 sec 17.0 MBytes 71.2 Mbits/sec
[3] 6.0-8.0sec 16.1 MBytes 67.6 Mbits/sec
[3] 8.0-10.0 sec 15.8 MBytes 66.3 Mbits/sec

[3] 10.0-12.0 sec
[3] 12.0-14.0 sec
[3] 14.0-16.0 sec
[3] 16.0-18.0 sec
[3] 18.0-20.0 sec
[3] 0.0-20.0 sec

PING test for round-trip latency with default queue discipline from U5 to Ul:

16.4 MBytes
16.5 MBytes
15.7 MBytes
15.0 MBytes
15.4 MBytes

158 MBytes

68.6 Mbits/sec
69.2 Mbits/sec
65.8 Mbits/sec
63.1 Mbits/sec
64.6 Mbits/sec
66.3 Mbits/sec

ubuntu@ubuntu:~$ ping 10.3.31.88 -c¢ 20
PING 10.3.31.88 (10.3.31.88) 56(84) bytes of data.

64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:

icmp_req=1 ttl=63 time=1.64 ms
icmp req=2 ttl=63 time=1.40 ms
icmp_req=3 ttl=63 time=1.41 ms
icmp req=4 ttl=63 time=1.26 ms
icmp_req=35 ttl=63 time=1.38 ms
icmp _req=6 ttl=63 time=1.32 ms
icmp_req=7 ttl=63 time=1.31 ms
icmp req=8 ttl=63 time=1.22 ms
icmp_req=9 ttl=63 time=1.31 ms
icmp _req=10 tt1=63 time=1.30 ms
icmp_req=11 tt1=63 time=1.45 ms
icmp req=12 tt1=63 time=1.32 ms
icmp_req=13 ttI=63 time=1.34 ms
icmp _req=14 tt1=63 time=1.23 ms
icmp_req=15 ttI=63 time=1.21 ms
icmp req=16 tt1=63 time=1.35 ms
icmp_req=17 ttI=63 time=1.41 ms
icmp req=18 tt1=63 time=1.48 ms
icmp_req=19 ttI=63 time=1.26 ms
icmp _req=20 tt1=63 time=1.24 ms

--- 10.3.31.88 ping statistics ---

20 packets transmitted, 20 received, 0% packet loss, time 1904 1ms
rtt min/avg/max/mdev = 1.212/1.346/1.645/0.102 ms

Above results shows us the overall bandwidth available with the systems through the network to
communicate and also show us the average round-trip time latency for the network.

Master of Science in Internetworking 13

5. Bandwidth & round trip latency for network with routers:

Now adding two CISCO-2600 series routers in our scenario and configuring the IP addresses as shown

in the figure.

Win XP system to access
virtual machines on ESXi
server through VMware
Client

Ubuntu Machine on ESXi
with ip 10.3.31.88 on eth0

10.3.31.77 10.3.32.55

fa0i1

Vmware ESXi with ETHERNET HUB/Switch ROUTER 2600 ROUTER 2600
Ubuntu virtual machines R1-134 R2-114

UBUNTU Laptop with
VMware Worstation.
Acting as physical
environment.

Router Configurations:
Configuration for static routing on both routers.
RI-134#sh run

Building configuration...

Current configuration : 774 bytes

/

version 12.3

service timestamps debug datetime msec
service timestamps log datetime msec
no service password-encryption

/

hostname R1-134

/

boot-start-marker
boot-end-marker

/

memory-size iomem 10
no aaa new-model

ip subnet-zero
/

ip cef
/
interface FastEthernet0/0

Master of Science in Internetworking

14

ip address 10.3.31.77 255.255.255.0
duplex auto

speed auto
/

interface Serial0/0

no ip address

clock rate 64000

/

interface FastEthernet(/1

ip address 10.3.32.66 255.255.255.0
duplex auto

speed auto

/

interface Serial(/1

no ip address

shutdown

/

ip http server

ip classless

ip route 10.3.33.0 255.255.255.0 10.3.32.55
ip route 10.3.34.0 255.255.255.0 10.3.32.55
/

voice-port 1/0/0
/

voice-port 1/0/1
/

/

/

/

line con 0

line aux 0

line vty 0 4
/

/
end

R2-114# sh run
Building configuration...

Current configuration : 766 bytes

/

version 12.3

service timestamps debug datetime msec
service timestamps log datetime msec

no service password-encryption
/

hostname R2-114
/

boot-start-marker

Master of Science in Internetworking

15

boot-end-marker

/

/

memory-size iomem 10
no aaa new-model

ip subnet-zero

/

ip cef

/

interface FastEthernet0/0
ip address 10.3.33.44 255.255.255.0

duplex auto

speed auto
/

interface Serial0/0

no ip address

shutdown

/

interface FastEthernet(/1

ip address 10.3.32.55 255.255.255.0
duplex auto

speed auto

/

interface Serial(/1

no ip address

shutdown

/

ip http server

ip classless

ip route 10.3.31.0 255.255.255.0 10.3.32.66
ip route 10.3.34.0 255.255.255.0 10.3.33.33
/

voice-port 1/0/0
/

voice-port 1/0/1
/

line con 0
line aux 0
line vty 0 4
/

end
Now the network connectivity is complete and Ul and Win XP PC can ping US.
No traffic control is done, and the readings below are the default values achieved by iperf and rtt-ping

tests:

On US:
ubuntu@ubuntu:~$ iperf-c 10.3.31.88

Master of Science in Internetworking 16

Client connecting to 10.3.31.88, TCP port 5001
TCP window size: 16.0 KByte (default)

[3] local 10.3.34.11 port 46011 connected with 10.3.31.88 port 5001

[ID] Interval Transfer Bandwidth
[3] 0.0-10.0 sec 56.4 MBytes 47.2 Mbits/sec

ubuntu@ubuntu:~3$ iperf-c 10.3.31.88 -t 20 -i 2

Client connecting to 10.3.31.88, TCP port 5001
TCP window size: 16.0 KByte (default)

[3] local 10.3.34.11 port 57861 connected with 10.3.31.88 port 5001

[ID] Interval Transfer Bandwidth

[3] 0.0- 2.0 sec 4.88 MBytes 40.9 Mbits/sec

[3] 2.0-4.0sec 5.09 MBytes 42.7 Mbits/sec

[3] 4.0- 6.0 sec 5.58 MBytes 46.8 Mbits/sec

[3] 6.0-8.0sec 5.53 MBytes 46.4 Mbits/sec

[3] 8.0-10.0 sec 5.81 MBytes 48.8 Mbits/sec

[3] 10.0- 12.0 sec 6.04 MBytes 50.7 Mbits/sec
[3] 12.0- 14.0 sec 6.30 MBytes 52.9 Mbits/sec
[3] 14.0- 16.0 sec 5.52 MBytes 46.3 Mbits/sec
[3] 16.0- 18.0 sec 6.38 MBytes 53.5 Mbits/sec
[3] 18.0-20.0 sec 6.74 MBytes 56.6 Mbits/sec
[3] 0.0-20.0 sec 57.9 MBytes 48.3 Mbits/sec

Ping test for rtt-latency:

ubuntu@ubuntu:~3$ ping 10.3.31.88 -c¢ 20
PING 10.3.31.88 (10.3.31.88) 56(84) bytes of data.

64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:

icmp req=1 ttl=61 time=1.75 ms
icmp_req=2 ttl=61 time=2.02 ms
icmp req=3 ttl=61 time=2.06 ms
icmp_req=4 ttl=61 time=2.32 ms
icmp req=35 ttl=61 time=2.21 ms
icmp_req=6 ttl=61 time=2.32 ms
icmp req=7 ttl=61 time=2.06 ms
icmp_req=8 ttl=61 time=2.37 ms
icmp req=9 ttl=61 time=2.07 ms
icmp_req=10 ttI=61 time=2.27 ms
icmp req=11 ttl=61 time=1.67 ms
icmp_req=12 ttI=61 time=2.24 ms
icmp req=13 ttl=61 time=2.33 ms
icmp_req=14 ttI=61 time=2.09 ms
icmp _req=15 tt1=61 time=2.09 ms
icmp_req=16 ttI=61 time=2.03 ms
icmp req=17 ttl=61 time=1.93 ms
icmp_req=18 ttI=61 time=1.98 ms
icmp req=19 ttl=61 time=1.71 ms
icmp_req=20 ttI=61 time=2.12 ms

Master of Science in Internetworking

17

--- 10.3.31.88 ping statistics ---
20 packets transmitted, 20 received, 0% packet loss, time 19035ms
rtt min/avg/max/mdev = 1.673/2.086/2.378/0.201 ms

80

Bandwidth comparison with and without routers

71.2 EJ 6 69.2
66.8 6716 gg.3 I 658
/\-—.-_ ‘\‘Qjﬁﬁi.ﬁ)
A] The two experiments were
2 535 _ j]
o S 5 dpne at g’lfferent instances of
46.8 464 L™ \é}/ Without time; this graph shows only
2.7 AN nnow .
o~ a0.9" Routers the bandwidth reached after
- Ty . .
€83 every 2 seconds in a period
5= = \N\ith
Routers of 20 seconds.
20
0
2 4 6 8 10 12 14 16 18 20
Time(sec)
Latecny variation when routers introduced in the network
48 2.h2 2.2 <P -
~gp - '
2p2 2P \/\V
2
e Routers adding latency to the
'\ network.
o o TPk 1 1p143| = Without
° — 1.26/ b 102 2 Routers
EE "
j = With
Routers
0.5
0
1 2 3 4 5 6 A 8 9 10
Ping packet number
Master of Science in Internetworking 18

6. Queue discipline on network without routers:

Scenario for this experiment is as follows:

Ubuntu Machine on ESXi
withip 10.3.31.88

Ethernet Hub
Vmware ESXi with
Ubuntu virtual machines

Ubunut PC with VMware
worstation

6.1 htb to limit bandwidth to a known rate:

Here in this experiment the bandwidth of the network will be limited to 6Mbits/sec

Our scenario shows that all the client machines in the network will access the ESXi server Virtual
Machines through Ubuntu router U4, the configuration will be done on this machine (U4) to limit the
bandwidth to a known rate.

Default configuration on Ubuntu router(U4)interfaces before htb:
kanwar@ubuntu:~$ sudo tc -s qdisc Is dev eth0

qdisc pfifo_fast 0: root refcnt 2 bands 3 priomap 1222120011111111
Sent 174218911 bytes 115328 pkt (dropped 0, overlimits 0 requeues 0)
backlog 0b Op requeues 0

kanwar@ubuntu:~$ sudo tc -s qdisc Is dev ethl

qdisc pfifo_fast 0: root refcnt 2 bands 3 priomap 1222120011111111
Sent 693899 bytes 10310 pkt (dropped 0, overlimits 0 requeues ()

backlog 0b Op requeues 0

Commands to conf htb with rate of 10 Mbits/sec exit interface ethO of Ubuntu router(U4):

root@ubuntu:/# tc qdisc add dev ethQ root handle 1: htb default 10
root@ubuntu:/# tc class add dev ethO parent 1:1 classid 1:10 htb rate 10mbit ceil 10mbit burst 15k

First commands will create a root htb queue discipline on interface ethO, and will define that the default
class that is to be followed is class 10, which is defined in the next command and has a limit to the

Master of Science in Internetworking 19

bandwidth of the interface of Ubuntu router.
The above commands will make the rate of ethO of the router to be no more than 10Mbits/sec.

ceil value can be set to more than the rate and the bandwidth will increase for the network if more

bandwidth is available with the network; ceil is used to define the max value that it can reach.
This can be verified by iperf tests as shown below:

Configuration on Ubuntu router(U4) interfaces after tc:

root@ubuntu:/# tc -s qdisc Is dev eth(

qdisc htb 1: root refcnt 2 v2q 10 default 10 direct packets stat 0
Sent 0 bytes 0 pkt (dropped 0, overlimits 0 requeues ()

backlog 0b Op requeues 0

root@ubuntu:/# tc -s qdisc Is dev ethl

qdisc pfifo_fast 0: root refcnt 2 bands 3 priomap 1222120011111111
Sent 0 bytes 0 pkt (dropped 0, overlimits 0 requeues ()

backlog 0b Op requeues 0

Check bandwidth and round trip latency from our client machine (U5) to the Ubuntu server (U1):

We have iperf server running on Ul.
Iperf test on Ubuntu client (U5):

ubuntu@ubuntu:~$ iperf-c 10.3.31.88

Client connecting to 10.3.31.88, TCP port 5001
TCP window size: 16.0 KByte (default)

[3] local 10.3.34.11 port 57516 connected with 10.3.31.88 port 5001
[ID] Interval Transfer Bandwidth
[3] 0.0-10.2 sec 12.1 MBytes 9.95 Mbits/sec

ubuntu@ubuntu:~$ iperf-c 10.3.31.88 -t 10 -i 1

Client connecting to 10.3.31.88, TCP port 5001
TCP window size: 16.0 KByte (default)

[3] local 10.3.34.11 port 58779 connected with 10.3.31.88 port 5001
[ID] Interval Transfer Bandwidth

[3] 0.0- 1.0 sec 1.19 MBytes 9.96 Mbits/sec
[3] 1.0-2.0sec 1.16 MBytes 9.76 Mbits/sec
[3] 2.0-3.0sec 1.12 MBytes 9.44 Mbits/sec
[3] 3.0-4.0sec 1.12 MBytes 9.44 Mbits/sec
[3] 4.0-5.0sec 1.13 MBytes 9.50 Mbits/sec
[3] 5.0- 6.0 sec 1.16 MBytes 9.70 Mbits/sec
[3] 6.0-7.0sec 1.11 MBytes 9.31 Mbits/sec
[3] 7.0-8.0sec 1.15 MBytes 9.63 Mbits/sec
[3] 8.0-9.0sec 1.14 MBytes 9.57 Mbits/sec

Master of Science in Internetworking

20

[3] 9.0-10.0 sec 1.23 MBytes 10.3 Mbits/sec
[3] 0.0-10.1 sec 11.5 MBytes 9.60 Mbits/sec

rtt-latency test:

ubuntu@ubuntu:~$ ping 10.3.31.88 -c¢ 20
PING 10.3.31.88 (10.3.31.88) 56(84) bytes of data.

64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:

icmp_req=1 ttl=63 time=1.40 ms
icmp req=2 ttl=63 time=1.21 ms
icmp_req=3 ttl=63 time=1.37 ms
icmp req=4 ttl=63 time=1.32 ms
icmp_req=35 ttl=63 time=1.41 ms
icmp _req=6 ttl=63 time=1.40 ms
icmp_req=7 ttl=63 time=1.23 ms
icmp req=8 ttl=63 time=1.30 ms
icmp_req=9 ttl=63 time=1.49 ms
icmp _req=10 tt1=63 time=1.32 ms
icmp_req=11 tt1=63 time=1.33 ms
icmp req=12 tt1=63 time=1.31 ms
icmp_req=13 tt/=63 time=1.48 ms
icmp _req=14 tt1=63 time=1.25 ms
icmp_req=15 ttI=63 time=1.44 ms
icmp req=16 tt1=63 time=1.35 ms
icmp_req=17 ttI=63 time=1.40 ms
icmp req=18 tt1=63 time=1.33 ms
icmp_req=19 ttI=63 time=1.33 ms
icmp _req=20 tt1=63 time=1.40 ms

--- 10.3.31.88 ping statistics ---

20 packets transmitted, 20 received, 0% packet loss, time 1903 7ms

rtt min/avg/max/mdev = 1.212/1.358/1.497/0.080 ms

Above test shows how we can limit the bandwidth of a network using Linux Traffic Control to a certain

value.

Master of Science in Internetworking

21

Now the configuration for various queueing disciplines used with htb implemented for limited
bandwidth:

6.2 htb with pfifo: One that enters first in a queue will leave first from the queue.

root@ubuntu:/# tc qdisc add dev ethQ root handle 1: htb default 10
root@ubuntu:/# tc class add dev ethO parent 1:1 classid 1:10 htb rate 10mbit ceil 10mbit burst 15k
root@ubuntu:/# tc qdisc add dev eth0 parent 1:10 handle 20: pfifo limit 5

As compared to last configuration we have added just one more command that will make the class to
use FIFO approach to de-queue the packets from the queue. Limit specifies the maximum queue size
one can use with the discipline.

Configuration on eth0O of our Ubuntu Router U4:

root@ubuntu:/# tc -s qdisc Is dev eth(

qdisc htb 1: root refcnt 2 r2q 10 default 10 direct packets stat 0

Sent 394944424 bytes 261168 pkt (dropped 0, overlimits 500304 requeues 0)
backlog 0b Op requeues 0

qdisc pfifo 20: parent 1:10 limit 5p

Sent 0 bytes 0 pkt (dropped 0, overlimits 0 requeues ()

backlog 0b Op requeues 0

Above configuration also shows that pfifo is implemented with a limit of 5 with htb.

Iperf test:
ubuntu@ubuntu:~$ iperf-c 10.3.31.88

Client connecting to 10.3.31.88, TCP port 5001
TCP window size: 16.0 KByte (default)

[3] local 10.3.34.11 port 41907 connected with 10.3.31.88 port 5001
[ID] Interval Transfer Bandwidth
[3] 0.0-10.0 sec 11.3 MBytes 9.44 Mbits/sec

ubuntu@ubuntu:~$ iperf-c 10.3.31.88 -t 10 -i 1

Client connecting to 10.3.31.88, TCP port 5001
TCP window size: 16.0 KByte (default)

[3] local 10.3.34.11 port 41908 connected with 10.3.31.88 port 5001
[ID] Interval Transfer Bandwidth

[3] 0.0- 1.0 sec 1.12 MBytes 9.37 Mbits/sec

[3] 1.0-2.0sec 1.12 MBytes 9.44 Mbits/sec

[3] 2.0-3.0sec 1.12 MBytes 9.44 Mbits/sec

[3] 3.0-4.0sec 1.13 MBytes 9.50 Mbits/sec

[3] 4.0-5.0sec 1.10 MBytes 9.24 Mbits/sec

[3] 5.0-6.0sec 1.11 MBytes 9.31 Mbits/sec

[3] 6.0-7.0sec 1.12 MBytes 9.44 Mbits/sec

[3] 7.0-8.0sec 1.14 MBytes 9.57 Mbits/sec

Master of Science in Internetworking 22

[3] 8.0-9.0sec 1.12 MBytes 9.44 Mbits/sec
[3] 9.0-10.0 sec 1.13 MBytes 9.50 Mbits/sec
[3] 0.0-10.0 sec 11.2 MBytes 9.43 Mbits/sec

Ping test

ubuntu@ubuntu:~3$ ping 10.3.31.88 -c¢ 20
PING 10.3.31.88 (10.3.31.88) 56(84) bytes of data.

64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:

icmp req=1 ttl=63 time=1.50 ms
icmp_req=2 ttl=63 time=1.14 ms
icmp req=3 ttl=63 time=1.60 ms
icmp_req=4 ttl=63 time=1.30 ms
icmp req=>35 ttl=63 time=1.20 ms
icmp_req=6 ttl=63 time=1.27 ms
icmp req=7 ttl=63 time=1.42 ms
icmp_req=8 ttl=63 time=1.30 ms
icmp req=9 ttl=63 time=1.58 ms
icmp_req=10 ttI=63 time=1.29 ms
icmp req=11 ttl=63 time=1.32 ms
icmp_req=12 ttI=63 time=1.02 ms
icmp req=13 tt1=63 time=1.18 ms
icmp_req=14 ttI=63 time=1.16 ms
icmp _req=15 tt1=63 time=1.29 ms
icmp_req=16 ttI=63 time=1.13 ms
icmp req=17 tt1=63 time=1.42 ms
icmp_req=18 ttI=63 time=1.39 ms
icmp req=19 tt1=63 time=1.24 ms
icmp_req=20 ttI=63 time=1.40 ms

--- 10.3.31.88 ping statistics ---

20 packets transmitted, 20 received, 0% packet loss, time 19038ms

rtt min/avg/max/mdev = 1.026/1.311/1.604/0.150 ms

Master of Science in Internetworking

23

6.3 htb with sfq (Stochastic Fairness Queueing):

In sfq the traffic is sent in round robin fashion, which gives a fair chance to each and every session to
send their data. It will just do the scheduling for the traffic on the interface it is implemented on. The
scheduling is done in a manner that each type of traffic should get a fair amount of equal time after
regular intervals to send the packets. This switching from one traffic to another is a very fast process.

Delete all the qdisc configuration by htb on the ethO interface of Ubuntu Router:
root@ubuntu:/# tc qdisc del dev eth(0 root

Now the interface configurations of router interfaces will be default pfifo:
root@ubuntu:/# tc -s qdisc s dev eth(

qdisc pfifo_fast 0: root refcnt 2 bands 3 priomap 1222120011111111
Sent 0 bytes 0 pkt (dropped 0, overlimits 0 requeues ()

backlog 0b Op requeues 0

root@ubuntu:/# tc -s qdisc Is dev ethl

qdisc pfifo_fast 0: root refcnt 2 bands 3 priomap 1222120011111111
Sent 9935556 bytes 149532 pkt (dropped 0, overlimits 0 requeues ()

backlog 0b Op requeues 0

Implementing SFQ on the exit interface ethO of Ubuntu router (U4):

root@ubuntu:/# tc qdisc add dev ethQ root handle 1: htb default 10

root@ubuntu:/# tc class add dev ethO parent 1:1 classid 1:10 htb rate 10mbit ceil 10mbit burst 15k
root@ubuntu:/# tc qdisc add dev eth0 parent 1:10 handle 20: sfq

Configuration on ethO:

root@ubuntu:/# tc -s qdisc Is dev eth(

qdisc htb 1: root refcnt 2 r2q 10 default 10 direct packets stat 0
Sent 0 bytes 0 pkt (dropped 0, overlimits 0 requeues ()

backlog 0b Op requeues 0

qdisc sfq 20: parent 1:10 limit 127p quantum 1514b

Sent 0 bytes 0 pkt (dropped 0, overlimits 0 requeues ()

backlog 0b Op requeues 0

Iperf test from Ubuntu client (U5):

ubuntu@ubuntu:~$ iperf-c 10.3.31.88

Client connecting to 10.3.31.88, TCP port 5001
TCP window size: 27.0 KByte (default)

[3] local 10.3.34.11 port 54224 connected with 10.3.31.88 port 5001
[ID] Interval Transfer Bandwidth
[3] 0.0-10.1 sec 11.7 MBytes 9.73 Mbits/sec

Master of Science in Internetworking 24

ubuntu@ubuntu:~$ iperf-c 10.3.31.88 -t 10 -i 1

Client connecting to 10.3.31.88, TCP port 5001
TCP window size: 27.0 KByte (default)

[3] local 10.3.34.11 port 54230 connected with 10.3.31.88 port 5001
Transfer
1.19 MBytes
1.16 MBytes
1.12 MBytes
1.16 MBytes
1.18 MBytes
1.18 MBytes
1.16 MBytes
1.20 MBytes
1.14 MBytes

[ID] Interval

[3] 0.0- 1.0 sec
[3] 1.0- 2.0 sec
[3] 2.0- 3.0 sec
[3] 3.0-4.0 sec
[3] 4.0- 5.0 sec
[3] 5.0- 6.0 sec
[3] 6.0-7.0sec
[3] 7.0- 8.0 sec
[3] 8.0-9.0 sec

Bandwidth

9.96 Mbits/sec
9.70 Mbits/sec
9.37 Mbits/sec
9.70 Mbits/sec
9.90 Mbits/sec
9.90 Mbits/sec
9.70 Mbits/sec
10.0 Mbits/sec
9.57 Mbits/sec

[3] 9.0-10.0 sec 1.20 MBytes 10.0 Mbits/sec
[3] 0.0-10.1 sec 11.7 MBytes 9.73 Mbits/sec

Ping test:

ubuntu@ubuntu:~$ ping 10.3.31.88 -c¢ 20
PING 10.3.31.88 (10.3.31.88) 56(84) bytes of data.

64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:

icmp_req=1 ttl=63 time=1.51 ms
icmp req=2 ttl=63 time=1.32 ms
icmp_req=3 ttl=63 time=1.36 ms
icmp req=4 ttl=63 time=1.17 ms
icmp_req=35 ttl=63 time=1.16 ms
icmp req=6 ttl=63 time=1.17 ms
icmp_req=7 ttl=63 time=1.23 ms
icmp req=8 ttl=63 time=1.10 ms
icmp_req=9 ttl=63 time=1.12 ms
icmp req=10 tt1=63 time=1.29 ms
icmp_req=11 tt1=63 time=1.35 ms
icmp req=12 tt1=63 time=1.33 ms
icmp_req=13 ttl=63 time=1.14 ms
icmp _req=14 tt1=63 time=1.22 ms
icmp_req=15 ttI=63 time=1.28 ms
icmp req=16 tt1=63 time=1.11 ms
icmp_req=17 ttI=63 time=1.29 ms
icmp req=18 tt1=63 time=1.21 ms
icmp_req=19 ttI=63 time=1.25 ms
icmp _req=20 ttl=63 time=1.10 ms

--- 10.3.31.88 ping statistics ---

20 packets transmitted, 20 received, 0% packet loss, time 19038ms

rtt min/avg/max/mdev = 1.104/1.239/1.517/0.116 ms

Master of Science in Internetworking

6.4 htb with sfq (perturb value):

Perturb value defines that after how much time the hashing will be reconfigured. If not set hashing will

never be reconfigured.

Delete previous htb configuration:
root@ubuntu:/# tc qdisc del dev eth(0 root

Check Configuration:

root@ubuntu:/# tc -s qdisc ls dev eth(

qdisc pfifo_fast 0: root refcnt 2 bands 3 priomap 1222120011111111
Sent 0 bytes 0 pkt (dropped 0, overlimits 0 requeues ()

backlog 0b Op requeues 0

Commands on eth0:

root@ubuntu:/# tc qdisc add dev ethQ root handle 1: htb default 10

root@ubuntu:/# tc class add dev ethO parent 1:1 classid 1:10 htb rate 10mbit ceil 10mbit burst 15k
root@ubuntu:/# tc qdisc add dev eth0 parent 1:10 handle 20: sfq perturb 10

Configuration of eth0 after above commands(sfq with a limit):
root@ubuntu:/# tc -s qdisc Is dev eth(

qdisc htb 1: root refcnt 2 r2q 10 default 10 direct packets stat 0
Sent 0 bytes 0 pkt (dropped 0, overlimits 0 requeues ()

backlog 0b Op requeues 0

qdisc sfq 20: parent 1:10 limit 127p quantum 1514b perturb 10sec
Sent 0 bytes 0 pkt (dropped 0, overlimits 0 requeues ()

backlog 0b Op requeues 0

Iperf test:
ubuntu@ubuntu:~$ iperf-c 10.3.31.88

Client connecting to 10.3.31.88, TCP port 5001
TCP window size: 16.0 KByte (default)

[3] local 10.3.34.11 port 57422 connected with 10.3.31.88 port 5001
[ID] Interval Transfer Bandwidth
[3] 0.0-10.1 sec 11.5 MBytes 9.55 Mbits/sec

ubuntu@ubuntu:~$ iperf-c 10.3.31.88 -t 10 -i 1

Client connecting to 10.3.31.88, TCP port 5001
TCP window size: 16.0 KByte (default)

[3] local 10.3.34.11 port 57428 connected with 10.3.31.88 port 5001
[ID] Interval Transfer Bandwidth

[3] 0.0- 1.0 sec 1.35 MBytes 11.3 Mbits/sec

[3] 1.0- 2.0 sec 1.16 MBytes 9.70 Mbits/sec

[3] 2.0-3.0sec 1.16 MBytes 9.70 Mbits/sec

[3] 3.0-4.0sec 1.15 MBytes 9.63 Mbits/sec

Master of Science in Internetworking

26

[3] 4.0-5.0sec 1.05 MBytes 8.85 Mbits/sec
[3] 5.0-6.0sec 1.14 MBytes 9.57 Mbits/sec
[3] 6.0-7.0sec 1.14 MBytes 9.57 Mbits/sec
[3] 7.0-8.0sec 1.15 MBytes 9.63 Mbits/sec
[3] 8.0-9.0sec 1.16 MBytes 9.76 Mbits/sec
[3] 9.0-10.0 sec 1.16 MBytes 9.70 Mbits/sec
[3] 0.0-10.1 sec 11.6 MBytes 9.68 Mbits/sec

Ping test:

ubuntu@ubuntu:~3$ ping 10.3.31.88 -c¢ 20
PING 10.3.31.88 (10.3.31.88) 56(84) bytes of data.

64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:

icmp req=1 ttl=63 time=1.38 ms
icmp_req=2 ttl=63 time=1.16 ms
icmp req=3 ttl=63 time=1.37 ms
icmp_req=4 tt1=63 time=0.977 ms
icmp req=>35 ttl=63 time=1.10 ms
icmp_req=6 ttl=63 time=1.15 ms
icmp req=7 ttl=63 time=1.25 ms
icmp_req=8 ttl=63 time=1.10 ms
icmp req=9 ttl=63 time=1.30 ms
icmp_req=10 ttI=63 time=1.34 ms
icmp req=11 ttl=63 time=1.11 ms
icmp_req=12 ttI=63 time=1.32 ms
icmp _req=13 tt1=63 time=1.07 ms
icmp_req=14 ttI=63 time=1.47 ms
icmp req=15 tt1=63 time=1.36 ms
icmp_req=16 ttI=63 time=1.14 ms
icmp req=17 ttl=63 time=1.27 ms
icmp_req=18 ttI=63 time=1.19 ms
icmp _req=19 tt1=63 time=1.06 ms
icmp_req=20 ttI=63 time=1.20 ms

--- 10.3.31.88 ping statistics ---

20 packets transmitted, 20 received, 0% packet loss, time 19037ms

rtt min/avg/max/mdev = 0.977/1.220/1.479/0.135 ms

sfq can be helpful in environments where traffic is high and all sort of traffic needs to be transmitted

and helps not to let any type of traffic to dominate and suppress other transmissions.

Master of Science in Internetworking

27

7. Queue disciplines on network with routers:

Routers will increase round trip latency of the network.
Now we have a scenario as shown in the above diagram:

Win XP system to access
virtual machines on ESXi

server through VMware
Client

Ubuntu Machine on ESXi
with ip 10.3.31.88 on eth0

10.3.31.77 10.3.32.55

fa0i1

Vmware ESXi with ETHERNET HUB/Switch ROUTER 2600 ROUTER 2600
Ubuntu virtual machines R1-134 R2-114

UBUNTU Laptop with
VMware Worstation.
Acting as physical
environment.

We have two router in between the server and client,, this introduces more round trip latency and even
will reduce the effective bandwidth of the link between server and client.

The entire configuration is same for the experiments done in last section for pfifo and sfq, only
difference is the readings for throughput and rtt-latency because of the routers in the network; also two
different tests for tbf and prio are done in this section.

Now first test is for: Using htb to limit bandwidth of an interface eth0 on Ubuntu router U5 to
6Mbits/sec:

Check default configuration on Ethernet interfaces of router:

root@ubuntu:/# tc -s qdisc Is dev ethl

qdisc pfifo_fast 0: root refcnt 2 bands 3 priomap 1222120011111111
Sent 567302247 bytes 412898 pkt (dropped 0, overlimits () requeues ()
backlog 0b Op requeues 0

root@ubuntu:/# tc -s qdisc ls dev eth(

qdisc pfifo_fast 0: root refcnt 2 bands 3 priomap 1222120011111111
Sent 315826122 bytes 378061 pkt (dropped 0, overlimits () requeues ()
backlog 0b Op requeues 0

Master of Science in Internetworking 28

Commands to configure htb with rate of 10 mbps on exit interface ethO for client Ubuntu 6:

root@ubuntu:/# tc qdisc add dev ethQ root handle 1: htb default 10
root@ubuntu:/# tc class add dev ethQ parent 1:1 classid 1:10 htb rate 10mbit ceil 10mbit burst 15k

Configuration on Ubuntu router interfaces:

root@ubuntu:/# tc -s qdisc Is dev eth(

gdisc htb 1: root refcnt 2 v2q 10 default 10 direct packets stat 0

Sent 3516 bytes 14 pkt (dropped 0, overlimits 0 requeues ()

backlog 0b Op requeues 0

root@ubuntu:/# tc -s qdisc Is dev ethl

qdisc pfifo_fast 0: root refcnt 2 bands 3 priomap 1222120011111111
Sent 567325296 bytes 412924 pkt (dropped 0, overlimits 0 requeues ()
backlog 0b Op requeues 0

Iperf test:
ubuntu@ubuntu:~$ iperf-c 10.3.31.88

Client connecting to 10.3.31.88, TCP port 5001
TCP window size: 16.0 KByte (default)

[3] local 10.3.34.11 port 57381 connected with 10.3.31.88 port 5001
[ID] Interval Transfer Bandwidth
[3] 0.0-10.1 sec 12.0 MBytes 9.96 Mbits/sec

ubuntu@ubuntu:~3$ iperf-c 10.3.31.88 -t 10 -i 1

Client connecting to 10.3.31.88, TCP port 5001
TCP window size: 16.0 KByte (default)

[3] local 10.3.34.11 port 47566 connected with 10.3.31.88 port 5001
[ID] Interval Transfer Bandwidth

[3] 0.0- 1.0 sec 1.19 MBytes 9.96 Mbits/sec
[3] 1.0-2.0sec 1.02 MBytes 8.59 Mbits/sec
[3] 2.0-3.0sec 1.12 MBytes 9.44 Mbits/sec
[3] 3.0-4.0sec 1.13 MBytes 9.50 Mbits/sec
[3] 4.0-5.0sec 1.16 MBytes 9.70 Mbits/sec
[3] 5.0-6.0sec 1.12 MBytes 9.37 Mbits/sec
[3] 6.0-7.0sec 1.12 MBytes 9.44 Mbits/sec
[3] 7.0-8.0sec 1.20 MBytes 10.0 Mbits/sec
[3] 8.0-9.0sec 1.10 MBytes 9.24 Mbits/sec
[3] 9.0-10.0 sec 1.20 MBytes 10.1 Mbits/sec
[3] 0.0-10.0 sec 11.4 MBytes 9.50 Mbits/sec

ping test(To know round trip latency):
ubuntu@ubuntu:~$ ping 10.3.31.88 -c¢ 20

Master of Science in Internetworking

29

PING 10.3.31.88 (10.3.31.88) 56(84) bytes of data.

64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:

icmp req=1 ttl=61 time=1.88 ms
icmp_req=2 ttl=61 time=1.99 ms
icmp req=3 ttl=61 time=1.90 ms
icmp_req=4 ttl=61 time=2.00 ms
icmp req=35 ttl=61 time=1.82 ms
icmp_req=6 ttl=61 time=1.73 ms
icmp req=7 ttl=61 time=1.84 ms
icmp_req=8 ttl=61 time=1.73 ms
icmp req=9 ttl=61 time=1.83 ms
icmp_req=10 ttI=61 time=1.89 ms
icmp req=11 ttl=61 time=1.95 ms
icmp_req=12 ttI=61 time=1.76 ms
icmp req=13 ttl=61 time=1.84 ms
icmp_req=14 ttI=61 time=2.02 ms
icmp req=15 ttl=61 time=1.73 ms
icmp_req=16 ttI=61 time=2.21 ms
icmp req=17 ttl=61 time=1.79 ms
icmp_req=18 ttI=61 time=1.89 ms
icmp req=19 tt1=61 time=1.88 ms
icmp_req=20 ttI=61 time=1.87 ms

--- 10.3.31.88 ping statistics ---

20 packets transmitted, 20 received, 0% packet loss, time 1904 1ms

rtt min/avg/max/mdev = 1.733/1.883/2.216/0.122 ms

Master of Science in Internetworking

30

7.1 htb with pfifo:

root@ubuntu:/# tc qdisc add dev ethQ root handle 1: htb default 10
root@ubuntu:/# tc class add dev ethO parent 1:1 classid 1:10 htb rate 10mbit ceil 10mbit burst 15k
root@ubuntu:/# tc qdisc add dev eth0 parent 1:10 handle 20: pfifo limit 5

Configuration on ethernet interface of Ubuntu router(U4):

root@ubuntu:/# tc -s qdisc Is dev eth(

qdisc htb 1: root refcnt 2 r2q 10 default 10 direct packets stat 0

Sent 288637671 bytes 191053 pkt (dropped 0, overlimits 356443 requeues ()
backlog 0b Op requeues 0

qdisc pfifo 20: parent 1:10 limit 5p

Sent 0 bytes 0 pkt (dropped 0, overlimits 0 requeues 0)

backlog 0b Op requeues 0

Eth1 will have default configuration:

root@ubuntu:/# tc -s qdisc Is dev ethl

qdisc pfifo_fast 0: root refcnt 2 bands 3 priomap 1222120011111111
Sent 574023259 bytes 511316 pkt (dropped 0, overlimits 0 requeues 0)
backlog 0b Op requeues 0

iperf tests:
ubuntu@ubuntu:~$ iperf-c 10.3.31.88

Client connecting to 10.3.31.88, TCP port 5001
TCP window size: 16.0 KByte (default)

[3] local 10.3.34.11 port 49117 connected with 10.3.31.88 port 5001
[ID] Interval Transfer Bandwidth
[3] 0.0-10.0 sec 11.2 MBytes 9.44 Mbits/sec

ubuntu@ubuntu:~$ iperf-c 10.3.31.88 -t 10 -i 1

Client connecting to 10.3.31.88, TCP port 5001
TCP window size: 16.0 KByte (default)

[3] local 10.3.34.11 port 49118 connected with 10.3.31.88 port 5001
[ID] Interval Transfer Bandwidth

[3] 0.0- 1.0 sec 1.16 MBytes 9.70 Mbits/sec
[3] 1.0-2.0sec 1.12 MBytes 9.37 Mbits/sec
[3] 2.0-3.0sec 1.12 MBytes 9.44 Mbits/sec
[3] 3.0-4.0sec 1.12 MBytes 9.37 Mbits/sec
[3] 4.0-5.0sec 1.12 MBytes 9.44 Mbits/sec
[3] 5.0-6.0sec 1.14 MBytes 9.57 Mbits/sec
[3] 6.0-7.0sec 1.11 MBytes 9.31 Mbits/sec
[3] 7.0-8.0sec 1.13 MBytes 9.50 Mbits/sec
[3] 8.0-9.0sec 1.12 MBytes 9.44 Mbits/sec
[3] 9.0-10.0 sec 1.12 MBytes 9.37 Mbits/sec
[3] 0.0-10.0 sec 11.3 MBytes 9.45 Mbits/sec

Master of Science in Internetworking

31

ping test:

ubuntu@ubuntu:~3$ ping 10.3.31.88 -c¢ 20
PING 10.3.31.88 (10.3.31.88) 56(84) bytes of data.

64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:

icmp req=1 ttl=61 time=2.23 ms
icmp_req=2 ttl=61 time=1.92 ms
icmp req=3 ttl=61 time=1.81 ms
icmp_req=4 ttl=61 time=1.86 ms
icmp req=35 ttl=61 time=1.81 ms
icmp_req=6 ttl=61 time=1.77 ms
icmp req=7 ttl=61 time=1.83 ms
icmp_req=8 ttl=61 time=1.71 ms
icmp req=9 ttl=61 time=1.84 ms
icmp_req=10 ttI=61 time=1.62 ms
icmp req=11 ttl=61 time=1.81 ms
icmp_req=12 ttI=61 time=2.02 ms
icmp req=13 tt1=61 time=1.90 ms
icmp_req=14 ttI=61 time=1.90 ms
icmp req=15 ttl=61 time=1.94 ms
icmp_req=16 ttI=61 time=1.91 ms
icmp req=17 ttl=61 time=1.83 ms
icmp_req=18 ttI=61 time=1.79 ms
icmp req=19 tt1=61 time=1.93 ms
icmp_req=20 ttI=61 time=1.80 ms

--- 10.3.31.88 ping statistics ---

20 packets transmitted, 20 received, 0% packet loss, time 19043ms

rtt min/avg/max/mdev = 1.623/1.865/2.235/0.123 ms

Master of Science in Internetworking

32

7.2 htb with sfq:

Delete previous htb configuration on ethO:
root@ubuntu:/# tc qdisc del dev eth0 root

Ubuntu Router interface configurations:

root@ubuntu:/# tc -s qdisc Is dev eth(

qdisc pfifo_fast 0: root refcnt 2 bands 3 priomap 1222120011111111
Sent 0 bytes 0 pkt (dropped 0, overlimits 0 requeues ()

backlog 0b Op requeues 0

root@ubuntu:/# tc -s qdisc Is dev ethl

qdisc pfifo_fast 0: root refcnt 2 bands 3 priomap 1222120011111111
Sent 574908934 bytes 523188 pkt (dropped 0, overlimits 0 requeues ()
backlog 0b Op requeues 0

Command to be put on Ubuntu Router to configure sfq:

root@ubuntu:/# tc qdisc add dev eth0 root handle 1: htb default 10
root@ubuntu:/# tc class add dev ethO parent 1:1 classid 1:10 htb rate 10mbit ceil 10mbit burst 15k
root@ubuntu:/# tc qdisc add dev eth0 parent 1:10 handle 20: sfq perturb 10

Now EthO Configuration will be:

root@ubuntu:/# tc -s qdisc Is dev eth(

qdisc htb 1: root refcnt 2 r2q 10 default 10 direct packets stat 0
Sent 0 bytes 0 pkt (dropped 0, overlimits 0 requeues ()

backlog 0b Op requeues 0

qdisc sfq 20: parent 1:10 limit 127p quantum 1514b perturb 10sec
Sent 0 bytes 0 pkt (dropped 0, overlimits 0 requeues 0)

backlog 0b Op requeues 0

iperf test:
ubuntu@ubuntu:~$ iperf-c 10.3.31.88

Client connecting to 10.3.31.88, TCP port 5001
TCP window size: 16.0 KByte (default)

[3] local 10.3.34.11 port 47967 connected with 10.3.31.88 port 5001
[ID] Interval Transfer Bandwidth
[3] 0.0-10.0 sec 11.4 MBytes 9.56 Mbits/sec

ubuntu@ubuntu:~$ iperf-c 10.3.31.88 -t 10 -i 1

Client connecting to 10.3.31.88, TCP port 5001
TCP window size: 16.0 KByte (default)

[3] local 10.3.34.11 port 47969 connected with 10.3.31.88 port 5001
[ID] Interval Transfer Bandwidth

[3] 0.0- 1.0 sec 1.33 MBytes 11.1 Mbits/sec

[3] 1.0-2.0sec 1.15 MBytes 9.63 Mbits/sec

Master of Science in Internetworking

33

[3] 2.0-3.0sec 1.15 MBytes 9.63 Mbits/sec
[3] 3.0-4.0sec 1.11 MBytes 9.31 Mbits/sec
[3] 4.0-5.0sec 1.15 MBytes 9.63 Mbits/sec
[3] 5.0- 6.0 sec 1.06 MBytes 8.91 Mbits/sec
[3] 6.0-7.0sec 1.15 MBytes 9.63 Mbits/sec
[3] 7.0-8.0sec 1.15 MBytes 9.63 Mbits/sec
[3] 8.0-9.0sec 1.15 MBytes 9.63 Mbits/sec
[3] 9.0-10.0 sec 1.06 MBytes 8.91 Mbits/sec
[3] 0.0-10.0 sec 11.5 MBytes 9.60 Mbits/sec

ping test:

ubuntu@ubuntu:~3$ ping 10.3.31.88 -c¢ 20
PING 10.3.31.88 (10.3.31.88) 56(84) bytes of data.

64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:

icmp req=1 ttl=61 time=2.10 ms
icmp_req=2 ttl=61 time=1.77 ms
icmp req=3 ttl=61 time=1.94 ms
icmp_req=4 ttl=61 time=1.93 ms
icmp req=35 ttl=61 time=1.78 ms
icmp_req=6 ttl=61 time=1.85 ms
icmp req=7 ttl=61 time=1.90 ms
icmp_req=8 ttl=61 time=2.11 ms
icmp req=9 ttl=61 time=1.90 ms
icmp_req=10 ttI=61 time=1.93 ms
icmp req=11 ttl=61 time=1.90 ms
icmp_req=12 ttI=61 time=2.00 ms
icmp req=13 tt1=61 time=2.12 ms
icmp_req=14 ttI=61 time=1.94 ms
icmp req=15 ttl=61 time=1.83 ms
icmp_req=16 ttI=61 time=1.93 ms
icmp req=17 ttl=61 time=1.90 ms
icmp_req=18 ttI=61 time=1.86 ms
icmp req=19 ttl=61 time=1.97 ms
icmp_req=20 ttI=61 time=1.79 ms

--- 10.3.31.88 ping statistics ---

20 packets transmitted, 20 received, 0% packet loss, time 19039ms

rtt min/avg/max/mdev = 1.774/1.926/2.123/0.115 ms

Master of Science in Internetworking

34

7.3 TBF(Token bucket filter):

TBEF is a queue discipline used to set rate of an interface to a particular level. It only passes the received
packets only at a specific rate, no matter how fast it receives them. It is used to limit the upload from an
interface to any unlink, so that it should not suppress other data transfers.

It should be used on the exit interface of the machine from which that machines connects to the uplink.

First in this scenario the overall bandwidth of the network was limited to 800kbits/sec using htb. This
was done on the Ubuntu router as the communication is in between Virtual machines on ESXi server
and other Ubuntu machine on the other side of the Ubuntu router, present on VMware workstation.

root@ubuntu:/# tc qdisc del dev eth(root

root@ubuntu:/# tc qdisc add dev ethQ root handle 1: htb default 10

root@ubuntu:/# sudo tc class add dev eth0 parent 1:1 classid 1:10 htb rate 800kbit ceil 800kbit burst
15k

Iperf test will show us the bandwidth of the network:

ubuntu@ubuntu:~$ iperf -c 10.3.31.88

Client connecting to 10.3.31.88, TCP port 5001
TCP window size: 16.0 KByte (default)

[3] local 10.3.34.11 port 37203 connected with 10.3.31.88 port 5001

[ID] Interval ~ Transfer Bandwidth

[3] 0.0-10.9 sec 1.24 MBytes 954 Kbits/sec

Now we will use htb to control the speed of the ethernet interface of our Ubuntu system US5:

root@ubuntu:/#tc qdisc add dev eth0 root tbf rate 220kbit latency 50ms burst 1540

The above command can be used on the network interface itself without any htb configuration.
Now iperf test will show the real available bandwidth for the client machine to upload:

root@ubuntu:/# iperf-c 10.3.31.88

Client connecting to 10.3.31.88, TCP port 5001
TCP window size: 16.0 KByte (default)

[3] local 10.3.34.11 port 37204 connected with 10.3.31.88 port 5001
[ID] Interval Transfer Bandwidth
[3] 0.0-10.3 sec 272 KBytes 215 Kbits/sec

This scenario is useful when we are connected to any DSL modem or a cable modem through an
Ethernet interface. Ethernet interface can upload data at a very fast rate and will suppress other
interactive data, so tbf is helpful over here.

Master of Science in Internetworking 35

7.4 PRIO (priority):

There is no traffic control implemented on any interface of any machine:
Now we use the following configuration to implement prio:

root@ubuntu:/# tc qdisc add dev ethQ root handle 1: prio

root@ubuntu:/# tc qdisc add dev eth0 parent 1:1 handle 10: sfq

root@ubuntu:/# tc qdisc add dev ethQ parent 1:2 handle 20: tbf rate 1000kbit buffer 1600 limit 3000
root@ubuntu:/# tc qdisc add dev eth0 parent 1:3 handle 30: sfq

The first command in above configuration creates a root qdisc 1: and it has three classes 1:1, 1:2 and
1:3, these three classes have separate qdisc implemented in them as shown. By default all the three
classes have pfifo but in above configuration it has got three different queue disciplines.

root@ubuntu:/# tc -s qdisc s dev eth(

qdisc prio 1: root refcnt 2 bands 3 priomap 1222120011111111
Sent 4672 bytes 31 pkt (dropped 0, overlimits () requeues ()
backlog 0b Op requeues 0

qdisc sfq 10: parent 1:1 limit 127p quantum 1514b

Sent 0 bytes 0 pkt (dropped 0, overlimits 0 requeues ()
backlog 0b Op requeues 0

qdisc tbf 20: parent 1:2 rate 1000Kbit burst 1600b lat 11.2ms
Sent 606 bytes 9 pkt (dropped 0, overlimits () requeues ()
backlog 0b Op requeues 0

qdisc sfq 30: parent 1:3 limit 127p quantum 1514b

Sent 0 bytes 0 pkt (dropped 0, overlimits 0 requeues ()
backlog 0b Op requeues 0

Above configuration on the interface ethO shows that we have three priority levels 10, 20 and 30 in
decreasing priority. At this moment very less traffic in there through the interface that is why sent bytes
in above output has either zero or very less value for priority levels 10, 20 and 30.

The amount of data sent should be noted here to be more familiar with the way prio works.

Bulk traffic will follow 30(less priority), and interactive traffic (more priority traffic) will follow levels
20 and 10:

For bulk traffic test we will use scp (secure copy) to copy a file from Ubuntu U5 to Ubuntu Ul on
ESXi:

We have a file on desktop of machine U5 that we will copy to Ul.
root@ubuntu:/home/ubuntu/Desktop# Is -1

total 105368

-rwxr-xr-x 1 ubuntu ubuntu 412 2011-06-06 15:06 filezilla.desktop

-rwxr-xr-x 1 ubuntu ubuntu 476 2011-05-24 11:53 gnome-terminal.desktop

-rw-r--r-- 1 ubuntu ubuntu 582321 2011-06-14 17:24 interactive traffic.png

-rwxr-xr-x 1 ubuntu ubuntu 226 2011-06-14 16:04 putty.desktop

-rw-r--r-- 1 ubuntu ubuntu 121344 2011-06-14 19:42 TEST 1 Readings with high bandwidth.doc
-rw-r--r-- 1 ubuntu ubuntu 8565 2011-06-14 14:36 Test File.odt

-rw-r--r-- 1 root root 53576427 2011-06-14 19:23 ubuntu@10.3.31.88

-rw-r--r-- 1 ubuntu ubuntu 53576427 2011-06-14 16:17 Video08-3.wmv

Master of Science in Internetworking 36

-rwxr-xr-x 1 ubuntu ubuntu 3679 2011-06-02 13:19 vic.desktop
Video08-3.wmv is the file that we will copy to other machine.

Command to copy files from US5 to Ul:

root@ubuntu:/home/ubuntu/Desktop# scp Video08-3.wmv kanwar@10.3.31.88:./
kanwar@10.3.31.88's password.:

Video08-3.wmv 100% 5IMB 5.1IMB/s 00:10

File copied now we will check the ethO of our router U4 to see which priority level the packet
followed:

root@ubuntu:/# tc -s qdisc ls dev eth(

qdisc prio 1: root refcnt 2 bands 3 priomap 1222120011111111
Sent 56198623 bytes 38059 pkt (dropped 0, overlimits 0 requeues 0)
backlog 0b Op requeues 0

qdisc sfq 10: parent 1:1 limit 127p quantum 1514b

Sent 0 bytes 0 pkt (dropped 0, overlimits 0 requeues ()

backlog 0b Op requeues 0

qdisc tbf 20: parent 1:2 rate 1000Kbit burst 1600b lat 11.2ms

Sent 88799 bytes 946 pkt (dropped 0, overlimits 3 requeues ()

backlog 0b Op requeues 0

qdisc sfq 30: parent 1:3 limit 127p quantum 1514b

Sent 56105758 bytes 37091 pkt (dropped 0, overlimits 0 requeues 0)
backlog 0b Op requeues 0

They went through least priority level 30.

Now will check for more priority data:
ssh using putty to Ul from U5:

ace:

Ty Tue Jun 14, 7:49PM § o)) @ ubuntu (O

Basic options For your PUTTY session
Specify the destination you want to connect to
Logging Host Name (or IP address) Port
v Terminal [10.3.31.3¢ N][22

Connecl tion type:
& Telnet) Rlogin @ SSH

Default Settings

Close window on exit:
@ Always) Never

B [TEST 1Readings with...] [root@ubuntu: /home... R PuTTY Configuration

Master of Science in Internetworking 37

3 Applications Places System ') 1y TueJun 14, T:50PM £ o)) @ wbuntu O
@O kanwar@ubuntu-on-esxi-1: ~/Desktop

¥ [[TEST1Readingswith... [[root@ubuntu: /home... £ kanwar@ubuntu-on-e...

Few commands were run in the ssh session from our client on U5 interface available through ssh as
shown in above picture.

Now we will check the eth 0 of our Ubuntu router:

root@ubuntu:/# tc -s qdisc Is dev eth(

qdisc prio 1: root refcnt 2 bands 3 priomap 1222120011111111
Sent 56228167 bytes 38278 pkt (dropped 0, overlimits 0 requeues ()
backlog 0b Op requeues 0

qdisc sfq 10: parent 1:1 limit 127p quantum 1514b

Sent 0 bytes 0 pkt (dropped 0, overlimits 0 requeues ()

backlog 0b Op requeues 0

qdisc tbf 20: parent 1:2 rate 1000Kbit burst 1600b lat 11.2ms

Sent 118343 bytes 1165 pkt (dropped 0, overlimits 5 requeues ()
backlog 0b Op requeues 0

qdisc sfq 30: parent 1:3 limit 127p quantum 1514b

Sent 56105758 bytes 37091 pkt (dropped 0, overlimits 0 requeues ()
backlog 0b Op requeues 0

Traffic went through priority level 20.
Now for telnet:

Telnet connection to Cisco router from Ubuntu 5 was established and few commands were run:

Telnet 10.3.32.66

Master of Science in Internetworking 38

Now after running some commands on Cisco router using the telnet session, the ethO of Ubuntu router
U4 shows:

root@ubuntu:/# tc -s qdisc Is dev eth(

qdisc prio 1: root refcnt 2 bands 3 priomap 1222120011111111
Sent 56248232 bytes 38484 pkt (dropped 0, overlimits 0 requeues ()
backlog 0b Op requeues 0

qdisc sfq 10: parent 1:1 limit 127p quantum 1514b

Sent 6249 bytes 112 pkt (dropped 0, overlimits 0 requeues 0)

backlog 0b Op requeues 0

qdisc tbf 20: parent 1:2 rate 1000Kbit burst 1600b lat 11.2ms

Sent 132159 bytes 1259 pkt (dropped 0, overlimits 6 requeues ()

backlog 0b Op requeues 0

qdisc sfq 30: parent 1:3 limit 127p quantum 1514b

Sent 56105758 bytes 37091 pkt (dropped 0, overlimits 0 requeues ()
backlog 0b Op requeues 0

Shows traffic went thorough highest priority for telnet.

Iperf test:
ubuntu@ubuntu:~$ iperf-c 10.3.31.88

Client connecting to 10.3.31.88, TCP port 5001
TCP window size: 16.0 KByte (default)

[3] local 10.3.34.11 port 47122 connected with 10.3.31.88 port 5001
[ID] Interval Transfer Bandwidth
[3] 0.0-10.0 sec 1.13 MBytes 947 Kbits/sec

root@ubuntu:/# tc -s qdisc Is dev eth(

qdisc prio 1: root refcnt 2 bands 3 priomap 1222120011111111
Sent 57638550 bytes 41055 pkt (dropped 236, overlimits 0 requeues ()
backlog 0b Op requeues 0

qdisc sfq 10: parent 1:1 limit 127p quantum 1514b

Sent 6249 bytes 112 pkt (dropped 0, overlimits 0 requeues ()

backlog 0b Op requeues 0

qdisc tbf 20: parent 1:2 rate 1000Kbit burst 1600b lat 11.2ms

Sent 1522477 bytes 3830 pkt (dropped 236, overlimits 1095 requeues ()
backlog 0b Op requeues 0

qdisc sfq 30: parent 1:3 limit 127p quantum 1514b

Sent 56105758 bytes 37091 pkt (dropped 0, overlimits 0 requeues ()
backlog 0b Op requeues 0

Iperf test is also followed the middle priority handle 20.
So above all test shows us that traffic can be limited to a particular value using htb and we can use
different queueing disciplines with them too.

Master of Science in Internetworking 39

8. Limit bandwidth of particular user.

8.1 Without Routers:

In the scenario there are now two more Ubuntu machines U6 and U7 on VMware Workstation.

Ubuntu Machine on ESXi
with ip 10.3.31.88

PatchPanel patch
.3.31.250 Panel

Vmware ESXi with
Ubuntuvirtual machines

UBUNTU Laptop Virtual
Environment
with VMware Worstation

The bandwidth available and rtt-latency for the network:

iperf test from a clientU6 to Ubuntu iperf server Ul on ESXi:
kanwar2@ubuntu:~$ iperf -¢c 10.3.31.88

Client connecting to 10.3.31.88, TCP port 5001
TCP window size: 16.0 KByte (default)

[3] local 10.3.34.33 port 39547 connected with 10.3.31.88 port 5001
[ID] Interval ~ Transfer Bandwidth
[3] 0.0-10.0 sec 85.9 MBytes 72.0 Mbits/sec

ping test:

ubuntu@ubuntu:~$ ping 10.3.31.88 -¢ 20

PING 10.3.31.88 (10.3.31.88) 56(84) bytes of data.

64 bytes from 10.3.31.88: icmp_req=1 ttl=63 time=1.43 ms
64 bytes from 10.3.31.88: icmp_req=2 ttI=63 time=1.23 ms
64 bytes from 10.3.31.88: icmp _req=3 ttl=63 time=1.23 ms
64 bytes from 10.3.31.88: icmp_req=4 tt1=63 time=1.36 ms

Master of Science in Internetworking

40

64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:

icmp_req=5 ttI=63 time=1.40 ms
icmp_req=6 ttlI=63 time=1.23 ms
icmp_req=7 ttI=63 time=1.21 ms
icmp_req=8 ttl=63 time=1.41 ms
icmp_req=9 ttI=63 time=1.41 ms
icmp_req=10 ttI=63 time=1.18 ms
icmp_req=11 ttI=63 time=1.39 ms
icmp_req=12 ttI=63 time=1.15 ms
icmp_req=13 ttl=63 time=1.21 ms
icmp_req=14 ttI=63 time=1.40 ms
icmp_req=15 ttl=63 time=1.66 ms
icmp_req=16 ttI=63 time=1.33 ms
icmp_req=17 ttl=63 time=1.37 ms
icmp_req=18 ttI=63 time=1.36 ms
icmp_req=19 ttl=63 time=2.90 ms
icmp_req=20 ttI=63 time=1.38 ms

--- 10.3.31.88 ping statistics ---
20 packets transmitted, 20 received, 0% packet loss, time 19040ms
rtt min/avg/max/mdev = 1.158/1.415/2.904/0.361 ms

To limit the bandwidth of particular user:
For this IP address of the different machines will be added to filters used in traffic control configuration

on Ubuntu Server U4:

There are two Ubuntu machines behind the Ubuntu router U4 with IP addresses as follows:
Ubuntu 5: 10.3.34.11/24

Ubuntu 6: 10.3.34.33/24

Total bandwidth is around 70 Mbits/sec for both clients. Bandwidth is to be limited as follows:

Ubuntu US: 6 Mbits/sec

Ubuntu U6: 3 Mbits/sec

Default will be around: 1 Mbits/sec(i.e. any other machine from any other network or the same network
that will try to access Ul through Ubuntu router U4 will fall in this category and will not be given
bandwidth more than 1 Mbits/sec).

So the configuration on our Ubuntu router U4 is be as follows:

root@ubuntu:/# tc qdisc add dev ethO root handle 1: htb default 30

root@ubuntu:/# tc class add dev ethO parent 1: classid 1:1 htb rate 10mbit burst 15k

root@ubuntu:/# tc class add dev ethO parent 1:1 classid 1:10 htb rate 6mbit ceil 6mbit

root@ubuntu:/# tc class add dev ethO parent 1:1 classid 1:20 htb rate 3mbit ceil 3mbit

root@ubuntu:/# tc class add dev ethO parent 1:1 classid 1:30 htb rate 1mbit ceil 1mbit

root@ubuntu:/# tc qdisc add dev eth0 parent 1:10 handle 10: sfq perturb 10

root@ubuntu:/# tc qdisc add dev ethO parent 1:20 handle 20: sfq perturb 10

root@ubuntu:/# tc qdisc add dev eth0 parent 1:30 handle 30: sfq perturb 10

root@ubuntu:/# tc filter add dev ethO protocol ip parent 1:0 prio 1 u32 match ip src 10.3.34.11 flowid
1:10

root@ubuntu:/# tc filter add dev ethO protocol ip parent 1:0 prio 1 u32 match ip src 10.3.34.33 flowid
1:20

Master of Science in Internetworking 41

This traffic control configuration works as follows:

Firstly, packets source address is matched with the filters attached, if it is of any of the first two filters
them it will be sent to corresponding class (10 or 20) else it will follow the default class 30 of
1 Mbits/sec.

In above configuration instead of sfq we can use pfifo or pfifo with a limit. They will only change the
way the packets are sent onto the network by the exit interface ethO of Ubuntu router U4.

Below is the information received by the show commands on Ubuntu router U4: (It shows the
configuration of the interface i.e. all the traffic control implemented on that interface)

root@ubuntu:/# tc -s -d qdisc show dev eth0

qdisc htb 1: root refent 2 r2q 10 default 30 direct packets_stat 0 ver 3.17

Sent 36240254 bytes 23975 pkt (dropped 97, overlimits 48069 requeues 0)
backlog 0b Op requeues 0

qdisc sfq 10: parent 1:10 limit 127p quantum 1514b flows 127/1024 perturb 10sec
Sent 7699172 bytes 5090 pkt (dropped 2, overlimits 0 requeues 0)

backlog 0b Op requeues 0

qdisc sfq 20: parent 1:20 limit 127p quantum 1514b flows 127/1024 perturb 10sec
Sent 28540872 bytes 18880 pkt (dropped 95, overlimits 0 requeues 0)

backlog 0b Op requeues 0

qdisc sfq 30: parent 1:30 limit 127p quantum 1514b flows 127/1024 perturb 10sec
Sent 210 bytes 5 pkt (dropped 0, overlimits 0 requeues 0)

backlog 0b Op requeues 0

Above outputs shows details about the queue disciplines added to eth0.

root@ubuntu:/# tc -s -d class show dev eth0

class htb 1:1 root rate 10000Kbit ceil 10000Kbit burst 15Kb/8 mpu 0b overhead Ob cburst 1600b/8 mpu
0b overhead Ob level 7

Sent 36239230 bytes 23975 pkt (dropped 0, overlimits 0 requeues 0)

rate 73120bit 6pps backlog Ob Op requeues 0

lended: 0 borrowed: 0 giants: 0

tokens: 191110 ctokens: 19110

class htb 1:10 parent 1:1 leaf 10: prio 0 quantum 75000 rate 6000Kbit ceil 6000Kbit burst 1599b/8 mpu
0Ob overhead 0b cburst 1599b/8 mpu Ob overhead Ob level 0

Sent 7699172 bytes 5090 pkt (dropped 2, overlimits 0 requeues 0)

rate Obit Opps backlog 0b Op requeues 0

lended: 5090 borrowed: 0 giants: 0

tokens: 31828 ctokens: 31828

class htb 1:20 parent 1:1 leaf 20: prio 0 quantum 37500 rate 3000Kbit ceil 3000Kbit burst 1599b/8 mpu
0b overhead 0b cburst 1599b/8 mpu Ob overhead Ob level 0

Sent 28540872 bytes 18880 pkt (dropped 95, overlimits 0 requeues 0)

rate 72152bit 6pps backlog Ob Op requeues 0

lended: 18880 borrowed: 0 giants: 0

tokens: 63656 ctokens: 63656

Master of Science in Internetworking 42

class htb 1:30 parent 1:1 leaf 30: prio 0 quantum 12500 rate 1000Kbit ceil 1000Kbit burst 1600b/8 mpu
0Ob overhead 0b cburst 1600b/8 mpu Ob overhead Ob level 0

Sent 210 bytes 5 pkt (dropped 0, overlimits 0 requeues 0)

rate Obit Opps backlog 0b Op requeues 0

lended: 5 borrowed: 0 giants: 0

tokens: 194000 ctokens: 194000

root@ubuntu:/# tc -s -d filter show dev ethO

filter parent 1: protocol ip pref 1 u32

filter parent 1: protocol ip pref 1 u32 th 800: ht divisor 1

filter parent 1: protocol ip pref 1 u32 th 800::800 order 2048 key ht 800 bkt 0 flowid 1:10
match 0a03220b/fftfffff at 12

filter parent 1: protocol ip pref 1 u32 th 800::801 order 2049 key ht 800 bkt 0 flowid 1:20
match 0a03222 1/{fffffff at 12

In the configuration there are three different classes with different bandwidth, so to test the
configuration iperf test results from three different machines:

Ubuntu 5 (with 6Mbits limit) with IP address 10.3.34.11
ubuntu@ubuntu:~$ iperf -c 10.3.31.88

Client connecting to 10.3.31.88, TCP port 5001
TCP window size: 16.0 KByte (default)

[3] local 10.3.34.11 port 50743 connected with 10.3.31.88 port 5001
[ID] Interval ~ Transfer Bandwidth
[3] 0.0-10.0 sec 7.00 MBytes 5.85 Mbits/sec

Ubuntu 6 (with 3Mbits limit) with IP address 10.3.34.33
kanwar2@ubuntu:~$ iperf -¢c 10.3.31.88

Client connecting to 10.3.31.88, TCP port 5001
TCP window size: 16.0 KByte (default)

[3] local 10.3.34.33 port 49585 connected with 10.3.31.88 port 5001
[ID] Interval ~ Transfer Bandwidth
[3] 0.0-10.8 sec 3.70 MBytes 2.88 Mbits/sec

Master of Science in Internetworking 43

Windows XP system is connected to the network and below is the diagram showing that as the default
rule is 1Mbits/sec so it will get overall bandwidth no more than 1 mbps.

T - -

Microsoft Windows XP [Uersion 5.1.266081
{C> Copyright 1985-2801 Microsoft Corp.

IC:~\Documents and Settings“Administrator’cd ddesk
The systen cannot find the path specified.

IC:“Documents and Settings\Administrator>cd Desktop
ators\DesktopXiperf —c 1B.3.31._88
Rinée idefauies”" " o
{1912] loca 3. port 1862 conneczid with 18.3.31.88 port 5881

ID] Interval "Transfer Banduid
(19121 B.8-18.1 sec 1.16 MBytes 259 Kbits/sec

ing to 18.3.31_88, P port 5881
ze: 8.80 KByte {default>

.3.34.252 port 1863 connected with -31.88 port 5881
Trans Bandwidth

(19121

IC:~Documents and Settings:\Administrator\Desktop>_

¥4 start &

i D dn, o W 1148 AN

Above configuration show us how to implement bandwidth limitations for particular users in a
network.

Filters can be applied to for particular applications using port numbers and latency sensitive traffic like
video streaming can also be preferred using port numbers.

Master of Science in Internetworking 44

8.2 With Routers:

Now we can test this by introducing two routers in between the server and clients, this will add some
latency to the network:

Ubuntu Machine on ESXi
with ip 10.3.31.88 on eth0

1033177 1033255
T gy 1033266

10.3.31.88

ETHERNET HUB/Switch ROUTER 2600 ROUTER 2600
Vmware ESXi with R1-134 R2-114
Ubuntu virtual machines

UBUNTU Laptop Virtual
Environment
with ViMware Worstation.

Below are few Iperf test results performed on the network:
TCP test:
ubuntu@ubuntu:~$ iperf -c 10.3.31.88

Client connecting to 10.3.31.88, TCP port 5001
TCP window size: 16.0 KByte (default)

[3] local 10.3.34.11 port 42053 connected with 10.3.31.88 port 5001
[ID] Interval ~ Transfer Bandwidth
[3] 0.0-10.0 sec 53.5 MBytes 44.9 Mbits/sec

Iperf parallel tests: two iperf test sessions were run parallel to each other using -P attribute.
kanwar2@ubuntu:~$ iperf -c 10.3.31.88 -P 2

Client connecting to 10.3.31.88, TCP port 5001
TCP window size: 16.0 KByte (default)

[3] local 10.3.34.33 port 48322 connected with 10.3.31.88 port 5001
[4] local 10.3.34.33 port 48323 connected with 10.3.31.88 port 5001
[ID] Interval ~ Transfer Bandwidth

[4] 0.0-10.0 sec 33.4 MBytes 28.0 Mbits/sec

Master of Science in Internetworking 45

[3] 0.0-10.0 sec 24.9 MBytes 20.8 Mbits/sec
[SUM] 0.0-10.0 sec 58.2 MBytes 48.7 Mbits/sec

rtt- ping test:

ubuntu@ubuntu:~$ ping 10.3.31.88 -c 20
PING 10.3.31.88 (10.3.31.88) 56(84) bytes of data.

64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:

icmp_req=1 ttlI=61 time=1.87 ms
icmp_req=2 ttI=61 time=1.98 ms
icmp_req=3 ttlI=61 time=2.43 ms
icmp_req=4 ttI=61 time=1.97 ms
icmp_req=5 ttl=61 time=1.95 ms
icmp_req=6 ttI=61 time=1.86 ms
icmp_req=7 ttlI=61 time=1.76 ms
icmp_req=8 ttI=61 time=1.70 ms
icmp_req=9 ttlI=61 time=1.77 ms
icmp_req=10 ttlI=61 time=2.03 ms
icmp_req=11 ttlI=61 time=1.90 ms
icmp_req=12 ttl=61 time=2.26 ms
icmp_req=13 ttI=61 time=1.89 ms
icmp_req=14 ttlI=61 time=1.84 ms
icmp_req=15 ttI=61 time=1.91 ms
icmp_req=16 ttlI=61 time=1.88 ms
icmp_req=17 ttI=61 time=1.85 ms
icmp_req=18 ttlI=61 time=1.98 ms
icmp_req=19 ttI=61 time=1.60 ms
icmp_req=20 ttl=61 time=1.60 ms

--- 10.3.31.88 ping statistics ---
20 packets transmitted, 20 received, 0% packet loss, time 19039ms
rtt min/avg/max/mdev = 1.600/1.905/2.431/0.194 ms

Routers are configured with static routing as shown in first experiment.
Connectivity is complete.

So conf on Ubuntu Router to limit bandwidth of different users:
Ubuntu 5(10.3.34.11): 10 Mbits/sec

Ubuntu 6(10.3.34.33): 5 Mbits/sec

Any other IP address : 3 Mbits/sec

root@ubuntu:/# tc qdisc add dev ethO root handle 1: htb default 30

root@ubuntu:/# tc class add dev ethO parent 1: classid 1:1 htb rate 18mbit burst 15k

root@ubuntu:/# tc class add dev ethO parent 1:1 classid 1:10 htb rate 10mbit ceil 10mbit
root@ubuntu:/# tc class add dev ethO parent 1:1 classid 1:20 htb rate Smbit ceil Smbit

root@ubuntu:/# tc class add dev ethO parent 1:1 classid 1:30 htb rate 3mbit ceil 3mbit

root@ubuntu:/# tc qdisc add dev eth0 parent 1:10 handle 10: sfq perturb 10

root@ubuntu:/# tc qdisc add dev ethO parent 1:20 handle 20: sfq

root@ubuntu:/# tc qdisc add dev eth0 parent 1:30 handle 30: pfifo limit 20

root@ubuntu:/# tc filter add dev ethO protocol ip parent 1:0 prio 1 u32 match ip src 10.3.34.11 flowid
1:10

root@ubuntu:/# tc filter add dev ethO protocol ip parent 1:0 prio 1 u32 match ip src 10.3.34.33 flowid
1:20

Master of Science in Internetworking 46

Iperf tests showing limited bandwidths for users and default also:
Ubuntu U5 (10.3.34.11)
ubuntu@ubuntu:~$ iperf -¢c 10.3.31.88

Client connecting to 10.3.31.88, TCP port 5001
TCP window size: 16.0 KByte (default)

[3] local 10.3.34.11 port 54798 connected with 10.3.31.88 port 5001
[ID] Interval ~ Transfer Bandwidth
[3] 0.0-10.1 sec 11.4 MBytes 9.46 Mbits/sec

Ubuntu U6 (10.3.34.33):
kanwar2@ubuntu:~$ iperf -c 10.3.31.88

Client connecting to 10.3.31.88, TCP port 5001
TCP window size: 16.0 KByte (default)

[3] local 10.3.34.33 port 40208 connected with 10.3.31.88 port 5001
[ID] Interval Transfer Bandwidth
[3] 0.0-10.1 sec 5.86 MBytes 4.87 Mbits/sec

Windows XP [Ue
ght 1985-2081

C:%\Documents and Settings“Admninistrator\Desktop>

Tistat £ @ e conmandrioms [Cosm zsen
The above configuration gives a ceiling value to each user; user can’t exceed that ceiling value.

But if more bandwidth is available with the network then the traffic can get more bandwidth up to the
ceiling value.

i.e. we can limit the minimum value for a user but if more bandwidth is available on the network then
the user can get that value too.

Master of Science in Internetworking 47

In our environment we are having around 45Mbits/sec bandwidth for our network. Now we will give
min value for two users and if more is available they can also utilize that bandwidth:

Configuration for the scenario is:

root@ubuntu:/# tc qdisc add dev ethO root handle 1: htb default 30

root@ubuntu:/# tc class add dev eth(parent 1: classid 1:1 htb rate 40mbit burst 15k

root@ubuntu:/# tc class add dev ethO parent 1:1 classid 1:10 htb rate 10mbit ceil 15mbit
root@ubuntu:/# tc class add dev ethO parent 1:1 classid 1:20 htb rate Smbit ceil 10mbit
root@ubuntu:/# tc class add dev ethO parent 1:1 classid 1:30 htb rate 3mbit ceil Smbit

root@ubuntu:/# tc qdisc add dev ethO parent 1:10 handle 10: sfq perturb 10

root@ubuntu:/# tc qdisc add dev ethO parent 1:20 handle 20: sfq

root@ubuntu:/# tc qdisc add dev eth0 parent 1:30 handle 30: pfifo limit 20

root@ubuntu:/# tc filter add dev ethO protocol ip parent 1:0 prio 1 u32 match ip src 10.3.34.11 flowid
1:10

root@ubuntu:/# tc filter add dev ethO protocol ip parent 1:0 prio 1 u32 match ip src 10.3.34.33 flowid
1:20

Iperf test on Ubuntu with ip add 10.3.34.33: limit for this is Smbit but if available it can utilize up to
10mbits.sec according to ceiling value.
kanwar2@ubuntu:~$ iperf -c 10.3.31.88

Client connecting to 10.3.31.88, TCP port 5001
TCP window size: 16.0 KByte (default)

[3] local 10.3.34.33 port 51567 connected with 10.3.31.88 port 5001
[ID] Interval Transfer Bandwidth
[3] 0.0-10.1 sec 11.6 MBytes 9.66 Mbits/sec

Iperf test of ubuntu with ip 10.3.31.11:
ubuntu@ubuntu:~$ iperf -¢c 10.3.31.88

Client connecting to 10.3.31.88, TCP port 5001
TCP window size: 493 KByte (default)

[3] local 10.3.34.11 port 39183 connected with 10.3.31.88 port 5001
[ID] Interval Transfer Bandwidth
[3] 0.0-10.0 sec 16.6 MBytes 13.9 Mbits/sec

Above two results prove the ceil value test, as sufficient amount of bandwidth is available on the
network, so the router will give them bandwidth upto their ceiling values.

Other clients that will follow the default rule:

Master of Science in Internetworking 48

[L A WM 313PM

Show commands on Ubuntu router U4:

root@ubuntu:/# tc -s -d qdisc show dev eth0

qdisc htb 1: root refent 2 r2q 10 default 30 direct packets_stat 0 ver 3.17
Sent 41903988 bytes 28224 pkt (dropped 17, overlimits 57515 requeues 0)
backlog 0b Op requeues 0

qdisc sfq 10: parent 1:10 limit 127p quantum 1514b flows 127/1024 perturb 10sec
Sent 17329662 bytes 11451 pkt (dropped 7, overlimits 0 requeues 0)
backlog 0b Op requeues 0

qdisc sfq 20: parent 1:20 limit 127p quantum 1514b flows 127/1024

Sent 12625744 bytes 8344 pkt (dropped 10, overlimits 0 requeues 0)
backlog 0b Op requeues 0

qdisc pfifo 30: parent 1:30 limit 20p

Sent 11948582 bytes 8429 pkt (dropped 0, overlimits 0 requeues 0)
backlog 0b Op requeues 0

root@ubuntu:/# tc -s -d class show dev eth0

class htb 1:1 root rate 40000Kbit ceil 40000Kbit burst 15Kb/8 mpu 0b overhead Ob cburst 1600b/8 mpu
Ob overhead 0b level 7

Sent 41903988 bytes 28224 pkt (dropped 0, overlimits 0 requeues 0)

rate 40bit Opps backlog Ob Op requeues 0

lended: 10974 borrowed: 0 giants: 0

tokens: 47829 ctokens: 4829

class htb 1:10 parent 1:1 leaf 10: prio 0 quantum 125000 rate 10000Kbit ceil 15000Kbit burst 1600b/8
mpu 0b overhead Ob cburst 1597b/8 mpu 0b overhead Ob level 0

Sent 17329662 bytes 11451 pkt (dropped 7, overlimits 0 requeues 0)

rate Obit Opps backlog 0b Op requeues 0

lended: 7930 borrowed: 3521 giants: 0

tokens: 19110 ctokens: 12735

Master of Science in Internetworking 49

class htb 1:20 parent 1:1 leaf 20: prio 0 quantum 62500 rate 5000Kbit ceil 10000Kbit burst 1600b/8
mpu Ob overhead 0b cburst 1600b/8 mpu Ob overhead 0b level 0

Sent 12625744 bytes 8344 pkt (dropped 10, overlimits 0 requeues 0)

rate Obit Opps backlog 0b Op requeues 0

lended: 4210 borrowed: 4134 giants: 0

tokens: 38204 ctokens: 19110

class htb 1:30 parent 1:1 leaf 30: prio 0 quantum 37500 rate 3000Kbit ceil S000Kbit burst 1599b/8 mpu
0b overhead Ob cburst 1600b/8 mpu Ob overhead 0b level 0

Sent 11948582 bytes 8429 pkt (dropped 0, overlimits 0 requeues 0)

rate 40bit Opps backlog Ob Op requeues 0

lended: 5110 borrowed: 3319 giants: 0

tokens: 64328 ctokens: 38610

root@ubuntu:/# tc -s -d filter show dev eth0

filter parent 1: protocol ip pref 1 u32

filter parent 1: protocol ip pref 1 u32 th 800: ht divisor 1

filter parent 1: protocol ip pref 1 u32 th 800::800 order 2048 key ht 800 bkt 0 flowid 1:10
match 0a03220b/ftftftff at 12

filter parent 1: protocol ip pref 1 u32 th 800::801 order 2049 key ht 800 bkt 0 flowid 1:20
match 0a032221/ftftftff at 12

Test to check latency introduced by Traffic control configuration:

rtt-ping test for network with routers but no tc configuration is done:
kanwar2@ubuntu:~$ ping 10.3.31.88 ¢ 10

PING 10.3.31.88 (10.3.31.88) 56(84) bytes of data.

64 bytes from 10.3.31.88: icmp_req=1 ttl=61 time=2.20 ms
64 bytes from 10.3.31.88: icmp_req=2 ttl=61 time=1.98 ms
64 bytes from 10.3.31.88: icmp_req=3 ttl=61 time=2.00 ms
64 bytes from 10.3.31.88: icmp_req=4 ttl=61 time=1.91 ms
64 bytes from 10.3.31.88: icmp_req=>5 ttlI=61 time=1.84 ms
64 bytes from 10.3.31.88: icmp_req=6 ttl=61 time=1.85 ms
64 bytes from 10.3.31.88: icmp_req=7 ttlI=61 time=1.92 ms
64 bytes from 10.3.31.88: icmp_req==8 ttl=61 time=1.89 ms
64 bytes from 10.3.31.88: icmp_req=9 ttlI=61 time=2.06 ms
64 bytes from 10.3.31.88: icmp_req=10 ttI=61 time=2.22 ms

--- 10.3.31.88 ping statistics ---
10 packets transmitted, 10 received, 0% packet loss, time 9022ms
rtt min/avg/max/mdev = 1.844/1.992/2.222/0.129 ms

kanwar2@ubuntu:~$ ping 10.3.31.88 ¢ 10

PING 10.3.31.88 (10.3.31.88) 56(84) bytes of data.

64 bytes from 10.3.31.88: icmp_req=1 ttl=61 time=2.03 ms
64 bytes from 10.3.31.88: icmp_req=2 ttl=61 time=2.11 ms
64 bytes from 10.3.31.88: icmp_req=3 ttl=61 time=1.93 ms
64 bytes from 10.3.31.88: icmp_req=4 ttlI=61 time=2.06 ms
64 bytes from 10.3.31.88: icmp_req=>5 ttl=61 time=1.93 ms

Master of Science in Internetworking 50

64 bytes from 10.3.31.88: icmp_req=6 ttl=61 time=2.09 ms
64 bytes from 10.3.31.88: icmp_req=7 ttlI=61 time=1.85 ms
64 bytes from 10.3.31.88: icmp_req==8 ttl=61 time=1.96 ms
64 bytes from 10.3.31.88: icmp_req=9 ttlI=61 time=2.05 ms
64 bytes from 10.3.31.88: icmp_req=10 ttI=61 time=2.11 ms

--- 10.3.31.88 ping statistics ---
10 packets transmitted, 10 received, 0% packet loss, time 9019ms
rtt min/avg/max/mdev = 1.854/2.016/2.116/0.098 ms

rit-latency comparison for tc configuration

2.5

22 2.22

G Y ;i %ziﬂ
2 : §<h.. 183 T -
_— Aﬁ

i

= \Without tc
conf

time

1 == with tc conf

0.5

1 3 4 5 6 7 8 9 10 11

packet number

The mean value shows
us a slight increase in
rtt-latency for tc
configuration scenario.

Master of Science in Internetworking

51

9. Limit bandwidth for particular applications:

To limit bandwidth for various applications port number of those applications must be used, then those
port numbers can be used in iperf to check bandwidth for the applications and to check the traffic
control configuration.

We can use the default port number 5001 in configuration that is used by iperf and will use another port
for another application, let it be 5002.

9.1 Scenario without routers:

Ubuntu Machine on ESXi
with ip 10.3.31.88

Patch Panel Patch
.3.31.250 Panel

Vmware ESXi with
Ubuntuvirtual machines

UBUNTU Laptop Virtual
Emdronment
with VMware Worstation

As for a application on the network there is always a port number associated; and the packets on the
network have the port number information for that application. So to limit the bandwidth for a known
application, we can put traffic control filters with respect to these port numbers.

Default configuration i.e. No traffic control configured:
ubuntu@ubuntu:~$ iperf -c 10.3.31.88

Client connecting to 10.3.31.88, TCP port 5001
TCP window size: 16.0 KByte (default)

[3] local 10.3.34.11 port 60374 connected with 10.3.31.88 port 5001
[ID] Interval Transfer Bandwidth
[3] 0.0-10.0 sec 85.0 MBytes 71.2 Mbits/sec

Master of Science in Internetworking 52

rtt-latency test without configuration done:
ubuntu@ubuntu:~$ ping 10.3.31.88 -c 10

PING 10.3.31.88 (10.3.31.88) 56(84) bytes of data.

64 bytes from 10.3.31.88: icmp_req=1 ttl=63 time=1.62 ms
64 bytes from 10.3.31.88: icmp_req=2 ttl=63 time=1.40 ms
64 bytes from 10.3.31.88: icmp_req=3 ttl=63 time=1.11 ms
64 bytes from 10.3.31.88: icmp_req=4 ttl=63 time=1.23 ms
64 bytes from 10.3.31.88: icmp_req=>5 ttl=63 time=1.24 ms
64 bytes from 10.3.31.88: icmp_req=>6 ttl=63 time=1.26 ms
64 bytes from 10.3.31.88: icmp_req=7 ttl=63 time=1.15 ms
64 bytes from 10.3.31.88: icmp_req==8 ttl=63 time=1.21 ms
64 bytes from 10.3.31.88: icmp_req=9 ttl=63 time=1.19 ms
64 bytes from 10.3.31.88: icmp_req=10 ttlI=63 time=1.37 ms

--- 10.3.31.88 ping statistics ---
10 packets transmitted, 10 received, 0% packet loss, time 9019ms
rtt min/avg/max/mdev = 1.112/1.281/1.621/0.142 ms

Configuration on Ubuntu router U4 for limiting bandwidth for applications:

root@ubuntu:/# tc qdisc add dev ethO root handle 1: htb default 30

root@ubuntu:/# tc class add dev ethO parent 1: classid 1:1 htb rate 10mbit burst 15k

root@ubuntu:/# tc class add dev ethO parent 1:1 classid 1:10 htb rate 6mbit ceil 6mbit

root@ubuntu:/# tc class add dev ethO parent 1:1 classid 1:20 htb rate 3mbit ceil 3mbit

root@ubuntu:/# tc class add dev ethO parent 1:1 classid 1:30 htb rate 1mbit ceil 1mbit

root@ubuntu:/# tc qdisc add dev ethO parent 1:10 handle 10: sfq

root@ubuntu:/# tc qdisc add dev ethO parent 1:20 handle 20: sfq perturb 10

root@ubuntu:/# tc qdisc add dev eth0 parent 1:30 handle 30: pfifo limit 20

root@ubuntu:/# tc filter add dev ethO protocol ip parent 1:0 prio 1 u32 match ip dport 5001 Oxftff
flowid 1:10

root@ubuntu:/# tc filter add dev ethO protocol ip parent 1:0 prio 1 u32 match ip dport 5002 Oxftff
flowid 1:20

In the above configuration we have added filters in different classes to filter traffic based on the port
number. All applications are based on port number in networking. So applying filter on port numbers
can help us to control traffic for port numbers. The filter at the exit interface of the Ubuntu router will
look for destination port number and will take appropriate action according to the filters defined on it.
Whenever there is a packet on ethO interface to be sent out, it will first check for the filters, if there is a
specific filter for that traffic then it will be sent to that particular class, else default filter will work on it
and send it to the default class. These classes will define the bandwidth for that traffic.

Further one can implement any type of queue discipline on any type of traffic as shown in the
configuration above.

We used two filters in above configuration to send any traffic for port number 5001 and 5002 to classes
10 and 20 respectively with bandwidth specified.

So whenever any traffic for port number 5001 or 5002 is found on the interface it will not take
bandwidth more than the specified values.

The readings below for iperf test on three different PC's to connect to the server using iperf with port
5001, 5002 and 5003:

Master of Science in Internetworking 53

Iperf test results:

For port# 5001:

On iperf server: iperf-s
ubuntu@ubuntu:~$ iperf -c 10.3.31.88

Client connecting to 10.3.31.88, TCP port 5001
TCP window size: 16.0 KByte (default)

[3] local 10.3.34.11 port 52723 connected with 10.3.31.88 port 5001
[ID] Interval ~ Transfer Bandwidth
[3] 0.0-10.1 sec 7.11 MBytes 5.89 Mbits/sec

For port# 5002: We first need to run this command on server to communicate through port 5002:
iperf-s -p 5002
ubuntu@ubuntu:~§ iperf -¢ 10.3.31.88 -p 5002

Client connecting to 10.3.31.88, TCP port 5002
TCP window size: 16.0 KByte (default)

[3] local 10.3.34.11 port 45224 connected with 10.3.31.88 port 5002
[ID] Interval Transfer Bandwidth
[3] 0.0-10.0 sec 3.46 MBytes 2.89 Mbits/sec

For any other application that has a different port associated except defined ones(let it be 5003)
We first need to run this command on server: iperf -s -p 5003
ubuntu@ubuntu:~$ iperf -¢ 10.3.31.88 -p 5003

Client connecting to 10.3.31.88, TCP port 5003
TCP window size: 16.0 KByte (default)

[3] local 10.3.34.11 port 46538 connected with 10.3.31.88 port 5003
[ID] Interval ~ Transfer Bandwidth
[3] 0.0-10.2 sec 1.20 MBytes 983 Kbits/sec

So the above configuration is working for port numbers. Hence we can restrict or control bandwidth for
various applications by applying filters on port numbers.

rtt-latency test with configuration:

ubuntu@ubuntu:~$ ping 10.3.31.88 -c 10

PING 10.3.31.88 (10.3.31.88) 56(84) bytes of data.

64 bytes from 10.3.31.88: icmp_req=1 ttl=63 time=1.51 ms
64 bytes from 10.3.31.88: icmp_req=2 ttl=63 time=1.33 ms
64 bytes from 10.3.31.88: icmp_req=3 ttl=63 time=1.18 ms
64 bytes from 10.3.31.88: icmp_req=4 ttl=63 time=1.43 ms
64 bytes from 10.3.31.88: icmp_req=>5 ttl=63 time=1.24 ms
64 bytes from 10.3.31.88: icmp_req=6 ttl=63 time=1.29 ms
64 bytes from 10.3.31.88: icmp_req=7 ttl=63 time=1.27 ms
64 bytes from 10.3.31.88: icmp_req==8 ttl=63 time=1.40 ms
64 bytes from 10.3.31.88: icmp_req=9 ttl=63 time=1.25 ms

Master of Science in Internetworking 54

64 bytes from 10.3.31.88: icmp_req=10 ttl=63 time=1.35 ms
--- 10.3.31.88 ping statistics ---

10 packets transmitted, 10 received, 0% packet loss, time 9018ms
rtt min/avg/max/mdev = 1.189/1.329/1.512/0.096 ms

9.2 Scenario with Routers:

Ubuntu Machine on ESXi
with ip 10.3.31.88 on eth0

1033177 10.3.32.55
fa00. g, 1033266 r0n”

10.3.31.88

ETHERNET HUB/Switch RoUTER 2600 ROUTER 2600
Vmware ESXi with R1-134 R2-114
Ubuntu virtual machines

UBUNTU Laptop Virtual
Ervironment
with VMware Worstation.

Configuration on Ubuntu router U4:

root@ubuntu:/# tc qdisc add dev ethO root handle 1: htb default 30

root@ubuntu:/# tc class add dev ethO parent 1: classid 1:1 htb rate 10mbit burst 15k

root@ubuntu:/# tc class add dev ethO parent 1:1 classid 1:10 htb rate 6mbit ceil 6mbit

root@ubuntu:/# tc class add dev ethO parent 1:1 classid 1:20 htb rate 3mbit ceil 3mbit

root@ubuntu:/# tc class add dev ethO parent 1:1 classid 1:30 htb rate 1mbit ceil 1mbit

root@ubuntu:/# tc qdisc add dev ethO parent 1:10 handle 10: sfq

root@ubuntu:/# tc qdisc add dev ethO parent 1:20 handle 20: sfq perturb 10

root@ubuntu:/# tc qdisc add dev ethO parent 1:30 handle 30: pfifo limit 20

root@ubuntu:/# tc filter add dev ethO protocol ip parent 1:0 prio 1 u32 match ip dport 5001 Oxftff
flowid 1:10

root@ubuntu:/# tc filter add dev ethO protocol ip parent 1:0 prio 1 u32 match ip dport 5002 Oxftff
flowid 1:20

Master of Science in Internetworking 55

Ubuntu 6:
kanwar2@ubuntu:~$ iperf -¢c 10.3.31.88

Client connecting to 10.3.31.88, TCP port 5001
TCP window size: 16.0 KByte (default)

[3] local 10.3.34.33 port 35292 connected with 10.3.31.88 port 5001
[ID] Interval ~ Transfer Bandwidth

[3] 0.0-10.1 sec 7.16 MBytes 5.92 Mbits/sec

Ubuntu 5:

ubuntu@ubuntu:~$ iperf -¢c 10.3.31.88

Client connecting to 10.3.31.88, TCP port 5001
TCP window size: 16.0 KByte (default)

[3] local 10.3.34.11 port 35375 connected with 10.3.31.88 port 5001
[ID] Interval Transfer Bandwidth
[3] 0.0-10.1 sec 7.09 MBytes 5.90 Mbits/sec

Iperf test from XP system present in network:

icrosoft Windows HP [Uersion 5.1.26001]
ght 1985-2001 Mi. Corp.

-3.31.88 port 56801
[ID
(19121

IC:“Documents and Settings“Administrator:Desktop>

TTSEn. £ € [o commandrome: 5w

Three tests for port number 5001 from three different locations through Ubuntu router U4 proves that
the bandwidth for any application to port number 5001 can be given desired bandwidth.

Test for port #5002 for which we have set the bandwidth to 3Mbits/sec:

On Ubuntu 1 on ESXi server we will start iperf server with port 5002 for communication:

Master of Science in Internetworking 56

Command given on Ubuntu 1: iperf -s -p 5002
Ubuntu 5:
ubuntu@ubuntu:~§ iperf -¢ 10.3.31.88 -p 5002

Client connecting to 10.3.31.88, TCP port 5002
TCP window size: 16.0 KByte (default)

[3] local 10.3.34.11 port 52726 connected with 10.3.31.88 port 5002
[ID] Interval ~ Transfer Bandwidth

[3] 0.0-10.1 sec 3.51 MBytes 2.92 Mbits/sec

Ubuntu 6:

kanwar2@ubuntu:~$ iperf -¢ 10.3.31.88 -p 5002

Client connecting to 10.3.31.88, TCP port 5002
TCP window size: 16.0 KByte (default)

[3] local 10.3.34.33 port 35580 connected with 10.3.31.88 port 5002
[ID] Interval ~ Transfer Bandwidth
[3] 0.0-10.3 sec 3.66 MBytes 2.98 Mbits/sec

[comanarrn R A
i o B ¥ -

Windows XF [Ue
ght 1985-28081

1.88,. TCP port 5002
(default>

IC:~Documents and Settings“Administrator\Desktop>_

—_— — - e
7y start 72 @ | = Command Prompt & Command Prompt ® ?)_II. 410PM

So all the above three test shows us how to limit bandwidth for a particular application.

This setup can also be used to prefer any latency sensitive data using port numbers.

Just like for vilc video streaming we can define a port number and that any traffic for port number can
be given any desired bandwidth but setting priority for that traffic will make sure that particular data
should be preferred all the times. (That experiment is done in last part: TEST 4)

Master of Science in Internetworking 57

To check for the default traffic we will open port number 5005 on server and try to check the
bandwidth from clients:
We have set the rate to be 1Mbits/sec:

Ubuntu 1:

iperf -s -p 5005

Ubuntu 5:

ubuntu@ubuntu:~$ iperf -c 10.3.31.88 -p 5005

Client connecting to 10.3.31.88, TCP port 5005
TCP window size: 16.0 KByte (default)

[3] local 10.3.34.11 port 53935 connected with 10.3.31.88 port 5005
[ID] Interval ~ Transfer Bandwidth
[3] 0.0-10.2 sec 1.20 MBytes 988 Kbits/sec

Ubuntu 6:
kanwar2@ubuntu:~$ iperf -¢ 10.3.31.88 -p 5005

Client connecting to 10.3.31.88, TCP port 5005
TCP window size: 16.0 KByte (default)

[3] local 10.3.34.33 port 37217 connected with 10.3.31.88 port 5005
[ID] Interval Transfer Bandwidth
[3] 0.0-10.9 sec 1.16 MBytes 892 Kbits/sec

So above iperf test prove the configuration is correct and we can limit bandwidth for various
applications using their port numbers.

Round trip latency for the network with tc configuration:
ubuntu@ubuntu:~$ ping 10.3.31.88 -c 20

PING 10.3.31.88 (10.3.31.88) 56(84) bytes of data.

64 bytes from 10.3.31.88: icmp_req=1 ttl=61 time=2.13 ms
64 bytes from 10.3.31.88: icmp_req=2 ttl=61 time=2.06 ms
64 bytes from 10.3.31.88: icmp_req=3 ttl=61 time=2.06 ms
64 bytes from 10.3.31.88: icmp_req=4 ttl=61 time=2.32 ms
64 bytes from 10.3.31.88: icmp_req=>5 ttlI=61 time=2.13 ms
64 bytes from 10.3.31.88: icmp_req=6 ttl=61 time=2.13 ms
64 bytes from 10.3.31.88: icmp_req=7 ttlI=61 time=2.16 ms
64 bytes from 10.3.31.88: icmp_req==8 ttl=61 time=2.15 ms
64 bytes from 10.3.31.88: icmp _req=9 ttlI=61 time=1.83 ms
64 bytes from 10.3.31.88: icmp_req=10 ttI=61 time=2.15 ms
64 bytes from 10.3.31.88: icmp_req=11 ttlI=61 time=1.76 ms
64 bytes from 10.3.31.88: icmp_req=12 ttI=61 time=2.12 ms
64 bytes from 10.3.31.88: icmp_req=13 ttI=61 time=2.23 ms
64 bytes from 10.3.31.88: icmp_req=14 ttI=61 time=1.71 ms
64 bytes from 10.3.31.88: icmp_req=15 ttI=61 time=1.97 ms
64 bytes from 10.3.31.88: icmp_req=16 ttI=61 time=2.01 ms

Master of Science in Internetworking 58

64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:

icmp_req=17 ttlI=61 time=2.09 ms
icmp_req=18 ttI=61 time=2.19 ms
icmp_req=19 ttlI=61 time=2.13 ms
icmp_req=20 ttI=61 time=2.03 ms

--- 10.3.31.88 ping statistics ---

20 packets transmitted, 20 received, 0% packet loss, time 19033ms

rtt min/avg/max/mdev = 1.717/2.072/2.323/0.158 ms

rtt- latency for network without tc configuration:
kanwar2@ubuntu:~$ ping 10.3.31.88 -¢ 20
PING 10.3.31.88 (10.3.31.88) 56(84) bytes of data.

64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:
64 bytes from 10.3.31.88:

icmp_req=1 ttlI=61 time=1.99 ms
icmp_req=2 ttI=61 time=1.93 ms
icmp_req=3 ttlI=61 time=2.00 ms
icmp_req=4 ttI=61 time=1.95 ms
icmp_req=5 ttl=61 time=1.71 ms
icmp_req=6 ttI=61 time=1.74 ms
icmp_req=7 ttlI=61 time=2.04 ms
icmp_req=8 ttI=61 time=1.98 ms
icmp_req=9 ttlI=61 time=1.84 ms
icmp_req=10 ttlI=61 time=1.79 ms
icmp_req=11 ttlI=61 time=1.99 ms
icmp_req=12 ttl=61 time=1.70 ms
icmp_req=13 ttI=61 time=2.09 ms
icmp_req=14 ttlI=61 time=2.04 ms
icmp_req=15 ttI=61 time=2.28 ms
icmp_req=16 ttlI=61 time=2.03 ms
icmp_req=17 ttI=61 time=2.04 ms
icmp_req=18 ttlI=61 time=2.07 ms
icmp_req=19 ttI=61 time=2.15 ms
icmp_req=20 ttl=61 time=1.62 ms

--- 10.3.31.88 ping statistics ---

20 packets transmitted, 20 received, 0% packet loss, time 19040ms

rtt min/avg/max/mdev = 1.624/1.953/2.286/0.170 ms

The configuration adds very less latency to the network, it does not utilize too much CPU.

Master of Science in Internetworking

59

10. Prefer latency sensitive data

There is a requirement for preferring latency sensitive data in various network environments.
In Linux traffic control it can be done in two ways:

One way is to match ip ports in the packets and apply traffic rules using htb. But it wont give any
traffic priority over the other, it will work only with defined rates for particular traffic.

Other way is to mark the packets for traffic using iptables on the incoming port of the ubuntu router so
that they can be filtered on the exit port and given desired bandwidth through the rules in htb (using
prio) on the exit interface for those requests and using prio in traffic control configuration.

10.1 Scenario without routers:

Ubuntu Machine on ESXi
with ip 10.3.31.88

PatchPanel patch
.3.31.250 Panel

Vmware ESXi with
Ubuntuvirtual machines

UBUNTU Laptop Virtual
Emvironment
with VMware Worstation

We always get a bandwidth of around 71 Mbits/sec in direct connections without routers.
Ping test:

ubuntu@ubuntu:~$ ping 10.3.31.88 -c 10

PING 10.3.31.88 (10.3.31.88) 56(84) bytes of data.

64 bytes from 10.3.31.88: icmp_req=1 ttl=63 time=1.53 ms
64 bytes from 10.3.31.88: icmp_req=2 ttlI=63 time=1.68 ms
64 bytes from 10.3.31.88: icmp_req=3 ttl=63 time=1.39 ms
64 bytes from 10.3.31.88: icmp_req=4 ttI=63 time=1.50 ms
64 bytes from 10.3.31.88: icmp_req=>5 ttl=63 time=1.29 ms
64 bytes from 10.3.31.88: icmp_req=6 tt1=63 time=0.919 ms
64 bytes from 10.3.31.88: icmp_req=7 ttl=63 time=1.28 ms

Master of Science in Internetworking 60

64 bytes from 10.3.31.88: icmp_req==8 ttl=63 time=1.43 ms
64 bytes from 10.3.31.88: icmp_req=9 ttl=63 time=1.32 ms
64 bytes from 10.3.31.88: icmp_req=10 ttlI=63 time=1.47 ms

--- 10.3.31.88 ping statistics ---
10 packets transmitted, 10 received, 0% packet loss, time 9018ms
rtt min/avg/max/mdev = 0.919/1.386/1.683/0.196 ms

Configuration on the Ubuntu router:

root@ubuntu:/# tc qdisc add dev ethO root handle 1: htb default 30

root@ubuntu:/# tc class add dev eth(parent 1: classid 1:1 htb rate 15mbit

root@ubuntu:/# tc class add dev eth(parent 1:1 classid 1:10 htb rate 6mbit ceil 6mbit prio 0
root@ubuntu:/# tc class add dev eth(parent 1:1 classid 1:20 htb rate 4mbit ceil 8mbit prio 1
root@ubuntu:/# tc class add dev ethO parent 1:1 classid 1:30 htb rate 1mbit ceil 1mbit prio 2
root@ubuntu:/# tc qdisc add dev ethO parent 1:10 handle 10: sfq

root@ubuntu:/# tc qdisc add dev ethO parent 1:20 handle 20: sfq perturb 10

root@ubuntu:/# tc qdisc add dev ethO parent 1:30 handle 30: pfifo limit 20

root@ubuntu:/# tc filter add dev eth0 parent 1:0 prio 0 protocol ip handle 10 fw flowid 1:10
root@ubuntu:/# tc filter add dev eth(parent 1:0 prio 0 protocol ip handle 20 fw flowid 1:20
root@ubuntu:/# tc filter add dev eth0 parent 1:0 prio 0 protocol ip handle 30 fw flowid 1:30
root(@ubuntu:/# iptables -t mangle -N INSHAPER

root@ubuntu:/# iptables -t mangle - PREROUTING -i eth1 -j INSHAPER

root(@ubuntu:/# iptables -t mangle -A INSHAPER -p tcp --dport 5001 - MARK --set-mark 10
root@ubuntu:/# iptables -t mangle -A INSHAPER -p tcp --dport 5002 -j MARK --set-mark 20
root@ubuntu:/# iptables -t mangle -A INSHAPER -m mark --mark 0 - MARK --set-mark 30

Iptables were used at the incoming interface of the Ubuntu routers to add or set mark on packets of a
particular traffic, so that when it reaches the exit port of the router they should match this mark with
filters to get desired bandwidth and with desired priority. (0 is highest priority and 2 is least priority.)

In the above configuration whenever any traffic(iperf in our case) for any port comes to ethl it will
mark it with 10, 20 or 30 according to the destination ports numbers: 5001, 5002 and app other ports
ports respectively.

When these market packets are to be sent out of ethO traffic control configuration comes into play.
Firstly, filters are matched for and the traffic is directed to the corresponding class according to the
fwmark set on the packets on interface ethl. So now the class decides about the bandwidth available for
that application as defined by the user.

Here we have a default priority class to be 1:30 so any unmarked packets will be sent through this class
and for fwmark as 10 and 20 to class 1:10 & 1:20 respectively.

We used ceiling for 5002 port to be 8 Mbits/sec, which it can achieve if free bandwidth is available on
the network.

ping test:

ubuntu@ubuntu:~$ ping 10.3.31.88 -c 10

PING 10.3.31.88 (10.3.31.88) 56(84) bytes of data.

64 bytes from 10.3.31.88: icmp_req=1 ttl=63 time=3.55 ms
64 bytes from 10.3.31.88: icmp_req=2 ttl=63 time=1.66 ms

Master of Science in Internetworking 60l

64 bytes from 10.3.31.88: icmp_req=3 ttl=63 time=1.29 ms
64 bytes from 10.3.31.88: icmp_req=4 ttl=63 time=1.54 ms
64 bytes from 10.3.31.88: icmp_req=>5 ttl=63 time=1.32 ms
64 bytes from 10.3.31.88: icmp_req=6 ttl=63 time=1.33 ms
64 bytes from 10.3.31.88: icmp_req=7 ttl=63 time=1.40 ms
64 bytes from 10.3.31.88: icmp_req==8 ttl=63 time=1.30 ms
64 bytes from 10.3.31.88: icmp_req=9 ttl=63 time=1.36 ms
64 bytes from 10.3.31.88: icmp_req=10 ttI=63 time=1.42 ms

--- 10.3.31.88 ping statistics ---

10 packets transmitted, 10 received, 0% packet loss, time 9020ms

rtt min/avg/max/mdev = 1.296/1.621/3.553/0.653 ms

We can implement various queue disciplines on various classes as shown in the above configuration.
Iperf test results:

For port# 5001:
ubuntu@ubuntu:~$ iperf -¢c 10.3.31.88

Client connecting to 10.3.31.88, TCP port 5001
TCP window size: 16.0 KByte (default)

[3] local 10.3.34.11 port 55431 connected with 10.3.31.88 port 5001
[ID] Interval Transfer Bandwidth
[3] 0.0-10.1 sec 7.00 MBytes 5.83 Mbits/sec

For port# 5002:
ubuntu@ubuntu:~§ iperf -¢ 10.3.31.88 -p 5002

Client connecting to 10.3.31.88, TCP port 5002
TCP window size: 16.0 KByte (default)

[3] local 10.3.34.11 port 34352 connected with 10.3.31.88 port 5002
[ID] Interval ~ Transfer Bandwidth
[3] 0.0-10.0 sec 9.13 MBytes 7.66 Mbits/sec

For port# 5003:
ubuntu@ubuntu:~$ iperf -¢c 10.3.31.88 -p 5003

Client connecting to 10.3.31.88, TCP port 5003
TCP window size: 16.0 KByte (default)

[3] local 10.3.34.11 port 57051 connected with 10.3.31.88 port 5003
[ID] Interval Transfer Bandwidth
[3] 0.0-10.2 sec 1.18 MBytes 971 Kbits/sec

The above configuration is correct and is giving desired bandwidth to various applications but we still
need to check the priority function, that whether it is preferring the data for port number 5001 over
other ports or not. That test is done in the next part with routers.

Master of Science in Internetworking 62

10.2 Scenario with routers:

Ubuntu Machine on ESXi
with ip 10.3.31.88 on eth0

1033177 10.3.32.55
fadio g, 1033266 oo

10.3.31.88

ETHERNET HUB/Switch ROUTER 2600 ROUTER 2600
Vmware ESXi with R1-134 R2-114
Ubuntu virtual machines

UBUNTU Laptop Virtual
Environment
with ViMware Worstation.

Adding routers will add some latency to the network:

iperf and ping test result using routers in the network and no configuration is done on the Ubuntu
router.

Iperf test for the environment:

Ubuntu 4:

ubuntu@ubuntu:~$ iperf -c 10.3.31.88

Client connecting to 10.3.31.88, TCP port 5001
TCP window size: 16.0 KByte (default)

[3] local 10.3.34.11 port 37972 connected with 10.3.31.88 port 5001
[ID] Interval ~ Transfer Bandwidth
[3] 0.0-10.0 sec 55.9 MBytes 46.8 Mbits/sec

Ping test for round trip latency:

ubuntu@ubuntu:~$ ping 10.3.31.88 -c 10

PING 10.3.31.88 (10.3.31.88) 56(84) bytes of data.

64 bytes from 10.3.31.88: icmp_req=1 ttl=61 time=1.55 ms
64 bytes from 10.3.31.88: icmp_req=2 ttl=61 time=1.84 ms
64 bytes from 10.3.31.88: icmp _req=3 ttl=61 time=1.73 ms
64 bytes from 10.3.31.88: icmp_req=4 ttl=61 time=2.03 ms
64 bytes from 10.3.31.88: icmp req=>5 ttl=61 time=1.83 ms

Master of Science in Internetworking 63

64 bytes from 10.3.31.88: icmp_req=6 ttl=61 time=1.96 ms
64 bytes from 10.3.31.88: icmp_req=7 ttlI=61 time=1.88 ms
64 bytes from 10.3.31.88: icmp_req==8 ttl=61 time=1.94 ms
64 bytes from 10.3.31.88: icmp_req=9 ttlI=61 time=2.14 ms
64 bytes from 10.3.31.88: icmp_req=10 ttI=61 time=1.71 ms

--- 10.3.31.88 ping statistics ---
10 packets transmitted, 10 received, 0% packet loss, time 9016ms
rtt min/avg/max/mdev = 1.553/1.865/2.148/0.169 ms

Now we will be configuring traffic control using htb with prio. We will mark packets on the incoming
interface of the router i.e interface that is connected to the clients network 10.3.34.0/24.

These marked packets will be filtered at the exit interface of the router eth0 and will give priority to
specific data according to the configuration.

Configuration on Ubuntu router will be as follows:

root@ubuntu:/# tc qdisc add dev ethO root handle 1: htb default 30

root@ubuntu:/# tc class add dev ethO parent 1: classid 1:1 htb rate 15mbit

root@ubuntu:/# tc class add dev ethO parent 1:1 classid 1:10 htb rate 6mbit ceil 6mbit prio 0
root@ubuntu:/# tc class add dev ethO parent 1:1 classid 1:20 htb rate 4mbit ceil 8mbit prio 1
root@ubuntu:/# tc class add dev ethO parent 1:1 classid 1:30 htb rate 1mbit ceil 1mbit prio 2
root@ubuntu:/# tc qdisc add dev ethO parent 1:10 handle 10: sfq

root@ubuntu:/# tc qdisc add dev eth0 parent 1:20 handle 20: sfq perturb 10

root@ubuntu:/# tc qdisc add dev eth0 parent 1:30 handle 30: pfifo limit 20

root@ubuntu:/# tc filter add dev eth(parent 1:0 prio 0 protocol ip handle 10 fw flowid 1:10
root@ubuntu:/# tc filter add dev eth0 parent 1:0 prio 0 protocol ip handle 20 fw flowid 1:20
root@ubuntu:/# tc filter add dev eth(parent 1:0 prio 0 protocol ip handle 30 fw flowid 1:30
root@ubuntu:/# iptables -t mangle -N INSHAPER

root@ubuntu:/# iptables -t mangle -I PREROUTING -i eth1 -j INSHAPER

root@ubuntu:/# iptables -t mangle -A INSHAPER -p tcp --dport 5001 - MARK --set-mark 10
root@ubuntu:/# iptables -t mangle -A INSHAPER -p tcp --dport 5002 - MARK --set-mark 20
root@ubuntu:/# iptables -t mangle -A INSHAPER -m mark --mark 0 -j MARK --set-mark 30

For port 5001:
ubuntu@ubuntu:~$ iperf -¢c 10.3.31.88

Client connecting to 10.3.31.88, TCP port 5001
TCP window size: 16.0 KByte (default)

[3] local 10.3.34.11 port 34215 connected with 10.3.31.88 port 5001
[ID] Interval Transfer Bandwidth
[3] 0.0-10.1 sec 6.95 MBytes 5.79 Mbits/sec

For port 5002 :
ubuntu@ubuntu:~§ iperf -¢ 10.3.31.88 -p 5002

Client connecting to 10.3.31.88, TCP port 5002
TCP window size: 16.0 KByte (default)

Master of Science in Internetworking 64

[3] local 10.3.34.11 port 57417 connected with 10.3.31.88 port 5002
[ID] Interval ~ Transfer Bandwidth
[3] 0.0-10.0 sec 9.12 MBytes 7.64 Mbits/sec

For any other port or data that is not marked will be given least priority:

ubuntu@ubuntu:~$ iperf -¢ 10.3.31.88 -p 5003

Client connecting to 10.3.31.88, TCP port 5003
TCP window size: 16.0 KByte (default)

[3] local 10.3.34.11 port 42913 connected with 10.3.31.88 port 5003
[ID] Interval Transfer Bandwidth
[3] 0.0-10.2 sec 1.21 MBytes 999 Kbits/sec

Above Iperf test shows us the bandwidth selected for various application:

Run multiple iperf sessions on server to check which one is given more priority:
Change the configuration on the router as follows:

root@ubuntu:/# tc qdisc add dev ethO root handle 1: htb default 30

root@ubuntu:/# tc class add dev eth(parent 1: classid 1:1 htb rate Smbit

root@ubuntu:/# tc class add dev ethO parent 1:1 classid 1:10 htb rate 2mbit ceil 3mbit prio 0
root@ubuntu:/# tc class add dev ethO parent 1:1 classid 1:20 htb rate 2mbit ceil 3mbit prio 1
root@ubuntu:/# tc class add dev ethO parent 1:1 classid 1:30 htb rate 1mbit ceil 3mbit prio 2
root@ubuntu:/# tc qdisc add dev eth0 parent 1:10 handle 10: sfq

root@ubuntu:/# tc qdisc add dev eth0 parent 1:20 handle 20: sfq perturb 10

root@ubuntu:/# tc qdisc add dev eth0 parent 1:30 handle 30: pfifo limit 20

root@ubuntu:/# tc filter add dev eth(parent 1:0 prio 0 protocol ip handle 10 fw flowid 1:10
root@ubuntu:/# tc filter add dev eth0 parent 1:0 prio 0 protocol ip handle 20 fw flowid 1:20
root@ubuntu:/# tc filter add dev eth(parent 1:0 prio 0 protocol ip handle 30 fw flowid 1:30
root@ubuntu:/# iptables -t mangle -N INSHAPER

root@ubuntu:/# iptables -t mangle - PREROUTING -i eth1 -j INSHAPER

root@ubuntu:/# iptables -t mangle -A INSHAPER -p tcp --dport 5001 - MARK --set-mark 10
root(@ubuntu:/# iptables -t mangle -A INSHAPER -p tcp --dport 5002 - MARK --set-mark 20
root@ubuntu:/# iptables -t mangle -A INSHAPER -m mark --mark 0 -j MARK --set-mark 30

The maximum bandwidth was kept to only 5Mbits/sec to confirm the priority function. Here the
desired output should be like this:

Suppose if only class 1:20 i.e for port number 5002 traffic is on the network then our configuration
should give 3Mbits/sec to that network, but as soon as class 1:10 traffic i.e for port number 5001 is
there on the network the router should give priority to this traffic than for the traffic for port number
5002. Test below gives the proof for the priority implemented.

The conf states that class 10 and 20 both should have same bandwidth of 2Mbits/sec but if more
bandwidth is available then the max value for both can reach up to 3Mbits/sec.

Now running iperf test for port 5001 and 5002 simultaneously from a client to the server will make
clear which has more priority and which will be preferred:

Master of Science in Internetworking 65

3 Applications Places System ‘2)) Tue Jun21, 1:46PM @ ubuntu (O

. File Edit View Search Terminal Help
gl = -7 1410
@S & ubuntu@ubuntu: ~
1 toeal - 5 File Edit View Search Terminal Help

3] local 10.3.34.11 port 48949 con with 10.3.31.88 port 5002 iperf -c 10.3.31.88 -p 5001 -t 10 -i 1
ID] Interval Transfer Bandwidth pe T P -
3] o. 2.8 sec 968 KBytes .96 Mbits/sec
3] 2.0- 4.0 sec 736 KBytes .01 Mbits/sec
3] 4.8- 6.8 sec 728 KBytes .98 Mbits/sec
6.0- 8.0 sec 488 KBytes 2.00 Mbits/sec
8.0-10.0 sec 832 KBytes .41 Mbits/sec
19.0-12.0 sec 752 KBytes 3.08 Mbits/sec
12.0-14.0 sec 496 KBytes 2.03 Mbits/sec

3 to 10.3.31.88, TCPyport 5001
2
2
3
3
2
14.8-16.0 sec 496 KBytes 2.83 Mbits/sec
2
1
2
2
3
3
2

16.0 KByte (default)

3] local 10.3.34.11 port 57499 connected with 16.3.31.88 port 5661
ID] Interval Transfer Bandwidth
0.0- 1.8 sec 608 KBytes 4.98 Mbits/sec
sec 360 KByte .95 Mbits/sec
sec 368 KByte .01 Mbits/sec
sec 368 .01 Mbits/sec
sec 368 .81 Mbits/sec

0]
°]
16.0-18.0 sec 504 KBytes .06 8
4.8- 5.
5.8- 6.8 sec 368 .81 Mbits/sec
0]
°]
0]
a-

18.8-20.0 sec 368 KBytes .51
20.9-22.0 sec 496 KBytes 2.03 M
22. .0 sec 496 KBytes
24.,0-26.0 sec 744 KBytes
26.0-28.0 sec 744 KBytes
28.0-30.0 sec 624 KBytes

.83 Mbits/sec
.85 Mbits/sec
.85 Mbits/sec
) .56 Mbits/sec
0.0-30.4 sec 9.26 MBytes 2.56 Mbits/sec

sec 240 KByte .97 Mbits/sec

sec 248 KBytes 2.83 Mbits/sec

sec 464 te .80 Mbits/sec

sec 360 2.95 Mbits/sec

sec 3.67 MBytes 3.84 Mbits/sec
buntu@ubuntu:~$ |

Page 4/ 4 Default English (USA)

% B TEST4forlatencyse... [[TEST 1Readings wi... [ubuntu@ubuntu: ~

The two iperf test run from a client to iperf server on different ports(5001 & 5002).

We used 5Mbits/sec in this scenario to test our priority setup, as when iperf test for both ports 5001 and
5002 will be running only one can have bandwidth of 3Mbits/sec and the other will have around
2Mbits/sec, the test is as follows:

Iperf test for port 5002 was run for 30 seconds, for the first 10 seconds we can see that port 5002 was
given bandwidth around 3Mbits/sec i.e ceiling value, but after 10 sec when test for port 5001 was
started bandwidth was taken away from 5002 port and given to test for 5001 port, and then again after
10 seconds i.e. around 20 seconds the test results shows that as soon as the iperf test for port 5001 was
complete bandwidth to test for 5002 again increased.

This test shows how we can assign priority to some data using htb with prio and can use different
queue disciplines in with each class as desired.

Master of Science in Internetworking 66

11.Conclusion:

All the experiments prove that if traffic control implemented in a network we can get desired
applications to run successfully in the network. We can decide which traffic can be sent at what rate on
the network. It helps us to prefer our sensitive traffic over other traffic.

As the IP networks are stateless networks i.e there is no connection state between two machines for
transport of data. Stateless is in the fundamental strength of the IP networks but the disadvantage of this
is there is lack of differentiation of the flow of traffic of various types. This property can be given to the
network with the help of Traffic Control configuration. We can implement traffic control to limit
bandwidth for the network, for particular users and even various services. The traffic for various
services can be differentiated using traffic control.

Most of the times buying more bandwidth is considered a solution rather than implementing Traffic
Control, but 1 think if implemented properly Traffic control can save lots of bandwidth and cost for an

organization.

The main advantages of implementing Traffic Control:

* Prevents monopolization of bandwidth by a user or application.

* Proper use of network resources.

* Help to prefer latency sensitive data.

* (Can be used to drop or prefer traffic from particular user.

* Can be used to prefer traffic from a particular user, helpful for network administrators who have
to perform network setup and other function on the network. So their traffic should not be
suppressed in the high traffic times.

» Iftraffic is utilized properly, there is no need to buy more bandwidth; will be more economical.

Master of Science in Internetworking 67

REFERENCES

* A Practical Guide to Linux Traffic Control, Jason Boxman

* Differentiated Service on Linux HOWTO, Leonardo Balliache

* Linux Advanced Routing & Traffic Control HOWTO, Bert Hubert

e Linux Ethernet-Howto, Paul Gortmaker

* Linux Networking HOWTO, Joshua Drake

* The Linux Networking Overview HOWTO By: Daniel Lopez Ridrujo
* The Linux Router By Kaleem Anwar, Muhammad Amir, Ahmad Saeed and Muhammad Imran
e Traffic Control HOWTO, Martin A. Brown

» Traffic Control using tcng and HTB HOWTO, Martin A. Brown

* QoS Connection Tuning HOWTO by:Emmanuel Roger

* http://openmaniak.com/iperf.php

e http://www.vmware.com/pdf/GuestOS_guide.pdf

* https://help.ubuntu.com/community/Internet/ConnectionSharing
* https://help.ubuntu.com/community/Router

* http://www.rhyshaden.com/ipdgram.htm
e http://www.lesbell.com.au/Home.nsf/22a1497b7¢7df99bca256d1700811540/c9d5888e0b0{9{3b
€a2561080010ff4e?OpenDocument

e http://www.linuxquestions.org

Master of Science in Internetworking 68

http://www.linuxquestions.org/
http://www.lesbell.com.au/Home.nsf/22a1497b7c7df99bca256d1700811540/c9d5888e0b0f9f3bca256f080010ff4e?OpenDocument
http://www.lesbell.com.au/Home.nsf/22a1497b7c7df99bca256d1700811540/c9d5888e0b0f9f3bca256f080010ff4e?OpenDocument
http://www.rhyshaden.com/ipdgram.htm
https://help.ubuntu.com/community/Router
https://help.ubuntu.com/community/Internet/ConnectionSharing
http://openmaniak.com/iperf.php

	9. Limit bandwidth for particular applications:

