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Abstract

In recent years compressive sampling (CS) has appeared in the signal processing

literature as a legitimate contender for processing of sparse signals. Natural signals

such as speech, image and video are compressible. In most signal processing systems

dealing with these signals the signal is first sampled and later on compressed. The

philosophy of CS however is to sample and compress the signal at the same time.

CS is finding applications in a wide variety of areas including medical imaging,

seismology, cognitive radio, and channel estimation among others.

Although CS has been given a great deal of attention in the past few years the

theory is still naive and its fullest potential is still to be proven. The research in

CS covers a wide span from theory of sampling and recovery algorithms to sampling

device design to sparse CS-based signal processing applications. The contributions

of this thesis are as follows; (i) The analog-to-information converter (AIC) is the

device that is designed to collect compressed samples. It is a replacement for the

analog-to-digital converter in a traditional signal processing system. We propose a

modified structure for the AIC which leads to reducing the complexity of the cur-

rent design without sacrificing the recovery performance. (ii) Traditional parameter

estimation algorithms such as least mean square (LMS) do not assume any struc-

tural information about the system. Motivated by the ideas from CS we introduce

a number of modified LMS algorithms for the sparse channel estimation problem.

Decimated LMS algorithms for the special case of frequency sparse channels are

also given. (iii) At last we consider the problem of CS of two dimensional signals.

The most straightforward approach is to first find the vector form of a two dimen-

sional signal and then use traditional CS methods to collect the compressed samples.

However, our approach samples all the columns of a two dimensional signal with

the same measurement matrix. This leads to simplification of the sampling process

and also enables us to perform parallel signal recovery.
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Chapter 1

Introduction

The sampling device is an indispensable part of a digital signal processor which is

interacting with analog inputs. Sampling is costly, consumes energy and time and

can be the bottleneck in a variety of practical applications. For example, in wireless

sensor networks, sampling consumes a portion of energy from a finite energy source,

which can lead to a significant decrease of the network lifetime. Another example is

magnetic resonance imaging (MRI), where the sampling process is very lengthy, and

thus, influences the patient’s comfort and the reliability of the results, especially if

many samples have to be collected.

Shannon’s sampling theorem states that the analog signal can be recovered by an

appropriate low pass filter, only if it is sampled at a rate greater than or equal twice

the highest frequency in the signal. Therefore, often a very large number of samples

have to be collected to represent an analog signal in digital format if the signal

has a rather wide bandwidth. Most of natural signals are, however, compressible

and they can be represented with a lower information rate than the rate suggested

by Shannon’s sampling theorem. Therefore, robust and reliable methods which can

reduce the number of samples for signal representation leading to saving energy, time

and cost are extremely important. Recently the new theory of compressive sampling

(CS) has emerged which defies the common wisdom in signal processing on how to

sample an analog signal [1,2]. It provides us with means of sampling sparse signals

with a much lower rate than what Shannon’s theorem requires. Despite its great

importance and already widely recognized potential, the theory of CS is on early

stages of its development. The first papers in this field were published in late 2005.

The CS theory is still naive in many aspects but is becoming a major branch in the

signal processing world.

1



1.1 Proposed research problems

CS is a promising solution to the undersampled signal recovery problem. This thesis

builds on the ideas of CS and considers the problem of sparse signal processing for

discrete-time systems. The problem setup is that a signal is first to be compressive

sampled, transmitted through a communication channel next, and then recovered

at the receiver side. This setup is shown as a block diagram in Fig. 1.1. We aim

at exploiting the sparsity of the signal in order to either simplify the sampling and

signal recovery procedure or improve the recovery performance compared to existing

CS signal acquisition methods. After the collection of the compressed samples, these

samples are transmitted through a channel. At the receiver side, the channel has

to be estimated in order to find an estimate of the data that was transmitted over

the channel. Our focus in this stage is to outperform standard channel estimation

algorithms when the communication channel is sparse. For the purposes of signal

Input data

sampling

Compressive Communication

channel

CS

recovery

Recovered data

Figure 1.1: Block diagram of the sparse signal processing problem.

acquisition we propose an extension of the analog-to-information converter (AIC)

design which leads to better recovery performance. The new AIC design, however,

collects the compressed samples at a slightly higher rate than the traditional AIC.

We also consider the problem of two dimensional CS and propose the parallel CS

method which has the advantage of less complex sampling and parallel signal recov-

ery. However, a larger number of samples are required for the parallel CS method

compared to the traditional CS in order to achieve a certain recovery performance.

For the channel estimation problem we propose several channel estimation algo-

rithms with the goal of improving the channel estimate over the result of standard

algorithms. A better channel estimate leads to better signal recovery. The research

problems tackled during this PhD work are presented in the following with more

detail.

Analog-to-information converter design: In CS we are interested in directly col-

lecting the compressed information about sparse analog signals, rather than sam-

pling the signals with a high speed analog-to-digital (A/D) converter and then com-

2



pressing the digital samples. This goal can be achieved through the AIC structure

which includes a series of parallel branches of mixers and integrators (BMIs). We

propose an extension to the AIC which allows reusing the measurements from each

BMI in order to improve the recovered signal quality [3]. The new AIC structure

achieves almost the same performance with only half the number of BMIs required

by the current AIC designs. Therefore, our design leads to significant complexity

reduction of the sampling device.

The AIC design introduced in [3] enables us to retrieve additional information

from the already collected measurements and reduce the complexity of the sampling

device. Since sampling devices are present in almost every digital signal proces-

sor, such as MRIs, digital communication systems, digital storage systems, etc.,

significant reduction of the sampling device complexity has a profound effect on

simplifying the existing systems.

Sparse channel estimation: An estimate of the communication channel is re-

quired at the receiver side in order to correctly recover the transmitted data. Some of

the classic methods often used for channel estimation include the least mean square

(LMS), the recursive least squares (RLS), and the Kalman filter algorithms. These

algorithms can be adjusted so that they perform better than their standard versions

when estimating a sparse communication channel. We propose several modifications

of the standard LMS algorithm for the purpose of sparse channel estimation.

Simpler LMS type channel estimation algorithms help reduce the complexity and

consequently the cost of communication devices such as cell phones. These methods

can also be deployed in sensor networks leading to an increase in the lifetime of the

network by preserving the batteries. Sensor networks are used in applications when

there is almost no infrastructure in place, such as wildlife tracking. CS-based sensor

networks can help reduce the cost and size of the transmitter nodes in the network.

Two dimensional CS : The most common way in the CS literature to take the

compressed samples of a two dimensional (2D) signal is to vectorize the signal. Once

the signal is vectorized, the compressed samples can then be collected through the

use of a measurement matrix. Depending on the size of the original signal, the

measurement matrix may become large which leads to the use of a large number of

BMIs in the corresponding AIC. In this dissertation we present another approach

for CS of 2D signals. Video compression is looked at as a sample application of two

dimensional CS.
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1.2 Organization of the thesis

Preliminary and background material is presented in Chapter 2. Our extended AIC

design, named segmented AIC, is introduced in Chapter 3. The proposed modifi-

cations of the standard LMS for sparse channel estimation are given in Chapter 4.

The two dimensional CS algorithm and its application for video compression is in-

troduced in Chapter 5. Chapter 6 concludes the thesis and gives ideas on future

research that can be done in the areas studied in this PhD work.
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Chapter 2

Preliminaries

In this introductory chapter we first review the basics of sampling of analog signals.

The principles of adaptive filtering and system identification are also presented here.

A brief overview of CS concludes the chapter.

2.1 Sampling

The theory of signal processing has a wide range of applications in communications,

entertainment, medicine, etc. The signal processing technology was mostly analog

before the 1960s [4]. However, digital computers and microprocessors along with

developments such as fast Fourier transform (FFT) caused a shift to digital tech-

nologies and digital signal processing (DSP). A great deal of the signals encountered

in practice are continuous-time or analog. In order to process these signals in the

discrete-time domain we first have to acquire a discrete-time representation of the

continuous-time signal. Once a discrete-time representation of the analog signal is

obtained a wide variety of DSP algorithms are at disposal in order to either change

the signal in a desirable way or extract useful information out of it. Finding a

discrete-time representation of the continuous-time signal is usually done through

a procedure called sampling or continuous-to-discrete-time (C/D) conversion. It is

obvious that the continuous-time signal should be recoverable from its discrete-time

samples in order for the sampling scheme to be valid and applicable in practice.

The most common way of acquiring a discrete-time sequence from a continuous-

time signal is through periodic sampling. Let xc(t) be the continuous-time signal

being sampled. The sample sequence, x[n], is obtained from xc(t) as

x[n] = xc(nT ), −∞ < n <∞ (2.1)
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C/D Converter

Figure 2.1: The mathematical structure of a C/D converter.

where T is the sampling period. The sampling frequency is fs = 1/T which denotes

the number of samples collected per second. A mathematical representation of the

sampling process using an impulse train modulator is shown in Fig. 2.1.

In Fig. 2.1, s(t) is the following periodic impulse train which is being modulated

by xc(t).

s(t) =
∞∑

n=−∞
δ(t− nT ). (2.2)

The modulated impulse train xs(t) can be expressed as

xs(t) = xc(t)s(t) = xc(t)

∞∑

n=−∞
δ(t− nT ) =

∞∑

n=−∞
xc(nT )δ(t− nT ). (2.3)

The discrete-time signal x[n] is constructed from the modulated impulse train xs(t).

Fig. 2.2 shows a continuous-time signal xc(t) being sampled with two different sam-

pling periods. The two diagrams on the left half of Fig. 2.2 show the signals xs(t)

and x[n] for the case when the sampling period is T = T0. The diagrams on the right

half of Fig. 2.2 correspond to the case when the sampling period has been doubled.

It can be seen in Fig. 2.2 that the resulting discrete-time signals x[n] are completely

different for the two sampling periods considered. Increasing the sampling period

and thus collecting samples at a lower rate is desirable in practice as it leads to

a less complex C/D converter and a smaller number of samples collected per time

unit. However, we may not be able to increase the sampling period endlessly since

we should be able to recover the continuous-time signal, xc(t), from its discrete-time

counterpart x[n]. In order to find the minimum sampling frequency while still being

able to recover xc(t) from x[n], the frequency domain representation of these signals

through Fourier transform is typically considered.
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Figure 2.2: A continuous-time signal xc(t) being sampled with two different sampling periods.

Let the Fourier transform of a signal x(t) denoted by X(jω) be defined as

X(jω) =

∫ ∞

−∞
x(t)e−jωtdt. (2.4)

An alternative notation that we use to denote the operation of taking the Fourier

transform of x(t) is F{x(t)}. From the above definition S(jω), the Fourier transform

of s(t) in equation (2.2), can be derived as

S(jω) =
2π

T

∞∑

k=−∞
δ(ω − kωs) (2.5)

where ωs is the sampling frequency in radians per second and is equal to 2πfs with

fs = 1/T . From the convolution property of the Fourier transform we have

Xs(jω) = F{xs(t)} =
1

2π
Xc(jω) ⋆ S(jω). (2.6)

Therefore, Xs(jω) can be derived as

Xs(jω) =
1

T

∞∑

k=−∞
Xc(ω − kωs). (2.7)

Equation (2.7) describes the relation between the spectrum of xs(t) and the original

signal xc(t). Xs(jω) is the collection of periodically repeated replicas of Xc(jω).

Let us consider the specific example of a band-limited signal xc(t) whose frequency
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1

ωωc−ωc

Xc(jω)

Figure 2.3: Frequency spectrum of a band-limited signal.

components stretch out from −ωc to ωc as shown in Fig. 2.3. In the case that the

sampling frequency is greater than twice the maximum frequency of xc(t), ωs ≥ 2ωc,

the spectrum of xs(t) will look like what is shown in Fig. 2.4. Since ωs ≥ 2ωc,

1
T

ωωc−ωc ωs−ωs ωs − ωc

Xs(jω)

Figure 2.4: The spectrum Xs(jω) in the case that ωs ≥ 2ωc.

ωs − ωc ≥ ωc and therefore, the two neighboring replicas of Xs(jω) corresponding

to k = 0 and k = 1 in equation (2.7) do not interfere with each other. The same

is true for any other two consecutive k values. However, in the case that ωs < 2ωc

the resulting Xs(jω) will be as shown in Fig. 2.5. As it can be seen in Fig. 2.5 the

1
T

ωωs−ωs ωs − ωc

Xs(jω)

Figure 2.5: The spectrum Xs(jω) in the case that ωs < 2ωc.

two neighboring copies of Xc(jω) interfere with each other and it can be concluded

that in this case the original spectrum Xc(jω) can not be recovered from Xs(jω).

This type of distortion of the original continuous-time signal xc(t) evident in the
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spectrum Xs(jω) due to sampling with a low rate is called aliasing. Shannon’s

sampling theorem based on the above discussion is stated as follows [4].

Theorem 2.1. Let xc(t) be a band-limited signal with

Xc(jω) = 0 for |ω| ≥ ωc. (2.8)

Then xc(t) is uniquely determined by its samples x[n] = xc(nT ), n = 0,±1,±2, · · · ,
if

ωs =
2π

T
≥ 2ωc. (2.9)

The maximum frequency of the signal xc(t), that is ωc, is called the Nyquist

frequency and the minimum frequency ωs with which the signal has to be sampled

to guarantee a successful recovery is referred to as the Nyquist rate.

Assuming that the signal is sampled with the Nyquist rate the spectrum Xs(jω)

looks like what is shown in Fig. 2.4, which contains periodic copies of the spectrum

of the original continuous-time signal xc(t). Therefore, it is possible to recover the

band-limited signal xc(t) from its discrete-time samples x[n]. The first step in the

reconstruction process is to generate a modulated impulse train xs(t) from x[n] with

knowledge of the sampling period T as

xs(t) =

∞∑

n=−∞
x[n]δ(t − nT ). (2.10)

Here, xs(t) would have a spectrum like the one in Fig. 2.4. The second step of the

reconstruction process is to pass xs(t) given by equation (2.10) through an ideal

low pass filter with impulse response hr(t) and frequency response Hr(jω) shown

in Fig. 2.6. The resulting signal xr(t) will have the same spectrum as the original

signal xc(t) and can be written as

xr(t) =

∞∑

n=−∞
x[n]hr(t− nT ). (2.11)

The impulse response of the ideal low pass filter hr(t) can be derived as

hr(t) =
sin(πt/T )

πt/T
. (2.12)

Therefore, xr(t) in (2.11) can be rewritten as

xr(t) =
∞∑

n=−∞
x[n]

sin(π(t− nT )/T )

π(t− nT )/T
. (2.13)
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Figure 2.6: Frequency and impulse response of the ideal low pass filter.

A block diagram of the above described reconstruction is shown in Fig. 2.7. The

reconstruction system in this figure is also called an ideal discrete-to-continuous-time

(D/C) converter. For the purposes of discrete-time processing of continuous-time

signals one can use the setup shown in Fig. 2.8. A discrete-time representation x[n]

of the continuous-time signal xc(t) is first acquired through sampling. The resulting

discrete-time signal is processed with some DSP technique. At last the processed

discrete-time signal y[n] passes through a D/C converter to form a continuous-time

signal yr(t).

The ideal C/D converter in Fig. 2.1 converts a continuous-time signal to the

corresponding discrete-time signal. Every sample of the discrete-time signal x[n] in

equation (2.1) is of infinite precision and it may not be possible to store these samples

in a finite length memory unit in a digital signal processing system. A general

approach used in many real world applications is to quantize the infinite precision

discrete-time samples with the help of an A/D converter. An A/D converter is a

physical device with a voltage level as its input which produces at the output the

binary code representing the quantized version of the input. The conversion of an

analog input voltage to its digital representation is not instantaneous. Therefore,
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impulse train

Ideal reconstruction system

Sampling period T

modulated Hr(jω)
xr(t)xs(t)x[n]

Figure 2.7: Block diagram representation of the reconstruction system.

system

Discrete−timexc(t) yr(t)x[n] y[n]

TT

D/CC/D

Figure 2.8: Discrete-time processing of continuous-time signals.

a sample and hold device is usually included in the circuitry of an A/D converter.

A configuration for A/D conversion of a continuous-time signal xc(t) is shown in

Fig. 2.9. In this figure, xB [n] denotes the binary representation of the quantized

samples taken from the continuous-time signal xc(t). The input-output relation of

the sample and hold block in Fig. 2.9 is

x0(t) =
∞∑

n=−∞
xc(nT )h0(t− nT ). (2.14)

h0(t) in (2.14) is defined as

h0(t) =

{
1, 0 < t < T
0, otherwise.

(2.15)

Fig. 2.10 shows a hypothetical input to the sample and hold block and its corre-

sponding output, the quantized samples taken at the end of every sampling period,

and the output of a digital-to-analog (D/A) converter. The D/A converter takes

the binary representation of a sample as its input and produces a constant voltage

level at the output. Entries of the digital sequence xB[n] in Fig. 2.9 are of finite

precision and have a finite length binary representation. The quantized samples are

11



A/D converter
hold

Sample andxc(t) x0(t) xB [n]

TT

Figure 2.9: Physical block diagram of A/D conversion.
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Figure 2.10: Sample and hold with xc(t) as the input.

not always equal to the unquantized samples and therefore, the quantization pro-

cess introduces some error into the digital samples. Hence, the original unquantized

samples can not be exactly recovered from the quantized samples at the output of

the D/A converter as it can be seen in the specific example of Fig. 2.10.

2.2 Adaptive filtering and system identification

One of the topics considered in this dissertation is the problem of channel estimation

for sparse communication channels. Channel estimation can be thought of as a sub

category of the system identification problem. Estimation theory has a wide range

of applications such as communications, radar, navigation, biomedical engineering,

etc. [5–7]. Consider the basic digital communication system shown in Fig. 2.11.

This system consists of a transmitter, channel, and a receiver. If we assume that

there is no additive noise in the communication channel and the channel has an

ideal impulse response given by

h[n] = Aδ[n − n0], (2.16)
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Transmitter Channel Receiver
Recovered dataInput data

Figure 2.11: Basic communication system.

then the received signal is a shifted and scaled version of the transmitted signal and

the information sent over the channel can be easily recovered. In reality, however,

the channel impulse response is more complicated than what is given in (2.16) which

results in intersymbol interference (ISI). Also, there is an element of noise present

in the received signal usually modeled as an additive component which is unrelated

to the transmitted signal. These two sources of impairment, ISI and additive noise,

force the receiver to find an estimate of the original information sent by the trans-

mitter. Due to the presence of non-deterministic noise, the estimation theory is

statistical. The three different types of estimation include filtering, smoothing, and

prediction. In filtering, the measured data up to time t is used to extract informa-

tion about the parameter of interest at time t. Smoothing exploits the data up to

time t to estimate the parameter of interest at a past time t′ < t. Finally, prediction

uses the data up to time t to forecast the parameter of interest at a future time

t′ > t.

Filters in general can be categorized as linear or nonlinear. A linear filter’s out-

put is a linear combination of its inputs. The statistical approach to the design of

a linear filter usually assumes the existence of some statistical information such as

mean and correlation functions of the input signal as well as the additive noise. One

approach is to minimize the mean square error (MSE) between the desired output

and the filter output. For stationary inputs the solution is the Wiener filter [8]. If

the signal is non-stationary, the Wiener filter in not optimum and a more successful

algorithm is the Kalman filter [9]. If the statistical information about the system is

not available, two different approaches can be taken. The non-recursive approach

first observes the system for a period of time in order to estimate the necessary

statistical parameters. Then it uses the derived statistical information to find the

Wiener filter parameters. Another approach is to use adaptive filters. An adap-

tive filter adjusts itself through the use of a recursive algorithm. In a stationary

setup, the adaptive filter converges to the Wiener solution in mathematical expec-

tation after a number of iterations. The use of an adaptive filter in a non-stationary

environment enables the filter to track the system. The collection of recursive algo-
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rithms developed in the literature can be compared based on the merits of rate of

convergence, robustness to noise, and computational complexity.

Since the parameters of adaptive filters may change over the course of the filtering

process, adaptive filters are nonlinear. However, adaptive filters are deemed linear

if the input-output relation is linear whenever the parameters are fixed. There are

two different approaches to derive recursive algorithms for linear adaptive filters:

stochastic gradient approach, and least-squares estimation.

A transversal filter is used as the underlying structure of a linear adaptive filter

in the stochastic gradient approach. A cost function defined as the mean square

of the difference between the desired response and the filter’s output is minimized.

An iterative procedure based on the method of steepest descent is used to solve the

Wiener-Hopf equations. The instantaneous values of the correlation matrix of the

input and the cross-correlation between the desired response and the input is used

to find an estimate of a gradient vector. This widely used algorithm is known as

the least mean square method which is revisited in Section 2.2.1.

The other approach of designing recursive algorithms for adaptive filters is

through the method of least squares. The cost function being minimized in this

method is defined as the sum of weighted error squares. The error is again defined

as the difference between a desired response and the filter’s actual output.

Adaptive filters have applications in a variety of different fields. All the different

applications of adaptive filters use a desired response and an input vector to form

an estimation error which is used to adjust the filter coefficients. Based on the

nature of the desired response the application of adaptive filters can be classified

into four categories: identification, inverse modeling, prediction, and interference

cancellation. These applications are shown in Fig. 2.12 in which u, y, d, and e

denote the input of the adaptive filter, its output, the desired response, and the

error signal respectively.

Identification: An identification application shown in Fig. 2.12(a) uses an adap-

tive filter algorithm to find a mathematical model for the system. The input to

the system and the filter is the same and the output of the system is used as the

desired response. System identification is abundantly used in control theory [10,11].

The problem of channel estimation in communication systems is another well known

application [12,13].

Inverse modeling : In the inverse modeling application shown in Fig. 2.12(b),
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Figure 2.12: The four classes of adaptive filter applications.

the adaptive filter provides the inverse of the system model. The best case scenario

for a linear system is that the combination of system and adaptive filter makes for

an ideal transmission medium. Adaptive equalization is widely used in communica-

tion systems and it is a good example of inverse modeling [14]. The purpose of an

equalizer is to correct the signal’s distortion due to ISI. Zero-forcing equalizers were

among the early structures developed for adaptive equalization of pulse amplitude

modulation (PAM) systems in 1960s [15,16]. Research on nonlinear receiver struc-

tures under various optimality criteria followed [17]. The result was the maximum

likelihood sequence estimator [18] which uses the Viterbi algorithm [19]. Adaptive

versions of the maximum likelihood estimator were also developed [20]. Decision
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feedback equalizers were also introduced as a simple suboptimal structure [21].

Prediction: In prediction applications as shown in Fig. 2.12(c), the adaptive filter

predicts the current value of a random signal. The current value of the random signal

is used as the desired response while its past values are used as the filter inputs.

Adaptive filtering is utilized to develop a model of the signal of interest. Among

the prediction applications of adaptive filters is, for example, predictive coding of

speech [6,22]. In most applications such as linear predictive coding of speech (LPC),

the error signal is usually stored or transferred since it has smaller variance than the

original signal [7]. Another application of prediction is in processing and interpreting

the electroencephalograms (EEGs) of the brain [23]. Adaptive filtering is used to

detect whether certain resonances called rhythms are present in the EEG [24]. Many

other predictive applications are developed as well.

Interference cancellation: The adaptive filter is used to remove an interference

signal present in the primary signal in interference cancellation applications shown

in Fig. 2.12(d) [25]. Here, a reference signal which is a highly disturbed version of

the primary signal and mostly represents the interference is used as the adaptive

filter input, and the primary signal is used as the desired response. Among the

applications are echo cancellation in long distance transmission lines [26], adaptive

line enhancement [27,28], and adaptive beamforming [29–31].

2.2.1 Least mean square algorithm

The LMS algorithm is very well known in the field of adaptive signal processing

[7, 32, 33]. As mentioned earlier, LMS belongs to the class of stochastic gradient

algorithms. The LMS algorithm does not need specific stochastic knowledge of the

channel and input data sequence unlike some other known parameter estimation

methods such as RLS and the Kalman filter. LMS is being employed in a wide

variety of applications in signal processing and communications including system

identification, echo cancellation, channel estimation, adaptive line enhancement,

etc. The application considered in this work is that of estimating a finite impulse

response (FIR) channel. The choice of the channel estimation algorithm for use in a

communication system comes down to the available information about the statistics

of the system, the desired performance of the estimation algorithm, as well as the

complexity of the estimation process.

The system model of the communication system used in this section and later
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on in Chapter 4 is shown in Fig. 2.13. The LMS algorithm is used to estimate the

channel impulse response (CIR) of the communication system. Let us first introduce

the notations in this figure. The vector w is the actual CIR which is to be estimated,

wk is the estimated coefficient vector at time-step k, xk is the system’s input data

vector, nk is the additive noise, dk is the desired response, and ek is the error signal.

The CIR is assumed to be of length N , and therefore, w = (w1, w2, · · · , wN )T ,

wk = (w1,k, w2,k, · · · , wN,k)
T , and xk = (xk, xk−1, · · · , xk−N+1)

T , where (·)T stands

for vector transposition. From Fig. 2.13 it can be seen that

dk = wTxk + nk

ek = dk −wT
k xk. (2.17)

The noise samples, nk, are assumed to be independent and identically distributed

(i.i.d.) with zero mean and variance of σ2
n. Also, the input data sequence, xk, and

the additive noise samples, nk, are assumed to be uncorrelated.

In standard LMS, a cost function of the form Lk = (1/2)e2k is minimized using

the gradient descent algorithm [32]. The update equation of the standard LMS

algorithm can be derived from the above mentioned cost function as

wk+1 = wk − µ
∂Lk

∂wk
= wk + µekxk (2.18)

where µ is the step size of the iterative algorithm. In order to make sure that the

LMS algorithm converges, µ is chosen such that 0 < µ < λ−1
max with λmax being the

maximum eigenvalue of the covariance matrix of xk which is R = E
{
xkx

T
k

}
where

E {·} denotes mathematical expectation.
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2.3 Compressive sampling review

According to Shannon’s sampling theorem, an analog band-limited signal can be

recovered from its discrete-time samples if the sampling rate is at least twice the

bandwidth of the signal. However, most of the practical signals (such as natural

images or human speech) are compressible. This suggests that the information rate

of these signals is less than what is mandated by their bandwidth. Recent theory of

CS, aims at finding a way to recover these signals from a smaller number of samples

[1, 34–36]. The discrete CS problem is to recover a signal f ∈ RN from a small

(less than N) number of measurements. CS relies on two important features, one is

sparsity which pertains to the signal being sampled and the other one, incoherence,

relates to the sampling waveforms. A signal f ∈ RN is called sparse if it has a small

number of nonzero coefficients when described in a proper basis Ψ. As a result, an

S-sparse signal in the Ψ domain is a signal with at most S nonzero coefficients in

that domain. Incoherence feature of the sampling waveforms states that unlike the

signal of interest the waveforms must have a dense representation in the Ψ domain.

An interesting fact about CS is that one can design a universal sampling matrix (for

example, a random projection matrix) that works for all S-sparse signals regardless

of the nature of the signal. Therefore, CS is capable of sampling sparse signals in a

universal manner. CS has already found a wide range of applications such as image

acquisition [37], sensor networks [38], cognitive radios [39], communication channel

estimation [40,41], etc.

2.3.1 Undersampling

The CS reconstruction problem is that of recovering a sparse signal f ∈ RN from a

set of linear measurements y = (y1, y2, . . . , yK)T which are computed by correlating

the signal of interest with a set of sampling or measurement waveforms. These

measurements are of the form

yk =< f ,φk >, k = 1, ...,K (2.19)

where < ·, · > denotes the inner product of two vectors. The measurement process

can also be described by the matrix equation y = Φf where Φ is the matrix built

by stacking the measurement vectors φk into its rows. In CS we are interested in the

underdetermined case where the number of measurements is less than the dimension

of the original signal, i.e., K ≪ N . In general, this is a system of equations with
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more unknowns than measurements which does not have a unique solution. However,

knowing that the signal of interest is sparse, one can exactly recover the signal by

linear programming provided that enough measurements are taken from the signal.

2.3.2 Compressive sampling basics

The basic mathematics supporting the CS theory is discussed in this section. The

topics include the characterization of a sparse signal, design of measurement matrix,

and mathematical results ensuring signal recovery from compressed measurements.

Two main premises

There are two main facts about the signal of interest and the sampling mechanism

that makes CS possible. These are sparsity and incoherence. Consider the following

representation of a signal f ∈ RN in an orthonormal basis Ψ as

f =
N∑

i=1

xiψi (2.20)

where ψi, i = 1, . . . , N are the basis vectors. The signal f is sparse if the majority of

its coefficients xi in the sparsity basis Ψ are zero. Let Ψ be the N ×N orthonormal

matrix with ψi as its rows. Let the vector of signal coefficients be denoted as

x = (x1, x2, . . . , xN )T . Then equation (2.20) can be written in the matrix form as

f = ΨTx. (2.21)

Collection of compressed samples is done by multiplying a K × N measurement

matrix Φ with the signal as

y = Φf = Φ
′

x (2.22)

where Φ
′

= ΦΨT . It has been shown in [1] that the signal can be recovered by

solving the following l1-norm minimization problem

min ‖x̃‖l1 subject to Φ
′

x̃ = y (2.23)

where ‖ · ‖l1 denotes the l1-norm of a vector. The l1-norm minimization problem of

(2.23) is a convex optimization problem and it can be solved in the form of a linear

program.

A key assumption about the sampling mechanism is that the sampling vectors

φ1,φ2, . . . ,φK which constitute the rows of measurement matrix Φ should have a

dense representation in the sparsity basis Ψ unlike the signal of interest. This prop-

erty ensures incoherence between the sampling waveforms and the sparsity basis.
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Signal recovery

The restricted isometry property (RIP) has been introduced as a measure of whether

or not the signal can be recovered from its compressed samples [1]. Let ΦT be

a submatrix of Φ obtained by keeping the columns with their indices in the set

T ⊂ {1, . . . , N}. The S-restricted isometry constant δS is the smallest number

satisfying the following inequality

(1 − δS)‖c‖2
l2 ≤ ‖ΦT c‖2

l2 ≤ (1 + δS)‖c‖2
l2 (2.24)

for all sets T of cardinality less than or equal to S and all vectors c. In (2.24)

‖ · ‖l2 denotes the Euclidean norm of a vector. If the isometry constant δS is small

enough, it means that the measurement matrix almost preserves the magnitude of

the S-sparse vectors c. The following result on the recovery performance of the

l1-norm minimization algorithm of (2.23) is of interest.

Theorem 2.2. (Theorem 1.8 of [2]) Assume that δ2S <
√

2 − 1. Then the solution

x∗ to (2.23) obeys

‖x∗ − x‖l2 ≤ C0
‖x− xS‖l1√

S
(2.25)

for some constant C0 = 21−(1−
√

2)δ2S

1−(1+
√

2)δ2S
.

In the above theorem, xS is the S-sparse vector derived from x by retaining only

the S elements of x with the largest magnitude. Note that if x itself is S-sparse,

then the recovery is exact.

Most of the CS recovery methods belong to the two categories of l1-norm min-

imization and greedy algorithms [2]. Among the l1-norm minimization methods in

addition to (2.23) are basis pursuit denoising (BPDN) [42] and the Dantzig selec-

tor [43]. Greedy algorithms approximate the support of the signal and its coeffi-

cients in an iterative manner until a convergence criterion is satisfied. Among the

greedy algorithms for the sparse recovery problem are orthogonal matching pursuit

(OMP) [44,45] and iterative hard thresholding (IHT) [46].

Robustness of CS

In any practical setting, measurements are accompanied by observation noise. In

order for CS to be acceptable as a sampling method it should be able to provide a

good estimate of the signal from noisy samples. In other words, the sampling method
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should be robust to observation noise. The measurement noise can be incorporated

into the sampling process as

y = Φx+ n (2.26)

where n is the noise term with a bounded energy ‖n‖l2 ≤ γ. The l1-norm mini-

mization problem of (2.23) is then changed accordingly as follows [1]:

min‖x̃‖l1 subject to ‖Φx̃− y‖l2 ≤ γ. (2.27)

The above problem is convex and has a unique solution. The following result ensures

that the reconstruction error is bounded.

Theorem 2.3. (Theorem 1.9 of [2]) Assume that δ2S <
√

2 − 1. Then the solution

x∗ to (2.27) satisfies

‖x∗ − x‖l2 ≤ C0
‖x− xS‖l1√

S
+ C1γ (2.28)

for some constants C0 = 21−(1−
√

2)δ2S

1−(1+
√

2)δ2S
and C1 = 4

√
1+δ2S

1−(1+
√

2)δ2S
.

In the CS literature observation noise is usually modeled as an additive noise

term n as in (2.26). In practice however, noise may also be present in the signal

as well as in the observations. In this case the sampling equation of (2.26) can be

altered as

y = Φ(x+ z) + n (2.29)

where z is the signal noise. Due to the inherent undersampling of data in CS,

the signal noise is more detrimental to the signal-to-noise ratio (SNR) than the

observation noise [47, 48]. More accurately SNR due to the signal noise is divided

by a factor proportional to N/K, whereas SNR due to the observation noise remains

unchanged. This feature is known as noise folding.

Candidates for the measurement matrix

The RIP has become a measure of whether a certain matrix can be used as a CS

measurement matrix or not. Random matrices are suitable choices for a measure-

ment matrix as they satisfy the RIP with high probability if constructed correctly.

Among the well known examples of measurement matrices are the following:

Gaussian distributed matrices: Let the entries of the K×N measurement matrix

be taken independently from a normal distribution with zero mean and variance
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1/K. Such a matrix satisfies the RIP for S ≤ CK/log(N/K) with a high probability

for some constant C [49,50]. The proof applies the concentration of measures to the

singular values of Gaussian matrices.

Bernoulli distributed matrices: Consider the K×N matrix with its entries inde-

pendently sampled from a Bernoulli distribution (P{φki = ±1/
√
K} = 1/2). This

matrix satisfies the RIP with a high probability if S ≤ CK/log(N/K) for some con-

stant C [50, 51]. The method of proof is based on application of the concentration

of measures to the smallest singular value of a subgaussian matrix.
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Chapter 3

Segmented

Analog-to-Information

Conversion

The sampling process often used in the CS literature consists of two steps. First,

an analog signal is sampled at the Nyquist rate and then a measurement matrix

is applied to the time domain samples in order to collect the compressed samples.

This sampling approach, however, defeats one of the primary purposes of CS, which

is avoiding high rate sampling. A more practical approach for direct sampling and

compression of analog signals belonging to the class of signals in a union of subspaces

is taken in [52] and the follow up work [53]. The modulated wideband converter

(MWC) was introduced as a CS sampling strategy for acquiring sparse multiband

signals [54]. Another practical approach to CS, which avoids high rate sampling

using a structure called random demodulator (RD), has been presented in [1], [55].

The RD and MWC structures are both based on random filtering with different

sampling functions. The signal models and reconstruction methods are different,

while the structures are the same [56]. The AIC device of [55] consists of several

parallel BMIs in which the analog signal is measured against different random sam-

pling waveforms. Therefore, for every collected compressed sample, there is a BMI

that multiplies the signal by a sampling waveform and then integrates the result

over the sampling period T .

In this chapter, we study our segmented CS method and the segmented CS-based

AIC structure which is capable of collecting more samples than the number of BMIs.

With more samples, the recovery performance can be improved as compared to the

case when the AIC of [1] with the same number of BMIs is used for sampling. The

23



specific contributions of this work are the following. (i) A new segmented CS-based

AIC structure is developed. Some preliminary results have been reported in [57]. In

this structure, the integration period T is divided into M equal segments such that

the sampling rate of the so-obtained segmented AIC is M times higher than the

sampling rate of the AIC of [1]. Then the sub-samples collected over M different

segments and K different BMIs are reused so that a larger number of samples (at

most K2 correlated samples) than the number of BMIs is collected. We show that

our segmented CS-based AIC technique is equivalent to extending the measurement

matrix, which consists of the BMI sampling waveforms, by adding new rows without

actually increasing the number of BMIs.1 (ii) We prove that the RIP, i.e., the

sufficient condition for signal recovery based on compressed samples, is satisfied

for the extended measurement matrix resulting from the segmented CS-based AIC

structure with overwhelming probability if the original matrix of BMI sampling

waveforms satisfies the RIP. Thus, our segmented AIC is a valid candidate for CS.

(iii) We also prove that the signal recovery performance based on the empirical risk

minimization approach can be improved if our segmented AIC is used for sampling

instead of the AIC of [1] with the same number of BMIs. Some preliminary results

on this topic have been reported in [60]. The mathematical challenge in such a

proof is that the samples collected by our segmented AIC are correlated, while all

results on performance analysis of the signal recovery available in the literature are

obtained for the case of uncorrelated samples.

The rest of this chapter is organized as follows. Section 3.1 introduces the AIC

structure for CS of analog signals. The segmented CS, is explained in Section 3.2.

We prove in Section 3.3 that the extended measurement matrix resulting from the

proposed segmented CS satisfies the RIP and, therefore, the segmented CS is a

legitimate CS method for AIC. The signal recovery performance analysis for our

segmented CS is given in Section 3.4. Section 3.5 shows our simulation results and

Section 3.6 concludes the chapter.

3.1 Setup and background for AIC

Setup for CS of analog signals: CS deals with a low rate representation of sparse

1In this respect, the works [58] and [59] also need to be mentioned. In [58], Toeplitz-structured
measurement matrices are considered, while measurement matrix that is built based on only one
random vector with shifts of D ≥ 1 in between the rows appear in radar imaging application
considered in [59].
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or compressible signals, i.e., such signals which have few nonzero or, correspond-

ingly, significantly different from zero projections on the vectors of an orthogonal

basis (sparsity basis). It is assumed that the analog signal f(t) can be represented

or approximated as a linear combination of a finite number of N basis functions

{ψn(t)}N
n=1 defined over the time period t ∈ [0, T ]. Hence, the signal f(t) is also

defined over the same time period and it can be mathematically expressed as

f(t) =

N∑

n=1

xnψn(t) = xTΨ(t) (3.1)

where {xn}N
n=1 are some coefficients, x , (x1, . . . , xN )T is a vector of such coeffi-

cients, Ψ(t) , (ψ1(t), . . . , ψN (t))T . If f(t) is sparse or compressible, i.e., the vector

x has a small number of nonzero or significantly different from zero elements, the

basis {ψn(t)}N
n=1 is called a sparsity basis and Ψ(t) maps the discrete vector of

coefficients x onto a continuous-time signal f(t). It is known that a universal CS

method can be designed to effectively sample and recover S-sparse signals regardless

of the specific sparsity domain [1], [34].

The measurement operator Φ(t) is the collection of K < N sampling waveforms

{φk(t)}K
k=1, i.e., Φ(t) , (φ1(t), . . . , φK(t))T . One of the practical choices for the

sampling waveforms is a pseudo random ±1 chip sequence which alternates its value

at a rate higher than, for example, the Nyquist rate for bandlimited signals [1,55] or

just the rate N/T in the traditional CS setup with the finite number of N possible

projections. Let the chip duration Tc be set to T/Nc where Nc is the number of

chips per signal period T . The discrete measurement yk can be expressed as

yk =

∫ T

0
f(t)φk(t) dt. (3.2)

Then the relation between the K × 1 vector of measurements y , (y1, . . . , yK)T

and the sparse coefficient vector x can be explained in terms of the K ×N matrix

Φ′ = Φ(t)Ψ(t) with its (k, n)th entry given as

[Φ′]k,n =

∫ T

0
ψn(t)φk(t) dt. (3.3)

Using the matrix Φ′, we can compactly represent the vector of discrete measurements

as y = Φ′x. Then, the K × Nc measurement matrix Φ and the N × Nc sparsity

basis Ψ can be derived as the discrete equivalents of Φ(t) and Ψ(t). Specifically, let

the entries of Φ be given as

[Φ]k,n =

∫ nTc

(n−1)Tc

φk(t) dt (3.4)
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and the entries of Ψ as

[Ψ]m,n =

∫ nTc

(n−1)Tc

ψm(t) dt. (3.5)

Then it can be seen that Φ′ = ΦΨT . Moreover, the discrete counterpart of the ana-

log signal f(t), denoted as vector f , is given as f = ΨTx. Using the measurement

matrix Φ, the K × 1 vector of compressed samples y can be equivalently written as

y = Φf = Φ′x. In the noisy case, the sampling process can be expressed as

y = Φf + n = Φ′x+ n (3.6)

where n is a zero mean noise vector with i.i.d. entries of variance σ2
n.

In the traditional CS setup for discrete signals, the sparsity basis matrix Ψ with

entries given by (3.5) is considered to be an N × N orthonormal matrix. This

corresponds to the case when Nc = N for the sampling waveforms. However, there

exist applications where this condition is not satisfied and Nc is larger than N . The

mathematical analysis and the proves given in this chapter consider the traditional

CS setup where the matrix Ψ is square and orthonormal. However, we include some

simulation results attesting to the fact that our segmented CS method also works

when Nc > N .

Another important issue is the number of required compressed samples for suc-

cessful signal recovery. Among various bounds on the sufficient number of collected

compressed samples2 K (S < K < N) required for recovering an S-sparse signal, the

first and most popular one is given by the following inequality S ≤ CK/log(N/K)

where C is some constant [1]. This bound is derived based on the uniform un-

certainty principle which states that Φ must satisfy the RIP [1], [50]. As shown

in [34], [62], if the entries of Φ are, for example, independent zero mean Gaussian

random variables with variance 1/N , then Φ satisfies the RIP for S ≤ CK/log(N/K)

with high probability.3 It is known that the same holds when the entries of Φ are

independent zero mean Bernoulli variables with variance 1/N [62]. Since the vari-

ance of the elements of Φ is 1/N , the following isometry constant inequality is used

instead of (2.24) previously given in Chapter 2:

K

N
(1 − δS)‖c‖2

l2 ≤ ‖ΦT c‖2
l2 ≤ K

N
(1 + δS)‖c‖2

l2 . (3.7)

2See [61] for broader review.
3Note that in order to ensure consistency throughout the chapter, the variance of the elements

in Φ is assumed to be 1/N instead of 1/K as, for example, in [34]. Thus, the multiplier K/N is
added in the left- and right-hand sides of (3.7).
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∫ T

0

f(t)
φ1(t)

φ2(t)

φK(t)

∫ T

0

∫ T

0

y2

yK

y1

Figure 3.1: The structure of the AIC based on RMPI.

AIC: The random modulation preintegration (RMPI) structure is proposed for

AIC in [1]. The RMPI multiplies the signal with the sampling waveforms in the

analog domain and then integrates the product over the time period T to produce

samples. It implies that the sampling device has a number of parallel BMIs in order

to process the analog signal in real-time. The RMPI structure is shown in Fig. 3.1,

where the previously introduced notations are used. A prototype chip for the RMPI

structure is also implemented in 90nm CMOS [63, 64]. The chip is verified with

recovering time domain waveforms of radar pulses used as the input of the system.

Recovery methods: As discussed in Section 2.3.2, a sparse signal can be recovered

from its noiseless sample vector y by solving the following problem [34], [65]:

min‖x̃‖l1 subject to Φ
′

x̃ = y. (3.8)

In the noisy case, the recovery problem is modified as [66]

min‖x̃‖l1 subject to ‖Φ′

x̃− y‖l2 ≤ γ (3.9)

where γ is the bound on the square root of the noise energy. In order to reconstruct

an analog signal, i.e., obtain the estimate f̂(t) from the measurement vector y, one

should first solve for x̃ using (3.8) or (3.9) and then calculate f̂(t) based on (3.1).

Another technique for sparse signal recovery from noisy samples (see [36]) uses

the empirical risk minimization method that was first developed in statistical learn-

ing theory for approximating an unknown function based on noisy measurements

[67]. Note that the empirical risk minimization-based recovery method is of a par-

ticular interest since under some approximations (see [36, p. 4041]) it reduces to the

well known least absolute shrinkage and selection operator (LASSO) method [68].

In application to CS, the unknown function is the sparse signal and the collected

data are the noisy compressed samples. Let the entries of the measurement matrix
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Φ be selected with equal probability as ±1/
√
N , and the energy of the signal f be

bounded so that ‖f‖2 ≤ NB2. From here on in, the alternative notation ‖ · ‖ is also

used for the Euclidean norm of a vector. The risk r(f̂) of a candidate reconstruction

f̂ and the empirical risk r̂(f̂) are defined as [67]

r(f̂) ,
‖f̂ − f‖2

N
+ σ2

n, r̂(f̂) ,
1

K

K∑

j=1

(

yj − φj f̂
)2
. (3.10)

Then the candidate reconstruction f̂K obtained based on K samples can be found

as [36]

f̂K = arg min
f̂∈F(B)

{

r̂(f̂) +
c(f̂ ) log 2

ǫK

}

(3.11)

where F(B) , {f : ‖f‖2 ≤ NB2}, c(f̂) is a non-negative number assigned to

a candidate signal f̂ , and ǫ = 1/
(
50(B + σn)2

)
. Moreover, f̂K given by (3.11)

satisfies the following inequality [36]

E

{

‖f̂K − f‖2

N

}

≤ C1 min
f̂∈F(B)

{

‖f̂ − f‖2

N
+
c(f̂ ) log 2 + 4

ǫK

}

(3.12)

where C1 = [(27 − 4e)(B/σn)2 + (50 − 4
√

2)B/σn + 26]/[(23 − 4e)(B/σn)2 + (50 −
4
√

2)B/σn + 24], e = 2.7183 . . ..

Let a compressible signal f be defined as a signal for which ‖fm − f‖2 ≤
NCAm

−2α, where fm is the best m-term approximation of f which is obtained

by retaining the m most significant coefficients of vector x and CA > 0 and α ≥ 0

are some constants. Let also Fc(B,α,CA) , {f : ‖f‖2 ≤ NB2, ‖fm − f‖2 ≤
NCAm

−2α} be the set of compressible signals. Then based on the weight assign-

ment c(f̂) = 2 log(N)Nx̂, where Nx̂ is the actual number of nonzero projections of

f̂ onto the sparsity basis, the following inequality holds [36]

sup
f∈Fc(B,α,CA)

E

{

‖f̂K − f‖2

N

}

≤ C1C2

(
K

logN

)−2α/(2α+1)

(3.13)

where C2 = C2(B,σn, CA) > 0 is a constant.

If signal f is indeed sparse and belongs to Fs(B,S) , {f : ‖f‖2 ≤ NB2, ‖f‖l0 ≤
S}, then there exists a constant C ′

2 = C ′
2(B,σn) > 0 such that [36]

sup
f∈Fs(B,S)

E

{

‖f̂K − f‖2

N

}

≤ C1C
′
2

(
K

S logN

)−1

. (3.14)

The l0-pseudo-norm of a vector which is the number of its nonzero entries is denoted

as ‖ · ‖l0 .
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3.2 Segmented compressive sampling method

A significant advantage of the AIC is that it removes the need for high speed sam-

pling. The smaller the number of samples K being collected, the less number of

BMIs is required, thus, the less complex the AIC hardware is. The minimum num-

ber of samples required for successful signal recovery is given by the bound based

on the RIP given in equation (3.7). The practical rule of thumb for the noise-

less case is that four incoherent measurements are required for successful recovery

of each nonzero coefficient [1]. However, in the event that the measurements are

noisy a larger number of samples allows for a better signal recovery. Indeed, the

MSE between the actual and recovered signals is bounded in the noisy case as given

in [1, p. 27, Theorem 3] for compressible signals. Such a bound contains a coeffi-

cient which depends inversely on the number of available samples. Thus, the larger

the number of samples, the better the recovery performance is in the noisy case.

Moreover, in practice when the signal sparsity level may not be exactly known, the

number of BMIs may be insufficient to guarantee successful signal recovery. There-

fore, we may need to collect a larger number of samples to enable recovery. In

order to collect a larger number of compressed samples using the AIC structure in

Fig. 3.1, we need to increase the hardware complexity by adding more BMIs. The

latter makes the AIC device more complex. Therefore, it is desirable to reduce the

number of parallel BMIs in the AIC without sacrificing the signal recovery accuracy.

This goal can be achieved by increasing the sampling rate of the AIC, but still keep-

ing it significantly lower than the sampling rate required by the A/D converter. The

higher sampling rate can be realized by splitting the integration period T in every

BMI of the AIC in Fig. 3.1 into M ≤ K shorter subperiods (segments). Note that

since the original integration period is divided into a number of smaller subperiods,

the samples collected over all parallel BMIs during one subperiod do not have com-

plete information about the signal. Therefore, they are called incomplete samples.

Hereafter, the complete samples obtained over the whole period T are referred to

as just samples, while the incomplete samples are referred to as sub-samples.

3.2.1 The basic idea and the model

The basic idea is to collect a number of sub-samples by splitting the integration

period into a number of subperiods and then reuse such sub-samples in order to
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build additional samples. In this manner, a larger number of samples than the

number of BMIs can be collected. It allows for a tradeoff between the AIC and A/D

converter structures by allocating M ≤ K sub-samples per time unit T to K BMIs.

Indeed, the signal is measured at a low rate by correlating it to a number of sampling

waveforms just as in the AIC, while at the same time the integration period T is split

into shorter sub-intervals, i.e., the sampling rate is slightly increased. However, such

sampling rate is still significantly lower than that required by the A/D converter.

Let the integration period be split into M sub-intervals and the vectors of

sub-samples collected against the sampling waveforms {φk}K
k=1 being denoted as

yk =(yk,1, . . . , yk,M)T , k = 1, . . . ,K. The sub-sample yk,j is given by

yk,j =

∫ jT/M

(j−1)T/M
f(t)φk(t)dt. (3.15)

Then the total number of sub-samples collected by all BMIs over all subperiods is

MK. These sub-samples can be gathered in the following K ×M matrix

Y =








y1,1 y1,2 . . . y1,M

y2,1 y2,2 . . . y2,M
...

...
...

...
yK,1 yK,2 . . . yK,M








(3.16)

where the kth row contains the sub-samples obtained by correlating the measured

signal with the waveform φk over M subperiods each of length T/M .

The original K samples, i.e., the samples collected at BMIs over the whole time

period T , can be obtained as

yk =

M∑

m=1

[Y ]k,m =

M∑

m=1

yk,m, k = 1, . . . ,K. (3.17)

In order to construct additional samples, we consider columnwise permuted versions

of Y . The following definitions are then in order.

The permutation π is a one-to-one mapping of the elements of some set D to

itself by simply changing the order of the elements. Then π(k) stands for the

index of the kth element in the permuted set. For example, let D consist of the

elements of a K × 1 vector z, and the order of the elements in D is the same

as in z. After applying the permutation function π to z, the permuted vector is

zπ =
(
zπ(1), . . . , zπ(k), . . . , zπ(K)

)T
. If vector z is itself the vector of indices, i.e.,

z = (1, . . . ,K)T , then obviously zπ(k) = π(k).
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Different permuted versions of the sub-sample matrix Y can be obtained by

applying different permutations to different columns of Y . Specifically, let P(i) =

{π(i)
1 , . . . , π

(i)
j , . . . , π

(i)
M } be the ith set of column permutations with π

(i)
j being the

permutation function applied to the jth column of Y , and let I stand for the num-

ber of such permutation sets. Then according to the above notations, the matrix

resulting from applying the set of permutations P(i) to the columns of Y can be

expressed as Y P(i)
=

(

y
π

(i)
1

1 , . . . ,y
π

(i)
j

j , . . . ,y
π

(i)
M

M

)

where yj is the jth column of Y .

Permutation sets P(i), i = 1, . . . , I are chosen in such a way that all sub-samples

in a specific row of Y P(i)
come from different rows of the original sub-sample matrix

Y as well as from different rows of other permuted matrices Y P(1)
, . . . ,Y P(i−1)

. For

example, all sub-samples in a specific row of Y P(1)
must come from different rows

of the original matrix Y only, while the sub-samples in a specific row of Y P(2)
come

from different rows of Y and Y P(1)
and so on. This requirement is forced to make

sure that an additional sample is correlated to an original or another additional

sample only over one segment. Then the additional K I samples can be obtained

based on the permuted matrices Y P(i)
, i = 1, . . . , I as

yP
(i)

k =
M∑

m=1

[Y P(i)
]k,m, k = 1, . . . ,K, i = 1, . . . , I. (3.18)

It is worth noting that in terms of the hardware structure, the sub-samples

used to generate additional samples must be chosen from different BMIs as well as

different segments. This is equivalent to collecting additional samples by correlating

the signal with additional sampling waveforms which are not present among the

actual BMI sampling waveforms. Each of these additional sampling waveforms

comprises the non-overlapping subperiods of M different original waveforms.

Now the question is how many permuted matrices, which satisfy the above con-

ditions, can be generated based on Y . Consider the following K ×M matrix

Z , (z,z, . . . ,z)
︸ ︷︷ ︸

M times

(3.19)

where z is the vector of indices. Applying the column permutation set P(i) to

the columns of Z, a permuted matrix ZP(i)
=

(

zπ
(i)
1 , . . . ,zπ

(i)
j , . . . ,zπ

(i)
M

)

is ob-

tained. Then the set of all permuted versions of Z can be denoted as SZ =

{ZP(1)
, . . . ,ZP(I)}. With these notations, the following theorem is in order.
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Theorem 3.1. The size of SZ, i.e., the number I of permutation sets P(i), i =

1, . . . , I which satisfy the conditions

[ZP(i)
]k,j 6= [ZP(i)

]k,r, ∀ZP(i) ∈ SZ, j 6= r, k ∈ {1, . . . ,K}, j, r ∈ {1, . . . ,M}
(3.20)

∃!j or ∄j such that [ZP(i)
]k,j = [ZP(l)

]h,j, ∀ZP(i)
,ZP(l) ∈ SZ, Z

P(i) 6= ZP(l)
,

∀j ∈ {1, . . . ,M}∀k, h ∈ {1, . . . ,K} (3.21)

is at most K − 1.

Proof. See Appendix A.

Remark 3.1. Using the property that zπ(k) = π(k) for the vector of indices z, the

conditions (3.20) and (3.21) can also be expressed in terms of permutations as

π
(i)
j (k) 6= π(i)

r (k) ∀i ∈ {1, . . . , I}, j 6= r, k ∈ {1, . . . ,K}, j, r ∈ {1, . . . ,M} (3.22)

∃!j or ∄j such that π
(i)
j (k)=π

(l)
j (h) ∀i, l∈{1, . . . , I}, i 6= l, ∀j∈{1, . . . ,M},

∀k, h∈{1, . . . ,K}. (3.23)

Example 3.1. For this example let the specific choice of index permutations be

πs(k) = ((s + k − 2) mod K) + 1, s, k = 1, . . . ,K with π1 being the identity per-

mutation and ’mod’ standing for the modulo operation. For this specific choice,

π
(i)
j = π[i(j−1) mod K]+1, i = 1, . . . ,K − 1, j = 1, . . . ,M . Consider the following ma-

trix notation for the set P where the elements along the ith row are the permutations

P(i), i = 1, . . . , I

P ,












P(1)

P(2)

P(3)

...

P(K−2)

P(K−1)












=














π
(1)
1 π

(1)
2 π

(1)
3 . . . π

(1)
M

π
(2)
1 π

(2)
2 π

(2)
3 . . . π

(2)
M

π
(3)
1 π

(3)
2 π

(3)
3 . . . π

(3)
M

...
...

...
...

...

π
(K−2)
1 π

(K−2)
2 π

(K−2)
3 . . . π

(K−2)
M

π
(K−1)
1 π

(K−1)
2 π

(K−1)
3 . . . π

(K−1)
M














=












π1 π2 π3 . . . πM

π1 π3 π5 . . . π[2(M−1) mod K]+1

π1 π4 π7 . . . π[3(M−1) mod K]+1
...

...
...

...
...

π1 πK−1 πK−3 . . . π[(K−2)(M−1) mod K]+1

π1 πK πK−1 . . . π[(K−1)(M−1) mod K]+1












. (3.24)
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Note that not all permutations P(i), i = 1, . . . , I used in (3.24) may be permissible.

In fact, the set of permutations P(i) with K/gcd(i,K) < M has at least one repeated

permutation that contradicts the condition (3.22). Here gcd(·, ·) stands for the

greatest common devisor of two numbers. For example, for K = 8 and M = 4,

K/gcd(4,K) = 2 < M and P(4) is impermissible. Therefore, instead of K − 1 = 7,

only the following 6 sets of permutations are allowed

P =













π
(1)
1 π

(1)
2 π

(1)
3 π

(1)
4

π
(2)
1 π

(2)
2 π

(2)
3 π

(2)
4

π
(3)
1 π

(3)
2 π

(3)
3 π

(3)
4

π
(4)
1 π

(4)
2 π

(4)
3 π

(4)
4

π
(5)
1 π

(5)
2 π

(5)
3 π

(5)
4

π
(6)
1 π

(6)
2 π

(6)
3 π

(6)
4













=











π1 π2 π3 π4

π1 π3 π5 π7

π1 π4 π7 π2

π1 π6 π3 π8

π1 π7 π5 π3

π1 π8 π7 π6











. (3.25)

Theorem 3.1 shows how many different permuted versions of the original sub-

sample matrix Y can be obtained such that the correlation between the original

and additional samples would be minimal. Indeed, since the set of sub-samples

that are used to build additional samples is chosen in such a way that additional

samples have at most one sub-sample in common with the previous samples, i.e.,

conditions (3.22) and (3.23) are satisfied, the set of permutations (3.24) is a valid

candidate. The ith element of P, i.e., the element P(i) =
(

π
(i)
1 , . . . , π

(i)
M

)

, is the set

of permutations applied to Y to obtain Y P(i)
. Adding up the entries along the rows

of Y P(i)
, a set of K additional samples can be obtained.

Example 3.2. Let the number of additional samples Ka be at most K. This means

that all permutations are given by only P(1) in (3.24). In this special case, the sub-

sample selection method can be given as follows. For constructing the (K + 1)st

sample, M sub-samples on the main diagonal of Y are summed up together. Then

the M sub-samples on the second diagonal are used to construct the (K + 2)nd

sample, and so on up to the Kath sample. Mathematically, the so constructed

additional samples can be expressed in terms of the elements of Y as

yK+k =
M∑

m=1

yl,m, k = 1 . . . ,Ka (3.26)

where l = [(k +m− 2) mod K] + 1 and Ka ≤ K. Fig. 3.2 shows schematically how

the sub-samples are selected in this example.

The proposed segmented sampling process can be equivalently expressed in terms

of the measurement matrix. Let Φ be the original K×N measurement matrix. Let
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y2K−1

y1,1

y2,1

y3,1

yK−1,1

yK,1

...
...

y1,2

y2,2

y3,2

yK−1,2

yK,2

...

y1,3

y2,3

y3,3

yK−1,3

yK,3

...
...

· · ·

· · ·

· · ·

· · ·

· · ·

y1,M

y2,M

y3,M

yK−1,M

yK,M

yK+1

yK+2

y2K

Figure 3.2: Sub-sample selection principle for building additional samples in Example 3.2.

the kth row of the matrix Φ be φk =
(
φk,1, . . . ,φk,M

)
where φk,j, j = 1, . . . ,M

are some vectors. Let also for simplicity, the length of φk,j be N/M where N/M is

a positive integer number. The set of permutations applied to Y in order to obtain

Y P(i)
is P(i). Then the operation ΦP(i)

can be expressed as follows. The first group

of N/M columns of Φ, which are the vectors φk,1, k = 1, . . . ,K, are permuted with

π
(i)
1 . The second group of N/M columns of Φ are permuted with π

(i)
2 and so on

until the last group of N/M columns of Φ which are permuted with π
(i)
M . Then the

Ke × N extended measurement matrix which combines all possible permutations

P(i), i = 1, . . . , I can be expressed as

Φe =
(

ΦT , (ΦP(1)
)T , . . . , (ΦP(I)

)T
)T

(3.27)

where Ke , K +Ka = K +KI.

Example 3.3. Continuing with the set up used in Example 3.2, let Ka ≤ K. Then

the extended measurement matrix is

Φe =

(
Φ

Φ1

)

=













φ1,1 φ1,2 . . . φ1,M
...

...
...

...
φK,1 φK,2 . . . φK,M

φ1,1 φ2,2 . . . φM,M
...

...
...

...
φKa,1 φπ2(Ka),M . . . φπM (Ka),M













(3.28)

where Φ1 contains only Ka rows of ΦP(1)
and Φ1 = ΦP(1)

if Ka = K.

3.2.2 Implementation issues and discussion

Due to the special structure of the extended measurement matrix Φe, the sampling

hardware needs only K parallel BMIs for collecting KI samples. These BMIs are
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essentially the same as those in Fig. 3.1. The only difference is that the integration

period T is divided into M equal subperiods. At the end of every subperiod, each

integrator’s output is sampled and the integrator is reset. Therefore, some factors,

which may influence the complexity of a hardware implementation of the proposed

segmented AIC, are the following. Since the sampling rate of the segmented AIC

is M times higher than that of the conventional AIC with the same number of

BMIs, the complexity of the segmented AIC can slightly increase as compared to

the conventional AIC with K BMIs. However, the rate increased in M ≤ K times

is still by far less than, for example, the required Nyquist rate which depends on

the signal bandwidth. As compared to the AIC with KI BMIs, the segmented AIC

has only K BMIs, that makes the complexity of the segmented AIC for collecting

KI samples significantly smaller than that of the conventional AIC with KI BMIs.

In addition, a multiplexer which selects the sub-samples for constructing additional

samples is needed in the proposed segmented AIC. It is worth noting, however, that

partial sums can be kept for constructing the samples (original and additional),

that is, the results of the integration are updated and accumulated for each sample

iteratively after each subperiod. In this way, there is no need of designing the

circuitry for memorizing the matrix of sub-samples Y , but only the partial sums for

each sample are memorized at any current subperiod. One more factor which may

have an effect on the performance of the segmented AIC is the hardware sampling

noise introduced at time instances mT/M, m = 1, . . . ,M when the output of each

BMI is sampled to collect a sub-sample. This sampling noise appears M times

over a time period T for the segmented AIC while it appears once over T for the

conventional AIC. However, the amount of the hardware sampling noise depends on

the specific hardware implementation of the sampler and is out of the scope of this

work.

Finally, it is worth noting that the possibility of improving the signal recov-

ery performance due to increasing the sampling rate in each BMI of the proposed

segmented AIC agrees with the convention that the recovery performance cannot

be improved only due to the post processing. Moreover, note that since the orig-

inal random sampling waveforms are linearly independent with high probability,

the additional sampling waveforms of our segmented CS method are also linearly

independent with overwhelming probability. However, a sufficient condition that

guarantees that the extended measurement matrix of the proposed segmented CS-
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based AIC scheme is a valid choice is the RIP. Therefore, the RIP for the proposed

segmented CS method is analyzed in the next section.

3.3 RIP for segmented compressive sampling

The purpose of this section is to show that the extended measurement matrix Φe

in (3.27) satisfies the RIP if the original measurement matrix Φ satisfies it. This

implies that Φe can be used as a valid CS measurement matrix. In our setup it is

only assumed that the elements of the original measurement matrix are i.i.d. zero

mean Gaussian variables and the measurement matrix is extended by constructing

its permuted versions as described in the previous section.

Let us first consider the special case of Example 3.3. In this case, Φ, Φ1, and Φe

are the original measurement matrix, the matrix of additional sampling waveforms,

and the extended measurement matrix given by (3.28), respectively. Let the matrix

Φ satisfy the RIP with sufficiently high probability. For example, let the elements

of Φ be i.i.d. zero mean Gaussian random variables with variance 1/N . Let T be

any subset of size S of the set {1, . . . , N}. Then for any 0 < δS < 1, the matrix ΦT ,

which is a sub-matrix of Φ which consists of only the columns with their indices in

the set T satisfies (3.7) with the following probability [62]

Pr{ΦT satisfies (3.7)} ≥ 1 − 2 (12/δS)S e−C0(δS/2)K (3.29)

where C0 (δS/2) = δ2S/16 − δ3S/48. Hereafter, the notation C0 is used instead of

C0 (δS/2) for brevity. First, the following auxiliary result on the extended measure-

ment matrix Φe is of interest.

Lemma 3.1. Let the elements of the measurement matrix Φ be i.i.d. zero mean

Gaussian variables with variance 1/N , Φe be formed as shown in (3.28), and T ⊂
{1, . . . , N} of size S. If Ka is chosen so that min{K,Ka +M−1} ≤ ⌈(K +Ka) /2⌉,
then for any 0 < δS < 1, the following inequality holds

Pr{(Φe)T satisfies (3.7)} ≥ 1 − 4 (12/δS)S e−C0⌊K+Ka
2

⌋ (3.30)

where ⌈x⌉ and ⌊x⌋ are the smallest integer larger than or equal to x and the largest

integer smaller than or equal to x, respectively, and C0 is a constant given after

(3.29).

Proof. See Appendix B.
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Using the above lemma, the following main result, which states that the extended

measurement matrix Φe in (3.28) satisfies the RIP with overwhelming probability,

is in order.

Theorem 3.2. Let Φe be formed as in (3.28) and let the elements of Φ be i.i.d. zero

mean Gaussian variables with variance 1/N . If min{K,Ka+M−1} ≤ ⌈(K+Ka)/2⌉,
then for any 0 < δS < 1, there exist constants C3 and C4, which depend only on

δS, such that for S ≤ C3⌊(K +Ka)/2⌋/ log(N/S) the inequality (3.7) holds for all

S-sparse vectors with probability that satisfies the following inequality

Pr{Φe satisfies RIP} ≥ 1 − 4e−C4⌊(K+Ka)/2⌋ (3.31)

where C4 = C0 − C3 [1 + (1 + log (12/δS)) / log (N/S)] and C3 is small enough that

guarantees that C4 is positive.

Proof. See Appendix C.

Let us consider now the general case when the number of additional samples Ka

is larger than the number of BMIs K, i.e., Ka > K and Ke > 2K, and the extended

measurement matrix is given by (3.27). Note that while proving Lemma 3.1 for the

special case of Example 3.3, we were able to split the rows of Φe into two sets each

consisting of independent entries. In the general case, some of the entries of the

original measurement matrix appear more than twice in the extended measurement

matrix Φe, and it is no longer possible to split the rows of Φe into only two sets

with independent entries. Because of the way the additional samples are built, the

samples ylK+1, ylK+2, . . . , y(l+1)K obtained based on the permuted matrix Y P(l)
are

uncorrelated with each other, but they are correlated with every other set of samples

obtained based on the original matrix Y and the permuted matrices Y P(i)
, ∀i, i 6= l.

Thus, the following principle can be used for partitioning the rows of Φe into the

sets with independent entries. First, the rows corresponding to the original samples

form a single set with independent entries, then the rows corresponding to the first

set of additional samples based on the matrix Y P(1)
form another set and so on.

Then the number of such sets is np = ⌈Ke/K⌉, while the size of each set is

Ki =

{
K, 1 ≤ i < ⌈Ke

K ⌉ − 1

Ke − (⌈Ke

K ⌉ − 1)K, i = ⌈Ke

K ⌉. (3.32)

The extended measurement matrix in (3.27) can be rewritten as

Φe =
(

(Φe)
T
1 , (Φe)

T
2 , . . . , (Φe)

T
np

)T
(3.33)
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where (Φe)i is the ith partition of Φe of size given by (3.32). Then the general form

of Lemma 3.1 is as follows.

Lemma 3.2. Let the elements of the measurement matrix Φ be i.i.d. zero mean

Gaussian variables with variance 1/N , Φe be the extended measurement matrix

(3.27), and T ⊂ {1, . . . , N} be of size S. Let also Ka > K and np = ⌈Ke/K⌉.
Then, for any 0 < δS < 1, the following inequality holds

Pr{(Φe)T satisfies (3.7)} ≥ 1 − 2(np − 1) (12/δS)S (e−C0K
)

− 2 (12/δS)S
(
e−C0Knp

)
(3.34)

where Knp = Ke −
(
⌈Ke

K ⌉ − 1
)
K and C0 is a constant given after (3.29).

Proof. See Appendix D.

Lemma 3.2 is needed to prove that the extended measurement matrix (3.33)

satisfies the RIP with overwhelming probability. Therefore, the general version of

Theorem 3.2 is as follows.

Theorem 3.3. Let the elements of Φ be i.i.d. zero mean Gaussian variables with

variance 1/N and Φe be formed as in (3.27). If Ka > K, then there exist con-

stants C3, C4, and C ′
4 for any 0 < δS < 1, such that for S ≤ C3Knp/ log(N/S)

the inequality (3.7) holds for all S-sparse vectors with probability that satisfies the

following inequality

Pr{Φe satisfies RIP} ≥ 1 − 2(np − 1)e−C′
4K − 2e−C4Knp (3.35)

where C ′
4 = C0 − (C3Knp/K) [1 + (1 + log (12/δS)) / log (N/S)], C4 is given after

(3.31), and C3 is small enough to guarantee that C4 and C ′
4 are both positive.

Proof. See Appendix E.

When splitting the rows of Φe in a number of sets as described before Lemma 3.2,

it may happen that the last subset (Φe)np
has the smallest size Knp . As a result,

the dominant term in (3.35) will likely be the term 2e−C4Knp . It may lead to a more

stringent sparsity condition, that is, S ≤ C3Knp/ log(N/S). To improve the lower

bound in (3.35), we can move some of the rows from (Φe)np−1 to (Φe)np
in order

to make the last two partitions of almost the same size. Then the requirement on

the sparsity level will become S ≤ C3K
′/ log(N/S) where K ′ = ⌊(K + Knp)/2⌋.

Therefore, the lower bound on the probability calculated in (3.35) improves.
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3.4 Performance analysis of the recovery

In this section, we aim at answering the question whether signal recovery also im-

proves if the proposed segmented CS method, i.e., the extended measurement matrix

Φe in (3.27), is used instead of the original matrix Φ. The study is performed based

on the empirical risk minimization method for signal recovery from noisy random

projections [36]. As mentioned in Section 3.1, the LASSO method can be viewed as

one of the possible implementations of the empirical risk minimization method.

We first consider the special case of Example 3.3 when the extended measurement

matrix is given by (3.28). Let the entries of the measurement matrix Φ be selected

with equal probability as ±1/
√
N , i.e., be i.i.d. Bernoulli distributed with variance

1/N . The Bernoulli case is used here in order to keep our derivations short by

only emphasizing the differences caused by our construction of matrix Φe with

correlated rows as compared to the case analyzed in [36], where the measurement

matrix consists of all i.i.d. entries. Moreover, the Bernoulli case is the one which

is practically appealing. Note that our results can be easily applied to the case

of Gaussian distributed entries of Φ by only changing the moments of Bernoulli

distribution to the moments of Gaussian distribution.

Let r(f̂ ,f) , r(f̂) − r(f) be the excess risk between the candidate reconstruc-

tion f̂ of the signal sampled using the extended measurement matrix Φe and the

actual signal f , and r̂(f̂ ,f) , r̂(f̂)− r̂(f) be the empirical excess risk between the

candidate signal reconstruction and the actual signal. Then the difference between

the excess risk and the empirical excess risk can be found as

r(f̂ ,f) − r̂(f̂ ,f) =
1

Ke

Ke∑

j=1

(Uj − E[Uj ]) (3.36)

where Uj , (yj − φjf)2 − (yj − φj f̂)2.

The MSE between the candidate reconstruction and the actual signal can be

expressed as [67]

MSE , E
{
‖g‖2

}
= Nr(f̂ ,f) (3.37)

where g , f̂ − f . Therefore, if we know an upper bound on the right-hand side

of (3.36), denoted hereafter as U , we can immediately find an upper bound on the

MSE in the form MSE ≤ Nr̂(f̂ ,f) + NU . In other words, to find the candidate

reconstruction f̂ , one can minimize r̂(f̂ ,f) + U . This minimization will result in a

bound on the MSE as in (3.12).
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The Craig-Bernstein inequality [36], [69] can be used in order to find an upper

bound U on the right-hand side of (3.36). In our notations the Craig-Bernstein

inequality states that the probability of the following event

1

Ke

Ke∑

j=1

(Uj − E{Uj}) ≤
log
(

1
δ

)

Keǫ
+
ǫ var

{
∑Ke

j=1 Uj

}

2Ke(1 − ζ)
(3.38)

is greater than or equal to 1 − δ for 0 < ǫh ≤ ζ < 1, if the random variables Uj

satisfy the following moment condition for some h > 0 and for all k ≥ 2

E
{

|Uj − E{Uj}|k
}

≤ k! var{Uj}hk−2

2
. (3.39)

The second term on the right-hand side of equation (3.38) contains the variance

var
{
∑Ke

j=1 Uj

}

, which we need to calculate or at least find an upper bound on it.

In the case of the extended measurement matrix, the random variables Uj , j =

1, . . . ,Ke all satisfy the moment condition for the Craig-Bernstein inequality [69]

with the same coefficient h = 16B2e + 8
√

2Bσn where σ2
n is the variance of the

Gaussian noise.4 Moreover, it is easy to show that the following bound on the

variance of Uj is valid for the extended measurement matrix

var{Uj} ≤
(

2
‖g‖2

N
+ 4σ2

n

) ‖g‖2

N
≤
(
8B2 + 4σ2

n

)
r(f̂ ,f). (3.40)

However, unlike [36], in the case of the extended measurement matrix, the variables

Uj are not independent from each other. Thus, we can not simply replace the term

var
{
∑Ke

j=1 Uj

}

with the sum of the variances for Uj , j = 1, . . . ,Ke. Using the

definition of the variance, we can write that

var







Ke∑

j=1

Uj






, E











Ke∑

j=1

Uj





2



−



E







Ke∑

j=1

Uj











2

=

Ke∑

j=1

E{U2
j } + 2

Ke−1∑

i=1

Ke∑

j=i+1

E{UiUj} −K2
e

(‖g‖2

N

)2

=

Ke∑

j=1

(

E{U2
j } −

(‖g‖2

N

)2
)

+ 2

Ke−1∑

i=1

Ke∑

j=i+1

(

E{UiUj} −
(‖g‖2

N

)2
)

=

Ke∑

j=1

var{Uj} + 2

Ke−1∑

i=1

Ke∑

j=i+1

(

E{UiUj} −
(‖g‖2

N

)2
)

(3.41)

4The derivation of the coefficient h coincides with a similar derivation in [36], and therefore, is
omitted.
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where the upper bound on var{Uj} is given by (3.40). Using the fact following from

the noisy model (3.6) that the random noise components ni and nj are independent

from φig and φjg, respectively, E{UiUj} can be expressed as

E{UiUj}=E
{
[2niφig−(φig)

2][2njφjg−(φjg)
2]
}

= 4E
{
ninj

}
E
{
φigφjg

}
− 2E

{
ni

}
E
{
φig(φjg)

2
}

− 2E
{
nj

}
E
{
φjg(φig)

2
}

+ E
{
(φig)

2(φjg)
2
}
. (3.42)

The latter expression can be further simplified using the fact that E{ni}=E{nj}=0.

Thus, we obtain that

E{UiUj} = 4E
{
ninj

}
E
{
(φig)(φjg)

}
+ E

{
(φig)

2(φjg)
2
}
. (3.43)

It is easy to verify that if φi and φj are independent from each other, then

E(UiUj) = E
{
(φig)

2
}
E
{
(φjg)

2
}

=
(
‖g‖2/ N

)2
as in [36]. However, in our case,

φi and φj may depend on each other. If they indeed depend on each other, they

have L = N/M common entries, while the rest of the entries are independent. In

addition, the additive noise terms ni and nj are no longer independent random

variables as well and, thus, E
{
ninj

}
= σ2

n/M . Without loss of generality, let the

first L entries of φi and φj be the same, that is,

φig =

A
︷ ︸︸ ︷

g1a1 + . . .+ gLaL +

Pi
︷ ︸︸ ︷

gL+1φi,L+1 + . . .+ gNφi,N (3.44)

φjg =

A
︷ ︸︸ ︷

g1a1 + . . .+ gLaL +

Pj
︷ ︸︸ ︷

gL+1φj,L+1 + . . . + gNφj,N (3.45)

with a1, ..., aL being the common part between φi and φj.

Let gA be a sub-vector of g containing the L elements of g corresponding to

the common part between φi and φj , and gA′ be the sub-vector comprising the

rest of the elements. Then using the fact that A, Pi, and Pj are all zero mean

independent random variables, we can express E{(φig)(φjg)} from the first term

on the right-hand side of (3.43) as

E{(φig)(φjg)} = E{(A + Pi)(A + Pj)} = E{A2} + E{APi} + E{APj} + E{PiPj}

= E{A2} =

(
∑L

k=1 g
2
k

)2

N
=

‖gA‖2

N
. (3.46)

Similarly, the second term on the right-hand side of (3.43) can be expressed as

E
{
(φig)

2(φjg)
2
}

= E
{
(A2 + P 2

i + 2APi)(A
2 + P 2

j + 2APj)
}
. (3.47)
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Using the facts that 4E
{
ninj

}
= 4σ2

n/M , E{A2} = ‖gA‖2/N , and E{P 2
i } =

‖gA′‖2/N , the expression (3.47) can be further rewritten as

E
{
(φig)

2(φjg)
2
}

= E
{
A4 +A2P 2

i +A2P 2
j + P 2

i P
2
j

}

= E{A4} + 2
‖gA‖2

N
· ‖gA′‖2

N
+

(‖gA′‖2

N

)2

= E{A4} +

(‖g‖2

N

)2

−
(‖gA‖2

N

)2

. (3.48)

Substituting (3.46) and (3.48) into (3.43), we obtain that

E{UiUj} =
4σ2

n

M
· ‖gA‖2

N
+E{A4} +

(‖g‖2

N

)2

−
(‖gA‖2

N

)2

. (3.49)

Moreover, substituting (3.49) into (3.41), we find that

var







Ke∑

j=1

Uj






=

Ke∑

j=1

var{Uj} + 2
∑

φi,φjdependent

(

E{A4} −
(‖gA‖2

N

)2

+
4σ2

n

M
· ‖gA‖2

N

)

.

(3.50)

Since the extended measurement matrix is constructed so that the waveforms

{φi}Ke

i=K+1 are built upon M rows of the original matrix, using the inequality5

E{A4} −
(
‖gA‖2/N

)2 ≤ 2
(
‖gA‖2/N

)2
for all these M rows, we obtain for every

additional φi that

M∑

k=1

(

E{A4} −
(‖gA‖2

N

)2

+
4σ2

n

M
· ‖gA‖2

N

)

≤
M∑

k=1

(

2

(‖gA‖2

N

)2

+
4σ2

n

M
· ‖gA‖2

N

)

.

(3.51)

In the above equation gA corresponds to the first L entries of g for k = 1, to entries

from L+ 1 to 2L for k = 2 and so on. Applying also the triangle inequality, we find

that

M∑

k=1

(

2

(‖gA‖2

N

)2

+
4σ2

n

M
· ‖gA‖2

N

)

≤ 2

(‖g‖2

N

)2

+
4σ2

n

M
· ‖g‖

2

N
. (3.52)

Combining (3.51) and (3.52) and using the fact that there are Ka additional rows

in the extended measurement matrix, we obtain that

2
∑

φi,φjdependent

(

E{A4} −
(‖gA‖2

N

)2

+
4σ2

n

M
· ‖gA‖2

N

)

≤ 4Ka

(‖g‖2

N

)2

+
8σ2

nKa

M
· ‖g‖

2

N
. (3.53)

5We skip the derivation of this inequality since it is relatively well known and can be found, for
example, in [36, p. 4039].
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Noticing that ‖g‖2/N = r(f̂ ,f) and ‖g‖2 ≤ 4NB2, the right-hand side of the

inequality (3.53) can be further upper bounded as

4Ka

(‖g‖2

N

)2

+
8σ2

nKa

M
· ‖g‖

2

N
≤ 16KaB

2 r(f̂ ,f) +
8σ2

nKa

M
r(f̂ ,f). (3.54)

Using the upper bound (3.54) for the second term in (3.50) and the upper bound

(3.40) for the first term in (3.50), we finally find the upper bound for var
{
∑Ke

j=1 Uj

}

as

var







Ke∑

j=1

Uj






≤ Ke

(

8B2

(

1 +
2Ka

Ke

)

+ 4σ2
n

(

1 +
2Ka

MKe

))

r(f̂ ,f). (3.55)

Therefore, based on the Craig-Bernstein inequality, the probability that for a given

candidate signal f̂ the following inequality holds

r(f̂ ,f) − r̂(f̂ ,f) ≤ log(1
δ )

Keǫ
+

(

8B2
(

1 + 2Ka

Ke

)

+ 4σ2
n

(

1 + 2Ka

MKe

))

r(f̂ ,f) ǫ

2(1 − ζ)
(3.56)

is greater than or equal to 1 − δ.

Let c(f̂) be chosen such that the Kraft inequality
∑

f̂∈F(B) 2c(f̂) ≤ 1 is satisfied

(see also [36]), and let δ(f̂ ) = 2−c(f̂) δ. Applying the union bound to (3.56), it can

be shown that for all f̂ ∈ F(B) and for all δ > 0, the following inequality holds

with probability of at least 1 − δ

r(f̂ ,f) − r̂(f̂ ,f) ≤ c(f̂) log 2 + log(1
δ )

Ke ǫ

+

(

8B2
(

1 + 2Ka

Ke

)

+ 4σ2
n

(

1 + 2Ka

MKe

))

r(f̂ ,f) ǫ

2(1 − ζ)
. (3.57)

Finally, setting ζ = ǫ h and

a =

(

8B2
(

1 + 2Ka

Ke

)

+ 4σ2
n

(

1 + 2Ka

MKe

))

ǫ

2(1 − ζ)
(3.58)

ǫ <
1

(

4
(

1 + 2Ka

Ke

)

+ 16e
)

B2 + 8
√
Bσn + 2σ2

n

(

1 + 2Ka

MKe

) (3.59)

where 0 < ǫh ≤ ζ < 1 as required by the Craig-Bernstein inequality, the following

inequality holds with probability of at least 1 − δ for all f̂ ∈ F(B)

(1 − a)r(f̂ ,f) ≤ r̂(f̂ ,f) +
c(f̂) log 2 + log(1

δ )

Ke ǫ
. (3.60)

The following result on the recovery performance of the empirical risk minimiza-

tion method is in order.
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Theorem 3.4. Let ǫ be chosen as

ǫ =
1

(

60 (B + σn)2
) (3.61)

which satisfies the inequality (3.59), then the signal reconstruction f̂Ke
given by

f̂Ke
= arg min

f̂∈F(B)

{

r̂(f̂) +
c(f̂) log 2

ǫKe

}

(3.62)

satisfies the following inequality

E

{

‖f̂Ke
− f‖2

N

}

≤ C1e min
f̂∈F(B)

{

‖f̂ − f‖2

N
+
c(f̂ ) log 2 + 4

ǫKe

}

(3.63)

where C1e is the constant given as

C1e =
1 + a

1 − a
, a =

2
(

1 + 2Ka

Ke

)(
B
σn

)2
+
(

1 + 2Ka

MKe

)

(30 − 8e)
(

B
σn

)2
+
(
60 − 4

√
2
) (

B
σn

)

+ 30
(3.64)

with the coefficient a obtained from (3.58) for the specific choice of ǫ in (3.61).

Proof. The proof follows the same steps as the proof of the related result for the

uncorrelated case [36, p. 4039–4040] with the exception of using, in our correlated

case, the above calculated values for ǫ (3.61) and a (3.64) instead of ǫ and a for the

uncorrelated case.

Example 3.4. Let one set of samples be obtained based on the measurement matrix

Φe with Ka = K, Ke = 2K, and M = 8, and let another set of samples be

obtained using a 2K ×N measurement matrix with all i.i.d. (Bernoulli) elements.

Let also ǫ be selected as given by (3.61). Then the MSE error bounds for these

two cases differ from each other only by a constant factor given for the former

case by C1e in (3.64) and in the latter case by C1 (see (3.12) and the row after).

Considering the two limiting cases when B/σn → 0 and B/σn → ∞, the intervals

of change for the corresponding coefficients can be obtained as 1.08 ≤ C1e ≤ 2.88

and 1.06 ≤ C1 ≤ 1.63, respectively.

The following result on the achievable recovery performance for a sparse or com-

pressible signal sampled based on the extended measurement matrix Φe is of im-

portance.
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Theorem 3.5. For a sparse signal f ∈ Fs(B,S) , {f : ‖f‖2 ≤ NB2, ‖f‖l0 ≤ S}
and corresponding reconstructed signal f̂Ke

obtained according to (3.62), there exists

a constant C ′
2e = C ′

2e(B,σn) > 0, such that

sup
f∈Fs(B,S)

E

{

‖f̂Ke
− f‖2

N

}

≤ C1eC
′
2e

(
Ke

S logN

)−1

. (3.65)

Similarly, for a compressible signal f ∈ Fc(B,α,CA) , {f : ‖f‖2 ≤ NB2, ‖fm−
f‖2 ≤ NCAm

−2α} and corresponding reconstructed signal f̂Ke
obtained according

to (3.62), there exists a constant C2e = C2e(B,σn, CA) > 0, such that

sup
f∈Fc(B,α,CA)

E

{

‖f̂Ke
− f‖2

N

}

≤ C1eC2e

(
Ke

logN

)−2α/(2α+1)

. (3.66)

Proof. The proof follows the same steps as the proofs of the related results for the

uncorrelated case [36, p. 4040–4041] with the exception of using, in our correlated

case, the above calculated values for ǫ in (3.61) and a in (3.64) instead of ǫ and a

for the uncorrelated case.

Example 3.5. Let one set of samples be obtained based on the extended measure-

ment matrix Φe with Ka = K, Ke = 2K, and M = 8 and let another set of samples

be obtained using the K × N measurement matrix with all i.i.d. (Bernoulli) ele-

ments. The error bounds corresponding to the case of K uncorrelated samples and

our case of Ke correlated samples are (3.14) and (3.65), respectively. The compari-

son between these two error bounds boils down in this example to comparing 2C1C
′
2

and C1eC
′
2e. Assuming the same ǫ as (3.61) for both methods, C ′

2e = C ′
2. Fig. 3.3

compares C1e and 2C1 versus the SNR B2/σ2
n. Since C1e < 2C1 for all values of

SNR, the quality of the signal recovery, i.e., the corresponding MSE, for the case of

2K ×N extended measurement matrix is expected to be better than the quality of

the signal recovery for the case of K ×N measurement matrix of all i.i.d. entries.

The above results can be easily generalized for the case when Ka > K. Indeed,

we only need to recalculate var
{
∑Ke

j=1 Uj

}

for Ka > 2K. The only difference with

the previous case of Ka ≤ K is the increased number of pairs of dependent rows in

the extended measurement matrix Φe, which has a larger size now. The latter affects

only the second term in (3.50). In particular, every row in ΦP(1)
depends on M rows

of the original measurement matrix Φ. Moreover, the sum
∑2K−1

i=1

∑2K
j=i+1E{UiUj}

over all these M rows is bounded as in (3.52). Then considering all KM pairs of
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Figure 3.3: Example 3.5: Coefficients C1e and 2C1 versus SNR. Since C1e < 2C1 for all values
of SNR, one can conclude that the MSE corresponding to the empirical risk minimization-based
recovery for the proposed segmented CS-based AIC must be lower than that of the conventional
AIC.

dependent rows from Φ and ΦP(1)
, we have

2
∑

φi,φjdependent

(

E{A4} −
(‖gA‖2

N

)2

+
4σ2

n

M
· ‖gA‖2

N

)

≤ 4K

(‖g‖2

N

)2

+
8σ2

nK

M
· ‖g‖

2

N
. (3.67)

Similarly, every row of ΦP(2)
depends on M rows of ΦP(1)

and M rows of Φ. Con-

sidering all these 2KM pairs of dependent rows, we have

2
∑

φi,φjdependent

(

E{A4} −
(‖gA‖2

N

)2

+
4σ2

n

M
· ‖gA‖2

N

)

≤ 4(2K)

(‖g‖2

N

)2

+
8σ2

n(2K)

M
· ‖g‖

2

N
. (3.68)

Finally, the number of rows in the last matrix (Φe)np
is Knp (see (3.32) and (3.33)).

Every row of (Φe)np
depends on M rows of each of the previous np − 1 matrices

ΦP(i)
, i = 1, . . . , np − 1. Considering all (np − 1)KnpM pairs of dependent rows, we
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have

2
∑

φi,φjdependent

(

E{A4}−
(‖gA‖2

N

)2

+
4σ2

n

M
· ‖gA‖2

N

)

≤ 4(np−1)Knp

(‖g‖2

N

)2

+
8σ2

n(np−1)Knp

M
· ‖g‖

2

N
.

(3.69)

Using the equation (3.41) and the inequalities (3.67)–(3.69), we can find the following

bound

var







Ke∑

j=1

Uj






≤ Ke

(

8B2

(

1 +
D

Ke

)

+ 4σ2
n

(

1 +
D

MKe

))

r(f̂ ,f) (3.70)

where D = 2K
∑np−2

i=1 i+ 2Knp(np − 1). Note that in the case when Ke = npK, we

have D/Ke = np − 1.

Therefore, it can be shown for the general extended matrix (3.27) that the in-

equality (3.60) holds for the following values of a and ǫ:

a =

(

8B2
(

1 + D
Ke

)

+ 4σ2
n

(

1 + D
MKe

))

ǫ

2(1 − ζ)
(3.71)

ǫ <
1

(

4
(

1 + D
Ke

)

+ 16e
)

B2 + 8
√
Bσn + 2σ2

n

(

1 + D
MKe

) . (3.72)

Moreover, the theorems similar to Theorems 3.4 and 3.5 follow straightforwardly

with the corrections to a and ǫ which are given now by (3.71) and (3.72), respectively.

We finally make some remarks on non-RIP conditions for l1-norm minimization-

based recovery. Since the extended measurement matrix of the proposed segmented

CS method satisfies the RIP, the results of [66] on recoverability and stability of the

l1-norm minimization straightforwardly apply. A different non-RIP-based approach

for studying the recoverability and stability of the l1-norm minimization, which uses

some properties of the null space of the measurement matrix, is used in [70]. Then

the non-RIP sufficient condition for recoverability of a sparse signal from its noiseless

compressed samples with the algorithm (3.8) is [70]

√
S < min

{

0.5
‖v‖l1

‖v‖l2

: v ∈ {N (Φ) \ {0}}
}

(3.73)

where N (Φ) denotes the null space of the measurement matrix Φ.

Let us show that the condition (3.73) is also satisfied for the extended measure-

ment matrix Φe. Let d be any vector in the null space of Φe, i.e., d ∈ N (Φe).
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Therefore, [Φe]id = 0, i = 1, . . . ,Ke where [Φe]i is the ith 1 × N row-vector

of Φe. Since the first K rows of Φe are exactly the same as the K rows of Φ,

we have [Φ]id = 0, i = 1, . . . ,K. Hence, d ∈ N (Φ) and we can conclude that

N (Φe) ⊂ N (Φ). Due to this property, we have min {0.5‖v‖l1/‖v‖l2 : v ∈ N (Φ)} ≤
min {0.5‖v‖l1/‖v‖l2 : v ∈ N (Φe)}. Therefore, if the original measurement matrix

Φ satisfies (3.73), so does the extended measurement matrix Φe, and the signal is

recoverable from the samples taken by Φe.

Moreover, the necessary and sufficient condition for all signals with ‖x‖l0 < S to

be recoverable from noiseless compressed samples using the l1-norm minimization

(3.8) is that [70]

‖v‖l1 > 2‖vT ‖l1 , ∀v ∈ {N (Φ) \ {0}} (3.74)

where T is the set of indices corresponding to the nonzero coefficients of x. It is easy

to see that since N (Φe) ⊂ N (Φ), the condition (3.74) also holds for the extended

measurement matrix if the original measurement matrix satisfies it.

3.5 Simulation results

In our simulations, three different measurement matrices (sampling schemes) are

used: (i) the K × Nc measurement matrix Φ with i.i.d. entries referred to as the

original measurement matrix; (ii) the extended Ke × Nc measurement matrix Φe

obtained using the proposed segmented CS method and referred to as the extended

measurement matrix; and (iii) the Ke×Nc measurement matrix with all i.i.d entries

referred to as the enlarged measurement matrix. This last measurement matrix cor-

responds to the sampling scheme with Ke independent BMIs in the AIC in Fig. 3.1.

The number of segments in the proposed segmented CS method M is set to 8.

The noisy case corresponding to the model (3.6) is always considered. Then in

order to make sure that the measurement noise for additional samples obtained based

on the proposed extended measurement matrix is correlated with the measurement

noise of the original samples, the K×M matrix of noisy sub-samples with the noise

variance σ2
n/M is first generated. Then the permutations are applied to this matrix

and the sub-samples along each row of the original and permuted matrices are added

up together to build noisy samples.

The recovery performance for three aforementioned sampling schemes is mea-

sured using the MSE between the recovered and original signals. In all examples,
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MSE values are computed based on 1000 independent simulation runs for all sam-

pling schemes tested.

3.5.1 Simulation example 1: l1-norm minimization-based recovery

for a time sparse signal

In our first example, the signal is assumed to be sparse in the time domain. Particu-

larly, let f(t) be the continuous-time signal as in (3.1) with N = 128 basis functions

{ψn(t)}N
n=1 of the type

ψn(t) =

{
N
T , t ∈ [(n− 1)T/N, nT/N ]
0, otherwise

, n = 1, . . . , N. (3.75)

These basis functions form the sparsity basis Ψ(t). Choosing Nc to be equal to N ,

we obtain based on (3.5) that Ψ = I. Over one time period T only 3 projections of

the signal onto the sparsity basis are nonzero and are set to +1 or −1 with equal

probabilities.

The l1-norm minimization algorithm (3.9) is used to recover the signal sampled

using the three aforementioned sampling schemes. Since Ψ = I for the considered

time sparse signal, then Φ′ = Φ in (3.9). The number of BMIs in the sampling

device is K = 16, while γ in (3.9), which is the bound on the root square of the

noise energy, is set to
√
K ′σn. Here K ′ = K for the sampling scheme based on the

original measurement matrix, while K ′ = Ke in the other two schemes. The entries

of the original and enlarged measurement matrices are generated as i.i.d. Gaussian

or i.i.d. Bernoulli distributed random variables with zero mean and variance 1/N .

This corresponds to the case of sampling waveforms with chip duration T/N and

i.i.d. Gaussian or i.i.d. Bernoulli distributed chip amplitudes, respectively. The

SNR is defined as ‖Φf‖2
l2
/‖n‖2

l2
. Approximating ‖Φf‖2

l2
by (K ′/N)‖f‖2

l2
, which is

valid because of (3.7), the corresponding noise variance σ2
n can be calculated when

SNR is given and vice versa. For example, the approximate SNR in dBs can be

calculated as 10 log10 (3/Nσ2
n).

Figs. 3.4(a) and 3.4(b) show the MSEs corresponding to all three aforementioned

measurement matrices versus the ratio of the number of additional samples to the

number of original samples Ka/K for the Gaussian and Bernoulli cases, respectively.

The results are shown for three different SNR values of 5, 15 and 25 dB. It can be

seen from the figures that better recovery quality is achieved by using the extended

measurement matrix as compared to the original measurement matrix. The cor-

responding MSE curves in both Figs. 3.4(a) and 3.4(b) are similar to each other

49



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
10

−5

10
−4

10
−3

10
−2

10
−1

K
a
/K

M
S

E

 

 

SNR = 5 dB
SNR = 15 dB
SNR = 25 dB
Original Gaussian Matrix
Extended Matrix
Enlarged Matrix

(a) Measurement matrix with Gaussian distributed entries
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(b) Measurement matrix with Bernoulli distributed entries

Figure 3.4: Recovery of the time sparse signal based on the l1-norm minimization algorithm:
MSEs versus Ka/K.
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which confirms the fact that both Gaussian and Bernoulli measurement matrices

are good candidates, although Bernoulli is practically preferable. As expected, the

recovery performance in the case of the extended measurement matrix is slightly

worse than that in the case of the enlarged measurement matrix. This difference,

however, is small as compared to the performance improvement provided by the ex-

tended measurement matrix over the original measurement matrix. Note also that

in the case of the enlarged measurement matrix, the AIC in Fig. 3.1 consists of Ke

BMIs, while only K BMIs are required in the case of the extended measurement

matrix. For example, the number of such BMIs halves for the proposed segmented

AIC if Ka/K = 1. Additionally, it can be seen that the rate of MSE improvement

decreases as the number of collected samples increases. The latter can be observed

for both the extended and enlarged measurement matrices and for all three values

of SNR.

3.5.2 Simulation example 2: Time sparse signal with empirical risk

minimization-based recovery

In our second simulation example, the empirical risk minimization method is used

to recover the same time sparse signal as in our first simulation example. The signal

is sampled using the three sampling schemes tested with K = 24. The minimization

problem (3.11) is solved to obtain a candidate reconstruction f̂K ′ of the original

sparse signal f . Considering f̂K ′ = ΨT x̂K ′ , the problem (3.11) can be rewritten in

terms of x̂K ′ as

x̂K ′ = arg min
x̂∈X

{

r̂(ΨT x̂) +
c(x̂) log 2

ǫK ′

}

= arg min
x̂∈X

{

‖y −ΦΨT x̂‖2
l2 +

2 log 2 logN

ǫ
‖x̂‖l0

}

(3.76)

and solved using the iterative bound optimization procedure [36]. This procedure

uses the threshold
√

2 log 2 logN/λǫ where λ is the largest eigenvalue of the matrix

ΦTΦ. In our simulations, this threshold is set to 0.035 for the case of the extended

measurement matrix and 0.05 for the cases of the original and enlarged measurement

matrices. These threshold values are optimized as recommended in [36]. The stop-

ping criterion for the iterative bound optimization procedure is ‖x̂(i+1)−x̂(i)‖l∞ ≤ θ

where ‖.‖l∞ is the l∞-norm and x̂(i) denotes the value of x̂ obtained in the ith iter-

ation. The value θ = 0.001 is selected.

Figs. 3.5(a) and 3.5(b) show the MSEs for all three measurement matrices tested
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(a) Measurement matrix with Gaussian distributed entries
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(b) Measurement matrix with Bernoulli distributed entries

Figure 3.5: Recovery of the time sparse signal based on the empirical risk minimization method:
MSEs versus Ka/K.
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versus the ratioKa/K for the Gaussian and Bernoulli cases, respectively. The results

are shown for three different SNR values of 5, 15 and 25 dB. The same conclusions

as in the first example can be drawn in this example.

3.5.3 Simulation example 3: l1-norm minimization-based recovery

for an OFDM signal

In our third example, we consider an orthogonal frequency-division-multiplexing

(OFDM) signal with 3 nonzero subcarriers out of 128 available frequency bins.

Nonzero subcarriers are modulated with quadrature phase-shift keying (QPSK) sym-

bols. The N = 128 basis functions {ψn(t)}N
n=1 are

ψn(t) = cos

(

(n− 1)
2π

T
t

)

t ∈ [0 , T ], n = 1, . . . , N. (3.77)

The number of chips per symbol duration in the sampling waveform is set to Nc =

256. It is because we need to ensure that the rows of the 128 × 256 sparsity matrix

Ψ, which is calculated according to (3.5), are approximately orthogonal. Then the

SNR can be defined as ‖Φ′x‖2
l2
/‖n‖2

l2
. Moreover, one can approximate ‖Φ′x‖2

l2
=

‖ΦΨx‖2
l2

by ψave(K
′/N)‖x‖2

l2
, where ψave is the average norm of the N rows of

the sparsity matrix Ψ and K ′ = K for the sampling scheme based on the original

measurement matrix, whileK ′ = Ke for the other two schemes. Considering that the

nonzero subcarriers are modulated with unit norm QPSK symbols, the approximate

SNR in dBs can be calculated as 10 log10 (3ψave/Nσ
2
n). The l1-norm minimization-

based recovery method is used for signal recovery based on the compressed samples

obtained using the three sampling schemes tested.

Figs. 3.6(a) and 3.6(b) show the MSEs for all three measurement matrices tested

versus the ratioKa/K for the Gaussian and Bernoulli cases, respectively. Comparing

the results in Fig. 3.6 and Fig. 3.4, one can deduce the universality of the Gaussian

and Bernoulli measurement matrices, which means that we are able to recover the

signal using the measurements collected with these measurement matrices regardless

of the sparsity basis. As in the previous two simulation examples, the proposed

segmented CS scheme significantly outperforms the original sampling scheme with

the same number of BMIs, while slightly deteriorates in performance compared to

the sampling scheme with enlarged number of BMIs.

It is also worth mentioning that the MSE of the recovered signal depends on the

ratio between the sparsity and the extended number of samples (see for example

(3.63)). Moreover, the RIP sets a bound for the number of samples required for
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(b) Measurement matrix with Bernoulli distributed entries

Figure 3.6: Recovery of the sparse OFDM signal based on the l1-norm minimization algorithm:
MSEs versus Ka/K.
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successful recovery given the sparsity level of the signal. Thus, if the signal is not

sparse enough and the number of collected samples is low, a recovery algorithm

can fail to recover the signal from such small number of samples. If the number of

samples is sufficient to ensure successful recovery, but the ratio between the sparsity

and the number of samples is high, the MSE can be still high. By using the technique

proposed in this chapter for extending the number of samples, this situation can be

improved as we show in our next example.

3.5.4 Simulation example 4: The number of BMIs in the conven-

tional AIC is insufficient for successful recovery

Our last simulation example considers the case when the number of original com-

pressed samples, that is, the number of BMIs in the conventional AIC, is insufficient

for successful recovery. The time sparse signal described in our first simulation ex-

ample is assumed. The number of basis functions is N = 128, however, the number

of nonzero projections, i.e., the signal sparsity level is S = 5. The number of BMIs

in the conventional AIC is K = 9 and the number of segments in the proposed

segmented AIC is M = 8. Since generally speaking four times as many samples are

needed as the sparsity level of the signal to guarantee exact recovery in noiseless

case [1], the number of samples that can be collected by the conventional AIC with

K = 9 BMIs is insufficient for exact recovery even in the noise free case. Thus,

the conventional AIC is not applicable and only the sampling schemes based on

the extended and enlarged measurement matrices are compared to each other in

terms of the percentage that the positions of the nonzero values of the time sparse

signal are correctly identified. The number of samples can be increased to at most

K2 = 81 if the proposed segmented AIC is used. The MSEs averaged over all cases

of successful recovery are also reported. Two different cases of (a) no measurement

noise and (b) SNR=25 dB are considered. The simulation results are gathered in

Table 3.1.

The results in Table 3.1 show that although the AIC with K = 9 (the column

Ka = 0 in the table) branches cannot successfully recover the positions of nonzero

entries of the signal, the segmented AIC is able to find those positions and the

success rate increases as Ka increases. The success rate of the AIC with larger

number of BMIs is higher as expected. For both schemes lower success rates can be

observed in the noisy case as compared to the noiseless case.
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Table 3.1: Percentage that the positions of the nonzero signal values are correctly identified.

Ka 0 9 18 27 36 45

Noiseless case

AIC with Ke branches
Percentage 0 22.45 90.5 100 100 100

MSE N/A 0 0 0 0 0

Segmented AIC
Percentage 0 10.2 58.35 83.10 89.7 90.5

MSE N/A 0 0 0 0 0

SNR=25 dB

AIC with Ke branches
Percentage 0 11 71.45 98 100 100

MSE N/A 5.48 × 10−4 4.91 × 10−4 2.78 × 10−4 1.53 × 10−4 1.04 × 10−4

Segmented AIC
Percentage 0 4.85 34.30 57.20 70.5 73.65

MSE N/A 6.06 × 10−4 5.88 × 10−4 5.78 × 10−4 4.82 × 10−4 3.98 × 10−4
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3.6 Chapter summary

A new segmented CS method for AIC has been proposed. According to this method,

an analog signal measured by K parallel BMIs, each characterized by a specific ran-

dom sampling waveform, is first segmented in time into M segments so that a K×M
matrix of sub-samples is obtained. Then the sub-samples collected on different seg-

ments and different BMIs are reused so that a larger number of samples (at most

K2) than the number of BMIs is collected. Such samples are correlated to each

other over at most one segment and the technique is shown to be equivalent to

extending the measurement matrix consisting of the BMI sampling waveforms by

adding new rows without actually increasing the number of BMIs. Such extended

measurement matrix satisfies the RIP with overwhelming probability if the original

measurement matrix of BMI sampling waveforms satisfies it. Due to the inherent

structure of the proposed segmented CS method, the complexity of the sampling

device is slightly increased, while the signal recovery performance is shown to be

significantly improved. Specifically, we have proved that the performance of the sig-

nal recovery based on the empirical risk minimization improves when the segmented

AIC is used for sampling instead of the conventional AIC with the same number of

BMIs. Remarkably, if the number of BMIs is insufficient in the conventional AIC

to guarantee successful recovery, the proposed segmented AIC supplies the recovery

algorithm with additional samples so that successful recovery becomes possible. At

the same time, the complexity increase is only due to the M ≤ K times higher

sampling rate and the necessity to solve a larger size optimization problem at the

recovery stage, while the number of BMIs remains the same at the sampling stage.

The validity, effectiveness, and superiority of the proposed segmented AIC over the

conventional AIC is also justified based on our simulation results.
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Chapter 4

Sparse Channel Estimation

The standard recursive parameter estimation algorithms do not assume any infor-

mation about the specific structure of the channel being estimated. However, being

aware of the channel structure one can modify the standard algorithms in order to

have a better estimate of the channel. In this chapter, we are concerned with a class

of channels where the CIR is sparse.

Sparsity-aware modifications of the LMS algorithm are abundant in the signal

processing literature [71], [72]. The methods introduced in [71], [72] add a penalty

term to the standard LMS error function which is designed in a way to force the

solution to be sparse. A penalty in the form of the l0-pseudo-norm of the CIR is

used in [72], while [71] uses the l1-norm. A performance analysis of the l0-pseudo-

norm constraint LMS algorithm of [72] is given in [73]. In [74], [75], variations of

the algorithms in [71] are introduced. In [74], the filter coefficients are updated in

a transform domain which leads to faster convergence for non-white inputs. The

authors of [76] introduce a scheme that employs two sequential adaptive filters for

communication line or network echo cancellers. The method exploits the sparseness

of the CIR and uses two sequential LMS type structures which are both shorter

than the largest delay of the channel. A family of the so called natural gradient

estimation algorithms is studied in [77]. It is shown that the class of sparse LMS

algorithms presented has faster convergence rate.

Other channel estimation algorithms have also been modified to either better

adapt to a sparse channel or achieve the same performance as the corresponding

standard algorithms with lower complexity. Time and norm-weighted LASSO with

weights obtained from RLS algorithm has been presented in [78]. A greedy RLS

algorithm designed for finding sparse solutions to linear systems has been presented
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in [79], and it has been demonstrated that it has a better performance than the

standard RLS algorithm for estimating sparse time-varying FIR channels. A CS-

based Kalman filter has been developed in [80] for estimating signals with time

varying sparsity pattern.

In this chapter, we first derive the reweighted l1-norm penalized LMS algorithm

which is based on modifying the LMS cost function by adding the l1-norm penalty

term and also introducing a reweighting of the CIR coefficients. Then the main

contribution follows that is the in depth study of the convergence and excess MSE

analysis of the reweighted l1-norm penalized LMS algorithm. Our simulation results

show that the proposed algorithm outperforms the standard LMS as well as the

penalized sparsity-aware LMS algorithms of [71] and approve our theoretical studies.

The rest of the chapter is organized as follows. Sections 4.1 and 4.2 review the

standard LMS algorithm and some sparsity-aware modifications of it, respectively.

In Section 4.3, the reweighted l1-norm penalized LMS algorithm is introduced. An

analytical study of the convergence of the reweighted l1-norm penalized LMS al-

gorithm as well as its excess MSE is given in Section 4.4. The lp-pseudo-norm

penalized LMS algorithm is introduced in Section 4.5. Section 4.6 presents the

necessary modifications to the penalized LMS algorithms for an arbitrary sparsity

basis. Decimated LMS algorithms for estimation of a frequensy sparse CIR are in-

troduced in Section 4.7. Simulation results comparing the performance of different

sparsity-aware LMS algorithms are given in Section 4.8. Section 4.9 concludes the

chapter.

4.1 Standard LMS algorithm

Let us reconsider the block diagram of the communication system shown in Fig. 2.13.

The system equations in (2.17) derived form Fig. 2.13 are rewritten here.

dk = wTxk + nk

ek = dk −wT
k xk. (4.1)

Standard LMS minimizes the cost function Lk = (1/2)e2k with a gradient descent

algorithm and its update equation is derived as

wk+1 = wk − µ
∂Lk

∂wk
= wk + µekxk (4.2)

with µ being the step size of the algorithm.

59



For convergence analysis of LMS a coefficient error vector is usually defined as

vk = wk −w. (4.3)

The data vector xk is assumed to be independent of the coefficient error vector vk.

Using (4.1), (4.2), and (4.3) we can write

vk+1 = vk + µ
(
(wT −wT

k )xk + nk

)
xk

= vk − µvT
k xkxk + µnkxk = vk − µxkx

T
k vk + µnkxk. (4.4)

Taking expectation from the both sides of (4.4) we can derive the evolution equation

for E {vk}. Note that due to the independence assumption of the data vector and

the coefficient error vector, we have E
{
µxkx

T
k vk

}
= µE

{
xkx

T
k

}
E {vk}. Also,

E {µnkxk} = µE {nk}E {xk} = 0, since nk is zero mean and independent from xk.

We can write the evolution equation as

E {vk+1} = (I − µR)E {vk} (4.5)

where R = E
{
xkx

T
k

}
, and I is the identity matrix. The following result establishes

the mean convergence of standard LMS algorithm.

Theorem 4.1. If the maximal eigenvalue of the matrix I − µR is smaller than

1, then the mean coefficient error vector of the standard LMS algorithm E {vk}
converges to zero as k → ∞.

Proof. Let QΛQT be the eigenvalue decomposition of matrix R. Defining ck ,

QTvk, equation (4.5) becomes

E {ck+1} = (I − µΛ)E {ck} . (4.6)

From the above equation it can be seen that

E {ck+M} = (I − µΛ)M E {ck} . (4.7)

Since I −µΛ is a diagonal matrix, the convergence behavior of every element of the

vector E {ck+M} can be studied separately. Let λi be the ith diagonal element of

the matrix Λ. From (4.7), we have

[
E {ck+M}

]

i
= (1 − µλi)

M [E {ck}
]

i
(4.8)

where [·]i denotes the ith entry of a vector. Since the largest eigenvalue of I−µR is

smaller than 1, then all the diagonal elements 1−µλi are smaller than 1. Therefore

every entry of E {ck+M} tends to zero as M → ∞. Since vk = Qck, the mean

coefficient error vector E {vk} tends to an all zero vector as k → ∞.
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In order to find the excess MSE of the standard LMS algorithm we need to find

an expression for E
{
vk+1v

T
k+1

}
. Using the expression in (4.4) for vk+1, the variable

vk+1v
T
k+1 can be written as follows

vk+1v
T
k+1 =

(
vk − µxkx

T
k vk + µnkxk

) (
vT

k − µvT
k xkx

T
k + µnkx

T
k

)
. (4.9)

Expanding the right-hand side of (4.9), and then taking expectation from the both

sides of the equation we obtain

E
{
vk+1v

T
k+1

}
= E

{
vkv

T
k

}
− µ

(
E
{
vkv

T
k xkx

T
k

}
+ E

{
xkx

T
k vkv

T
k

})

+ µ2E
{
n2

kxkx
T
k

}
+ µ

(
E
{
nkvkx

T
k

}
+ E

{
nkxkv

T
k

})

− µ2
(
E
{
nkxkx

T
k vkx

T
k

}
+ E

{
nkxkv

T
k xkx

T
k

})

+ µ2E
{
xkx

T
k vkv

T
k xkx

T
k

}
. (4.10)

Note that due to independence of the additive noise, nk, and the data and coefficient

error vectors as well as the fact that the additive noise is zero mean, we have

E
{
nkvkx

T
k

}
= E {nk}E

{
vkx

T
k

}
= 0

E
{
nkxkv

T
k

}
= E {nk}E

{
xkv

T
k

}
= 0

E
{
nkxkx

T
k vkx

T
k

}
= E {nk}E

{
xkx

T
k vkx

T
k

}
= 0

E
{
nkxkv

T
k xkx

T
k

}
= E {nk}E

{
xkv

T
k xkx

T
k

}
= 0. (4.11)

Using the fact that E
{
xkx

T
k vkv

T
k xkx

T
k

}
= 2RE

{
vkv

T
k

}
R+R tr

{
RE

{
vkv

T
k

}}

for Gaussian input sequences (see, for example, equation (12) of [81] and the deriva-

tion of equation (35) in [82]) in (4.10), the following expression for E
{
vk+1v

T
k+1

}

is derived

E
{
vk+1v

T
k+1

}
= E

{
vkv

T
k

}
− µ

(
E
{
vkv

T
k

}
R+RE

{
vkv

T
k

})
+ µ2σ2

nR

+ µ2
(
2RE

{
vkv

T
k

}
R+R tr

{
RE

{
vkv

T
k

}})
. (4.12)

The excess MSE denoted as ξk is defined as ξk = E
{(
vT

k xk

)2
}

. Then the excess

MSE, ξk, can be further expanded and simplified as shown below

ξk = E
{(
vT

k xk

)2
}

= E
{
vT

k xkx
T
k vk

}

(a)
= E

{
tr
{
vT

k xkx
T
k vk

}} (b)
= tr

{
RE

{
vkv

T
k

}}
. (4.13)

In (4.13), equality (a) holds since vT
k xkx

T
k vk is a scalar and therefore, it is equal

to its trace. Also, (b) holds since tr
{
vT

k xkx
T
k vk

}
= tr

{
xkx

T
k vkv

T
k

}
and the two
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mathematical operators of matrix trace and expectation are interchangable. Let

Rv = limk→∞E
{
vkv

T
k

}
, and ξ = limk→∞ ξk. Then from (4.13) we have ξ =

tr {RRv}. Therefore, to find ξ we need to find an expression for tr {RRv} from

equation (4.12). Letting k → ∞ in (4.12) we have

Rv = Rv − µ (RvR+RRv) + µ2σ2
nR+ µ2 (2RRvR+R tr {RRv}) . (4.14)

Crossing out Rv from the both sides of the above equation and then dividing the

resulting equation by µ we can write

RvR+RRv − 2µRRvR = µR
(
σ2

n + tr {RRv}
)
. (4.15)

Breaking 2µRRvR into the sum of two identical terms and then factoring out RRv

and RvR we obtain

RRv (I − µR) + (I − µR)RvR = µR
(
σ2

n + tr {RRv}
)
. (4.16)

Right multiplying the both sides of the above equation with (I − µR)−1 and noting

that σ2
n + tr {RRv} is a scalar the following expression can be derived

RRv + (I − µR)RvR (I − µR)−1 = µR (I − µR)−1 (σ2
n + tr {RRv}

)
. (4.17)

Taking the trace of both sides of the above equation we have

tr {RRv} + tr
{

(I − µR)RvR (I − µR)−1
}

= µ
(
σ2

n + tr {RRv}
)

tr
{

R (I − µR)−1
}

. (4.18)

Since tr
{

(I−µR)RvR (I − µR)−1
}

equals tr
{

RvR (I − µR) (I − µR)−1
}

which

in turn is equal to tr {RvR}, (4.18) can be simplified to the following equation

tr {RRv} + tr {RvR} = µ
(
σ2

n + tr {RRv}
)

tr
{

R (I − µR)−1
}

. (4.19)

Since tr {RRv} = tr {RvR}, from (4.19) we can write

tr {RRv}
(

2 − µ tr
{

R (I − µR)−1
})

= µσ2
n tr

{

R (I − µR)−1
}

. (4.20)

Having in mind that ξ = tr {RRv}, an expression for ξ can be derived from (4.20).

Thus, it can be shown that the excess MSE is given by

ξ = tr {RRv} =
η

2 − η
σ2

n (4.21)

where η , µ tr
{

R (I − µR)−1
}

.
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4.2 Sparsity-aware LMS algorithms

The standard LMS algorithm assumes no structural information about the sig-

nal/system to be estimated. Taking any structural information into account, one

should be able to modify the algorithm and benefit by lower estimation error, faster

convergence, or lower algorithm complexity. In this chapter, we are interested in

the case when the CIR is sparse. Here, we review two sparsity-aware modifications

of the standard LMS presented in [71].

The Zero Attracting LMS Algorithm: In order to penalize the non-sparse so-

lutions, an additional term proportional to the l1-norm of wk is included in the

cost function of the standard LMS algorithm in [71]. Then the new cost function

becomes LZA
k , (1/2)e2k + γZA‖wk‖l1 , where γZA is the weight associated with the

penalty term. In [71], the CIR is assumed to be sparse in the time domain. Note

that the cost function LZA
k is convex, and therefore, it is guaranteed that the gradi-

ent descent method converges under some condition. The corresponding algorithm

is called the zero attracting LMS (ZA-LMS) and its update equation is

wk+1 = wk + µekxk − ρZAsgn(wk) (4.22)

where ρZA , µγZA and sgn(·) is the sign function which operates on every com-

ponent of the vector separately and it is zero for x = 0, 1 for x > 0, and −1 for

x < 0.

The Reweighted Zero Attracting LMS Algorithm: The exact measure of sparsity,

that is, the l0-pseudo-norm can also be added as the penalty term to the standard

LMS’s cost function. Since the complexity of using the l0-pseudo-norm penalty is

high, a logarithmic penalty that resembles the l0-pseudo-norm is used as an alter-

native in [71]. The modified cost function is then

LRZA
k , (1/2)e2k + γRZA

N∑

i=1

log

(

1 +
[wk]i
ǫ′RZA

)

(4.23)

where γRZA and ǫ′RZA are some positive numbers. Note that the same penalty term

is also used, for example, in [83]. Since the logarithmic penalty in (4.23) resembles

the l0-pseudo-norm better than the l1-norm penalty in ZA-LMS algorithm, one

can expect that the corresponding algorithm, called in [71] as the reweighted zero

attracting LMS (RZA-LMS) algorithm, has a better performance than the ZA-LMS
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algorithm. The update equation for the RZA-LMS is

wk+1 = wk + µekxk − ρRZA
sgn(wk)

1 + ǫRZA|wk|
(4.24)

where ρRZA , µγRZAǫRZA, ǫRZA , 1/ǫ′RZA, and | · | is the component-wise absolute

value operator. However, the cost function (4.23) is not convex and the convergence

and consistency analysis is problematic for (4.24).

In [74], variations of the ZA-LMS and RZA-LMS algorithms, in which the filter

coefficients are updated in a transform domain leading to faster convergence with

non-white system inputs, have been proposed. A simplified version of the RZA-LMS

algorithms obtained through the use of piece-wise approximation of the l0-pseudo-

norm has also been presented in [75].

4.3 Reweighted l1-norm penalized LMS

The reweighted l1-norm minimization for sparse signal recovery proposed in [84]

has a better performance than the standard l1-norm minimization that is usually

employed in the CS literature. Therefore, one approach to enforce the sparsity of the

solution for the sparsity-aware LMS-type algorithms is to introduce the reweighted

l1-norm penalty term in the cost function [85]. Our reweighted l1-norm penalized

LMS algorithm considers a penalty term proportional to the reweighted l1-norm of

the coefficient vector. The corresponding cost function can be written as

Lrl1
k , (1/2)e2k + γr‖skwk‖l1 (4.25)

where γr is the weight associated with the penalty term and elements of sk are

[sk]i =
1

ǫr + |[wk−1]i|
, i = 1, . . . , N (4.26)

with ǫr being some positive number. The update equation can be derived by differ-

entiating (4.25) with respect to the vector of CIR coefficients and using the gradient

descent principle shown in (4.2). The resulting update equation is

wk+1 = wk + µekxk − ρr
sgn(wk)

ǫr + |wk−1|
(4.27)

where ρr = µγr. The absolute value operator as well as the sgn(·) and the division

operator in the last term of (4.27) are all component-wise. Therefore, the variable

sgn(wk)/ (ǫr + |wk−1|) is a vector where its ith entry is [sgn(wk)]i/ (ǫr + |[wk−1]i|).
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Note that although the weight vector sk changes in every stage of this sparsity-

aware LMS algorithm, it does not depend on wk, and the cost function Lrl1
k is

convex unlike the cost function for the lp-pseudo-norm penalized LMS and RZA-

LMS algorithms. Therefore, the reweighted l1-norm penalized LMS algorithm is

guaranteed to converge to the global minimum under suitable conditions. Thus, we

study the convergence of the proposed algorithm in the next section [86].

4.4 Convergence study of the reweighted l1-norm pe-

nalized LMS algorithm

The reweighted l1-norm penalized LMS algorithm follows the logic that the penalty

term resembling the l0-pseudo-norm of the coefficient vector forces the solution of

the modified LMS algorithm to be sparse. The cost function of the reweighted l1-

norm penalized LMS algorithm is given in (4.25), while the update equation is given

in (4.27).

4.4.1 Mean convergence

We first study the mean convergence of the reweighted l1-norm penalized LMS algo-

rithm. The update equation for the coefficient error vector of the l1-norm penalized

LMS vk can be written as

vk+1 = vk + µ
(
(wT −wT

k )xk + nk

)
xk − ρr

sgn(wk)

ǫr + |wk−1|

= vk − µvT
k xkxk + µnkxk − ρr

sgn(wk)

ǫr + |wk−1|
. (4.28)

Since vT
k xk is a scalar which is equal to xT

k vk, (4.28) can be rewritten as

vk+1 = vk − µxkx
T
k vk + µnkxk − ρr

sgn(wk)

ǫr + |wk−1|
. (4.29)

From (4.29) we can derive the evolution equation for E {vk}. Note that nk and

xk are independent since nk is assumed to have zero mean, i.e., E {µnkxk} = 0.

Then the evolution equation is

E {vk+1} = (I − µR)E {vk} − ρrE

{
sgn(wk)

ǫr + |wk−1|

}

. (4.30)

It is easy to see that
−1

ǫr
≤ sgn(wk)

ǫr + |wk−1|
≤ 1

ǫr
(4.31)
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where 1 is the vector with all of its entries set to one. Therefore, the vector

ρrE {sgn(wk)/ (ǫr + |wk−1|)} is bounded between (−ρr/ǫr)1 and (ρr/ǫr)1. This

bound on the second term on the right-hand side of (4.31) is helpful for studying the

mean convergence of the reweighted l1-norm penalized LMS algorithm. The follow-

ing theorem establishes our main result on the mean convergence of the reweighted

l1-norm penalized LMS algorithm.

Theorem 4.2. If the maximal eigenvalue of the matrix I − µR is smaller than 1,

then the mean coefficient error vector E {vk} is bounded as k → ∞.

Proof. Let QΛQT be the eigenvalue decomposition of R. Equation (4.30) can be

rewritten as

E {ck+1} = (I − µΛ)E {ck} −w′
k (4.32)

where

ck , QTvk

w′
k , ρrQ

TE

{
sgn(wk)

ǫr + |wk−1|

}

. (4.33)

Let also q be the vector whose ith entry is the sum of the absolute values of the

elements in the ith row of the matrixQT . The variable qm is defined as the maximum

element of the vector q. The vector QT sgn(wk) is thus bounded between qm1 and

−qm1. Therefore, the variable w′
k in (4.33) is bounded between (ρrqm/ǫr)1 and

(−ρrqm/ǫr)1.

It is easy to see from (4.32) that

E {ck+M} = (I − µΛ)M E {ck} −
M−1∑

m=0

(I − µΛ)m
w′

k+M−m−1. (4.34)

Moreover, since Λ and correspondingly I − µΛ are diagonal matrices, the conver-

gence behavior of every element of the vector E {ck+M} can be studied separately.

Let λi be the ith diagonal element of the matrix Λ. From (4.34), we have

[
E {ck+M}

]

i
= (1 − µλi)

M [E {ck}
]

i
−

M−1∑

m=0

(1 − µλi)
m [w′

k+M−m−1

]

i
. (4.35)

Since the largest eigenvalue of I − µR is smaller than 1, then all the diagonal

elements 1 − µλi are smaller than 1. Also note that the ith entry of the vector w′
k

is bounded between ρrqm/ǫr and −ρrqm/ǫr. Therefore, by letting M → ∞, the sum

on the right-hand side of (4.35) is a geometric series with a common ratio of 1−µλi
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and is bounded between ρrqm/(µλiǫr) and −ρrqm/(µλiǫr). The other term on the

right-hand side of (4.35) approaches zero as M → ∞. As a result,
[
E {ck+M}

]

i
as

well as the whole vector E {ck+M} are bounded when M → ∞. Since according to

(4.33) E {ck} is a rotated version of E {vk}, the coefficient error vector vk is also

bounded in mean. Therefore, if the largest eigenvalue of I − µR is smaller than 1,

then E {vk} is bounded as k → ∞.

Note that the condition in Theorem 4.2 is the same as the mean convergence

condition for the standard LMS algorithm given in Theorem 4.1.

4.4.2 Excess MSE

We now turn to the excess MSE calculation for the reweighted l1-norm penalized

LMS algorithm. Using the expression in (4.28) for vk+1, the variable vk+1v
T
k+1 can

be written as

vk+1v
T
k+1 =

(

vk − µxkx
T
k vk + µnkxk − ρr

sgn(wk)

ǫr + |wk−1|

)

×
(

vT
k − µvT

k xkx
T
k + µnkx

T
k − ρr

sgn(wT
k )

ǫr + |wT
k−1|

)

. (4.36)

Expanding the right-hand side of (4.36) and then taking expectation of the both

sides results in the following equation.

E
{
vk+1v

T
k+1

}
= E

{
vkv

T
k

}
− µ

(
E
{
vkv

T
k xkx

T
k

}
+ E

{
xkx

T
k vkv

T
k

})

+ µ2E
{
n2

kxkx
T
k

}
+ µ

(
E
{
nkvkx

T
k

}
+ E

{
nkxkv

T
k

})

− µ2
(
E
{
nkxkx

T
k vkx

T
k

}
+ E

{
nkxkv

T
k xkx

T
k

})

+ µ2E
{
xkx

T
k vkv

T
k xkx

T
k

}

− ρr

(

E

{

vk
sgn(wT

k )

ǫr + |wT
k−1|

}

+ E

{
sgn(wk)

ǫr + |wk−1|
vT

k

})

+ µρr

(

E

{

xkx
T
k vk

sgn(wT
k )

ǫr + |wT
k−1|

}

+ E

{
sgn(wk)

ǫr + |wk−1|
vT

k xkx
T
k

})

− µρr

(

E

{

nkxk
sgn(wT

k )

ǫr + |wT
k−1|

}

+ E

{

nk
sgn(wk)

ǫr + |wk−1|
xT

k

})

+ ρ2
r

(

E

{

sgn(wk)

ǫr + |wk−1|
sgn(wT

k )

ǫr + |wT
k−1|

})

. (4.37)

Note that due to the independence of the additive noise nk of the data and coefficient

error vectors and due to the fact that the additive noise is zero mean, in addition
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to (4.11) we also have

E

{

nkxk
sgn(wT

k )

ǫr + |wT
k−1|

}

= E

{

nk
sgn(wk)

ǫr + |wk−1|
xT

k

}

= 0.

Replacing 2RE
{
vkv

T
k

}
R+R tr

{
RE

{
vkv

T
k

}}
in (4.37) for E

{
xkx

T
k vkv

T
k xkx

T
k

}
,

the expression for E
{
vk+1v

T
k+1

}
can be derived as

E
{
vk+1v

T
k+1

}
= E

{
vkv

T
k

}
− µ

(
E
{
vkv

T
k

}
R+RE

{
vkv

T
k

})
+ µ2σ2

nR

+ µ2
(
2RE

{
vkv

T
k

}
R+R tr

{
RE

{
vkv

T
k

}})

− ρr

(

(I − µR)E

{

vk
sgn(wT

k )

ǫr + |wT
k−1|

}

+ E

{
sgn(wk)

ǫr + |wk−1|
vT

k

}

(I − µR)

)

+ ρ2
r

(

E

{

sgn(wk)

ǫr + |wk−1|
sgn(wT

k )

ǫr + |wT
k−1|

})

. (4.38)

Let Ak and Bk be defined as

Ak , ρr

(

(I − µR)E

{

vk
sgn(wT

k )

ǫr + |wT
k−1|

}

+ E

{
sgn(wk)

ǫr + |wk−1|
vT

k

}

(I − µR)

)

(4.39)

and

Bk , ρ2
r

(

E

{

sgn(wk)

ǫr + |wk−1|
sgn(wT

k )

ǫr + |wT
k−1|

})

. (4.40)

Then, (4.38) can be rewritten as

E
{
vk+1v

T
k+1

}
= E

{
vkv

T
k

}
− µ

(
E
{
vkv

T
k

}
R+RE

{
vkv

T
k

})
+ µ2σ2

nR

+ µ2
(
2RE

{
vkv

T
k

}
R+R tr

{
RE

{
vkv

T
k

}})
−Ak +Bk. (4.41)

Letting k → ∞ in (4.41), we obtain

Rv = Rv − µ (RvR+RRv) + µ2σ2
nR

+ µ2 (2RRvR+R tr {RRv}) + lim
k→∞

(Bk −Ak) . (4.42)

Crossing out Rv from the both sides of (4.42) and then dividing the resulting equa-

tion by µ, we find that

RvR+RRv − 2µRRvR = µR
(
σ2

n + tr {RRv}
)

+
1

µ
lim

k→∞
(Bk −Ak) . (4.43)

Breaking 2µRRvR into the sum of two identical terms and then factoring out RRv

and RvR, we also obtain

RRv (I − µR) + (I − µR)RvR = µR
(
σ2

n + tr {RRv}
)

+
1

µ
lim

k→∞
(Bk −Ak) .

(4.44)
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Multiplying both sides of (4.44) by (I − µR)−1 from right, the following can be

derived

RRv + (I − µR)RvR (I − µR)−1 = µR (I − µR)−1 (σ2
n + tr {RRv}

)

+
1

µ
lim

k→∞
(Bk −Ak) (I − µR)−1 . (4.45)

Note that σ2
n + tr {RRv} here is a scalar. Taking the trace of the two sides of

(4.45), we have

tr {RRv} + tr
{

(I − µR)RvR (I − µR)−1
}

= µ
(
σ2

n + tr {RRv}
)

tr
{

R (I − µR)−1
}

+
1

µ
lim

k→∞
tr
{

(Bk −Ak) (I − µR)−1
}

. (4.46)

Note that tr
{

(I − µR)RvR (I − µR)−1
}

equals tr
{

RvR (I − µR) (I − µR)−1
}

which in turn is equal to tr {RvR}. Therefore, equation (4.46) can be simplified as

follows

tr {RRv} + tr {RvR} = µ
(
σ2

n + tr {RRv}
)

tr
{

R (I − µR)−1
}

+
1

µ
lim

k→∞
tr
{

(Bk −Ak) (I − µR)−1
}

. (4.47)

Since tr {RRv} = tr {RvR}, we can further rewrite (4.47) as

tr {RRv}
(

2 − µ tr
{

R (I − µR)−1
})

= µσ2
n tr

{

R (I − µR)−1
}

+
1

µ
lim

k→∞
tr
{

(Bk −Ak) (I − µR)−1
}

. (4.48)

Having in mind that the excess MSE ξ is given as ξ = tr {RRv}, we obtain from

(4.48) the following expression for ξ:

ξ = tr {RRv} =
η

2 − η
σ2

n +
β − α

µ(2 − η)
(4.49)

where η , µtr
{

R (I − µR)−1
}

, β , limk→∞ βk, α , limk→∞ αk, and the variables

βk and αk are defined as βk , tr
{

Bk (I − µR)−1
}

, and αk , tr
{

Ak (I − µR)−1
}

.

We now further examine the variables βk and αk. The matrix Bk (I − µR)−1 can

be expressed as

Bk (I − µR)−1 = ρ2
r

(

E

{

sgn(wk)

ǫr + |wk−1|
sgn(wT

k )

ǫr + |wT
k−1|

}

(I − µR)−1

)

. (4.50)
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Using (4.50), we obtain

βk = tr
{

Bk (I − µR)−1
}

= ρ2
r

(

E

{

tr

{

sgn(wk)

ǫr + |wk−1|
sgn(wT

k )

ǫr + |wT
k−1|

(I − µR)−1

}})

. (4.51)

Moreover, βk in (4.51) can also be written as

βk =ρ2
r

(

E

{

tr

{

sgn(wT
k )

ǫr+|wT
k−1|

(I − µR)−1 sgn(wk)

ǫr+|wk−1|

}})

. (4.52)

The matrix I−µR is symmetric, and its eigenvalue decomposition can be written

as I − µR = UΓUT with U being an orthonormal matrix of eigenvectors and Γ

being a diagonal matrix of eigenvalues. Therefore, (I − µR)−1 = UΓ−1UT and βk

from equation (4.52) can be written as

βk = ρ2
r

(

E

{

tr

{

sgn(wT
k )

ǫr + |wT
k−1|

UΓ−1UT sgn(wk)

ǫr + |wk−1|

}})

= ρ2
r

(

E

{

tr

{

Γ−1UT sgn(wk)

ǫr + |wk−1|
sgn(wT

k )

ǫr + |wT
k−1|

U

}})

. (4.53)

Let λmax be the largest eigenvalue of the covariance matrix R. Also, let µ be

small enough such that (1 − µλmax)−1 is positive. In (4.53), since Γ−1 is a diago-

nal matrix whose diagonal elements are all non-negative and less than or equal to

(1 − µλmax)−1, we have

βk ≤ ρ2
r

1 − µλmax
×
(

E

{

tr

{

UT sgn(wk)

ǫr + |wk−1|
sgn(wT

k )

ǫr + |wT
k−1|

U

}})

. (4.54)

Note that

tr

{

UT sgn(wk)

ǫr + |wk−1|
sgn(wT

k )

ǫr + |wT
k−1|

U

}

= tr

{

sgn(wT
k )

ǫr + |wT
k−1|

UUT sgn(wk)

ǫr + |wk−1|

}

=
sgn(wT

k )

ǫr + |wT
k−1|

sgn(wk)

ǫr + |wk−1|

≤ sgn(wT
k )sgn(wk)

ǫ2r
≤ N

ǫ2r
. (4.55)

Substituting (4.55) in (4.54), the following bound on βk can be finally obtained

βk ≤ Nρ2
r

ǫ2r (1 − µλmax)
. (4.56)

Moreover, βk in (4.53) can also be written as

βk = ρ2
r

(
E
{
tr
{
zT

k zk

}})
= ρ2

r

(
E
{
‖zk‖2

l2

})
(4.57)
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where zk is defined as

zk , Γ−1/2UT sgn(wk)

ǫr + |wk−1|
. (4.58)

Therefore, it can be seen from (4.57) that βk is non-negative. Since, βk is upper

bounded and non-negative, so is β.

The variable αk can be derived as

αk = tr
{

Ak (I − µR)−1
}

= ρr

(

E

{

tr

{

vk
sgn(wT

k )

ǫr + |wT
k−1|

+
sgn(wk)

ǫr + |wk−1|
vT

k

}})

= 2ρr

(

E

{

tr

{

vk
sgn(wT

k )

ǫr + |wT
k−1|

}})

= 2ρr

(

E

{

tr

{

wk
sgn(wT

k )

ǫr + |wT
k−1|

}}

− E

{

tr

{

w
sgn(wT

k )

ǫr + |wT
k−1|

}})

. (4.59)

Assuming that limk→∞E {sgn(wk)} = sgn(w) which is a common assumption and

it is, for example, the same as in [71], αk in (4.59) can be written as

αk = 2ρr

(

E

{∥
∥
∥
∥

wk

ǫr + |wk−1|

∥
∥
∥
∥

l1

}

−E
{∥
∥
∥
∥

w

ǫr + |wk−1|

∥
∥
∥
∥

l1

})

. (4.60)

Defining β′ , β/ρ2
r , and α′ , α/ρr, the excess MSE equation of (4.49) can be

rewritten as

ξ =
η

2 − η
σ2

n +
β′ρr

µ(2 − η)

(

ρr −
α′

β′

)

(4.61)

where β′ is non-negative and upper bounded by N/ǫ2r (1 − µλmax), and α′ is given

as

α′ = lim
k→∞

2

(

E

{∥
∥
∥
∥

wk

ǫr + |wk−1|

∥
∥
∥
∥

l1

}

− E

{∥
∥
∥
∥

w

ǫr + |wk−1|

∥
∥
∥
∥

l1

})

. (4.62)

It can be seen from (4.61) that if α′ is positive, then choosing ρr in a way that

ρr < α′/β′ can lead to the excess MSE of the reweighted l1-norm penalized LMS

algorithm being smaller than that of the standard LMS algorithm given in (4.21).

The following example shows how the value of α′ varies with respect to the sparsity

level of the CIR that is being estimated.

Example 4.1. A time sparse CIR of length N = 16 whose sparsity level varies from

S = 1 to S = 16 is considered in this example. The nonzero entries of the CIR take

the values of 1 or −1 with equal probabilities of 0.5. In order to ensure a constant
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value for the term ησ2
n/(2 − η) in the excess MSE equation of (4.61) for different

values of sparsity S, σ2
n is a constant set to 0.01. The step size µ is set to 0.05, while

ρr = 5 × 10−4 and ǫr = 0.05 in (4.27). Elements of the training sequence xk are

chosen with equal probability from the set {1,−1}. Table 4.1 shows the value of α′

averaged over 10000 simulation runs after 250 iterations of the reweighted l1-norm

penalized LMS algorithm for different sparsity levels.

Table 4.1: Value of α′ for different sparsity levels.

S 1 2 3 4 5 6 7 8

α′ 3.25 3.03 2.82 2.59 2.37 2.12 1.91 1.69

S 9 10 11 12 13 14 15 16

α′ 1.46 1.22 0.98 0.74 0.48 0.23 -0.03 -0.29

The results in Table 4.1 show that as the CIR becomes less and less sparse,

i.e., as S increases, α′ becomes smaller to a point that it takes a negative value.

Therefore, based on (4.61) we can expect a smaller excess MSE for the reweighted

l1-norm penalized LMS algorithm compared to that of the standard LMS algorithm

providing that the sparsity level is small enough so that α′ is positive.

4.5 lp-pseudo-norm penalized LMS algorithm

Motivated by the better performance of RZA-LMS over ZA-LMS [71] due to the fact

that the logarithmic penalty term of the RZA-LMS is closer to the l0-pseudo-norm

penalty, we consider another function of wk that is more similar to the l0-pseudo-

norm. Such function is the lp-pseudo-norm of wk with 0 < p < 1. The smaller the

value of p is the more the lp-pseudo-norm resembles the l0-pseudo-norm. In this

case, the cost function for the lp-pseudo-norm penalized method becomes

L
lp
k , (1/2)e2k + γp‖wk‖lp (4.63)

where ‖ · ‖lp stands for the lp-pseudo-norm of a vector and γp is the corresponding

weight term. Similar to the cost function of the RZA-LMS, the cost function (4.63)
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is not convex and the analysis of the global convergence and consistency of the cor-

responding algorithm is problematic. However, as it will be seen in the simulations

section, the method based on (4.63) shows better performance than the RZA-LMS

which faces the same problems. Using gradient descent, the update equation based

on (4.63) can be derived as

wk+1 = wk + µekxk − ρp

(
‖wk‖lp

)1−p
sgn(wk)

|wk|(1−p)
(4.64)

where ρp = µγp. Practically, we need to impose an upper bound on the last term in

(4.64) in the situation when an entry of wk approaches zero, which is the case for a

sparse CIR. Then the update equation (4.64) is modified as

wk+1 = wk + µekxk − ρp

(
‖wk‖lp

)1−p
sgn(wk)

ǫp + |wk|(1−p)
(4.65)

where ǫp is a value which bounds the last term in (4.64).

4.6 Penalized LMS algorithms for an arbitrary sparsity

basis

The ZA-LMS and RZA-LMS algorithms in the form derived in [71] are only applied

to the case when the channel is sparse in the time domain. However, these algorithms

as well as the lp-pseudo-norm penalized LMS and reweighted l1-norm penalized LMS

algorithms can be modified to accommodate the case of an arbitrary sparsity basis.

Consider the ZA-LMS algorithm in the case when the CIR is sparse in another

sparsity domain. Let Ψ be the N × N orthonormal matrix denoting a specific

sparsity basis. The CIR w is sparse in the sparsity domain Ψ if its representation in

Ψ, that is, the vector wΨ = Ψw, has only a few nonzero components. The ZA-LMS

cost function can be rewritten then as

LZA
k , (1/2)e2k + γZA‖Ψwk‖l1 (4.66)

and the update equation becomes

wk+1 = wk + µekxk − ρZAsgn(Ψwk)Ψ (4.67)

where sgn(Ψwk) as well as sgn(Ψwk)Ψ are row vectors. For the reweighted l1-norm

penalized LMS algorithm the new cost function is

Lrl1
k , (1/2)e2k + γr‖s′kΨwk‖l1 (4.68)
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with the entries of s′k being

[s′k]i =
1

ǫr + |[Ψwk−1]i|
, i = 1, . . . , N. (4.69)

From the above cost function, the update equation for the reweighted l1-norm pe-

nalized LMS algorithm can be derived as

wk+1 = wk + µekxk − ρr
sgn(Ψwk)Ψ

ǫr + |Ψwk−1|
. (4.70)

Finally, the modified cost function of the lp-pseudo-norm penalized LMS algorithm

can be written as

L
lp
k , (1/2)e2k + γp‖Ψwk‖lp (4.71)

and the update equation for this algorithm becomes

wk+1 = wk + µekxk − ρp

(
‖Ψwk‖lp

)1−p
sgn(Ψwk)Ψ

ǫp + |Ψwk|(1−p)
. (4.72)

4.7 Decimated LMS algorithms for estimation of fre-

quency sparse channels

The signals of interest here are those that are sparse in a domain such that they can

be recovered from random time samples. We aim at exploiting this feature in order

to design less complex or more accurate variations of the LMS algorithm. The basic

idea of our decimated LMS is to estimate at even time-steps only the even taps of

the CIR and do so for the odd taps at odd time-steps. To this end, the training

sequence is chosen in a way that nothing is being sent into the channel at every

other time-step. For example, a sample training sequence with binary phase shift

keying (BPSK) symbols is x = 1, 0,−1, 0,−1, 0, 1, 0, 1, 0, · · · . In this way, at odd

time-steps only the odd taps of the channel contribute in the received symbol dk

and the even taps only affect dk at even time-steps. This special training sequence

can also be beneficial in a multiuser setup. Consider a case when two users are using

a shared medium and their signals interfere with each other. Using an alternatively

on and off training sequence one can use the algorithms introduced here in order

to estimate the CIRs of the two users simultaneously. The even taps of the CIR of

the first user can be updated during the even time-steps while the odd taps of the

CIR of the second user is updated during the odd time-steps. Due to the special

pattern of the training sequence the two users do not interfere with each other in

the channel estimation phase.
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We develop two variations of the LMS algorithm based on the aforementioned

idea [87]. Note however that other channel estimation algorithms can be modified

based on this idea and the LMS algorithm is selected only as a popular example.

According to the first algorithm, only even or odd taps have to be updated, and

at the end of the training phase, an l1-norm minimization problem is solved to

estimate all channel taps. The other algorithm is an adaptation of the ZA-LMS

which alternatively updates the even and odd channel taps at each time-step.

4.7.1 Decimated LMS

Let wo
k be the set of odd indexed coefficients of the vector wk and we

k denote

the even indexed entries of wk. The training data sequence x is designed so that

a BPSK symbol is being sent into the channel at odd time-steps and nothing is

sent at even time-steps. Therefore, at odd time-steps when k = 2i + 1, we have

yk = wTxk = (wo)Txo
k, since xe

k will be an all zero vector. Also, at even time-steps

when k = 2i, yk = (we)Txe
k. In the decimated LMS algorithm, either the even or

odd taps of the CIR are being estimated. Let us assume that an estimate of the

odd taps is to be obtained. Then at every odd time-step the following LMS type

update rule is used

wo
k+2 = wo

k + µekx
o
k (4.73)

where ek = dk − (wo
k)

Txo
k. At the end of the training process, the LMS estimate of

the CIR’s odd taps wo
kf

is available where kf is the final training time-step. The

estimate of the complete CIR at time-step kf , wkf
, is obtained aswkf

= Ψ−1(wΨ)kf

where (wΨ)kf
is the solution to the following minimization problem

min‖w̃‖l1 subject to

∥
∥
∥
∥

(
Ψ−1w̃

)o −wo
kf

∥
∥
∥
∥

l2

≤ β (4.74)

where β is some positive number. The above equation is the l1-norm minimization

problem for the case of noisy compressed samples [34].

The decimated LMS deals with vectors of a smaller size than the standard LMS.

In the case when the total number of CIR taps, i.e., the cardinality of wk is even,

the size of the vectors in the decimated LMS is exactly half the standard LMS. In

addition, the decimated LMS is only executed at odd or even time-steps depending

on whether it estimates wo
k or we

k. Therefore, the decimated LMS is run only half

the times that the standard LMS is executed. Considering the size of the vectors

involved as well as the number of iterations that each algorithm needs for estimating
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CIR, we can conclude that the complexity of the decimated LMS for estimating wo
k

or we
k is about a fourth of the standard LMS. However, decimated LMS has to solve

an l1-norm minimization problem at the end of the training process to obtain the

estimate of the complete CIR wk.

4.7.2 Zero attracting decimated LMS

Motivated by the fact that ZA-LMS has better performance than the standard LMS,

we also present the zero attracting decimated LMS (ZAD-LMS) algorithm. In this

method, both even and odd taps of the CIR are being estimated. In order to force

sparsity of the CIR, a term similar to the one in the update equation for the ZA-

LMS in (4.67) is present in ZAD-LMS. Let us first consider odd taps of the CIR. For

ZAD-LMS, the terms wk+1 and wk in (4.67) are replaced with wo
k+2 and wo

k, while

µekx
o
k replaces µekxk. Now we only need to replace ρZAsgn(Ψwk)Ψ with a similar

term that results in a vector of the same size as wo
k. We choose ρZADsgn(Ψw̃k)Ψ

o

where Ψo is a sub-matrix of Ψ with only odd indexed columns retained. Note that

w̃k is also used instead of the current estimate of CIR wk, where w̃k is set to an all

zero vector when the algorithm starts at k = 1 time-step and also for k = 2. For

every k = 2i + 1 > 2, w̃k has its odd indexed components set equal to wo
k−2 and

its even indexed components are set equal to we
k−1. When k = 2i > 2, wo

k−1 and

we
k−2 are used to form the vector w̃k. Therefore, the set of update equations of the

ZAD-LMS can be written as

wo
k+2 = wo

k + µekx
o
k − ρZADsgn(Ψw̃k)Ψ

o, k = 2i+ 1 (4.75a)

we
k+2 = we

k + µekx
e
k − ρZADsgn(Ψw̃k)Ψ

e, k = 2i. (4.75b)

At the end of training, i.e., at the kf th time-step, the two vectors wo
kf

and we
kf−1 or

we
kf

and wo
kf−1, depending on kf being odd or even, produce the estimate of CIR

wkf
. The ZAD-LMS method is summarized in Algorithm 4.1.

4.8 Simulation results

In this section we compare the performance of different channel estimation algo-

rithms under several scenarios. The algorithms being considered here are ZA-LMS,

and RZA-LMS of [71] as well as the reweighted l1-norm penalized LMS, and the

lp-pseudo-norm penalized LMS of [85]. The performance of decimated type LMS
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Algorithm 4.1 The ZAD-LMS Algorithm

Input: Data sequence xk and observations dk, k = 1, · · · , kf .
Output: The estimated channel wkf

.
1. Initialize by equating w̃1 and w̃2 to all zero vectors.
2. Perform kf iterations of ZAD-LMS:
for k = 1 to kf do

if k is odd, then

Update w̃k with wo
k−2 and we

k−1.
Run the ZAD-LMS update equation (4.75a).

else

Update w̃k with wo
k−1 and we

k−2.
Run the ZAD-LMS update equation (4.75b).

end if

end for

3. Form wkf
using wo

kf
and we

kf−1 or we
kf

and wo
kf−1.

algorithms is also studied. The standard LMS algorithm is also included as a refer-

ence point in all simulation examples. The first two simulation examples also include

the oracle LMS algorithm. The oracle LMS knows beforehand the position of the

nonzero taps of the CIR.

4.8.1 Simulation example 1: Time sparse channel estimation

In this example, we consider the problem of estimating a CIR of length N = 16.

The CIR is assumed to be sparse in the time domain. Two different sparsity levels

of S = 1 and S = 4 are considered. The positions of the nonzero taps in the CIR are

chosen randomly. The value of each nonzero tap is a zero mean Gaussian random

variable with a variance of 1.

Two different SNR values of 10 dB and 20 dB are considered. For the lp-pseudo-

norm penalized LMS algorithm, p is chosen to be 1/2 with ǫp = 0.05 and ρp =

2 × 10−4. The parameters of the reweighted l1-norm penalized LMS algorithm are

set to ρr = 2× 10−4 and ǫr = 0.05. For the ZA-LMS and the RZA-LMS algorithms,

ρZA = 5×10−4, ρRZA = 4×10−3, and ǫRZA = 25. Parameter values for the ZA-LMS

and RZA-LMS algorithms are optimized through simulations. The step size is set

to µ = 0.05 for all algorithms. The measure of performance is the MSE between the

actual and estimated CIR. Simulation results are averaged over 10000 simulation

runs to smooth out the curves.

Fig. 4.1 shows the MSE results versus the number of iterations for different

estimation algorithms for the case when the sparsity level is S = 1. It can be seen
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Figure 4.1: Simulation example 1, case 1: MSEs of different estimation algorithms vs number
of iterations (S = 1).
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that for both SNR values tested the oracle LMS algorithm has the best performance

followed by the lp-pseudo-norm penalized LMS, and then by the reweighted l1-norm

penalized LMS, RZA-LMS, ZA-LMS, and standard LMS algorithms. The MSEs of

the RZA-LMS and reweighted l1-norm penalized LMS algorithms are close to each

other. As the SNR increases, the performance of all the algorithms improves as

expected. The performance gap between standard LMS and oracle LMS algorithms

stays the same for different SNR values. However, it can be seen in Fig. 4.1 that the

gap between the MSE of the standard LMS algorithm and the MSEs of the other

sparsity-aware algorithms gets bigger with the increase in SNR. The lp-pseudo-

norm penalized LMS and reweighted l1-norm penalized LMS algorithms have faster

convergence rate compared to the standard LMS algorithm.

Fig. 4.2 shows the simulation results for the case when the sparsity level is set

to S = 4. The parameter choices for all the algorithms are the same as in the

previous case. Most of the observations from Fig. 4.1 also hold for this case of

increased sparsity level. However, increasing the sparsity level of the CIR has lead

to a decrease in the performance gap between the sparsity-aware LMS algorithms

and standard LMS algorithm.

4.8.2 Simulation example 2: Arbitrary sparsity basis

In this simulation example, a CIR of length N = 16 with the sparsity level of

S = 2 is being estimated which is sparse in the discrete cosine transform (DCT)

domain. The positions of nonzero taps in the DCT domain are chosen randomly.

The value of the nonzero indices in the DCT domain are set to 1 or −1 with the

same probabilities each equal to half. The algorithms being compared here are the

ZA-LMS, RZA-LMS, lp-pseudo-norm penalized LMS, reweighted l1-norm penalized

LMS, oracle LMS, and standard LMS algorithms. As in the first simulation scenario,

two different SNR values of 10 and 20 dBs are tested. Parameter choices for the

10 dB SNR case are as follows. For the lp-pseudo-norm penalized LMS algorithm,

p = 1/2, ǫp = 0.05, and ρp = 2 × 10−4. Parameters of the reweighted l1-norm

penalized LMS algorithm are ρr = 2 × 10−4 and ǫr = 0.05. For the ZA-LMS and

the RZA-LMS algorithms, the values are ρZA = 5 × 10−4, ρRZA = 4 × 10−3, and

ǫRZA = 25. The step size µ is set to 0.05. For the 20 dB SNR case, ρr, ρp, and

ρRZA are reduced by half.

79



25 50 75 100 125 150 175 200

10
−2

10
−1

10
0

Number of Iterations

M
S

E

 

 

Standard LMS
ZA−LMS
RZA−LMS
l
p
−pseudo−norm penalized LMS (p=0.5)

Reweighted l
1
−norm penalized LMS

Oracle LMS

(a) SNR value of 10 dB

25 50 75 100 125 150 175 200

10
−3

10
−2

10
−1

Number of Iterations

M
S

E

 

 

Standard LMS
ZA−LMS
RZA−LMS
l
p
−pseudo−norm penalized LMS (p=0.5)

Reweighted l
1
−norm penalized LMS

Oracle LMS

(b) SNR value of 20 dB

Figure 4.2: Simulation example 1, case 2: MSEs of different estimation algorithms vs number
of iterations (S = 4).
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Figure 4.3: Simulation example 2: MSEs of estimation algorithms vs number of iterations for
a DCT sparse channel (S = 2).
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The MSE curves in Fig. 4.3 are averaged over 10000 simulation runs. The

same conclusions as in Simulation example 1 hold here as well. The oracle LMS

algorithm has a better performance than all other algorithms. For the SNR of

10 dB, the lp-pseudo-norm penalized LMS algorithm outperforms the other sparsity-

aware algorithms. However, when the SNR is set to 20 dB, the reweighted l1-norm

penalized LMS and RZA-LMS algorithms show a better performance than the lp-

pseudo-norm penalized LMS algorithm.

4.8.3 Simulation example 3: Effect of sparsity level on the perfor-

mance of the reweighted l1-norm penalized LMS algorithm

In this example, we study the effect that increasing sparsity level of CIR has on

performance of the reweighted l1-norm penalized LMS algorithm. A CIR is assumed

to be sparse in the time domain and it is of length N = 16. The sparsity level varies

from 2 to 8. The positions of the nonzero taps of the CIR are chosen randomly and

the values of nonzero taps are set to 1 or −1 with equal probability each equal to half.

Parameters of the reweighted l1-norm penalized LMS algorithm are ρr = 2 × 10−4

and ǫr = 0.05. The step size µ is set to 0.05. Variance of the additive noise term

nk is σ2
n = 0.01. Excess MSE is used as a performance measure in this example.

We have chosen a constant variance σ2
n for the noise in order to make sure that

the standard LMS algorithm has the same excess MSE regardless of the sparsity

level of the channel. The excess MSE curves are averaged over 10000 simulation

runs. According to (4.13), the excess MSE can be derived as ξk = tr
{
RE

{
vkv

T
k

}}
.

In this simulation example with xk being an i.i.d. BPSK sequence, the covariance

matrix R becomes identity, and therefore, ξk can be evaluated as tr
{
E
{
vkv

T
k

}}
.

Fig. 4.4 shows the excess MSE versus the number of iterations for the standard

LMS and reweighted l1-norm penalized LMS algorithms when the CIR sparsity level

varies from 2 to 8. It can be seen that the standard LMS algorithm results in the

same excess MSE regardless of the sparsity level of the CIR. However, the excess

MSE of the reweighted l1-norm penalized LMS algorithm increases with increasing

sparsity level which is due to the fact that the value of α′ in equation (4.62) is

decreasing. For example, α′ is equal to 2.7, 2.3, 2.0, and 1.6 for sparsity levels of 2,

4, 6, and 8, respectively, after 150 iterations. It can be also seen that in all cases,

the reweighted l1-norm penalized LMS algorithm outperforms the standard LMS

algorithm.
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Figure 4.4: Simulation example 3: Excess MSE versus number of iterations.

4.8.4 Simulation example 4: Performance comparison of decimated

LMS algorithms

In this simulation example, the problem of estimating a CIR of length N = 16 is

considered. The sparsity domain is the DCT domain. The sparsity level of the CIR

is 1, i.e., only one of the coefficients of its representation in Ψ is nonzero. This

nonzero coefficient takes the value of either 1 or −1 with the same probability.

Alongside the proposed algorithms, i.e., the decimated LMS and ZAD-LMS,

the performance of the standard LMS and ZA-LMS methods are also measured as

a point of reference. Parameter choices for these algorithms are ρZA = ρZAD =

5 × 10−4, µ = 0.05. In the decimated LMS the parameter β in (4.74) is set to 0.1

when the SNR equals 10 dB, and it is set to 0.05 when SNR = 20 dB.

Fig. 4.5 shows the MSEs of different estimation methods versus the length of the

training sequence, i.e., the number of iterations. It can be seen that after a certain

number of iterations the decimated LMS catches up with the standard LMS and it

then displays a better performance despite it being less complex than the standard

LMS. For both SNRs of 10 and 20 dB, the ZA-LMS has the best performance while
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the proposed ZAD-LMS method shows a better performance than the standard LMS

for all training sequence lengths unlike the decimated LMS whose performance is

worse than that of the LMS for small training sequences.
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Figure 4.5: Simulation example 4: Performance comparison of different decimated estimation
algorithms.

4.8.5 Simulation example 5: Effect of sparsity level on the deci-

mated LMS algorithm

This simulation example tests the effect of sparsity level on the performance of the

decimated LMS. Since decimated LMS solves an l1-norm minimization problem at

the end of training to find an estimate of CIR, it is expected that its performance

deteriorates with increasing the sparsity level of CIR. In this example, a CIR of

length 64 is chosen. The sparsity basis is the DCT domain and the sparsity level of

the CIR varies from S = 1 to S = 4. The SNR is 10 dB, µ = 0.005, and β = 0.1 in

(4.74). Results are averaged over 10000 simulation runs.

Fig. 4.6 depicts the MSE curves versus length of the training sequence. In this

figure, standard LMS is chosen as the point of reference and its performance is
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compared with decimated LMS for different sparsity levels. In order to allow for a

fare comparison, the CIR’s energy is kept the same which results in the same MSE

values for standard LMS regardless of a specific sparsity level. It can be seen from

Fig. 4.6 that the smaller the sparsity level of the signal the better is the performance

of the decimated LMS as it is expected.
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Figure 4.6: Simulation example 5: Performance of the decimated LMS and the standard LMS
for different sparsity levels.

4.9 Chapter summary

Sparse channel estimation problem has been considered in this chapter and the

reweighted l1-norm penalized LMS algorithm has been introduced. Mathematical

analysis of reweighted l1-norm penalized LMS’s mean convergence as well as the

attainable excess MSE of the algorithm was presented. The excess MSE result

shows that the reweighted l1-norm penalized LMS can outperform the standard

LMS algorithm. Update equations of the reweighted l1-norm penalized LMS as

well as the ZA-LMS, RZA-LMS, and the lp-pseudo-norm penalized LMS algorithms

were generalized to the case of an arbitrary sparsity basis. Simulation results for a
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DCT sparse channel were also given along with the time sparse channel example.

The performance of the reweighted l1-norm penalized LMS has been compared to

that of the standard LMS, oracle LMS, ZA-LMS, RZA-LMS, and our lp-pseudo-

norm penalized LMS through computer simulations. These results show that the

reweigthed l1-norm penalized LMS outperforms the standard LMS, ZA-LMS, and

the RZA-LMS.

Two sparsity-aware modifications of the standard LMS algorithm, which are the

decimated LMS and ZAD-LMS, for frequency sparse channel estimation have been

introduced. They are motivated by the need of deriving channel estimation methods

with lower complexity. The algorithms have been compared in terms of MSE to the

standard LMS and the ZA-LMS. Simulations demonstrating the effectiveness of the

proposed methods have been also shown.
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Chapter 5

Two Dimensional Compressive

Sampling

A straightforward solution to collecting compressed samples of a 2D signal is to

vectorize the signal first. A measurement matrix can then be applied to collect the

compressed samples. Let the 2D signal of size N × N be vectorized into a N2 × 1

vector. The measurement matrix being used to sample this signal is of size K×N2.

Depending on the value of N2 this measurement matrix becomes too large and the

recovery problem becomes complex. In this chapter we propose another alternative

by sampling the columns of the 2D signal with the same measurement matrix in

order to reduce complexity and also be able to perform parallel recovery.

The rest of the chapter is organized as follows. The parallel CS method is

introduced in Section 5.1. The CS-based video compression algorithm as well as a

motion estimation enabled version of it is introduced in Section 5.2 as an application

of two dimensional CS. Section 5.3 concludes the chapter.

5.1 Parallel CS of 2D signals

Let us first introduce the notations used in this chapter to access a specific part of

a vector or a matrix. [v]a:b denotes a sub-vector of v including entries of the vector

from index a to index b. For a matrix M , [M ]r,: denotes the vector corresponding

to the rth row of the matrix, while [M ]:,c denotes the cth column of it.

Let X be a sparse matrix of size N ×N . The vector xv can be formed from X

by putting all the columns of the matrix on top of each other. xv is of size 1 ×N2

and is given as

[xv](n−1)N+1:nN = [X ]:,n, n = 1, 2, · · · , N. (5.1)
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The measurement matrix Φ of size K × N2 can be used to collect the vector of

compressed samples y from X as y = Φxv. In order to find an estimate of xv from

y a CS recovery algorithm such as the following is used.

min ‖x̂v‖l1 , subject to y = Φx̂v. (5.2)

We pursue a different approach to two dimensional CS which samples every column

of X with the same measurement matrix Φ′. The matrix Φ′ is of size K ′ ×N and

K ′ is chosen in a way so that the least sparse column of X can be recovered from K ′

compressed samples. In order to force the columns of X to have the same sparsity

level we first apply random permutations on the rows of the matrix. Proof of the

legitimacy of this assumption is given in Lemma 5.1. The average sparsity level of

a column after permutation is going to be smaller than the maximum sparsity level

of the original matrix X. Therefore, we could choose the number of rows of Φ′, K ′,

to be smaller than the case of the non-permuted matrix.

Lemma 5.1. Applying independent random permutations on the rows of Es
i leads

to the same average sparsity level for each column of E′
i.

Proof. Let Ni, i = 1, . . . , lN be the number of nonzero coefficients in vi which is

the ith row of Es
i . Let pi be the 1 × Ni vector corresponding to the indices of

the nonzero coefficients of vi. There is a total of N ! different permutations that

can be applied to vi. With a random permutation from the N ! possibilities, the

entry
[
vi

]

[pi]j
, j = 1, . . . , Ni is permuted to the columns 1, 2, . . . , N with the equal

probability of 1
N . Therefore, considering the permuted ith row, v′i, the average

number of nonzero coefficients in every column is Ni

N . Assuming the permutations

applied to different rows are independent from each other, the average number of

nonzero coefficients in each column of E′
i is

∑lN
i=1

Ni

N . Therefore, in average, every

column of E′
i has the same sparsity level.

The complexity of the l1-norm minimization method used to recover an N × 1

vector from its compressed samples is O(N3) [88]. Therefore, the first approach

to two dimensional CS which vectorizes the matrix X has a complexity of O(N6).

However, the last approach solves N parallel recovery problems each with a com-

plexity of O(N3) and so in total the complexity is N ·O(N3). The advantages of the

parallel CS method are lower complexity and ability to solve parallel recovery prob-

lems. The disadvantage of this method is that the total number of samples collected
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Table 5.1: MSE values for different scenarios.

(K ′,K)
Total number of samples
(approach 2, approach 1)

MSE
(approach 2, approach 1)

(8, 160) (160, 160) (0.0020, 0.0013)

(10, 160) (200, 160) (0.0016, 0.0012)

(12, 160) (240, 160) (0.0012, 0.0011)

(16, 160) (320, 160) (0.0011, 0.0011)

is more than the number of samples in the first approach where the matrix is first

vectorized and then sampled. The following example illustrates the aforementioned.

Example 5.1. This example compares the performance of the parallel CS method

and the vectorizing approach to two dimensional CS. Let N = 20, and so the sparse

matrix X be of size 20 × 20. The measurements are corrupted with additive white

Gaussian noise (AWGN) with a standard deviation of σ = 0.05. Only S = 20 out of

400 entries of X are set to ±1 with a probability of 1/2 and the rest of the entries

are set to zero. For the parallel method we make sure that every column of X has

the same average number of nonzero entries, so the comparison with the vectorizing

approach would be fair. Table 5.1 shows the simulation results for different values

of K ′ and K. Average MSEs are provided in the table over 100 simulation runs. In

this table, approach 1 is the vectorizing approach and approach 2 is the parallel CS.

As it can be seen in Table 5.1, in order for approach 2 to achieve the same MSE as

approach 1 we need to collect twice as many samples as required for approach 1.

5.2 Video compression application

The amount of raw data in a video file is very large and therefore, transmitting such

data consumes a large portion of system’s resources such as bandwidth and energy.

It should also be noted that there are several types of redundancies available in a

video. These redundancies can be identified and taken advantage of to compress

the video file with a lower bit rate than the bit rate of the raw video stream. The
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major types of redundancies in video are statistical, spatial and temporal redun-

dancies [89]. Statistical redundancy addresses the fact that there are several pixels

in a video frame with the same gray levels or color in case of a black and white

picture or respectively a color video. The so called spatial redundancy represents

the correlation among neighboring pixels. In fact, in a typical video frame the gray

levels change smoothly over a region. Finally the temporal redundancy stands for

the inter-frame similarities between two frames of a video stream.

One can approach the video compression problem as a generalized version of

image compression. In such solutions every frame of the video sequence is treated

as an image and is compressed using an image compression algorithm. Methods such

as run-length coding, Lempel-Ziv coding [90, 91], and Huffman coding [92] employ

the statistical redundancy of an image by assigning fewer bits to frequently occurring

gray levels or color values [89]. The so called spatial redundancy is used in predictive

coding [93] and transform coding. Among the transform coding methods are block

DCT-based coding and discrete wavelet transform (DWT)-based coding [94, 95].

Other image coding schemes including vector quantization [96] and fractal image

compression [97] can also be used for the purpose of video compression.

The video sequence can be considered as a three dimensional signal as well. In

a slow motion video most neighboring frames appear to be similar and two frames

would be significantly different from each other, only if camera or objects suddenly

move. Therefore, the temporal redundancy can be exploited to help predicting

future frames from previous frames. One of the ways to benefit from this feature is

through motion estimation methods. Motion estimation methods can be classified

into block matching and pel-recursive techniques [98]. The method used in this

chapter is the block matching algorithm.

The issue of CS-based video compression has been addressed in a number of

articles [99–102]. In [99], every frame of the video signal is treated as a single

image with the DWT being the sparsity basis. The sparsity basis in [100] is the

motion compensated wavelet basis of [103]. The motion estimation algorithm used

in this method is the block matching algorithm. The method in [101] benefits

from distributed video coding. Even frames are coded with the intra-frame coder

of [104]. Odd frames are divided into non-overlapping sub-blocks and each sub-block

is sampled with a CS measurement matrix. The dictionary used at the decoder side

is an adaptive and overcomplete dictionary unlike usual CS applications where a
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fixed orthogonal basis is used. The method proposed in [102] classifies the frames

into two groups of reference and non-reference frames. Reference frames are fully

sampled and divided into non-overlapping sub-blocks. Based on the distribution

of the DCT coefficients in each sub-block, they are furthermore classified into two

groups of regular and sparse. In the upcoming non-reference frames, the regular

sub-blocks are always fully sampled while compressed samples are collected from

sparse sub-blocks.

In the methods of [101] and [102], tiling of the video frames and then classification

of the resulting sub-blocks is performed. Different classes of sub-blocks are processed

differently. Therefore, one can expect different qualities for different sub-blocks in

the recovered frame. This quality mismatch draws attention especially in cases

when a relatively high compression ratio is used for sparse sub-blocks. We are also

required to provide the receiver with extra information about which sub-blocks are

spare and which are regular. Extra communication is also necessary for the method

in [101] because of the feedback channel from the decoder to encoder as well as

classification of sub-blocks.

Note that all of these methods need to either fully sample a whole frame or

parts of a frame. The one in [100] collects compressive measurements of the wavelet

transformed and linear restricted version of video frames. Therefore, it needs the

fully sampled frames to calculate the wavelet transform. In [101], even frames are

fully sampled, and in [102], the reference frames as well as the regular sub-blocks in

non-reference frames are fully sampled.

A CS-based video compression method exploiting the temporal redundancy of a

video is introduced in this section. In general, every other l frame of the video file

is selected as a reference frame. The rest of the frames are non-reference frames,

which will be recovered from the compressed data based on their correlation with the

reference frames. The DWT domain or the DCT domain is considered as the sparsity

basis for reference frames. For the non-reference frames the sparsity basis is the

difference domain. As for the recovery algorithm, the l1-norm minimization is used

in a parallel manner which helps reduce the compression and decompression time and

also simplifies the hardware design. Also a variation of the method exploiting block

matching motion estimation algorithm is presented which has a better performance

over the original method in case of fast motion video. The drawback of the motion

estimation enabled version of the algorithm is that the motion vectors should be
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transmitted to the receiver side as well. The original method, however, does not

require any extra communication. The results of this section are partly presented

in [105].

5.2.1 CS-based video compression

Modeling of the video signal

The video sequence is divided into disjoint blocks, where each block contains l con-

secutive video frames. These l frames are processed together. The first video frame

of each block is considered as the reference frame. The sparsity basis for reference

frames is the DCT or DWT basis. The rest of the frames (non-reference frames)

are represented by their differences with the previous reference frames. Depending

on the rate of change in video frames, one can consider every other two, three or

even more video frames as reference frames and recover the rest of the frames using

their pixel-wise difference with the closest previous reference frame. It has been ob-

served that the difference between two consecutive frames is sparser than the DCT

or DWT of the non-reference frame in the case of slow motion videos. Therefore, the

less frequent we choose a reference frame a higher compression rate can be achieved.

Although this higher compression rate may come at the expense of image quality.

Let F i denote the N × N image corresponding to the ith frame of a video

sequence. Let the first frame of each block be the reference frame and

Ei =
(

F T
li , · · · ,F T

li+(l−1)

)T
(5.3)

be the lN ×N extended virtual frame which consists of l consecutive frames. The

matrix Ei serves as the data matrix of the parallel CS method.

CS-based video compression algorithm

The first step in the algorithm is to find the sparse representation of Ei, that is Es
i ,

in a suitable sparsity basis Ψ. For the reference frame, the DWT or DCT domain

is used as the sparsity basis. The sparsity basis for the non-reference frames is their

pixel-wise difference with the reference frame, F j −F li, j = li+1, . . . , li+(l− 1).

Mathematically speaking we have

Es
i = ΨEi, Ψ =












T 0 0 . . . 0

−I I 0 . . . 0

−I 0 I . . . 0
...

...
...

−I 0 . . . I 0

−I 0 . . . 0 I












(5.4)
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where T , 0, and I are the N × N DCT or DWT matrix, the all zero matrix,

and the identity matrix, respectively. The entries of the DCT matrix, TDCT ,

are [TDCT ]1,j = 1/
√
N, j = 1, . . . , N and [TDCT ]i,j =

√
2
N cos π(2i−1)(j−1)

2N , i =

2, . . . , N, j = 1, . . . , N . Assuming that Haar wavelets are used, with an even N the

DWT matrix is,

TDWT =

















0.5 0.5 0 0 . . . 0 0
0 0 0.5 0.5 . . . 0 0
...

...
...

0 0 0 0 . . . 0.5 0.5
0.5 −0.5 0 0 . . . 0 0
0 0 0.5 −0.5 . . . 0 0
...

...
...

0 0 0 0 . . . 0.5 −0.5

















N×N

. (5.5)

Applying the matrix TDWT to an N × 1 data vector, the first half entries of the

result are called averages or approximate coefficients. The other half of the elements

are called detail coefficients.

To ensure that all columns of Es
i have the same sparsity level, different random

permutations are applied to the rows of Es
i to build a new matrix E′

i. Finally, the

K ′× lN measurement matrix Φ′ can be applied to E′
i in order to obtain the K ′×N

matrix Y i of compressed samples

Y i = Φ′E′
i. (5.6)

Note that the compression hardware can be built in a parallel manner such that the

compressed samples of all columns of matrix E′
i can be obtained at the same time.

To provide compression ratio versus peak signal to noise ratio (PSNR) results we

also quantize the collected measurements. First, the dynamic range of the samples

is calculated and then a uniform q-level quantization is performed. The following

lemma derives the compression ratio achieved in this method assuming that the gray

levels are represented with 8 bits in the original frames.

Lemma 5.2. The compression ratio of the aforementioned CS-based video compres-

sion method is 1 − K ′ log2 q
8lN .

Proof. Since a q-level quantizer is used, the number of bits required to represent

every quantized symbol is log2 q. Here, Nc = K ′ log2 q is the number of bits required

to represent the compressed samples taken from each column. Since the gray levels
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Algorithm 5.1 The Proposed Video Compression Algorithm

Input: The block of l consecutive frames F li up to F li+(l−1).
Output: The compressed extended virtual frame Y i.
1. Form the data matrix:

Ei ⇐
(

F T
li ,F

T
li+1, · · · ,F T

li+(l−1)

)T
.

2. Find the sparse representation:
Es

i ⇐ ΨEi where Ψ is defined as in (5.4).
3. Force the same sparsity level for all columns of Es

i :
for n = 1 to lN do
[
E′

i

]

n,:
⇐ P n

[
Es

i

]

n,:

where P n is a random permutation matrix and
[
E′

i

]

n,:
denotes the nth row of

matrix E′
i.

end for

4. Obtain the compressed extended virtual frame:
Y i = ΦE′

i.
5. Quantize Y i.

are represented with 8 bits, the number of bits representing each column of the

original frame is No = 8lN . Therefore, the compression ratio attained by this

method is

CR =
No −Nc

No
=

8lN −K ′ × log2 q

8lN
= 1 − K ′ log2 q

8lN
. (5.7)

Algorithm 5.1 summarizes the proposed video compression method.

CS-based video decompression algorithm

In the recovery stage, every column of E′
i is recovered by solving the following

l1-norm minimization problem

min ‖
[
Ê

′
i

]

n,:
‖l1 , subject to

[
Y i

]

n,:
= Φ

[
Ê

′
i

]

n,:
. (5.8)

Then the inverse row permutations are applied to Ê
′
i in order to obtain matrix

Ê
s
i . Finally, the inverse DWT or DCT is applied to that part of the matrix Ê

s
i

corresponding to the reference frame F li. Let F̂ li denote the reconstructed reference

frame. Since the difference domain is chosen as the sparsity basis, the estimates

F̂ li+1, . . . , F̂ li+(l−1) of the non-reference frames are calculated by a simple pixel by

pixel addition of F̂ li to the corresponding parts of Ê
s
i . Algorithm 5.2 summarizes

the proposed video recovery method for the case of the difference domain being the

sparsity basis. Note that the proposed recovery algorithm can also be implemented

in parallel manner where all columns of E′
i can be recovered at the same time.
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Algorithm 5.2 The Proposed Video Decompression Algorithm

Input: The compressed extended virtual frame Y i.
Output: The estimated l-frame video sequence F̂ li up to F̂ li+(l−1).
1. Parallel recovery:
for n = 1 to N do
[
Ê

′
i

]

:,n
⇐ solve problem (5.8).

end for

2. Apply the inverse row permutations:
for n = 1 to lN do
[
Ê

s
i

]

n,:
⇐ P−1

n

[
Ê

′
i

]

n,:
.

end for

3. Retrieve the estimated frames:
(

F̂
T
li , F̂

T
li+1, · · · , F̂

T
li+(l−1)

)T
⇐ Êi where Êi = Ψ−1Ê

s
i .

5.2.2 Motion estimation enabled CS-based video compression

Compression algorithm

Use of the difference domain as the sparsity basis in slow motion videos results in

good quality outcomes, but the quality of the recovered video starts to deteriorate

when the objects in the video start to move faster. One way to deal with this

problem is to introduce a variable rate compression method. Such method would

take a different number of samples based on how fast the objects move in consecutive

video frames. The other way is to choose a sparsity basis other than the difference

domain that can account for the movement of objects. We propose a variation of

the compression algorithm introduced before by exploiting the motion compensated

difference of the non-reference and reference frames.

The motion estimation method in use is the block matching algorithm. The

non-reference video frames are first divided into non-overlapping sub-blocks. Then,

the algorithm searches in the p-pixel vicinity of a sub-block to find a sub-block of

the same dimension in the previous reference frame that resembles it the most. The

amount of offset in the position of the chosen sub-block in the reference frame is

recorded as the motion vector calculated for that specific sub-block. The algorithm

also records the amount of error between the original sub-block and the candidate

sub-block of the reference frame. For the fast motion videos this error signal is much

more sparse than the pixel by pixel difference of the frames. The only drawback of

this method is that the motion vectors are also needed to be transmitted along with

the compressed measurements. For a 256 × 256 video frame, the number of motion

vectors are 256 considering a typical size 16 × 16 sub-block.
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Algorithm 5.3 The Motion Estimation Enabled Variant of the Proposed Video
Compression Algorithm

Input: The block of l consecutive frames F li up to F li+(l−1).
Output: The compressed extended virtual frame Y i and the set of motion vec-
tors vi.
1. Form the data matrix:

Ei ⇐
(

F T
li ,F

T
li+1, · · · ,F T

li+(l−1)

)T
.

2. Calculate the motion vectors vi and find the sparse representation:
Es

i ⇐ Ψ(vi)Ei.
3. Force the same sparsity level for all columns of Es

i :
for n = 1 to lN do
[
E′

i

]

n,:
⇐ P n

[
Es

i

]

n,:

where P n is a random permutation matrix and
[
E′

i

]

n,:
denotes the nth row of

matrix E′
i.

end for

4. Obtain the compressed extended virtual frame:
Y i = ΦE′

i.
5. Quantize Y i.

The extended virtual frame Ei is defined as before. In the sparse representation

of Ei, the part corresponding to the reference frame is replaced by the DWT or

the DCT of F li and the rest of the frames are replaced by F j(vj,i) − F li, j =

li+ 1, . . . , li+ (l− 1), where F j(vj,i) is frame F j with its sub-blocks displaced with

the calculated motion vectors vj,i with respect to the reference frame F li. We can

rewrite equation (5.4) as

Es
i = Ψ(vi)Ei (5.9)

with vi being the set of all motion vectors for the block of l frames F li, . . . ,F li+(l−1).

The signal Es
i would undergo row permutations and then compressed samples are

drawn based on equation (5.6).

The common criteria for selecting a candidate motion vector for a specific sub-

block are mean absolute difference (MAD) and MSE. The block matching algorithm

chooses the motion vector that leads to either the minimum MAD or minimum

MSE. The optimum criterion is the one that leads to the most sparse error signal.

Therefore, the criterion that is used in the motion estimation enabled version of the

compression algorithm is the l0-pseudo-norm of the error signal. This way the block

matching algorithm issues the set of motion vectors that lead to an error image

with the minimum l0-pseudo-norm. Algorithm 5.3 explains the motion estimation

enabled compression algorithm.
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Algorithm 5.4 The Proposed Motion Estimation Enabled Video Decompression
Algorithm

Input: The compressed extended virtual frame Y i and the motion vectors vi.
Output: The estimated l-frame video sequence F̂ li up to F̂ li+(l−1).
1. Parallel recovery:
for n = 1 to N do
[
Ê

′
i

]

:,n
⇐ solve problem (5.8).

end for

2. Apply the inverse row permutations:
for n = 1 to lN do
[
Ê

s
i

]

n,:
⇐ P−1

n

[
Ê

′
i

]

n,:
.

end for

3. Retrieve the estimated frames:
(

F̂
T
li , F̂

T
li+1, · · · , F̂

T
li+(l−1)

)T
⇐ Êi, where Êi = Ψ(vi)

−1Ê
s
i .

Decompression algorithm

The primary steps of this algorithm are the same as the CS-based video decom-

pression described earlier. An estimate Ê
′
i is obtained solving the problem in (5.8)

for every column of E′
i. The inverse row permutations are then used to obtain

the sparse matrix Ê
s
i . To recover an estimate F̂ li of the reference frame, the in-

verse DWT or DCT is applied to the sub-matrix comprising of the first N rows

of the matrix Ê
s
i . Since motion estimation is adopted for this method, the esti-

mated reference frame F̂ li is first displaced by the motion vectors vi, and then the

non-reference frames are recovered using the corresponding error image and the dis-

placed version of F̂ li. Algorithm 5.4 summarizes the above explained decompression

algorithm. Note that the proposed recovery algorithm can also be implemented in

parallel where all columns of E′
i can be recovered at the same time.

5.2.3 Simulation results

The proposed video compression method is applied to standard slow motion Akiyo

and fast motion Coastguard videos. Results for different choices of sparsity bases,

i.e., DWT or DCT are provided. PSNR is used as a quality measure for comparison

between different sparsity bases or sampling methods. The PSNR is defined as

PSNR = 20 log10

(
maxI√
MSE

)

(5.10)

where maxI is the maximum value of the extended virtual frame Ei, and the MSE

between Ei and the reconstructed extended frame Êi is defined as

MSE = (1/lN2)

lN∑

k=1

N∑

j=1

‖[Ei]k,j − [Êi]k,j‖2
l2 . (5.11)
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Note that maxI is usually replaced by 255 in image processing when the image takes

luminance values from 0 to 255.

Based on the fact that images are more of a low pass nature, the wavelet approx-

imation coefficients have more significant values than the vertical, horizontal, and

diagonal detail coefficients. Therefore, it is expected that the second level wavelet

decomposition used as a sparsity basis would result in reconstructed frames of better

quality. Moreover, if the camera and the objects do not move suddenly, the consec-

utive frames must be similar to each other and the difference between these frames

is likely to be sparser than the representation of one of them in the wavelet domain.

Therefore, considering every other three or four frame as the reference frame may

result in better PSNR values. In the case of fast motion videos, the pixel by pixel

difference of the frames is not as sparse as in the slow motion videos. In such cases,

the error frame of the motion estimation methods are much sparser than the differ-

ence. Therefore, it is expected that using the motion estimation enabled version of

the algorithm would result in a noticeable performance improvement while dealing

with fast motion videos. The same is true for slow motion videos as well, but the

improvement is not as much as the fast motion videos. The following simulation

results confirm all of the aforementioned intuitions.

Two or four frames of the Akiyo and Coastguard videos both starting from frame

65 are considered. Table 5.2 shows the PSNR values for different scenarios, where

Rs is the ratio of the number of samples taken from each column of a single frame

to the number of entries in each column. In this table ’+ME’ under ’Method’ means

that the motion estimation enabled version of the algorithm is applied. Note that

the PSNR values for f67 and f68 are not provided in the table for the case when

every other frame is considered as the reference frame. Entries of the measurement

matrix are i.i.d. samples from Bernoulli distribution with Pr
(

Φi,j = ±1/
√
lN
)

= 1
2 .

Taking a closer look at the PSNRs in Table 5.2 reveals that not only the motion

estimation enabled version of the algorithm has better recovery quality, but also it

would result in almost the same PSNR for the reference and non-reference frames.

As one would expect the gain in the PSNR using the motion estimation enabled

version of the algorithm would be more significant in case of the fast motion videos.

Results in Table 5.2 confirm this expectation. Fig. 5.1 shows four reconstructed

frames of Akiyo video where the two-level wavelet decompositions are considered

for the reference frame. Fig. 5.2 depicts two reconstructed frames of Coastguard
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Table 5.2: PSNR values for different sampling scenarios.

Method Rs

PSNR (dB)

f65 f66 f67 f68

Akiyo

DCT 0.5
40.24 39.01 - -

43.15 41.89 41.76 41.75

DWT 0.5
43.20 40.99 - -

47.86 45.32 45.02 44.97

2-level DWT 0.5
45.58 43.64 - -

47.33 45.45 45.14 45.00

DCT+ME 0.5
40.59 40.59 - -

44.09 44.09 44.1 44.09

DWT+ME 0.5
43.44 43.44 - -

48.74 48.74 48.74 48.75

2-level DWT+ME 0.5
46.05 46.04 - -

48.04 48.04 48.04 48.04

Coastguard

DCT 0.625
31.25 31.02 - -

30.15 28.17 28.25 28.30

2-level DWT 0.625
33.61 31.63 - -

32.26 30.72 30.28 30.14

DCT+ME 0.625
35.15 35.15 - -

34.12 34.13 34.22 34.21

2-level DWT+ME 0.625
35.60 35.60 - -

34.42 34.42 34.44 34.50
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(a) Frame 65 (b) Frame 66

(c) Frame 67 (d) Frame 68

Figure 5.1: Reconstructed Akiyo frames.

video with the assumption of two-level DWT as the sparsity basis for the reference

frame. The video frames shown in Fig. 5.3 are the recovered frames of Coastguard

video using the motion estimation enabled version of the algorithm with the two-

level DWT domain being the sparsity basis for the reference frame. Note that the

results in Table 5.2, and Figs. 5.1, 5.2, and 5.3 are obtained from the unquantized

compressed frames.

Fig. 5.4 shows the PSNR versus compression ratio for the two video sequences

considered. The sparsity basis considered for the reference frames is the two-level

DWT domain. In this case compressed frames are being quantized to have exact

values for the compression ratio.

100



(a) Frame 65 (b) Frame 66

Figure 5.2: Reconstructed Coastguard frames.

(a) Frame 65 (b) Frame 66

Figure 5.3: Reconstructed Coastguard frames from the motion estimation enabled method.
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Figure 5.4: PSNR vs compression ratio.

To further compare the algorithms proposed in this chapter with the one in [102],

we apply these algorithms to the same experimental videos and we compare the
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results. The slow motion video used in [102] is Akiyo and for the fast motion video

Stefan is used. Table 5.3 compares the recovery PSNRs for the proposed algorithms

with the results in [102]. The results provided are for the 217th frame of Akiyo and

the 100th frame of Stefan. In both cases the previous frame is considered as the

reference frame. The highest PSNR values for each video is shown in bold face. It

can be seen that with the proposed motion estimation enabled algorithm, we can

reach higher PSNRs with a smaller sampling ratio, Rs. Fig. 5.5 shows the frames

corresponding to the last row of Table 5.3.

(a) Frame 99 (b) Frame 100

Figure 5.5: Reconstructed Stefan frames from the motion estimation enabled method.

5.3 Chapter summary

The problem of two dimensional CS was considered and a parallel CS method was

developed here. As a sample application of two dimensional CS a video compression

method that exploits the similarity between consecutive video frames was given. The

method applies the same measurement matrix to every column of the permuted

extended virtual frame, which enables us to develop parallel algorithms at both

compression and decompression stages that simplifies the video coding hardware. In

order to further benefit from the aforementioned similarity of the consecutive video

frames in a video sequence, a motion estimation enabled variant of the algorithm is

also proposed. This version of the compression algorithm improves the quality of the

recovered frames, especially when dealing with fast motion videos, at the expense

of the extra communication required to transmit the motion vectors. Simulation

results demonstrate the effectiveness of the proposed video compression method.
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Table 5.3: Recovery PSNR comparison of the proposed method with the one in [102].

Method Rs

PSNR (dB)

Reference frame Frame in question

Akiyo

[102] 0.6 - 31.94

[102] 0.89 - 41.42

DCT 0.5 38.57 37.5

DWT 0.5 42.21 39.92

2-level DWT 0.5 44.91 43.35

DCT+ME 0.5 38.48 38.48

DWT+ME 0.5 39.57 39.57

2-level DWT+ME 0.5 45.08 45.08

Stefan

[102] 0.78 - 26.06

[102] 0.89 - 37.58

2-level DWT 0.75 33.9 31.6

2-level DWT+ME 0.75 34.55 34.55

2-level DWT+ME 0.84 38.43 38.45
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Chapter 6

Conclusion

A summary of the contributions of the thesis is given in this chapter. We also

comment on the future work that can be done regarding different research problems

considered in this PhD work.

6.1 Summary of contributions

CS shows great promise in undersampled signal recovery and has given a lot of atten-

tion in the signal processing literature in the past few years. Though various aspects

of it from compressive signal acquisition and sampling to sparse signal processing

algorithms is still immature. The areas of CS studied in this dissertation include

AIC design, sparse channel estimation, and two dimensional CS with application in

video compression.

6.1.1 AIC design

We proposed a new segmented CS method for AIC. An analog signal measured by

K parallel BMIs is first segmented in time into M segments so that a K×M matrix

of sub-samples is obtained. The sub-samples collected on different segments and

different BMIs are reused to collect more samples than the number of BMIs. These

samples are correlated to each other over at most one segment. We find the measure-

ment matrix corresponding to this method of sampling and show that it satisfies the

RIP if the original measurement matrix of BMI sampling waveforms satisfies it. The

extra samples collected help improve the signal recovery performance. Specifically,

we proved that the performance of the signal recovery based on the empirical risk

minimization improves when the segmented AIC is used for sampling instead of the

conventional AIC with the same number of BMIs. In another setting, if the number

of BMIs is insufficient in the conventional AIC to guarantee successful recovery, the

104



proposed segmented AIC supplies the recovery algorithm with additional samples

so that successful recovery becomes possible. The complexity increase of the seg-

mented AIC is only due to the M ≤ K times higher sampling rate and the necessity

to solve a larger size optimization problem at the recovery stage, while the number

of BMIs remains the same at the sampling stage. We presented simulation results

to justify the effectiveness and superiority of the segmented AIC over conventional

AIC.

6.1.2 Sparse channel estimation

We considered the problem of sparse channel estimation. Building on the idea of

the ZA-LMS which introduces a penalty term in the cost function of standard LMS,

we proposed two algorithms: reweighted l1-norm penalized and lp-pseudo-norm pe-

nalized LMS. Mathematical analysis of reweighted l1-norm penalized LMS’s mean

convergence as well as the attainable excess MSE of the algorithm was presented

in the thesis as well. The excess MSE result shows that the reweighted l1-norm

penalized LMS can outperform the standard LMS algorithm. Modified versions of

these algorithms were also given for the case of an arbitrary sparsity basis for the

CIR. Simulation results for a DCT sparse channel were given along with the time

sparse channel example. The performance of the reweighted l1-norm penalized LMS

has been compared to the standard LMS, oracle LMS, ZA-LMS, RZA-LMS, and our

lp-pseudo-norm penalized LMS through computer simulations. These results show

that reweigthed l1-norm penalized LMS outperforms standard LMS, ZA-LMS and

the RZA-LMS.

We also introduced decimated LMS and ZAD-LMS algorithms for estimation of

frequency or DCT sparse CIRs. Decimated LMS and ZAD-LMS have the advantage

of being able to accommodate multiple users while having smaller complexity than

the standard LMS. However, the performance of decimated LMS degrades with

increasing CIR sparsity level. The algorithms have been compared in terms of MSE

to the standard LMS and the ZA-LMS. Simulations demonstrating the effectiveness

of the proposed decimated LMS methods were also given.

6.1.3 Two dimensional CS

Two dimensional signals are usually vectorized and then a CS measurement matrix

of a large size is used to collect the compressed samples. We proposed the idea of
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sampling all the columns of a two dimensional signal with the same measurement

matrix of a smaller size. This leads to decreased complexity due to the use of a

smaller measurement matrix. As an application, we proposed a CS-based video

compression method that exploits the similarity between consecutive video frames

by assuming the pixel-wise difference of the non-reference and reference frames as

the sparsity basis. The method applies the same measurement matrix to every col-

umn of the permuted so called extended virtual frame. We are able to develop

parallel algorithms at both compression and decompression stages that significantly

simplifies the video coding hardware. In order to further benefit from the afore-

mentioned similarity of the consecutive video frames in a video sequence, a motion

estimation enabled variant of the algorithm was also proposed. This variant of the

compression algorithm improves the quality of the recovered frames, especially when

dealing with fast motion videos, at the expense of extra communication required to

transmit the motion vectors.

6.2 Probable future research

6.2.1 Theoretical analysis of segmented AIC for l1-norm minimiza-

tion based recovery

The mathematical analysis of the segmented CS method with empirical risk mini-

mization as the recovery algorithm was given in this thesis. For l1-norm minimiza-

tion based recovery, however, this is more challenging since the rows of the mea-

surement matrix are correlated. The problem comes down to finding the extremal

eigenvalues of a correlated random matrix.

6.2.2 Quantized segmented AIC

In every real world system, the measurements are stored with finite precision and

this is the case for AIC as well. As an example, the idea of one bit CS was introduced

in [106] where only the sign of the measurements are retained. This method recovers

the signal on the unit sphere within a scaling factor. It is necessary to study the

performance of our segmented AIC when the compressed samples are quantized.

6.2.3 Sparse RLS and Kalman filter algorithms

Parameter estimation algorithms such as RLS and Kalaman filter can also be mod-

ified when the signal of interest is sparse. Several modifications of these algorithms
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have been presented in the literature. The ideas of reweighted l1-norm penalized

LMS, lp-pseudo-norm penalized LMS, decimated LMS and ZAD-LMS can also be

applied to RLS and Kalman filter algorithms. A mathematical analysis of the per-

formance improvement of these algorithms over the standard RLS and Kalman filter

can also be done.

6.2.4 Direct two dimensional CS for an arbitrary sparsity basis

The two dimensional CS method presented in this thesis first transfers the signal to

the sparsity basis and then a permutation is applied to make sure that the columns

are of even sparsity level. This means that the signal is first sampled with the Nyquist

rate and then compressed. The setup described in the thesis forces us to do so in

order to be able to run a parallel recovery algorithm. It might be possible to change

the recovery problem in a way that the need of finding the sparse representation

of the signal is rectified. In this way, there will be no need to sample the signal

with a high rate and compressed samples can be collected in one step which leads

to simplification of the sampler.
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Appendix A

Proof of Theorem 3.1

The total number of possible permutations of z is K!. Let A be the set of permu-

tations πs, s = 1, . . . , |A| that satisfy the following condition

πs(k) 6= πt(k), s 6= t, ∀s, t ∈ {1, . . . , |A|}, ∀k ∈ {1, . . . ,K}. (A.1)

It is easy to see that the number of distinct permutations satisfying the condition

(A.1) is K, so |A| = K. It is also straightforward to see that the choice of such K

distinct permutations is not unique. As a specific choice, let the elements of A, i.e.,

the permutations πs, s = 1, . . . ,K, be

πs(k) = ((s+ k − 2) mod K) + 1, s, k = 1, . . . ,K (A.2)

with π1 being the identity permutation, i.e., the permutations that does not change

z.

Consider now the matrix Z which consists of M identical columns z. The ith set

of column permutations of matrix Z is P(i) = {π(i)
1 , . . . , π

(i)
M } and the corresponding

permuted matrix is ZP(i)
. Let {π(i)

1 , . . . , π
(i)
M } be any combination of the K permu-

tations in (A.2). Then there are KM possible choices for P(i). However, not all of

these possible choices are permissible by the conditions of the theorem.

Indeed, let the set P(1) be a combination of permutations from A that sat-

isfies (3.22). There are I − 1 other sets P(i), i = 2, . . . , I which satisfy both

(3.22) and (3.23). Gathering all such sets in one set, we obtain the set P =

{P(1), . . . ,P(I)}. Now let P(I+1) = [π
(I+1)
1 , . . . , π

(I+1)
M ] be one more set of permu-

tations where ∃π(I+1)
m , m = 1, . . . ,M such that π

(I+1)
m /∈ A. An arbitrary kth row

of ZP(I+1)
is
(

[ZP(I+1)
]k,1, . . . , [Z

P(I+1)
]k,M

)

where [ZP(I+1)
]k,1, . . . , [Z

P(I+1)
]k,M ∈

{1, . . . ,K}. This exact same row can be found as the first row of one of the per-

muted matrices ZP(i)
, P(i) ∈ P. Specifically, this is the permuted matrix ZP(i)

that
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is obtained by applying the permutations P(i) =

{

π
[ZP(I+1)

]k,1
, . . . , π

[ZP(I+1)
]k,M

}

.

The permutations P(i) either has to belong to P or being crossed out from P be-

cause of conflicting with another element P(l) ∈ P, l 6= i. In both cases, P(I+1) can

not be added to P because it will contradict the conditions (3.22) and (3.23).

Therefore, the set P can be built using only the permutations from the set

A, i.e., the K permutations in (A.2). Rearranging the rows of ZP(i)
in a cer-

tain way, one can force the elements in the first column of ZP(i)
to appear in the

original increasing order, i.e., enforce the first column to be equivalent to the vec-

tor of indices z. It can be done by applying to each permutation in the set P(i)

the inverse permutation
(

π
(i)
1

)−1
, which itself is one of the permutations in (A.2).

Therefore, the set P(i) = {π(i)
1 , . . . , π

(i)
M } can be replaced by the equivalent set

{(

π
(i)
1

)−1
π

(i)
1 , . . . ,

(

π
(i)
1

)−1
π

(i)
M

}

=

{

π1, . . . ,
(

π
(i)
1

)−1
π

(i)
M

}

where
(

π
(i)
1

)−1
π

(i)
j ∈

A. Hence, the permutations of the form P(i) = {π1, . . . , π
(i)
j , . . . , π

(i)
M } can only be

considered. Since the condition (3.22) requires that π
(i)
2 should be different from π1,

the only available options for the permutations on the second column of Z are the

K − 1 permutations π2, . . . , πK in (A.2). Therefore, I at most equals K − 1. Note

that I can be smaller than K− 1 if for some i ∈ {1, . . . ,K − 1}, K/gcd(i,K) < M

(also see Example 3.1 after Theorem 3.1). Thus, in general I ≤ K − 1.
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Appendix B

Proof of Lemma 3.1

Let all the rows of (Φe)T be partitioned into two sets of sizes (cardinality) as close

as possible to each other, where all elements in each set are guaranteed to be statis-

tically independent. In particular, note that the elements of the new Ka rows of Φe

are chosen either from the first Ka +M − 1 rows of Φ if Ka +M − 1 < K or from

the whole matrix Φ. Therefore, if Ka +M − 1 < K, the last K −Ka −M + 1 rows

of Φ play no role whatsoever in the process of extending the measurement matrix

and they are independent on the rows of Φ1 in (3.28). These rows are called unused

rows. Thus, one can freely add any number of such unused rows to the set of rows in

Φ1 without disrupting its status of being formed by independent Gaussian variables.

Since min{K,Ka +M−1} ≤ ⌈(K +Ka) /2⌉, there exist at least ⌊(K +Ka) /2⌋−Ka

unused rows which can be added to the set of rows in Φ1. Such process describes

how the rows of (Φe)T are split into the desired sets (Φe)
1
T and (Φe)

2
T of statisti-

cally independent elements. As a result, the first matrix (Φe)
1
T includes the first

⌈(K +Ka) /2⌉ rows of (Φe)T , while the rest of the rows are included in (Φe)
2
T .

Since the elements of (Φe)
1
T and (Φe)

2
T are i.i.d. Gaussian, these matrices will

satisfy (3.7) with probabilities equal or larger than 1 − 2 (12/δS)S e−C0⌈Ke/2⌉ and

1 − 2 (12/δS)S e−C0⌊Ke/2⌋, respectively. Therefore, both matrices (Φe)
1
T and (Φe)

2
T

satisfy (3.7) simultaneously with the common probability

Pr{(Φe)
i
T satisfies (3.7)} ≥ 1 − 2(12/δS)Se−C0⌊Ke/2⌋, i = 1, 2. (B.1)

Let K ′
1 , ⌈Ke/2⌉ and K ′

2 , ⌊Ke/2⌋. Consider the event when both (Φe)
1
T and

(Φe)
2
T satisfy (3.7). Then the following inequality hold for any vector c ∈ RS :

2∑

i=1

K ′
i

N
(1 − δS)‖c‖2

l2 ≤
2∑

i=1

‖(Φe)
i
T c‖2

l2 ≤
2∑

i=1

K ′
i

N
(1 + δS)‖c‖2

l2 (B.2)
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or, equivalently,

Ke

N
(1 − δS)‖c‖2

l2 ≤ ‖(Φe)T c‖2
l2 ≤ Ke

N
(1 + δS)‖c‖2

l2 . (B.3)

Therefore, if both matrices (Φe)
1
T and (Φe)

2
T satisfy (3.7), then the matrix (Φe)T

also satisfies (3.7). Moreover, the probability that (Φe)T does not satisfy (3.7) can

be found as

Pr{(Φe)T does not satisfy (3.7)} ≤ Pr{(Φe)
1
T or (Φe)

2
T does not satisfy (3.7)}

(a)

≤
2∑

i=1

Pr{(Φe)
i
T does not satisfy (3.7)}

(b)

≤ 4 (12/δS)S e−C0⌊Ke/2⌋ (B.4)

where the inequality (a) follows from the union bounding and the inequality (b)

follows from (B.1). Thus, the inequality (3.30) holds.
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Appendix C

Proof of Theorem 3.2

According to (3.30), the matrix (Φe)T does not satisfy (3.7) with probability less

than or equal to 4 (12/δS)S e−C0⌊Ke/2⌋ for any subset T ⊂ {1, . . . , N} of cardinality

S. Since there are
(N

S

)
≤ (Ne/S)S different subsets T of cardinality S, Φe does not

satisfy the RIP with probability

Pr{Φe does not satisfy RIP} ≤ 4

(
N

S

)

(12/δS)S e−C0⌊Ke/2⌋

≤ 4 (Ne/S)S (12/δS)S e−C0⌊Ke/2⌋ = 4e−(C0⌊Ke/2⌋−S[log(Ne/S)+log(12/δS)])

≤ 4e−{C0⌊Ke/2⌋−C3[log(Ne/S)+log(12/δS )]⌊Ke/2⌋/ log(N/S)}

= 4e−{C0−C3[1+(1+log(12/δS))/ log(N/S)]}⌊Ke/2⌋. (C.1)

Setting C4 = C0 − C3 [1 + (1 + log (12/δS)) / log (N/S)] and choosing C3 small

enough that guarantees that C4 is positive, we obtain (3.31).
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Appendix D

Proof of Lemma 3.2

The method of proof is the same as the one used to prove Lemma 3.1 and is based

on splitting the rows of Φe into a number of sets with independent entries. Here,

the splitting is carried out as shown in (3.33).

Let (Φe)
i
T , i = 1, . . . , np − 1 be the matrix containing the (i − 1)K + 1th to

the iKth rows of (Φe)T . The last Ke − (np − 1)K rows of (Φe)T form the matrix

(Φe)
np

T . Since the matrices (Φe)
i
T , i = 1, . . . , np − 1 consist of independent entries,

they satisfy (3.7) each with probability of at least 1 − 2 (12/δS)S e−C0K . For the

same reason, the matrix (Φe)
np

T satisfies (3.7) with probability greater than or equal

to 1 − 2 (12/δS)S e−C0Knp . In the event that all the matrices (Φe)
i
T , i = 1, .., np

satisfy (3.7) simultaneously for c ∈ RS we have

np∑

i=1

Ki

N
(1 − δS)‖c‖2

l2 ≤
np∑

i=1

‖(Φe)
i
T c‖2

l2 ≤
np∑

i=1

Ki

N
(1 + δS)‖c‖2

l2

⇒Ke

N
(1 − δS)‖c‖2

l2 ≤ ‖(Φe)T c‖2
l2 ≤ Ke

N
(1 + δS)‖c‖2

l2 . (D.1)

Therefore, using the union bound and (D.1), we can conclude that

Pr{(Φe)T does not satisfy (3.7)} ≤
np∑

i=1

Pr{(Φe)
i
T does not satisfy (3.7)}

≤ 2(np − 1) (12/δS)S
(
e−C0K

)
+ 2 (12/δS)S (e−C0Knp

)
(D.2)

which proves the lemma.
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Appendix E

Proof of Theorem 3.3

According to Lemma 3.2, for any subset T ⊂ {1, . . . , N} of size S, the probability

that (Φe)T does not satisfy (3.7) is less than or equal to 2(np−1) (12/δS)S
(
e−C0K

)
+

2 (12/δS)S
(
e−C0Knp

)
. Using the fact that there are

(N
S

)
≤ (Ne/S)S different subsets

T , the probability that the extended measurement matrix Φe does not satisfy the

RIP can be computed as

Pr{Φe does not satisfy the RIP}

≤ 2(np − 1)

(
N

S

)

(12/δS)S e−C0K + 2

(
N

S

)

(12/δS)S e−C0Knp

≤ 2(np − 1) (Ne/S)S (12/δS)S e−C0K + 2 (Ne/S)S (12/δS)S e−C0Knp

= 2(np − 1)e−(C0K−S[log(Ne/S)+log(12/δS)]) + 2e−(C0Knp−S[log(Ne/S)+log(12/δS )])

≤ 2(np − 1)e
−
{

C0K−C3Knp
K

[log(Ne/S)+log(12/δS )]K/ log(N/S)
}

+ 2e−{C0Knp−C3Knp [log(Ne/S)+log(12/δS )]Knp/ log(N/S)}

= 2(np−1)e
−
{

C0−
C3Knp

K
[1+(1+log(12/δS))/ log(N/S)]

}

K

+ 2e−{C0−C3[1+(1+log(12/δS))/ log(N/S)]}Knp . (E.1)

Denoting the constant terms as C4 = C0 − C3 [1 + (1 + log (12/δS)) / log (N/S)]

and C ′
4 = C0− (C3Knp/K) [1 + (1 + log (12/δS)) / log (N/S)] and choosing C3 small

enough in order to guarantee that C4 and C ′
4 are positive, we obtain (3.35).
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