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Abstract

A large volume of literature exists on fault detection and isolation for industrial pro-

cesses. In a general view, these various methods may be divided into process model

based and process history based fault diagnosis. In both classes, there has been a

recent focus on extracting the temporal information corresponding to process tran-

sitions between various operating modes. In this context, Hidden Markov Models

(HMMs) have been introduced and applied for process monitoring and diagnosis pur-

poses. The main objective of this thesis is to develop novel HMM based approaches

to diagnose various operating modes of a process. Mode in this thesis refers to process

operational status such as normal operating condition or fault.

Many industrial processes work in various operating modes with an asymmetric

temporal behavior, e.g., some of the modes may transit to each other much faster or

slower than the other ones. To develop appropriate models for such processes with a

better consideration of the transition periods, time varying HMMs, which are func-

tions of some auxiliary scheduling variables, are introduced. The proposed procedure

provides a more flexible HMM structure for process monitoring purposes. In addition,

under the proposed framework, unlikely process jumps will be avoided while reducing

the number of parameters to be estimated, and the computational cost will be re-

duced. This framework is also able to deal with missing observations in the training

data set which might happen due to sensor failures, etc.

Industrial processes are often subject to irregular measurements or outliers. A

simple approach to deal with this issue is to remove the irregular measurements from

the training data set, and then, develop the model. However, such approaches might

result in loss of information. Another approach is to use probability distributions

which consider separate components for the regular and irregular data, e.g., mixture

probabilistic models. The approach which is taken in this thesis is to consider vari-
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ous Student t distributions for different operating modes of the process. Therefore,

a scalar weight can be assigned according to the distributions in different modes,

e.g., normal and faulty regimes, and effect of outliers in parameter estimation will be

downweighted through the heavier tails of the distribution.

In some applications it is required to focus on main features of the signal rather

than the details, i.e., there is a need to detect the slow trend of process changes

rather than short period fluctuations. Qualitative Trend Analysis (QTA) is one of

the proposed approaches in literature to extract such information. Here, we combine

QTA, which is performed through triangular representation of signals, and HMMs to

extract the key features and temporal information simultaneously. Some hierarchical

procedure is introduced to improve the accuracy of the continuous to discrete map-

ping, and then, HMMs are trained for discrete observations of the different operating

regimes, e.g., normal and abnormal conditions. It is shown that the proposed method

is also able to isolate some specific types of faults.

For the industrial cases study of this thesis, which is concerned with sand de-

position and pipeline plugging in the underflow line of an industrial scale Primary

Separation Vessel (PSV), we show that a combination of data driven modeling based

on HMMs and first principle knowledge provides an appropriate solution. An appro-

priate semi-empirical equation is used to estimate the critical velocity to move the

solid bed inside slurry pipelines and avoid plugging. A HMM based approach is then

proposed to modify the sensitivity of estimated velocities. The proposed method has

been tested in on-line environment, and has demonstrated an acceptable performance.

In this thesis, various simulation and lab examples have been used to illustrate

the efficiency of the proposed techniques. A comparison between the results in dif-

ferent chapters leads to the conclusion demonstrating effectiveness of the proposed

approaches.
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Chapter 1

Introduction

1.1 Motivation

In general, a fault in a system is defined as “an unpermitted deviation of at least

one characteristic property of a variable from an acceptable behavior”. Accordingly,

faults might end up to a complete failure of the system [1]. In chemical processes,

such process shutdowns will cause product loss. Moreover, it takes extensive time

and effort to return the process back to its normal operation.

A fault diagnosis problem consists of three main components. First, determine if

the process is operating out of its normal conditions and decide on the presence of

faults, i.e., fault detection. The next is to localize the fault and find the component

which is the main cause of the fault, i.e., fault isolation. The last task is to identify

the fault in terms of magnitude and other detailed properties, i.e., fault estimation

[2].

All process monitoring techniques are based on available on-line observations from

sensor measurements. The core idea is to find some underlying relation between ob-

servations and possible faults. In this procedure, several difficulties might occur. One

example is the complexity to find a first principle model for process due to the com-

plicated process behavior. Another example is to find an appropriate framework to

extract the critical information from high dimensional data sets. Dealing with unre-

liable measurements for robustness is another major issue for industrial applications.

It will also be greatly advantageous if one can extract the temporal information of

observations.

To address such issues, two major areas have to be introduced:

1. Process model based fault diagnosis

2. Process history based fault diagnosis
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The main concerns of model based fault detection are, first, to find an appro-

priate mathematical model between process inputs and outputs, and then, generate

some features through analysis of residuals, parameter estimates and state estimates.

Comparison between the generated features and normal features will result in some

symptoms, and eventually, fault diagnosis. In order to decide on details of the type

of fault, model based methods are usually accompanied by further classification and

inference layers [1].

From the previous explanation on model based approaches, it is obvious that some

prior knowledge about process is required. In contrast, in history based methods, only

a large data set of process historical data is needed. The underlying idea of history

based methods is to extract the critical information (features) from large data sets.

The data extraction might be either qualitative or quantitative. Unlike quantitative

methods which try to extract the important quantitative information, qualitative

methods are usually based on the coding of knowledge and compact representation

of trends [3].

Quantitative approaches can be divided to two main subcategories including non-

statistical, e.g., neural networks, and statistical. In general, in contrast to determinis-

tic systems, in stochastic systems it is not possible to definitely determine the future

state given the current information. Consequently, it is worth viewing the system

in a probabilistic manner. In such approaches, various probability distributions are

considered for classification of different operating conditions of the process. Some of

the well known methods in this area are statistical classifiers, e.g., Bayes classifier

with Gaussian density functions, Principal Component Analysis (PCA) and Partial

Least Squares (PLS) [3].

A summary of available fault diagnosis strategies, as stated in previous paragraphs,

is presented in Figure 1.1.

From this brief review on available process monitoring techniques, one could ob-

serve that all fault diagnosis techniques are based on the extracted information from

observations. Among the underlying data contained in a signal, temporal informa-

tion, which contains the memory of operating mode transitions, plays an important

role. Many of the proposed methods in Figure 1.1 are not robust enough to extract

the temporal information from noisy signals. To deal with such an issue, one might

consider feed back of outputs to the classifier or considering a window of observations.

However, such approaches will bring a lot of difficulties during the training [4].

Hidden Markov Models (HMMs) are sophisticated mathematical tools for consid-

eration of the temporal information in both process model and history based fault

diagnosis. Incorporating time domain information, HMMs will greatly assist a clas-
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Figure 1.1: A summary of available fault diagnosis methods in literature [1, 3]

sifier to reduce false alarms. In formulation of HMMs, some sort of prior knowledge

of process temporal behavior is considered in the form of transition probability ma-

trix. One obvious advantage of such knowledge is to diagnose between process modes

which have significant overlaps [4].

In this thesis, our focus is on statistical/ probabilistic classifiers (Figure 1.1). More

specifically, the main effort is to more precisely consider the temporal information.

Our aim is to improve the structure of transition probability matrix in HMMs, while

various probability distributions are considered for observations in different operat-

ing modes. Also, in some chapters, HMMs are used to improve process history based

fault diagnosis using qualitative signal representation.

Another important target of this research is to apply the developed fault detec-

tion strategies under industrial environments. The developed frameworks are tested

on an important Primary Separation Vessel (PSV) of oil sands industry. PSV is an

important unit in oil extraction process to separate the feed for various components.

The underflow stream of the vessel usually contains more than 60 % (weight) sand,

and therefore, is subject to sand deposition and plugging. The developed methods

are tested both on-line and on the historical data of the unit.

The last objective of this research is to connect the two categories of process model

based and history based fault diagnosis (Figure 1.1). By analyzing first principles in

the underflow stream of the PSV, a model is developed to predict the minimum

required velocity to avoid sand deposition. Then, HMMs are used to modify the

sensitivity of the predicted velocity. More details of various thesis chapters will be
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discussed next.

1.2 Previous Studies

Direct observation of process variables through on-line measurement is a well known

method for monitoring of industrial processes. Such methods include limit checking

of key process variables, or trend (first derivative) checking. However, these methods

will detect faults only after a considerable deviation of observations from expected

behavior [5]. Therefore, more advanced monitoring techniques are developed for early

detection of faults.

As illustrated in Figure 1.1, available fault diagnosis techniques are divided to

two main categories including process model based and process history based. In this

chapter, first, each category will be reviewed. Next, previous applications of HMMs

for assisting fault diagnosis methods are summarized.

1.2.1 Process Model Based Fault Diagnosis

A general schematic of model based fault diagnosis is presented in Figure 1.2. It is

clear that feature generation based on an appropriate process model is the key step

in a model based fault diagnosis. The ultimate goal is to determine the presence of

faults according to process mathematical model as well as inputs and outputs data

(Equation 1.1) [5].

Y = f{U,N, θ,X} (1.1)

where in Equation 1.1, U and Y are process inputs and outputs respectively, N repre-

sents nonmeasurable disturbances, θ is process parameters, and X indicates partially

measurable process states.

This general category can be divided to three sub-categories [1]:

1- Fault detection with parameter estimation

2- Fault detection with observers

3- Fault detection with parity equations

Fault Detection with Parameter Estimation

The model in Equation 1.1 can be obtained from a first-principle analysis. The

parameters of this static or dynamic model usually correspond to a real physical

property, e.g., temperature, density, viscosity, etc. Therefore, abnormal deviations of
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Figure 1.2: A general schematic of model based fault diagnosis [1]

such properties will appear in the corresponding parameters.

In cases where direct measurement of physical properties is not possible, on-line

estimation of parameters based on appropriate regression methods such as conven-

tional/ recursive least squares will indirectly provide the information of the desired

property. Based on the deviations of process parameters (∆θ), features and symp-

toms will be generated, and process faults will be diagnosed [5].

Fault Detection with Observers

There are cases where operating conditions of a process depend on a an internal (non-

measurable) state. In such cases designing an observer for such process states can

assist in process monitoring. The process model in the structure of observer can be

either static or dynamic.

In this approach, first, residuals are generated. Then, some “special testing meth-

ods” will be applied on the residuals, and ultimately, faults will be diagnosed [5].

For the case of multiple mode excited outputs, several methods including bank of

observers excited by a single/ all modes are introduced in literature [6, 7].

Fault Detection with Parity Equations
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The main idea of fault detection based on parity equations is to compare the actual

response of a process with the predicted response of the process model, and generate

the residuals. This will be followed by a linear transformation to reach the ultimate

goal of fault detection and isolation. Parity equations can be developed based on

both input and output errors [8].

1.2.2 Process History Based Fault Diagnosis

In contrast to model based methods, in data based approaches, no prior information

about the process is required. Such approaches are based on the extraction of critical

information from process historical data.

According to Figure 1.1, data based approaches are divided to two main categories

including qualitative and quantitative methods. Qualitative methods are based on

either expert systems or Qualitative Trend Analysis (QTA).

An expert system usually consists of a knowledge base, which is appropriately

coded, accompanied by an inference procedure based on input-output interfaces. The

main advantage of an expert system is the simplicity of development and analysis [3].

On the other hand, QTA is used for compact representation of “significant events”

in a trend. Thus, these methods can reveal underlying abnormalities and facilitate

the task of fault diagnosis. Consequently, one can view these methods as “efficient

data compression” techniques [3].

In the rest of this section, we will focus on history based quantitative methods

(Figure 1.1).

Neural Networks

Artificial Neural Networks (NN) have been frequently used in chemical engineering

applications [9, 10]. Many researchers have studied various aspects of NN based fault

diagnosis in terms of network architecture, e.g., sigmoidal or radial basis, and the

learning method (supervised/ unsupervised).

In the case of supervised learning, a certain structure is considered for the net-

work and only the unknown parameters including weights should be estimated. On

the other hand, unsupervised neural networks have a time varying structure and can

adapt according to recent network inputs. Back propagation neural networks are good

examples of supervised learning. To focus on major events rather than the details,

traditionally, neural networks are used in accompany with other feature extraction
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techniques [3, 11].

Principal Component Analysis (PCA)

Extracting dominant relations from a set of large highly correlated variables, and

reducing the data set dimension is an important step for monitoring of industrial

processes. PCA is frequently used in such cases due to the simple structure and de-

cent performance [12]. The idea of PCA is to map a set of correlated observations

to some latent variables. These latent variables, which are linear combinations of

real variables, are independent of each other, and contain the significant information

(variance) of observations [13].

In this context, two famous indicators have been introduced to diagnose an abnor-

mal behavior. The first indicator, known as Hotelling’s T 2, checks variations of the

latent variables. Consequently, it will detect an abnormal event only when variations

of latent variables are greater than usual. The second indicator, which is the Square

Prediction Error (SPE), also known as Q statistic, represents sum of squares of the

residuals, and measures appropriateness of the fitness. In other words, “T 2 represents

the major variation in the data and Q represents the random noise” [14]. An alarm

will be generated when these indexes pass their standard limits.

Partial Least Squares (PLS)

PLS is similar to PCA in the sense that both methods try to deal with collinearities

in observation data set. However, in PLS, both input and output data are involved.

PLS tries to find an “outer relation” between latent variables of input and output

data [15]. Eventually, in this structure, variance of the latent variables in principal

components and covariance between input-output latent variables will be maximized

simultaneously. Similar to PCA, T 2 and Q can be defined for PLS, and used for

process monitoring purposes [13].

Statistical Classifiers

These classifiers try to approximate various modes of a process using appropriate

density functions. Accordingly, a new observation will be assigned to a certain class

according to its distance from the means of various classes. It is obvious that estima-

tion of the appropriate density function is the key step in such classifiers [3].

In cases where observations do not follow a well-defined distribution, non-parametric

7



methods such as kernel density estimation should be used [16]. Otherwise, parametric

distributions such as a mixture of multivariate Gaussian distributions can be applied

[17, 18].

Bayesian Fault Diagnosis

Unlike statistical methods which try to “determine” the true operating mode, in

Bayesian approaches, the focus is on finding the “probability” of current operat-

ing mode given all the available information. Consequently, In these approaches, a

Bayesian hypothesis testing, which considers the prior (background) information of

the modes, is used instead of the likelihood ratio test and other distance based tech-

niques. Such prior information is assumed to be known from historical data or other

sources [2].

1.2.3 HMM Based Fault Diagnosis

As previously stated, HMMs are sophisticated mathematical tools to extract tem-

poral information from historical data sets. In this section, we will review some of

the previous studies where HMMs have been used to improve classic fault diagnosis

methods.

Model Based Approaches in Conjunction with HMMs

Fault detection based on a combination of dynamic process models, e.g., ARX mod-

els, and HMMs is a well known technique to improve model based fault detection.

This approach uses deviations of the estimated parameters of the process model as

observations. In contrast to classic methods where faults are assumed as independent

events at each time step, this approach considers faults to be “persistent” over time.

Consequently, applying HMMs, previous information up to the current time is used

as prior information for recent observations [4].

Qualitative Trend Analysis in Conjunction with HMMs

Qualitative trend analysis is used to extract significant events from process data.

Therefore, analysis of these major events as a time sequence can provide critical

information about process status. To do this, one can first discretize a signal according

to its extrema and inflection points. Therefore, the continuous signal will appear as

a sequence of discrete observations. This sequence can then be used as the input
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of HMMs. After training the HMMs according to the historical data, they can be

used for the purpose of fault diagnosis in an on-line application. The decision on

operating condition of the process will be made based on the probability of a window

of recent observations given various HMMs [19]. Problem can be extended to the case

of multiple observations. However, another inference layer based on neural networks

or other data driven tools will be required [20].

PCA in Conjunction with HMMs

In two very recent studies, Probabilistic PCA (PPCA) is used in conjunction with

HMMs for the purpose of fault diagnosis [21, 22]. PPCA has the advantage of consid-

eration of uncertainties over regular PCA. Addition of dynamics of process transitions

through the HMM framework brings a very general structure to do both fault detec-

tion and diagnosis tasks simultaneously [21]. The general structure of the proposed

model is presented in Figure 1.3.

Figure 1.3: Dynamic Mixture Probabilistic Principal Component Analyzer [21]

where in this figure S represents the states (operating modes), X indicates the latent

variables and Z is the mixture of Gaussians indicator. The main role of HMMs is

to consider the transition from St−1 to St through a transition probability matrix.

The goal is to infer the true operating mode St when receiving a new observation

Yt. Expectation Maximization (EM) algorithm, which will be reviewed in the next

chapter, is used for parameter estimation [21]. In another study, the same authors

improved their model to handle outliers. Robust distributions, such as Student t,

were used for this purpose [22].

Statistical Classifiers in Conjunction with HMMs

In another recent study, a new approach for fault diagnosis of gear transmission sys-

tems is introduced. In this study, process behavior is modeled using a three state
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continuous-time homogeneous Markov process [23]. Different states of the Markov

process correspond to various operating modes. Observations are assumed to follow

multivariate Gaussian distributions. The ultimate target is to infer the current oper-

ating condition in an on-line application given the observations. An “optimal control

limit” is defined to isolate the modes. Parameter estimation is based on the EM

algorithm [23].

Applications of HMMs in fault diagnosis are not limited to the above studies. One

can refer to many other available articles for more information [24, 25, 26].

1.3 Thesis Outline

After reviewing background on previous applications of HMMs in fault diagnosis, the

remainder of this thesis is organized as follows:

In Chapter 2, a review on fundamental mathematical tools of the thesis is pro-

vided. Most of chapters of the thesis are based on two main concepts: HMMs and the

EM algorithm. Applications of HMMs have been explained in previous sections. The

EM algorithm is an iterative procedure for maximum likelihood estimation of param-

eters. In presence of missing variables, it provides a more numerically robust solution

since conventional optimization methods will usually reach a local solution, specially,

when the likelihood surface is not concave. Also, application of the EM algorithm

has advantages in handling probabilistic constraints and guarantees of convergence.

More details will be discussed in Chapter 2.

Chapter 3 provides a new process modeling and and monitoring method in pres-

ence of faulty and missing data based on HMMs. A certain structure is proposed

for the Markov chain model. First, transition probabilities are considered to be time

varying as a function of an underlying scheduling variable. This flexible structure

assists the model to adapt to new operating conditions. Second, the proposed struc-

ture of the transition probability matrix imposes a logical transition between various

operating modes, i.e., the process can only transit from normal to faulty modes af-

ter passing some intermediate modes. Thus, undesirable jumps are avoided. This

consideration significantly reduces the number of parameters to be estimated from

optimization. Observations, which are randomly missed in the training data set, are

assumed to follow multivariate Gaussian distributions in each mode. Due to the pres-

ence of missing observations and unknown operating regimes, the maximum likelihood

parameter estimation problem is solved under the EM framework. The goal of this
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study is to infer the true current operating mode given all the available information.

A filtering algorithm is used for this purpose. In addition to some simulation studies,

the model is tested on the historical data of the PSV unit. The proposed method

shows a significant improvement over available conventional techniques in literature.

Chapter 4 is a robust extension of the proposed method of Chapter 3. In the

proposed model, various operating modes can transit to each other following a sim-

ilar time varying Markov chain structure as in Chapter 3. However, observations in

various operating modes of the HMM are considered to follow different multivariate

Student t distributions which have heavier tails in comparison to the Gaussian ver-

sion. The idea is to weight the covariance matrix of the Gaussian distribution in

each mode according to percentage of outliers. This weight is a probabilistic func-

tion of a degree of freedom which is estimated according to the data quality in each

mode. Consequently, the negative effect of outliers during parameter estimation will

be downweighted and a more accurate diagnosis is achieved. Due to the existence of

unknown weights and operating modes, the parameter estimation problem is solved

under the EM framework. The ultimate goal is to infer the current operating mode

given all the available information in an on-line application. The model is tested on

simulation and real life lab experiments and shows a superior performance over other

available methods in presence of lower quality data.

Chapter 5 presents a novel framework for classification of process trends based on

a combination of Qualitative Trend Analysis (QTA) and HMMs. First, continuous

time signals are discretized as some symbolic observations using the method of trian-

gular representation. Due to the large difference between magnitudes and durations

of the triangles in various modes, time varying fuzzy membership functions are used

for the purpose of discretization. As the consequence of this fuzzification, continuous

signals appear as some discrete episodes. Next, various HMMs are trained for the

multiple discrete observations of normal and faulty regimes. In an on-line application,

the forward-backward algorithm is used to calculate the probability of observations

within a most recent moving window given each HMM. This probability is then used

for the purpose of classification. In addition to a simulation example, the method is

tested on the historical data of the PSV unit and shows a better performance over

available techniques.

In comparison to the HMM based data classification frameworks in Chapters 3

and 4, the discritization step of Chapter 5 brings the following advantages: 1) The

important qualitative and quantitative information of a signal will be captured and

used for classification purposes. 2) Since this approach focuses on key features of

the signals rather than details, the high frequency noise should be removed and the
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method is less sensitive to noise. 3) The sequence of symbols is an appropriate input

for HMMs to extract the temporal information.

In Section 7 of Chapter 5, an optimal approach to select a more informative win-

dow of observations for the purpose of trend classification is introduced. Selection of

large window sizes will cause a large delay in trend classification due to the existence

of old data. On the other hand, small window sizes will classify the observations

without appropriate consideration of the previous memory. Therefore, an optimal

framework for window size selection is required.

Chapter 6 includes the industrial case study on fault detection and monitoring

of the tailings pipeline of a PSV in an oil sand industry. PSV unit is a cone shape

vessel to separate the feed stream including bitumen aggregates, water, coarse sand

and fines to three separate layers. The bitumen floats over a weir circling the top

and makes the froth layer. Middlings layer, which contains bitumen aggregates, fines

and water, is removed from the middle of the vessel. The underflow layer, which is

removed from the bottom through tailings stream, contains coarse sands and water.

Due to the high solid concentration and sand deposition, this stream may face plug-

ging or “sanding”.

In the chapter discussed above, a combination of semi-empirical equations and

data driven methods is used to estimate the critical (optimal) flow rate to avoid

sanding in the tailings stream. First, according to the physical properties of the tail-

ings, the appropriate semi-empirical equation for estimation of the critical velocity

is selected. Since one of the key variables has some measurement inaccuracies, a

soft sensor is developed to improve on-line measurements. Next, HMMs are used to

adaptability change the sensitivity of critical velocity estimations, i.e., to generate

more sensitive predictions while operating near abnormal conditions. The algorithm

has been tested on-line, and according to the available process alarm reports, shows

successful predictions.

Chapter 7, which concludes the thesis, also presents the future work. Some prac-

tical improvements, to be further considered in future studies, are introduced.

1.4 Published, Submitted and Under Preparation

Materials

Materials of this thesis, as summarized in the outline section, have been previously

presented in following publications (in the same order as thesis chapters):
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1.5 Main Contributions

The main contributions of this thesis can be summarized as follows:

1. Development of a time varying HMM structure for the modeling and monitoring

of industrial processes.

2. Providing appropriate mathematical procedures based on the EM algorithm to

deal with irregular data such as outliers and missing observations.
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3. Data compression and classification through the combination of HMMs and

Qualitative Trend Analysis (QTA) based on adaptive triangular representation.

4. An optimal search procedure to find the more informative observations in a

recent window of data for process monitoring based on HMMs.

5. Combining first-principle knowledge and data driven methods for on-line moni-

toring of an industrial scale primary separation vessel through critical minimum

velocity estimation.
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Chapter 2

Mathematical Fundamentals

In this chapter, a review on fundamental mathematical tools of this thesis will be

provided. As previously explained, the Expectation Maximization (EM) algorithm

and Hidden Markov Models (HMMs) are the two major tools which will be used

throughout the thesis.

2.1 Expectation Maximization (EM) Algorithm

A maximum likelihood estimation problem searches for the set of parameters, for

which, observations are most likely to occur. The main contribution of the EM algo-

rithm is to solve this problem through maximization of a lower bound of the likelihood

function, also known as the Q-function, iteratively. In presence of missing variables,

or other similar ill conditions, EM is a safe algorithm which guarantees the conver-

gence to at least a local optimum [27].

Each iteration of the EM algorithm consists of two steps. First, in the Expec-

tation (E) step, expected value of the log likelihood of complete data including the

missing and observed parts given observations and parameters in the previous itera-

tion is computed, i.e., the missing information are integrated out. Next, result of the

expectation step, which is also known as the Q-function, is maximized over unknown

parameters (M Step). This iterative procedure is repeated until some convergence

criterion is satisfied [27].

2.1.1 Monotonicty of the EM Algorithm

In the original paper of the EM algorithm, it has been proved that the incomplete

(observed) data likelihood function is non-decreasing after each EM iteration [28, 29].

To prove this, the incomplete (observed) data log likelihood function can be de-
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fined as in Equation 2.1. y is the observed data set and Φ represents the set of

unknown parameters.

L(Φ) = log g(y|Φ) (2.1)

The complete data set x includes both the observed (y) and missing (z) information,

i.e., x = (y, z).

The conditional density of x given y and Φ can be defined as,

k(x|y,Φ) =
f(x|Φ)

g(y|Φ)
(2.2)

where f(x|Φ) represents the complete data likelihood function.

From Equation 2.2, one can simply write Equation 2.1 as,

L(Φ) = log f(x|Φ)− log k(x|y,Φ) (2.3)

Taking the expected value of both sides of Equation 2.3 with respect to the con-

ditional distribution of missing variables given observations and parameters in the

previous iteration, we have that:

E {L(Φ)} = E
{

(log f(x|Φ)) |y,Φ(k)
}
− E

{
(log k(x|y,Φ)) |y,Φ(k)

}
(2.4)

= Q(Φ|Φ(k))−H(Φ|Φ(k))

where Φ(k) represents the set of parameters obtained from the previous kth iteration,

Q(Φ|Φ(k)) = E
{

(log f(x|Φ)) |y,Φ(k)
}

(2.5)

and

H(Φ|Φ(k)) = E
{

(log k(x|y,Φ)) |y,Φ(k)
}

(2.6)

From Equation 2.4, it can be concluded that

L(Φ(k+1))− L(Φ(k)) =
{
Q(Φ(k+1)|Φ(k))−Q(Φ(k)|Φ(k))

}
−
{
H(Φ(k+1)|Φ(k))−H(Φ(k)|Φ(k))

}
(2.7)

In the maximization step of the EM algorithm, the Q-function in the right hand

side of Equation 2.7 is maximized such that

Q(Φ(k+1)|Φ(k)) ≥ Q(Φ|Φ(k)) (2.8)
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Therefore, L(Φ(k+1)) ≥ L(Φ(k)) will hold if H(Φ(k+1)|Φ(k))−H(Φ(k)|Φ(k)) ≤ 0. For

any arbitrary Φ,

H(Φ|Φ(k))−H(Φ(k)|Φ(k)) = E

{(
log

k(x|y,Φ)

k(x|y,Φ(k))

)
|y,Φ(k)

}
(2.9)

≤ log E

{(
k(x|y,Φ)

k(x|y,Φ(k))

)
|y,Φ(k)

}
= log

∫
X

k(x|y,Φ)dx = 0

where Equation 2.9 is a consequence of Jensen’s inequality [29].

Therefore, the log likelihood function L(Φ) will be increased, which results in an

increasing likelihood function g(y|Φ). If this sequence is bounded, it should mono-

tonically converge to some upper bound [29].

Generalized EM (GEM) Algorithm

In Equation 2.8, one could observe that Φ(k+1) is estimated such that Q(Φ|Φ(k)) is

globally maximized over Φ. However, in cases where global maximization is not

feasible, according to Equation 2.7, satisfying Equation 2.10 is sufficient to ensure

the increasing likelihood sequence [29].

Q(Φ(k+1)|Φ(k)) ≥ Q(Φ(k)|Φ(k)) (2.10)

GEM algorithm based on one Newton-Raphson step is an example of a likelihood

increasing sequence [30]. In this configuration the parameters are updated as follows:

Φ(k+1) = Φ(k) + a(k)δ(k) (2.11)

where

δ(k) = −
[
∂2Q(Φ|Φ(k))

∂Φ∂ΦT

]−1

Φ=Φ(k)

[
∂Q(Φ|Φ(k))

∂Φ

]
Φ=Φ(k)

(2.12)

and 0 < a(k) ≤ 1.

In the case of a(k) = 1, the sequence becomes the same as iterations of the Newton-

Raphson procedure when solving Equation 2.13.

∂Q(Φ|Φ(k))

∂Φ
= 0 (2.13)

However, for the GEM sequence to be satisfied, a(k) should be selected such that

Equation 2.10 holds. This will impose other constraints on selection of a(k) [30].
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2.1.2 Convergence Properties of the EM Algorithm

The EM algorithm can be considered as a point to set map [29], i.e.,

M(Φ(k)) = arg max Φ∈Ω Q(Φ|Φ(k)) (2.14)

where Ω is the parameter space of Φ.

When Φ(k) converges to some Φ∗, if M(Φ) is continuous, Φ∗ must satisfy Equation

2.15.

Φ∗ = M(Φ∗) (2.15)

where Φ∗ is a fixed point of this map.

By a Taylor series expansion near Φ∗ and using the property in Equation 2.15,

the mapping in Equation 2.14 can be written as [31],

Φ(k+1) − Φ∗ =
∂M(Φ∗)

∂Φ∗
(Φ(k) − Φ∗) (2.16)

and thus,

‖Φ(k+1) − Φ∗‖ = ‖∂M(Φ∗)

∂Φ∗
‖‖(Φ(k) − Φ∗)‖ (2.17)

with ∂M(Φ∗)
∂Φ∗

6= 0.

Since the term ‖(Φk−Φ∗)‖ in the right hand side of Equation 2.17 is to the power

of one, the EM algorithm is “almost surely” a first order algorithm.

This first order convergence has been mentioned in literature as a major drawback

[31]. Accordingly, some people have argued that superlinear (quasi-Newton) and sec-

ond order (Newton) methods should be prefered to EM [32].

Although convergence to true parameters might be slow when using the EM algo-

rithm, convergence of the likelihood is quite fast. This simply means that after a few

number of iterations, the EM algorithm is able to estimate model parameters such

that they can perfectly represent the data set [31].

In addition to this, the EM algorithm has two main advantages which makes it a

popular choice for maximum likelihood estimation problems [31]:

1. The EM algorithm provides a condition to automatically satisfy probabilistic

constraints of mixture models. Other optimization techniques either modify

each step to keep the parameters inside the desired domain, or transform the

constrained optimization to unconstrained with appropriate parameterization.

Both approaches will require more computation cost or algorithm developments.
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2. As previously explained in Equations 2.1 to 2.9, the EM algorithm guarantees

an increasing likelihood sequence and monotonic convergence without step size

parameters or line searches. The update formula for the Newton’s method is

presented in Equation 2.18.

Φ(k+1) = Φ(k) +H(Φ(k))−1 ∂l

∂Φ(k)
(2.18)

where H(Φ(k)) is the Hessian matrix.

Unless the iterative process is close to a solution, it is possible that inverse

of the Hessian matrix become indefinite, and iterations might diverge. Other

advanced techniques such as Quasi-Newton or Levenberg-Marquardt are either

not appropriate for a constrained optimization or require a form of parallel

search to achieve the optimums. On the other hand, for many problems, it has

been proved that the iterative procedure of the EM algorithm can be converted

to the form of Equation 2.19.

Φ(k+1) = Φ(k) + P (Φ(k))
∂l

∂Φ
|Φ=Φ(k) (2.19)

where P (Φ(k)) is a positive definite matrix.

In the form of Equation 2.19, the EM algorithm can be viewed as a gradient as-

cent algorithm where the positive definite projection matrix P (Φ(k)) can change

at each iteration as a function of Φ(k).

As a general comment, EM is a conservative algorithm with guaranteed fast con-

vergence of the likelihood. However, parameter convergence might be slow due to the

first order behavior. For ill conditioned problems and problems with missing vari-

ables, EM plays an important role in design of training algorithms [31]. There have

been some studies in literature to address the slow convergence behavior of the EM

algorithm. Switching between estimated parameters from the EM and maximum of

exact gradient of the likelihood function according to the proportion of missing data

is one approach to deal with such an issue [33].

2.1.3 Initialization of the EM Algorithm

From the previous review on theory of the EM algorithm, it is clear that selection

of the initial values is a very important step in this iterative procedure. Appropriate

selection of initial values can increase the speed of convergence. More importantly, it

assists the model to avoid local optimums and reach a global solution [34].
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One practical approach to tackle this problem is to start from different initial

values, which are randomly selected from a uniform or other distributions, and then,

select the answer with the largest likelihood. This approach might require a high

computational cost [34]. In multivariate mixtures, selection of initial values based on

PCA mapping is a popular method to decide on the initial values [35]. Initialization

based on a primary clustering is another well known technique for mixture distribu-

tions [36, 37].

Due to the wide range of available methods, one can conclude that selection of

the appropriate method of initialization is subjective to the problem at hand. In

this thesis, for each specific problem, we will propose the appropriate initialization

method which is usually a combination of various approaches in this section.

2.1.4 Stopping Criteria for the EM Algorithm

When the value of the stopping criteria becomes smaller than a specified constant, EM

iterations will be terminated. Therefore, magnitude of this constant will directly affect

the sensitivity of estimated parameters. Different criteria have been introduced in

literature for this purpose including relative change of estimated parameters, relative

change of log likelihood, and Aitken’s criterion [34].

• Relative Change of Estimated Parameters: This stopping criterion is

based on the relative change of estimated parameters in two consecutive it-

erations. At each iteration, the parameter with the largest relative change is

selected to create the stopping criterion, i.e., in a set of M available parameters,

φj, 1≤j≤M is selected such that:

max

(
|φ(k+1)
j − φ(k)

j |
|φ(k)
j |

)
1≤j≤M

< ε (2.20)

where ε is a specified constant [29].

• Relative Change of Log Likelihood: As previously stated, EM algorithm

might have a slow convergence in parameters. However, convergence of the

likelihood is usually fast. Therefore, although it might not indicate the actual

convergence, one can define the stopping criterion based on the log likelihood

function. Using the definition of L(Φ(k)) in Equation 2.1, this stopping criterion

can be defined as [38]

|L(Φ(k+1))− L(Φ(k))|
|L(Φ(k))|

< ε (2.21)
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where the likelihood function can be obtained from a marginalization over all

possible hidden variables.

• Aitken Acceleration Based Stopping Criterion: It is another stopping

criterion based on relative log likelihood changes. In comparison to 2.21, some

memory of the log likelihood in (k − 1)th iteration is further considered. Ac-

cording to the definition in Equation 2.1, let us define

l(k) = L(Φ(k)) (2.22)

First, the variable l(k) in Equation 2.22 is mapped on some new variable as

follows:

l
(k+1)
A = l(k) +

1

(1− c(k))

(
l(k+1) − l(k)

)
(2.23)

where c(k) =
l(k+1) − l(k)

l(k) − l(k−1)
.

Next, the stopping criterion is defined based on this new variable, i.e.,

|l(k+1)
A − l(k)

A | < ε (2.24)

This algorithm has shown a satisfactory performance for problems with the

main concern of log likelihood convergence [29].

2.1.5 Parameter Estimation for Mixture Densities Based on
EM - An Example

This section provides an example for the application of EM algorithm to estimate

the parameters of a mixture model. This problem is one of the very well known

applications of the EM algorithm in literature [39].

In the mixture structure, likelihood of an observation (y) given parameters (Φ) is

assumed to follow the model in Equation 2.25.

p(y|Φ) =
M∑
i=1

αipi(y|φi) (2.25)

where Φ = (α1, ..., αM , φ1, ..., φM) such that
∑M

i=1 αi = 1, and pi is a density function

with parameter φi.

Therefore, having the independence assumption between observations (Y = {yi}Ni=1),

the incomplete data log likelihood function can be derived as

L(Φ) = log p(Y |Φ) = log
N∏
i=1

p(yi|Φ) =
N∑
i=1

log

(
M∑
j=1

αjpj(yi|φj)

)
(2.26)
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Optimization of Equation 2.26 is difficult due to the existence of “log of the sum”.

An alternative is to define some missing identities (I = {Ii}Ni=1 , Ii ∈ {1, ...,M}) which

indicate the mixture component that has generated the data. Thus, the complete data

log likelihood function can be expressed as

LC(Φ) = log p(Y, I|Φ) =
N∑
i=1

log (αIipIi(yi|φIi)) (2.27)

where Equation 2.27 is obtained based on the chain rule of probability, independence

assumption of observations given model identities and independence assumption of

model identities. It should be obvious that αIi = p(component Ii).

Given the structure of density function, Equation 2.27 can be optimized to esti-

mate the unknown parameters. However, the identities (Ii), which are considered as

random variables in the current format, should be known to proceed the optimization.

First, the posterior distribution of missing variables given observations and pa-

rameters in the previous iteration, i.e., the “old” parameters, is required. According

to the Bayes rule:

p(Ii|yi,Φold) =
αoldIi pIi(yi|φ

old
Ii

)

p(yi|Φold)
=

αoldIi pIi(yi|φ
old
Ii

)∑M
k=1 α

old
Ik
pIk(yi|φoldIk )

(2.28)

Considering that the component identities are randomly drawn, it can be con-

cluded that

p(I|Y,Φold) =
N∏
i=1

p(Ii|yi,Φold) (2.29)

Next, computing the expected value of Equation 2.27 with respect to model iden-

tities, the missing information is integrated out, and the Q-function is calculated as

follows:

Q(Φ|Φold) =
∑
I

LC(Φ)p(I|Y,Φold) (2.30)

=
∑
I

N∑
i=1

log (αIipIi(yi|φIi))
N∏
j=1

p(Ij|yj,Φold)

After some simplification, Equation 2.30 can be written as

Q(Φ|Φold) =
M∑
l=1

N∑
i=1

log(αl)p(l|yi,Φold) +
M∑
l=1

N∑
i=1

log (pl(yi|φl)) p(l|yi,Φold) (2.31)
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Since the terms containing αl and φl are not related, they are maximized inde-

pendently.

To maximize the expression of αl, the constraint
∑M

l=1 αl = 1 should be satisfied.

Therefore, Lagrange multiplier λ should be introduced, i.e.,

∂
(∑M

l=1

∑N
i=1 log(αl)p(l|yi,Φold) + λ(

∑M
l=1 αl − 1)

)
∂αl

= 0 (2.32)

Taking the derivative with respect to both αl and λ, and solving the set of linear

equations, the following update formula is obtained:

αl =
1

N

N∑
i=1

p(l|yi,Φold) (2.33)

where l ∈ {1, ...,M}.
In order to obtain φl, various distributions can be considered for the observations

in each mixture component, e.g., a multivariate Gaussian distribution (φl = {µl,Σl}),
i.e.,

pl(y|µl,Σl) =
1

(2π)d/2|Σl|1/2
e

−(y − µl)TΣ−1
l (y − µl)

2 (2.34)

Taking the derivative of the second term in Equation 2.31 with respect to µl and

Σl, and solving the equations, the following update formulas will be obtained:

µl =

∑N
i=1 yip(l|yi,Φold)∑N
i=1 p(l|yi,Φold)

(2.35)

Σl =

∑N
i=1 p(l|yi,Φold)(yi − µl)(yi − µl)T∑N

i=1 p(l|yi,Φold)
(2.36)

The estimated parameters at each iteration will be used as the initial guess for the

next iteration. This iterative procedure is repeated until some convergence criterion

is satisfied [39].

2.2 Hidden Markov Models

Although initial studies on HMMs were in late 1960s and early 1970s, the main ap-

plications started from late 1980s. In general, HMMs provide appropriate statistical

frameworks to model real-world signals [40]. Signal models have various applications.
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They can be used to enhance corrupted signals by optimally removing the noise.

Also, having the appropriate signal model, one can infer the source of the signal.

Such models have shown an excellent performance in recognition and identification

applications. Signal models are either deterministic or stochastic. Deterministic

models assume some known structures, e.g., sum of exponentials or sine wave for

the signals, and try to determine the appropriate corresponding parameters. Statis-

tical models, on the other hand, consider the signal as a parametric random process.

Hidden Markov models and Gaussian processes are some examples of this category.

Appropriate learning procedures are required to estimate the parameters [40].

2.2.1 An Illustrative Example

In order to explain the concept of Markov models, the weather prediction example is

used here [41]. Consider to have three types of weather, e.g., sunny, rainy and fuggy.

Assuming that each weather lasts for a whole day, the goal is to predict tomorrow’s

weather based on available historical data, i.e.,

p(qt = Sj|qt−1 = Si, qt−2 = Sk, ..., q1 = S1) (2.37)

where qt indicates the state (weather) at each sampling time (day), and Sl, l∈{1,2,3}

corresponds to sunny, foggy and rainy weather respectively.

According to Equation 2.37, the more past history involved, the more complex will

be the computation. Assuming to use only the past five states, 35 = 243 statistics are

required to do a future prediction. A first-order Markov assumption simplifies this

computation as follows:

p(qt = Sj|qt−1 = Si, qt−2 = Sk, ..., q1 = S1) ≈ p(qt = Sj|qt−1 = Si) (2.38)

In this configuration, the closest previous state is considered to contain the his-

torical information. The second or higher order Markov assumptions can be applied

in a similar manner.

According to the first-order Markov assumption, the joint probability of a sequence

of states can be computed as in Equation 2.39.

p(q1, q2, q3, ..., qt) =
t∏

k=1

p(qk|qk−1) (2.39)

The proposed weather prediction Markov chain structure is illustrated in Figure

2.1. aij represents the probability of transiting from state i to state j.
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Figure 2.1: A three states Markov chain process (State 1=Sunny, State 2=Foggy and
State 3=Rainy ) [41]

This example can be further extended to explain hidden Markov models [41].

Suppose that you are locked in a room and you are asked about outside weather.

Your only information about the outside weather is a person who brings the daily

meal, whether he carries an umbrella or not. The main difference of the current

example from the previous one is that the actual weather, or “state”, is hidden from

you now. Therefore, you need to indirectly infer about it. Assuming to have a set of

observations O1, O2, O3, ..., Ot, and using the Bayes rule, Equation 2.39 can be written

as

p(q1, q2, q3, ..., qt|O1, O2, O3, ..., Ot) =
p(O1, O2, O3, ..., Ot|q1, q2, q3, ..., qt) p(q1, q2, q3, ..., qt)

p(O1, O2, O3, ..., Ot)
(2.40)

where in this scenario Ol, l∈{1,...,t} is either True (carrying an umbrella), or False (not

carrying an umbrella). p(q1, q2, q3, ..., qt) can be calculated using the same previ-

ous Markov model (Equation 2.39). p(O1, O2, O3, ..., Ot) is the prior probability of

observing a particular sequence of umbrella events, e.g., {True, False, True, ...}. As-

suming that Oi given qi is independent of all Oj and qj for j 6= i = 1, ..., t, then

p(O1, O2, O3, ..., Ot|q1, q2, q3, ..., qt) =
∏t

k=1 p(Ok|qk).

2.2.2 Basic Settings for HMMs

According to the previous example, fundamental underlying assumptions of HMMs

can be summarized as follows [42]:

1. Discrete state space assumption: States can only accept discrete values,

i.e., qt ∈ {S1, ..., SN}.

2. Markov assumptions:
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(a) Given the state in the previous sample time t− 1, current state at time t

will be independent of previous states 1 to t−2, i.e., qt ⊥ qi|qt−1, ∀i ≤ t−2.

(b) Given the state at time t, the corresponding observation Ot is independent

of all other states, i.e., Ot ⊥ qi|qt, ∀i 6= t.

Following the previous example and Markov assumptions, various elements of

HMMs can be summarized as follows [40]:

1. Number of states in the model (N):

As previously mentioned, states at each sampling instant can only take a limited

number of discrete events, i.e., qt ∈ S = {S1, ..., SN}. In many applications,

these states correspond to a physical phenomena, e.g., in the weather prediction

example, states correspond to sunny, foggy and rainy events.

2. Number of observation symbols per state (M):

If observations are discrete, they can only take a limited number of symbols,

i.e., Ot ∈ V = {v1, ..., vM}. For example, in the weather prediction case study,

observations in each state can only take two possible symbols, i.e., False and

True. Observations can also take continuous values in general.

3. State transition probability matrix (A = {aij}):
The state transition probabilities, as illustrated in Figure 2.1, can be defined as

follows:

aij = p [qt = Sj|qt−1 = Si] , 1 ≤ i, j ≤ N (2.41)

According to this definition, the following property should hold for the state

transition probabilities:

N∑
j=1

aij = 1, aij ≥ 0

4. Emission probability matrix (B = {bj(k)}):
Probability of observation symbols given various states can be defined using the

transition probability matrix as follows:

bj(k) = p [Ot = νk|qt = Sj] , 1 ≤ j ≤ N, 1 ≤ k ≤M (2.42)

According to this definition, the following constraint should be satisfied:

M∑
k=1

bj(k) = 1, bj(k) ≥ 0
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5. Initial state distribution (π = {πi}):
The initial state distribution is specifically defined for the first sample time, i.e.,

πi = p [q1 = Si] , 1 ≤ i ≤ N (2.43)

The following constraint should hold for the initial state distribution:

N∑
j=1

πi = 1, πi ≥ 0

Having the above five parameters, a hidden Markov model is defined. For conve-

nience, one might use the compact notation in Equation 2.44 to represent HMMs.

λ = (A, B, π) (2.44)

2.2.3 Three Fundamental Problems for HMMs

In literature, three fundamental problems are introduced and addressed for HMMs

as follows [40]:

• Problem 1 :

Having the model λ = (A, B, π), how to compute the probability of an obser-

vation sequence O = O1, O2, ..., OT given the model λ, i.e., p(O|λ)=?

• Problem 2 :

Having the model λ = (A, B, π), how to find the optimal state sequence Q =

q1, q2, ..., qT which best explains the observation sequence O = O1, O2, ..., OT ?

• Problem 3 :

How to find model parameters in λ = (A, B, π) such that P (O|λ) is maxi-

mized?

In the rest of this section, we will address these three problems.

Solution to Problem 1

A straightforward approach to address problem 1 is to marginalize P (O|λ) over all

possible state sequences [40], i.e.,

p(O|λ) =
∑
all Q

p(O,Q|λ) =
∑
all Q

p(O|Q, λ)p(Q|λ) (2.45)
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Using Markov assumptions, each term in the right hand side of Equation 2.45 can

be written as

p(O|Q, λ) =
T∏
t=1

p(Ot|qt, λ) = bq1(O1).bq2(O2). ... .bqT (OT )

p(Q|λ) =
T∏
t=1

p(qt|qt−1) = πq1aq1q2aq2q3 ... aqT−1qT

Having the expression in Equation 2.45 and the above two equations, p(O|λ) can

be computed as

p(O|λ) =
∑
all Q

p(O|Q, λ)p(Q|λ) (2.46)

=
∑

q1,q2, ..., qT

πq1bq1(O1)aq1q2bq2(O2), ..., aqT−1qT bqT (OT )

It can be proved that to compute the expression in Equation 2.46, 2T.NT calcula-

tions are required, e.g., having only 5 states, for a sequence of 100 observations, 1072

calculations are required. Therefore, forward and backward procedures have been

introduced to more efficiently compute p(O|λ) [40].

In the forward algorithm, the auxiliary probability αt(i), which represents the

probability of observing the partial sequence O1, O2, ..., Ot such that state qt is Si, is

introduced (αt(i) = p(O1, O2, ..., Ot, qt = Si|λ)) [43]. This probability is calculated

inductively as follows:

• Initialization:

α1(i) = πibi(O1), 1 ≤ i ≤ N (2.47)

• Induction:

αt+1(j) =

[
N∑
i=1

αt(i)aij

]
bj(Ot+1), 1 ≤ t ≤ T − 1, 1 ≤ j ≤ N (2.48)

• Termination

p(O|λ) =
N∑
i=1

αT (i) (2.49)
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The left side of Figure 2.2 illustrates one sample induction step where State i at

time t can be reached from all the previous states at time t−1. The final termination

step is to marginalize over all possible states at time T , i.e., qT , which results in the

probability p(O|λ). As the result of such procedure, the computation complexity will

be reduced to N2T (total T observations and N2 computations between each two

consecutive observations) which is significantly lower than equation 2.46.

One can perform calculations, very similar to Equations 2.47 to 2.49, to find

p(O|λ) backward. To do this, the auxiliary backward probability βt(i) is defined as

βt(i) = p(Ot+1, Ot+2, ..., OT |qt = Si, λ) [43]. To find p(O|λ) the following steps are

required:

• Initialization:

βT (i) = 1, 1 ≤ i ≤ N (2.50)

• Induction:

βt(i) =
N∑
j=1

aijbj(Ot+1)βt+1(j), t = T − 1, T − 2, ..., 1, 1 ≤ i ≤ N (2.51)

• Termination

p(O|λ) =
N∑
i=1

πibi(O1)β1(i) (2.52)

The induction step of the backward algorithm is presented in the right hand side

of Figure 2.2. Unlike the forward algorithm, in backward procedure, states of the next

sample time (t+ 2) are used to reach the states in the current sample time (t+ 1).

To address Problems 2 and 3, a combination of forward and backward algorithms

(forward-backward algorithm) is required. Figure 2.2 presents how these two proba-

bilities are connected.

Solution to Problem 2

The next important problem to be addressed is to find the “optimal” path of states

given an observation sequence [40]. One approach to solve this problem is to choose

the states which are individually more likely. In such an approach, the probability of

state Si at time t given the observation sequence O and the model λ can be defined

as follows:

γt(i) = p(qt = Si|O, λ) (2.53)
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Figure 2.2: Graphical illustration of Forward-Backward algorithm [40]

Then, through an optimal search, the most likely individual state qt at time t is

selected, i.e.,

qt = argmax1≤i≤N [γt(i)] , 1 ≤ t ≤ T (2.54)

Using the chain rule of probability, and definitions of the forward and backward

probabilities, it is easy to write γt(i) as follows:

γt(i) =
αt(i)βt(i)∑N
i=1 αt(i)βt(i)

(2.55)

According to this definition it should be clear that
∑N

i=1 γt(i) = 1.

Obviously, the optimality criterion in Equation 2.54 searches for the optimal state

at current sample time rather than the optimal state sequence. Therefore, one might

consider pairs of states (qt, qt+1) or triples of states (qt, qt+1, qt+2) instead the most

current state. The more general case is to find the optimal state sequence Q =

{q1, q2, ..., qT} for a given observation sequence O = {O1, O2, ..., OT}. The problem

can be defined as the best state path to maximize p(Q|O, λ) or equivalently p(Q,O|λ).

The Viterbi Algorithm, which is a dynamic programming technique, addresses this

problem [40].

Let us define the highest probability of a path at time t, which ends in state Si,

as follows:

δt(i) = maxq1,q2,...,qt−1 p [q1, q2, ..., qt = i, O1, O2, ..., Ot|λ] (2.56)

By induction, it is straightforward to show that

δt+1(j) = [max δt(i)aij] .bj(Ot+1) (2.57)

The idea of the Viterbi algorithm is to keep the track of the maximized argument

in Equation 2.57 for each t and j through the array ψt(j). The complete procedure

is as follows:
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• Initialization:

δ1(i) = πibi(O1), 1 ≤ i ≤ N

ψ1(i) = 0

• Recursion:

δt(j) = max 1≤i≤N [δt−1(i)aij] bj(Ot), 2 ≤ t ≤ T, 1 ≤ j ≤ N

ψt(j) = argmax 1≤i≤N [δt−1(i)aij] , 2 ≤ t ≤ T, 1 ≤ j ≤ N

• Termination:

P ∗ = max 1≤i≤N [δT (i)]

q∗T = argmax 1≤i≤N [δT (i)]

• Backtracking:

q∗t = ψt+1(q∗t+1), t = T − 1, T − 2, ..., 1

It should be noted that steps of the Viterbi algorithm are very similar to the

forward algorithm. However, except the marginalization step in Equation 2.48, a

maximization (recursion step) is performed.

Solution to Problem 3

The problem of finding HMM parameters to maximize the probability of observations

in the training data set given the model is the most difficult problem among the the

above three. Since no direct solution exists to analytically estimate the parameters,

iterative procedures such as Baum-Welch algorithm have been developed for this pur-

pose. These algorithms are equivalent to the solution of the problem under the EM

framework. In this section, EM derivations to estimate HMM parameters are pro-

vided [40].

According to the definition in Equation 2.25, let us define the Q-function as fol-

lows:

Q(λ|λold) =
∑
Q

log p(O,Q|λ)p(Q|O, λold) (2.58)
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In order to be consistent with Baum’s auxiliary function, knowing that p(O,Q|λold) =

p(Q|O, λold)p(O|λold), Equation 2.58 can be written as [39]

Q(λ|λold) =
∑
Q

log p(O,Q|λ)p(O,Q|λold) (2.59)

Using the chain rule of probability, and following the expressions after Equation

2.45, the likelihood p(O,Q|λ) can be written as

p(O,Q|λ) = πq1bq1(O1)
T∏
t=2

aqt−1qtbqt(Ot) (2.60)

According to Equation 2.60, it is straightforward to show that the Q-function in

Equation 2.59 becomes as follows [39]:

Q(λ|λold) =
∑
Q

(log πq1) p(O,Q|λold) +
∑
Q

(
T∑
t=2

log aqt−1qt

)
p(O,Q|λold) (2.61)

+
∑
Q

(
T∑
t=1

log bqt(Ot)

)
p(O,Q|λold)

The parameters which we wish to optimize in Equation 2.61 are in three separate

terms of the sum. Therefore, each term can be optimizaed independently.

The first term in Equation 2.61 can be simplified as follows:∑
Q

(log πq1) p(O,Q|λold) =
N∑
i=1

log (πi) p(O, q1 = i|λold) (2.62)

For the constraint
∑N

j=1 πi = 1 to hold, a Lagrange multiplier should be intro-

duced, and πi is obtained as follows [39]:

πi =
p(O, q1 = i|λold)

p(O|λold)
(2.63)

Similarly, the second term in Equation 2.61 can be simplified as∑
Q

(
T∑
t=2

log aqt−1qt

)
p(O,Q|λold) =

N∑
i=1

N∑
j=1

T∑
t=2

log (aij) p(O, qt−1 = i, qt = j|λold)

(2.64)

Again, the Lagrange multiplier should be introduced to satisfy the constraint∑N
j=1 aij = 1, and the final result is as follows:

aij =

∑T
t=2 p(O, qt−1 = i, qt = j|λold)∑T

t=2 p(O, qt−1 = i|λold)
(2.65)
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Finally, the last term of Equation 2.61, can be written as

∑
Q

(
T∑
t=1

log bqt(Ot)

)
p(O,Q|λold) =

N∑
j=1

T∑
t=1

log bj(Ot) p(O, qt = j|λ)) (2.66)

For this problem, the Lagrange multiplier should be introduced to satisfy
∑M

l=1 bi(l) =

1. Only the observations which are equal to νk will contribute to the kth probability

value. Therefore,

bj(k) =

∑T
t=1 p(O, qt = j|λ)δ(Ot, k)∑T

t=1 p(O, qt = j|λ)
(2.67)

where δ(Ot, k) = 1 if Ot = k, and 0 otherwise.

In order to write the update Equations 2.63, 2.65 and 2.67 with the same notations

as the Baum Welch algorithm, let us define the probability of being in state Si at

time t, and Sj at time t+ 1, given the model and observations as follows [39]:

ξt(i, j) = p(qt = Si, qt+1 = Sj|O, λold) (2.68)

Using the Bayes and chain rules, the expression in Equation 2.68 can be written

as

ξt(i, j) =
p(qt = Si, qt+1 = Sj, O|λold)

p(O|λold)
=

αt(i)aijbj(Ot+1)βt+1(j)∑N
i=1

∑N
j=1 αt(i)aijbj(Ot+1)βt+1(j)

(2.69)

where all the terms in Equation 2.69 have been defined previously.

From the definition of γt(i) in Equation 2.53 and ξt(i, j) in Equation 2.69, the

update formulas can be written as follows [39]:

πi = γ1(i) (2.70)

aij =

∑T−1
t=1 ξt(i, j)∑T−1
t=1 γt(i)

(2.71)

bj(k) =

∑T
t=1 γt(j)δ(Ot, k)∑T

t=1 γt(j)
(2.72)

The inference procedure in Equations 2.53 and 2.69, which uses the complete

observation sequence O1:T to infer the distribution of each hidden state qt through

the forward-backward algorithm, is usually called smoothing. One might only use

observations up to the current sample time to do such inference. This second problem

33



is known as a filtering problem in literature. A particular form of filtering for HMM

applications, which is known as Hamilton’s filtering algorithm, will be introduced and

used in next chapters [44].

There are many other interesting problems which have been previously addressed

in HMM literature. Continuous observation densities, autoregressive HMMs, state

duration densities, and implementation issues such as scaling are some of the examples

[40]. Some of these problems will be addressed in next chapters.
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Chapter 3

Operating Condition Diagnosis
Based on HMM with Adaptive
Transition Probabilities in
Presence of Missing Observations

In this chapter a new approach for modeling and monitoring of multivariate processes

in presence of faulty and missing observations is introduced. It is assumed that

operating modes of the process can transit to each other following a Markov chain

model. Transition probabilities of the Markov chain are time varying as a function

of a scheduling variable. Therefore, the transition probabilities will be able to vary

adaptively according to different operating modes. In order to handle the problem of

missing observations and unknown operating regimes, the Expectation Maximization

(EM) algorithm is used to estimate the parameters. The proposed method is tested

on two simulations and one industrial case studies. The industrial case study is the

abnormal operating condition diagnosis in the primary separation vessel of oil sands

processes. In comparison to the conventional methods, the proposed method shows

superior performance in detection of different operating conditions of the process.

3.1 Introduction

Regime switching systems have been of a great interest in the field of economics since

1990. It starts with Hamilton’s study in 1988 where a non-linear filter was developed

to learn about the changes in regime and find the maximum likelihood estimation

of the parameters [46]. Later, he developed an EM algorithm framework to find the

A version of this chapter has been published in N. Sammaknejad, B. Huang, W. Xiong, A. Fatehi,
F. Xu and A. Espejo (2015). Operating Condition Diagnosis Based on HMM with Adaptive Tran-
sition Probabilities in Presence of Missing Observations. AIChE Journal 61(2), 477–491 [45].
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maximum likelihood estimation of the process parameters with discrete shifts [44].

The shifts were modeled as the outcome of a Markov process. The goal of this study

was to find the main changes of the asset prices from observable events.

Since then, applications of switching Markov regimes have been widely used in

the field of economics. Bollen et al. studied applications of the regime-switching

models to analyze the dynamic behavior of foreign exchange rates. They found that

prices do not obey a Markov regime switching behavior [47]. Ang et al. performed

a similar study in interest rates of United States, Germany and the United Kingdom

and concluded that regime switching models have better forecasts in comparison to

single-regime models [48]. Pelletier introduced a regime switching dynamic correla-

tion model for the variance between different time series. It is shown in their empirical

case study that the developed model has a better performance in comparison to the

previous studies [49]. In the same year, Mount et al. showed that a stochastic regime

switching system is able to model the behavior of wholesale electricity prices and the

price spikes [50].

The idea of considering time-varying transition probabilities in regime switching

systems was initially proposed by Diebold et al. [51]. They developed an EM algo-

rithm framework for parameter estimation in cases where the transition probabilities

are function of underlying economic fundamentals. However, there are several lim-

itations in their study. First, it is assumed that the scheduling variable (economic

fundamentals) can only accept some limited discrete values. In other words, the tran-

sition behavior of the scheduling variable between different operating modes, which is

an important factor in industrial processes, is not considered. Second, they solve the

problem considering only two possible hidden modes for the process. Finally, their

proposed optimization procedure for the non-linear terms is very dependent to the

initial values. Filardo et al. made a clear picture of the advantages in considering

time varying transition probabilities over fixed transition probabilities afterwards [52].

Later, Otranto considered a specific multi-chain Markov switching model where the

transition probabilities are dependent to the regime of other variables. This approach

was successful in predicting the regime of analyzed variables [53].

Although hidden Markov models and regime switching systems have been widely

studied in the field of economics, their applications in the field of system identifica-

tion and fault detection are sparse. Discrete time Markov jump linear systems and

sudden failures have been previously reviewed in literature [54]. Jin et al. developed a

solution strategy for identification of switched Markov autoregressive exogenous sys-

tems under the EM framework [55]. Ghasemi et al. proposed a parameter estimation

method for a condition monitoring equipment with a certain failure rate structure.
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Hidden states (modes) were assumed to transit following a hidden Markov model

and observations were assumed to be imprecise. They used a maximum likelihood

estimation framework to obtain the parameters [25]. Wong et al. proposed to use

hidden Markov models as a generalization to the mixture of Gaussian approach in

order to model the faults due to sensor malfunctions. They showed that these types

of faults can be detected more appropriately using a HMM-based model [26]. Jiang

et al. proposed a new method for fault detection of gear transition system. They

modeled the system behavior as a three state continuous time Markov process. Pa-

rameter estimation was based on the EM algorithm framework [23]. The detailed

proof of their mathematical derivations is available in their recent article [56].

There has also been a great effort in handling the problem of missing data in recent

years. Deng et al. studied identification of non-linear parameter varying systems with

missing output data using particle filter. The model is appropriate for the processes

which work in multiple operating conditions [57]. Different approaches to handle the

problem of missing data using the EM algorithm is discussed in detail in literature

[29]. Multivariate process monitoring methods have also been broadly reviewed in

literature. Keshavarz et al. compared the application of Bayesian and EM methods

in multivariate change point detection [58].

In this chapter, we propose a new modeling and monitoring strategy for multi-

variate processes which follow a Markov regime switching behavior with time varying

transition probabilities in the presence of missing and faulty observations. Since the

scheduling variable is usually a good indication to the current operating mode of

the process, transition probabilities are considered to be time-varying as a function

of the scheduling variable. Therefore, transitions of the process between different

operating modes are taken into account by defining the transition probabilities as

distributions which are function of the underlying scheduling variable. In comparison

to conventional HMMs, this structure shows a far better performance for the pro-

cesses which have an asymmetric time-varying transition behavior between different

operating modes, i.e., when some of the modes are far from the majority and the

scheduling variable provides more flexibility in the modeling and filtering steps. Fur-

thermore, a certain structure is considered for the operating modes in the transition

probability matrix as the operating modes can transit to each other only in a logical

manner, e.g., normal, abnormal and then the faulty mode. This structure will reduce

the computational cost and provide an appropriate framework for the industrial pro-

cesses with continuous transitions from the normal to faulty modes.

Since industrial data are usually subject to missing observations and unknown

operating regimes, the problem is solved under the EM algorithm framework. In the
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maximization step (M-step) of the EM algorithm, the non-linear interior point local

optimization algorithm is adopted to find the optimal value of some of the unknown

parameters numerically. Since local numerical non-linear optimization methods are

usually sensitive to the initial guess, the initial values of the local optimization prob-

lem for the first iteration of the EM algorithm are obtained from an optimization

based on the first few generations of the Genetic Algorithm (GA). Other initial val-

ues for the unknown parameters in the EM algorithm are obtained by assuming that

the observations follow a mixture of multivariate Gaussian distributions.

After the parameter estimation step, Hamilton’s filter is applied to infer the hid-

den operating mode of the process for the test data set [44]. The accuracy of the

algorithm is tested on both simulation and industrial case studies and compared to

conventional HMMs. The industrial case study is the abnormal operating condition

diagnosis in the primary separation vessel which is an important early separation step

in oil sands processes. The method shows satisfactory predictions in recognition of

different operating conditions of the process.

The remainder of this chapter is organized as follows: Section 3.2 is the problem

statement where the model structure and unknown parameters are introduced. Sec-

tion 3.3 reviews the steps of the EM algorithm for parameter estimation. Section

3.4 is the application of Hamilton’s filter to infer the hidden operating mode of the

process. Section 3.5 includes the results of the simulation and industrial case studies

and Section 3.6 concludes this chapter.

3.2 Problem Statement

The data set for the process variables are considered as follows:

Y =


y11 y12 · · · y1N

y21 y22 · · · y2N
...

...
...

...
yP1 yP2 · · · yPN

 = (Y1, Y2, ..., YN)

where P is the number of process variables and N is the number of sample times.

The observable data (Cobs) include YO = {Yt1 , ..., Ytα}, and H = {H1, ..., HN},
whereH is the scheduling variable. The missing data (Cmiss) include YM = {Ym1 , ..., Ymβ},
and the hidden operating modes of the process at different sample times, i.e., I =

{I1, ..., IN}. This hidden operating mode corresponds to the operating condition of

the process, e.g., normal, abnormal and fault. Unlike abnormal modes, when the

process reaches a faulty mode, the likelihood of returning to a normal operation sig-

nificantly reduces.
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One could easily compare this terminology with the corresponding terms in a

state-space model. The introduced operating mode (operating condition) in this

chapter, corresponds to the states of a state-space model. Similar to a state-space

model, Observations (Y ), which correspond to the process outputs, are functions of

the underlying states (Equation 3.1). However, the data set is only partially available

(YO). The transition probability matrix (Equation 3.5) corresponds to the state, or

system matrix (A matrix) in the state-space representation.

It is obvious that the union of YO and YM is Y . The missing data (YM) might

come from different sources such as computer disconnections, sensor failures and data

collection errors [59]. Three main types of missing data have been introduced in litera-

ture [60]: 1) Missing not at random (MNAR) 2) Missing at random (MAR) 3) Missing

completely at random (MCAR). In the MNAR case, the probability of missingness

depends on the missing data. In the MAR case, the probability of missingness does

not depend on the missing data, but depends on the observed data. In the MCAR

case, the probability of missingness is independent of both the missing and observed

data. The missing data in the simulation case studies of this chapter are assumed to

be completely missed at random.

Observations at the kth time step are assumed to follow a multivariate normal

distribution with mean vector µi and covariance matrix Σi given the operating mode

i, i.e.,

f(Yk|Ik = i) ∼ NP (µi,Σi) (3.1)

where

NP (µi,Σi) = (2π)−P/2|Σi|−1/2exp(−1

2
(Yk − µi)TΣ−1

i (Yk − µi))

where 1 ≤ k ≤ N , 1 ≤ i ≤ M , and M is the number of available hidden operating

modes in the process.

πi is the initial state (operating mode) distribution of the Markov chain (πi =

P (I1 = i)) and the time varying transition probabilities are defined as a function of

the scheduling variable at the previous time step, i.e.,

α(k)ij = P (Ik = j | Ik−1 = i,Hk−1) (3.2)

When i = j, α(k)ii follows the distribution in Equation (3.3). Otherwise, it follows

the distribution in Equation (3.4).

α(k)ii =

2γiiexp(
−(Hk−1 −Hi)

2

2σ2
Hi

)

1 + exp(
−(Hk−1 −Hi)

2

2σ2
Hi

)

(3.3)
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α(k)ij,i6=j = γij(1− α(k)ii) (3.4)

where 1 ≤ k ≤ N , 1 ≤ i, j ≤M , σHi is an indicator for the validity of the scheduling

variable in operating mode i, Hi is the mean value of the scheduling variable in op-

erating mode i, and γij’s provide more flexibility in estimation of the distribution for

the transition probability α(k)ij.

Having such distributions in Equations 3.3 and 3.4, continuous transitions of the

scheduling variable, and consequently the process, between different operating modes

are taken into account. One should note that in the case when Hk−1 = Hi, α(k)ij

turns to a constant value and the transition probability matrix behaves as a conven-

tional Markov chain model. When Hk−1 starts to deviate from Hi, the distribution

in Equation 3.3 decreases, while the distributions in Equation 3.4 start to grow, i.e.,

the probability to stay is the same mode decreases and, as a result, the probabil-

ity of transition to other modes increases. This framework provides an appropriate

structure for modeling and monitoring of the processes with time-varying asymmetric

transitions between different operating modes, i.e., when some of the operating modes

are far from the majority and the scheduling variable can provide more flexibility in

the modeling and filtering steps. Industrial examples of such cases are provided in the

case studies. Another advantage of considering such distributions is the appearance

of the linear constraints on γij,i6=j’s in Equations 3.6, 3.7 and 3.8. Having such linear

constraints, makes the optimization problem to find γij,i6=j analytically tractable us-

ing Lagrange multipliers (Equations 3.27, 3.28).

Moreover, the M×M transition probability matrix is assumed to follow the struc-

ture in Equation (3.5).



α(k)11 · · · α(k)1Q 0 · · · 0
...

...
...

... · · ·
...

α(k)P1 · · · α(k)PQ 0 · · · 0
α(k)(P+1)1 · · · · · · · · · · · · α(k)(P+1)M

...
...

...
...

...
...

α(k)Q1 · · · · · · · · · · · · α(k)QM

0 · · · 0 α(k)(Q+1)(Q+1) · · · α(k)(Q+1)(M)

...
...

...
...

...
...

0 · · · 0 α(k)(M)(Q+1) · · · α(k)(M)(M)


(3.5)

This structure imposes a logical transition between different operating modes of

the process, i.e., the process cannot enter the faulty modes right after leaving the

normal modes, and the abnormal modes are some intermediate modes which have

the capability to transit to both normal and faulty modes. Also, from the faulty
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modes the process can just transit to the abnormal modes. This transition behavior

is graphically presented in Figure 3.1. This structure makes the model more appro-

priate for a wide class of process industry applications where the process continuously

changes between different operating modes rather than sudden discrete jumps from

normal to faulty. Furthermore, it reduces the number of required parameters and

the computational time in both parameter estimation and on-line operating mode

recognition (filtering) steps.

Figure 3.1: The diagram of operating mode transitions used for fault detection pur-
pose of this chapter (normal modes: 1 to P , abnormal modes: P + 1 to Q, faulty
modes: Q+ 1 to M)

According to the structure introduced in Equation (3.5), there are three types of

constraints on the parameters of the different operating modes.

Constraints for the normal operating modes:

if 1 ≤ i ≤ P, 1 ≤ j ≤ Q : 0 ≤ γij ≤ 1,

j=Q∑
j=1,j 6=i

γij = 1

if 1 ≤ i ≤ P, Q+ 1 ≤ j ≤M : γij = αij = 0 (3.6)

Constraints for the abnormal operating modes:

if P + 1 ≤ i ≤ Q, 1 ≤ j ≤M : 0 ≤ γij ≤ 1,

j=M∑
j=1,j 6=i

γij = 1 (3.7)

Constraints for the faulty operating modes:

if Q+ 1 ≤ i ≤M, 1 ≤ j ≤ Q : γij = αij = 0
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if Q+ 1 ≤ i ≤M, Q+ 1 ≤ j ≤M : 0 ≤ γij ≤ 1,

j=M∑
j=Q+1,j 6=i

γij = 1 (3.8)

These constraints are used later in the derivations of the EM algorithm.

In summary, the unknown parameters to be estimated from the EM algorithm are

the mean vectors and covariance matrices of the different modes (µi and Σi), param-

eters of the transition probabilities (γii’s and γij’s) and the validity of the scheduling

variable in different operating modes (σHi). The mean value of the scheduling vari-

able at different operating modes (Hi’s) are assumed to be known from the historical

data (find more information in Section 3.3.2).

3.3 Parameter Estimation Based on the Expecta-

tion Maximization Algorithm

EM algorithm finds the maximum likelihood estimation of the unknown parameters

by iteratively switching between the expectation (E) and maximization (M) steps

[28].

In the E-step of the EM algorithm, the Q-function, which is the conditional ex-

pectation of the complete data, is calculated:

Q(θ | θold) = ECmiss|(θold,Cobs){log f(Cobs, Cmiss | θ)} (3.9)

where θold is the vector of parameters for the previous iteration, Cmiss is the missing

data-set and Cobs is the observed data-set.

In the M-step, the set of parameters that maximizes the Q-function are calculated:

θnew = argmaxθQ(θ | θold) (3.10)

This procedure is iteratively repeated until some stopping criterion is satisfied.

3.3.1 Expectation Step

In the expectation step, the expected value of the complete-data log-likelihood func-

tion is calculated. Observed and missing data and the unknown parameters have

been previously introduced in the problem statement section.

Q(θ | θold) = ECmiss|(θold,Cobs){log f(Cobs, Cmiss | θ)} (3.11)

= EI1:N ,YM |(θold,Cobs){log f(Y1:N , H1:N , I1:N | θ)}
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Using the chain rule, the probability density function in Equation (3.11) can be

decomposed as follows:

f(Y1:N , H1:N , I1:N | θ) (3.12)

= f(Y1:N | H1:N , I1:N , θ)P (I1:N | H1:N , θ)P (H1:N | θ)

Each term of Equation (3.12) is explained in Equations (3.13) to (3.15) respectively.

f(Y1:N | H1:N , I1:N , θ) =
N∏
k=1

f(Yk | Yk−1, ..., Y1, H1:N , I1:N , θ) (3.13)

=
N∏
k=1

f(Yk|Ik, θ)

In Equation (3.13), we have used the fact that given the model identity I, the con-

ditional distribution of Y is independent of the scheduling variable H. Furthermore,

Yk follows the multivariate normal distribution in Equation (3.1) given the hidden

operating mode at time k. Also,

P (I1:N | H1:N , θ) =
N∏
k=1

P (Ik | Ik−1, ..., I1, H1:N , θ) (3.14)

= P (I1)
N∏
k=2

P (Ik | Ik−1, Hk−1, θ)

Equation 3.14 is derived based on the Markov property of the model.

Hi is independent of θ, and therefore, the last term in Equation (3.12) can be

considered as a constant in the Q function, i.e.,

P (H1:N | θ) = Const (3.15)

Following Equations (3.12) to (3.15), the Q-function in Equation (3.11) can be

written as

Q(θ | θold) = EI1:N ,YM |(θold,Cobs){
N∑
k=1

logf(Yk|Ik, θ)) (3.16)

+
N∑
k=2

logP (Ik | Ik−1, Hk−1, θ)) + logP (I1) + log (Const)}
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In the first step, the expected value in Equation (3.16) is calculated with respect

to the hidden operating modes (Ik), i.e.,

Q(θ | θold) = (3.17)

EYM |(θold,Cobs,I)
∑
I1

...
∑
IN

P (I1, ..., IN | θold, Cobs)

{
N∑
k=1

logf(Yk|Ik, θ) +
N∑
k=2

logP (Ik | Ik−1, Hk−1, θ) + logP (I1) + log (Const)}

Equation (3.17) can be further simplified as

Q(θ | θold) = (3.18)

EYM |(θold,Cobs,I){
M∑
i=1

N∑
k=1

P (Ik = i | θold, Cobs)logf(Yk | Ik = i, θ)

+
M∑
i=1

M∑
j=1

N∑
k=1

P (Ik = j, Ik−1 = i | θold, Cobs)logαij(k)

+
M∑
i=1

P (I1 = i | θold, Cobs)logπi + log Const}

In the next step, expectation is calculated with respect to missing observations

(YM), i.e,

Q(θ | θold) = (3.19)

∫
Ym

M∑
i=1

N∑
k=1

P (Ik = i | θold, Cobs)logf(Yk | Ik = i, θ)× P (Ym1:mβ | θold, Cobs, I)dYm1:mβ

+

∫
Ym

M∑
i=1

M∑
j=1

N∑
k=1

P (Ik = j, Ik−1 = i | θold, Cobs)logαij(k)× P (Ym1:mβ | θold, Cobs, I)dYm1:mβ

+

∫
Ym

M∑
i=1

P (I1 = i | θold, Cobs)logπi × P (Ym1:mβ | θold, Cobs, I)dYm1:mβ + log Const
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Since the integration is with respect to the missing observations, Equation (3.19)

can be simplified as,

Q(θ | θold) = (3.20)

M∑
i=1

tα∑
k=t1

logf(Yk | Ik = i, θ)P (Ik = i | θold, Cobs)

+
M∑
i=1

mβ∑
k=m1

P (Ik = i | θold, Cobs)×
∫
P (Yk | θold, Cobs, Ik = i)logf(Yk | Ik = i, θ)dYk

+
M∑
i=1

M∑
j=1

N∑
k=1

P (Ik = j, Ik−1 = i | θold, Cobs)logαij(k) +
M∑
i=1

P (I1 = i | θold, Cobs)logπi

+log Const

Assuming that Yk follows the multivariate Gaussian distribution in Equation (3.1)

given the hidden operating mode at time k, and using the properties of the expected

value of the quadratic form, the integral term in Equation (3.20) can be derived as∫
P (Yk | θold, Cobs, Ik = i)logf(Yk | Ik = i, µi,Σi)dYk (3.21)

= −1

2
log((2π)P |Σi|)−

1

2
(tr(Σ−1

i Σold
i ) + (µoldi − µi)TΣ−1

i (µoldi − µi))

Details of the derivations in Equations 3.21, 3.23 and 3.24 are available in Ap-

pendix A.

Finally, the Q-function is written as

Q(θ | θold) = (3.22)

M∑
i=1

tα∑
t1

logf(Yk | Ik = i, θ)P (Ik = i | θold, Cobs)

+
M∑
i=1

mβ∑
k=m1

P (Ik = i | θold, Cobs)
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×(−1

2
log((2π)P |Σi|)−

1

2
(tr(Σ−1

i Σold
i ) + (µoldi − µi)TΣ−1

i (µoldi − µi)))

+
M∑
i=1

M∑
j=1

N∑
k=1

P (Ik = j, Ik−1 = i | θold, Cobs)logαij(k)

+
M∑
i=1

P (I1 = i | θold, Cobs)logπi + log Const

3.3.2 Maximization Step

In the maximization step, derivatives of the Q-function are taken with respect to the

unknown parameters and then set to zero. For the parameters without an analytical

solution, the optimal value of the parameters are found following a numerical opti-

mization procedure.

In order to find the optimal mean vector of the different operating modes, deriva-

tives of the first two terms in Equation (3.22) are taken with respect to µi and then

set to zero. Using the derivative properties of the vectors, the final result for the

mean vector of each mode is obtained as in Equation (3.23).

µnewi =

∑tα
k=t1

YkP (Ik = i | θold, Cobs) +
∑mβ

k=m1
µoldi P (Ik = i | θold, Cobs)∑N

k=1 P (Ik = i | θold, Cobs)
(3.23)

Derivatives with respect to the covariance matrix of each mode are taken and set

to zero in a similar manner. The final result is presented in Equation (3.24).

(Σi)
new =

∑tα
k=t1

(Yk − µnewi )(Yk − µnewi )TP (Ik = i | θold, Cobs)∑N
k=1 P (Ik = i | θold, Cobs)

(3.24)

+

∑mβ
k=m1

((Σold
i ) + (µoldi − µnewi )(µoldi − µnewi )T )P (Ik = i | θold, Cobs)∑N

k=1 P (Ik = i | θold, Cobs)

The optimization problem to find πi is constrained by
∑M

i=1 πi = 1 and as a results

the Lagrange multiplier λ is introduced:

πnewi = argmaxπi{
M∑
i=1

P (I1 = i|θold, Cobs)logπi + λ(
M∑
i=1

πi − 1)} (3.25)

Taking the derivative of Equation (3.25) with respect to the Lagrange multiplier

and πi, and solving the set of linear equations, the expression in Equation (3.26) is

obtained.

πnewi = P (I1 = i | θold, Cobs) (3.26)
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Similarly, the optimization problem to find γij,i6=j is constrained by
∑M

j=1 γij,i6=j =

1. Therefore, Lagrange multiplier λ′ is introduced.

γnewij,i6=j = argmaxγij,i 6=j{
M∑
i=1

M∑
j 6=i=1

N∑
k=2

P (Ik = j, Ik−1 = i|θold, Cobs)× log(αij(k))

(3.27)

+λ′(
M∑

j 6=i=1

γij − 1)}

where αij(k) is introduced as a function of γij in Equations (3.3) and (3.4). Taking

the derivative of Equation (3.27) with respect to γij,i6=j and the Lagrange multiplier

and then solving the set of linear equations, the following result is obtained:

(γij,i6=j)
new =

∑N
k=2 P (Ik = j, Ik−1 = i | θold, Cobs)∑M

j 6=i=1

∑N
k=2 P (Ik = j, Ik−1 = i | θold, Cobs)

(3.28)

Due to the existence of the exponential function in transition probabilities (αii(k)),

the unknown parameters σHi and γii cannot be obtained analytically when maximizing

the cost function in Equation (3.29).

(σHi , γii)
new
1≤i≤M = argmaxσHi ,γii

M∑
i=1

M∑
j=1

N∑
k=2

P (It = j, It−1 = i|θold, Cobs)× log(αij(k))

(3.29)

S.t. 0 ≤ γii ≤ 1, σHmin ≤ σHi ≤ σHmax , γij 6= 0

Local non-linear optimization methods to find the optimal value of the unknowns

(σHi and γii) are very sensitive to the initial values and it is possible that the opti-

mization problem converges to a local optimum rather than a global. On the other

hand, some of the moderate optimization techniques, like Genetic Algorithm (GA),

do not require initial values, and if some certain criteria such as parallel searching,

efficient interactions between different search trajectories and intelligent steps with

appropriate step sizes are considered, the algorithm will normally reach a global so-

lution, or a better local one. However, these methods are time consuming if used

for global multivariate optimization of large data-bases in the presence of missing

observations [61, 62].

In this chapter, we will use the following procedure in order to find the optimal

value of the unknowns without analytical solutions in the Maximization step. Similar
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procedures have been previously introduced in literature [63, 64]. Using this proce-

dure, an intelligent random sampling for initialization of some of the parameters in

the EM algorithm is used. Unlike previous initialization techniques, which provide

completely random initial values and select the one solution with the largest likelihood

[34], GA will provide the initial values based on the population’s fitness and a target

sampling rate. Consequently, the low performance initial values will be generated

with very small probabilities [62], and it will be more likely to have the appropriate

initial values for the EM algorithm.

1. At the first iteration of the EM algorithm, start the non-linear optimization

problem in Equation (3.29) with only a few generations of the Genetic Algo-

rithm.

2. Continue the optimization of the function in Equation (3.29) with results of

the GA as the initial values for the local interior point non-linear constrained

optimization algorithm (more details are available in the references [65, 66]).

3. Having the optimal values from the previous step, continue the maximization

step following Equations (3.23), (3.24), (3.26) and (3.28).

4. Save the calculated optimal values as θold for the next iteration which starts

from step 2.

The initial values for the mean vectors and covariance matrices (µi and Σi) of the

different modes in the EM algorithm can be obtained from an initial solution based

on a mixture of multivariate Gaussian distributions assumption for the observations

(YO). The initial values for γij,i6=j can be selected to be equal to 0.5, assuming equal

probability for all the transitions. In the cases where operating modes of the schedul-

ing variable are unclear, the mean values of the scheduling variable at each operating

mode (H ′is) and the initial values for the validity of the scheduling variable at each

operating mode (σHi) can be obtained assuming that the scheduling variable follows

a mixture of Gaussian distributions.

The optimization problem will iterate between the E and M steps until the con-

vergence criterion is satisfied. The convergence criterion in this framework is set to

be less than the absolute value of the likelihood change in two successive iterations.

Furthermore, P (Ik = j, Ik−1 = i | θold, Cobs) and P (Ik = i | θold, Cobs) are required

to complete the maximization step in Equations (3.23) to (3.29). These terms are

calculated as follows:

if Yk is observed,
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P (Ik = j, Ik−1 = i | θold, Cobs) = P (Ik = j, Ik−1 = i | Yt1 , ..., Ytα , θold, H1, ..., HN) =

f(Yt1 , ..., Ytα | Ik = j, Ik−1 = i, θold, H1, ..., HN)× P (Ik = j, Ik−1 = i | θold, H1, ..., HN)∑M
i=1

∑M
j=1 f(Yt1 , ..., Ytα | Ik = j, Ik−1 = i, θold, H1, ..., HN)× P (Ik = j, Ik−1 = i | θold, H1, ..., HN)

=
f(Yk | Ik = j, θold)P (Ik = j | Ik−1 = i,Hk−1, θ

old)× P (Ik−1 = i | θold, H1, ..., Hk−2)∑M
i=1

∑M
j=1 f(Yk | Ik = j, θold)P (Ik = j | Ik−1 = i,Hk−1, θold)× P (Ik−1 = i | θold, H1, ..., Hk−2)

(3.30)

if Yk is missing,

P (Ik = j, Ik−1 = i | θold, Cobs) =

P (Ik = j, Ik−1 = i | θold, H1, ..., HN) =

P (Ik = j | Ik−1 = i, θold, Hk−1)P (Ik−1 = i | θold, H1, ..., Hk−2) (3.31)

where in Equations (3.30) and (3.31), P (Ik = j | Ik−1 = i, θold, Hk−1) = αij(k)old,

f(Yk | Ik = j, θold) follows the multivariate normal distribution in Equation (3.1)

with mean vector and covariance matrix µoldi and Σold
i obtained from the previous

iteration, and P (Ik−1 = i | θold, H1, ..., Hk−2) is obtained through discrete-valued state

propagation of Markov chain starting from the initial value of P (I1 = i | θold, Cobs) =

πoldi .

Finally, P (Ik = i | θold, Cobs) can be obtained from summation of P (Ik = i, Ik−1 =

j | θold, Cobs) over all the possible modes for Ik−1, i.e.,

P (Ik = i | θold, Cobs) =
M∑
j=1

P (Ik = i, Ik−1 = j | θold, Cobs) (3.32)

3.4 Operating Mode Recognition

On-line operating mode (state) recognition is needed for fault detection. Through an

on-line application, probability of the hidden process modes given the observations

(P (Ik | Yk, ..., Y1, Hk, ..., H1)) can be calculated using Hamilton’s filtering strategy

[44] as follows:
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1. Calculate the joint probability of the modes Ik and Ik−1 given the information

up to time k − 1:

P (Ik, Ik−1 | Yk−1, ..., Y1, Hk−1, ..., H1) = (3.33)

P (Ik | Ik−1, Hk−1)P (Ik−1 | Yk−1, ..., Y1, Hk−1, ..., H1)

where P (Ik | Ik−1, Hk−1) = αij(k), and P (Ik−1 | Yk−1, ..., Y1, Hk−1, ..., H1) is the

previous output of the filter.

2. Update the probability of the modes Ik, Ik−1 using the new observations at time

k:

P (Ik, Ik−1 | Yk, ..., Y1, Hk, ..., H1) =
P (Yk, Ik, Ik−1 | Yk−1, ..., Y1, Hk, ..., H1)

P (Yk | Yk−1, ..., Y1, Hk, ..., H1)
(3.34)

where

P (Yk, Ik, Ik−1 | Yk−1, ..., Y1, Hk, ..., H1)

= P (Yk | Ik, Ik−1, Yk−1, ..., Y1, Hk, ..., H1)× P (Ik, Ik−1 | Yk−1, ..., Y1, Hk, ..., H1)

= f(Yk | Ik)P (Ik, Ik−1 | Yk−1, ..., Y1, Hk−1, ..., H1)

where f(Yk | Ik) follows the multivariate normal distribution in Equation (3.1)

and P (Ik, Ik−1 | Yk−1, ..., Y1, Hk−1, ..., H1) is known from Equation (3.33). The

denominator in Equation (3.34) can be calculated as

P (Yk | Yk−1, ..., Y1, Hk, ..., H1)

=
M∑
Ik=1

M∑
Ik−1=1

P (Yk, Ik, Ik−1 | Yk−1, ..., Y1, Hk, ..., H1)

3. The output of the filter will be,

P (Ik | Yk, ..., Y1, Hk, ..., H1) =
M∑

Ik−1=1

P (Ik, Ik−1 | Yk, ..., Y1, Hk, ..., H1) (3.35)
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3.5 Results and discussion

As previously stated in the introduction and problem statement sections, the advan-

tage of using the proposed structure of this chapter over conventional HMMs can be

very well demonstrated when a process has an asymmetric time varying transition

behavior between different operating modes, i.e., when some of the operating modes

are far from the majority and the scheduling variable helps in the modeling and filter-

ing steps by providing more flexibility. Examples of such situations are demonstrated

in the case studies of this section.

3.5.1 A Numerical Case Study

In this simulation case study, we consider a system that operates in four operating

modes which are normal (mode 1), abnormal 1 (mode 2), abnormal 2 (mode3) and

fault (mode 4). Observations of each mode are assumed to follow different multi-

variate normal distributions. The abnormal modes (modes 2 and 3) are assumed to

be close to each other and far from the normal and faulty modes as in Table 3.1.

Operating modes of the process follow the structure proposed in Figure 3.1. In order

to test the validity of the algorithm for missing observations, some observations (10

%) are randomly missed in the simulation at various sampling instants. The missing

data are assumed to be completely missing at random. The scheduling variable is

assumed to linearly transit between different operating conditions. Parameters used

for the simulation are presented in Table 3.1. Parameters γ13, γ14, γ24, γ34, γ41 and

γ43 can be further obtained from Equations (3.6), (3.7) and (3.8) respectively.

Table 3.1: System parameters to generate the simulation data

π0 = [0.25, 0.25, 0.25, 0.25]
γ11 = 0.98, γ12 = 0.5, γ21 = 0.5, γ22 = 0.95, γ23 = 0.3
γ31 = 0.2, γ32 = 0.6, γ33 = 0.89, γ42 = 0.4, γ44 = 0.92
µ1 = [5 3], µ2 = [10 8], µ3 = [11 9], µ4 = [18 16]

Σ1 =

(
1 0.5

0.5 2.5

)
,Σ2 =

(
3 0.75

0.75 4.5

)
Σ3 =

(
4 0.4

0.4 5.5

)
,Σ4 =

(
2 0.6

0.6 0.5

)
σH1 = 5, σH2 = 4, σH3 = 4.5, σH4 = 3

Following the expectation-maximization procedure introduced in section 3, the

final estimated value of the parameters from a training data-set including 8000 data
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are obtained as presented in Table 3.2. As it is clear from this table, the estimated

parameters are close to true parameters of the process. Due to the nature of the

industrial process which will be later used in this chapter, with small sampling rates

and large number of operating modes, using such large training data-sets are more

appropriate for the proposed method to provide robust process identification results.

However, size of the training data set might vary for other industrial applications

according to their sampling rate and number of operating modes.

Table 3.2: Estimated parameters from the EM algorithm

π0 = [0.25, 0.25, 0.25, 0.25]
γ11 = 0.9912, γ12 = 0.6633, γ21 = 0.6756, γ22 = 0.9775, γ23 = 0.2882
γ31 = 0.3037, γ32 = 0.5379, γ33 = 0.8861, γ42 = 0.3470, γ44 = 0.9397

µ1 = [5.1991 3.2050], µ2 = [9.8667 7.8267]
µ3 = [10.8162 8.7122], µ4 = [17.0019 14.9031]

Σ1 =

(
1.2727 0.7264
0.7264 3.0525

)
,Σ2 =

(
3.4465 1.0722
1.0722 4.7376

)
Σ3 =

(
4.7419 0.6518
0.6518 5.6666

)
,Σ4 =

(
2.6854 0.6330
0.6330 0.6890

)
σH1 = 5.2613, σH2 = 4.1880, σH3 = 4.3707, σH4 = 3.4833

In order to compare the performance of the proposed method in operating con-

dition diagnosis with conventional HMMs [25, 26], first, another data-set including

8000 data is generated from the same model in Table 3.1 for training purposes. Since

conventional hidden Markov models cannot deal with missing observations, the com-

plete data set is assumed to be observable and the performance is only compared in

the adaptive property of the new technique rather than handling of the missing data.

Next, a validation data-set is generated from the same model, which is presented in

Figure 3.2. Results of the filtering procedure to find the probability of the hidden

operating modes given observations based on the proposed method of this chapter

(Section 3.4) are presented in Figure 3.3. Based on these probabilities, true and the

estimated operating modes of the process are presented in Figure 3.4.

52



500 1000 1500 2000 2500 3000 3500 4000

5

10

15

Fi
rs

t O
ut

pu
t

500 1000 1500 2000 2500 3000 3500 4000
0

5

10

15

Se
co

nd
 O

ut
pu

t

500 1000 1500 2000 2500 3000 3500 4000
2

4

6

8

10

Sc
he

du
lin

g 
Va

ria
bl

e

Time

Figure 3.2: Validation data-set
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Figure 3.3: Probability of the hidden operating modes for the validation data-set
using the proposed method of this chapter

As presented in Figure 3.4, except for some very fast changes in the dynamics

of the process which cause some false alarms (time instants around 1700 and 2700

for example), the method is generally able to detect the true operating mode of the

process.

Results of the probability calculation and operating mode recognition based on

conventional multivariate HMMs are presented in Figures 3.5 and 3.6.
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Figure 3.4: True and estimated hidden operating modes of the process for the vali-
dation data-set using the proposed method of this chapter
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Figure 3.5: Probability of the hidden operating mode for the validation data-set based
on a conventional multivariate hidden Markov model

As presented in Figure 3.5, applying conventional HMMs, the developed model is

unable to distinguish between the two close abnormal operating modes (modes 2 and

3), i.e., probability of the observations given these modes are close to each other and

close to 0.5. Consequently, in Figure 3.6, one could see that based on the probabilities

in Figure 3.5, at several time instants, operating mode 2 is incorrectly categorized as
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Figure 3.6: True and estimated hidden operating modes of the process for the vali-
dation data-set based on a conventional multivariate hidden Markov model

3.

This example illustrates one of the cases where applying time-varying transition

probabilities based on the distributions introduced in Equations (3.3) and (3.4) can

provide more accurate predictions for the true hidden operating mode of the process.

As this example shows, existence of an accurate scheduling variable can provide more

flexibility to model and monitor the process transitions between different operating

modes.

3.5.2 A Simulation Study

In this example, the proposed method is tested on the two CSTRs in series intro-

duced by Henson et al. [67]. The irreversible exothermic first order reaction A −→ B

occurs in the two reactors in series. The feed enters the first reactor with flow rate qf

and temperature and concentration CAf and Tf respectively. The product of the first

reactor is then feed to the second reactor. A parallel flow (qc) is used as the coolant.

The process is illustrated in Figure 3.7.

The process works in open loop condition. Concentration of the product CA2 is

the important output variable for control purposes. In the steady state condition CA2

is around 0.05(
mol

L
).

Temperature of the first reactor (T1), which can provide a pre-indication to the
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Figure 3.7: Two CSTRs in series [67]

operating condition of the process before receiving the final product, is selected as

the scheduling variable. It is assumed that there is no measurement for the coolant

flow-rate (qc(
L

min
)) and coolant flow-rate is selected as the disturbance with variance

10.

The main cause of the changes in operating condition of the process is the sudden

changes in the feed flow-rate (qf ). In this example, the feed flow-rate is assumed

to vary between 3 operating modes following the Markov switching model given in

Equation 3.5. Normal (mode 1) and abnormal (mode 2) operations occur when

the feed flow-rate is around its steady-state value, i.e., qf(Mode1) = 105.4(
L

min
) and

qf(Mode2) = 112.6(
L

min
). The faulty mode occurs when feed flow-rate suddenly in-

creases (qf(Mode3) = 134.3(
L

min
)) and the coolant flow-rate is not enough to maintain

a constant process temperature. In such situations, the output temperature (T2) sud-

denly increases. This is followed by a very low product concentration (CA2). There-

fore, these two key variables (T2 and CA2) are selected as indicators of the operating

condition of the process. An example of the normal, abnormal and faulty operating

conditions of the process is illustrated in Figure 3.8. The output temperature is in

Kelvin unit. Parameters of the transition probability matrix, which cause the switch-

ing behavior in the feed flow-rate, are selected as γ11 = 0.95, γ21 = 0.7, γ22 = 0.93,

γ33 = 0.97, σH1 = 15, σH2 = 13 and σH3 = 10. Parameters γ12, γ23, and γ32 can be

further obtained from Equations (3.6), (3.7) and (3.8) respectively.

The scheduling variable and the disturbance to the process are presented in Figure

3.9. Applying a moving average filter, the scheduling variable is filtered to provide an
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Figure 3.8: Different operating modes for the process variables (validation data-set)

overal indication for the transitions of the process between different operating modes.

According to the previous discussion on the feed flow rate, in this example, the faulty

mode is selected far from the normal and abnormal operations of the process. Similar

to the previous example, this asymmetric mode transition provides a condition to

more clearly demonstrate the advantage of the proposed method of this chapter over

conventional techniques.

The historical data set including 8000 data points, which are different but from the

same model as Figure 3.8, is used for training purposes. Similar to previous example,

10 % of the training data are assumed to be randomly missing. In industrial appli-

cations, such missing information might be due to sudden shifts in process status.

Results of the parameter estimation based on expectation maximization algorithm

introduced in section 3 are presented in Table 3.3.

In order to compare the performance of the proposed method in this chapter and

conventional HMMs, both methods are tested on the data in Figures 3.8 and 3.9.

The training data-set to train conventional HMMs is the same as the historical data-

set that is used for parameter estimation in Table 3.3. However, here, the complete

data-set is assumed to be observable since conventional HMMs cannot deal with the

missing observations. Therefore, the comparison is made only in the time-varying

property of the new model.

Using the proposed method of this chapter, probability of the different operating
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Figure 3.9: The scheduling variable and disturbance to the process (validation data-
set)

Table 3.3: Estimated parameters for the CSTRs in series using the EM algorithm

π0 = [0.3333, 0.3333, 0.3333]
γ11 = 0.9472, γ21 = 0.6301, γ22 = 0.9142, γ33 = 0.9968,

µ1 = [0.0041 452.7567], µ2 = [0.0033 455.8058],mu3 = [0.0023 461.5816]

Σ1 =

(
9.2697× 10−8 −2.0526× 10−4

−2.0526× 10−4 0.5908

)
Σ2 =

(
7.1064× 10−8 −2.1382× 10−4

−2.1382× 10−4 0.7967

)
Σ3 =

(
3.0473× 10−7 −1.8× 10−3

−1.8× 10−3 11.3670

)
σH1 = 0.9089, σH2 = 2.7259, σH3 = 9.8989

modes given new observations are presented in Figure 3.10. Based on these proba-

bilities, true and estimated operating conditions of the process are demonstrated in

Figure 3.11.

As presented in Figure 3.11, similar to the previous case study, other than some

very fast changes in the process variables, the proposed method of this chapter is able

to detect the different operating modes of the process.

Results of the filtering and operating condition diagnosis based on conventional

HMMs are presented in Figures 3.12 and 3.13 respectively.
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Figure 3.10: Probability of the hidden operating modes for the CSTRs in series based
on the proposed method of this chapter and the validation data-set in Figure 3.8
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Figure 3.11: True and estimated operating modes of the process for the CSTRs in
series based on the proposed method of this chapter and the validation data-set in
Figure 3.8

Comparing the results in Figures 3.11 and 3.13, one could easily observe that the

conventional method provides several false alarms in detection of the faulty mode.

This is another good example to show the merit of the proposed method of this

chapter for the cases where the process operates among asymmetric operating modes

and adaptive transition probabilities provide more flexibility for overall monitoring of
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Figure 3.12: Probability of the hidden operating modes for the CSTRs in series using
conventional HMMs and the validation data-set in Figure 3.8

500 1000 1500 2000 2500 3000 3500 4000
0

0.5

1

1.5

2

2.5

3

3.5

4

Time

O
pe

ra
tin

g 
M

od
e

 

 
Estimated Operating Mode of the Process
True Operating Mode of the Process

Figure 3.13: True and estimated operating modes of the process for the CSTRs in
series using conventional HMMs and the validation data-set in Figure 3.8

the process. In this example, existence of the scheduling variable helps the model to

adapt to the new modes. Therefore, the new framework eventually enables the model

to better detect the faulty mode which behaves far from the normal and abnormal

modes.
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3.5.3 An Industrial Case Study

This industrial case study will be presented in Chapter 6, and compared to the meth-

ods in other chapters of the thesis.

3.6 Conclusion

In this chapter a novel approach for modeling and monitoring of the time-varying

multivariate regime switching systems subject to fault and missing observations is

introduced. Due to the existence of the missing observations and unknown operating

modes, the EM algorithm is applied to find the unknown parameters. Also, an opti-

mization procedure is introduced to reduce the sensitivity of the EM algorithm to its

initial values.

The proposed method is tested on two simulations and one industrial case stud-

ies and shows a superior performance in detecting the different operating modes of

the process in comparison to the conventional methods. In general, application of

time varying transition probabilities, as introduced in this chapter, provides better

classifications for different operating modes of the process. This improvement can be

more clearly observed in processes with asymmetric time varying transitions between

different operating modes.
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Chapter 4

Robust Diagnosis of Operating
Mode Based on Time Varying
Hidden Markov Models

In this chapter, the time varying HMM structure of previous chapter is further im-

proved to deal with negative effect of irregular measurements such as outliers. Con-

sequently, this chapter proposes a robust process monitoring and diagnosis strat-

egy based on HMMs with time varying transition probabilities. We model obser-

vations around different process operating modes by different multivariate Student

t-distributions to describe different likelihoods of outliers. Time varying transition

probabilities assist the model to adapt to new operating conditions. The quality of

data in each mode, which is usually affected by the percentage of outliers, is treated by

assigning the appropriate degree of freedom for the multivariate t distribution adap-

tively. The method is compared with other available recent techniques in literature

using simulation and experimental studies and shows a superior performance.

4.1 Introduction

With advent of modern measurement and data storage techniques, data driven process

monitoring methods have become popular. Recently, Yin et al. performed two review

studies to compare the available data based process monitoring methods [12, 13]. Par-

tial Least Squares (PLS) and Principal Component Analysis (PCA) are two of the

well known methods in this area with frequent applications in industrial processes

[68, 69]. Dynamic approaches to such data classification methods have become of a

A version of this chapter has been published in N. Sammaknejad, B. Huang, Y. Lu (2015).
Robust Diagnosis of Operating Mode Based on Time Varying Hidden Markov Models. IEEE Trans-
actions on Industrial Electronics. DOI: 10.1109/TIE.2015.2478743.
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great interest in last decade. Hidden Markov Models (HMMs) provide an appropriate

mathematical tool to handle such problems. Bruckner et al. proposed a statistical

approach based on HMMs to monitor sensor data [70]. Different layers of their hier-

archical model structure correspond to different components of the real process. In a

new study, an adaptive framework to process monitoring based on HMMs and sym-

bolic episode representation is proposed [71]. Jiang et al. proposed a new method

for monitoring of the gear shaft system. They modeled the process using a three

state homogeneous Markov process [23]. Jager et al. developed a combination of

dimension reduction based on PCA and HMMs to monitor laser welding processes

[72]. They showed that, in such cases, HMMs are able to more accurately model the

temporal behavior of the observations. In the previous chapter, a general multivari-

ate framework for process monitoring based on HMMs with time varying transition

probabilities is proposed. Consideration of time varying transition probabilities pro-

vides an appropriate structure to model processes with time dependent shifts among

different working conditions [45].

Similar process monitoring techniques have been applied to real industrial pro-

cesses. In recent studies, Soualhi et al., Boukra et al. and Gritli et al. suggested

novel fault detection methods for induction motors [73, 74, 75]. Fault detection in

vehicle motors and steering systems are other examples of such applications in real

life processes [76, 77]. Application of all these process monitoring strategies for real

industrial case studies might be significantly affected by data quality. Outliers, which

are usually caused by sensor malfunctions, human errors in data collection and exper-

iment conduction, and unusual process disturbances, can cause a biased parameter

estimation [78]. Conventional outlier removal techniques, which are based on certain

thresholds obtained from normal process operation data, might cause loss of infor-

mation. Previous studies show that parameter estimation for such problems under

the assumption that process observations follow Gaussian, or mixture Gaussian dis-

tributions might result in inaccurate estimations [79]. Jin et al. proposed to use a

contaminated Gaussian distribution to reduce the negative effect of the outliers [80].

The idea is to assume that the noise term follows a mixture of Gaussian distributions.

However, a fixed variance is considered for the Gaussian component corresponding to

the outliers. A more general approach to deal with the robustness issue is to assume

that observations follow a t distribution [81]. Small values of the degree of freedom

in a t distribution will provide heavier tails which significantly downweight the effect

of outliers during the identification process [29]. In a very recent study, Lu et al.

proposed a general framework for robust identification of nonlinear processes [82].

In their study, the noise term is assumed to follow a t distribution and the degree
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of freedom is estimated according to the quality of the data. Other applications of

the Expectation Maximization (EM) algorithm for fault diagnosis in the presence of

missing observations have been recently addressed in literature [83].

In this chapter, we provide a robust approach for process operation mode diag-

nosis using HMMs with a time dependent structure for the transition probability

matrix. Time varying structure of the model, as proposed in the previous chapter,

provides a condition to more appropriately model process transitions. However, effect

of the data quality on the distribution of observations in each operating mode has not

been considered. Here, robustness is considered by assigning the appropriate degree

of freedom to the multivariate t distribution for the observations in each operating

mode. Consequently, in industrial studies where it is expected to have lower quality

data when operating near the faulty modes, assigning the appropriate degree of free-

dom according to the data quality will assist the model to diagnose process operation

conditions more robustly. In comparison to the previous studies on robust data mod-

eling using HMMs ([84, 85, 86]), application of time varying transition probabilities

will further assist the model to adapt to new operating conditions. This provides a

more general framework for monitoring of the industrial processes with a time vary-

ing behavior with respect to both operating mode and data quality. EM algorithm

is applied to solve the problem. The developed strategy is tested on simulation and

experimental examples and all demonstrate a superior performance over the existing

techniques.

The remaining sections of this chapter are arranged as follows: In Section 4.2,

problem formulation based on the t distribution in the presence of time varying tran-

sition probabilities is introduced. Section 4.3 provides a robust iterative procedure to

estimate the unknown parameters under the EM framework. Section 4.4 explains the

filtering procedure to diagnose the operation mode during on-line applications. In

Section 4.5, the proposed method is tested on simulation and experimental examples,

and compared to the available recent techniques from literature. Section 4.6 is the

conclusion.
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4.2 Problem Statement

The observed data set for the parameter estimation purpose of this chapter is given

as

Y =


y11 y12 · · · y1N

y21 y22 · · · y2N
...

...
...

...
yP1 yP2 · · · yPN

 = (Y1, Y2, ..., YN) (4.1)

where P indicates the number of process variables and N is the size of the data set.

To account for outliers which typically have unusual large or small values, each

observation vector Yk (χ in Equation 4.2) in the data set in Equation 4.1 is considered

to follow a multivariate t distribution as follows:

tP (χ|µ,Σ, ν) =
Γ(
ν + P

2
)|Σ|−1/2

(πν)P/2Γ(
ν

2
){1 +

δ(χ|µ,Σ)

ν
}(ν+P )/2

(4.2)

where χ is the vector of observations, µ is the location (mean related variable), Σ is

the positive definite inner product matrix (covariance matrix related variable) and

ν is the degree of freedom in each operating mode [29]. The Γ function is given as

Γ(α) =
∫∞

0
zα−1e−zdz and δ is the squared Mahalanobis distance between χ and µ

with the covariance matrix Σ, that is, δ(χ|µ,Σ) = (χ− µ)Σ−1(χ− µ) [29, 82].

In this study, the process is considered to operate in various modes. These oper-

ating modes might be considered as different working conditions of the process, for

example, normal, abnormal and faulty. The set of discrete modes is presented as

Ik ∈ {I1, ..., IN} where Ik = i, 1 ≤ i ≤ M , and M is a positive integer corresponding

to the number of available modes.

In general, one could consider a multivariate t distribution as a multivariate nor-

mal distribution with varying weighted covariance matrix [29]. Having said this, and

according to the definition of the operating mode mentioned in the previous para-

graph, distribution of the observation vector at time k given the current operating

mode can be expressed as,

f(Yk|Ik = i, Rk) ∼ NP (µi,Σi/Rk) (4.3)

NP (µi,Σi/Rk) = (2π)−P/2|Σi/Rk|−1/2exp(−1

2
(Yk − µi)T (Σi/Rk)

−1(Yk − µi))

where µi and Σi are the mean vector and covariance matrix related variables for mode

i, and Rk is the assigned scalar weight for the observation vector Yk.
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According to the definition of the t distribution, the random variable correspond-

ing to the weight Rk should follow a gamma distribution [29]. In this study, according

to Equation 4.4, weights are considered to follow different gamma distributions for

different modes. This provides a condition for the t distribution to adapt to data

quality in various modes.

g(Rk|Ik = i) ∼ gamma(
1

2
νi,

1

2
νi) (4.4)

where νi is the degree of freedom in each mode. The density function in Equation 4.4

is a special case of the general form of the gamma density function in Equation 4.5

[29].

gamma(α, β) =
βαrα−1e−βr

Γ(α)
, r > 0, α > 0, β > 0 (4.5)

By integrating out the weight Rk from the joint density function of the observa-

tions and weight formed from Equations 4.3 and 4.4, the general form of the multi-

variate t distribution in Equation 4.2 is obtained [29]. Also, it can be proved that the

multivariate t distribution in Equation 4.2 becomes marginally Gaussian as the degree

of freedom tends to infinity [29]. However, in comparison to the Gaussian case, the

current form of the distribution in Equation 4.2 provides a condition to downweight

the effect of observations with large Mahalanobis distances (outliers) [29]. This will

be further discussed in the next section.

In order to model the transition behavior of the process between different operat-

ing modes, a procedure similar to the previous chapter is developed for this problem.

In this structure, a Markov chain models the transitions of the process among various

modes. But, transition probabilities are time dependent, according to the variations

in the scheduling variable, as follows [45]:

α(k)ij = P (Ik = j | Ik−1 = i,Hk−1) (4.6)

where α(k)ij is the time varying transition probability which is dependent on the

scheduling variable Hk−1.

This structure provides more flexibility for modelling of the processes with time

varying shifts among various modes [45]. The following structure is considered for

the transition probabilities [45]:

α(k)ii =

2ξiexp(
−(Hk−1 −Hi)

2

2σ2
Hi

)

1 + exp(
−(Hk−1 −Hi)

2

2σ2
Hi

)

(4.7)
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α(k)ij,i6=j = γij(1− α(k)ii) (4.8)

where Hi is the mean value and σHi is the validity of the scheduling variable in mode

i. The procedure to find Hi through the historical data has been explained in the

previous chapter. γij provides more flexibility for estimation of the transition proba-

bility α(k)ij,i6=j. Note that, according to Equations 4.7 and 4.8, when Hk−1 is close to

Hi, the probability of remaining in the current operating mode increases. Otherwise,

α(k)ii reduces, which results in an increase in the switching probability α(k)ij.

According to the fact that some industrial processes, e.g., many chemical pro-

cesses, have infrequent transitions between operating modes, ξi, which is the corre-

sponding term for γij,i=j, usually takes values close to one due to tendency to remain

in the current operating condition [45]. In the first example of this article, ξi = 1− εi
(0 ≤ εi ≤ 0.1) will however be treated as a tuning parameter. Note that this will not

significantly affect the generality of the algorithm since α(k)ii can still take all the

values from greater than 0 to ξi according to Equation 4.7. Having this simplification,

the computation complexity of the general form of the non-linear optimization can

be greatly reduced.

Owing to the existence of hidden variables such as the operating mode, the EM

algorithm for maximum likelihood estimation is adopted. The observed data set

(Cobs) include Y = {Y1, ..., YN} and the scheduling variable H = {H1, ..., HN}. The

missing data set or hidden variables (Cmiss) include the discrete operating modes

I = {I1, ..., IN}, and the weight factors R = {R1, ..., RN} corresponding to each

mode. The unknown parameters (θ) to be estimated include the mean vectors, co-

variance matrices and degrees of freedom for the multivariate t distribution for each

operating mode (µi, Σi and νi), as well as γij, σHi and ξi (unless considered as a

tuning parameter) in the time-varying transition probabilities (1 ≤ i, j ≤ M , M has

been defined previously).

Graphical illustration of the proposed model in this chapter is presented in Figure

4.1. This figure presents the graphical representation of the model at two con-

secutive sample times k and k + 1. As explained in Equations 4.3 and 4.4, in each

operating mode Ik, the model assigns the appropriate scalar weight Rk to downweight

the effect of outliers. Furthermore, in the presence of an appropriate scheduling vari-

able Hk−1, which is able to indicate the true operating mode with an acceptable

degree of uncertainty, following Equations 4.6 to 4.8, the time varying Markov chain

structure enables the model to adapt to new operating modes. Combination of the

robustness and time varying properties provides a general framework for diagnosis of

the current operating mode Ik in industrial applications.
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Figure 4.1: Graphical illustration of the proposed model in this chapter

The ultimate goal of this chapter is to diagnose the current operating mode of the

process given the observations up to the current time. A filtering algorithm is used

for this purpose. The algorithm is tested on simulation and experimental data.

4.3 Robust Parameter Estimation

In this section, the procedure for robust parameter estimation following the EM al-

gorithm framework is explained. The EM algorithm maximizes the expected value of

the complete-data log likelihood function, also known as the Q-function, iteratively.

Iterations are repeated until some convergence criterion is satisfied [28]. This conver-

gence criterion is selected to be less than a given likelihood change (absolute value)

in two successive iterations.

In the context of generalized EM algorithm, it has been proved that if the value

of Q-function in each iteration is greater than or equal to the previous iteration, the

optimization is convergent and will converge to at least a local optimum [29]. The

proposed procedure of this articles satisfies such a need. With appropriate initializa-

tion techniques, results of this iterative procedure can converge to the true values [34].

The initialization technique of this article is similar to the procedure introduced in

the previous chapter where the initial values are obtained based on an initial solution

assuming that observations follow a mixture of Gaussian distributions.

The expectation step starts from the following definition of the Q-function:

Q(θ | θold) = ECmiss|(θold,Cobs){log P (Cobs, Cmiss | θ)} (4.9)

where different terms of this equation have been described previously. The superscript

‘old’ here refers to the parameters estimated in the previous iteration.
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Equation 4.9 can be further written as,

Q(θ | θold) = (4.10)

EI1:N ,R1:N |(θold,Cobs){log P (Y1:N , H1:N , I1:N , R1:N | θ)}

The chain rule of probability is used to decompose the density function in Equation

4.10 as follows:

P (Y1:N , H1:N , I1:N , R1:N | θ) = (4.11)

P (Y1:N | H1:N , I1:N , R1:N , θ)P (R1:N | H1:N , I1:N , θ)×

P (I1:N | H1:N , θ)P (H1:N | θ)

Each term of Equation 4.11 can be further simplified:

P (Y1:N | H1:N , I1:N , R1:N , θ) = (4.12)

N∏
k=1

P (Yk | Yk−1, ..., Y1, H1:N , I1:N , R1:N , θ) =
N∏
k=1

P (Yk|Ik, Rk, θ)

This equation is obtained based on the assumption that each observation vector

at time k, i.e., Yk, follows the conditional distribution shown in Equation 4.3. Also,

given the mode identity (Ik) and weight (Rk), the scheduling variable does not provide

any further information on the conditional distribution of Yk .

The second term in Equation 4.11 can be decomposed in a similar manner,

P (R1:N | H1:N , I1:N , θ) =
N∏
k=1

P (Rk | Rk−1:1, H1:N , I1:N , θ) (4.13)

=
N∏
k=1

P (Rk | Ik, θ)

where Equation 4.13 is obtained based on the assumption that data quality is only

dependent on the operating mode of the process; for example, more abnormal data

might be generated while the process is getting closer to the faulty modes.

The third term in Equation 4.11 can be written as,

P (I1:N | H1:N , θ) =
N∏
k=1

P (Ik | Ik−1, ..., I1, H1:N , θ) = (4.14)
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P (I1)
N∏
k=2

P (Ik | Ik−1, Hk−1, θ)

where this equation is obtained based on the Markov property, and the assumptions

used to develop the distributions in Equation 4.6 to 4.8.

The scheduling variables are independent of the unknown parameters (θ), and

consequently, the last term in Equation 4.11 can be considered as a constant value,

that is,

P (H1:N | θ) = Const (4.15)

Having Equation 4.9 to 4.15, and using the properties of the log operator, the

Q-function can be written as,

Q(θ | θold) = EI1:N ,R1:N |(θold,Cobs){
N∑
k=1

logP (Yk|Ik, Rk, θ)+ (4.16)

N∑
k=1

logP (Rk|Ik, θ) +
N∑
k=2

logP (Ik | Ik−1, Hk−1, θ) + logP (I1) + log (Const)}

First, the expected value with respect to the hidden operating modes is obtained,

that is,

Q(θ | θold) = ER1:N |(θold,Cobs,I) (4.17)

{
M∑
i=1

N∑
k=1

P (Ik = i|θold, Cobs)logP (Yk|Ik = i, Rk, θ) +
M∑
i=1

N∑
k=1

P (Ik = i|θold, Cobs)logP (Rk|Ik = i, θ)

+
M∑
i=1

M∑
j=1

N∑
k=2

P (Ik = j, Ik−1 = i|θold, Cobs)logαij(k) +
M∑
i=1

P (I1 = i|θold, Cobs)logπi + log (Const)}

where πi is the initial state distribution of the Markov chain model.

In order to find the expected value with respect to the weights R1:N , first, distri-

butions of logP (Yk|Ik, Rk, θ) and logP (Rk|Ik, θ) are obtained based on Equations 4.3

and 4.4 as follows:

logP (Yk|Ik, Rk, θ) = (4.18)

−P
2
log(2π)− 1

2
log|ΣIk |+

P

2
logRk −

1

2
Rk(Yk − µIk)TΣ−1

Ik
(Yk − µIk)
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logP (Rk|Ik, θ) = (4.19)

−logΓ(
1

2
νIk) +

1

2
νIk log(

1

2
νIk) +

1

2
νIk(logRk −Rk)− logRk

It can be observed that Equation 4.18 and 4.19 are linear with respect to the hid-

den variables Rk and logRk. Therefore, in order to find the expected value in (4.17),

it is only required to find E(Rk|Ik = i, Yk, Hk, θ
old) and E(logRk|Ik = i, Yk, Hk, θ

old)

[29]. Since the wight Rk given each operating mode follows the gamma distribution

in Equation 4.4, and the observation vector Yk given the operating mode and the

weight follows the normal distribution in Equation 4.3, knowing the fact that gamma

distribution is a conjugate prior for Gaussian likelihood, it can be concluded that

Rk|Ik = i, Yk, Hk, θ
old should also follow a gamma distribution with parameters given

as [29]

Rk|Ik = i, Yk, Hk, θ
old ∼ gamma(

νoldi + P

2
,
νoldi + δ(Yk|µoldi ,Σold

i )

2
) (4.20)

Therefore, according to the properties of the gamma distribution, E(Rk|Ik =

i, Yk, Hk, θ
old) and E(logRk|Ik = i, Yk, Hk, θ

old) are obtained as follows [29]:

E(Rk|Ik = i, Yk, Hk, θ
old) =

νoldi + P

νoldi + δ(Yk|µoldi ,Σold
i )

= roldik (4.21)

E(logRk|Ik = i, Yk, Hk, θ
old) = log(roldik ) + {ψ(

νoldi + P

2
)− log(

νoldi + P

2
)} (4.22)

where ψ(ν) in Equation 4.22 is the Digamma function defined as [29]

ψ(ν) =
∂Γ(ν)
∂ν

Γ(ν)
(4.23)

In order to further simplify Equation 4.17, using the Bayesian formulation, the

posterior distributions of P (Ik = j, Ik−1 = i|θold, Cobs) and P (Ik = i|θold, Cobs) can be

obtained as follows:

P (Ik = j, Ik−1 = i | θold, Cobs) =

P (Ik = j, Ik−1 = i | Y1, ..., YN , θ
old, H1, ..., HN) =
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P (Yk | µoldj ,Σold
j , νoldj )× α(k)oldij × P (Ik−1 = i | θold, H1, ..., Hk−2)∑M

i=1

∑M
j=1 P (Yk | µoldj ,Σold

j , νoldj )× α(k)oldij × P (Ik−1 = i | θold, H1, ..., Hk−2)
= τ oldijk

(4.24)

The posterior distribution of P (Ik = i|θold, Cobs) can be obtained through the

marginalization of Equation 4.24 over all the possible modes for Ik−1, that is,

P (Ik = i | θold, Cobs) = (4.25)

M∑
j=1

P (Ik = i, Ik−1 = j | θold, Cobs) = τ oldik

Having Equations 4.18 to 4.25, Equation 4.17 can be written as

Q(θ | θold) =
M∑
i=1

N∑
k=1

τ oldik Q1(µi,Σi) +
M∑
i=1

N∑
k=1

τ oldik Q2(νi) (4.26)

+
M∑
i=1

M∑
j=1

N∑
k=2

τ oldijkQ3(γij, σHi) +
M∑
i=1

τ oldi1 Q4(πi) + log (Const)

where in this equation,

Q1(µi,Σi) = −P
2
log(2π)− 1

2
log|Σi|

+
P

2
(log(roldik ) + {ψ(

νoldi + P

2
)− log(

νoldi + P

2
)})− 1

2
roldik (Yk − µi)TΣ−1

i (Yk − µi)

Q2(νi) = −logΓ(
1

2
νi) +

1

2
νilog(

1

2
νi)

+(
1

2
νi − 1)(log(roldik ) + {ψ(

νoldi + P

2
)− log(

νoldi + P

2
)})− 1

2
νir

old
ik

Q3(γij, σHi) = logαij(k)

Q4(πi) = logπi
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In order to update the parameters under the EM framework, the Q-function, as

obtained in Equation 4.26, should be maximized. This is achieved by taking derivative

of Equation 4.26 with respect to the unknown parameters, and then setting it to zero.

Therefore, the mean vector (µi) should be updated as follows:

∂Q(θ | θold)
∂µi

=
∂
∑M

i=1

∑N
k=1 τ

old
ik Q1(µi,Σi)

∂µi
= 0

⇒ µnewi =

∑N
k=1 τ

old
ik r

old
ik Yk∑N

k=1 τ
old
ik r

old
ik

(4.27)

The covariance matrix Σi should be updated in a similar manner, that is,

∂Q(θ | θold)
∂Σi

=
∂
∑M

i=1

∑N
k=1 τ

old
ik Q1(µi,Σi)

∂Σi

= 0

⇒ Σnew
i =

∑N
k=1 τ

old
ik r

old
ik (Yk − µnewi )(Yk − µnewi )T∑N

k=1 τ
old
ik

(4.28)

Maximization of the Q-function to find πi is constrained by
∑M

i=1 πi = 1 according

to the properties of the Markov chain model. Consequently, the Lagrange multiplier

η should be introduced:

πnewi = argmaxπi{
M∑
i=1

P (I1 = i | θold, Cobs)logπi + η(
M∑
i=1

πi − 1)} (4.29)

Taking the derivative with respect to the Lagrange multiplier (η) and πi a set of

linear equations will be obtained. As the solution of this set of equations, the following

expression for the initial state distribution of the Markov chain can be obtained:

πnewi = P (I1 = i | θold, Cobs) (4.30)

Similarly, for the Markov chain property of the transition probabilities to hold

(
∑M

j=1 αij(k) = 1), the constraint
∑M

j=1 γij,i6=j = 1 should be satisfied. Thus, for

maximization of the Q-function with respect to γij,i6=j, the Lagrange multiplier η′

should be introduced:

γnewij,i6=j = argmaxγij,i 6=j{
M∑
i=1

M∑
j 6=i=1

N∑
k=2

τ oldijk × log(αij(k)) + η′(
M∑

j 6=i=1

γij − 1)} (4.31)

Taking the derivative with respect to γij,i6=j and η′, as the solution of a linear set

of equations, γij,i6=j is obtained as follows:

(γij,i6=j)
new =

∑N
k=2 τ

old
ijk∑M

j 6=i=1

∑N
k=2 τ

old
ijk

(4.32)
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Due to the appearance of the exponential function in αij(k), no closed form so-

lution exists for σHi . Thus, a non-linear constraint optimization problem should be

solved to obtain this parameter as follows:

(σHi)
new
1≤i≤M = argmaxσHi

M∑
i=1

M∑
j=1

N∑
k=2

τ oldijk × log(αij(k)) (4.33)

S.t. σHmin ≤ σHi ≤ σHmax

As explained in the problem statement, for processes with fast transitions between

operating modes, ξi in the definition of α(k)ii should be considered as an unknown

parameter (not a tuning parameter), and estimated through the iterations of the EM

algorithm. In this case, the more general form of Equation 4.33, which is already in-

troduced in the previous chapter should be used. However, as in the second example

of this chapter, appropriate methods for the initialization of the nonlinear optimiza-

tion should be considered and computation is more involved [45].

In this study, based on the quality of data in each mode, different degrees of free-

dom are automatically assigned to the t distribution of the corresponding mode. This

will provide more flexibility in the modelling since, normally, it is expected to have

more outlier data while the process gets closer to the abnormal or faulty modes. The

optimal value of the degree of freedom for each mode (νi) is updated by taking the

derivative of the Q-function with respect to νi, and then, setting it to zero, that is,

∂Q(θ | θold)
∂νi

=
∂
∑M

i=1

∑N
k=1 τ

old
ik Q2(νi)

∂νi
= 0 (4.34)

Having Q2(νi) as introduced in Equation 4.26, and based on Equation 4.34, it is

not difficult to show that the following expression should hold [82]:

−ψ(νi/2) + log(νi/2) + 1 + {ψ(
νoldi + P

2
)− log(

νoldi + P

2
)} (4.35)

+
1∑N

k=1 τ
old
ik

N∑
k=1

τ oldik (logroldik − roldik ) = 0

where ψ is the Digamma function introduced in Equation 4.23. Solution of this non-

linear equation using appropriate numerical techniques will provide the appropriate

degree of freedom according to the data quality.

Having outliers in the training data set will usually result in lower degrees of

freedom. During the parameter estimation, effect of the degree of freedom assigned
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to each operating mode will appear in roldik in Equation 4.21. Accordingly, due to

the larger Mahalanobis distance (δ(Yk|µ,Σ) = (Yk − µ)Σ−1(Yk − µ)), and based on

Equation 4.21, roldik decreases, and therefore, based on Equations 4.27 and 4.28, the

estimated parameters will be less affected by outliers [82].

4.4 Operating Condition Diagnosis

The proposed process monitoring strategy introduced in this article consists of two

steps:

1. Parameter estimation based on the solutions provided in Equations 4.27 to 4.35.

2. Operating condition diagnosis based on the estimated parameters (Θ̂) and

Hamilton’s filtering algorithm [44].

The purpose of the second step is to find the probability of current operating

mode at time k given observations and the estimated parameters, that is, P (Ik |
Yk, ..., Y1, Hk, ..., H1, Θ̂). Solutions to this filtering problem in the presence of the

scheduling variable is available in Section 3.4 of the previous chapter [45]. In this

study, the same algorithm is adopted. The difference is the updating step, where in

this study, distribution of observations given the operating mode at time k, that is,

P (Yk|Ik), follows multivariate Student t as expressed in Equation 4.2, with parame-

ters obtained by following the parameter estimation procedure in the earlier section.

One could consider this filtering algorithm as an optimal estimator to infer discrete

HMM modes. There are other similar optimal algorithms for such a problem in lit-

erature [40]. The Viterbi algorithm is a well known example of such methods [40].

In comparison to the proposed method of this article, the Viterbi algorithm finds

an optimal sequence of states. Consequently, dynamic programming and additional

computational cost are inevitable.

4.5 Results and Discussion

Unlike the previous studies, in this chapter, it is assumed that data follow various

multivariate t distributions for different operating modes. Therefore, in the following

examples, using a time varying Markov chain structure, the comparison is made

between the Gaussian ([45]) and t distribution. In all the examples, 2/3 of the data

is used for training purposes, and the rest for validation. Due to the limited space,

only cross-validation results are presented. In both examples, the estimated operating
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mode is obtained as the solution of the filtering problem introduced in Section 4.4,

that is, the mode with the largest probability of observations up to current time is

selected as the current operating condition.

4.5.1 Tennessee Eastman Process

In this example, monitoring of the overall temperature in the Tennessee Eastman

(TE) process is considered. The simulation example is selected from the study on

decentralized control of the product rate in the TE process [87]. A schematic of the

process is presented in Figure 4.2 ([87]).

Figure 4.2: TE Process [87]

TE process is composed of four main components: 1- Exothermic two-phase reac-

tor, 2- Flash separator, 3- Reboiled Stripper and 4- Recycle compressor. Six measure-

ments should be maintained at the desired set points including, 1- Production rate,

2- Mole % G in product, 3- Reactor pressure, 4- Reactor liquid level, 5- Separator

liquid level, and 6- Stripper liquid level [87].

In this example, it is assumed that some disturbances occur in the reactor tem-

perature which is located in one of the earliest stages of the process. The effect of

this disturbance is then propagated through the top stream of the reactor to the flash
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separator, and then, the reboiled stripper. This causes three operating modes in-

cluding mode 1 (low temperature), mode 2 (average temperature) and mode 3 (high

temperature). The temperatures of the two latter components are measured through

some noisy signals in the presence of outliers. Separator coolant temperature, which

can provide some intermediate information between these two components, is selected

as the scheduling variable. 10 % of observations in all operating modes are outliers,

that is, 10 % of the generated data are replaced with ouliers, randomly selected from

a uniform distribution beyond three standard deviations of the mean value of the

variable. For the scheduling variable, the noise is smoothed from measurements.

Therefore, the scheduling variable provides an indirect indication (with uncertainty)

of the process operating mode. Cross-validation data and the scheduling variable are

presented in Figure 4.3 and Figure 4.4 respectively. The total run time of this exper-

iment is 440 hours, i.e., each 10,000 time steps in Figure 4.3 to Figure 4.9 correspond

to
10, 000

40, 000
× 440 = 100 hours.
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Figure 4.3: Measured observations for monitoring of the TE process

Results of the filtering problem to find the probability of mode identities up to

the current time, assuming that observations follow different multivariate Gaussian

distributions, are presented in Figure 4.5. Estimated and true operating modes of

the process based on these probabilities are presented in Figure 4.6.

Based on these results, it is clear that a large number of false alarms have oc-

curred in mode 2, which has a similar behavior as both modes 1 and 3, in many time

intervals. It appears that parameter estimation is biased by the data of the faulty

mode.

Results of the filtering for estimating modes based on the t distribution are pre-
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Figure 4.4: Scheduling variable for monitoring of the TE process
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Figure 4.5: Probability of the observations in Figure 4.3 given each operating mode
based on the Gaussian distribution assumption

sented in Figures 4.7 and 4.8 respectively. According to the results, it is obvious that

the number of mis-classifications, specifically in the intermediate mode, have been

greatly reduced. In general, the percentage of false alarms has been decreased from

4.1613 % to 4.0567 %. The effectiveness of the method will be more clearly demon-

strated in the next example when there are more outliers in the data. This clearly

demonstrates the advantage in considering the t distribution with adaptive degrees

of freedom according to the data quality.

In order to show the importance of the time varying transition probabilities as
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Figure 4.6: Estimated and true operating modes of the process based on the obser-
vations in Figure 4.3 and the Gaussian distribution assumption
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Figure 4.7: Probability of the observations in Figure 4.3 given each operating mode
based on the t distribution assumption

proposed in Equations 4.6 to 4.8, variations of the baseline transition probabilities

a11, a22 and a33 are presented in Figure 4.9. Comparing Figure 4.3 and Figure 4.9,

it is clear that when approaching a new operating mode i, according to Equation

4.7, probability of staying in that mode (aii) increases, and based on Equation 4.8,

probability of transiting to other modes (aij) will decrease. Consequently, this flexible

structure appropriately considers the time varying nature of industrial processes.
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Figure 4.8: Estimated and true operating modes of the process based on the obser-
vations in Fig. 4.3 and t distribution assumption
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Figure 4.9: Variations of the baseline transition probabilities for the presented results
in Fig. 4.3

To observe the effect of outliers on the estimation of the degree of freedom, the

percentage of outliers in various operating modes is gradually increased and the cor-

responding degree of freedom is estimated automatically. Results are presented in

Figure 4.10.

These results confirm a fact which was introduced in literature as the “breakdown”

point [82]. As expected, by increasing the percentage of outliers in different operating

modes, the degree of freedom decreases to downweight the effect of outliers, that is,

in Equation 4.21, for the data with a larger Mahalanobis distance, the decrease in

the degree of freedom (νoldi ) will result in a decrease in the weight roldik . Consequently,
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Figure 4.10: Variations of the degree of freedom while increasing the percentage of
outliers in the TE process

according to Equations 4.27 and 4.28, the outliers will have less effect on parameter

estimation. However, further increase in the percentage of outliers will cause the t

distribution to have very heavier tails, and finally, at some point, the t distribution

starts to behave as a uniform distribution in order to adapt to very poor quality data.

At the breakdown point, which occurs right before this extreme case, the degree of

freedom will no longer show the decreasing correlation with the percentage of outliers,

and unless Equation 4.35 is solved with appropriate constraints with respect to νi

(greater than zero), the solution might not be numerically tractable anymore. Our

experience in this study shows that the exact breakdown point might vary for different

processes according to the mean and variance of the data and the type of outliers.

4.5.2 Experimental Evaluation

In this section, the proposed process monitoring strategy is applied on a real life

experiment. The balls in tubes experiment, which is a well known experimental set

up in literature [88], is used here. The schematic of the experiment is presented in

Figure 4.11. In this set up, a constant air volume is provided for the process through

the main fan. The air is blown to four tubes through the lower manifold. Four balls

are located in four tubes whose heights are measured through ultrasonic sensors. Each

tube has a separate DC fan which controls the height of the ball through a separate

PID controller. The remaining air in the process is disposed to environment through

the upper and lower manifold outputs.
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Figure 4.11: Balls in tubes experiment

In order to constantly maintain the ball heights at the same level, the PID con-

trollers impose a lower limit constraint on the available air flow in the lower manifold.

Since no measurement device exists to measure the available air flow in the lower

manifold, the goal of this process monitoring experiment is to infer the mode of the

available air flow for the controllers through the current measurements. Mode 1 is

the normal operation of the process where sufficient air is available for the controllers,

and mode 2 is the abnormal operation where the air flow suddenly decreases due to

the disturbances in the process.

Fan 4 speed, which is the only fan not in closed loop along with its corresponding

ball, will change between a maximum and minimum value thus, providing less, or

more air (modes 2 and 1 respectively) to the other 3 fans. Therefore, fan 4 speed

gives an indication (with uncertainty) of the true operating mode of the process. Fans

1 to 3 are in closed loop with the controlled ball heights. When fan 4 speed is set to

its maximum value, less air will be provided for fans 1 to 3. Ideally, speed of fans 1

to 3 should increase accordingly to maintain the ball heights at the previous level in

the presence of less air. However, fan 3, which is located right after fan 4, shows a

reverse behavior. This is due to the sudden effect of fan 4 on fan 3. Fans 1 and 2,

which are located farther, behave more normally as expected. Figure 4.12 illustrates

the cross-validation data. The sample time of this experiment is one second.

According to the previous discussion, the speeds of fans 1 and 3 are the observa-

tions for the mode diagnosis purposes. Fan speed 2, which provides some intermediate

information between process observations, is chosen as the scheduling variable. Noise
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Figure 4.12: Changes in the fan speeds 1 to 3 after the change in the fan speed 4

and outlier data are filtered from the scheduling variable to provide a better indica-

tion to the operating condition of the process. It should be noted that poor selection

of the scheduling variable will result in a larger local mode validity (σHi) in Equation

4.7. Consequently, α(k)ii ' ξi, and, if ξi is considered as an unknown during the

parameter estimation, the negative effect of the poor scheduling variable will be au-

tomatically considered in the estimation of ξi. Results of the filtering and operating

condition diagnosis based on the Gaussian distribution assumption are presented in

Figure 4.13 and Figure 4.14 respectively.
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Figure 4.13: Probability of the observations in Figure 4.12 given each operating mode
based on the Gaussian distribution assumption
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Figure 4.14: Estimated and true operating modes of the process based on the obser-
vations in Figure 4.12 and the Gaussian distribution assumption

According to the results, it is clear that the Gaussian assumption fails to provide

good estimations of the true operating mode of the process in many instants. This is a

good example to show the significant merit of the t over Gaussian distribution. Since

a lot of low quality data are generated due to the poor measurements of the ultrasonic

sensors, distributions with heavier tails are required to describe the observations. t

distribution better suits for such conditions. Results of the probability calculation

and mode diagnosis based on the t distribution assumption are presented in Figure

4.15 and Figure 4.16.
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Figure 4.15: Probability of the observations in Figure 4.12 given each operating mode
based on the t distribution assumption
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Figure 4.16: Estimated and true operating modes of the process based on the obser-
vations in Figure 4.12 and t distribution assumption

These results indicate a good potential of the proposed identification and diag-

nostic method in the presence of outliers. Using a multivariate t distribution other

than the Gaussian, percentage of false alarms has been decreased almost by half from

33.4457 % to 16.3856 %. According to the observation data set (Figure 4.12), it is

clear that more outliers have appeared in the case of more air flow (mode 1). As illus-

trated in Figure 4.16, consideration of the t distribution for the observations, which

results in a lower degree of freedom for mode 1 (ν1 = 4.2652, and ν2 = 10.7467),

provides a more accurate diagnosis in general.

4.6 Conclusion

In this chapter, a novel approach for robust mode diagnosis of time varying processes

is proposed. Application of adaptive transition probabilities provides more flexibility

to consider the time varying behaviour of the process, while adopting the t distribution

for observations makes the model adaptive to the data quality. In the presence of

low quality data, which is more likely to occur in the abnormal and faulty modes, t

distribution provides heavier tails and better classifications by automatically adopting

the appropriate degree of freedom resulting in a more robust diagnosis.

The proposed method is tested on both simulation and experimental examples,

and in the presence of low quality data, demonstrates a better performance over other

techniques from literature.
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Chapter 5

Adaptive Monitoring of the
Process Operation Based on
Symbolic Episode Representation
and Hidden Markov Models

Unlike Chapters 3 and 4 where continuous signals are used for process monitoring

purposes, in this chapter, a combination of Qualitative Trend Analysis (QTA) to dis-

cretize the observations, and HMMs, is used for data classification. Accordingly, our

focus will be on key features of the signals rather than the details. First, continuous

time signals are converted to discrete observations using the method of triangular

representation. Since there is a large difference in the means and variances of the du-

rations and magnitudes of the triangles at different operating modes, adaptive fuzzy

membership functions are applied for discretization. The expectation maximization

(EM) algorithm is used to obtain parameters of the different modes for the durations

and magnitudes assuming that states transit to each other according to a Markov

chain model. Applying Hamilton’s filter, probability of each state given new dura-

tion and magnitude is calculated to weight the membership functions of each mode

previously obtained from a fuzzy C-means clustering. After adaptive discretization

step, having discrete observations available, the combinatorial method for training

hidden Markov models (HMMs) with multiple observations is used for overall classi-

A version of this chapter has been published in N. Sammaknejad, B. Huang, A. Fatehi, Y. Miao,
F. Xu and A. Espejo (2014). Adaptive Monitoring of the Process Operation Based on Symbolic
Episode Representation and Hidden Markov Models with Application Toward an Oil Sand Primary
Separation. Computers and Chemical Engineering 71(4), 281–297 [71].

Section 5.7 of this chapter has been published in N. Sammaknejad, B. Huang (2014). Process
Monitoring Based on Symbolic Episode Representation and Hidden Markov Models - A Moving
Window Approach. Proceedings of the 5th International Symposium on Advanced Control of Indus-
trial Processes (ADCONIP). Hiroshima, Japan [95].
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fication of the process. Furthermore, a search algorithm is proposed to find the more

informative observations of a window of recent data. Application of the method is

studied on both simulation and industrial case studies. The industrial case study is

the detection of normal and abnormal process conditions in the primary separation

vessel (PSV) of an oil sand industry. The method shows an overall good performance

in detecting normal and risky operating conditions.

5.1 Introduction

In order to achieve safe production and decrease manufacturing cost, fault diagnosis

along with process monitoring is becoming increasingly important. There are three

main approaches for process monitoring: the knowledge based approach, the model

based approach and the data driven approach. The knowledge based approach is

based on qualitative models. The model based approach is based on analytical mod-

els which are complex for large systems. The data driven framework is appropriate for

large multivariate processes [89]. Most of the approaches based on qualitative models

use pattern recognition techniques to extract features from historical process data,

e.g., signal directed graphs, fault trees, fuzzy systems, neural networks or qualitative

trend analysis [90].

Wong et al. introduced a strategy for detection of abnormal trends using impor-

tant process features and qualitative information from a signal [19]. They use the

method of triangular representation, initially developed by Cheung, Stephanopou-

los and Bakshi ([91, 92, 93]) in order to discretize the continuous time observation

sequences using appropriate fuzzy membership functions and rules. In their study,

first, the high frequency noise is removed using wavelet analysis. Second, continuous

time observations are converted to discrete numbers using the method of triangular

representation and appropriate fuzzy membership functions and rules. In the overall

decision making step, each variable is classified based on its corresponding HMM and

the overall classification is based on a Back Propagation Neural Network (BPNN)

which uses the generated probabilities of each HMM as the input [20].

The main disadvantage of the method of triangular representation is the loss of

information when providing symbolic observations. Fixed fuzzy membership func-

tions might provide imprecise classifications for the modes with smaller means and

variances as the membership functions are biased by the modes with larger means

and variances.

The proposed adaptive fuzzification method in this chapter will provide more

accurate discrete observations considering different modes for the durations and mag-
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nitudes of the triangles. Applying the EM algorithm, we will first divide the historical

data of durations and magnitudes to different modes assuming that states can tran-

sit to each other at probabilities that obey Markov property. Fuzzy membership

functions for each mode are obtained following a Fuzzy C-Means (FCM) clustering

approach. When a new observation for the magnitude and duration is available, the

probability of the observation given each mode is calculated using Hamiltons filter

[46]. These probabilities are then used as weights to combine means and variances of

the membership functions of the different modes. Finally, using the adaptive mem-

bership functions at each time step and the method of triangular representation, the

discrete observations are generated. Having the discrete observations available, a

multivariate HMM approach is adopted for overall classification of the process [94].

It is shown that using a multivariate scheme to train HMMs for discrete obser-

vations provides better results in comparison to the BPNN approach [95]. The mul-

tivariate scheme reduces the computational time, considers the interactions between

different inputs and reduces the number of false alarms. Combination of adaptive

fuzzification to discretize the continuous observations and multivariate HMM model-

ing shows a good performance in detection of normal and faulty operating conditions

in both simulation and industrial case studies. The industrial case study is selected

as abnormal operating condition diagnosis in the primary separation vessel (PSV) of

an oil sand industry.

In Section 7, an optimal search algorithm is proposed to find the more informative

observations of a recent window of data. The algorithm is developed for the case of

fixed fuzzy membership functions. Similar algorithms can be considered for the case

of adaptive fuzzification in future studies.

Figure 5.1 is a summary of the proposed process monitoring strategy in this chap-

ter where state recognition, adaptive fuzzification and multivariate HMM modeling

are added to the previous studies. The procedure of state recognition and adaptive

fuzzification is presented in Figure 5.2. The multivariate HMM modeling step is

adopted from literature [94].

The remainder of this chapter is organized as follows: Sections 5.2 and 5.3 are

a review on the data pre-processing based on wavelet analysis and the method of

triangular representation. Section 5.4 reviews state recognition applying the EM

algorithm and Hamiltons filter. In Section 5.5, the procedure of adaptive fuzzification

is explained. Section 5.6 briefly reviews the multivariate scheme adopted here to

train HMMs for multiple observation sequences. Section 5.7 is the proposed moving

window approach to find the more informative observations of a window. Section 5.8

is the simulation case study. Section 5.9 is the industrial case study, and Section 5.10
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Figure 5.1: The proposed process monitoring approach in this study

Figure 5.2: The procedure of adaptive fuzzification and state recognition

concludes the chapter.
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5.2 Data Preprocessing

The first step in representation and classification of a signal is data filtering. Typ-

ically, a filter removes nuisance information over a range of frequencies, which is

determined by filter parameter. Several methods are available in order to filter a

signal, e.g., moving average, Gaussian filter, Fourier transform or wavelet analysis.

Compared with moving average, Gaussian filtering and Fourier analysis, the wavelet

analysis possesses excellent time-frequency properties since it uses a time-scale region.

Therefore, using wavelet analysis, we can get a multi-scale description of trends and

features, which enables us to analyze the data efficiently. Using wavelet analysis, the

original signal emerges as two signals, the low frequency part of the signal which is

called approximation and the high frequency part of the signal which is called the

detail. This process is called decomposition in wavelet and can be performed itera-

tively [96].

5.3 Triangular Representation

Cheung and Stephanopoulos treat the problem of trend representation graphically by

using the simple idea that at the extrema and inflection points, the first and second

derivatives are zero respectively. Thus, an episode is described as any part of a signal

or process trend with a constant sign of the first and second derivative. This leads

to the set of triangles and lines that are defined using seven letters of the alphabet

([91, 92, 93]).

Some of the advantages of this feature extraction method are as follows:

1. it converts a signal into a symbolic sequence, which captures the most important

qualitative and quantitative information contained in the signal.

2. Compared with filtered process data, the symbolic form of observations is ap-

propriate as the input to a classifying system such as hidden Markov models.

In situations where model-based approaches cannot help in fault detection, i.e.,

the complexity of the system does not allow one to derive a model for the normal

operation of the system, the proposed pattern recognition method can greatly

help in reducing the complexity of the problem.

3. Since this approach tries to capture the trends rather than exact quantities of

data, it is necessary to remove high frequency noises before feature extraction.

Therefore, this approach is less sensitive to noise.
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The main disadvantage of the method of triangular representation is the loss of

information through the discretization step.

The procedure for triangular representation of a trend is as follows [93]:

After smoothing a signal for extraction of basic trends, according to its extrema

and inflection points, the signal will be divided into episodes. As illustrated in Figure

5.3, an episode consists of an extremum and a neighbored inflection point, making

it a triangle. Each triangle is made of vertices found from first or second order zero

crossing where the sign of the first and second derivatives are remained constant in

this segment.

Figure 5.3: A sample episode for describing process trends [19]

Based on the definition of an episode, seven kinds of triangles named as A, B,

C, D, E, F and G can be defined as presented in Figure 5.4. Types E-G are three

kinds of line in a smoothed trend and can be substituted with other types of triangles.

Therefore, the triangular representation method in this chapter is simplified to only

contain four types of triangle: A-D.

Figure 5.4: Seven types of triangles [19]
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Fuzzy classification is the process of grouping elements into a fuzzy set using

appropriate fuzzy rules and membership functions [97]. As presented in Figure 5.5,

the quantitative values of magnitude and duration of a triangular episode can be

transferred into completely symbolic variables. Having three membership functions

of large, medium and small for magnitude, and three membership functions of long,

middle and short for duration of every type of triangle in Figure 5.4, there are nine

possible outcomes using fuzzy classification as depicted in Figure 5.5. This ends

to 4 × 9 = 36 discrete observations in total. For example, lmA stands for a large

magnitude, middle duration, type “A” triangle.

Figure 5.5: ‘A’ Triangle transformed to 9 sub-types using appropriate fuzzy rules and
membership functions [19]

5.4 State Recognition

A drawback of using fixed membership functions for fuzzy classification of all the

durations and magnitudes (m and d) is that they are dominated with modes (states)

with larger means and variances. Therefore, they provide imprecise classifications for

the modes (states) with average means and variances since most of the observations

will be incorrectly categorized as small. In this chapter, the fuzzy membership func-

tions for symbolic representation are adapted according to the state of the durations

and magnitudes of the signal. States are assumed to transit to each other following a
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Markov chain model and observations follow the Gaussian distributions in Equation

5.5.

The probabilistic framework constructed for this state recognition is explained

in this section. Suppose that the duration (dt) and magnitude (mt) for the new

observation is defined as:

dt = xt − xt−1 (5.1)

mt = yt − yt−1

where x corresponds to variations of the signal in time direction and y is the value of

the signal.

The probability of each state given the new observation is calculated using Hamil-

tons filter [46]. The input of the filter is the conditional probability P (It−1|mt−1, dt−1, ...,m0, d0)

and has the output P (It|mt, dt, ...,m0, d0), where It is an indicator for the mode (state)

of the observations at time t. The general form of Hamilton’s filter is modified for this

specific problem assuming that observations (mt and dt) follow normal distributions

and are independent of each other given the states (to be described mathematically

in Equation 5.5).

The output of the filter is obtained as:

P (It|mt, dt, ...,m0, d0) =
M∑

It−1=1

P (It, It−1|mt, dt, ...,m0, d0) (5.2)

where M is the number of states.

The joint probability of the states It, It−1 given the information up to time t− 1

is calculated as:

P (It, It−1|mt−1, dt−1, ...,m0, d0) = P (It|It−1)P (It−1|mt−1, dt−1, ...,m0, d0) (5.3)

P (It|It−1) is the Markov model transition probability (αij) and P (It−1|mt−1, dt−1, ...,m0, d0)

is known from the input to the filter. This joint probability of the states It and It−1

is further updated using the new observations at time t:

P (It, It−1|mt, dt, ...,m0, d0) =
P (mt, dt, It, It−1|mt−1, dt−1, ...,m0, d0)

P (mt, dt|mt−1, dt−1, ...,m0, d0)
(5.4)

where

P (mt, dt, It, It−1|mt−1, dt−1, ...,m0, d0) = f(mt, dt|It, It−1,mt−1, dt−1, ...,m0, d0)
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×P (It, It−1|mt−1, dt−1, ...,m0, d0)

where P (It, It−1|mt−1, dt−1, ...,m0, d0) is obtained previously from Equation 5.3,

and f(mt, dt|It, It−1,mt−1, dt−1, ...,m0, d0) = f(mt, dt|It) is calculated assuming that

observations (mt and dt) follow the normal distributions in Equation 5.5 and are

independent of each other given the states, and finally,

P (mt, dt|mt−1, dt−1, ...,m0, d0) =
M∑
It=1

M∑
It−1=1

P (mt, dt, It, It−1|mt−1, dt−1, ...,m0, d0)

The above procedure is based on the probability of the observation and Markov

model of state transitions. The parameters of these probability functions (µim, σ
i
m, µ

i
d, σ

i
d, αij, πi)

can be calculated using the Expectation Maximization (EM) algorithm. Details are

presented in the following subsection.

5.4.1 Parameter Estimation Based on the EM Algorithm

The unknown parameters could be estimated as the solution of a maximum likelihood

estimation problem. However, due to a large number of unknowns and modes, regular

optimization algorithms could not provide solutions directly. The EM algorithm is

an appropriate alternative for such situations and provides closed form solutions for

the unknown parameters. Parameter estimation for regime switching systems under

the EM framework has been of interest since 1990 [44, 51, 55]. In this chapter we

will derive a mathematical frame-work for regime switching systems when multiple

independent observations are available.

It is assumed that observations of the durations and magnitudes ({mt}Nt=1and

{dt}Nt=1) are independent of each other and identically distributed (i.i.d.) given the

states (Equation 5.5):

(mt|It = i;µim, σ
i
m) ∼ N(µim, (σ

i
m)2), i = 1, ...,M (5.5)

(dt|It = i;µid, σ
i
d) ∼ N(µid, (σ

i
d)

2), i = 1, ...,M

where µid,m and σid,m are means and variance of the different states.

Later, means and variances of the fuzzy membership functions in each mode

(σsml, ave, lrg
di,mi

and µsml, ave, lrg
di,mi

) will be separately calculated based on the observa-

tions of the mode and the FCM approach. It will be further discussed in the next

section.

In order to have probabilistic transitions between different states of the system,
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it is assumed that they follow a Markov chain with transition probability (αij) and

initial state probability (πi) given as

αij = P (It = j|It−1 = i), i, j = 1, ...,M and t = 1, ..., N (5.6)

πi = P (I1 = i), i = 1, ...,M

The EM algorithm finds the unknown parameters (µim, σ
i
m, µ

i
d, σ

i
d, αij, πi) by iter-

ating between the E (expectation) and M (maximization) steps [55]. In the E-step of

the EM algorithm, the conditional expectation of the complete data (known as the

Q-function) is calculated:

Q(Θ|Θold) = EI|Θold,Cobs{log f(Cobs, I|Θ)} (5.7)

where Θold is the vector of parameters for the previous iteration, I is the unknown

(hidden) state, Cobs is the vector of observations ({mt, dt}Nt=1), f is the probability

distribution function and Θ is the set of unknown parameters.

In the M-step, the set of parameters that maximizes the Q-function, are calculated:

Θnew = maxΘ Q(Θ|Θold) (5.8)

For the problem of this chapter, the E-step can be formulated as,

Q(Θ|Θold) = EI|(Θold,Cobs){log f(mN , ...,m1, dN , ..., d1, IN , ..., I1|Θ)} (5.9)

= EI|(Θold,Cobs){log
N∏
t=1

f(mt, dt, It|mt−1, ...,m1, dt−1, ..., d1, It−1, ..., I1,Θ)}

= EI|(Θold,Cobs){log
N∏
t=1

f(mt|It,Θ)f(dt|It,Θ)P (It|It−1,Θ)}

= EI|(Θold,Cobs){log(PI1)}+ EI|(Θold,Cobs){
N∑
t=1

[logf(mt|It,Θ) + logf(dt|It,Θ)]}

+EI|(Θold,Cobs){logP (It|It−1,Θ)}

=
M∑
i=1

P (I1 = i|Θold, Cobs)logπi
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+
M∑
i=1

N∑
t=1

P (It = i|Θold, Cobs)
[
logf(mt|It = i, µ(i)

m , σ
(i)
m ) + logf(dt = i|It, µ(i)

d , σ
(i)
d )
]

M∑
i=1

M∑
j=1

N∑
t=2

P (It = j, It−1 = i|Θold, Cobs)logαij

In these derivations we have used f(mt|mt−1, ...,m1, dt, ..., d1, It, It−1, ..., I1,Θ) =

f(mt|It,Θ),

f(dt|mt−1, ...,m1, dt−1, ..., d1, It, It−1, ..., I1,Θ) = f(dt|It,Θ) and

P (It|mt−1, ...,m1, dt−1, ..., d1, It−1, ..., I1,Θ) = P (It|It−1,Θ) according to the Markov

property and, implicitly, the assumption that observations (mt and dt) are indepen-

dent of each other given the hidden state It.

In the M-step, derivatives of the Q-function are taken with respect to the unknown

parameters:

∂
∑M

i=1

∑N
t=1 P (It = i|Θold, Cobs)

log(
1

σ
(i)
m

√
2π

) e

−(mt − µ(i)
m )2

2(σ
(i)
m )2


∂µ

(i)
m

= 0 (5.10)

∂
∑M

i=1

∑N
t=1 P (It = i|Θold, Cobs)

log(
1

σ
(i)
d

√
2π

) e

−(dt − µ(i)
d )2

2(σ
(i)
d )2


∂µ

(i)
d

= 0

Therefore, the mean value of the different modes for durations and magnitudes

can be calculated as

(µ(i)
m )New =

∑N
t=1 mtP (It = i|Θold, Cobs)∑N
t=1 P (It = i|Θold, Cobs)

(5.11)

(µ
(i)
d )New =

∑N
t=1 dtP (It = i|Θold, Cobs)∑N
t=1 P (It = i|Θold, Cobs)

Variance of the different modes can also be calculated in a similar manner:

∂
∑M

i=1

∑N
t=1 P (It = i|Θold, Cobs)

log(
1

σ
(i)
m

√
2π

) e

−(mt − µ(i)
m )2

2(σ
(i)
m )2


∂σ

(i)
m

= 0 (5.12)
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∂
∑M

i=1

∑N
t=1 P (It = i|Θold, Cobs)

log(
1

σ
(i)
d

√
2π

) e

−(dt − µ(i)
d )2

2(σ
(i)
d )2


∂σ

(i)
d

= 0

Therefore:

((σ(i)
m )New)2 =

∑N
t=1(mt − (µ

(i)
m )New)2P (It = i|Θold, Cobs)∑N

t=1 P (It = i|Θold, Cobs)
(5.13)

((σ
(i)
d )New)2 =

∑N
t=1(dt − (µ

(i)
d )New)2P (It = i|Θold, Cobs)∑N

t=1 P (It = i|Θold, Cobs)

The optimization problem to find αij, is constrained by
∑M

j=1 αij = 1 and as the

result Lagrange multiplier λ is introduced:

∂
[∑M

i=1

∑M
j=1

∑N
t=2 P (It = j, It−1 = i|Θold, Cobs)logαij + λ(

∑M
j=1 αij − 1)

]
∂αij

= 0

(5.14)

Similarly, the optimization problem to find πi, is constrained by
∑M

j=1 πi = 1 and

as the result Lagrange multiplier λ is introduced:

∂
[∑M

i=1 P (I1 = i|Θold, Cobs)logπi + λ(
∑M

i=1 πi − 1)
]

∂πi
= 0 (5.15)

Finally, the parameters of the Markov chain can be calculated as:

(αij)
New =

∑N
t=2 P (It = j, It−1 = i|Θold, Cobs)∑M

j=1

∑N
t=2 P (It = j, It−1 = i|Θold, Cobs)

(5.16)

(πi)
New = P (I1 = i|Θold, Cobs)

The intermediate terms P (It = j, It−1 = i|Θold, Cobs) and P (It = i|Θold, Cobs) in

Equations 5.10 to 5.16 can be calculated according to Bayes rule and Markov property:

P (It = j, It−1 = i|Θold, Cobs) = P (It = j, It−1 = i|mt, dt,Θ
old,mt−1, ...,m1, dt−1, ..., d1)

(5.17)

=
f(mt|It = j,Θold) f(dt|It = j,Θold) P (It = j|It−1 = i,Θold) P (It−1 = i|Θold)∑M

i=1

∑M
j=1 f(mt|It = j,Θold) f(dt|It = j,Θold) P (It = j|It−1 = i,Θold) P (It−1 = i|Θold)
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where in Equation 5.17, P (It = j|It−1 = i,Θold) = (αij)
old, P (It−1 = i|Θold) is ob-

tained through the discrete-valued state propagation of Markov chain starting from

the initial estimation of P (I1 = i|Θold, Cobs) = (πi)
old, and f(mt|It = j,Θold) and

f(dt|It = j,Θold) should be calculated based on the parameters in the previous itera-

tion and Equation 5.5.

P (It = i|Θold, Cobs) can be obtained from summation of P (It = i, It−1 = j|Θold, Cobs)

over all the possible states for It−1:

P (It = i|Θold, Cobs) =
M∑
j=1

P (It = i, It−1 = j|Θold, Cobs) (5.18)

The initial values of the parameters are obtained assuming a mixture of Gaus-

sian distributions for the magnitudes and durations and calculating the transition

probabilities from occupation times in Equation 5.19.

αij =
Cij
Ci
, i, j = 1, ...,M (5.19)

where Ci is the number of times that the sequence is observed to be in states i and

Cij is the number of transitions from state i to state j.

5.5 Adaptive Fuzzification

As stated in Section 5.4, a drawback of using fixed membership functions for fuzzy

classification is that they are dominated by modes with larger means and variances.

Following an adaptive fuzzification procedure, we are looking for more precise dis-

crete observations. A summary of adaptive fuzzification procedure introduced in this

chapter is schematically presented in Figure 5.6.

As it is illustrated in Figure 5.6, in order to have more precise symbolic observa-

tions (triangles), the magnitudes and durations are divided to different modes based

on their means and variances. Parameters of the fuzzy membership functions for

each mode (σsml, ave, lrg
di,mi

and µsml, ave, lrg
di,mi

) are calculated based on a Fuzzy C-Means

clustering (FCM) approach [98]. When a new observation for magnitude and dura-

tion is received, parameters of the membership functions for the different modes are

weighted as a function of the posterior probability of each state given the new observa-

tion (Equations 5.20 and 5.21). The procedure to calculate this posterior probability

is previously explained in Section 5.4. The final discretization step is based on these

new membership functions.

wi(t) = P (It = i|mt, dt, ...,m0, d0) (5.20)
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Figure 5.6: Combination of the fuzzy membership functions for different modes

As the result, parameters of the adaptive membership functions are calculated as

following:

σ(t)sml, ave, lrgdt,mt
=

M∑
i=1

wi(t)σ
sml, ave, lrg
di,mi

(5.21)

µ(t)sml, ave, lrgdt,mt
=

M∑
i=1

wi(t)µ
sml, ave, lrg
di,mi

where σsml, ave, lrg
di,mi

and µsml, ave, lrg
di,mi

are the means and variances of the Gaussian fuzzy

membership functions for different modes previously calculated from the FCM ap-

proach.

Finally, using adaptive fuzzification and the method of triangular representation,

a signal is converted to a sequence of symbols which contains 36 symbolic character

alphabets. This symbolic representation of the signal is used in the next step to

determine the faulty behavior.
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5.6 Data Classification for Multiple Discrete Ob-

servations

In this section, assuming that the discrete observations are available from adaptive

fuzzification and the method of triangular representation, a multivariate HMM proce-

dure is adopted to model the normal and risky operations. These models are different

from those in Section 5.4 in the sense that hidden states might not have physical mean-

ings and are selected to best fit the data of the normal and risky operations. The

data to train these models correspond to normal and risky operations which have

previously occurred in history. After training the models, the only remaining step is

to find the probability of process status from a window of multiple observations (NW )

given each model and decision making.

5.6.1 Data Classification Based on BPNNs

Wong et al. propose two approaches to solve the problem of multiple observations

[20]. In the first approach, the classification of each individual variable based on the

normal and abnormal models is used to generate a sequence of events for the individual

variables. Based on this sequence of events, event sequencing HMMs are trained for

overall classification. In the second approach, Back Propagation Neural Networks

(BPNN) are applied for overall classification. This approach uses the probabilities

of each classification category for each individual variable as the inputs to a neural

network. The outputs of the neural network represent the probabilities that the

overall classification belongs to each classification category. The overall classification

of the plant is determined based on the highest output probability of the BPNN.

5.6.2 Data Classification Based on HMMs

The recent studies on hidden Markov models with multiple observations are based

on the early study of Levinson et al. in American telephone and telegraph company

[99]. Baggenstoss proposed a modified Baum Welch algorithm for training of hidden

Markov models with multiple observations [100]. The training method can be further

extended to second or higher order hidden Markov models [101].

Since process variables are correlated, the sequence resulted from the triangular

representation must also be correlated. In this chapter, we propose to adopt a multi-

variate modeling approach to train HMMs. Li et al. has laid theoretical foundation

on multivariate HMM modeling, which is adopted here [94].
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Consider the following set of observation sequences:

O = {O1, O2, ..., OK} (5.22)

where

O(k) = o
(k)
1 , o

(k)
2 , ..., o

(k)
Tk
, 1 ≤ k ≤ K (5.23)

are individual observation sequences. As an example, for the industrial case study of

this chapter in Section 5.9, K will be equal to 2, which corresponds to the variables

interface level and underflow density. Tk the number of discrete observations used for

training.

The following expression is always true when calculating probability of the obser-

vation sequence given the model:

P (O|λ) = P (O(1)|λ)P (O(2)|O(1), λ), ..., P (O(K)|O(K−1), ..., O(1), λ) (5.24)

P (O|λ) = P (O(2)|λ)P (O(3)|O(2), λ), ..., P (O(1)|O(K), ..., O(2), λ)

...

P (O|λ) = P (O(K)|λ)P (O(1)|O(K), λ), ..., P (O(K−1)|O(K), O(K−2), ..., O(1), λ)

Therefore, the probability of the multiple observations given the model can be

written as the summation

P (O|λ) =
K∑
k=1

ωkP (O(k)|λ) (5.25)

where

ω1 =
1

K
P (O(2)|O(1), λ), ..., P (O(K)|O(K−1), ..., O(1), λ) (5.26)

ω2 =
1

K
P (O(3)|O(2), λ), ..., P (O(1)|O(K), ..., O(2), λ)

...

ωK =
1

K
P (O(1)|O(K), λ), ..., P (O(K−1)|O(K), O(K−2), ..., O(1), λ)
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are weights. Li et al. show that the following re-estimation formulas can be obtained

for parameters of the hidden Markov model through the calculation of the auxiliary

function at the E-step and maximizing it in the M-step [94]. If it is assumed that the

individual observation sequences are serially independent of each other, i.e.,

P (O|λ) =
K∏
k=1

P (O(k)|λ) (5.27)

The combinatorial weights become

ωk =
1

K

P (O|λ)

P (O(k)|λ)
, 1 ≤ k ≤ K (5.28)

Substituting the above weights into equations, the following training equations

will be obtained:

State transition probability:

amn =

∑K
k=1

∑Tk−1
t=1 ξ

(k)
t (m,n)∑K

k=1

∑Tk−1
t=1 γ

(k)
t (n)

, 1 ≤ m ≤ Q, 1 ≤ n ≤ Q (5.29)

where Q is the number of states in the model. Other terms of Equation 5.29 (ξ and

γ) have been previously discussed in Chapter 2.

Symbol emission probability:

bn(m) =

∑K
k=1

∑Tk−1
t=1 δ(o

(k)
t , νm)γ

(k)
t (n)∑K

k=1

∑Tk−1
t=1 γ

(k)
t (n)

, 1 ≤ m ≤ R, 1 ≤ n ≤ Q (5.30)

where δ(o
(k)
t , νm) is equal to 1 if o

(k)
t = νm and 0 otherwise, and R is the number of

observation symbols per state.

Initial state probability:

πn =
1

K

K∑
k=1

γ
(k)
1 (n), 1 ≤ n ≤ Q (5.31)

After training the models, as a new window of discrete observations (NW ) is

received, the probability of the process status for the window given each model is

calculated based on the forward-backward algorithm [40]. The decision on the oper-

ating condition (normal or risky) of the system is based on the model with a greater

probability.

5.7 Data Classification Based on HMMs – A Mov-

ing Window Approach

In this section a moving window approach is proposed for process monitoring based

on symbolic episode representation and hidden Markov models. All the materials of
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this section are developed based on fixed fuzzy membership functions. More advanced

approaches for the case of time varying membership functions are subjects of future

studies.

Although BPNNs are limited to fixed window sizes, time varying input dimensions

can be considered at each time step using HMMs [19]. Therefore, a search algorithm

to find the optimal window size is proposed in this section. Unlike the previous

approaches [102], this algorithm searches for a fixed episode of more informative

observations in the window.

Selection of large window sizes has the drawback of remaining in transition zones

for large time intervals where no decision can be made on the operating condition

of the system. The minimum number of observations (Nmin) required to thoroughly

explain the operating condition might differ according to the level of noise removal, on-

line sampling rate, etc. Although Nmin contains a window of most recent observations,

making the final decision only based on Nmin may cause many false alarms and affect

critical decisions. One solution to this problem is searching for Nmin number of

observations in a window of most recent data (NW ). Intuitively, using the proposed

methodology in Figure 5.8, we are looking for a small window of observations which

maximizes the difference of the likelihood given each model. Therefore, assuming

emax = NW −Nmin,

eopt = argmaxe∈[0,emax]{(P (O|λNormal)− P (O|λAbnormal))2|O=O(τ+e:τ+e+Nmin)} (5.32)

where τ = t−NW , O = O(τ+e : τ+e+Nmin) is the optimal episode of observations in

the window and λNormal/Abnormal represents the HMMs trained for normal or abnormal

conditions. P (O|λ) is calculated from the forward-backward algorithm [40].

Using the search algorithm in Equation 5.32, we are looking for an episode of Nmin

observations which best classifies the normal and abnormal operations in the window

of NW observations. A schematic of the proposed algorithm is illustrated in Figure

5.7.

A summary of the proposed algorithm is presented in Figure 5.8.

5.8 Simulation Case Study

This simulation case study is the same as the CSTRs in series example as explained in

Chapter 3. For convenience, the diagram of the process is presented again in Figure

5.9.
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Figure 5.7: Optimal window size selection

Figure 5.8: Summary of the proposed methodology of this paper

In this section, the initial value of CA2 is equal to 0.05 mol/L and the set-point

is selected as 0.075 mol/L. As explained in [67], a PI controller with parameters

τI = 0.25 min and KC = 350 L2/mol.min is implemented for control purposes. Here,

it is assumed that a white noise disturbance with variance 0.5 always disturbs the
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Figure 5.9: CSTR reactors in series [67]

feed flow-rate (qf ).

5.8.1 Comparison of the BPNN, HMM and HMM with Adap-
tive Fuzzification

In this simulation case study, first, using fixed fuzzy membership functions for triangu-

lar representation, the performances of the BPNN and HMM methods are compared.

Next, the advantage of applying adaptive fuzzification for signal discretization is il-

lustrated and compared to fixed fuzzy membership functions. It is assumed that a

number of random pulse disturbances with random magnitude with mean 15 L/min

and variance 4 occur in the feed flow-rate (qf ). The disturbance (qf ) and output

signals CA2 and T2 are presented in Figures 5.10 and 5.11.

Triangular representation of the signals applying fixed fuzzy membership functions

are presented in Figures 5.12 and 5.13. Two direct red lines correspond to the start

and end of abnormal operations of Figure 5.11.

Results of operating condition classification based on the BPNN and HMM meth-

ods using fixed fuzzy membership functions and a fixed window of NW = 5 discrete

observations are illustrated in Figures 5.14 and 5.15.

From the results in Figures 5.14 and 5.15, one could see that applying fixed fuzzy

membership the HMM method could improve the performance and reduce the num-

ber of false alarms. The main disadvantage of the BPNN method for the purpose

of overall classification ([20]) is no consideration of the interactions between different

inputs in the training step. Therefore, each input affects the classification separately.

This will cause a number of false alarms for the operating condition diagnosis.
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Figure 5.10: Normal and abnormal operations in the CSTRs in series - Feed flow rate

Figure 5.11: Normal and abnormal operations in the CSTRs in series - Output tem-
perature and concentration

Results of the process classification can be further improved by applying adaptive

fuzzy membership functions for signal discretization. Adaptive fuzzy membership

functions are presented in Figures 5.16 and 5.17. The discretized observations are
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Figure 5.12: Triangular representation of output signals using fixed fuzzy membership
functions - Output concentration (CA2)

Figure 5.13: Triangular representation of output signals using fixed fuzzy membership
functions - Output Temperature (T2)

shown in Figures 5.18 and 5.19 respectively. From Figures 5.18 and 5.19, one could

observe that the discrete observations (specifically in the normal mode) are generated

with wider variety and less large type triangles (type 36 for example). In general,

adaptive discretization has provided more distinguishable patterns.
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Figure 5.14: Results of the classification of normal and abnormal operating conditions
based on fixed fuzzy membership functions (NW = 5) - BPNN method

Figure 5.15: Results of the classification of normal and abnormal operating conditions
based on fixed fuzzy membership functions (NW = 5) - HMM method

Results of overall classification based on the discrete observations in Figures 5.18

and 5.19 are presented in Figure 5.20.

From the results in Figure 5.20, it can be observed that having the same number

of discrete observations in the moving window (NW = 5), due to the presence of more

precise discrete observations and patterns from adaptive fuzzification, the number of
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Figure 5.16: Adaptive fuzzy membership functions for the output signals (Figure
5.11) in different operating conditions - Output concentration (CA2)

Figure 5.17: Adaptive fuzzy membership functions for the output signals (Figure
5.11) in different operating conditions - Output temperature (T2)

false alarms has been greatly reduced.
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Figure 5.18: Triangular representation of output signals in Figure 5.11 using adaptive
fuzzy membership functions - Output concentration (CA2)

Figure 5.19: Triangular representation of output signals in Figure 5.11 using adaptive
fuzzy membership functions - Output temperature (T2)

5.8.2 Detection of Various Types of Faults Based on HMM
and HMM with Adaptive Fuzzification

The merit of Adaptive fuzzification can be more clearly illustrated when different

types of faults with random magnitudes and periods occur in the process. In this
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Figure 5.20: Results of the classification of normal and abnormal operating conditions
in Figure 5.11 based on adaptive fuzzy membership functions (NW = 5)

example, it is assumed that, first, some random impulse signals with mean 15 L/min

and variance 4 occur in the feed flow rate. This disturbance is then followed by a

number of random ramp type disturbances with maximum output value 3 L/min and

variance 1, which cause some long duration and small magnitude faults in the process

outputs. The normal and abnormal operations of the process in this example are

presented in Figures 5.21 and 5.22. The two types of abnormal behaviors are named

as abnormal conditions 1 and 2 respectively for the rest of this section.

First, both signals are discretized using fixed fuzzy membership functions. Results

are presented in Figures 5.23 and 5.24.

Next, the same procedure as in the previous section is repeated to generate adap-

tive fuzzy membership functions. The membership functions are presented in Figures

5.25 and 5.26. The discretized observations are presented in Figures 5.27 and 5.28

respectively.

Comparing the fuzzy membership functions in Figures 5.25 and 5.26 with Figures

5.16 and 5.17, one could observe that the membership functions are shifted to larger

durations and magnitudes due to the presence of more large triangles on average.

Furthermore, similar to the discrete observations in Figures 5.18 and 5.19, comparing

the discrete observations in Figures 5.23 and 5.24 with Figures 5.27 and 5.28, it can

be seen that more variety of triangles are generated for the low mean and variance

(normal) mode. In other words, adaptive fuzzification will adaptively change the

fuzzy parameters. Therefore, the membership functions will not be dominated by the
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Figure 5.21: Normal, abnormal 1 and abnormal 2 operating conditions for the CSTRs
in series - Feed flow rate

Figure 5.22: Normal, abnormal 1 and abnormal 2 operating conditions for the CSTRs
in series - Output temperature and concentration

modes with larger duration and magnitude. Results of the overall classifications of

the process based on HMMs using a fixed window of NW = 5 observations, with and
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Figure 5.23: Triangular representation of normal, abnormal 1 and abnormal 2 output
signals in Figure 5.22 using fixed fuzzy membership functions - Output concentration
(CA2)

without using adaptive membership functions, are presented in Figures 5.29 and 5.30

respectively.

As presented in Figure 5.30, although still some false alarms appear in the results

(in the time period between 200 and 300 for example), in general, applying adaptive

membership functions, normal and abnormal modes (especially normal mode and

abnormal mode 1) are more clearly distinguishable. As previously stated, this is

due to the fact that application of adaptive fuzzy membership functions can provide

more precise discrete observations and patterns considering different modes for the

durations and magnitudes of the signals.

5.8.3 Detection of Size of the Faults Based on the HMM and
Adaptive Fuzzification

113



Figure 5.24: Triangular representation of normal, abnormal 1 and abnormal 2 output
signals in Figure 5.22 using fixed fuzzy membership functions - Output temperature
(T2)

Figure 5.25: Adaptive fuzzy membership functions for the output signals of the Figure
5.22 in different operating conditions - Output concentration (CA2)
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Figure 5.26: Adaptive fuzzy membership functions for the output signals of the Figure
5.22 in different operating conditions - Output temperature (T2)

Figure 5.27: Triangular representation of normal, abnormal 1 and abnormal 2 output
signals in Figure 5.22 using adaptive membership functions - Output concentration
(CA2)
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Figure 5.28: Triangular representation of normal, abnormal 1 and abnormal 2 output
signals in Figure 5.22 using adaptive membership functions - Output temperature
(T2)

Figure 5.29: Results of the classification of normal, abnormal 1 and abnormal 2
operating conditions in Figure 5.22 based on the HMM method (NW = 5) - Fixed
fuzzy membership functions
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Figure 5.30: Results of the classification of normal, abnormal 1 and abnormal 2
operating conditions in Figure 5.22 based on the HMM method (NW = 5) - Adaptive
fuzzy membership functions

In this section, the ability of the proposed method in detection of faults with

different magnitudes is investigated. It is assumed that two random ramp type dis-

turbances, one with maximum output value 8 L/min and variance 3, and the other

one with maximum output value 3 L/min and variance 1 occur in the feed flow-rate.

Similar to the previous section, operating conditions of the process are named as nor-

mal, abnormal 1 and abnormal 2. Different operating conditions of the process are

presented in Figures 5.31 and 5.32.

Using adaptive fuzzy membership functions, discrete observations are generated

as in Figures 5.33 and 5.34.

Results of overall classification of the process based on HMMs and a fixed window

of five observations (NW = 5) are presented in Figure 5.35.

Based on the results in Figure 5.35, it can be concluded that to some large extent

the method is able to determine the size of the faults. However, a number of false

alarms appear and there are some periods during which an unknown pattern arises

(the time period around 500 for example). Therefore, using the method of trian-

gular representation for complete isolation of faults might have some mis-detection.

Increasing the number of modes for adaptive fuzzification could be a solution to pro-

vide more precise patterns and classifications for faults with different magnitudes.

However, the increasing computational cost will be unavoidable. As the result, using

the proposed method of this chapter for high accuracy fault isolation purposes might
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Figure 5.31: Normal, abnormal 1 and abnormal 2 operating conditions for the CSTRs
in series - Feed flow rate

Figure 5.32: Normal, abnormal 1 and abnormal 2 operating conditions for the CSTRs
in series - Output temperature and concentration

suffer from the computation limit in an on-line application. Furthermore, as the re-

sults in this section show, if the training data is selected sufficiently informative, the
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Figure 5.33: Triangular representation of normal, abnormal 1 and abnormal 2 output
signals in Figure 5.32 using adaptive membership functions - Output concentration
(CA2)

method is robust in abnormal condition diagnosis.

5.8.4 Data Classification Based on a Moving Window of Ob-
servations

In this section, a pulse disturbance with the amplitude 15 (L/min) and period of

five samples in time steps between 610 − 1210 is assumed to occur in the feed flow

rate which results in overshoots in process outputs. A combination of normal and

abnormal operating regions after reaching the desired set-point is presented in Figure

5.36.

After removing the high frequency noise in two levels using wavelet analysis, and

normalizing the data, minimum, maximum and inflection points of the signals are

calculated. Then, using appropriate fixed fuzzy membership functions and rules for

durations and magnitudes, signals are converted to discrete observations. Discretized

observations of the output concentration and temperature signals are presented in

Figures 5.37 and 5.38.
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Figure 5.34: Triangular representation of normal, abnormal 1 and abnormal 2 output
signals in Figure 5.32 using adaptive membership functions - Output temperature
(T2)

Figure 5.35: Results of the classification of normal and abnormal operating conditions
in Figure 5.32 based on adaptive fuzzy membership functions (NW = 5)

Large Window of Input Data (non-adaptive window sizes)

Large window of input data for process classification provides similar results between

the BPNN and HMM approaches with fixed fuzzy membership functions. Figures 5.39
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Figure 5.36: Normal and abnormal operations after reaching the desired set-point

Figure 5.37: Discritized observations for the output concentration in Figure 5.36

and 5.40 compare the results of the two approaches considering 10 last observations as

the input to the classification algorithms. A total number of 772 discrete observations,

including 579 observations for normal and 193 for abnormal regions, are used to train
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Figure 5.38: Discretized observations for the output temperature in Figure 5.36

the models of the normal and abnormal operating conditions.

Figure 5.39: Normalized probability of the observation sequences in Figure 5.36 be-
longing to normal and abnormal regions using HMMs with fixed window of data
(NW = Nmin = 10)

As presented in Figures 5.39 and 5.40, with a large window of the input data,

both approaches provide similar results.
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Figure 5.40: Normalized probability of the observation sequences in Figure 5.36 be-
longing to normal and abnormal regions using the BPNN approach (NW = Nmin =
10)

Small Window of Input Data (adaptive window sizes)

Using large window sizes, a long time will be required for any classification algorithm

to capture the most recent behavior of the process due to a large amount of old data

in the window. Consequently, the classification algorithm remains in transition zones

where no decision can be made on the operating condition of the system. Figures

5.41 to 5.43 present the results of the overall classification with 5 observations as the

input of the classification system.

As it is clear from Figure 5.41, a large number of false alarms appear when the

window size is reduced to half using the BPNN approach.

Figure 5.42 shows the result of overall classification based on the proposed moving

window method. The number of false alarms is reduced. However, the likelihood ratio

is also decreased. In other words, the overall decision making has been improved while

the individual effect of each variable is reduced. The number of shifts to find the

optimal window (eopt) is presented in Figure 5.43. This number varies between 1 and

emax = NW −Nmin = 9− 5 = 4 and indicates the Oopt = O(τ + eopt : τ + eopt +Nmin)

sequence of observations which are selected for overall classification.

Following the proposed moving window procedure, the final decision will be based

on the more informative observations in the window and the old information will not

affect the overall decision making.
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Figure 5.41: Normalized probability of the observation sequences in Figure 5.36 be-
longing to normal and abnormal regions using the BPNN approach (NW = Nmin = 5)

Figure 5.42: Normalized probability of the observation sequences in Figure 5.36 be-
longing to normal and abnormal regions using the proposed moving window approach
(NW = 9, Nmin = 5)

5.9 Industrial Case Study

This industrial case study will be presented in Chapter 6, and compared to the meth-

ods in other chapters of the thesis.
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Figure 5.43: Number of shifts in Figure 5.42 to find the optimal window

5.10 Conclusion

In this chapter, a new method for overall classification of the process operation status

based on hidden Markov models is introduced. First, means and variances of the

different modes for the magnitudes and durations of the triangles and the parameters

of the Markov chain are calculated using the EM algorithm. Next, applying Hamil-

tons filter, posterior probability of each state given the new magnitude and duration

is calculated. Using this posterior probability, the fuzzy membership functions are

weighted adaptively to provide an accurate discretization based on the method of

triangular representation. A multivariate HMM scheme, with moving a window of

observations, is also implemented for the overall classification of the process status.

The adaptive fuzzification strategy proposed in this chapter provides more ac-

curate discrete observations when using the method of triangular representation by

considering different modes for the durations and magnitudes. Furthermore, applying

a multivariate scheme to train HMMs for multiple discrete observations automatically

considers the transition behavior of different variables and the number of false alarms

is reduced. Application of the proposed method in simulation and industrial case

studies shows that it is a promising approach to detect the normal and abnormal

operations of the process.
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Chapter 6

Applications to an Industrial Scale
Oil Sands Primary Separation
Vessel

In this chapter, it is shown that a combination of semi-empirical equations and data

driven methods provides an appropriate solution for estimation of the required criti-

cal velocity to avoid sand deposition and line plugging in underflow of an industrial

scale Primary Separation Vessel (PSV). Sections 6.1 to 6.5 provide an overview of

the process, the proposed strategy and results of on-line implementation. In Sections

6.6 and 6.7, the proposed methods of Chapters 3 and 5 are tested on the historical

data of the PSV, and the deficiencies of data driven methods to address this complex

industrial problem are explained. Finally, in Section 6.8, we draw the final conclusion

of the thesis.

6.1 Introduction

6.1.1 Problem Statement

Most of previous studies on the required critical minimum velocity to move solid beds

inside the slurry lines are related to the process design step where the dynamics of

Short version of a part of this chapter has been published in N. Sammaknejad, B. Huang, R. S.
Sanders, Y. Miao, F. Xu, A. Espejo (2015). Adaptive Soft Sensing and On-line Estimation of the
Critical Minimum Velocity with Application to an Oil Sand Primary Separation Vessel. Proceedings
of the IFAC 9th International Symposium on Advanced Control of Chemical Processes (ADCHEM).
Whistler, Canada [124].

Complete version of a part of this chapter is to be submitted as N. Sammaknejad, B. Huang, R.
S. Sanders, Y. Miao, F. Xu, A. Espejo. Adaptive Prediction of Critical Minimum Velocity of Slurry
Flow with Application to an Oil Sand Primary Separation Vessel. Journal of Process Control.
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Figure 6.1: Three layers of the PSV unit

the process are not thoroughly considered. Here, a general framework for on-line

estimation of the critical minimum velocity is proposed and applied to the underflow

of a Primary Separation Vessel (PSV) in oil sands industry. A probabilistic framework

is introduced to treat missing observations. Statistical methods are used to design a

soft sensor and modify the predictions. Results are compared with other data driven

methods.

6.1.2 Process Overview

The industrial application of this chapter is critical minimum velocity estimation in

the underflow of an industrial scale PSV in oil sands industry. The PSV unit is

presented in Figure 6.1.

The PSV unit is a large settling vessel to separate the feed into three different

streams. The slurry feed, which includes aerated bitumen aggregates, water, coarse

sand and fine solids, enters at the center of the unit. The bitumen floats over a

weir circling the top for further froth treatment. Coarse sand particles settle to the

bottom and form the underflow stream. A third outlet stream, which usually contains

fines, bitumen aggregates and water, is removed from the middle of the vessel and

referred to as the middlings. Both middlings and underflow streams are transferred

to secondary recovery units using two variable speed pumps through two different
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Figure 6.2: pressure loss verses average mixture velocity inside the slurry line

process lines.

6.1.3 Definition of the Critical Minimum Velocity

The critical minimum velocity, also known as the deposition velocity, is the opera-

tional velocity at which the stationary bed of solids first forms. The pressure loss

inside the line (
Pa

m
) verses average mixture velocity (

m

s
) for water and the slurry

flow is presented in Figure 6.2 ([104]).

In Figure 6.2, one could observe that in the case of having water inside the process

line, the pressure loss increases while raising the average mixture velocity. However,

in the case of slurry flow, there is a velocity below which the particles start to make

a stationary bed, and right above it, the bed of particles starts to move. This critical

point, where the pressure loss inside the slurry line becomes the minimum, is known

as the critical minimum velocity or the deposition velocity.

6.1.4 Importance of the Critical Minimum Velocity

Since the underflow stream in the PSV unit usually contains coarse sand particles,

there is a concern of sand deposition and line plugging. Complete plugging of the line,

which occurs at flow-rates below the critical velocity, is referred to as the “sanding”

phenomena in oil sands industry. In addition to the sanding phenomena, operating

velocities below the critical minimum velocity will cause excessive erosion in the lower

part of the line ([106]).
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On the other hand, operating velocities greater than the critical minimum velocity

are uneconomical as more pump power will be required ([106]).

On-line estimation of the critical minimum velocity and comparison with the cur-

rent operating velocity will provide a lower limit for the operator to avoid near sanding

as well as sanding regions. Also, it will help to avoid conservative high flow rate op-

erations in the underflow stream, and therefore, improve PSV bitumen recovery.

6.1.5 Solution Strategy

Unlike previous applications where the critical minimum velocity equations are only

used in the design step, in this chapter, a novel approach for on-line estimation of

the critical minimum velocity with application to the underflow stream of the PSV

unit is introduced. When the on-line estimation becomes greater than the current

operating velocity, a near-sanding alarm is generated.

The proposed solution strategy is as follows:

First, the appropriate semi-empirical equation for on-line estimation of the critical

minimum velocity is selected. Next, the effective variables for the estimation are

obtained. Since one of the key variables, carrier fluid density, is difficult to measure

on-line, a soft sensor is developed to provide a parallel on-line measurement for this

variable. The recursive Partial Least Squares (rPLS) method is used to develop this

soft senor. Also, an adaptive approach based on Hidden Markov Models (HMMs)

is used to adaptively change the sensitivity of the critical velocity estimations. Due

to the presence of unknown operating modes, the Expectation Maximization (EM)

algorithm is used to train the HMM. A procedure to treat the missing observations

through the iterations of the EM algorithm is proposed. In the historical data, some

observations appear as “Not a Number”, or “NaN”, and “Error”, in the server. The

new method automatically considers the effect of the missing observations during the

parameter estimation step. Finally, the algorithm is tested in on-line environment

through the communication of the Distributed Control System (DCS), OPC server

and MATLAB. The solution strategy is summarized in Figure 6.3.

6.2 Critical Minimum Velocity Estimation

Numerous semi-empirical equations have been developed for the purpose of depo-

sition velocity estimation in literature. They are based on both force balance and

laboratory analysis. Quality of these models depends primarily on the quality of the

experimental data. One of the earliest and most practically used correlations is the
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Figure 6.3: Solution strategy for on-line estimation of the critical minimum velocity
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critical minimum velocity equation proposed by Durand [107]:

VC = FL
√

2gD(s− 1) (6.1)

where FL is a constant which is obtained graphically as a function of particle diameter

(0.44 < d < 2.04 [mm]) and volumetric solid concentration (0.05 < Cv < 0.15). D is

the diameter of the line (0.04 < D < 0.58 [m]), g is the gravitational constant, and

s is the specific gravity of solids. The solid particles used to develop this equation

mostly include coal and sand.

Based on a data set containing 864 experimental results, Turian et al. developed

another equation for the estimation of the critical minimum velocity [103]. The

equation contains a term to represent the effect of the carrier liquid viscosity.

VC
[2gD(s− 1)]0.5

= X1C
X2
v (1− Cv)X3{Dρ[gD(s− 1)]0.5

µ
}X4(

d

D
)X

5

(6.2)

where µ is the carrier liquid viscosity and ρ is the carried liquid density. Xi’s are the

coefficients obtained from the regression analysis. Although a large data base was

used in the development of this equation, only a few data for large particles and lines

were involved and the effect of particle size was not thoroughly considered [108].

As explained in [104], Shook et al. developed a correlation between the Archimedes

and Froude numbers to estimate the critical minimum velocity. The Archimedes

number is defined as the ratio of the gravitational forces to the viscous forces on a

particle, i.e.,

Ar =
4

3

gd3(S − 1)ρ2
f

µ2
f

(6.3)

where µf is the carrier fluid viscosity, ρf is the carrier fluid density and S is the ratio

of the solid density to carrier fluid density
ρs
ρf

.

The Froude number is defined as the ratio of the kinetic forces to the gravitational

forces on particle:

Fr =
VC√

gD(S − 1)
(6.4)

Shook et al. introduce the Archimedes number as an independent variable and

provide the following relation between the Archimedes and Froude numbers ([109],

[110]):

540 < Ar, Fr = 1.78Ar−0.019 (6.5)

160 < Ar < 540, F r = 1.19Ar0.045

80 < Ar < 160, F r = 0.197Ar0.4
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This equation, which is known as the SRC (Saskatchewan Research Council) equa-

tion, is based on a large data-base with properties similar to the underflow of the PSV

unit. It is developed based on high quality experimental data and is applicable to the

turbulent flows and a variety of line diameters from 0.05 to 0.5 [m]. Combination of

all these properties makes the SRC equation an appropriate choice for the industrial

application of this chapter.

There are other similar studies in literature to develop appropriate semi-empirical

equations for specific conditions ([105], [111]).

The key variables for estimation of the critical minimum velocity using the SRC

equation are as follows:

6.2.1 Carrier Fluid Density

Carrier fluid is a portion of the slurry which contains particles with diameter less

than 44 [µm] [112]. In the PSV unit, as presented in Figure 6.1, coarser particles are

usually dragged to the tailings stream while fines and bitumen aggregates enter the

middlings stream. Therefore, the middlings stream provides a good indication to the

carrier fluid properties. In this study, middlings density, which is measured through

an on-line analyzer, is used as an indication to the carrier fluid density in the SRC

equation.

6.2.2 Carrier Fluid Viscosity

Carrier fluid viscosity is known to be a function of carrier fluid solid concentration

in fluid particle systems literature. Having the value of the carrier fluid density as

explained in the previous section, the carrier fluid solid concentration can be obtained

from Equation 6.6:

ρf = Cfρs + (1− Cf )ρl(T ) (6.6)

where Cf is the carrier fluid solid concentration, ρs is the density of the solid phase,

which is often selected as 2650 [
kg

m3
] in oil sands industry as an average, and ρl(T ) is

the density of the liquid phase (water is the dominant component) as a function of

the PSV temperature (T ). ρl(T ) is obtained as follows [113]:

ρl(T ) = a5[1− (T + a2
1)(T + a2)

a3(T + a4)
] (6.7)

where a1 = −3.983035◦C, a2 = 301.797◦C, a3 = 522528.9◦C2,a4 = 69.34881◦C, and

a5 = 999.974950 [
kg

m3
].

Having the carrier fluid solid concentration, various semi-empirical correlations
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exist in literature to find the carrier fluid viscosity. Among them, our investigation

on the historical data of the PSV shows that Equation (6.8), which is developed

in conditions close to the middlings stream [114], is appropriate for this industrial

application. The linear behavior of this equation provides smooth estimations for the

critical minimum velocity.

µf = µl(T )(1 + 14.7Cf ) (6.8)

where µl(T ) = A × 10

B

(T − C) [Pa.s], with A = 2.414 × 10−5[Pa.s], B = 247.8K

and C = 140K. µl(T ) is the viscosity of the liquid phase (water is the dominant

component) as a function of temperature (T) in Kelvin [115].

6.2.3 Coarse Particle Diameter

Coarse particle diameter plays an important role in estimation of the critical mini-

mum velocity. Intuitively, coarse particle diameter should have a positive correlation

with the ratio of volumetric concentration of coarse solids to fines in the mixture

as in Equation 6.9. Similar intuitive correlations have been previously explained in

literature [116].

d ∝ X =
Cmix − Cfines

Cfines
(6.9)

where d is the coarse particle diameter, Cmix is the volumetric concentration of solids

in the mixture and Cfines is the volumetric concentration of fines in the mixture.

In Equation 6.9, one could observe that in the case of having no coarse particles in

the mixture (Cmix = Cfines), the X factor becomes zero. When the ratio of (
Cmix
Cfines

)

starts to increase, i.e., there are more coarse particles in the mixture, the X factor

starts to grow. Since d is the median of all available particle diameters in the mixture,

it is expected to have a positive correlation with the X factor.

As previously stated in the introduction section, fines and bitumen aggregates

usually enter the middlings stream while the coarser particles tend to go directly to

the tailings. Therefore, the X factor in Equation 6.9 can be written as

X =
Cund − Cmid

Cmid
(6.10)

where ”und” and ”mid” refer to underflow and middlings streams respectively.

In this study, the positive correlation between coarse particle diameter and the

X factor is assumed to be linear. More complicated correlations will be a subject
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of future studies. Having the minimum and maximum value of the coarse particle

diameter [117], the minimum and maximum value of the X factor from historical

data, and the linearity assumption, the on-line estimation of coarse particle diameter

can be calculated as in Equation 6.11.

X −Xmin

Xmax −Xmin

=
d− dmin

dmax − dmin
(6.11)

Since this equation is subject to many uncertainties, it is only applied when the

X factor is within two standard deviations of Xmean. Otherwise the coarse particle

diameter is assumed to be constant (dmean).

6.3 Soft Sensor Development

From previous sections, one could observe that carrier fluid density, which is avail-

able through middlings density analyzer, plays a key role in on-line estimation of the

critical minimum velocity. However, there are several short periods in the historical

data where this on-line measurement is not available. Maintenance of the PSV and

exceeding the measurement limits are the main reasons of such circumstances. During

such periods, the data which appears in DCS represents the lower limit of the online

analyzer, and not the true value. As a result of such situations, the Archimedes num-

ber suddenly decreases. This results in a sudden spike, and a false alarm in on-line

estimation of the critical minimum velocity.

Consequently, providing another on-line measurement parallel to the density on-

line analyzer will help to avoid such false alarms and malfunctions in the case of

on-line analyzer failure (see Figures 6.6 and 6.7 for more information).

Lab data for the middlings density is available every two hours. Therefore, if

meaningful correlations exist between other process variables and the middlings den-

sity lab data, it will be possible to develop a mathematical model (soft sensor) and

provide another parallel measurement for the middlings density.

Due to frequent challenges in flow-rate measurement, it is difficult to develop

first-principle models for this soft sensor. However, data-driven approaches provide

acceptable results. Density of the middlings stream is strongly correlated with the

density of other layers, e.g., feed, froth and the underflow. Therefore, linear regression

techniques like Partial Least Squares (PLS) provide appropriate data-driven models

to solve this problem. However, since the PSV unit shows a time varying behavior

according to the historical data (working conditions of the PSV might change due to

the changes in the feed properties) model updating is necessary.
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6.3.1 Recursive Exponentially Weighted PLS (rPLS)

Many different approaches have been reported in literature in order to update the

model in the on-line application. One of the simplest ways, known as the model

coefficients recalculation, is to add the new samples to the training data-set, and

re-identify the model so that the model is able to adapt to new operating conditions

[118]. But, such methods will cause some delay in model updating. Furthermore, it

will be necessary to assign more weights to the new samples when working on large

data bases. Successful applications of the recursive Partial Least Squares (rPLS)

method in industrial processes are reported in literature [119]. Unlike the model

coefficients recalculation methods, the rPLS method significantly weights every new

sample to the data-base and continuously updates the model. Therefore, the model

will more rapidly adapt to new process conditions.

The rPLS method used in this chapter is based on the study on the improved

PLS kernel algorithm [121]. In this updating strategy, a forgetting factor is used to

exponentially discount the past data and takes into account the effect of the recent

observations [120]. The procedure of covariance matrix updating is as follows [122]:

Rxx(t) = λRxx(t− 1) + x̃(t)T x̃(t) (6.12)

Rxy(t) = λRxy(t− 1) + x̃(t)T ỹ(t)

where the forgetting factor (0 ≤ λ ≤ 1) reflects the rate of discounting the old data.

The mean centered data (x̃(t) and ỹ(t)) for the new available inputs and outputs

are obtained as in Equation 6.13.

x̃(t) = x(t)− x̄(t) (6.13)

ỹ(t) = y(t)− ȳ(t)

where the mean vectors are updated as follows [123]:

x̄(t) =
N − 1

N
x̄(t− 1) +

1

N
x(t) (6.14)

ȳ(t) =
N − 1

N
ȳ(t− 1) +

1

N
y(t)

Rxx(0) and Rxy(0) are the initial covariance matrices for the historical input and

output mean centered data (X, y), i.e.,

Rxx(0) = XTX (6.15)

Rxy(0) = XTy
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N is the length of the data in X and y.

When the new covariance matrices are available from Equation 6.12, the regression

coefficients (b) are obtained following a fast kernel PLS calculation. Details of the

method can be found in literature [121]. Having the regression coefficients available,

the mean centered final prediction (ŷt) in on-line application is obtained as,

ŷt = bXt

where Xt is the mean centered vector of input variables at time t.

Results of the rPLS algorithm will be compared to the fixed PLS algorithm in the

Results Section. One could observe that using the updating rule in Equation 6.12,

the model is able to adapt to new operating modes and conditions and the recursive

method shows a superior performance in comparison to the fixed method. Outlier

removal based on the 3σ rule and data smoothing based on a moving average filter

are used in both training and test steps for the soft sensor inputs.

6.4 Adaptive Sensitivity Levels for Critical Veloc-

ity Estimation

The main idea of the work presented in this section is to adaptively change the

sensitivity of the critical velocity estimations according to the operating mode of

the process. Consequently, more sensitive predictions will be generated when the

process is operating more abnormally and the prediction sensitivity decreases when

the process is in normal operating condition.

In order to avoid false alarms and provide more sensitive predictions, it is necessary

to adaptively select the K(t) value in Equation 6.16.

QS(t) = QC(t) +K(t)× σQC (6.16)

where QS(t) is the sensitive estimation of QC(t) (critical flow-rate) based on the

current operating mode of the real flow-rate at time t (Ft), and σQC is the standard

deviation of the critical flow-rate estimation error from the historical data obtained

from a Monte Carlo simulation. Note that, having the diameter of the line, velocity

can be converted to flow-rate.

The lower and upper bounds of the K value (KL/U) in Equation 6.16 can be

obtained by solving the optimization problem in Equation 6.17 based on different

sensitivity values, e.g., use αL = 0.7 to find KL and αU = 1 to find KU , etc.

KL/U = argminK‖QS − αL/UFNormal‖ (6.17)
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where FNormal is the vector of normal flow rates of the process from historical data.

The historical data for the underflow flow rate can be divided to three operating

modes (I ′ts), i.e., mode 1 (It = 1) is low flow rate, mode 2 (It = 2) is average flow rate

and mode 3 (It = 3) is high flow rate. In this work, mode 1 (near sand deposition

and plugging) and mode 3 (impact on the bitumen recovery) are considered as upset

operations. In order to avoid such regions, the K(t) value will be adaptively selected

according to Equation 6.18 as follows:

K(t)−KL

KU −KL

= 1− P (It = 2|Ft, ..., F0) = P (Upset Modes) (6.18)

where Ft, ..., F0 are the underflow flow-rate observations from time 0 to t, and P (Upset Modes)

is the probability of the upset operating modes to occur.

Adaptive selection of the K value according to Equation 6.18 will increase the

sensitivity of the estimations in the upset operating modes, while reducing the sensi-

tivity in the normal modes. Using this adaptive technique, the number of false alarms

will be greatly reduced. See Figures 6.8 and 6.9 for more information.

6.4.1 Flow rate Mode Diagnosis

In this section, the problem of calculating the probability of the current operating

mode given flow rate observations (P (It|Ft, ..., F0)) is addressed. It is assumed that

operating modes of the flow rate can transit to each other following a Markov chain

model with mean values, variances, state transition probabilities and initial state dis-

tributions given as µi, σ
2
i , αij and πi where i and j (1 ≤ i, j ≤M = 3) are indicators

of the operating mode (It = i, j, 1 ≤ i, j ≤ M). The training procedure to obtain

these parameters will be explained in the next section.

In order to calculate P (It|Ft, ..., F0), Hamilton’s filtering strategy is used to infer

the operating mode of the process for the on line diagnosis application [46]. Proba-

bility of the hidden operating mode given flow rate observations is calculated as in

Equation 6.19.

P (It|Ft, ..., F0) =
M∑

It−1=1

P (It, It−1|Ft, ..., F0) (6.19)

where M is the number of available operating modes (M = 3 in Equation (6.18) for

this study).

The following expression provides the joint probability of the states It, It−1 given

the information up to time t− 1:

P (It, It−1|Ft−1, ..., F0) = P (It|It−1)P (It−1|Ft−1, ..., F0) (6.20)
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P (It−1|Ft−1, , F0) is the output of the filter at the previous sample time starting

from the initial state distribution of the Markov chain model (π), and P (It|It−1) is

the transition probability (αij) obtained from the Markov assumption of the model.

The joint probability in (6.20) is updated when having a new observation at time t,

i.e.,

P (It, It−1|Ft, ..., F0) =
P (Ft, It, It−1|Ft−1, ..., F0)

P (Ft|Ft−1, ..., F0)
(6.21)

where

P (Ft, It, It−1|Ft−1, ..., F0) = P (Ft|It, It−1, Ft−1, ..., F0)× P (It, It−1|Ft−1, ..., F0).

P (It, It−1|Ft−1, ..., F0) is obtained previously from Equation 6.20 and P (Ft|It, It−1, Ft−1, ..., F0) =

P (Ft|It) is calculated using the Gaussian distribution assumption ((Ft|It = i;µi, σi) ∼
N(µi, σ

2
i ), i = 1, ...,M). Finally, the denominator in Equation 6.21 is determined as

follows:

P (Ft|Ft−1, ..., F0) =
M∑
It=1

M∑
It−1=1

P (Ft, It, It−1|Ft−1, ..., F0) (6.22)

6.4.2 HMM Training

In this section, the procedure of training the HMM to model the transitions of the

flow-rate in the presence of missing observations is introduced. Due to the existence

of the unknown operating modes and missing observations, the Expectation Maxi-

mization (EM) algorithm provides appropriate solutions to this problem. The EM

algorithm solves the maximum likelihood estimation problem by iteratively switching

between the Expectation (E) and Maximization (M) steps [28].

Hamilton is one of the forerunners in applications of HMMs to infer the current

regime of observations [44]. Other researchers have performed similar studies in this

area ([47], [49] and [55]). Our recent studies provide a time varying solution to such

problems in the presence of both discrete and continuous observations ([45] and [71]).

There has also been a great effort in handling the problem of missing observations

recently. Missing data usually occurs due to sensor malfunctions, network connection

interruptions and measurement errors [59]. As explained in chapter 3, three types of

missing data have been introduced in literature [60]. In the case of missing at random

(MAR), the probability of missingness might only depend on the observed section of

the data. If the data is missed completely at random (MCAR), the distribution of

missingness will not depend on the observed, nor the missing data sets. Finally, in

the case of missing not at random (MNAR), probability of missingness will depend

on the missing data set. In a very recent article, a novel approach is proposed for

adaptive identification of nonlinear processes in the presence of missing observations
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[57]. Missing data treatment is based on the MCAR assumption in this article.

Following the proposed strategy of this section, means and variances of the differ-

ent operating modes of the flow-rate (µi’s and σ2
i ’s), the transition probabilities (αij’s)

and the initial state distribution of the Markov chain model (π), in the presence of

missing observations, will be obtained. These parameters have been introduced in

the previous section, and will be indicated by Θ = {µi, σi, αi,j, πi}, 1 ≤ i, j ≤ M

during the parameter estimation.

As previously stated, in the historical data of the flow-rate, some observations

appear as “NaN” or “Error”. In the training data set, these observations are consid-

ered as MCAR missing values. Consequently, the complete data set F = {F1, ..., FN}
will be divided to the observed FO = {Ft1 , ..., Ftα}, and missing FM = {Fm1 , ..., Fmβ}
sections. Obviously, the union of FO and FM is F . Different hidden operating modes

of the flow-rate, for example, low, medium and high, at different time instants, are

presented by I = {I1, ..., IN}. The observed and missing or hidden data sets are

presented by Cobs = FO and Cmis = {I, FM} respectively.

Flow-rate observations are assumed to follow a normal distribution as follows:

(Ft|It = i;µi, σi) ∼ N(µi, σ
2
i ), i = 1, ...,M (6.23)

where all the parameters in Equation 6.23 have been defined previously.

In order to model flow-rate transitions between different operating modes, the

observations are considered to follow a Markov chain model with parameters given

as,

αij = P (It = j|It−1 = i), i, j = 1, ...,M and t = 1, ..., N (6.24)

πi = P (I1 = i), i = 1, ...,M

In the Expectation (E) step of the EM algorithm the conditional expectation of

complete data log likelihood function is calculated, that is,

Q(Θ|Θold) = ECmis|(Θold,Cobs){logP (Cobs, Cmis|Θ)} (6.25)

where the superscript old refers to the parameters in the previous iteration of the EM

algorithm, and Θ is the set of unknown parameters to be obtained in the maximization

step.

In the Maximization (M) step, the set of parameters that maximize the Q-function

are calculated:

Θnew = argmaxΘQ(Θ|Θold) (6.26)

Equation 6.25 can be formulated for the problem of this chapter as follows,

Q(Θ|Θold) = EI,FM |(Θold,FO){logP (F1:N , I1:N |Θ)} (6.27)
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According to the chain rule, P (F1:N , I1:N |Θ) in Equation 6.27 can be written as,

P (F1:N , I1:N |Θ) = P (F1:N |I1:N ,Θ)× P (I1:N |Θ) (6.28)

where different terms of Equation 6.28 can be separately simplified as follows:

P (F1:N |I1:N ,Θ) =
N∏
t=1

P (Ft|Ft−1, ..., F1, I1:N ,Θ) =
N∏
t=1

P (Ft|It,Θ) (6.29)

P (I1:N |Θ) =
N∏
t=1

P (It|It−1, ..., I1,Θ) =
N∏
t=1

P (It|It−1,Θ) = P (I1)
N∏
t=2

P (It|It−1,Θ)

(6.30)

where Equation 6.29 is obtained based on the Gaussian assumption in Equation 6.23,

and Equation 6.30 is obtained based on the Markov property of the model.

From Equations 6.27 to 6.30, and using the properties of log operator, the Q-

function can be written as

Q(Θ|Θold) = EI,FM |(Θold,FO){logP (I1)}+ EI,FM |(Θold,FO){
N∑
t=1

logP (Ft|It,Θ)} (6.31)

+EI,FM |(Θold,FO){
N∑
t=2

logP (It|It−1,Θ)}

In the first step, expected value of the expression in (6.31) is calculated with

respect to the hidden operating mode I, that is,

Q(Θ|Θold) = EFM |(Θold,FO,I){
M∑
i=1

P (I1 = i|Θold, FO)logπi} (6.32)

+EFM |(Θold,FO,I){
M∑
i=1

N∑
t=1

P (It = i|Θold, FO)× logP (Ft|It = i, µi, σi)}

+EFM |(Θold,FO,I){
M∑
i=1

M∑
j=1

N∑
t=2

P (It = j, It−1 = i|Θold, FO)× logαij}

Next, the expected value is calculated with respect to the missing observations

(FM) as follows:

Q(Θ|Θold) =
M∑
i=1

P (I1 = i|Θold, FO)logπi (6.33)

+
M∑
i=1

tα∑
t=t1

P (It = i|Θold, FO)× logP (Ft|It = i, µi, σi)
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+
M∑
i=1

mβ∑
t=m1

P (It = i|Θold, FO)×
∫
P (Ft|Θold, It = i)× logP (Ft|It = i, µi, σi)dFt

+
M∑
i=1

M∑
j=1

N∑
t=2

P (It = j, It−1 = i|Θold, FO)× logαij

Calculating the integral term in (6.33), it is not difficult to show that the final

expression of the Q-function is as follows:

Q(Θ|Θold) =
M∑
i=1

P (I1 = i|Θold, FO)logπi (6.34)

+
M∑
i=1

tα∑
t=t1

P (It = i|Θold, FO)× logP (Ft|It = i, µi, σi)

+
M∑
i=1

mβ∑
t=m1

P (It = i|Θold, FO)× (−1

2
log(2πσ2

i )−
1

2σ2
i

((σoldi )2 + (µi − µoldi )2))

+
M∑
i=1

M∑
j=1

N∑
t=2

P (It = j, It−1 = i|Θold, FO)× logαij

In the M-step, the update formulas are obtained by taking the derivative of the

Q-function with respect to unknown parameters, and then, setting them zero. Con-

sequently, the mean value and variance will be updated as follows:

µnewi =

∑tα
t=t1

FtP (It = i|Θold, Cobs)∑N
t=1 P (It = i|Θold, Cobs)

(6.35)

+

∑mβ
t=m1

µoldi P (It = i|Θold, Cobs)∑N
t=1 P (It = i|Θold, Cobs)

(σnewi )2 =

∑tα
t=t1

(Ft − µnewi )2P (It = i|Θold, Cobs)∑N
t=1 P (It = i|Θold, Cobs)

(6.36)

+

∑mβ
t=m1

((σoldi )2 + (µnewi − µoldi )2)P (It = i|Θold, Cobs)∑N
t=1 P (It = i|Θold, Cobs)

The optimization problems to find πi and αij are constrained by
∑M

i=1 πi = 1 and∑M
j=1 αij = 1 respectively. Therefore, the Lagrange multiplier should be introduced,

and the final parameter estimation results are as follows:

αnewij =

∑N
t=2 P (It = j, It−1 = i|θold, Cobs)∑M

j=1

∑N
t=2 P (It = j, It−1 = i|θold, Cobs)

(6.37)

πnewi = P (I1 = i|θold, Cobs)
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Figure 6.4: Middlings density (
g

cm3
) soft sensor estimations verses lab data (scatter

plot)

The procedure to find posterior distributions P (It = j, It−1 = i|θold, Cobs) and

P (It = i|Θold, Cobs) in the presence of missing observations is available in Chapter 3.

The training algorithm is iteratively repeated until a certain convergence criterion is

satisfied.

6.5 Results of the Proposed Method

In all the industrial data of this section, the Y axis is masked for proprietary consid-

eration.

6.5.1 Soft Sensor Performance

In this section, results of the middlings density soft sensor are presented. They are

compared to the soft sensor with fixed parameters (rPLS versus PLS).

Figures 6.4 and 6.5 illustrate the results of the soft sensor predictions in 2012

historical data (scatter plot and time trend). From these figures, one could observe

that the soft sensor is able to track the trend of the lab data well.

Comparison of the results between the fixed and recursive soft sensors is presented

in Table 6.1. The model performance is evaluated by Root Mean Square Error of
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Figure 6.5: Middlings density (
g

cm3
) soft sensor estimations verses lab data (time

trend plot)

Prediction (RMSEP) and the correlation coefficient R.

Table 6.1: Comparison between the performance of the fixed and recursive PLS soft
sensors

Soft Sensor PLS rPLS
RMSEP 0.2119 0.1054

R 0.4273 0.6077

The current results for the rPLS soft sensor satisfy the need to have a parallel

measurement for the middlings density on line analyzer. This parallel measurement

will help to avoid false alarms and sudden spikes in the predictions of the critical

velocity due to unavailability of the on line analyzer as explained in Section 6.3.

Figure 6.6 presents a case of the on line analyzer unavailability. Figure 6.7 shows

how the results have been improved after having a parallel measurement from the

soft sensor.

6.5.2 Critical Velocity Estimation

In this section, results of both on-line testing and off-line verification for operating

mode diagnosis and estimation of the critical velocity are presented. Since it is not
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Figure 6.6: Sudden spike in the prediction of the critical minimum velocity due to
the on-line analyzer unavailability

Figure 6.7: Modified critical velocity estimation results in the case of analyzer un-
availability
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Figure 6.8: On-line estimation of the critical velocity without adaptive sensitivity
levels

possible to present the results for all the historical data, only some special cases which

contain a combination of normal and upset operating regions are illustrated.

Examples of the critical velocity estimation in the historical data of the PSV,

without and with adaptive sensitivity levels, are presented in Figures 6.8 and 6.9

respectively. In these figures real (blue line) and the critical (red line) flow rates are

compared. One could observe that by applying time varying sensitivity levels the

number false alarms in the normal process operation are greatly reduced. For the

case of abnormal operation, estimations are provided with a high sensitivity.

A case of combination of normal and upset regions which has occurred in 2013 is

presented in Figure 6.10.

Figure 6.10 presents two cases of upset operations which have occurred in the

historical data. In both cases, the operator has increased the flow rate to avoid sand

deposition in the underflow. However, it can be observed that in the first abnormal

operation, the flow-rate has been increased very conservatively. This might introduce

bitumen loss in the process. Increasing velocities that are close to the critical velocity

are usually sufficient to avoid near sanding regions.

Operating modes of the flow rate to provide critical velocity estimations with

adaptive sensitivities in Figure 6.10 are presented in Figure 6.11.

In Figure 6.11, different operating modes of the flow-rate based on the filtering

algorithm introduced in Section 6.4.1 are presented. As previously mentioned in Sec-
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Figure 6.9: On-line estimation of the critical velocity after applying adaptive sensi-
tivity levels

Figure 6.10: A case of upset operation in 2013 data-set
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Figure 6.11: Flow-rate operating modes for the data in Figure 6.10
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Figure 6.12: Results of on-line testing of the algorithm in 2014 data set

tion 6.4, adaptive modification of estimation sensitivity based on the operating mode

will greatly reduce the number of false alarms.

Figure 6.12 illustrates the results of the on-line testing of the algorithm in 2014.

During this period underflow flow rate was high (almost twice as much as the previous

historical data) due to changes in process condition. Therefore, critical velocity esti-

mations are generated with the highest sensitivity level, which is, the real estimation

plus three standard deviations of the estimation error. The dashed line represents the

process status where zero indicates process shut down and one indicates process in op-

eration. It is observed that sudden changes in process status are usually accompanied

by spikes in the estimation of the critical velocity.

The alarm report for time intervals where the critical flow rate crosses the real

flow rate shows that a number of alarms have been generated in such periods. At the

beginning, some alarms occur in the underflow density. Next, alarms appear in the

underflow pump current, indicating that there are some obstacles in moving the solid

bed.

The illustrated results in this section provide a potential of the proposed method

for monitoring of the PSV underflow. Since on line estimation of the critical velocity is

a combination of several influential variables, it will provide a summary of the status

of the effective variables on line, and assist on site operators to maintain normal

operating conditions.
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6.6 PSV Operating Mode Diagnosis Based on Time

Varying HMMs

In this section, the proposed method of Chapter 3, i.e., operating mode diagnosis

based on HMMs with time varying transition probabilities is applied on the PSV

unit.

As previously stated, the critical minimum velocity is a function of different vari-

ables including carrier fluid’s density, carrier fluid’s viscosity, coarse particle volumet-

ric fraction, coarse particle diameter, etc. The middlings stream is a good indicator

for the carrier fluid properties. On the other hand, the tailings stream, which usually

contains coarse particles, is a good indicator for the depositing material’s properties.

Thus, properties of these two layers play the key roles in sanding detection.

Density of the middlings and underflow streams can be measured through on-line

analyzers. In the previous sections of this chapter, it is observed that all the other

necessary variables which can impact the critical minimum velocity are directly, or

indirectly, functions of these two variables. Consequently, the densities might be

directly observed to infer the operating condition of the process and avoid sanding

conditions. In this section, these two variables are selected as the sanding indicators.

Similar to Section 6.4, the tailings flow-rate, which can provide some pre-indication

to the operating condition of the proces, is selected as the scheduling variable.

When the process approaches an upset operating condition, the underflow den-

sity starts to gradually increase. Since the tailings flow-rate is in closed loop with

underflow density, when the underflow density exceeds some high limit, the pump

RPM starts to increase to remove the deposited sand and return the operation to its

normal condition. This causes a sudden decrease in the middlings and underflow den-

sities. If in the early stage of such circumstances the operators can be notified about

the operating mode of the process, they can add water through the cone flush water

(Figure 6.1) to assist the suspension of solid deposits and avoid complete sanding of

the line. An example of an upset operating region which has occurred in the past is

presented in Figure 6.13.

From Figure 6.13, one could observe that the abnormal (intermediate) and begin-

ning of the upset operating conditions, which are denoted by a red circle, are close

to each other and far from the normal operation of the process. Existence of such

asymmetric behavior provides a good example to show the merit of using time varying

over fixed transition probabilities.

In this industrial case study, 8 cases of upset operating conditions similar to Fig-
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Figure 6.13: A case of upset operating condition in the primary separation vessel
from historical data

ure 6.13, which have occurred during a year in the historical data, are selected for

training purposes. A case of an upset operating region which has occurred in a month

of a different year is selected as the test data-set. During the on-line measurement

process, some observations appear as ”Not a Number” or ”NaN” value in the server.

These observations are treated as the ”missing observations” in this case study.

Following the proposed estimation method of Chapter 3, the parameters are ob-

tained as in Table 6.2.

Table 6.2: Estimated parameters for the industrial case study using the EM algorithm

π0 = [0.3333, 0.3333, 0.3333]
γ11 = 0.9934, γ21 = 0.1987, γ22 = 0.9887, γ33 = 0.9929,

µ1 = [1.4483 1.4965], µ2 = [1.2757 1.5246], µ3 = [1.1490 1.4227]

Σ1 =

(
0.0022 0.0003
0.0003 0.0013

)
Σ2 =

(
0.0041 −0.0018
−0.0018 0.0032

)
Σ3 =

(
0.0043 0.0014
0.0014 0.0085

)
σH1 = 4.681× 103, σH2 = 1.257× 103, σH3 = 3.7051× 104

The validation data-set is presented in Figure 6.14. The upset behavior occurs at

the time period around 12000 where the densities suddenly start to decrease due to
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the reaction of the pump to an abnormal event (red oval). Results of the operating

mode recognition based on the proposed method in Chapter 3 using Hamilton’s fil-

tering algorithm are presented in Figure 6.15.

Figure 6.14: Validation data-set for the industrial case study
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Figure 6.15: Operating modes of the process for the industrial case study based on
the proposed method of Chapter 3

In order to compare the results with the case of conventional HMMs, the same
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training and test data-sets are utilized. However, only the observed part is used since

conventional HMMs cannot deal with missing observations. Results of the operating

mode diagnosis based on conventional HMMs are presented in Figure 6.16.
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Figure 6.16: Operating modes of the process for the industrial case study based on
conventional HMMs

Again, it is observed from Figure 6.16 that a number of false alarms appear in

the predictions and the abnormal and faulty modes are not clearly diagnosed from

each other when using conventional HMMs. The better performance of the proposed

method of Chapter 3 (compare the results in Figures 6.15 and 6.16) can be understood

from the behavior of the scheduling variable (Flow-rate) in Figure 6.14. One could

see that in the faulty mode, the scheduling variable suddenly increases and helps

in operating condition diagnosis. However, in the normal and abnormal operations,

the scheduling variable correctly affects the transition probabilities to remain in the

normal and abnormal modes and avoid false alarms.

6.7 PSV Monitoring Based on Symbolic Episode

Representation and HMMs

In this section, application of the proposed method in Chapter 5, i.e., a combination of

HMMs and symbolic episode representation based on a fixed window of observations,

is tested on the tailings line of the primary separation vessel (PSV).
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6.7.1 Upset and Normal Operating Conditions and Variable
Selection

As previously mentioned, among all the variables which can affect the critical min-

imum velocity estimation, the middlings and underflow densities can be measured

on-line. The historical data shows that the middlings interface level is correlated

with the middlings density in upset operating conditions. Furthermore, it provides

faster responses in comparison to the middlings density and more clear patterns.

Therefore, middlings interface level can be used as a potential sanding indicator.

Underflow density also shows an obvious fast increasing trend in upset regions. An

example of an upset region in May 2011 is depicted in Figure 6.17. The industrial

data are normalized due to proprietary reason.
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Figure 6.17: Underflow density and the interface level of the PSV unit in an upset
region

As illustrated in Figure 6.17, in upset regions, there is a sudden jump in the

interface level and an increase in the underflow density. This phenomenon can be

understood from the process behavior. When solid particles accumulate in the un-

derflow stream, the underflow density increases and results in a higher level of the

middlings. Finally, underflow density and the middlings interface level are selected

as two potential sanding indicators.

6.7.2 Training Data for the Normal and Upset Operations

Five cases of normal operating regions followed by an upset region in the historical

data of 2011–2012 have been used to train HMMs for the normal and upset operating

conditions. In the case of having an upset region, the system can return to the normal
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operation if the operator makes an appropriate fast reaction. But in the case of having

a complete sanding the system must be shut down for repair and sand removal which

will cause a lot of physical effort and financial loss. An example of an upset operation

in the tailings line which ended up to a complete sanding in June 2011 is presented

in Figure 6.18. The upset region between sample times 100 and 200 has been passed

by increasing the tailings flow rate. However, the sanding region after sample time

350 has ended up to complete shut-down of the process.
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Figure 6.18: Interface level and underflow density - combination of normal and upset
operating regions occurred in July 2011

6.7.3 Adaptive Fuzzification and Decision Making

The methodology proposed in Chapter 5 is tested on the historical data of the pri-

mary separation vessel.

A total number of 652 discrete observations are used to train the normal and upset

hidden Markov models. It includes 320 observations for normal and 332 observations

for upset regions corresponding to five normal/ upset operating conditions. In each

data set two third of the data is used for training purposes and one third is used for

validation.

As explained in Section 5.6, the number of states in each HMM is an important

design issue. Small number of states allows a faster training but incomplete classifi-

cation. Large number of states need more computational time and might cause over

fitting problems. The number of hidden states is usually selected as the average num-

ber of symbols in the sequence of the training set [20]. In this problem, considering

6 and 8 hidden states for the normal and upset regions respectively will provide an
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appropriate performance.

A combination of normal and upset operating regions occurred in July 2011 is

presented in Figure 6.19.
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Figure 6.19: Interface level and underflow density - combination of normal and upset
operating regions occurred in July 2011.

Wavelet analysis is used to remove the noise from signals. The level of noise

removal is very important when using wavelets. Our experience in the historical data

of the underflow density and interface level of the PSV unit shows that removing the

noise in two levels is sufficient to capture the main information of the signals.

Small and large variance (normal and abnormal) states for the magnitudes and

durations of the interface level and underflow density signals and the adaptive fuzzy

membership functions are presented in Figures 6.20 to 6.23. The mean and variance

of the membership functions vary according to Equation 5.20. Means and variances

of the different modes obtained from the EM algorithm are presented in Tables 6.3

and 6.4.

Table 6.3: Parameters of the different modes from the historical data (interface level)

µ
(1)
m = 1.4391, µ

(1)
d = 3.5337, µ

(2)
m = 11.0559, µ

(2)
d = 6.7118

σ
(1)
m = 1.8066, σ

(1)
d = 6.7118, σ

(2)
m = 13.6903, σ

(2)
d = 7.2399

A =

(
0.9776 0.0224
0.2627 0.7373

)

Finally, Based on the durations and magnitudes of the episodes obtained from

maximum, minimum and inflection points and adaptive fuzzification, the continuous

signals in Figure 6.19 are converted to discrete observation sequences from 1 to 36,
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Figure 6.20: Different states for the durations and magnitudes in the interface level
signal

Table 6.4: Parameters of the different modes from the historical data (underflow
density)

µ
(1)
m = 0.4481, µ

(1)
d = 3.4534, µ

(2)
m = 2.33572, µ

(2)
d = 7.8026

σ
(1)
m = 0.5531, σ

(1)
d = 1.9811, σ

(2)
m = 2.9804, σ

(2)
d = 4.9794

A =

(
0.9855 0.0145
0.2052 0.7948

)

where each of these numbers corresponds to a certain type of triangle. Results are

presented in Figures 6.24 and 6.25.

The upset regions are specified with two direct red lines. As it is clear from the

interface level, when the system enters the upset region, more large type triangles

(33-36, 23-27, 14-18 and 5-9) are produced. The underflow density also shows some

changes in the pattern at sample times around 150 and 220 which correspond to the

upset regions in Figure 6.19. Moreover, due to the normalization of the underflow

density in the previous section, almost the same number of triangular sequences is

generated from both signals. However, in a real time application, it is not necessary

to have the same number of discrete observations at each time step, e.g., a signal

might have more fluctuations than the other signal. The final decision will always be
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Figure 6.21: Different states for the durations and magnitudes in the underflow den-
sity signal

Figure 6.22: Adaptive fuzzy membership functions for the interface level signal

made based on the most recent observations of the window.

Simulation results of decision making based on a window size (NW ) of 15 and 7
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Figure 6.23: Adaptive fuzzy membership functions for the underflow density signal

Figure 6.24: Discretized observations of the interface level using appropriate fuzzy
rules and membership functions

recent observations are presented in Figures 6.26 and 6.27.

Results show that the system starts from a normal operation, then switches to an

upset operation and finally returns to the normal operation again. Increase in the

probability of the normal mode at the upset region shows that the normal and upset

regions have similar patterns at some periods. In time steps around 130, suddenly
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Figure 6.25: Discretized observations of the underflow density using appropriate fuzzy
rules and membership functions
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Figure 6.26: Overall classification of the process for different window sizes - NW = 15

both probabilities become zero, which is an indicator for the existence of an unknown

pattern in the data.

Decreasing the window size will result in a classification based on more recent

observations in the window. However, the number of false alarms might increase

accordingly. Therefore, the window size should be selected for different processes

according to the importance of the old observations in the window. The problem

of optimal window size selection for the case of fixed fuzzy membership functions is

addressed in detail in Section 5.7 [95]. Finding the optimal window of observations for
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Figure 6.27: Overall classification of the process for different window sizes - NW = 7

the case of adaptive fuzzy membership functions remains as the future study in this

field. In this section, NW is tentatively selected as an average which is small enough

to show the current operating condition and large enough to avoid unnecessary alarms

for fault detection purposes.

6.8 Conclusion

In Sections 6.1 to 6.5 of this chapter, a novel procedure for on-line estimation of

the critical minimum velocity of of slurry flow is introduced. The method is applied

on the PSV underflow. A soft sensor is developed to correct the measurements from

the on-line analyzer for the key process variable. In order to reduce false alarms,

an adaptive scheme based on HMMs is proposed to determine the sensitivity of the

critical velocity estimations. A general method for missing data treatment during

HMM training is proposed.

The proposed method is tested both on-line and on the historical data of the

PSV unit, and shows acceptable performance in detection of operating modes of the

process. In upset operating conditions, the estimated value of the critical velocity

increases. A caution alarm is generated when the value of the critical velocity is

higher than the current flow rate. Increasing the underflow flow rate can help to

return the process to the normal operating condition.

In Sections 6.6 and 6.7, the proposed process monitoring methods of Chapters 3

and 5 have been tested on the historical data of PSV respectively. For each method,

the appropriate variable selection strategy is explained. Although both methods are

successful in recognition of certain types of patterns, a general fault diagnosis strategy
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based on data driven methods may not be possible. This is due to the wide variety

of patterns that might occur in upset regions, i.e., one should develop numerous

models for various patterns if relying only on data driven methods. Furthermore,

each data driven framework is appropriate to extract a certain type of pattern, e.g.,

the proposed method of Chapter 3 is is able to extract continuous changes in means

and variances of key variables, while the proposed method of Chapter 5 is searching

for sudden spikes and shifts.

On the other hand, when using data driven methods in conjunction with first

principle knowledge, the fundamental underlying relations of variables will be used

for prediction purposes, while the predictions are modified on-line based on historical

data trends. Accordingly, this combination shows a more appropriate performance.
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Chapter 7

Concluding Remarks and Future
Directions

In this chapter, the conclusions drawn from various chapters of the thesis are sum-

marized. Furthermore, connection of various chapters to the core idea of the thesis is

explained.

7.1 Concluding Remarks

The main focus of this thesis is Fault Detection and Isolation (FDI) for chemical

processes based on HMMs. Some of the developed methods have been applied on the

underflow line of the PSV unit of an oil sand extraction process which has a concern

of sand deposition and pipeline plugging.

In Chapter 2 the mathematical fundamentals of the thesis are explained. Due to

the existence of various operating regimes and missing variables, the EM algorithm is

used to train HMMs. On-line mode diagnosis is based on either the forward-backward

algorithm or Hamilton’s filtering strategy.

To apply HMMs in industrial applications, three main theoretical extensions have

been proposed:

• The first theoretical contribution, as introduced in Chapter 3, is the devel-

opment of time varying HMMs with a specific Transition Probability Matrix

(TPM) structure in presence of missing observations. Consideration of the

TPM elements as a function of an auxiliary scheduling variable provides more

flexibility in hidden Markov modeling. In the case of having operating modes

with a temporal behavior far from the majority of modes, the proposed method

assists to more precisely classify various data into clusters. Furthermore, the im-

posed conditions on the TPM structure reduce the possibility of sudden jumps
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between the modes which are far from each other while decreasing the num-

ber of parameters to be estimated. Accordingly, the computational cost will

be significantly reduced when dealing with processes with a large number of

operating modes. Also, the method is able to treat the missing information in

the historical data set. As the result, instead of solving a complex optimization

problem, the missing variables are integrated out in the iterations of the EM

algorithm, and the optimization problem becomes analytically tractable. The

proposed method of Chapter 3 has been tested on various examples including

the historical data of the PSV unit, and the advantages of the proposed method

over conventional techniques are explained.

• The second contribution, as presented in Chapter 4, is to provide a framework

to deal with negative effects of outliers in time varying HMMs. This framework

makes the model adaptive with respect to both data quality and process oper-

ating mode. It is usually expected to have lower quality data when operating

near faulty modes. Therefore, according to the data quality in each mode, the

proposed method assigns an appropriate scholar weight for the covariance ma-

trix to downweight the negative effect of outliers. The introduced scalar weight

follows a gamma distribution as a function of the degree of freedom (ν). By

integrating out this scalar weight from the joint density function of observa-

tions and the weight, the general form of the density function of observations

in each operating mode, which is a Student t distribution, is obtained. The

Student t distribution has heavier tails in comparison to the Gaussian version.

The smaller the assigned degree of freedom (ν), the heavier the tails of the t

distribution. Therefore, the percentage of outliers will have a reverse correlation

with the assigned degree of freedom, and effect of outliers will be automatically

considered during parameter estimation.

• The third contribution, as demonstrated in Chapter 5, is an adaptive FDI strat-

egy based on the combination of Qualitative Trend Analysis (QTA) and HMMs.

First, wavelets are applied to remove the high frequency noise of the signals.

Next, based on appropriate fuzzy membership functions, the continuous time

signals are converted to some triangular episodes. The fuzzification step has a

hierarchical structure, in which, based on the durations and magnitudes of the

triangles, and fixed fuzzy membership functions in various modes, time vary-

ing membership functions are generated to have more accurate from continuous

to discrete mappings. The main advantage of triangular representation is to

reduce the resolutions of observations, i.e., to focus on main features rather
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than details. Furthermore, the set of discrete observations are appropriate for

classification systems such as HMMs. Having the set of discrete observations

available, HMMs are trained for normal and abnormal operations of the process.

In an on-line application, the decision on the current regime of the process is

made based on a window of NW recent observations and the forward-backward

algorithm. A search algorithm to find the optimal window of observations is

also proposed. Similar to Chapter 3, the proposed method is tested on various

examples including the historical data of the PSV unit. The method shows a

superior performance over others in all the examples.

Chapters 3, 4 and 5 are in parallel in the sense that they all provide various FDI

methods for chemical processes based on HMMs.

In Chapter 6, first, the developed methods in various chapters are applied on the

PSV unit. Our experience shows that data driven frameworks are not sufficient for

a successful FDI in the PSV. This is due to the existence of numerous patterns and

operating modes in the operation of the PSV unit.

Therefore, data driven methods are combined with some first-principle knowledge

of the process to provide a general FDI strategy. First, the appropriate semi-empirical

equation is selected to estimate the required critical velocity to constantly move the

solid bed inside slurry pipelines and avoid pipeline plugging. Since one of the key

variables, the carrier fluid density, has some measurement inaccuracies, a soft sensor

based on the recursive Partial Least Squares (rPLS) method is developed to provide a

parallel measurement for this variable. Next, the estimated velocity is modified based

on the operating mode of the underflow flow rate. The idea is to infer the mode of

the underflow flow rate using HMM classification, and then, decide on the estimation

error of the predicted velocity based on the estimated operating mode. It is shown

that such consideration significantly reduces the number of false alarms. This strat-

egy has been tested in on line environment and illustrated successful results.

To summarize, the main focus of this thesis is the development of HMM based

techniques for the purpose of fault detection and isolation. HMMs, by their nature,

provide an appropriate framework to extract temporal information related to pro-

cess transitions between various modes. Moreover, consideration of different emission

density functions at various modes of HMMs assist to extract various types of infor-

mation from the data, e.g., the Student t distribution treats the negative effect of low

quality data, or discrete probability mass functions assist to extract the key features

and some certain type of discrete information from the data. For the industrial case

study of this thesis, it is observed that a combination of data driven approaches with
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the first principle knowledge provides the most accurate process monitoring results.

This method is used in the online environment consequently.

7.2 Future Directions

7.2.1 Number of Operating Modes

The number of operating modes or local models is usually assumed to be known a-

priori in multiple model identification problems. The main disadvantage of such an

assumption is the overfitting issue in complex problems, i.e., modeling the random

noise instead the true underlying correlation [85].

One approach to address such a problem is to use Variational Bayesian (VB)

methods. Having appropriate priors, VB marginalizes the likelihood function over

model parameters. The model can then be maximized with respect to model size

providing an optimal structure for the process [85]. In such an approach, no prior

is considered for the model size. Instead, the variational inference procedure will be

run for various model sizes, and among them, the model with the largest variational

free energy (an approximation of the log marginal likelihood) will be selected. This

approach is computationally less expensive in comparison to the EM algorithm which

usually uses cross-validation techniques for model size selection [85].

Although VB has been previously used in Statistics literature to find the optimal

number of components in a Gaussian mixture model or some particular types of

HMMs ([79, 85]), its application in a general HMM based fault diagnosis, e.g., based

on discrete observations, is still sparse, and can be considered as a new direction in

this area.

7.2.2 Uncertain/ Discrete Scheduling Variable

As an indicator of the process operating mode, the scheduling variable plays a crit-

ical role in local model selection, and an uncertain scheduling variable can cause

many modeling inaccuracies. To address this issue, Kalman smoother, or Sequential

Monte-Carlo (SMC) method can be used to consider various dynamics of the schedul-

ing variable [125].

Other than this, it is possible to consider appropriate priors for parameters of the

scheduling variable, and solve the problem under the VB framework. Such a con-

sideration will integrate out the effect of noise while estimating process parameters.

Furthermore, it is possible to use particle filters when dealing with non-Gaussian dis-

tributions of the scheduling variable [57].
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In addition, a practical approach to reduce the scheduling variable uncertainty is

to, first, remove the noise using appropriate filters, and then, generate the schedul-

ing variable in the form of some discrete symbols. This will greatly reduce both

the noise and resolution of the scheduling variable, and satisfy the need to have an

overall indication to the true operating mode. One approach to perform such resolu-

tion reduction is to use the triangular representation method introduced in Chapter 5.

7.2.3 Latent Variable Models in Conjunction with HMMs

In two very recent studies, multiple Principal Component Analyzers (PCA) have been

used for the purpose of fault classification [21, 22]. Latent variable models such as

PCA are appropriate to extract static information from high dimensional data sets.

Therefore, having them in conjunction with HMMs will provide a condition to further

obtain the temporal information.

Similarly, HMMs can be used in conjunction with Partial Least Squares (PLS),

and then be applied in soft sensor or process monitoring applications. Having such

consideration, the temporal process information will be further considered when de-

veloping a multiple PLS model.

7.2.4 Conditional Random Fields

Logistic regression models are appropriate classification tools to predict possible cat-

egories of a dependent variable given a set of independent variables. Therefore, they

have the capability to extract the static information in the data [126]. The general

form of a multinomial logistic regression model is presented in Equation 7.1.

ln
πj(xi)

πJ(xi)
= βTj xi, j = 1, ..., J − 1 (7.1)

where in this equation xi = (xi0, ..., xip)
T denotes the explanatory variables for subject

1 ≤ i ≤ n and βj = (βj0, ..., βjp), 1 ≤ j ≤ J − 1, is the regression parameters for

the jth category. The baseline category J is usually selected as the most common

category. yi = (yi1, ..., yiJ) can be considered as a multinomial trial for subject i.

The trial yij is equal to one whenever a trial occurs in category j. Every trial might

occur only in one category, i.e.,
∑J

j=1 yij = 1. Consequently, πj(xi) = P (yij = 1|xi)
in Equation 7.1 [126].

According to Equation 7.1, exp(βTj xi) > 1 represents the trial to occur in category
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Figure 7.1: Various configurations of missing observations in the historical data

j against J . πj(xi) can be written as in Equation 7.2.

πj(x) =
exp(βTj x)

1 +
∑T−1

h=1 exp(β
T
h x)

(7.2)

Performing logistic regression according to discrete modes of a factor graph like

HMM creates a “Conditional Random Field (CRF)” [127]. CRFs have a wide range of

applications including natural language processing, computer vision and informatics

[127]. Accordingly, they can be widely used in chemical processes to classify various

operating regions.

7.2.5 Missing Data Treatment

The Expectation Maximization (EM) algorithm, which is an iterative optimization

technique, provides a condition to integrate out the missing observations during pa-

rameter estimation. Consequently, the likelihood (cost function) surface is reshaped,

and unknown parameters become tractable [29]. Following such an approach, many

identification procedures have been introduced to develop mathematical models for

industrial processes [45, 57].

Partially missing observations in a multivariate vector of data is an interesting

topic to be further considered in future studies [29], i.e, considering Missing Not at

Random (MNAR) missing data instead Missing at Random (MAR) or Missing Com-

pletely at Random (MCAR). Various possible configurations of missing observations

in historical data are presented in Figure 7.1.
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In order to solve the parameter estimation problem under the EM framework,

the Q function should be obtained as previously explained in various chapters of

the thesis. However, formulation of the Q function according to Figure 7.1 will

result in many difficulties [29]. As an example, according to Figure 7.1, various

possibilities exist for calculation of the joint distribution of the observed and missing

segments. Furthermore, calculation of the expected value of missing variables given

the observed part, when the observed and missing segments are correlated, will cause

many calculation difficulties [29]. These problems still remain as subjects of future

studies in this area.

7.2.6 Model Switching Mechanism

Although HMMs have been widely used in some areas such an Economics, their

application in process identification is quite recent, and there are many contributions

to be further considered [54], e.g., subject of time varying HMMs to monitor chemical

processes as introduced in Chapter 3 of the thesis. In such a structure, the transition

probabilities are considered to be time varying, i.e., aij is replaced by aij(t) where t

represents the current sample time.

One possible improvement to the considered structure for time varying HMMs

in this thesis is to use more sophisticated TPM structures. One could use logistic

regression models in such a structure where the diagonal elements of the TPM (aii)

are the baseline categories of the logistic regression model, and other elements of the

row (aij,i6=j) are functions of the baseline transition probability [126]. Application of

such a structure will further improve the flexibility of the hidden Markov modeling.

More information on logistic regression is provided in Equations 7.1 and 7.2.
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AppendixA

DetailsoftheDerivationsin
Chapter3

DetailsofthederivationsforEquation(3.21):

P(Yk|θ
old,Cobs,Ik=i)logf(Yk|Ik=i,µi,Σi)dYk

= P(Yk|Ik=i,µ
old
i ,σ

old
i )log((2π)

−P/2|Σi|
−1/2exp(−

1

2
(Yk−µi)

TΣ−1i(Yk−µi))dYk

=−
1

2
log((2π)P|Σi|)−

1

2
P(Yk|Ik=i,µ

old
i ,Σ

old
i )×(Yk−µi)

TΣ−1i(Yk−µi)dYk

Usingthepropertiesoftheexpectedvalueofthequadraticform,theintegralcan

becalculatedas,

=−
1

2
log((2π)P|Σi|)−

1

2
(tr(Σ−1iΣ

old
i )+(µ

old
i −µi)

TΣ−1i(µ
old
i −µi)) (A.1)

DetailsofthederivationsforEquation(3.23):

∂(
M
i=1

tα
k=t1
P(Ik=i|θ

old,Cobs)×(−
1

2
log((2π)P|Σi|)−

1

2
(Yk−µi)

TΣ 1
i (Yk−µi)))

∂µi

+
∂(

M
i=1

mβ
k=m1

P(Ik=i|θ
old,Cobs)×(−

1

2
log((2π)P|Σi|)−

1

2
(tr(Σ1i Σ

old
i )+(µ

old
i −µi)

TΣ 1
i (µ

old
i −µi))))

∂µi
=0

Usingthederivativepropertiesofthequadraticformweobtain:

⇒

tα

k=t1

P(Ik=i|θ
old,Cobs)(Yk−µi)+

mβ

k=m1

P(Ik=i|θ
old,Cobs)(µ

old
i −µi)=0
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⇒ µnew
i =

tα

k=t1
YkP(Ik=i|θold,Cobs)+

mβ

k=m1
µold

i P(Ik=i|θold,Cobs)
N
k=1P(Ik=i|θold,Cobs)

(A.2)

DetailsofthederivationsforEquation(3.24):

∂(
M
i=1

tα

k=t1
P(Ik=i|θold,Cobs)×(−

1

2
log((2π)P|Σi|)−

1

2
(Yk−µi)

TΣ 1
i (Yk−µi)))

∂Σi

+
∂(

M
i=1

mβ

k=m1
P(Ik=i|θold,Cobs)×(−

1

2
log((2π)P|Σi|)−

1

2
(tr(Σ1

i Σold
i )+(µold

i −µi)
TΣ 1

i (µold
i −µi))))

∂Σi
=0

Usingthederivativepropertiesofthetrace,determinantandinverseweobtain:

⇒

tα

k=t1

P(Ik=i|θold,Cobs)(−Σ−1
i +Σ−1

i (Yk−µnew
i )(Yk−µnew

i )TΣ−1
i )

+

mβ

k=m1

P(Ik=i|θold,Cobs)(−Σ−1
i +Σ−1

i Σold
i Σ−1

i +Σ−1
i (µold

i −µnew
i )(µold

i −µnew
i )TΣ−1

i )=0

⇒ (Σi)
new=

tα

k=t1
(Yk−µnew

i )(Yk−µnew
i )TP(Ik=i|θold,Cobs)

N
k=1P(Ik=i|θold,Cobs)

+

mβ

k=m1
(Σold

i +(µold
i −µnew

i )(µold
i −µnew

i )T)P(Ik=i|θold,Cobs)
N
k=1P(Ik=i|θold,Cobs)

(A.3)
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