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ABSTRACT

This thesls 1s concerned with two problems which
are currently of interest; (a) investigation and understanding
of the.s-wave plon-plon interaction and (b) derivation of
Current Algebra (CA) results without. using CA. Problem (a)
has recently recelved fairly intense theoretical and experi-
mental study, as thls interaction is obviously important. due
to the many processes, both virtual and real, in which it
partakes. It also appears thatvthe'pien, at the present time,'
has a rather speclal r8le in particle physics resulting from
its small mass (compéred to other hadrons) and the Partially

Conserved Axigl-Vector Current Hypothesis (PCAC).

Experimentally this interaction is difficult to

| ’study as direct scattering experiments are, as yet, not. feasi-
ble (quite unlike the m-N case); data has to be extracted,
subject to some theoretical model, from interactions in which
the m-m force plays a subsidiary r8le. Theoretically, much
effort has been devoted to it since Welnberg carried out a

CA calculation in 1966 and showed. that the s=wave scattering
lengths appeared to be much smaller than hitherto surmised.
Results for the scattering lengths and phase. shifts differ

widely between authors.

Problem (b) has also been studied in the last year

or soc, in view of the general success of Gell-Man's. "God-given"
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(quark model) Chiral Algebra of Currents. in many calculations.

In Chapter I consistency relations are derived be-
tween the amplitudes 7N + 27N and 7N -+ #N from PCAC with
a zero mass initial plon; from this the m-m intéraction is
extracted and éompared to CA results. It seems that the lat-
ter can only. be obtained on the assumption of peripheral (OPE)

dominance. of the non-=nucleon pole part of the pion production

amplitudes.

Chapter II.investigates the effect of threshold
unitarity and a crossed-channel isospin two (It=2) aﬁplitude<
(which hitherto has been neglected, but must be present) on
the CA m-7 scattering lengths. Welnberg's CA calculation
(modified with It=2) is used to constrain single pole approx-
imations to the left-~-hand cut, from which the two s-wave
phase shifts (for I=0,2) are. determined, indicating that neilther

rescnate.

Chapter III shows that the relation between anomalous
nucleon magnetic moments and the off-shell photoplon production
amplitudes can be simply. obtalined from a first order e.m.
modified version of PCAC. Such rules were originally obtained
(1965-1966) by Fubini et al. from dispersive representétionS'

of CA commutators.

All of thils work has appeared, or will appear, in
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the literature. Chapter I (wlth A.N. Kamal) in Phys. Rev. 162,
1543 (1967), Chapter II is in press (Nuovo Cimento, and

Phys. Rev.) and Chapter.III (with A.N. Kamal) in Nucl. Phys.
B6, 32(1968).
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CHAPTER I

ABSTRACT: Reasons and methods . for studylng the w-mw interéc-
tion arefsiven. The concepts of Current Algebra (CA) and.
the Partially Conserved ' 'Axlal-Vector Current Hypothesis (PCAC)
are dealt.wlth briefly. Using PCAC (only) in the single pion
production process ® + N + 27 + N, consistency relations are
derived between thls process and the w-N elastic scattering
amplitude for a zero mass initial pion. From this the ampli-
tudes for the three 1sospln m-m scattering states at the un-
physical polnt s=0, t=u=mTT are extracted and compared to
Welnberg's CA amplitudes and Iliopoulos' unitarily corrected
version of this. It appears there will only be mutual agree-
ment for the three.iSOSpin states if the perlipheral process
dominates the non-pole part of the pion production amplitude.
Otherwise the I=0 amplitude 1s of the opposite sign and two
orders of magnitude larger than the CA result. Means of re-.

ducing'this~to the CA value are studled, all without success.

1. INTRODUCTION

Lately much interest has centered upon the possible

fundamental nature of the pion(l).

From the viewpoint of
nuclear physics its importance. naturally arises due to its
small mass, consequently generating the long range part of the

inter-nucleon potential; in this sense 1t may be considered
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fundamental. It may posslbly be fundamental  from. considera-
tions involving PCAC where 1t appears to play a rather basic
r8le. at.low energy.: But at thtermediate and high energles
it .does not appear to be particularly unusual, and. SU(3)
symmetry would suggest. that 1t 1s Just another member of a
group of particles having no greater or less importance. than.

(for example) the K-meson.

A question of importance, for bellevers in Regge.
Pole theory, is to decide whether or not the pion lies on a
Regge trajJectory-this.is not settled at the present time.
Thus, from this viewpolnt the fundamental nature of the pion
| has not been decided. It is important to remember however.
that - the pion plays a major~r61e,in many decay processes due
to its small mass (for e.g. K»27), as well as in virtual pro-
cesses, such as the above mentioned nucleon-nucleon forces.
It would seem that a study of the -7 interaction might throw
a good deal of light on .what one might consider to be a rather

baslc strong interaction "spinless. billiard ball" problem.

Direct w-mw scatteringméxperiments are :not presently
feasible,(z) consequently there 1s a:lack of the large amount
of direct experimental 1lnfermation.sueh as 1s obtained in the
m-N case. Such indlreet. information.as.we do have comes from

extracting data, subject to some theoretical model, from.

experiments in which the w-m interaction is involved in a sub-

sidiary réle, as in single. plon-production in m-N collisions,
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backward w-N scattering and K decay or, more recently,in
pp + 37 scattering. experiments and in angular .correlations of

the K, decay spectrum.
Yy

From.the theoretical standpoint the situatlion 1s
rather chaotic——nevertheless, certaln extremely general trends
are now in evidence; these will be studied in Chapter II. One
of the first attempts to understand the w-7 interaction was
that of Chew and Mandelstam(3’4) in 1961 using the N/D technique
in S-matrix theory. and the then falrly new assumed Mandelstam
representation. Given the entlre 1eft-hand cut the complete
problem can be solved; in practlce of course they.had to use

(3)

approximate methods such as s-wave domlnance and iteration
or p-wave dominance and pole approximations(u). Thls latter
paper, where crossed-channel p exchange leads approximately to.
p-meson in the dilrect channel-has~1ed to the concept of the:
reciprocal bootstrap. This has peen-more successful in the
m=-N ease where N*(l236)'produces-ampie attraction in. the P11

channel to bind the nucleon and N(938) also creates enough

attraction in B channel. to produce-N*(l236).

Due to the success of a large number of calculations
involving the notions of CA and PCAC, of which perhaps the
(5)

best known 1s the Adler-Welsberger sum rule for the axial-
vector form factor g, Weinberg,(6) in 1966, with extra assump-
tions outside this framework, obtained s-wave w-T scattering

lengths which were somewhat lower than those consldered up to
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that time. Present attempts to-caleulate s-wave m-7 phase
shifts and scattering lengths:may simply. be.divided into two.
categorles. i.e, elther one attempts to incorporate unitarity
in Welnberg's approach, or .one ignores CA,and PCAC altogether.
Much of this.1ls consldered in more detail in Chapter II. In-
thls chapter wé try to understand the meaning of Welnberg's
calculation from a dynamiecal approach, in:which CA.1ls not used.
As, however, we will always be referring to.CA and PCAC it
seems an approprlate point to briefly review what the former

means, and what the latter might mean.

2. CURRENT ALGEBRA AND PCAC.

Let Vz(g,t), Aﬁ(g,t) denote respectively the vector:
and axial-vector strangeness conserving weak hadronic- currents,
with o either an SU(2) or an SU(3) index. In the customary.
way one:associates vector .and -axial-veector charges .with these
currents.in. the form ,QZZ=,fd3x Vg(g,t), and Qﬁ(t) = fd®x Ag(g,t).
The main. difference between-them is that Qz,is time independent
whereas Qﬁ isn't, due to the conservation of Vz ahd lack of
conservationwofHAﬁ (best noted by observing that charged pions

decay into leptons).

Despite the fact that BuAﬁ # 0, Gell—Mann,(7) in

1961, postulated that the following group algebra holds;
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[Qgs Qgl = 1f 5.0y (1.1)
v A - A i}

[Qa., QB] = ifaBYQY [} (1021
A A, _ \'4

[Qag QB] - ifaBYQY . (103)

Here faBY are simple structure constants, and the. commutators
are equal time ones (ocur commutators will always be of this
type, generally this will not explicitly be. indicated). The
real postulate of Gell-Mann 1s in the assumed closure property-
of eq.(1.3), so that we are dealing with the: group SU(2) ® SU(2)
or SU(3).© SU(3); it is not generally satisfied in a field

theory model of hadrons, although it 1s true in the .quark modei.

One may remove the integral signs in the above equa-

tions to obtain

Ve, Vo)) = 15, VY (x)8%(x-y) + S.T. (1.4)

aBY U

o B N+ 8
v, a1 = i), vEa

if

Y - ,
agy Al (X) 83 (x-y) + S.T.,  (1.5)

if

(A3 (%), A% ()] T(x)8%(x-y) + 5.1, (1.6)

aBY u
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where S. T. denotes Schwinger terms. They were first noted
in the e.m. case by Got8 and Imanura(s) and rediscovered four
years later by Schwinger(g). These terms are proportional to
spatial gradients of 8-distributions and may be unbounded,and
arise when one considers rather carefully the limiting coinci-
dence value of products of wave functions at non-coincident

(10)

points. Okubo has generallzed the above proof of the exis-

tence of S. T. to currents which are not conserved, such aS<Au,
obviously a rather imporfant extenslion so as to include egs.
(1:5) and (1.6) as well as (1.4). In praetical calculations
equal time commutators of the above type often occur, and it 1s
certainly rather important to have some method of dealing with
the S. T. One possible‘way4of.eircumventing the difficulty

they pose is to ignore them,either pretending that they are
c-numbers which do not contribute to matrix elements. of interest,
or that they disappear in the zero mementum limits in which

most calculations become reasonably tractable. But perhaps the

best way to overcome the whole:preblem is by not using CA; a

problem considered in more detail in Chapter III.

As -the pion decays into the-hadronic vacuum state

then

<0|A3(o)|ﬂ8(k)> 18 f k (1.73

apg T u

so that as k2 # 0 and the-pion decay form factor fTr # 0

then auAﬁ # 0. Nambu, and Gell-Mann et al.(ll) suggested



1.7

that Aﬁ.was-conserved:in‘thexlimit«of.zero pion mass, or
infinite momentum transfer.: The: PCAC. hypothesis.states that
5 A% is proportional to.the renormalized pion field operator

(1!
i.e..

aqu = ¢c%% . (1.8)

Replacing the interpolating pion field by the divergence of
a current is a very strange. notion, however, field theory
models exist where this is true. But before trying to under-
stand its meaning let's use 1t to see-what-obsérvable results

it might imply.

From eq. (1.7) one immediately finds that

c®* = m?r_, (1.9)

where m is the pion.mass.(which.we will often.denote the
unit mass). Let us now insert.Aﬁ between‘bneénucleon states
of momentum‘p1 and.pég.then.theaonly invariant. -en which the

form. factors. can.depend.is:the squared momentum transfer

(p2 - pl.)-2 = k?(say).
o - 2
c= 1) | +
<p2|Au(o)|p1§ ileu(ga)[gA(k )Y,
2 2 . )
+ fA(k )cuvkv + hA(k )ku]ystau(pl) s (1.10)

wheye the spinor normalization factors are given by
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N, = M//ETEZ and vy, 0 and T matrices are defined in
reference (12). Due to the Hermitilcity ofou the three weak
form factors gA(kz), fA(k?).andth(kz) are all real; if one
bellieves that the axial-veector current has the same G-parity

as the term proportional to gy then fA will be absent-in

any case, upon takilng the di?ergence of eq., (1.10) kukvcuv =0

so our argument is unaffected by its inclusion. Thus

G = = _ 2 2 2
<p2|auAu(o)|p1> leu(pz)[2MgA(k ) + k hA(k )]ysrau(pl) R

(1.11)
with M the nucleon mass ( = 6.7 m)..

Now

<p l6%p > = _1_ <p, [@m*)¢%[p >
m2_k2 .

- o = 2\ _ . .
=_1 <p,|oglp > N gK(k®)A(p )y Toulp) ,  (1.12)
mz—kz mz_kz

K(k?) is the pionic form factor of the nucleon normalized so
that K(m?) = 1, and g 1s the rationalized renormalized pion-

nucleon coupling constant (g?/4m =.14.6).
From eqs. (1.8), (1.11) and (1.12)

c*(k?) = (m2-k?) [2Mg,(k?) + k*n,(k*)1 , (1.13)
gk(k?)
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i.e. c%(o) = 2Mm2g-A(o)/gK(o) . (1.14)

The assumption in PCAC is that C%*(k2?) is well

approximated by c%(0); from (1.9) and (1.14) one then obtains

the famous Goldberger-Treiman‘l3) relationship

£ = 2MgA(o)/8K(o) . (1.15)

Experimentally fTF =.190 MeV. whereas from eq. (1.15) it would
be 168.5 MeV. i.e. an error of 11%,rather good by the. stand-
ards of particle physics:. This, by itself, does not make

eq. (1.8) any more meaningful - it can simply bevregarded.as
a trick to use when inserting the divergence of Aﬁ betweén
matrix elements- (the possible usefulness of which has only

been shown in one case so far!).

(14) (15)

Weisberger, Bernstein et al, and others

obtain eq. (1.15) from a different viewpoint. They regard
the matrix elements of 3uA3<to be highly convergent operators
obeying unsubtracted dispersion relations dominated by the

pion-pole terms (the so-called pion-pole dominated divergence
of the axial~vector current - PDDAC). This 1s certainly a

very much weaker hypothesis than PCAC leadling to the same.

result (1.15). But as noted by Adler,(l6) Weisberger,(lu)

(17) (18)

MeiéreeuuiSugawara, Illopoulos and others, PDDAC is

not without ambiguity when there are more invariants than
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the one in which one disperses.

For example, conslder the forward scattering of

an axial-vector spurion of momentum k off a nucleon of momen-

tum p; define our two independent invariants as v = p.k/M

and k? so that the scattering amplitude is A(v,k2?). From
PDDAC we neglect the integral of the continuum contribution
from the branch cut and find A(v,k2?) = B(v)/(k2-m?) where

B(v) denotes the residue at k%=m?. But we could equally well
use v° = v + ak? and k? as our independent variables -
dispersing in k? again and using PDDAC. then A(v~,k2) =
B(v~“-am?)/(k%-m?) which disagrees with the above result unless
the residue 1is either a constant or a = o. It may be reason-
able in this case to assume, as Welsberger does, that PDDAC
means that one so chooses a that the residue 1s a maximum.
This 1s somewhat difficult to do in practice, and appears an
increasingly complicated manocevre to perform as the number

of independent invariants increase, even assuming one has a
definite prescription to maximize the residue at the expense
of the continuum contribution. 1In the case we have considered
Weisberger does it by choosing a so as to keep the pole as far
away from the branch cut as possible; as he notes, a natural

but somewhat arbitrary criterion of pole dominance.

Let us, throughout the remainder of this thesis,

adopt the following attitude to PCAC i.e. a formal replacement
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the validity of which .must ultimately be tested by experiment.

This 1s essentially the viewpoint of Adler, and we write
i)
o _ o
auAu C¢~ + R , (1.16)

where R 1s any residual operator. Eq. (1:16) is then gilven
real content for states |a> and |b> for which <b|¢%|a> # 0

by assuming that

[<b|R|]a>| << |<b|e%|a>]| ,. (1.17)

for momentum transfer near the one pion-pole, with C a
constant over thls momentum transfer range. Thus eq. (1:8)
now. has meaning:- auAﬁ is. assumed to be a.good interpolating
field for the pion and is a "smooth" operator over this

momentum transfer range.

3. CONSISTENCY”CONDITIONS.FROM m+N + 27+N

PCAC is a remarkable: hypothesis, involving as it
does a relation between a weak hadronic current and a hadron;
there is however, an even more remarkable relation derived
by Adler(16) from PCAC. Consider an axial spurion auAu of
momentum q, scattering off a nucleon (pl) to produce a plon

(qz) and a nucleon (pz) and define our two independent. in-

variants as
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<
[}

(p1+p2).q1/2M

Vg = -qifqz/ZM s (1.18)
i.e. 2Mv” =8 + t - M2 - m? > 0
2
2Mv‘B = - % -m? <0, (1.19)

where s:and t are the usual Mandelstam invériants for this
process.(lg) Then at- the unphysical point v* = v‘B =qgq2 =0
Adler found '

g2K = MA" , (1.20)

with A+ defined by

= pt - .
AaB = A GaB + % [Ta,TB]A s (1.21)

where AaB is the non-pole part of the 7-N scattering ampli-

tude.

Naturally one must have a plausible model to extend the

physical AT (v->0, Vi<o, q:=m2) to the unphysical point

ve o= vé = 0 followed by a reasonable prescription to extrapo-

late from qf = m? to qf = 0. Adler does this (we will consider

1t in a little more detail later when we evaluate our constraints)

and finds that g2K<qf=o)/MA+(v*=vé=qf=0) 1s unity to within

10%, possibly 5%.
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A very general constraint between the pilon-
nycleon elastlc scattering amplitude and the pioh production
amplitude has been derived by Nambu et-al.(go) ﬂfom-chirality
Invariance, ahd by Adler(ls) from PCAC, althougﬁ:it:has not-
been exploited in any detall. This willl be thévbbject of our

considerations in the rest of this chapter.
The process we study 1s

m(k,n) + N(pl) = N(pz) + ﬂ(kl,B) + “(kz?Y) . (1.22)

As we willl always be concerned with operators sandwlched:
between an in-stateu|p1>.and an out state <w(k1,6),w(k2,y),p2|

it will prove.very'convenient to use the notation

a, = o . -
<BYlAu> = <n(k ,B), w(kz,y), pzl_Au(o)lp.1>/N12 s (1.23)

where N:z = le//ﬁklokzo . From the various momenta.six
independent variables can be formed (only five if particles

are on their mass-shells).

= 2 = 2
5= (k +k )* , v (k2+p2} s
t = (k-k)? w= (ktp ) ,
u = (kz—k)z s k2 , (1.24)

with s, t and u the Mandelstam variables which we use later

to describe ‘m-m scattering. It will be often convenient to
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introduce. the non-independent squared momentum transfer to

the nucleon variable A2 = (pz-pl)2 so that
s+t +u=-A%+Kk%2+2. (1;25)
Then one finds
<By|A%> = -ig,(0)U(p ) %501Ai u(p ) (1.26)
s u A 2 1=1 u YS pl 2 ] *

where the Ai are analytic funections of the variables of

equation (1.24).

The Oi have been chosen to be

0y = (p,=p,)y » 0y =Koy,

02 = (p +), 0,% = Koy ,

02 = (k +k,) oyt = (¥ -k 0§,
08 = (k, -k ), , Oﬁz = (¥,-¥ )0} ,
0 = Ky, > 0,° = (¥,-¥ o3 ,
Oﬁ:= Y, O;* = (KZ—KI)O; s
o; = 1{0111 . 01115 = (K _-K 1)0{"1 .

1
™
O

N

(1.27)
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Our analysis only becomes tractable in the limit k + o ;

as we will eventually be taking the divergence of eq. (1.26)
(i.e. multiplication by —iku) then we need to know the
singular contributions to the various Ai. These are the
nucleon pole terms shown in figure (1) which behave like

k™! as k =+ 0o ; the blobs represent the amplitude M for the

, BY
process N + 27N, which is related to the amplitude 7N + 7N

by crossing, with thé conventional decomposition

M

B,Y = AB,Y + ;E(kZ-kl)BBY [ (1u28)

where BBY contains the pole terms of the amplitude and

satisfles the same relation as equation (1.21).

kl,ﬁ”
A% / 7 7
2 / ”~ kst
/s
k
/ﬁ,"
- 4{~j ——
pl p2

FIGURE (1). THE POLE DIAGRAMS. Wavy lines represent Aﬁ o
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Evaluating these dilagrams. explicitly one finds, as k - o

o _pole _
<BY|Au>k +0

= 1g, (0)i(p,) Mg, 7o (p \ #My Dy + (P My )y T Mg Tulp ),
pl.k pz.k
(1.29)
1.e.
<§Y|3qu>§°ieo =
= gA(o)ﬁ(pz)[MBYra(l +p%¥k)vs + (1;%¥k)YSTGMBY]u(p1) .
(1.30)

We now determine the divergence of the non-pole terms

1 i,pole

denoted by It =t o ; from equation (1.26), after a

little tedious algebra one finds.

i
u

5
a(p ) Y kO Kiy u(p ) = %(t+u=-2)A! +
2 i=111 5 1,

+ L(w+k2-M2)AE% + %(2kZ+2-t-u)A® +

+ %(t-u)i* + k2A% . , (1.31)

In the 1imit k¥ + o then k2 = o, w = M? and t = u=1
implying that the coefficients of the various Ki in equation



(1.31) vanish identically. As all our &
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1 are in fact

kinematically analytic (this is not. obvious, but 1s proved in

the. appendlx to this chapter) the right hand side of equation

(1.31) vanishes., By similar reasoning, in this?same.limit

and

10
1-1 - .
u(p ) Z kuoux yulp,) = u(pz)kysﬁeu(pl) , (1.32)
14 11
u(p,) lek OuI yulp ) =07, ' (1.33)

ﬁ(pz)kuoﬁsﬁlsysu(pl) ﬁ(pz)(Kz-Kl)Kysﬁlsu(pl)-

(1.34)

Collecting all our expressions we have

<By[3,8% o = ga(0)i(p ) N

gy To (14MK/p .k)Ys +

+ (1-MK/p2-k)ysraMBY + xxsys + (kz-kl)Kllsyslu(pl). (1.35)

From PCAC

oy - o 3
<BYI3uAu> = C<By|J > . (1.36)

Once again. <By|J$> may be split up into pole terms

(1.e.

fig. (1) with Aﬁ replaced by a pion) and non-pole

terms.’
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o .pole _
BYITE s o =

= gK§O) ﬁ(pz)[MBYTaKY5 - st TaMBY]u(pi) s (1.37)

pl.k pafk

Note that this implies that C<BY|J$>i°ieo cancels exactly

against a similar term in eq. (1.35) when inserted into eq.

(1.36).
The most general form for thé‘non-pole.terms is

<By|Ip>TONPOLE < G(p VIR, g + (KK G, o +

sBY
+ KHa,BY + (Kz-KI)KLG,BY]YSu(pI) . (1.38)
Substituting (1.35), (1.37) and (1.38) into (1.36) one finds

= - =15 =
u(pz)[MBYTGYs + YsTaMBY + KYSAS + (xz-K1)KY5A ]u(pl)

= 2M [Fa,BY + (kz-Kl)G

=R (3) KH By + (Kz_K1)KLa,BY]Ysu(p1) .

+
Ot,B'Y a’

(1.39)
Now
MoyTa¥s * Y TalMgy = (AgyTotTolpy )Y, *

+ %(KZ-KI)(BBYTQ—TGBBY)YS . (1.40)
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Thus, one finds.

(2M/3K(°))FQ,BY = ABYTQ + TaABY s (1.41)
(2M/gK(0))G, o, = %(Bgy Tyl (1.42)
(2M/gK(0))Hy o = RS, (1.43)
and. (2M/SK(°))Lu,BY = g5 , (1.44)

The last two equations are quite useless, as both A® and
K% are unknown. As k + o however the 1ntérmediate,nucleon
in figure (1) 1s on the-mass-shell so that egs. (1.41) and
(1.42) are directly related to the on-mass-shell w-N

scattering amplitude.

A and B are (when k =+ o) analytic functions of

By By
two invariants. which we choose to be

<
n

vg = —(pz-pl).kl/ZM . (1.45)

(note the difference. between equation (1.45) and Adler's
definitions, eq. (1.18)). When k = o we can imagine that we
are dealing with the scattering process p1 +.(;k1) =p + k2

with Mandelstam variables s” = (p1-k1)2 and t° = (pz—pl)2 = A%,
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Then
2Mv = s” + t% = M2 = m?. <0 ,
2
and 2Mvg = %‘ <0 | (1.46)

these should be compared to eq. (1.19). F and G are analytic
functions of the six invariants defined in eq. (1.24), but

when k + o they are naturally only functions of v and vB

s = MMvB s

t=u=1,

vo=1+ M2 + 2M(v-vB)‘,

w = M2,

k= o , : (1.47)

It sti1ll remains for the isospln decomposition of
eqs.. (1.41) and (1.42) to be carried out. The right hand
sides may be so decomposed by using eq. (1.21) with.a simi-

lar decomposition for BBY, Deneting the-isospin projection
(21,1°)

0, BY ?
where I denotes the total initial (final)isospin.and I” the.

operatofs feor the piénepreduction amplitude by Q

isospin of the two plen subsystem——the final state. then .
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Q(l’o) = .J:
o,BY 3 "By a?

Q(l,l) = __]_-__ lﬁ[!rs"r, ]T- ,

o,BY 3v2. yoa
Q(3’1) =1 (6 1, -6 .1 - Lt .t 11]
0,BY. 5 ay B o'y T3 B2 'y" "o’ ?
(3,2) o _1_ -2
Ql3:2) = 2 UoayTg * Sugy - § Syl ¢ (1.48)

Therefore
ABYTG.+ TaABY = 2A+TaGBY + %{TG[fB,TY] + [TB,TY]Ta}A-
= a*el130) + 2z aT1e{ 2l - o311, (1.49)
and
5[Bg, 141 = vZ 87103330 + 2qltb)1 (1:50)

Finally, one obtains the consistency conditions.

om F(1:0) - gat (1.51)
gk(o)

om (sl o ooy F3e1) - om A (1.52)
gK(o) gK(o)

p(3:2) = ¢(3,2) _ (1,00 o o | (1.53)
om allsl) ooy ¢(3s1) = vz B, (1.54)

gK(o) gX(o)
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with all F's and G's functions of v and Vg (only)..
Note that under the exchange. k1 z k2 (v+=v, vB*vB)

A‘(v,vB) is odd 1i.e.

P (vmo,ug) = #3901 (veo,uy) = 0, (1.55)

—g rather obvlious condition as‘both-F(3’1) and F(l’l)

must be odd under the exchange of two filnal state pions.

4., EXTRACTION OF f=1 AMPLITUDES FROM CONSTRAINTS

For the m-m scattering process
ql(a) + qz(S) > - qs(y) - q“(S) we define our S, T and M

matrices as

4
= 4ok
(8-1)4p,y6 = 1(2mM)*6 <121qi>Tas,ya ’

= 6 %
TGB)YG 'MaB,YGZ(zn) (l6q1ogzoqaoq»o) ’ (1.56)
Then
I I
M = ) MTP (1.57)
ABs¥8 - 1ag,1,2  OBsYS 7
where L are the usual 1sospln. projection operators

PaB,y6
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o _ 1

b R
Y =38, 805 = Susdpy) o

2 _ 2 ‘
P? = 384,055 + S450ay = 3 Sagdys) > (1.58)

(6)

Weinberg's CA calculatien gave, at :the unphysical point

s = 0, £ =.u =1 the result (in plon mass units)

M° = - 8.3,

M! = M2 = o , (1.59)

(18)

whereas a CA calculation of Iliopoules, including

unitarity, led to the four solutions.

M°

+4,1,-1.3,-8.3 and -14.5 ,
M! = M2 =0 . : (1.60)

In the Chew-Low(zl) extrapolation method one

. agsumes that the amplitude for w+N -+ 2m+N is dominated by the
one. plon exchange (peripheral) process at low momentum
transfer squared (A%2), One may write the M matrix for the

whole. process as

M= - igK(Az)iﬁ(pz)vsu(pl)Mﬂ(k,q,ki,kz) R (1.61)

A% - m?




1.24-

with M,rr the M matrix for the off-mass-shell m-m scattering
amplitude-(q = k.1 + kz - k); it would descrlibe on-mass-shell
scaﬁtering<if A2 + m%, Now A2 < o for the whole physical
process to occur, but as m: 1s small one may consider the point
A% =.m? closest to the physical region for M, which from
equation (1.61) will then be dominated by M.

It will transpire that. our calculations simplify
enormously when v = Vg = 0, k? = o0 l.e. s =0, t =.u=.1;
from eq. (1.25) A% = o also. In this limit therefore, as

I let us assume that the

a first attempt at calculating M
peripheral process dominates the non-pole part of the pion

production amplitude i.e. that F = F,,r in the constraint equa-

tlens
2MF(1’°)/gK(o) = 6A+(v=vB=k2:o) ,

r(11) o p(3:1) o 5(3,2) o o'. (1.62)
Now
ﬁ(pz)Fna,Bszu(pl)'= A%ig Mas’BY__E__{-igK(Az)}ﬁ(pz)YSTGu(pl) s

A2-m?

1l.e.

Fﬂa,By.= "gK(o)Mas,ByTG . (1.63)
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But P5,8v76 = %asby *
8 s Y+ Y
282, . 15 = VIO ai3:2 (1.64)
and so Fil’o) = - gk(o)M® ,
F§3’1) = gK(o)M!//Z ,
Fgl’l) = /2gK(o)M! ,
F(3:2) = _/TOgK(o)M2/2 . (1.65)
Therefore, from eqs. (1.62) and (1.65)
M! =M2 =0,
M° = - (3/M)A¥(0,0,0) . (1.66)

If we could show that AT(0,0,0) = 8.3M/3 = 18.6 then

eqs. (1.66) are exactly the same as Weinberg's CA calculatlons.

Let us note, to begin with, that Vg = O corres-
ponds to forward scattering (see eq. (1.46)); this implies in
Adler's notation that vé = - 1/2M from eq. (1.19). Rather
fortunately Adler has evaluated A+(v’=o, vé=-1/2M,q§=o)

= A+(v=o, V=0, k%=0) by two independent methods with
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remarkable consistency; it will be rather convenient to

examine both briefly.

The_problem may:be»donsidered in two stages viz.
(1) Extrapolation of the on-mass-shell physical
amplitude. A'(v’>0,vi= - 1/2M,q?=1) to the unphysical
amplitude'A+(v‘=o,vé=-1/2M,qf=l)

(11) The use of a plausible model to continue. this

amplitude from the on-mass-shell point qi=1 to q§=o

In Adler's. original problem (eq. (1.20)) he needed to

evaluate the amplitude A+(v‘=vé=q =0), this was done by using

2
1
fixed momentum transfer dis-
(22)

a once subtracted (at threshold)
persion relation. Using the phase shift analysis of Roper
with S, P, D and F waves the Ilntegral over the right hand
aut was determined up to a pion laboratory kinetic energy of
700 MeV, this was a sufficiently high energy to go to due to
the rapid convergence of the integral. The threshold subtrac-
tion constant can be. expressed in terms of the S, P, D and F
scattering lengths——it turns out that it is this term which
makes the major contribution to A+(§‘=vé=o,q:=1), mostly from
the P-wave. Unfortunately there was a variation of about

20% in the threshold subtraction constant, depending on whether
one used all of Roper's scattering lengths for S, P, D and

F waves, or only Roper's D and F wave scattering lengths com-

bined with the S and P wave scattering lengths of Woolcock.(23)
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He concluded that too much emphasis was placed on thls sub-
traction constant, and introduced a method whereby one could

'"smear" the subtraction over a finlte section of the real

axis—-this should sample the experimental curves better.

Here we apply thils.smeared subtraction method:to

determine A'(v=vy=o, k2=1) = a*(v =0, vi=-1/2M, 4::1),

A*(x,v5=-1/2M,q%=1)

[(x-1) (x+1) (x=v) (x4v )1%

Let F(x) =

(1.67)

with Vi > 1 (threshold for physical scattering). Then, as.
F(x) 0 as Xx + «» , one may-Write'an unsubtracted dispersion

relation for F(x) as

[+ -]

F(x) = %idy g (5 3-,%@) , (1.68).
where AF(y) is the discontinuity of F across.the cut.

The denominator in eq. (1.67) has opposite signs. on opposite
sides of 1ts cut, which runs frem 1l to v ; eq. (1.68) there-
fore leads to the "smeared" disperéion relation at zero momen-
tum transfer

A%
+ m
A% (o,-1/2M,1) = 2 S
T
1

1 [(y-l)(y+l)(\)m-y)(vmﬂr)];5 )

ReA+(y.,-l/2M,1)\)m

“lg

.f ay mA* (y,-1/2M,1) v
Y -1 (L) (y-vy) (ye )1

m

(1.69)

Ao
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Define the pilon-nucleon centre of mass energy Wm =M+ w3

then Vo, T vé.+ w,_ + w;/2M. Adler found, using Roper's phase.

m
shifts, that the variation of A+(o,-1/2M,l) was extremely
small as w, was varied from about 60 MeV below to 60 MeV above.

the (3,3) resonance—more precisely
a*(o,-1/2M,1) = 26.05 * 0.69 . (1.70)

For an alternative method Adler used forward scattering disper-

sion relations on
+ + +

with a smeared subtraction. Using Roper's phase shifts for
plon laboratory kinetic energies below 700 MeV, and the total
n+P and T p cross sections of Amblard et‘al.(zu) above this

energy he concluded that
2% (0,-1/28,1) = 26.15 * 0.2. (1.72)
From eqs.(1.70) and (1.72) one may therefore conclude
A+(o,-1/2M,ls = 26.1 £.0,7 . = 1 (1.73)

Evaluation of this in the static 1imit retailning only the
(3,3) resonance in the narrow resonance approximation glves
a result only about 20% less than eq. (1.73), suggesting
that a sultable model for golng off-mass-shell would .be of-

this type. By assuming that the ratio of the off to on-mass-
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shell (3,3) resonance amplitude is the same. as its Born projec-
tion he concludes that taklng the pion off-mass-shell reduces

eq. (1:73) by about 0.5 i.e. finally
A+(v=vB=k2=o) = 25.6 + 0.7 . (1.74)

From eq. (1.66) we therefore find that M° = - 11.0 =+ 0.3

i.e. about 30% less than. Weinberg's CA amplitude. Thus, if
we could assume peripheral dominance of the non-pole part of
the pilon-production amplitude we would have a satisfactory ex-
planation éfVWeinberg's (rather low compared to previous

expectations) CA result.

We must now evaluate other terms. which might be-
important 1n the momentum limits we use, to determine their
"perturbation” on the assumed peripheral dominant one.: There
are, of course, an extremely large number of other possible
terms, but it seems reasonable. to assume that: the most important.
contributions come from processes involving two nucleon poles
(figure 2(a)) and those involving at least one nucleon pole
(figures 2(b) and 2(c)) as the nucleon propagatoré become. large

in the unphysical reglon where. the constraintjis evaluated.
.An@valuation of these dlagrams gives, at the point.v=vB=k2=o

{uMat - 4BT + 2g2K(0) g ,

F(3’2)(f1g.2) /I0{2MA" + B™ - 2g2Kk(o)}g ,
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FIGURE (2). THE DOMINANT NON-POLE DIAGRMMS.(:) includes
everything except the direct nucleon pole, which is accounted.
for in the pole diagrams. There are an equivalent set of

diagrams with k1 pe k2 .
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where BT denotes the non-pole part.of B™.

Then from this equation, together with egs. (1.62),

(1.63) and (1.66) one simply finds.

MO = 6g? - 3at/M - 4B-/K(0) ,

Ml

n
o]
w

M2 .

2B=/k(0) . (1.76)

Immediately one notes that B- would have to be a rather large
positive quantity =1.5 g? for M° to be near the CA value;
unfortunately this would make M? also rather lafge! As A+
evaluated in the static limit with retention of only the (3,3)
N* resonance.ls close to the value evaluated by using the.
(presumably correct) fixed momentum transfer dispersion rela-
tions. let us determine B~ in the same manner. Note that an
approximation which is good for wN + ™ need not be good for
N + 27N as the physical regions for the two procesées are
quite different. The approximation of using only the N*
resonance 1ls expected to be. reasonably good due to the small ratio
of m/M and the fact that N* 1s in the physical region for

N » 27N .-

|
o

B=(v?=o,vg=-1/2M) = 2 5' ax Imﬁ’(x,—i/2M) s
T X '
1

(1.77)
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and
ImB-(x,-1/2M) = 4x[ 3 - 1 1Imf ,. (1.78)
E+M E-NM 3

as given by Chew et al.(25)

£ = - f33/3, E2 = g% + M? with q? the square of the c.m.
momentum. In the static 1imit the right hand side of this

last equation. becomes 81M Imfaé3q2, and in the narrow resonance
approximation

- 2.2
Imf = Q%f a8 (w-wg) (1.79)

where W =M+ w , x = (W?-M2-m?)/2M, w, is the position of

R
#
the N resonance, and f2 = g2/4M%,4r = 0,08 ,

Finally
a P
BT (v?=0,vi==1/2M) = 6U47Mf? | dxé (w~wy)
P ‘gfl—xﬁ
= 6Man2/9xR = 4,8 ,
i1.e. E’(v=vB=o,k2=l) = 4.8 . (1.80)

Neglecting the off-mass-shell contribution and substituting

into egs. (1.76) one finds

MO

R

106907 3
M =0,

M%2 = 9,6 . (1.81)
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The most spectacular difference between this and
the Weinberg CA.resﬁlt’ié:thataMo 1S not Oniy 130 times
larger, but of the opposite sign! As far as M° is concerned.
one could hardly regard'this as a correction to the peri-
pheral process; the question 1s, 1s there any process which
we have neglected which might lead to a reduction of this
M° to the CA result?

In figures 2(b) and 2(c) the®denoctes the complete
plon-nucleon amplitude except the direct nucleon pole. In: our
later evaluation of © in A+ we have used the two lowest mass
resonances i.e. the N*P33 resonance at 1236 MeV. and the Pi:
(Roper) resonance at 1400 MeV., as well as S, D and. F
resonances. We have been unaﬁleuto take into account processes
similar to figure (2) where the intermediate propagator is
not a nucleon, but P33 or P11; phis.is due to our lack of
knowlege df the amplitudes m+N -+ w+P33(or P11)' But we would.
expect that their corrections to figures (2) would be of the
order of M/(M?-M?+1) i.e. corrections of less than 20%, if

these channels do not couple strongly.

Another possible term would be of the contact type,

shown in figure (3).



1.34-
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FIGURE (3). THE CONTACT TERM.

Tts Lagrangian would be

Loontact = & ¥ 7, T.TN W2, (1.82)
This glves the contributibns
M°(contact) = =-5G/gK(o) ,
M!(contact) = o ,
M2 (contact) = -2G/gK(o) . (1.83)

G would have to be extremely large, = 1.2 gz to reduce
M® in equation (1.76) to the CA value, and once agaln this

.would make M? quite different from the CA. result.

Finally, we show that a diagram.such as figure (4)

may be neglected.
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FIGURE (4). A PRCCESS WHICH HAS BEEN NEGLECTED,
Let M% be the total contribution to the m-m M matrix in
the isospin.state I (i.e. the very M matrix which we are.
expending our effort in obtaining!). Then the contributions

of figure (4) to the varlous 1sospin states are.

MO(fig. (1))

-g[logM-Mtan'l2M]M$/16n2M?K2(o) =

. o)
= 0,02 MT

M (fig.(4))

]
o

M2(fig.(4))

g[1ogM-Mtan‘42M]M§/8n2M2K2(o) =
~ - 0,04 M% (1.84)

i.e. M° and M? from figure (4) make only contributions of 2%

and 4% respectively to the total amplitudes.
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5. CONCLUSION

From PCAC zlone we have tried to extract information
on the three isospin. amplitudes at the unphysical point
§ = 0, t = u=1; these were then compared to Weinberg's ca
calculation (eq. 1.59) and Iliopoulos! unitarily corrected
verslon of this (eq. 1.60). By assuming peripheral dominance
of non-pole amplitudes we obtain results similar to those
glven by CA; in this regard one notes that in the Zero momen-
fum pion 1limit N* does not contribute to this amplitude in
a phenomenological Lagrangian with derivative pion coupling
to N and N?(26) If we don't assume peripheral dominance g
much larger contribution to the I = o amplitude is obtained
when the non-pole diagrams of figure (2) are taken into account.
A varilety of processes were Studied (in particular note eqgs.
(1.83) and (1.84)) with the hope of reducing M° to the CA size;
this, however, does not appear to be possible as those pro-
cesses which could be of importance seem to have one common
feature viz. their contributions to M° and M2 are of_the.same-
order of magnitude. It becomes apparent that to obtain the
CA result a process is needed which contributes only to M°
and not-to M?, as only M?! is €xactly the same as the CA value.

Sﬁch a mechanism is rather difficult to construct!



6. APPENDIX

To. show that the amplitudes,Ai-do not have any
kinematical singularities we. follow the method due to Ball.(27)
15
i i
T = 0 . .
" 121 LY A (A1)

Fifteen scalar quantlities can be constructed from Tu as.

follows:

1. u,1
T Trage.[YSQ Ay(p )T AL (P (A2)

where A+ are the positive energy projection operators. By

the Hall-Wightman theorem Ti

will be analytic functions of
the scalar invariants involved in the problem. We can

write Eq.(A2) as
i o pldpd (A3)

The kinematical singularities of Ai would appear as zeroes
of det D. The problem in general would be a complex one
since D 1s a 15 x 15 matrix. Some simplificatlions can

however be made as follows. Define the new quantities
= - 2 1 + - N : 2 - . - 3
X =[(p,-p )" A (p,-p )+ (p +k) A® + (p, p Mk -k ) A® +

(pz-pl)-(kz-kl)A“J R
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In X replace. (A'+A7), (A2+A%), (A%+A%), and (A*+Al0) ,

In X replace. (A'+A11), (A2+A12), (A%+A'3), and (A%-+AlY)
(AL)
+k) . | 2 a2 +k) . , 3
[(p +k)+(p,=p ) A" + (p +k)® A% + (p +Kk).(k +k ) A® +
. - 4
(p +k)-(k, k) Al ,
In X replace (A'+A7) ete. ,

In x2 replace (A!+All) ete. (A5)

‘ o y al < . 2 2 538
[(k2+k1) (p2 pl) At + (k2+k1) (p1+k) A% + (k2+k1) A*],
In X_replace (A'+A7) ete .,

In X replace (A'+A1Y) ete . (A6)

- . - 1 - R 2 - 2 4
[(k.2 kl) (p2 pl) Al + (k2 kl) (p1+k) A + (k2 kl) A*],
In xu replace (A!+A7) etc.,

In X, replace (A'+A) ete., (A7)

Trace [(¢2-M) (¢1+M)],
~Trace [(¢2-M) K (¢1+M)],

-Trace [(ﬁz-M) (Kz_K1) (ﬁ1+M)]s



1.39

d = Trace [(§, -M) ¥k (B -8) (B +M1)],

e, = Trace [(§,-M) (KzK) (B,~8)) (3,411)] . (48)

Ll
u

,-Trace‘[K(ﬁz-M) (¢1+M)] >
b = Trace Ek(ﬁz-M) 3 (¢1+M)J R
c. = Trace [k(g -M) (K =K (B D],

d .= =Trace [K(ﬁz-M) K~(¢2-ﬁ1)(¢l+M)] s

(0]
]

= '~Trace [K(pz—M)(Kz-Ki)(ﬁzfﬁl)(ﬁ1+M)] . (A9)

a =-=-Trace [(KZ-KI)(ﬁz-M)(¢2+M)] s

o
0

Trace [(K,-K )(#,-M) K (8 +D] ,
= - - - +

c Trace [(K -¥ )(Z -M) (K, kx>(¢;-M)] s

d_ = -Trace [(kz-ki)(ﬁsz) K (¢2-¢1)(¢1+M)] s

e = -Trace [(Kz-kl)(¢2-M)(KZ—KI)(ﬁz-pl)(¢1+M)] . (A10)

All the scalar products of four-vectors and the traces can

be expressed in terms of the invariants of Eq.(1.24) of the

text. We are lnterested in the possible kinematical singu-

larities in these invariants. Using Eq.(Al) to (Al0) one

obtalns a set of simultaneous equations
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7o AS-e AlS
1 1

aX +bY¥ +c¢2 ,
1 1 1 1. 1 1

T7-d A®-e A'" = a X +b Y +c¢2Z .,
2 '2_ 2 1 2 1 2 1

T''-d Af-e A'P= a X +DbY +ecZ . (A11)
Three more sets of simultaneous equations result on using
(T2,78,T12)(T3,T%,7'%) and (T*,7'%,T'*)., The simplifica-
tion brought about by our definition of X's, Y's, and Z's
1s that the. transformation matrix that relates (Tt,T7,T!!)
to (xl’Yl’Yi) also relates (T2,T%,T!2) to (xz,yz,zz)
(r3,7°,7!3%) to (xa,Ya,zs) and (T*,T!%,7'%) to (X“,YH,Z“).

In the first step we .solve for (Xx’Y1’Z1) in
terms of the combinations on the left hand side of Eq.(All).
The zeroes of the determinant of the transformation matrix
of Eq. (All) will result if.(1) ku = a(pz-pl)u + B(p2+p1)u,
(11) (kz_k1)u = E(pz-pl)u +.n(p2+P1)u,
(1v) conditions (1) and (i1) are met simultaneously. The

(111) kﬁ = Y(kz-kl)u

parameters a,B etc. can be expressed very easlly in terms of
the sealar invariants.of Eq.(1.24) of the text.If condition
(1) 1s met then the second row of the transformation matrix
becomes 2Ma times the first. Similarly conditions (ii) and
(111) make the third row proportional to the first and the
third row ‘proportional to. the second respectively. Condi-
tion (iv) makes both the second and the third rows propor-

tional to the first. At any of these four conditions we
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get simple. relations .between appropriate T's.. For example

a direct substitution: ef: condition. (i) in Eq. (1.26) and (1.27)
of the.text, with the-use of Dirac equation implies O; = 2Ma 0;
which in turn implies T7 = 2MaT!. At the same time
(az,.....,ez) ='2Mq(a1,....;,ei). .We-then find that the
numerator fﬁnction.in:the solution‘of.XI,Y1 and.Z1 vanlshes
simultaneously. with the..determinant  in the;denominator.
Consequently no kinematical singularity results. Similar
treatment confirms that:X's, Y's and Z's are free from

kinematical singularities under all the conditions (1) to (1v).

In the. second.step we invert equations (A4) - (A7)
together . with three more equations to complete the set of:

fifteen equations,

o]

]

3
L4

o]
]
=
(-
-

(A12)

o

]

=
w

and solve. for the‘original‘A4. To 1llustrate the method:

i

adopted .to. show that A~ are free from kinematical singulari-

tles we discuss. the solution for Al. The equations to be

solved are
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x1 =.(p2-p1)2 A+ (pzfp1)'(p1+k) A +-(p2-p1).(ké+k1) A%+
.<p2-p1).(kz-k1} A*,
X, = (p1+k).(p2fp1), Al + (p1+k.)‘z A2+ (p +k).(k +k ) A® +
(p, *+ k)-(kéfkl) A,
x3 = (k2+k1).(p2fp1) A + (k2+ki)-(p;+k) A? +¢(ké+k1)2 A + 0 ,
X, = (kz-kl).(pzf-p_l) Al 4+ (kz-kl).(p1+k) A + 0 + (k'z-kl)z A",

(A13)

The zeroes of the determinant of the transformation matrix
will appear if the following conditions are satisfied:

(1) (p +K), = a”(p,-p ), (11) (p,-p ), = B7(k +k ) +
Yk -k ) (111) (p #k), = E7(k 4k )+ 7k =k )y

(iv) conditions (ii) and (1ii) are met simultaneously.
Condition (i) makes the second row of the transformation ma-
trix of (Al3) proportional to the first. Condition (ii)
makes. the first row.a linear combination of the third and
the fourth rows. Condition (111) makes.the second row.a
linear combination of the third.and fourth rows. Condition
(1v) makes .both. the .first. and- the seecond rows .linear comblna-

tions of the third and fourth. Under condition (i) the
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determinant of the transformation matrix vanlshes, but one
also.gets the relations T2 = g“T! , T° = a“T7 and T!% = o°T!?,
The only solution of these equatiens 1s- the trivial one,

X2 = a‘Xl, Y2 = a‘Yl, Z2 = a‘Zl. Under these conditions the
first. two rows-of the-deﬁerminant in the numerator of the solu-
tion for A! become proportional to each other and consequently
no kinematical singularities result.- Under condition (i1)

one finds that the first row of the transformation matrix.

in Eq. (Al3) is B~ (third row) + v“(fourth row). At the same
time one also finds that-X1 = B‘x3 + y‘x“, Y1 = B‘Y3 + y‘Y4
anda Z1 = B’Z3 + Y‘Z“. The determinant -in. the numerator of

the solutlon for Al now. vanishes by virtue of the fact that:
the first row is a linear combination of the third and the
fourth rows. By a similar methoed one can show that no kinema-
tieal singularities result when condltions (111) and (iv)

are met. By the above procedure -1t -can be shown that all'Ai
except A5, A® and A'S are free from kinematical singularities.
Finally one can write A%, A®.and.A'® in terms of TS, T® and
T!5 and all other al which have been shown to be analytic.

The problem reduces to. that of selving a set ef.three simul-
taneous equations. Using the type--of procedure adopted above

one can also show that A°, A® and-Al!% -are free: from kinemati-

cal singularities.
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CHAPTER II

ABSTRACT: Weinberg's CA calculatlion of the s-wave T-T
scattering lengths a, and a2 incorporates neither I = 2
amplitude in the crossed channel (t-channel) nor. the unitar-
ity condition, and the below elastic threshold conditions.

on the ﬂo—ﬂo

amplitude as determined by Martin are not
satisfied. We modify Weinberg's amplitude to include this
t-channel contribution and use it to fix the position and
residue of a single pole approximation to the unphysical
cut, so as to obtain the phase shifts 60 and‘éz. For no
value of the mw-m coupling constant A does 60 pass through
90°, as indicated for example by Walker et al. and Malamud

and Schlein.

Generalizing the usual isoscalar o term in
Iliopoulos' unitarily corrected CA calculation we are led to
(generally) four sets of solutions for a given I = 2
amplitude in the t-channel, all of which satisfy the below
threshold conditions. By considering the continuity of the:
coefficients of the scattering amplitude's power seriles
parametrization in terms of the,imaginary momentum variables

ks’ k ku from first to second order we conclude that

t’
probably only one solution i1s meaningful. Surprisingly this
gives Weinberg's results almost exactly in the 1limit of

no It = 2 amplitude. It is this branch which falls within
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the experimental data of Pickup et.al, glving two possible
sets of a, and az,’both with non-zero It_= 2. Using the
phenomenological bounds of Goebel and Shaw, and Chu and
Desal on a, one finds ao=(~0.5,¢0.3), a2=-0.3, a;=0.1

(phase convention, 6 = ak, k»0).

1. INCORPORATION OF It = 2 AMPLITUDE INTO THE WEINBERG

RESULT.

As presently used, CA constralnts are 1mposed at
the point s = u =1, t = 0 (1.e. the external masses of
two of the pilons are zero), and assumes that the scalar o
term is also an isoscalar. Here we remove this restrict-
tion and calculate the effect of the o(2)rw vertex on the
Welnberg amplitude, for a reasonable range of values of the

vertex function fZ
Consider the scattering process

m(k @) + wk ,8) > wlkgy) + mlk ,8) ,

where ao,B,Y,8 are isospin labels. The Mandelstam variables
are defined in terms of the centre of mass variables
v =9q? and 6 by s = (k1+k2)2 = b(v+l), t = (kl—ks)z

= - 2v(l-cosf) and u = (k1_ku)2 = - 2v(1l+cosb).

The S-matrix for the scattering amplitude is
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written as

SaB,yG = <k3,y;k“,6;out|k1,a;kz,B;in> R (2.1)
with
(S-l)aB,YG = ~1(2mw)%s" (k +k -k -k )TGB,YG
= -i(2m)"* &* (k +k -k k M
aB,YSl 0(2.2)
(2m)® (16k k k k )2
10 20 30 4o
Following Chew and Mandelstam(‘3) MaB 6 may be written-
LA
MaB,YG = A(S’t’u)6a86y6 + B(s,t,u)sayd66 + C(s,t,u)éaadBY .
(2.3)

(28)

By using the LSZ. formalism oﬂe,contracts out a pilon

from the initial and final state in the usual manner to

obtain
L
i1(2m)* &% (k +k -k -k )MGB,Y5 )
(2m)® (16k K, K, K )2
20 30 40
= (kf—l)(ki—l) d*xd‘y exp{-i(klx-ksz)} x

1
(2m)3(4k Xk )2r2
10 30 m
o Y
x <ku,6|T{8uAu(x),apAp(z)}Ikz,?> .

(2.4)



2.4

In thils equation we have .already used.the PCAC. hypothesls-

subétituting auAﬁ(x)/fﬁ for the pion isospin a field.

Now
; o Y = o Y |
T{auAu(x),apAp(z)} auapT{Au(x),Ap(z)} +

+9,8(x,-2,) [AT(2), AL()T - 8 (x,-2,)[AG(x),3 AY(z)] .
| (2.5)

Omitting possible Schwinger terms.the equal time commuta-

tors may be written as

vB(x)6%(x-2) , (2.6)

8(x,-2,)[AY(2) A (x)] = 21, qV)

o Y = -
G(xo-zo)[Ao(x),apAp(z)] 1aay(x)6“(x z) . (2.7)

Throughout the remainder of this chapter we will refer to
eqs. (2.6) and (2.7) as the V-commutator and ¢ term

respectively, or more simply as V and o .

Evaluation of‘sk“,sIT{Aﬁ(x),Ag(z)}lkz,B> would
require various dynamical assumptlons and approximations,(zg)
but in the soft pion limit k1 = k3 + Q0 this term disappéars,
as 1t has no ﬁoles in these four momenta. It is, of

course, implicit In the fdea of PCAC that this soft pion
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approximation is not greatly different4from.the hard pion

result.

From eq. (2.6) one sees that [QX(t),QX(t)].=
21eYuBQ$ and as (from.the Conserved Vector Current Hypo-

thesis) d-Q% = 0 then,
at.

[af(e)s & Qg (6)] = [Qg(6),d_ Qr(e)l ., (2.8)

s £t ; = =
which implies that 1n eq. (2:7) Oy Oy’ As the I 2
s-wave interaction 1s known to be smaller than that in the
I = 0 state the usual assumption made is that the o term

is not only scalar, but isoscalar also i.e..

OGY(X) = BGYO(X) = GaYsaﬂYaca»Y»(X) . (2.9)

This restriction may be removed by using the form suggested:

by Kamal.

1
an(x) - 2(6uy'sya’ + Gua’ayy

SLFPWIEY ; (2.10)

which is still symmetric in o-and Yy, as well as in a” and
y®. From now on we will use the form given by eq. (2:10)
pather than that of eq. (2.9), as it has both an I = 0 and’

T = 2 component. One may write, quite generally

v}

3

1 _ 3
<ku,6|Vu(o)[k2,B> = ieiBG(ku+k2)u/(2ﬂ) (szokuo

(2.11)
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and

<ku,6|ch(o)|k B> = 9 {k2=k2=1 (k, -k, )’}/(2w) (uk ok o)*;

ay,B6
(2.12)
where the vertex function £< may be written as.
QY,BG _
g = ¢9 t(é) £(2)
fay.86 = To Pagys * 1 Paeya : (2,13)

t (o) t(2) .
with- PaBYG and. PaByG the t-channel isospin,projection-
operators for the I-.= 0 and I = 2 states, andhfg,fg their
respective vertex functions. In the.:limit.k1 = k3_+ 0

(1.e. k2 =-ku) egs. (2.11) and (2.12) may be rewritten:in

the form
1,y - 3
<k2f6|Vﬂ(o)|k2fB> ey 5%,/ (2w) koo (2.14)

and:

t(2)
oBys$

t(o)
aBys

(2w)32k2° (2w) 32k

0] g
<k2,a|an(o)|k2,s>,= fo(lé;,o)P + fz(l,l,o)P .

(2.15)

From eqs. (2.4), (2.5), (2.14) and (2.15) one obtains; 1n

the iimit s = u =1, t = o, three equations in A, B, C.

M

B,y (8k k + f )$ +

o.B YG
k =k -0
13
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o
+ (£ §f )8aySps t (f - Bk, .k )8,585y »
1l.e.
2 - - o
f“A | 8k1.k2 f2 ,
2n - a 2 A0
£.B = -fo + 3 f2 s
24 = vy 16)

These take thelr simplest form when written as t-channel:

isospin amplitudes M(I)
£2(3B+A+C) = f;Mé°) - 3fg ,
£2(A-C) = f;Mél) = - 16k .k_,
£2(A+C) = f;Méz) = - 2fz (2.17)

Weinberg's parametrization of M, taking account

of isospin invariance, crossing .symmetry.and Bose statistics

is
A =a+ b(t+u) + cs + ....
B =A+ b(uts) + ct.+
C=a+ b(s+t) + cu+ .... , (2.18)

where +.... denotes omitted higher order terms in s, t, u

(30),

and m whose coefficients are hopefully small (see Khuri

From egs. (2.17) and (2.18) one therefore finds
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a+b+ec=-r7/f2
2 T
— 2
b-¢= ll/f‘,,r
5a + 8b + 2¢ = - 3fg/f; . (2.19)

Only two of these equations are linearly independent i.e.
they do not give unique solutions for a, b, .c but merely
define a relation between fg and fz, which must be satis-

fied with the parametrization of eq. (2,18) viz.

BfZ - 3fg = 12 at s =u=1,t=o0. (2:20)

It is well known that one may obtain another
relation between a, b, ¢ which is linearly independent of
eqs. (2,19) by exploiting the Adler self-consistency condi-
tion (ASC). By contracting out one pion (say kl,a) and

taking the soft pion limit k1 + 0 this condition is

A=B=C=0 at s=t=u=1, (2.21)

a+2b+c=0. (2.22)

We have a choice of any two of the egs. (2.19) to comblne
with (2.22); in order to exhibit explicitly the dependence

of our amplitudes on f: we choose the first two to give:-
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a = (“;3f6)/f2 s
2 -
_ a0
b = fz/f; ,
c = (£9-4)y/£2 (2.23)
2 T
l.e.
A= L {1-s + (s+t+u-3)£0/4},
£2 :
™
B = A(sjt), C=A(siw) . (2,24)

From. these one immediately determines the- scattering

lengths a, and-a2 as

]
]

(7-5£9/8)L/8 = 0.19 - 2.5 a7 .

w
il

- (1 + f:/N)L/2'= - 0.06 - a’ , (2.25)

with L = 1 /2nf; and f: has been made to look like a.
multiple. of a scattering length a;iby rewriting it in the
form fZ = l6ﬂf;a; . Naturally, when a; = 0 we recover the

(6)

results of Weinberg.

a; 1s an unknown parameter in our theory, and we
must-use experiments to determine what range- of values are

reasonable for it; from eq. (2:25) 1t 1s obvious that
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knowing any one of the set-a,, az,,a;:determines the: other
two uniquely. A 1little later we will study this equation:
in more detail,'and.compare it with a theory which includes
the.unitarity conditlion, for the moment however we concen-
trate. on the theoretical implications of 1t for the s-wave.

phase shifts 60 and.G2 .

2. DETERMINATION OF 60 AND 62 FROM CA- AND N/D TECHNIQUE

In 1961, Desai(Bl) had shown, following the.
original work of Chew and Mandelstam, how one may determine
60 andlﬁ2 incorporating elastic unitarity 1in.terms of a.
single real parameter A (the m-m coupling constaqé) taking
into account the;then-recently-discovefed 2T p-wave
resonance (now called the p meson). Briefly his work may
be described as follows. By definitlon the w-7 coupling

constant. A is (see Chew(3’u))

- A E A(vo,cose=o) = B(vo,cose=o) = C(vo,cose=o) R
(2.26)

where (vo=-2/3,cose=o) is the symmetry point s = t = u = 4/3,
Then the crossing relations at the symmetry point, for the
amplitudes AI_and.their derivatives with respect to v (indi-
cated by a prime) and cos 0 are,

(a) A®° = 5a%/2 = -5)

(b) A°” = —2A2” = 23(Al/v)
acosh
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(¢) 4°”” - 5a2°2/2 = -9 3(Al/v)”:
2 dcosH

(a) 82(A%/v2) -5 32(A%/v?) = 3 3(A'/V)°

dcos-@ 2 3cos%0 . 3 3cos6 (2.:27)

Neglecting d.and.higher.partial waves in egs.(a) and (b),
and £ and higher.partial waves in eqs.(c¢) and (d) one obtains

the following approximate crossing relations.

(a%) AJ = 5A%/2 = -5)
P Oag_ 2(=
(6*) AQ .2Ao 6a_
(¢”) A°”” - 5A%2°7/2 = -122° , (2.277)

where a, =-A1/v at v . Eq: (c¢”) obtained from (c) takes

into account the d=wave correction using (d).

Using the (assumed) Mandelstam representatlon,
Chew:and Mandelstam(3ﬂ).showed that the.Ai(v) had singu-
larities in.the complex v plane from v = 0O (threshold) along
the real axls to infinity (the so called right-hand or physi-
cal cut R) and from -~ to =1 (the left-hand, unphysical or
potential cut L). The partial wave.dlspersion relations are

then

Hi=
3

I » I » . I
A (v) = dv ImA (v”) + dv ImA,(v7)
. -:'“'i % I & (2.28)

v7-v R \VARV

In order to ensure the convergence of this equation for

s-waves it seems necessary to introduce at least one sub-
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traction, which in this particular.case we make at Vo viz.

I, I - PR
Ao(“b“ﬂﬁéa(vo) + V=V, dv Ion(v )

™ (2.29)

L,R (v‘-v)(v‘—vo)

In the usual manner, substituting Ag(v) = NI/DI,with N,

contalning L, and.DI containing R, and using elastilc
unitarity in the form Idég(vﬂ'l = -[v/(v+1)]k, then one

finds
I ‘ I
N_(v) = A" (v_ ) + (v=-v ) dv’ImA-(v°)D_.(v7)
I o0 0 f 0 I , (2.30)
T L (v‘-v)(v‘—vo)
DI(v) =1- (v_vo) g dv‘( v“)% NI(V‘) . (2.31)
ﬂ R v+l (v’ev)(v‘-vo)

In the simplest approximation of these equations the left

hand cut 1s replaced by a pole, with residue bI and position

wp = =V} these equations then simplify to
_ a1
NI(v) = Ao(vo)_+ (v—vo)(wI+yo) By , (2:32)
(mI+v)
_ I
DI(v) =1 - (v—vo)[K(—v,-vo)Ao(vo) +

+ (uptv )K(wp,-v)B.1 (2.33)
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where BI 1s proportional to bI and-

K(x,y)n='%-f—dv/b71v+f7 (2.34)

(vx) (vty)  °

As we are generally dealing with s-waves let's drop the-

» suffix on Al and write as Aj, unless 2 # 0 .

Desail had to. determine the. six: s-wave parameters Ao(vo),
Az(vo), wo’wé"Bo and.Bz.in order.to find
cét:61_=./r3ii773 ReDI(v)/NI(v). This was. done by using
(a known) two parameter resonance form for AEI)(v)/v given
by Frazer and Fulco(32) so that AEI)(vO) and AEI)’(vo) were
known. Thus eq. (2.27)‘gave five conditlons to determine
'the six unknowns; by fixing a priori W, at some value
guessed at from physical considerations the problem became
determinate and. phase shift curves could be plotted for
various A. A 1s, of. course, unknown in this theory, he

did find however that A20.03 for solutions to exist.

The point I wish to make here is that. egs. (2.24)
satisfy the crossing relations (2.277), the last one being

satisfied trivally as A" = A"" = a

“ = 0. the other two
0 2 1 -

belng

= = - o
A= -A_(v)/5 = -A (v )/2 = L(3r0-4)/48,  (2.35)



and

S AL(v)/2 = =AZ(v) = L . (2.36) °

\

Thus, in egs. (2.32) and (2.33) we already know
two of Desal's unknowns viz Ao(vo) and Az(vo) elther as

functlons of fZ, or equivalently A .

Now eqs. (2.24) may be rewritten as

A (v) = (8v+T-5£7 /1)L/4

A (v) _(uv+z+fj/2)L/4 , (2.37)

or alternatively, using eq. (2.35) as

A (V) = 2(v=v )L - BA

Az(v) -(vevo)L - 2X . (2.38)

These CA derived amplitudes were obtalned in an off-mass-
shell calculation and are assumed to be valid a little below
and hopefully up to the elastic threshold; if auAu is really
a smooth operator it may be expected that these latter
amplitudes hold in the region -1 < v £ 0 between the left
and right branch cuts. To obtain the two unknowns Wy and BI
one may then choose any two points in this region and sub-

stitute the relevant amplitudes into egs. (2.32) and (2.33).
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For a given 1lsospin state these two points have. been chosen
to bé at threshold, and-at.the zero of the amplitudes when

£,=0(i.e. at vy = -7/8 and vi_, = - %).

A typical equatlion to be solved for the I = 2
case (the simplest!) is, with w,o=Xx.
1, L [L(2x-1)(2+£9/2) - g(£))a’x]log(vR+vE-T) =
xom e o AED
2
= 2 + (a;/2-1)e(£7)/2n(£7) , (2.39)
where
g(£9) = 2L [1+(2+£%/2)(-2/3+£%/2) 3/3L tan“(l/?)] ,
2 3 2 2 m
(2.40)
and
n(£°) = a* - L(f°/2-2/3)[1+a’(ﬂ tan_l(l//é')-3)].
2 2 Ir 2 _2_2_ T
(2.41)

There 1s a similar, although somewhat more complicated,
equation to solve for the I=0 case, again for various

fi(or A)

The most strikingpoint to note in the solution
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of 'eq. (2:38) for w, is that solutions onlyiexist-on L when-
A 2 0.029 (i.e..fg'z,s;s),_whereas solutions.for w, exist
£sr a much larger range:of. A; these are shown in figure (5).
There appears. to be little point in.carrying the study be-
yond A = 0.06 as this.would.imply, from eq. (2.35), that the
I = 2 state interaction would become unduly large, contra-.
dicting presently avallable. experimental data. In figure
(6) the resulting phase. shifts are shown for the two values
of ‘A, 0.03 and 0.06;, corresponding to scattering lengths

of ‘a, = 0,003, a2 = -0.13-and a, =--0.15; a, = -0.19 -
respectively. For A = 0'.03-6o becomes very slightly nega-.
tive (less than a degree) for very low values of v; thils 1s
_more. accentuated.and occurs.at higher v values as A 1ncreases.
In figure (7) we gilve. the "experimental" 62 obtained by
Walker et al$§3? and Baton et~a1.(3u); for 60 we clearly do
net get a resonance, as.many experimental analysis lndicate-
this situation is:considefed in greater detall in the next
section.. For the moment let us analyse the possible sources.
of error in our. calculations, assuming from the outset: the
validity of dispersion relations and CA techniques. These

errors may come from three sources viz:

(1) Solutions may be strongly dependent upon the cholce

of "matching up" points between the cuts.

(2)  Approximation. of the left-hand cut by a single

pole.
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(3) The CA amplitudes of eq. (2.24) do not incor-

porate elastlc unitarity.

The‘dependence:of the solution on the "matching up" points
1s relatively simple to check; it was. found that although
pole positions and residues can.change by. as .much as 15%

the effect on the phase shifts 1is very small 1ndeed (2=3%)

even for -the larger values of v.

The single pole approximation (2) represents the
average effect of the crossed s and p-wave interactions on
the right hand cut, and 1s Justifiable only 1f no strong
gs-wave interaction exists at low energles. The p-meson
will then give a peak on the left-hand cut at v = -m;/u s
which may be considered to generate a force which isn't too
long a range for the single pole approximation to be wvalid.

Presumably the error in.G2 is larger than in. § due to its

o’
pole being closer to the physical region, although it appears
to reproduce the "experimental" data rather better than Go

does.

Interestingly enough Shaw'and-Morgan(35)'

using
forward dispersion relatlons have obtained results for 60

and 62 somewhat similar to mine. My results are also very
close indeed to what one may conslder to-be the mueh more
sophisticated (from the phenémenological view-polnt!l) calcu-

lation of Fulco and»Wong.(36) Here they use forward disper-

sion relations (once-subtracted for the s-wave) incorporating



FIGURE 5. ©Pole position wy VvS. A for I = 0,2.
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exact crossing symmetry. but with a. parametrization of the:
right-hand cut. For the;gbsorptivewparts they use the p and
f mesons, and exact elastie;unitarity-feratheusgwaves-below

v = 24, and assume fhat'above-bhis value the absorptive part.
is proportional to.s for all I (Pomeranchuk Theerem). Thelr
conclusions are the same as mine viz., use of the rather. low
CA amplitudes. appears not  to give large phase shifts. This
conclusion is supported;by the pure CA effective range calcu~
lations of Brown and,Goble.(37)'One-should mention a recent
calculation of-Tryon(38) which is simllar in many ways to
that of Fulco and Wong, using twlce subtracted partial wave
dispersion relatlions, unitarity, and crossing symmétry. He
parametrlzes the absorptive part by using Breit-Wigner forms
for the p, fo.and fg~meson3'and various reasonable assump-
tions about the s-wave. -Hils results fit almost exactly
(except at very low energy) the results .of Walker et al:;
personally T would llke to be econvineed that- hls s-wave. para-
metrization is unique. . Tryon dees-nete  however that he:1is
rather straining the validity .ef the Legendre expansion (use-
ful when v > - 9) as- he-obtains poles-on the left hand cut
which are well into the: region of the double speetral function

(1.e. v = -11,-56 and =79).

Tt is still far from clear as to what effect in-
corporation of elastlc unitarity into the CA amplitudes is,
although (or perhaps because:) it has received fairly inten-

sive study recently by a number of authors. A very general
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trend'seems;touindicate that unitarity changes. the Welnberg
amplitude by only. a small amount-—a result which appears
not to. be particularly obvious. One particular approach,
which we study and generalize,in.Section44, is that: of
Iliopoulos;.thisuincorporatesvelastic;threshold unitarity
in a Weinbergwtype,CA.calculation and leads ‘to.interesting

multiple-valued scattering lengths..

3,. "EXPERIMENTAL" PHASE SHIFTS.

The present non-feasibility of direct w-m scatter-
ing experiments.has already been noted in the introduction
to Chapter I; data.must therefore be extracted, subjeect to
some theoretical model, from experiments in which pions play
a r8le. _This has the. very obviocus disadvantage of resulting
in. conclusions which. can be‘highlmeodel'dependent, even
if the experimental data is. rather "clean". One partiecular
theoretical.model, which has undergone a. number of refine-
ments, is of the peripheral type in which a one plon exchange
(OPE). interaction is assumed. to dominate a quasi two body
collision.(39) This, by itself, falls to yileld the rather
striking“forward,production-angle_peaking experimentally
observed‘and.violates;the.unitarity 1imit for low partial
waves. Ad hoc. form factor modifications initiated by Ferrari
and Selleri(qo) appeared to have a rather drastic momentum.

dependence,. and in the case of NNp the calculated nucleon
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e.m. form factor was. quite iraccurate. Furthermore accurate
experimental.polarization;data,of"the,produced particle
showed significant,derivations.from the. form factor modified

OPE.

It. was soon realizedcgl) that the existence of a
large number.of inelastic. competing channels modified the
low partial wave OPE.quasi.two body“interactions.(absorption).
These. form. factor.and absorption modifications are the ones
used. at the present time; here. we indicate briefly some of

the basic ideas.and results.

Walker et al.(33) have managed to obtain both
60 and Géﬁby collecting, from varlous experimental groups,
data on the reactions m p.» p p and T p o°n at energles
of 2,.3 and. 7 Gev. The pilonic-decays of p~ and p° both
exhibit. a. forward-backward. asymmetry due to interference
between s. and p-wave m-m amplitudes. This leads fo an
energy dependent minimum in. the angular distribution; by
using these experimentally determined minimum-points and the
p-wave cross section data one may extract the s-wave phase
shifts, taking absorption and spin flip effects into account,
assuming that: the asymmetry does not exhibit a strong depend-
ence on the momentum transfer to the nucleon. Bander et a1§“2)

suggest however that the latter effect 1s quite pronounced,

and that s-wave phase shifts depend quite strongly on the
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p-wave ones, which cannot unambiguously be determined by
using a Breit-Wigner form. For what 1t is worth we have
already.given. the results of. Walker. et al. for 62 in

figure (7), thelr result for.SO is on an average three
times greater. than my conclusions. and indicate a possible
broad isoscalar resonance (the e-meson) around.850-900 Mev.
Walker's results for 60 in the range 300-500 Mev are simi-
lar to Jones et a1,<u3) (who do not consider absorptlon or
form factor modifications), and. for 62 similar to Baton

et al.(34) (who consider rather carefully the extrapolation
in the momentum transfer to the nucleon variable and obtain

a = =-0.07).
2.

The foregoing peripheral type calculations, as
well as many others, are elther dependent upon a detailed
theoretical treatment of absorption, or ignore 1t partially
or completely. Schlein,(uu) utilizing the reaction
T p n_ﬂ+n, has given a method of extracting the m-m phase
shifts in the vicinity of . the p-meson resonance which does
not involve a detalled knowledge of the helilcity amplitudes;
although some. of them need.to be parametrized enough con-
straints. remain to. test his model, With this method Malamud
and Schlein(uu) extract,Go (the detalls need not concern
us here) and find three solutions, all of which suggest an
c-meson exlsts-the preferred set indicating that.Go passes

through 90°.at about 730 Mev.
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All of the calculations mentioned so far are
really restricted. to the. vicinity of the p-mass reglon,
as :they. ultimately depend for thelr validity on the inter-

feprence. between. p. and s-WwavesS.. Biswas-et-al.(MS)

have

used. a different.methodwfor.evaluating 60 and.éé at dipion
masses.lower,than:that of the p-meson by utilizing inter-
ference. between- the nuclear and coulomb contributions, which:
'are.comparable;in”themforward.direction; unfortunately

their statisties. are.so bad.it 1is impossible to sensibly.

extract any;detailed.information.

An alternative and independent method was begun
in- 1962 by. Hamilton et al.(MG) and Atkinson,(u7) and has.
vbeen studied again recently by Lovelace et al.(u8) viz.
backward. m-N scattering.. It consists 1n the observation
that the backward w-N scattering amplitude is analytic in
the cut.Q—plane (cuts. from (-»,-1) and (0,»)) except for
the. nucleon pole,and that. the left-hand cut describes the
process NN - mm, physical only for v< - 16M2., By extra-
polating the. positive isotopic spiln backward m-N data from
its physical region.v > 0.to v< - 1 the m—-7 phases can be
deduced. This extrapolation is, of course, the weakest
part of this whole method, as amply demonstrated by Lovelace,
who obtains a. vast number of solutlons for 60 wlith only

one thing in. common i.e. sooner or later they pass through

9001 This contrasts with the earlier work where 60 rose
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pairly rapidly to sbout. 30°-40° before slowly falling off.
The.method‘haSntheuobvious”advantage of using.the conslder-

ablexamount-Ofvexperimental.knowledge.on m-N scattering.

Recently a great.deal.of.interest has:been focusséd
on.Kzf.deegyg;,weﬂreferwto.the,paperuof Pals and Treimangug)
for.agiextensive:bibliography. .The. form factors'of thils
decay carry.direet.information~about.the m=-7 interaction, 1in
particular. that in the. isospin zero state (1f one believes -
in.the. semileptonic AI = % rule). These influence the inten-
sity . and polarization spectra which are receiving increasingly
accurate meaSurements——it would be premature to use these
pesults at. the present time, although Kacser et ala(SO) ex-
clude the possibility of. a g—resonance on rather limited
statistics. . The Glasgow.group(Sl) indicate in their analysis
of Kz . decay that 60 is negative. at low energiles, compatible

n
with my calculation.

4., ELASTIC. THRESHOLD UNITARITY.

- pefine £°%(s,t) = <ﬂ°,ﬂ°,out|ﬂ°,ﬂ°,in> = A+B+C
with-fgo(s)‘its s-wave projection. Then Jin, Martin and
Common(52) nave shown from axiomatlc field theory (positivity
of the absorptive part and crossing symmetry) that the

following rigorous results must be satisfied.



(a) 232£°° (s,t) >0
asz .
s=t=u=4/3
(0)  £2°) > £2° () for 4 >8>0

00(0) > £0° (2+2/Y3)

(e) fo

(d) fg°(3.205) > fg° (0.2134) > fg°(2.9863).
(2.42)

Furthermore,.fgo(s) has qt leaet one minimum for 1.02 > s > 1.7.
It-is immediately obvious, as other authors have noted,

that Weinberg's amplitudes do not. satisfy these conditions—
neither do the.modifled ones-when.fz # 0. By incorporation

of elastic threshold.unitérity (only) in a special way we:

wlll see that Martin's axiomatic conditions willl be satisfiled.

Write Mg s @8
= - I s(I)
Myp,ys = "LET 2§I 61(v) (28+1)P ) (cos®)Poe S
2+I even

(2.43)
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Then the elastic unitarity condition written in the form

most sultable. for.our.purposes 1s

Imit£“=w41 |ti|2--‘ (2.4h)
)

Following Iliopoulos' generallzation of Weinberg's expansion

(eqs. ‘(2,18)) M is expanded. in a power series in

aB,ys:
kg = /ﬂ-s/zbuktn= /H-t/ZAand.ku‘=‘/E—u/2 so that. the domain
of analyticity of MaB v6 is expanded so as to lnclude the

3

physical threshold.

- . . 2 24,2
A= a 2e + b(kt+ku) + ck, + (a+e)kS + e(kt+ku)+""

w
"

-5
Ak < ko),

A(k, pa k,) | (2.45)

Q
i

The on-mass-shell relation s+t+u = 4 1s written in the
form k;+k§+ka =2, Eq. (2.45) is so arranged as to illus-
trate its off-mass-shell nature, characterized by e(=0 for

an on-mass-shell amplitude).

Unitarity (U) in both I = 0 and I = 2 s-wave
states, the Adler self-consistency condition, the V-
commutator and o-term  give the following flve equations in

five unknowns:
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-327(2b+3c) .= (5a+8b+2c+2d+8e)? , U(I=0)

-161b.=. (a+b+c+d+e)? | ' U(1=2)
a+ V/3b.+ V3 c+3d+ le=0, Asc
2 I
b -c=-v3d=-16/3 , v
fz
™

2a + (/3+2)b + V3¢ + 3d + e = =323 O
2 (2.46)

Before solving these equatlons let us look at the below
threshold analyticity requirements on f°°(s;t) and fgo(s).

From eq. (2.45) one finds

£9%(s,t) = 3a + 2d + (2b+c)(k otk +k ) ,  (2.47)

t

32£%%(s,t) = - 3/3 (2b+e) . (2.48)

9s? 64v2
s=t=u=4/3

Note that in order to satisfy eq. (2.42a), 2b+c must ke

negative.
fg°(s) = 3a + 2d + (2b+c)h(s) , (2.49)
with

n(s) = /o8 /2 + 2(s3/2-8)/3(s=4) . (2.50)
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This latter function h(s), shown in figure (8) has several
interesting.properties.i.e.;it_has.a.maximum variation of
18% in.the range.l.> s.> 0.with a single mazimum at s = 1.65"
(whiech is. in.the range:.1.7.> 8. > 1.02) and obeys the in-
equalities. of.eqs. (2.42(b),(c) and.(d)) with.the. inequallty
signs reversed. Put more succinctly,-h(s) remarkably. has
all the properties required.for.fgp(s).. From eq. (2.49)
this again indicates. that.we.need (2b+c) to be negative.
Thus, . in. order ftoc satisfy.all the below threshold inequali-

ties we need 2b+ec < 0, Although from-egs. (2.46){u(1=0)}

and {u(I=2)} it 1s obvious that.2b.+ 3¢ < 0 and.b < 0 1t 1s
certainly: not clear that.2b + c¢ < 0, Before leaving this
section note.that it is the linear expansion terms of eq.

(2.45). which. contribute to satisfy Martin's. conditions for

.2bm+.cm<'0,"not"theuquadfatic ones.

' 5...NUMERICAL. SOLUTIONS.

Egs. (2.46). were solved on the APL/360 system in
operation here. Tt -was. found that.no real solutlons exls-
ted. for a; > 0.15. The equations were therefore solved for
-O,M.<‘a; < 0.15 1.e. =29.1 < fz < 10.9. Results are shown
in figures. (9) and. (10) for a  and a respectively; for a
given.a; there. are two solutions for 0.11 < a; < 0.15
1abelled 1(a) and 1(b), and four solutions for a; < 0.11

labelled 1(a), 1(b), 2(a) and 2(b). The solutions for a
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are almost parabolic in shape.

For comparison purposes the modified Weinberg
. scattering lengths (eqs. (2.25)) are showng they do not ex-
hibit the cut-off behaviour due to incorporation of threshold
unitarity, and diverge rapidly from the unitarily corrected
scattering lengths fqr a; > Q, When a;‘= 0 we recover the
four-fold nature of the solutions as obtalned by Iliopoulos,
although his values are incorrect. A very lmportant polnt
to note 1s that 2b+c < 0 for all a; for all four solutions
i.e. Martin's conditions are automatically satisfied.

Selected numerical results are shown in table (1)

a‘ﬂ‘heinberg 1(a) 1(b) 2(a) 2(b)

2

-0.1 0.44 0.56 [-2.83 -2.59 0.31
0 0.19 0.18 |-2.45 -2.18 [-0.10 a
+0.1 | -0.06 -0.37 |-1.90 -1.42 |-0.86

-0.1 0.04 0.13 0.09 -2.33 [-2.37
0 -0.06 -0.06 |-0.10 -2.15 |-2.18 a
+0.1 | -0.16 -0.29 |-0.33 -1.93 |-1.94

TABLE 1

Comparison of second order scattering lengths incorporating
threshold unitarity with those of Welnberg for three values

of a” .
2
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Naturally, the fact.that.we:have lncorporated elas-
tic threshold unitarity and. isospin two amplitude 1in the t-
channel, as.well as satisfying“belcw.threshold“cgnditions,is
very gratifying; however, we do appear to be over-endowed
wlth solutions. The questlon is,,how”cannone,discriminate
between them? Oné possible way would be to contract out three.
or four pions and obtain the soft ﬁion.limitfof all of them,

so as to obtain constraints on MdB at the unphysical points.

sYS

s+t+u=1 and s=t=u=o0. Upon expanéion of MaB to third order

sYS

in ks,.k ku the extra flve coefficlents could be determined,

t?
and an attempt made to determine the smoothest solution in.
transition from second to third order. Such a procedure un-

fortunately involves a knowledge of."o-type" terms i.e.:

(a) G(xc-yo)[Ag(x),cBY(y)].rat s+t+u=1,

(b) G(xo—yo)G(xo-zo)[Ag(x),[Ag(y), GYG(z)]], at s =t =u=o0
| (2.51)

which.are. not. known .without .introducing .specific models.

. Here we suggest a possible approach to.remove. the
ambiguity caused by .the multipliclity of solutions. MdB,YG‘
may simply be determlined to first.order in,ks,kt,ku(i.e.
solve egs.(2.46)with d = e = o);,one‘mayathen:try to decide-
whether a first order solution merges amoothly with any -
of the four .second order ones. Obviously, if the change is

rather violent from first to.second order the parametrization
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of eq.(2.45) 1s meaningless.

At this stage a further ambigulty arlses, namely,
there is no unlque first order solution due to .the exlstence
of five: conditions to determine the three unknowns a, b, C;
we have a cholce of conditions. to impose. As it is not
particular1y~obviousuwhieh chelce to make, all possibilitiles
have been examined viz. the CA.conditions ASC+V+g or
U(I=0) and .U(I=2) combined with any one of ASC, V or o.
Unitarity combined with the V-commutator does not give real
values for a, b, ¢ (for any fz) whereas unitarity with the
g-model gives four distinct possibllities; altogether we
therefore have six sets of solutions. They are exhibited as
broken curves in filgures (11)-(14), the full curves being
the second .order solutions. Figures (15) and (16) show the
variation of d and e with a;w. It is immediately obvious
that the curves 1l(a) merge most smoothly into one another,
also the value of d 1s the smallest, as it should be. Note
that scattering amplitudes are determined at the on-mass-shell
point where k;+k§+k; = 2 so that the coeffieient of e
vanishes (which is equivalent to e = o for on-mass-shell con-
siderations). Figure (17) and (18) show first order scatter-
ing lengths a, and a2 VS, a; - on comparison with figures (9)
and (10) respectively one notes the vast change from first to
seccnd order in the scattering lengths except for solution

1(a). Figures (19) and (20) compare first and second order
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2.5

(1+1/3)

FIGURE 8. h(s) vs. s in the range U>s>o .
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solutions. with' those of Weinberg; in.the transition from
first .to second.order:aé decreases slightly whereas a, in-
creases-by a:larger ameunt .— pfeaumably-if one could go

to third order the change from secend order wcuidhbe gsmaller

than“the.latter,'butzin;thewsame,relative‘directicns.

Figures (19) and.(20) give a definite relation
between a, and a,s 1f for example we.Know a then a; is
determined<and a. unique aé may be obtained. If_a; =0
the Weilnberg scattering lengths (see table (1)) coincide with
the unitarily corrected .ones — this does appear a some-

what. surprising conclusion.

6.  -SUMMARY.OF. SCATTERING. LENGTH RESULTS.

In figure (21) we plot our four solutions 1(a),
1(b), 2(a) and 2(b) in the a -a, plane; points A and B are
the points for maximumra;-and indicate, of course, the
dividing lines between these solutions. Arrows indicate in-

creasing a;; the points C, D. E and F denote values at which

Eliminating a;~from4eqs.(2;25) the modified

Weinberg relation between a, and a2 becomes

2a - 5a = 0.68 . (2.52)
2
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Notice (once again). how close thils-curve 1ls to.our favoured
solution.1l{a). 1In passing.let us note that there 1ls a well
known. approximate relation connecting the s and p=-wave.

scattering lengths gilven by,.

2a, -‘Saz =.18a1 . (2:53)

This relation 1s simply obtailned from eqs.(2.27). by continu-
ing the .amplitudes from,vo to threshold with retentlon of

s .and p~-waves only. Comparing these two equatlions then

a = 0.038,.a result which relates very well to Olssen's

(1967)(53) experimental result of 0.040 + 0.002.

Now Pickup et al.(su) (see in thls regard the paper
[~
by A.N.‘Kamalb(s”))using the Chew-Low extrapolation method on

ﬂ-p+n-w+n, 7~ r°p have plotted ¢ = %(o + 0 4q-) in the

m=7n0
range o < v < 9 and shown that its threshold value 6 =(40£15)mb.
But one also has

- _ 2 2 ,

O, = %E(Zao + 5a2+2a0a2) . (2.54)
If we let 60 take the values 20 and 60mb. and plot the
relevant ellipses in the ao-a2 plane then the acutal results
should. certainly lie in between them, as in figure (21). It
1s quite obvious from this flgure that: the point'a;'= o is
not in this region 1.e. Weinberg's original CA result is

certainly not compatible with the Pilckup data. When
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Weinberg's calculation appeared many people were surprised as
to the smallness of his: results compared to previous calcula-~
tions (thls does not necessarily.mean it 1s incorrect!). I
merely suggest that one of the reasons for. .this.is due to the
neglect of a crossed channel isospin two interaction;. this.
affects in particular P which 1s more strongly dependent
upon a; then a2 is. From figure (21) this would appear to
be. even more.importantﬁthan-unitarity. One must bear in mind
nowever that figure (21) can be deceptlve; although a;‘is

zero at almost. exactly the same point (i.e. at ¢) on both the

modified Weilnberg curve, and solutien 1(a), the variation of

a; along the former is much-greater than the. latter —— numerical

values are noted below.

Using the Pickup ellipses as our scattering length
poundaries one finds the following two ranges .of possible

solutions.

a, = (-0.67,-0,31) ,
a = (-0.39,-0.26) ,
a’ = (0.13, 0.09) ,

a;(Weinberg) = (0.35,0.22), (2.55)
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a, = (0.53;0.83) ,
a, =. (0,10,0.27) ,
a;'ﬂ (-0009’-0.19) 3

a;(Weinberg) = (=0,14,=0,27). (2.56)

In both solutilons |a0|>|a2| which seems experimentally to be
the case. Solution (2.56) corresponds to an attractive.l.= o
(as well as attractive I = 2) interaction favoured in all
pre-1963 calculations on backward m-N scattering,(56 ) and
has nbt lost its popularity in the recent spate of interest
in m-rm scattering generated by Weinberg's calculation (for
e.g. Fulco and Wong). There have, however, been many recent
calculations(57) in which a, is not only repulsive, but often
quite strongly so. This 1s also experimentally indicated

by some calculations on Kz decay, and has led Goebel and
Shaw(58) to try and obtainkphenomenological bounds on &g
With their assumptions and data (analyticity of a forward
scattering amplitude plus ratio of total to forward elastic
differential cross section) they obtain a negative lower bound
of a, = -0.5., Chu and Desai,(59)saturating a simply obtailned
symmetry point sum rule with o and,fO mesons conclude that-ao
must be small and negative. These two results, 1f one accepts
them at face value (often difficult to do!) would indicate
that part of our sclution (2.55) is the preferred one.

As a reasonably happy consequence  thls-has
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a2 <.o0 , a result which. appears.to be. gaining increasing

acceptance. Thus, I find

a_ = (=0,5,-0.31)
a - -(-0032,-0(26)
a” = (0,115,0,09)

a” (Weinberg) = (0,28,0.22) (2.57)

Finally, let us note that our Weilnberg type phase -
shift calculations were only valld for a;(Weinberg) > 0.07,
and were arbitrarily truncated at a;(Weinberg) = 0,13 in
order not to make this interaction unduly large. This ensures
that a; (Weinberg) 1s just inside the inner Pickup elllpse.
From eq.(2.57) 1t would now seem reasonable to repeat this
calculation with solution 1(a), as one can obviously have

lower values;of-a;~between the ellipses.

7. CONCLUSION.

It has been shown that Weinberg's CA m-m scatter-
ing length calculations may be generallized to include a
crossed channel 1sospin two interaction (which surely must
be present). Using dispersien relations, below threshold CA
amplitudes, and a single pole approximation to the left hand
cut. (for each isospin state) the isospln zero s-wave phase

shift § has been found.to be slightly negatlive just above
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elastlc threshold, before.becoming positive and reaching a
maximum of about 30° at.v = 10. This occurs at.the minimum
allowed value of A = 0.03,(the.phenomenologidal T=T coupling
constant), any increase in-:A decreases 60 so that it will
never resonate.. 62 is.always small and negative, and 1s com-
patible with, for example, the "experimental'" results of

Walker et al. and Baton et al.

This modified. Weinberg calculation does not:incor-
porate elastlc unitaripy, and furthermore does not satisfy
the below threshold conditions of Martin on the no—wo ampli-
tude. A simple procedure 1s used to incorporate threshold
unitarity in the abové method,. originally due to Illopoulos.
This forces the results to cbey Martin's conditions but pro-.
duces four. sets of solutions, from continuity arguments only
one of these is favoured, appearing also to be the one experi-
mentally favoured. It seems that: unitarity 1s important. from.
the subsidiary réle it plays in reducing the amount of the
crossed channel isospin two scattering length a; whilch is
necessary to bring the theoretical results within "experimental"
bounds. With the experimental limits of Pickup et al., and
the phenomenological bounds of Goebel and Shaw, and Chu and

Desal one finds a = (-0.5,-0.3), a, = -0.3 and-a; = 0.1 .
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CHAPTER III

ABSTRACT: The offashell;gauge.violatign‘in,the phoﬁo—
production of a soft‘pion~or;axial-vector:spuribn is shown
to be completgly contained: in the nucleon pole terms of the-
amplitude. Using this oﬁe;can show-that-the-PCACﬂhypothéslsy
so modified as to take first order electromagnetic inter-
actionS‘into-account,'1s_sufficient~to-detenmine sum. rules
between the anomalous isoscalar and: lisovector nucleon..
magnetic: moments and-the soft-pion forward production:ampli-
tude. Such sum- rules havevbeen previously obtalned-using

the techniques of current algebra-and dispersion relations.

1. INTRODUCTION

In the last few years considerable interest has
arisen.in the possible significance and: range of validity of
various theoretical results presently asceribed to Gell-
Mann's(7’) chiral algebra of currents. One of the most impor-
tant sum rules obtained from this current -algebra is the-

Adler-Weisberger‘ 5) result for the axial-vector B-decay
(60)

coupling cénstant renormalization. However, Veltman.
has indicated, in a model in which PCAC -is modified to in-
clude minimal couplings:of .photen and ‘intermediate weak
vector and axial-vector bosons, that the Adler-Welsberger sum

rule can merely be obtained by considering weak axial-vector
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boson scattering off nucleons, without the necessity for
commutation relations.:. Even more simply, the Cablbbo-
Radicati(6l) sum rule for the difference between the proton-:
and neutreon total magnetic mements, originally obtained
from the commutation relations of electric dipole moments ,
follows 1mmed1aﬁely from the minimal photenzcouplingvto the
vector hadronic weak current. Cordes anduMoffat(62) have.
shown that reasonable results for gA'can be obtained by
breaking the closure property of the SU(3)®sU(3) group in.
the axial-=charge axialecharge-commutation term. Fayyazuddin
and-Hussain(63) obtain the Adler-Weilsberger result from

weak amplitude superconvergent-dispersion relations.

These results certalnly indicate that the Adler-
Welsberger andACabibbo-Radicati,sum rules are not-a critical
test of CA. Here we show further that the experimentally
well satisfied CA derived sum rules of Fubini, Furlan and
Rossetti(6u) relating the anomalous isoscalar (u®) and.
isovector (1Y) nucleon magnetic. moments to the pilon photo-
production amplitude, may simply be obtained from the PCAC.
hypothesis modified to take first order electromagnetic

interactions into account, without using commutation relations.

Section 2 studles the. modification of the usual
gauge condition for-a photOproduced off-mass-shell plon
(or axial-vector spurion), and notes in the soft pion (axial-

vector spurion) momentum 1imit- k-0 that the entire gauge
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violation 1s contained;in»the.nucleenwpolefterms. This -
non-CA method 1S~comﬁared;witp:the earlier CA:one and-the
similarities noted. Amplitudes for pion:(axial-vector
spurion) photoprodﬁctionxare given, in Section 3 these.
amplitudes are substituted:infogthe modified PCAC hypethesis
sandwiched between a nucleon, and a nhcleon‘photonastate,

in the soft 1imit-k?2=0. The;analysis,simplifies-considerably
in. the 1limit k+0, whence the sum rules are obtained. Finally .
we. note the work which Nauenberg, Boulware and Brown, and.
Berman and Frishman have done concerning the interrelation
between CA and medified PCAC, in:the same period in which

the aforementioned study was undertaken.

2. OFF-SHELL GAUGE CONDITIONS

We consider the photoproductlion process
y(q)+N(p1)+N(p2)+ﬂi(k), and use the invariants v=-(p1+p2).k/2M,
v’=q.k/2M, where M 1is the nucleon mass. The PCAC hypothesis,
as modified to take .account of first-order e.m. effects may

be written:as(65)

1 s, ad o op et
BuAu ee! auAu fﬂ¢ s , (3.1)

where (i,j) are isospin labels, the pion mass 1s unity, a,
+
the e.m. fleld, ¢ =v2(¢'+1¢?)/2, $%=¢3 are renormalized plon
X a1 2 O_,3, :
field operators, and Au_(Au iiAu)/Z, Aquu, £, 1s given in
eqo (1515).
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Sandwiching eq. (3.1) between states:<p2| and

|p1,q>,-contracting out the photon, and using the convenient

notation(66)

J = rj : i = e i y
< |alp > =N N <p,,alfylp > = eN] e M, »  (3.2)
(related to <p2|At|pl,q> by crossing)-
<p |.Ti|p q>' = (ka-]_)<p |¢i|p qQ> = eN” e Ti (3.3)

2 1T wIFy? ” 2 1? 12 V'V ’ .

with e, the photon polarization vector, one obtains-
fﬂevTv(v,v k) = (k*-le [ik i L9070k - e*LInd (v,v7 k) 1,
(3.4)

i.e. the gauge condition on T% becomes  (substituting

q,, for ev)
£ T = (k2-D)a, (L Mg - ety . (3.5)

Eq. (3.5) 1s not in a very convenient form, as the right
hand side involves radiative and non-radiative weak ampli-
tudes. However, a separate constraint relating Mi to NJ
has been derived by Amatil andaJengo( 67) and Adler and
Dothan(68) by utilizing gauge invariance on the radiaéive
nucleon B-decay (or K-capture) amplitude; we .consider this-

briefly here.:
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(a) (b)

Figure 22. 1In the radiative K-capture process (a) the
photon is. emitted. from elther the hadrons (b) or the:

electron: (c).

Denote the weak leptonic current by Jﬁ , where

L

J

N Yu(l—ivs)ue (3.6)

e

Let's denote the matrix element of flgure (22a) by

eN’ e Ly 3% . then we have.

2 V VU
e o 1= 3% = eN* e MT J¥ 4 N NTE v (1-1y ) X

12 V VU U 12 V VT I 12 H Ve U 5

i (-iey. e )u_/v2q
XW vV Ve o °?
i.e
e 1= 3% = eM” 3% + NTG, v, (1-1v)) L gu . (3.7)
vivpe u VoV W v, s’ K-d-m, " e :

Substituting a, for:ev into this equation, and noting that:

qu;u z 0 then one immediately finds
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as‘Jﬁ_#,O. In the.general isospin case one obtains

qu%u =--1s313Nﬂ o (3.9)

Substituting eq. (3.9) into eq. (3.5) then

1 _ (2 1yesidp - J
£a,T, = (k*=1)e (kv qv)Nv
i i
= 15 (2-1e¥d < |3tip >, from PCAC.
(k-q)2-1
l.e.
q,Th(v,v 7 k2) = =(?-1) gK{(k-q)z}ﬁ(pz)QfYSu(pl)-
" "5,
(k-q)"-1 (3.10)
We use the isospin projection operators.
i_
Q =T
i_1 1
Qy = 2{11’13} =845
1 _1 v = 3l] ,
Q- = 2[11,13] = -ie Ty - (3:11)
It is instructive to compare the CA method for
6
obtaining eq. (3.10), as given, for example, by Nauenberg( 9).

Define a quantity T%u as
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i _ b o1kX i 3
'I‘\,u = -1 fd"*xe <p2|[Au(x), Vv(o)]|p1>e(xo)_

(3.12)

Multiplying by ku, integrating by parts and dropping the

surface term then-

k. 7

_ v 1kx i 3
wTou = fd*xe {<p2|[8uAu(x) s VV(O)]|p1>9(xo) +.

+ <p2|[Ai(x) , V3(0)1|p >8(x)} . | (3.13)

But from-CA.
i 3 Yy = _1e813,d o y
[Ao(x), VV(O)]G(xo) 1eA(x)8 (x) , (3.1h)
and. substituting this result into eq. (3.13) one finds

lkx 1
fatxe <p2|[3uAu(x), v3(0)3|p1>e(xo) =

i

= ieaiJNi + kuTVu . (3‘15)

. 1 i
Define S <ﬂ.(k),p2|V3(0)|p1>

ikx, . i
= ifd"xe szpzi[¢ (x),Vé(O)]lp1>6(xo) , (3.16)
where the latter result-1is from the LSZ reduction formula -
with K the Klein-Gordon operator.

Denote the analytic continuation of S% away from k%=1 as

s
Sv with
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~i—
s, = iiE%:lleP texep |[3uAt(x),V3(0)]|pl>e(xo) , (3.17)
- _

where we have already used PCAC in substituting

3uAi(x)/f1r for the interpolating pion f1e1d1¢i(x).

From eqs. (3.15) and (3.17) eliminate the term contalning
e(xo) and multiply by q, to obtain.

£S5 = (K¥=1)q, (Lk T, et . (3.18)
Notice the similarity of this equation to eq. (3.4).

Multiplying eq. (3.12) by q,, and noting that-avV3=0 one

simply finds

quiu,=.-1e313Ni , (3.19)

which should be compared to eq. (3.9). Combining these
last two equations and using PCAC one agaln obtains eq.

(3.10), with S. replacing T .

It will transpire that our calculations become
tractable in the soft plon limit k+0; it is convenlent to
arrive at this limit via the intermedlate stage k?+0. 1In-
the 1imit of interest (k+0) we therefore see from eq.

(3.10) that our soft plon gauge condition becomes.

a, v(O 0,0) = -8K(0)ﬁ(p2)QiYsu(P1) ) (3.20)
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i.e. soft-pion gaugezviolation oceurs only in. the:negative:
isospin projection states.. It will be convenient there--
fore. to divide .the photopion. .productien- -amplitude 'I'i into

three.parts.
v,v7,k?) = pl(v,v7 k%) + Bl(v,v7,k?) + R%")(v,v',kz) ,
(3.21)

where P 1(v,v”,k?) denotes nucleon pole terms, Pi(v,v‘,k?)
denotes the non-nucleon. pole: terms which do not. violate
gauge invariance for any value of k, and Ri( )(v v’ ,k?)

the remaining gauge violating non-nucleon pole terms

(Ri( )(v v7,;1) # 0)q (B +Ri( ))lv sl =0 1i.e. the nucleon
pole gauge vielating terms (which must- necessarily be- the:
negative'isospin projection ones) cancel out the non-

(70)

nucleon pole gauge-violating ones: The -nucleon pole

termgs are glven by
P%(v,v‘,k?)
- Lox(k®)8(p ) (v 7y 3agmm Ty(0) * Ty(0) Ly ot )ulp))
2 2 s 1 Bl'i'a-—M v v Bz—a—M s 1 17?2
(3.22)
where
_ ' | S, V.
r (o) = (l+Ta)Yv + i(ovu/ZM)qu(u +1 Ts) (3.23)

and uS, uV are in units e/2M.. As-qvqucvulé»o there will be
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no gauge violatlon in:. the anomalous. moment part, and it

immedlately follows that:
P(v,u",k?) = -gk(k?)d(p )Qly u(p ) (3.24)
AyFytVsaVs : P,ley ,uip /. ’

From egqs. (9) and (16) one sees that .for k+0, all the gauge -

violatlion comes from: the nucleon polé terms 1.e.
1i(=
quv( )(0,0,0) =0 . (3.25)

It is therefore not necessary to,evaluate.Rt(')(v,v‘skz)
as in the limit of interest it 1s not gauge violating i.e.
it can be grouped with the non-nucleon pole terms

F%(v,v‘,kz) which satisfy qvfi(v,v‘,kz) = 0 for all k.
From eq. (11) we find

P%(v,v‘,o) = g%ﬁgl[F%(non-anom.) - Fi(anom.)] s

(3.26)
with:
Ky, T, (141 ) (1+T )T Y. K
1 - v 1'v
F,,(non-anom.) = u(pz)( S5 i+ v+v )Y u(p )
S,V v
iq u(p ) ko 1, (05t ) S+t )r o, ¥
i = vu 1l i Vi
(3.27)

The most general gauge invariant terms which.



3.11 .
contribute to P% are those given by Chew et al.(25) viz

plv,v”;k2) = Q(p ). 'i ofEi(v,v*;k?)y ulp )
p' VoV 2’ viptVeV YB pl ’

rsl
(3.28)
where
2l - ol - allpole), (3.29)
and
. 0y = %tvv;dl )
03 = 2(q-ka-P-qu) s
0}.= q-ky, - 4k, ,
03:='2(P-q7v-qP?) + 2M(y, d-q,) > (3.30)

with-
P = %(prpz) *

As qvoﬁ = 0 for all.r, thenaqut(v,v‘5k2) =.0 for-all k,
which 1s & necessary condition for our above analysis to be

valid.

We must now proceed to evaluate the right-hand

side of eq, (3.4. 1In complete analogy with our treatment
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of. 'I'i we break kuMiL)u into: three parts, viz.

1 . 1 1 1 (=)
k My, = Py kP RGRG T (3.31)

where again the non-nucleon pole terms satlsfy

=i 2y = _ .
qvkquu(v v ,k ) = 0 for-all k. Now,

i _1,= 1
kquu(v vo,k?) = Z;u(pz)[kuFu(kz)ysri B:TZ:ﬁ Pv(O)

+ Ty, (0) B—-Z-— k F (k? )Y T ]u(P )

(3.32)
where
2y = 2 2
F (k%) = gy (K%)y, + hy (k®)k,, . (3.33)
This gives
ayk, %u(v vo,k?) = 1ulp )iy F, (k2)aly u(p ) .
(3.34)

From egs. (3.9), (3.31) and (3.34) one finds

q kuaiﬁ Y(v,v,k2) = 1l(p )k, (2F, {k-q)*}-F (k2))aly ue ) ,

(3.35)
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. 1{=)(y v* .12)] =
1im Layk Ry, (Vsv75k5)] = 0 (3.36?

Thus, once again the off-shell gauge violation in

Ry A 1
kquu is completely contained in t%Pgu for k+0. In this .
1imit we may therefore :c'ega.rd»kuR\,u as containeduinskquu.

From eq. (3.32) our pole term for k*'= 0 becomes
k BL (v,v7,0) = 31g,(0)(p )[v,2as - 1% (SetenVelly ulp )
ITREVET R 318p P, Yyero M L Ys p1

“Yv11(1+T5)

(14T 1,7 K
+ g, (0)(p N T(— P S S
’ 2 v-v~ vy ”
iq, Ko T (us+uvt ) (us+uvf )t,0... K
- —ER = - 21 VB )1y ulp ).
2M v=v~ v+v” s 1

(3.37)

We must now evaluate our non-nucleon pole terms, which may

be written as

32
=1 . 2N _ = T . - 1,2
kquu(V,V k?) = ig,(0)ulp ) Zl kusqur(v,v kv ulp )
r=1

(3.38)

r

where the thirty-two pcssible Svuvare formed from Pv’kv’

YV’Pu’ku?Y sd, and ¥ (or equivalently ). Note. that we
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choose gq+e = 0.

Thirty-two is a large number of -invariants to deal.
with: In our 1limit of interest we will be concerned with

evaluating terms such as

11(113 [u(p )kusvuﬁr("»" sk2)y ulp )]
which are not necessarily zero due to possible kinematical
singularities -induced 1n Er'by our choice of Szu.- It would
be extremely convenient 1f.one could free oneself from.hav-
ing to study the kinematical analytic.structure of Br(v,v,kz),
as ‘the relevant calculations are-long and tedious (see, for

example, the appendix to Chapter I).

Let S = kusv Then Ss can be consldered to be
formed from the available vectors Pv’kv’Yv subjeet to the
econstraint

1im SS =0 ;
k-0

this does not imply that

1im {s C.(v,v” ;k2)} =0 ,

k-0
where Cr(v,v’gkz) denotes an invariant scattering amplitude.
It turns out that there are six.possible.SS (without the

constraint) which we choose to be:
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Sy = Mk, Sy = KPy»
2 - Mr, 5 -
Sy = E[Yv?K]’ Sy = WPy
8 6 - 2
88 = Kk, 88 = My, (3.39)

Use of the above mentioned constralnt shows thatasg~and*83
must be eliminated, as they do not go to zero with k.
Tnstead of. eg. (3.38) for. the nen-nucleon pole terms we will

have ‘the much simpler one
=i 2 - 4 r=i 2
kquu(v,v Jk?) = 1g,(0)u(p,) rzl SyCp(Vsv sk )y ulp ).
(3.40)

3. DETERMINATION OF SUM RULES

Considering eq. (3.4) for the particular case
k2 = 0, we substitute egs. (3.21) (3.26) and- (3.28) into.
the left-hand side, and. egs.. (3.31), (3.37) and. (3.40) into -

the right-hand side to obtain

f“gK(O)
4m

(e-Fi(non-anom‘) - e-Fi(anom.))

b
- . rei - . i(") -
+ fﬂu(pz) rzl e-0 K (v,v ,O)Ysu(pl) + f e°R (v,v7,0)
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= %gA(O)(e-Fi(non-anom.) - e-Fi(anom.))

o
+ gA(O)ﬁ(pz)[éfoie\,qu gﬁﬁ(uSQi * uVQi)]Ysu(pl)

4
+ gy (0i(p,) 1 e 878 (v,v7,0) - ke L (T (v,v7,0)

- £, (0)i(p ey Qlulp ). (3.41)

Noting that f gK(0)/4M = 2g,(0) it can be immediately seen
that terms proportional to e-F1 cancel; ¢Qf terms also
disappear. If we now take 1imits of this equation as k=0
we simply obtaln.

4

- r—=1i -
f“u(pz) J e.0 Ar(v,v ,O)Ysu(p1)|k+

r=1 0

:!.evqu
2M

- st Vol
g,(0)i(p o, (W Qg + u Q+)Y5u(p1)|k+o

- 4 rxl -
+ gA(O)u(pz) rzl e.S Cr(v,v ,O)Ysu(pl')lk+0 .

(3.42)

In this 1imit we note that the terms e-nl(-) ang khevRiﬁ-)

have been absorbed respectively into e.Orﬁi and e-Srﬁi due

to the previously proved gauge invariance. for k+0. Further-



3.17

more, as :k+0, oF+0 for r =.2,3,4 and the corresponding
v g

i

KrAare kinematically analytic:in k. Putting e.S¥ in terms

of independent invariants we find:.

2MA 1

i, ) [#,411 - g wag Ay - ME e )|

gK(0)

(3.43)

= 2ﬁ(p2){Me-k(Cf - 261) + qe-Pc% - 2Me-P(Ui + ai)+ |
] . ,

+ Qe.kCa}ysu(pl) K0 5

where ek, -[¢,4], de*k, de*P and e-P are independent in-

variants(7l), so before taking the. limit k+0 we see that

1 » 1 P 1 o
Eu(v,v ,0) = 0, and Ez(v,v ,0) + E“(v,v ,0) = 0,

Ei(v,v‘,o) =0 = C%(v,v‘,O). (3.44)

These invariant scattering amplitudes can be equated to
zero because their relevant invariant matrices de«P and

e+P#0 as k»0. But although

1im (G(p de.kBr(v,v”,0)y ulp )) = 0,
k>0 2 3 5 1

as e+k 1s an independent invariant, we cannot: conclude that



3,18

ﬁi(v,v‘,o) = 0 as e-k»0 when k+0. Similar considerations

apply to af(v,v‘,o).

However, all that is necessary to complete our
demonstration is-thatnﬁz(v,v‘yo) = 0, Equating the co-
efficients of the indepehdent invariant [¢,4], which does

not. approach zero as k does, we :obtain.
2M1(0,0,0)/gk(0) = (w5} + w'elyem.  (3.45)

Taking the various isospin projections this gives:

u = 4M2R° (0,0,0)/gK(0), (3.46)
w’ = wx*) 0,0,0)/8(0) (3.47)

and ‘
i$7)(0,0,0) = o. (3.48)

Eqs. (3.46) and (3.47) are the Fubini, Furlan and Rossetti

sum rules, derived by using a dispersive representation for
the commutators of the isoscalar and isovector parts of

the e.m. current and the corresponding axlal charges sand-

wiched between nucleon states. Eq. (3.47) relates u to
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the uncharged photopreduction amplitudes y+p*w°+p and

: y+n+ﬂ°+n, whereas eq. (3.46) relates u® to ‘either uncharged
ﬁhetepreduction amplitudes (as.Fubini et al. have done) or
te the charged ones y+p+n++n s YHn+m +p, Eq. (3.48) is
trivially satisfied,-as,If') 1s an odd functien of v .,

Adler and.Dothan(se) have derived eq. (3.46) not
using CA. Boeth egs. (3.45) and (3.46) have been examined for
conslstency by Fubini et al. and quite good agreement found;(Tg)
Adler and Gilman(73)'haﬁe investigated eq. (3:47) by using
photopreduction data to‘parametrize resonant phetopiqn multi--
poles and conclude that the.agreemeﬁt is to within 15%. It
1s interesting to note that very recently Tapper<7u) has
rederived eqs. (3.46) - (3.48) in a similar approach to mine

and has used eq. (3.46) to relate the pmy vertex to the oY

vertex, g and us/uv'.

Veltman (60) originally postulated that medified
divergence: equations, such as eq. (3.1) were independent of
CA. However Nauenberg(69) has shown (in the e.m. case) that
the modified divergence equations imply the equal time CA
commutation relations between vector charge densities and
vector (or axlal-vector) currents with the Schwinger terms(g)
ineluded; this result has been extended by Boulware and:
Brown(75) te include first order modifications dﬁe to the weak

interaction.

. Berman and Frishman(76) have now shown that: the

modified divergence equations are equivalent to equal time
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commutators of charges (i.e. not charge densities) with:
currents, which do not ineclude Schwinger terms. Therefore,
any low energy calculation using the modified divergenée
equations which reproduces the CA result with the Schwinger
terms neglected naturally lmplies that the latter do not
affect low energy conclusions (see reference (7%) for a par-

ticular example of this).

4, CONCLUSION

It has been shown that the original results of
Fubin; et al. relating anomalous nucleon magneticzmpments to
off-shell photopion amplitudes, obtained by using dispersive
representations for CA commutators, can be simply'obtained by
considering minimal e.m. modification of PCAC. The method
is fairly simple, demanding only care. in the manipulation
of the off-shell gauge condition, which differs from the usual

on-shell case.
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