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Abstract

This thesis presents two unpublished papers that provide tools to address two impor-
tant complications in predicting the hazards caused by an atmospheric gas release:
random fluctuations in exposure concentration at a fixed receptor location in a point
source plume. and a lack of realistic models for estimating the acute toxicity of fluc-
tuating concentration exposures.

A stochastic simulation of intermittent concentration fluctuations was developed
from the assumption that the concentration fluctuations at a fixed receptor can be
modelled as a first order Markov process. A clipped lognormal probability density
function was used to describe the intermittent concentration fluctuations. The ac-
curacy of the simulation was confirmed by comparing simulated first derivatives of
concentration with respect to time and simulated concentration level upcrossing rates
with measurements of concentration fluctuations in a scale model plume in a water
channel.

An effective toxic load model with three receptor response parameters was pro-
posed to provide a more realistic model of toxicity than the current exposure toxic load
model that has no receptor parameters. The receptor response factors included were
an uptake time constant. a recovery time constant. and a saturation concentration.
This model was tested using the simulated time series produced by the stochastic
model. A hydrogen sulphide exposure was considered and the effective toxic load
model was found to provide more realistic estimates of the fatalities from a hydrogen

sulphide release than the conventional exposure toxic load calculations.
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Nomenclature

a(c.t) deterministic term in the stochastic differential equation for the time

derivative of concentration. kg/m3s. see Equation (2.2)

b(c.t) random forcing function term in the stochastic differential equation for

€50+

Cso

Ceff

Cbhase

the time derivative of concentration, kg/m3s%3, see Equation (2.2)
mean concentration including the zero concentration periods. kg/m3
instantaneous concentration. kg/m?

positive and negative concentration values produced after shifting c. con-
centration by cpgse. € = €, — Cpase. kg/m?

standard deviation of concentration about the mean C including the zero
concentration periods. kg/m3

root mean square of the first derivative of concentration with respect to
time. kg/m3s

pseudo-concentration coordinates used for non intermittent (~_ 1.0)

stochastic simulation. kg/m?

median (50th percentile) pseudo-concentration. kg/m?
median (30th percentile) concentration. kg/m?
biologically effective concentration. kg/m3

concentration shift required to produce intermittency factor ~ from the
pseudo-concentration c. simulated time series. kg/m?

conditional (in-plume) mean concentration excluding zero concentration
intermittent periods, kg/m?

standard deviation of the conditional (in-plume) concentration about the
conditional mean C, excluding the zero concentration periods. kg/m?

saturation concentration for the modified toxic load model. kg/m?3
mass diffusivity, m?/s

displacement height of the surface roughness. m



E,(c) conditional (in-plume) exceedance probability of observing a concentra-

f

tion greater than ¢

frequency. Hz

F fraction of a population affected by an exposure. see Equation (3.1)

'Ifcut

K

concentration power spectrum
cutoff frequency for Kolmogorov microscale. Hz
source height above ground level. m

fluctuation intensity ¢’/C about the mean including zero concentration
intermittent periods

conditional (in-plume) fluctuation intensity cp/Cp
cutoff wave number 1/n for Kolmogorov microscale. m™!

zero fluctuation concentration in the general form of the a term in the
stochastic differential equation. see Equation (A.4)

exposure toxic load calculated from instantaneous exposure concentration
integrated with time. [ c"dt

Lean exposure toxic load calculated from the mean exposure concentration. C™t

Leff
N

n

n+

nr

p(c)

effective toxic load calculated with appropriate values for Tup- Tr and C;
Gaussian random number with zero mean and unity variance

toxic load exponent in L = ¢"t. n is between 1.0 and 3.5 for a wide varietv
of common industrial chemicals.

upcrossing rate. upcrossings/s

number of fluctuation integral time scales T in a simulated time series. see
Equation (2.33)

probability density function (pdf) of concentration

pp(c) conditional (in-plume) probability densityv function. excluding zero periods

Pp(c) conditional (in-plume) cumulative probability of observing a concentration

less than ¢, excluding zero periods
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Pr probit. corresponding to a given level of response in an exposed population
g zero offset constant in probit equation. see Equation (3.2)
r constant in probit equation, see Equation (3.2)
s constant in probit equation. see Equation (3.2)
s standard deviation. see Equation (2.36)

Sc Schmidt number. dimensionless ratio of mass diffusivity D to molecular
viscosity v

t time. s
T.. Eulerian integral time scale of pseudo-concentration fluctuations. s

T, Eulerian integral time scale of actual intermittent concentration fluctua-
tions. s

te total exposure duration. s

TLR toxic load ratio. dimensionless ratio of a toxic load to the toxic load calcu-
lated from the mean exposure concentration. see Equation (3.22)

TLRgye toxic load ratio of the exposure toxic load L
TLReq toxic load ratio of the effective toxic load L.g

TLR¢, toxic load ratio of the effective toxic load L.g with some saturation con-
centration C,

TLR., toxic load ratio of the effective toxic load Leg with some recovery time
constant 7,

TLR,,, toxic load ratio of the effective toxic load Leg with some uptake time
constant Tp

TLR. toxic load ratio as t — o¢
L" wind speed. m/s, or mean flow velocity in water channel. mm/s
u. friction velocity in log-law velocity profile. m/s

z downstream distance from source. m
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Ne

cross stream distance from centreline of source. m
height above ground level. m

roughness length scale. m

Greek Symbols
dimensionless concentration, ¢/csg
total mean dimensionless concentration including zero periods. C/csq

positive and negative dimensionless concentration values produced after
shifting ¢ concentration by @pese. @ = O~ — Opgse

standard deviation of dimensionless concentration about the dimensionless
mean & including the zero concentration periods. ¢'/csg

mean dimensionless pseudo-concentration. C_/csg.
dimensionless pseudo-concentration. c. /c5o—

median (50th percentile) dimensionless concentration. 1.0
median (50th percentile) dimensionless pseudo-concentration. 1.0
dimensionless concentration shift. cpaee/c50

conditional (in-plume) mean dimensionless concentration excluding zero
periods. Cp/cso

standard deviation of the conditional (in-plume) dimensionless concentra-
tion about the dimensionless conditional mean &, excluding the zero con-
centration periods. ¢,/ €30

intermittency factor. equal to fraction of the time that there are non-zero
concentrations

intermittency factor = 1.0 of the non-intermittent pseudo-concentration
time series

Kolmogorov microscale of turbulence kinetic energy dissipation. m
Kolmogorov microscale of concentration. m

von Karman constant = 0.4



-

mean value, see Equation (2.38)
molecular viscosity, m?/s

log standard deviation of non-intermittent pseudo-concentration lognormal
pdf

cross stream plume spread. m
uptake time constant for the modified toxic load model. s
recovery time constant for the modified toxic load model. s

Gaussian random number in the stochastic differential equation with zero
mean and variance dt. s%3. see Equation (2.2)



PRSNN

Chapter 1

Introduction

Accidental releases of industrial gases into the atmosphere can produce offensive
odors. flammability and toxicity. These potential impacts can occur on-site in the
occupational exposure setting or off-site where the general public will be exposed.
Predicting the likely effects of an accidental gas release is important to ensure that
accident prevention and risk management methods are appropriate and cost-effective.

This thesis addresses two important complications in estimating the toxic effects of
an atmospheric gas release: random fluctuations in exposure concentration at a fixed
receptor in a point source plume. and a lack of realistic models for predicting acute
toxicity of fluctuating concentration exposures. The concentration fluctuations are
important because in a typical plume the exposure concentration can range from zero
(background) concentration when only clean air is present to more than 20 times the
mean concentration. Exposure concentration and exposure duration are non-linearly
related to the toxic effects of the release so an accurate toxicity model is required
to predict the effects of these fluctuating concentrations. Two unpublished papers
are presented that provide tools for dealing with these problems and improving the

hazard assessment of toxic gas releases.
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1.1 Simulating Concentration Fluctuations

Chapter 2 contains the first paper entitled “Stochastic Simulation of Intermittent
Concentration Fluctuations”. In this chapter the stochastic model of Du (1995) is
extended to allow simulation of realistic intermittent concentration fluctuation time
series. This new model is tested with experimental water channel saline plume dis-
persion data collected by Wilson. Zelt and Pittman (1991).

The stochastic simulation provides a numerical computer based model that can be
used to generate multiple realizations of intermittent concentration fluctuation time
series with realistic combinations of intermittency factors and fluctuation intensity.
Each time series is a simulation of an actual exposure event that could be observed
at a fixed receptor location.

Previous models of intermittent concentration fluctuations provided only proba-
bility distributions and statistics such as the mean. variance. skewness. and kurtosis.
that have to be mathematically manipulated in combination with a hazard model to
estimate the effects of a release. The stochastic simulation method provides a direct
approach to the problem. All of the concentration fluctuation as well as the inter-
mittent periods of zero concentration are directly simulated. The complex effects of
fluctuations on toxicity. flammability. or odor can be tested by stepping through the
generated time series with any possible hazard model. Each individual realization
of an exposure scenario can be analyzed in detail and large ensembles of time series

realizations can be used to generate average and “worst-case” effects.
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1.2 Estimating Toxicity from Fluctuating Concen-
trations

Chapter 3 is the second paper entitled “A Model for Effective Toxic Load from a
Hazardous Gas Release”. A modified toxic load model is proposed and evaluated by
applying it to intermittent concentration fluctuation time series produced by stochas-
tic simulation.

The most widely used parameter for predicting acute toxicity is toxic load L =
Cm"t. where L is the toxic load calculated by the non linear relationship between the
exposure concentration C and the exposure duration t. Because the exponent n is
greater than unity for most common industrial chemicals. the large concentration
fluctuations that are observed in an actual release can be verv important to the
overall toxicity. Most toxicity models do little to account for fluctuations except
through implicit factors of safety to account for peak-to-mean ratios. The direct
simulation approach allows a realistic effective toxic load model to be developed with
an uptake time constant. a recovery time constant. and a saturation concentration.
This effective toxic load model is then time-stepped through individual simulations
of exposure event realizations so that both average effects and variability in effects

can be determined.

1.3 Release Scenarios Considered

The focus of both the stochastic simulation and the toxicity model is a scenario where
the release is of relatively short duration. Typical releases from industrial accidents

last for a few minutes to a few hours. The extreme case would be a sour gas well



blowout that can produce substantial levels of toxic gases for several weeks. but this
case has not been developed in this thesis.

Only immediately observable acute health effects will be considered. Chronic
effects such as the development of cancers or other long term diseases will not be
examined as they require entirely different models and methodologies.

Acute effects occur during or immediately following an exposure to the toxic
chemical. These effects could range from odor annoyvance to fatality. In practice. the
only endpoint that can be reliably measured and documented is fatalities. Other less
severe health effects are necessarily subjective and much more difficult to measure
objectively. In some cases. the same sort of reactions that lead to fatality mayv also
cause the less severe effects. It is reasonable to assume that exposure levels that cause
death in a few very sensitive individuals also cause less severe effects in more resistant
individuals.

A release of toxic gas will affect animals and plants in addition to the people that
are exposed. Although these effects can be an issue in evaluating the overall risk
posed by an industrial facility. this thesis will only consider the direct acute health

effects on human beings.

1.4 Stochastic Fluctuation Modelling

The first stochastic process to be considered in detail was Brownian motion of small
particles in a fluid. The Brownian motion phenomenon was discovered in 1827 by
Robert Brown. but equations to describe this motion were not solved until 1905
by Einstein and Smoluchowski with a simpler derivation bv Langevin in 1908. see

Gardiner (1983, chap. 1).



The assumptions made to derive the equations for Brownian motion were that

there are two forces acting on a Brownian particle:

e viscous drag of the fluid on the particle that causes the particle to slow to zero

velocity in the absence of any external forces.

e a fluctuating force due to the random impacts of molecules of fluid on the particle.

The impacts should be positive and negative with equal probability.

The viscous drag is a deterministic component based on the current velocity while
the fluctuating forced caused by impacts of molecules of fluid is a random component
of the motion of a Brownian particle.

To describe the concentration fluctuations at a fixed receptor location in a dis-

persing plume some analogous assumptions are made:

e there is some analog to drag that causes the concentration to return to a zero

fluctuation value.

¢ the random fluctuations in concentration due to turbulence are positive and neg-

ative with equal probability.

The simplest one dimensional model for a stochastic concentration fluctuation pro-
cess that includes a deterministic and a random component is given by the stochastic

differential Langevin equation from Gardiner (1983):
de(t) = a(c. t)dt + b(c. t)d¢ (1.1)

where c is the instantaneous concentration, a(c. t) is a deterministic component that
determines the behavior of the concentration in the absence of random fluctuations

and b(z,t)d(¢ is the random fluctuating component.



An inherent assumption of using an stochastic differential equation like Equation
(1.1) is that the fluctuation process is an inertialess first order Markov process. A
Markov process is a type of stochastic process which has no memory of previous
states earlier than time ¢ — dt. A first order Markov process has a derivative that has
no memory of previous derivatives. It is called inertialess because the concentration
“velocity™ (8Oc/dt) is not correlated with previous concentration velocities.

Du (1995) proposed that a stochastic first order Markov model could be used to
model the conditional (in-plume) concentration fluctuations. In this thesis. the Du
(1995) model is extended to cover both the in-plume fluctuations and intermittent

periods of zero concentration.

1.5 Toxicity Modelling

In order to estimate the acute health effects from a toxic gas release. a toxicity model
is required. Many different toxicity models have been proposed and thev can be

divided into three broad classes:

1. Threshold Models: The simplest method of predicting toxicity is to simply set
a threshold level based on experiment and observation. The threshold simply
implies that above some concentration adverse effects will occur and below this

concentration effects are negligible.

N

Data Based Models: A simple model can be devised by examining existing data
on toxicity and finding an equation to fit these data. This is the approach used

to define the existing non-linear toxic load models.

3. Mechanistic Biological Models: A biological model attempts to mathematically



describe all of the relevant biochemical reactions involved in the toxicity of
a particular compound. A typical biological model. usuallyv referred to as a
pharmacokinetic model. divides the human body into several compartments
and target organs and then applies rate constants to metabolic reactions and

transfers between all of these compartments.

The following sections evaluate these three classes of toxicity model for use in

estimating the acute effects of a toxic gas release.

1.5.1 Threshold Toxicity Models

The first level in toxicological modeling is to define a single threshold level above which
harm can occur and below which no harm occurs. This is the approach generallv
used for standards such as occupational exposure limits and ambient air limits. For
example. in Alberta. the occupational exposure limit for hyvdrogen sulphide is 10
parts per million (ppm) average concentration for an 8 hour exposure. Alberta Health
(1988).

The problem with thresholds is that there is usually no accompanying explanation
of how the threshold was determined. The value is usually set byv a consensus judge-
ment that decides what safety factor is appropriate to apply to the limited toxicity
data available. A simple 10 ppm limit for an 8 hour hydrogen sulphide exposure does
not give useful and necessary information to determine whether 11 ppm is much more
dangerous. or if a much higher level. say 100 ppm. is tolerable for a short period of
time provided that the 8 hour average stays below 10 ppm. The biggest question is
how to scale this threshold to other situations. For example. is a 10 ppm exposure

safe for sensitive individuals? If the concentration fluctuates widely (as it does in real
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outdoor exposures) how do we determine the effects? If workers are on 12 hour shifts.
how high a concentration should they be able to tolerate? Thresholds are difficult to
apply to any exposure scenarios other than the simple ones that they specifv and are

not suitable for estimating the acute effects of a toxic gas release.

1.5.2 Data Based Toxicity Models

The second level of complexity for a toxicological model is a single equation describing
the response of a population to a toxic substance. These tvpes of models are based on
data collected on the effects of the toxic substance in relation to a variety of different
variables. In the case of toxic gases. the most relevant variables are usually considered
to be the concentration and duration of exposure.

In the early part of the 20th century the relationships between the exposure con-
centration. the exposure duration. and the toxicitv were examined. It had been
suggested as early as 1910 that the relationship between concentration and exposure
duration was non-linear. see Bliss (1940). In 1924. Haber reported on experiments
on the acute lethal toxicity of several poison gases used on troops in World War I
and proposed that the product of concentration and time was a constant for a given
response. see Gelzleichter. Witchi and Last (1992). Haber's Law is Ct = A". where
C is the mean exposure concentration. ¢ is the duration of exposure. and the dose
K is a constant for a given level of fatalities in the exposed population. The same
percentage of fatality can be produced by proportional changes in the concentration
C and the exposure duration ¢. Busvine (1938) proposed that the proper relationship
between exposure concentration and duration was the non-linear C"t = L. where n
is an exponent greater than zero. This relationship has become known as the toxic

load L. For values of n < 1 the duration of exposure is weighted heavier than the



concentration of exposure and for values of n > 1 the concentration is more important
than the duration. If Haber's Law were true then n = 1.

An important study of toxic load relationships was reported by ten Berge. Zwart
and Appelman (1986). In this paper. previously published data on the acute lethal
toxicity of some volatile industrial chemicals were analvzed using probits. It was
found that Haber’s Law does not work very well in most circumstances. but that a
toxic load exponent n different from unity and typically between 2.0 and 3.0 fits the
available data very well. The scope of this study. that included 20 different industrial
chemicals. indicates that non-linear toxic load L is a reasonable basis for a data-based
population response toxicity model.

The toxic load concept has been widely used for the risk assessment of acutelv
toxic gases. The Center for Chemical Process Safety of the American Institute of
Chemical Engineers. (CCPS. 1989). provides recommended toxic load relationships
for a few common industrial chemicals. The Rijmond Report by Cremer and Warner
Ltd. (1981) used toxic load to evaluate the potential risks of chlorine and ammonia
exposures from industrial facilities in the town of Rijnmond in Holland. Rogers (1990)
recommended a toxic load model to evaluate the effects of hydrogen sulphide releases

in Alberta.

1.5.3 Mechanistic Biological Models

There has been considerable work done with mechanistic models of toxicity. Recent
advances in measurement techniques have allowed many different variables inside the
body of an individual organism to be measured. These data. along with knowledge of
the operation of chemical reactions. internal organs and systems have led to a wide

range of complex toxicity models.



These types of models are often referred to as physiologically based pharmacoki-
netic models and they attempt to simulate the actual processes in the body that
produce toxicity. including metabolic reactions and transfers between organs and sys-
tems. Andersen et al. (1980) investigated uptake rates in rats for a number of volatile
organics and proposed a four compartment model for just the uptake process. Clewell.
III and Andersen (1994) reviewed the pharmacokinetic modelling approach and dis-
cussed some models for styrene and dihalomethanes. Overton (1990) reported on
another model for styrene that incorporates inhalation. exhalation. and metabolism
in the respiratory tract tissues. Gargas. Medinsky and Andersen (1995) determined
some metabolic constants for a few volatile organic compounds in rats.

The main difficulty of this approach is that the human body is extremely complex
and pharmacokinetic models may be verv complex. A typical pharmacokinetic model
involves dividing the body up into at least two or three compartments and often many
more. with rate constants for transfers between each compartment. Each model is
very specific and not easily adapted to other chemicals or to the wide variability in
individuals. Obtaining data for a reliable pharmacokinetic model is a major research
effort. The best predictions of health effects could be obtained with a completely
detailed pharmacokinetic model of the human bodyv and all of the variations that
are possible. However. at the present time this is not technically feasible. nor is it
justifiable considering the large uncertainties that are present in other aspects of a

hazard assessment of a toxic gas release.
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1.6 Hydrogen Sulphide Toxicity

Hydrogen sulphide will be used as an example to test the effective toxic load model in
the second paper. The Major Industrial Accident Council of Canada (MIACC. 1994)
lists hydrogen sulphide as a “top priority” substance that has a high probability of
causing off-site fatalities when stored in quantities greater than 1 tonne. Commercial
uses of hydrogen sulphide include the manufacture of heavy water. purification of hy-
drochloric and sulphuric acids. manufacture of elemental sulphur. nylon. mercaptans
and soda ash. see Environmental Protection Service (1984). Some natural sources of
hydrogen sulphide are volcanic explosions. bacteria active in the decay process. and
releases from areas of geothermal activity. see WHO (1981) and Young (1983).

The primary source of hydrogen sulphide in Canada is sour natural gas. Western
Canadian natural gas deposits contain dissolved hydrogen sulphide in concentrations
from less than 1 percent to greater that 90 percent. see Environmental Protection
Service (1984): Alberta Health (1988): Reiffenstein. Hulbert and Roth (1992). In
Alberta. occupational exposures are common. but accidental exposures to the public
are also of concern. One memorable incident of public exposure was the Lodgepole.
Alberta gas well blowout in 1982 that released large quantities of hydrogen sulphide
containing sour natural gas into the atmosphere for a period of sixty-seven days. see
Alberta Health (1988).

Hydrogen sulphide is a colourless toxic gas with a distinctive rotten egg odour at
low concentrations. Carl Wilhelm Scheele. 1742-1786. is credited with the discovery
of hydrogen sulphide although it is suspected that the first recorded observations of
hydrogen sulphide poisoning were in 1713 by Bernardino Ramazzini who described

painful inflammations of the eye in Parisian sewer workers. It was later discover that
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hydrogen sulphide was evolving from the sewage. see Smith (1989)

Numerous studies have been performed in an attempt to accurately quantify the
effects of hvdrogen sulphide on humans. Alberta Health (1988) summarizes exposure
data from approximately 100 different experiments including both human exposures
and animal tests. Large bibliographies of sulphur gas toxicology have been prepared
by Beauchamp et al. (1984) who list over 1300 references and Prior. Lee and Toma
(1985). Lee, Prior and Toma (1985). and Lee and Prior (1986) who list several thou-
sand references. However. most of the information was obtained from animal testing
and there is little information on direct human exposure. Human exposures are usu-
ally accidental and not performed under controlled conditions so there are rarelyv
concentration measurements or other important information available to accurately
quantify the doses responsible for the effects observed.

Most hydrogen sulphide toxicity information documents dangerous exposure con-
centrations. but gives little or no information on the exposure times required to
produce the effects. Reiffenstein. Hulbert and Roth (1992) provide a summary of
the basic toxicology of hydrogen sulphide. and give the concentration levels for some
observed effects. It is reported that at 500 to 1000 parts per million (ppm) hydrogen
sulphide is recognized as being rapidly lethal to humans and other animals. but no
duration of exposure is specified.

As reported in Alberta Health (1988), Alberta has three different standards con-
trolling the level of exposure for hydrogen sulphide. Occupational Health and Safety
requires that the concentrations in the workplace not exceed 10 ppm for 8 hours.
Alberta Environment has set an ambient standard of 0.01 ppm for a 1 hour average.
Alberta Health has issued evacuation guidelines to facilitate handling emergency re-

leases of hydrogen sulphide such as a gas well blowout or pipeline break. Evacuation
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is mandatory if levels exceed 20 ppm. If average levels in a community exceed 10 ppm
averaged over 8 hours residents would be advised to leave until the levels decrease.
At levels below 10 ppm it is recommended that individuals who experience svmp-
toms related to the hydrogen sulphide or individuals with medical conditions such as
asthma or emphysema consider leaving the area until the ambient concentrations are

reduced.
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Chapter 2

Stochastic Simulation of
Intermittent Concentration
Fluctuations

2.1 Introduction

The inhomogeneous mixing of a point source plume of contaminant produces large
fluctuations in contaminant concentration at a fixed receptor. The instantaneous con-
centrations can range from zero (background) concentration to more than 20 times the
mean concentration. Two examples of typical time series of concentration fluctuation
are shown in Figure 2.1.

Toxicity. flammability and odor effects have a strong non-linear dependence on
concentration. For example. ten Berge. Zwart and Appelman (1986) analvzed many
animal experiments for 20 different acutely toxic gases and found that fatalities a
function of concentration C" where n = 1.0 to 3.5. Most chemicals had an exponent
n value in the range of 2.0 to 3.0. The Center for Chemical Process Safety of the
American Institute of Chemical Engineers (CCPS. 1989) recommends similar non-

linear models for predicting acute toxicity from common industrial chemicals.
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If the exponent n = 1 then the high concentrations are no more important than
the low concentrations and the only variable determining toxicity is the mean con-
centration C. However, if n > 1. as it is for many substances. then concentration
fluctuations increase the toxicity of the exposure because the high concentrations be-
come much more important than low concentrations. In a typical point source gas
plume where the fluctuation standard deviation ¢’ is often several times larger than
the mean concentration C these large fluctuations have a significant effect on the
predicted toxic hazard from a gas release.

The current body of work on concentration fluctuations. reviewed in Wilson
(1995). approaches the problem both experimentally and with theoretical models
to predict the variance. skewness. kurtosis and other statistics of the fluctuations.
Recent work by Yee et al. (1993. 1994. 1995) recognizes that the evaluation of toxic
hazards from a release requires additional information on concentration level recur-
rence time intervals. intermittency. and level-crossing statistics in addition to the
probability distributions and higher order concentration moments. The stochastic
time series simulation proposed in the present study can be used to evaluate all of
these statistical measures from user specified values of the mean. variance. intermit-
tency and fluctuation time scale.

In this study. a time series of simulated intermittent concentration fluctuations
is generated directly as a first order “inertialess” Markov process. The stochastic
model used to produce these intermittent time series is an extension of a conditional
(non-intermittent) model by Du (1995). The objective of this study is to generate
an ensemble of realistic random time series of intermittent concentration fluctuations
that can be applied directly to a hazard model. This direct simulation approach

allows the user to see the effect of each realization of an ensemble and to apply
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complex hazard models that cannot be used if only the overall statistics are known.

2.2 Probability Distributions of Intermittent Time
Series

A probability distribution, in the form of a probability density function (pdf). is a kev
input to the proposed stochastic simulation. The pdf constrains the fluctuating con-
centrations to ensure the correct mean. variance. and intermittency in the simulated
time series.

Probability distributions of intermittent concentration fluctuations usually focus
on the conditional in-plume concentrations with the intermittent periods described
by a delta function at zero concentration. Wilson (1995. chap. 5) examined several
different distributions and recommended the lognormal as the best fit to a wide vari-
ety of data. The choice of the lognormal is supported by water channel experimental
data analyzed by Yee. Wilson and Zelt (1993). although Yee et al. (1995) analvzed
full scale atmospheric data and concluded that the gamma distribution provided a
better fit than the lognormal. The gamma distribution sometimes provides a better
fit to concentrations less than the mean while the lognormal fits better for concen-
trations greater than the mean. Du (1995) used both the gamma and the lognormal
distribution in a stochastic model for the conditional concentration upcrossing rate
and found that there was little difference between the distributions.

In the present study. a clipped lognormal pdf is used to describe the intermittent
concentration fluctuations and to meet the requirements for the stochastic simulation

of intermittent time series.
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2.2.1 Shifted and Clipped Lognormals

The primary restriction on the choice of the pdf is that it must describe both the
in-plume concentrations and the zero concentration intermittent periods. The proba-
bility of obtaining a non-zero concentration must be equal to the intermittency factor
7 and the probability of obtaining a zero concentration must be equal to (1 — ~).
A simple delta function cannot be used to account for the zero periods because the
stochastic model becomes mathematically trapped in a delta function and the time
series of concentration will not go above zero after hitting zero concentration.

To meet the pdf requirements. the stochastic simulation is implemented in pseudo-
concentration coordinates c, where the subscript “+" denotes parameters related to
these pseudo-concentrations. Step 1 in Figure 2.2 shows the pseudo-concentration
¢. time series and pdf. In c. coordinates. the concentration fluctuations are repre-
sented by a complete lognormal distribution with only positive concentrations and an
intermittency factor ~_ = 1.0. There are no intermittent periods in c..

After a simulated time series is generated. the concentrations are shifted by a

value of cpase to give positive and negative concentrations ¢ where:
€ = C. — Chase (2.1)

In ¢ coordinates. the probability of obtaining a positive concentration is equal to
the intermittency factor 4 and the probability of obtaining a negative concentration
is (1 — 7). The magnitude of the negative concentration is interpreted as inversely
proportional to the likelihood of obtaining a positive concentration in the next time
step. The shifted lognormal is shown in Step 2 of Figure 2.2 for a typical time series
and the corresponding pdf.

Negative concentrations are clearly unrealistic. so the final step in interpreting the
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simulation is to clip all of the negative concentrations and replace them with a delta
function at zero concentration. The result is a clipped lognormal that has only real
concentrations ¢ > 0. The final intermittent time series and pdf are shown in Step 3

of Figure 2.2.

2.2.2 Physical Interpretation of the Shifted Lognormal

A physical interpretation of the shifted lognormal is that the concentration fluctua-
tions and the intermittent periods are part of the same physical mixing process as
shown in Figure 2.3. Eddies with some positive concentration of contaminant fow by
a point and cause the non-zero concentration fluctuations. Similarly. eddies of clean
air flowing by the same point cause the intermittent periods. The positive concen-
trations of the shifted lognormal describe the contaminated eddies while the negative
concentrations describe the clean air eddies. The magnitude of the negative shifted
concentration ¢ in Figure 2.3 is inverselv proportional to likelihood that the concentra-
tion will be non-negative in the next time step. The larger the negative concentration
¢. the larger the eddy of clean air and the less likely that that a concentration greater
than zero will occur in the next time step.

After the shifting is complete. all of the negative concentration values are con-
verted to zero concentration intermittent periods and the result is a clipped lognormal
pdf of concentration. Clipped distributions have been used to describe concentration
fluctuations. but not with this interpretation. For example. Lewellen and Sykes (1986)
used a clipped normal pdf to describe intermittent plumes from a power plant. but
their interpretation did not attach any significance to the missing negative concen-
trations and was simply a fit to the available data. As pointed out by Wilson (1995.

p. 46), the clipped normal is not appropriate for general use because its functional
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form can only produce in-plume fluctuation intensities less than 1.0. Tvpical in-plume
fluctuation intensities in a point source plume range from 0.5 and 2.0. with most of

the values greater than unity, making the clipped normal an inappropriate choice.

2.3 Stochastic Model for Fluctuations

Du (1995) developed a numerical stochastic model to predict upcrossing rates of con-
ditional (in-plume) concentration fluctuation time series. The limitation of this model
is that it does not account for intermittent periods of zero (background) concentration
that are observed experimentally.

In the present study. the Du (1995) model is extended to include the simulation

of the intermittent periods. The basic assumptions of their model are that:

the probability distribution of concentration is independent of spatial position

(and therefore travel time) in the plume.

e Eulerian concentration fluctuations are produced by a first order Markov process
that can be described by a stochastic differential equation. and by the equivalent
Fokker-Planck equation for the time dependent evolution of the concentration

probability distribution.

e the derivative of concentration is dependent on the current instantaneous concen-

tration.
e concentration fluctuations are statistically stationary.

The intermittent stochastic simulation is implemented with a lognormal distribu-

tion in non-intermittent pseudo-concentration c.. coordinates so that all the simulated



concentrations are greater than zero as discussed in Section 2.2 and shown in Figure
2.2. All parameters calculated from this time series of pseudo-concentrations will be

denoted by the subscript “+".

2.3.1 Stochastic Differential Equation

Experimental evidence from Yee et al. (1993) and water channel data presented later
in this paper shows that the root mean square concentration derivative ¢’ increases
with the concentration level at which it is measured. This requires a stochastic model
for the time series of concentration fluctuations to have a deterministic component
that changes dc.. /dt as concentration c.. increases along with the usual random com-
ponent. This first-order Markov (inertialess) concentration fluctuation process at a
fixed location in a dispersing plume can be described by the one dimensional stochas-

tic differential Langevin equation:

dec_

~ d .
= = a(cs.t) + b(c+.t)z (2.

[SV]
[S%)

where a(c..t) is the deterministic portion of the time derivative dependent on the
concentration ¢, and time ¢ and b(c..t)d( is a random forcing function where d( is
a Gaussian random number with a mean of zero and variance dt.

The Langevin equation. discussed in detail by Gardiner (1983. pp. 80-83) and
Durbin (1983). is used to describe a wide variety of continuous stochastic processes.
Originally. the equation was developed to describe the position of Brownian particles
in a fluid. see Gardiner (1983. chap. 1). It has also been applied to the modelling of
concentration fluctuations in the Lagrangian sense by tracking the random flights of
particles emanating from a point. see Wilson and Sawford (1996). Here. we apply the

Langevin equation in an Eulerian sense by assuming that the measured concentration
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at a single point can be modelled as a continuous Markov process.

2.3.2 Fokker-Planck Constraint

It is assumed that the pdf of concentration c. is stationarv. but a useful constraint
between the a and b terms can be derived by first assuming that the pdf of concen-
tration does change with time. Durbin (1983) provides a detailed derivation of the
deterministic relationship for the time evolution of the pdfin a Markov process. The
basic procedure is to consider a pdf of concentration c. at time t. By definition. a
Markov process has no memory of previous states and this translates to the require-
ment that the pdf at some time ¢ depends only on the pdf at time ¢ — d and some
transition probability between concentration c.. at time ¢ and concentration c. — de..
at time ¢ — dt. Integrating over all possible dc. values and substituting moments
calculated for the stochastic process from Equation (2.2) produces a deterministic
equation describing the time evolution of the probabilitv density function plc.). as

given in Du (1995)

dp _ _dlap) _18°(t%)

5t = de. 2 02

(2.3)

Equation (2.3) is the one dimensional Fokker-Planck equation. Additional discussion
can be found in Gardiner (1983. chap. 5). The Fokker-Planck equation constrains
the evolution of the probability distribution of concentration with the relationship
between the a and b terms.

Stationarity requires that a. b and the pdf p do not change with time. With this
assumption dp/8t = 0 and Equation (2.3) can be integrated once to vield:

d(’p)
de,

= 2ap (2.4)



Following Du (1995) integrating (2.4) to solve for b in terms of a produces

bz—g/m—a dc (5
_Pc D acy

Equation (2.5) is a deterministic relationship between the pseudo concentration time

!\J
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S

series generation parameters a and b in Equation (2.2) and the probability density

function p that is specified by the user.

2.3.3 Functional Relations for a and %

The a term governs the deterministic part of the fluctuation process. In the absence
of random fluctuations. a determines the behavior of the concentration derivative.
Yee et al. (1993) found that the first derivative of concentration with respect to
time is strongly dependent on the current concentration. That is. large derivatives
are observed at extreme concentrations relative to the mean. while small derivatives
generally occur near the mean. Here. we assume that in the absence of random
fluctuations the instantaneous concentration c. will return to the well mixed mean
concentration C'y at a rate dependent upon the magnitude of the current difference
between c. and C..

The model proposed by Du (1993) for the non-zero (conditional) part of the
concentration time series assumed a non-linear relationship for the deterministic a
term and found that the results were not too sensitive to the non-linearity. For the

present study we postulate the linear form of the a term:

C.L - C+
= —_ " 9
a T.. (2.6)

Calculation of the integral time scale from the time series that are generated by

the model confirms that the input time scale T,. is the integral time scale of the
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pseudo-concentration fluctuation process. The fluctuating time series produced by
the simulation is inertialess. so T,.. may be rescaled to any value without changing
the physical basis of the time series. The exact T, value used for simulation is not
important and it is nominally set to unity.

The pdf p(c.) must be specified to complete the model. In this study. p{c.)
is a lognormal distribution as discussed in Section 2.2. The value of the & term is
calculated by substituting the pdf and the definition of a from equation ( 2.6) into
equation (2.3).

In the absence of concentration fluctuations. Equation (2.6) produces a deriva-
tive that will drive the pseudo-concentration to the well-mixed mean value C_. This
return-to-mean assumption is required to produce the correct random component b.
The b term must go to zero at concentration ¢— = 0 to ensure that no negative c. con-
centrations will be produced by the stochastic differential equation (2.2). Appendix
A provides additional detail on the a term necessary to produce an appropriate b
term. The general forms of @ and b calculated with a lognormal p(c+) are shown in
Figure 2.4.

For a highly intermittent time series. the pseudo-mean C. can be a negative
concentration after the shifting necessarv to produce the intermittent periods. With
this in mind. C. should be interpreted as a representative concentration that includes
the effects of both the intermittent zero periods and the non-zero fluctuations. If C.
is less than zero concentration after shifting. it implies that the clean air eddies

dominate the fluctuation process.
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2.4 Clipped Lognormal Distribution

The lognormal is well documented in both Aitchison and Brown (1957) and Crow and
Shimizu (1988) who also include some information on clipped or truncated lognormals.
The clipped lognormal is not widely used and some discussion of its basic statistics
and application to the stochastic model is required. A full lognormal pdf in c.
coordinates is used for the stochastic simulation as explained in Section 2.2. but
the clipped lognormal in ¢ coordinates must have the correct statistics for the final
intermittent time series.

There are two sets of statistics that can be considered for an intermittent time
series. Conditional statistics exclude the intermittent periods of zero concentration
and are denoted by a subscript “p”. The total statistics include the zero periods
as well as the non-zero concentrations and have no subscript. For example. C is
the mean concentration including the zero periods. while C, is the conditional mean
concentration that excludes the zeroes. where uppercase svmbols denote mean values.

To use the clipped distribution in the stochastic simulation. the c. lognormal
distribution must be chosen so that after it is clipped by cpace as shown in Figure
2.2 the desired intermittency factor 4 and the conditional fluctuation intensity z'ﬁ are
obtained. The intermittency factor v is defined as the fraction of the total time during
which the concentration is greater than zero. The conditional fluctuation intensity if,
is defined as:

2
2 _ G

= = (2.7)
P C2

where ¢2 is the conditional variance of the concentration and C, is the conditional
mean.

Appendix B details all the steps in calculating the statistics of the clipped log-
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normal and the important results are listed below. The integrals of the lognormal

distribution required for these derivations are presented in Appendix C.

2.4.1 Normalized Concentrations

The analysis of the clipped lognormal is simplified by normalizing all concentrations
by the median concentration csg that includes all of the zero concentration periods to

produce dimensionless concentrations denoted by o.

o = — (2.8)
Cs0
C

b = — (2.9)
C50

<I>,, = & (2.10)
Cs0

o = & (2.11)
Cs0
CI

p = —= 2.12

Op - (2.12)

where o is the instantaneous dimensionless concentration. & is the mean dimensionless
concentration, @, is the conditional (in-plume) mean dimensionless coucentration. o'
is the standard deviation of the dimensionless concentration. and 0, is the conditional
standard deviation of dimensionless concentration excluding the zero periods. Bv
definition. 059 = 1 is the median dimensionless concentration.

In pseudo-concentration “+" coordinates all concentrations are normalized by the

median concentration csg. of the pseudo-concentration time series:

c
0. = — (2.13)
Cs50+

C.
C50+

¢
o, = Cs; (2.15)

()
=1



where ¢, is the instantaneous dimensionless pseudo-concentration. ®. is the mean
dimensionless pseudo-concentration, ¢’, is the standard deviation of the dimensionless
pseudo-concentration, and by definition the median dimensionless pseudo-concentra-

tion is @50+ = 1.

2.4.2 Lognormal Distribution

First. consider the non-intermittent lognormal distribution in pseudo-concentration

“+7 coordinates. The lognormal probability density function (pdf) is:

2 Oa
(o ) _ 1 ex _ ll'l (050+ )
D\o+) = ,_2770’1.;.0.4. Xp

with a mean

2
. =exp (%) (2.17)

and variance
0% = &% (exp(a,) — 1) (2.18)

This is the lognormal distribution that will be implemented in the stochastic model.
For this distribution, the log standard deviation o,, must be chosen to give the correct
fluctuation intensity after the distribution is shifted by @ and all of the negative

concentrations are clipped.

2.4.3 Intermittency Factor of Clipped Lognormal

To obtain the desired intermittency factor ~ the lognormal distribution is shifted by

Opase to transform the simulated time series from strictly positive concentrations ¢.
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to o with positive and negative concentrations. where the negative values represent

the intermittent periods of zero concentration.
O = Q4 — Ppase (219)

The shift @pase must be chosen so that the probability of observing a concentration

greater than zero is equal to the user-specified intermittency factor ~.

;= / " p(64)d(s) (2.20)

base
Using Equation (2.16) in Equation (2.20) and solving for ~ in terms of the two un-

knowns opase and o,

1 In (Obase) 9
=4 (-w(252) .

2.4.4 Fluctuation Intensity of Clipped Lognormal

[SV)
SV ]
—

In addition to the intermittency factor ~. the conditional fluctuation intensity z'§ is
required to fully describe the clipped lognormal. After shifting the non-intermittent
pseudo-concentrations @, by Opase. all of the negative © concentrations are trans-
formed to a delta function at zero concentration with probabilitv (1 —~). This leaves
only positive and zero concentrations for the actual normalized dimensionless concen-
tration o.

The full time series mean & of the clipped lognormal is derived in Appendix B as:

2

exp (2= In Gpase — 02,
S S )
2 oL+ 2 oL+

(2.22)




with a second moment @2

— exp (20%) ( <1n Obase — 20,2+)>
2 =2R\0) (o (2.23)
2 V20,

2 , 2
_ [ % _ In @pase — 0f,
Obase EXP ( 2 ) (1 erf( V20 ))
+ =22 {1 —erf
2 \/-2—0'!+

The conditional moments including only non-zero in-plume concentration periods

(denoted by a subscript “p”) are related by the definition of the intermittency factor

~ to the full time series moments by:
Yor = o (2.24)
By definition. the second moment @2 is related to the mean ® and the second moment

about the mean 6" by:

r2 (

[AV]
(R
[V
=

=9’ +0

Q

The conditional fluctuation intensity z";: is defined as

é’2
2= 22 (2.26)

P @%

with equations (2.24), (2.25) and (2.26):

Using the definitions of the moments 2 from Equation (2.23) and ® from Equation

(2.22) in Equation (2.27) gives an implicit relation for the input ig in terms of the

unknowns op,se and oy, .
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2.4.5 Lognormal in c. Coordinates

Equations (2.21) and (2.27) can be used to calculate @y, and oy in terms of the user
input fluctuation intensity z'z and intermittency factor v. Because these are implicit
relationships, @pase and g, must be found numerically. This was accomplished using
a simple iterative bisection method.

The numerical solution for equations (2.27) and (2.21) does not converge for all
possible values of if, and v. Figure 2.5 shows the lower boundary of solutions possible
for given 2 and v combinations. Although the vertical axis in Figure 2.5 ends at

P
i2 = 3.0. values as high as iﬁ = 10* were checked and found to have solutions.

P
Fortunately. the presence of this lower boundary of solutions does not cause any
problem because real plumes are well within the valid range. The solid line in F igure
2.5 shows an empirical relationship suggested by Wilson (1995. p. 32) for tvpical i§
versus ~ values in atmospheric plumes.

With the solution for o,. and oy,.. the value of the dimensionless conditional

mean P, can be calculated. The value of the median concentration Cs50+ can be found

from the definition in (2.9) with the user input conditional mean concentration C,

G,
C30+ = a: (2.28)

Using this value of csp. the value of cpase is
Cbase = O@baseC50+ (2.29)

The log standard deviation oy, is the same in both the dimensionless 6. coordinates

and the dimensioned c. coordinates.
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The c50+ and o4 values are the required parameters for the c. lognormal pdf:

= ()
50+
D) = ———exp | ——55—+ 2.30

and the cpase value is used after the simulated time series is generated to clip the time

series and the pdf.

2.5 Generating Stochastic Time Series

The stochastic differential equation (2.2) is solved numerically by using a forward

difference:
Co(n+1) = Ci(n) + an_kt + bn V At.\.n (231)

where ¢ (1) is the instantaneous c. concentration at time ¢,.,. c.(n, is the instan-
taneous concentration at time t,. At is the time increment. and N, is a Gaussian
random number with zero mean and unity variance. The VAf in equation (2.31)
arises from the original definition of the random fluctuation process in equation (2.2).
The Gaussian random number d¢ has a mean of zero and a variance dt and the units
of d¢ are Vtime. In equation (2.31) the Gaussian random number is normalized by
VAt because it is more convenient to generate random numbers with mean 0 and
variance 1. This leaves a v/ At in the numerator of the second term of equation (2.31).

A uniform distribution of random numbers was generated with a shift register
sequence generator as discussed by Maier (1991) and Carter (1994). For stochastic
simulations it is important that the period of the random number generator is large
because millions of random numbers are required for a single simulation. Repeating

a short sequence of random numbers does not produce the same result as individual
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random numbers. The period of the shift register generator is approximately 9 x 107.
That is, the random sequences do not repeat until 9 x 10™* numbers have been gen-
erated so there are no repeating sequences in the simulation. The Box-Muller (1958)
transformation was used to obtain the Gaussian distributed random number N, from
the uniform distribution. Appendix D provides additional computational detail on
the random number generator.

The simple linear form of the a term is Equation (2.6) and the b term is found
from Equation (2.5) by substituting in the definition of the a term from Equation

(2.6) and the pdf p(c.) from Equation (2.30).

€a 2
n C50+ Ors
—erf

\/§Ul+ \/§Ul-

The parameters c5- and oy, are calculated from the user input intermittency factor

b2

~ and the input conditional fluctuation intensity z'f, as discussed in Section 2.4.

The conditional mean Cp. and time scale T,.. were arbitrarily set to unity to
generate fully normalized time series. Because the simulation is an inertialess Markov
process there is no sensitivity to the length of the time step (i.e. to the “acceleration”
d%c../0t?) and the output of the simulation can be scaled to match the time scale and
mean concentration of any desired time series. The \¢ time step was set to 0.017._
giving one hundred time steps per time scale.

Each run of the simulation was started at the median concentration cso and then
allowed to run for 107, to eliminate the effects of picking the same starting point for
each simulation. The random number generator was seeded based on the time that

the computer program was started.
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The simulation was run for a total of at least 5000 integral time scales to allow a
sufficient length of time to produce the rare peak concentrations that define the tail
of the pdf of concentration where ¢, > C,. The following equation gave a reasonable

estimate for the number of time scales. nr. needed for each simulation realization.

5000:
nr ~ ——F_ (2.33)
(v +0.1)
with the input fluctuation intensity i, and intermittency factor . The number of

time scales nr varies inversely with v because as the intermittency factor decreases
there are fewer excursions above the zero concentration level in a given length of time.
so a longer duration is required to ensure that a sufficient amount of non-zero data are
generated. Similarly. as i, increases. the fluctuations become larger and additional
time is required to capture all of the rare events. The factor of 0.1 in the denominator
was added to put an upper bound on the number of time scales in each simulation as

the intermittency factor v becomes very small.

2.5.1 Time Scales of Intermittent and Non-Intermittent Time

Series

The time scale of the non-intermittent pseudo-concentration fluctuations was set to
T.. = 1.0 for the stochastic simulation. The time scale T. of the actual fluctuations of
the intermittent concentration c is not equal to 1.0 after clipping. The clipping process
removes all of the fluctuations below cpae and replaces them with zero periods. This
should make the time scale longer. but clipping also produces sharp high frequency
cutoffs that decrease the time scale 7,. It is not obvious which of these factors
dominates.

Figure 2.6 shows the variation in the actual time scales T, calculated from the
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clipped intermittent time series as compared to the T, time scale. In general. the time
scale T, of the intermittent concentration fluctuations is shorter than the time scale
T+ of the non-intermittent concentrations. This relationship can be approximated
as a function of the intermittency factor 7./T.. = 0.78 + 0.23v. The variability
between realizations is quite large as demonstrated by the error bars in Figure 2.6.
Fortunately, this is not a difficult problem to deal with since the inertialess nature of
the Markov simulation allows the time scale T to be rescaled to match the time scale
of any real process. It is important to use 7, when rescaling the time series and not

T.. because there can be as much as a 10% difference between the two values.

2.5.2 Time Step for Molecular Diffusion Cutoff

The stochastic simulation produces a time series of concentration fluctuations with
the appearance that it has been sampled at a frequency of 1/\¢. Since the purpose
of the simulation is to simulate atmospheric releases. a brief calculation was required
to check that this sampling frequency did not exceed the frequencies that are possible
in the real atmosphere due the limits imposed by diffusion and viscosity.

In the atmosphere. the mass diffusivity D of most gases is about the same as
the molecular viscosity v of the air. Therefore. the Schmidt number Sc ~ 1. and
the Kolmogorov microscale of concentrations is approximatelv equal to the Kol-
mogorov microscale for turbulence kinetic energy dissipation 7. >~ 7. A tvpical value
is 7= 0.001m that gives a cutoff wavenumber of k., = 1/n = 1000 m~!'. With
kewr = 27 foue /U and a typical windspeed of U =2 m/s this corresponds to a cutoff fre-
quency of about fc,, = 300 Hz with frequency rolloff beginning at about 0.2 Sfeur =60
Hz.

The stochastic model samples at 100 samples per time scale. For tvpical atmo-
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spheric time scale of T, = 100 seconds. the sampling rate is onlv 1 Hz. about 2 orders
of magnitude below the Kolmogorov cutoff. No physical limitations on fluctuation
frequency were present in the stochastic simulation of atmospheric concentration fluc-

tuations.

2.6 Concentration Fluctuation Measurements

The water channel facility, shown in Figure 2.7. in the Mechanical Engineering De-
partment at the University of Alberta was used to collect the concentration fluctua-
tion data. The experimental time series used for verification and development of the
stochastic model were measured by Wilson. Zelt and Pittman (1991). The measure-
ment equipment and technique is documented in the Ph.D. thesis by Zelt (1992) and

discussed in Yee. Wilson and Zelt (1993).

2.6.1 Water Channel Description

The water channel is a recirculating system with a total volume of about 4300 litres
driven by a pair of recirculating pumps. Both pumps discharge into a settling cham-
ber in the lower part of the inlet tank. The flow from the settling chamber is directed
through turning vanes and flow straighteners to remove any pump generated turbu-
lence.

The test section in Figure 2.7 has a width of 680 mm and a length of about
5000 mm. The floor of the water channel was covered with an uniform roughness
array of in-line cylinders 1.9 mm high and 4.5 mm diameter on 8.0 mm centers in
the cross-stream and downstream directions. A boundary layer trip of solid bars to

generate large scale turbulence and a low wall to increase the turbulence near ground
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level were placed in the channel to enhance the development of the neutrally stable
boundary layer. When run at a depth of 300 mm in the test section. the rough bottom
boundary layer had a thickness of H = 150 mm giving a scale factor of approximately
3300:1 as compared to a neutral atmosphere.

The mean velocity profile of the shear laver in the water channel agreed closely
with the log law profile:

£—=-1—1n<:—d0> (2.34)
u, K 20

where U is the mean flow velocity. u. = 14.6 mm/s is the friction velocity. k = 0.4
is the von Karman constant. dy = 1.5 mm is the displacement height of the surface
roughness. 5o = 0.15 mm is the roughness length scale and : is the height above
ground level.

A downstream facing isokinetic source from a 3.45 mm ID tube at a position
2030 mm downstream from the beginning of the channel emitted saline tracer solution
at a height A, = 52 mm above the bottom of the channel into a mean velocity of
210mm/s at the source height. The tracer was a neutrally buovant mixture of water.

ethanol and 50g/l salt emitted with a flow rate of 2.0 ml/s.

2.6.2 Data Collection and Processing

The concentration fluctuation data were obtained with a rake of 8 electrical conduc-
tivity probes mounted with the probe tips 20 mm apart. Each probe had a spatial
resolution of about 1 mm. Throughout the experiments the probe response was cor-
rected for background buildup and electronic drift in the output. Each fluctuation
time series consisted of 125,000 points sampled at 250 points per second for a total

sample time of 500 seconds. At 3300:1 scale this corresponded to samples spaced
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about 3 m apart in the wind direction. The concentration measurements were nor-
malized by the source concentration and stored as 16-bit integer values.

After the data set was collected it was processed to correct for the probe response
time constant that produced a -3dB rolloff frequency of 35 Hz. Deconvolution of
the digital signals from the probes with the inverse of a first order impulse response
function enhanced the effective frequency response to 105 Hz. equivalent to a spatial
resolution of about 0.3 mm in the water channel or about 1 m in the atmosphere at
a scale of 3300:1.

A zero concentration threshold was set at 8.0 times the background noise level
to eliminate the effect of noise on the measured intermittency. This threshold cor-
responds to about 0.09C, and was determined empirically by analyzing time series
with no source emission and adjusting the threshold to find the required 100% zero
period intermittency.

The data were collected by Wilson. Zelt and Pittman (1991) at three downstream
positions z/h; = 9.0. 19 and 29. Measurements were taken at various positions y
across the width of the plume at each of these downstream locations. In the present
study. only data taken at the source height z = h, with intermittency factors ~ > 0.01
were used. The restriction on the intermittency factor ensured that there were a
sufficient number non-zero data points to generate reasonable probability distribution

histograms.
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2.6.3 Frequency Spectrum of Experimental Data Compared

to the Simulation

There is one potential problem with attempting to match the experimental water
channel data with the stochastic simulation. As Wilson. Zelt and Pittman (1991)
note. for salt into water the mass diffusivity D is much smaller than the molecular
viscosity of the fluid v and the Schmidt number Sc¢ = v/D > 1. The effect of
this large Schmidt number is that velocity driven straining of the concentration field
decays before molecular diffusion smears out the concentration fluctuations. This can
be seen in the spectrum of concentration fluctuations shown in Figure 2.8 where the
water channel data follow the viscous-convective Batchelor spectrum with F, x f~!
at high frequencies f. The shape of the concentration spectrum of the stochastic
simulation is determined by the assumption of a first order Markov process that
produces F. x f~2 at high frequencies. Not shown in Figure 2.8 is the spectrum of
concentration fluctuations in the atmosphere where D =~ v so Sc = 1 and at high
frequencies F, x f~3/3, see Wilson (1995, pp. 143-146).

The important implication of this spectral mismatch between the stochastic sim-
ulation and the experimental data is that there should be more high frequencies in
the water channel data than in the stochastic simulation. even if the fluctuation in-
tensities are the same. Higher peak concentrations might be expected in the water
channel data. Comparison of the experimental data and the stochastic simulation in-
dicated that the effect of this spectral mismatch is small. When the stochastic model
is used for atmospheric concentration fluctuations the effect should be even smaller
as the first order Markov spectrum F, x f~2 provides a much closer match to the

F. x f=3/3 spectrum expected in the atmosphere.
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2.7 Comparison of Experimental Data and Clipped
Lognormal pdf

A key input to the stochastic model is the probability density function (pdf) of concen-
tration. In the previous sections it was assumed that the clipped lognormal distribu-
tion can be used to describe intermittent concentration fluctuations. To demonstrate
that this assumption is reasonable. the experimental water channel concentration
probability distribution was compared to the clipped lognormal probability distribu-
tion. For this comparison onlyv conditional (in-plume) concentrations were considered.
so all concentrations were normalized by the conditional mean concentration C »- The
theoretical clipped lognormal distributions were given the same intermittency factor
~ and conditional fluctuation intensity ig as the experimental data sets.

Several different forms of the probability distribution of concentration were ex-
amined including the probability density function (pdf) which is the form of the
probability distribution used directly in the simulation. the cumulative probability
distribution function (cdf) which emphasizes the low concentration levels less than
the mean. and the exceedance probability distribution function which emphasizes the
high concentrations greater than the mean. Plots of all of these forms of the probabil-
ity distribution are contained in Appendix E. Only the exceedance plots are presented
in this paper in Figures 2.9 and 2.10. All of these probability distributions prove only
one point. that the clipped lognormal is a good choice for describing the water channel
experimental data. Additional probability distribution shapes such as the gamma or
clipped lognormal were not evaluated because the clipped lognormal provided a good
fit and other distributions are much more difficult to manipulate mathematically with

the shifting and clipping processes necessary to produce intermittent time series.
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2.7.1 Exceedance Probability

In most hazardous releases the high concentrations greater than the mean are the
most important, so the most relevant information is contained in the exceedance
probability plots. Figures 2.9 and 2.10 show the normalized conditional exceedance
probability E;(c/C)) defined as the probability of finding a concentration greater than

c/Cp

5(5)=/»(5)(5)

The log-log plots of exceedance probability emphasize the high concentrations ¢ >

(2.33)

Cp. Agreement with the experimental data set is within a few percent up to E, =0.1.
that is the 90th percentile concentration. At the 99th percentile concentration or
E, = 0.01. the error is within a factor of two. even when the intermittency factor
~ is very small and there are measurable concentrations only 1% of the total time.
All of the plots go to £, = 0.00001 that gives the concentration that is exceeded
only 0.001% of the time during which there is a measurable concentration. This low
probability means that there are at only 1 or 2 events in the entire experimental data
set that exceeded that concentration. It is difficult to evaluate the fit at these high
concentration. low probability values. because only 125.000 data points were recorded

in each experimental time series.

2.8 Stochastic Model Performance

To determine if the stochastic model is an accurate simulation of the intermittent
concentration fluctuation time series, the output of the stochastic simulation is com-

pared to data generated from the water channel experiments. The first derivative of
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concentration with respect to time and the upcrossing rate are two outputs that can
be used to test the stochastic simulation. The correct distribution of concentration
values is guaranteed by the input clipped lognormal pdf that matches the statistics
of the data set, but the derivative of concentration and the upcrossing rate are re-
currence statistics that will only agree with the experimental data if the simulation

produces the correct fluctuations.

2.8.1 Filtering the Stochastic Simulation

To compare time derivatives and upcrossing rates. the simulated time series and the
experimental time series must have the same high frequency cutoff. Each stochastic
model time series is generated with 100 time steps per time scale 7.. When this
time step is adjusted to match the experimental data time scale of about 7, = 0.027
seconds the effective sampling rate of the simulation is about 3700 Hz. Because the
frequency response of the experimental probes was onlv about 105 Hz. the stochastic
simulation was filtered with a sixth order Butterworth digital filter to limit the high
frequency components in the simulation to 105 Hz.

The filter was applied to the simulated time series after it was clipped by setting
all of the negative concentration values to zero. This approximates the way the
experimental probes filter the concentration fluctuations in the water channel data.
Filtering affects the length of the intermittent periods because it removes the high
frequency transients and the short zero periods and causes the intermittency factor
v — 1.0 as the cutoff frequency decreases. To recover the intermittent periods in the
experimental data a “zero” cutoff was defined by Wilson. Zelt and Pittman ( 1991) at 8
standard deviations above the background noise level. An equivalent cutoff of 0.09C,

was applied to the stochastic simulation after filtering to match the experimental
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data processing that discarded concentration measurements below the probe noise

threshold.

2.8.2 Time Derivative of Concentration

One of the important assumptions in the stochastic model is that the magnitude of
the derivative of concentration is dependent on the current concentration through
the deterministic term a(c..t) in Equation (2.2). Figures 2.11 and 2.12 show that
the water channel measurements confirm the field observations of Yee et al. (1993).
with the rms (root mean square) concentration derivation ¢ exhibiting a very stong
dependence on the concentration level ¢/C, at which it was measured.

Figures 2.11 and 2.12 compare the stochastic simulation rms time derivative of
concentration ¢’ with the rms time derivative of concentration for the water channel
data. The time derivative of concentration was calculated as the change in concentra-
tion over one time step. The normalized rms time derivative of concentration dT/Cy
is plotted against the concentration level ¢/C, for a range of downstream positions.
Figure 2.11 shows points near the centreline of the plume and Figure 2.12 shows
points near the outside edge of the plume. The stochastic simulation line in Figures
2.11 and 2.12 is the mean of 10 independent simulated time series.

Figures 2.11 and 2.12 demonstrate that the stochastic model. Equation (2.31).
gives a good estimate of the rms time derivative of concentration ¢'. Even though
there is a wide range in fluctuation intensities and intermittency factors the stochastic
model produces the correct ¢ within about a factor of 2. This confirms that the linear
assumption for the a term in the stochastic model in conjunction with the assumption
of a clipped lognormal is a reasonable model for the time derivatives of concentration.

There some evidence of a gradual evolution of the ¢ profiles with downstream dis-
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tance in the experimental data set that does not occur in the stochastic model. Close
to the source at z/h; = 9.0 the stochastic simulation overestimates the derivative
of concentration. At a downstream distance of z/h; = 19 the stochastic simulation
derivative is close to the experimental data and at the far downstream location with
z/hs = 29 the derivative is underestimated.

Some of the difference between the experimental data and the stochastic simula-
tion can be accounted for by the different frequency rolloff rates of the experiments
and the simulation as discussed in Section 2.6. The derivatives at high concentration
levels ¢/C, > 10 are underestimated by the stochastic model. This would be expected
because the experimental data has more high frequency fluctuations and higher peak

concentrations than the simulation.

2.8.3 Concentration Level Upcrossing Rates

An upcrossing is counted each time the concentration in the time series exceeds a
threshold value while the derivative of concentration is positive (i.e. the concentration
is increasing). The upcrossing rate is a measure of the average frequency of the
fluctuations that exceed a particular concentration level. The upcrossing rate n* is
not an input to the model so simulating the correct upcrossing rate demonstrates that
the simulation produces the correct frequencies of fluctuations for each concentration
level. Du’s (1995) model was originally proposed to estimate the upcrossing rates for
conditional time series of concentration fluctuations. ignoring all of the intermittent
periods. In the present study. the total upcrossing rates including the intermittent
periods of zero concentration was simulated.

In Figures 2.13 and 2.14 the results from a single experimental water channel

run are shown. The stochastic simulation line is the mean of 10 realizations. Since
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this is a stochastic model each realization is different and the dotted lines on the plot
indicate a 2 standard deviation multiplicative range of run to run variation calculated

as follows:

upper bound = pu (1 + 2%) (2.36)
Kk
(1+2¢)

where p is the mean of the upcrossing rate n¥7T, and s is the standard deviation of

lower bound =

the 10 simulated time series. The upcrossing rates match well for the wide range in
intermittencies and fluctuation intensities. The maximum difference is about a factor
of 2 from the mean of the 10 simulation runs and within about 50% of the 2 standard
deviation range of run to run variability.

As in the case of the time derivatives of concentration. there is some evidence
of the spectral mismatch between the data and the stochastic simulation and there
is also evidence of evolution of the experimental plume with downstream distance.
As expected. there are more higher frequency fluctuations in the experimental data
and the upcrossing rates at high concentrations ¢/Cp > 10 are underestimated by
the simulation. At the far downstream location r/h, = 29 the stochastic simulation
consistently underestimates the upcrossing rate. At the locations closer to the source
for z/hs = 9.0 and 19. the upcrossing rate is overestimated at low concentrations and

underestimated at high concentrations.

2.9 Summary and Conclusions

In this study it was demonstrated that intermittent concentration fluctuation time

series at a fixed receptor in a dispersing point source plume can be simulated as a
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first order inertialess Markov stochastic process. The input parameters required for

the simulation are:

e intermittency factor v

e conditional fluctuation intensity i2.

e probability distribution p(c) for the intermittent time series.

Simulated time series are generated with a normalized mean concentration ¢/ Cp=1
so they can be scaled to any mean concentration. The inertialess Markov process
allows the time scale of the generated time series T. to be scaled to match any fluc-
tuation time scale.

The stochastic simulation cannot handle intermittent time series directly. so some
manipulation and interpretation of the simulated time series is required to produce
the necessary intermittency. The key assumption is that intermittent periods of zero
concentration are part of the same physical mixing process as the periods of non-zero
concentration. This assumption allows the simulated non-intermittent time series to
be shifted by a concentration cp,. to give positive and negative concentrations é.
The positive concentrations are interpreted as actual fluctuations while the negative
concentrations are interpreted as periods of zero concentration where the magnitude
of the negative concentration represents the likelihood of obtaining a non-zero con-
centration in the next time step. The result is an intermittent time series represented
by a clipped probability distribution. In this study. the lognormal distribution was
used for the simulation. After shifting and clipping the resultant probability distribu-
tion of intermittent concentration fluctuations was a clipped lognormal with a delta

function at zero concentration representing the intermittent periods.
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The clipped lognormal was tested with experimental data from Wilson. Zelt and
Pittman (1991) water channel experiments and found to provide a good fit to these
data. There was some evidence of evolution of the experimental plume with down-
stream distance that does not occur in the stochastic model. but the effect was small.
No effect of intermittency, fluctuation intensity or cross stream distance on the pdf
was observed.

The stochastic simulation accuracy was demonstrated by comparing the first
derivative of concentration with respect to time and the upcrossing statistics of
the simulation with the experimental data over a range of intermittency factors
v = 0.7 to 0.01 and fluctuation intensities z'f, = 2.2 to 7.53. In all cases. the root mean
square derivative of concentration and the mean upcrossing rate from the simulation
were within a factor of two of the experimental upcrossing rate.

The advantages of the stochastic model are that it can be used to produce time
series with any realistic combination of intermittency and fluctuation intensity and it
can generate large ensembles of random time series with identical means. variances.
and intermittencies. The same sort of data could be generated experimentallv. but
experiments are expensive and time consuming and the results cannot be controlled as
carefully to examine a range of different means. variances and intermittencies. Each
simulated time series represents an individual realization of the event and complex
hazard models can be time stepped through simulated releases to observe the effects
of realization to realization variability as well as large ensemble averages.

In its present form. the stochastic simulation is useful for generating time series
to evaluate hazardous effects. However, some additional work may be required to
make this model more realistic near ground level. All data used in the present study

were taken at the source emission height. but near ground level. where most receptor
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exposures occur, the mixing is complicated by large shearing forces and the current
form of the stochastic simulation may not work as well. Additional experimental and

theoretical work is required to further develop and validate this stochastic model.
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Figure 2.1: Typical intermittent concentration fluctuation time series with low inter-
mittency (v = 0.9) and high intermittency (v = 0.1).
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Step 1: Simulation in ¢, coordinates, with no intermittency (v, = 1.00)
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Figure 2.2: Clipping procedure to produce an intermittent time series.

30



smal_l Iarge Iarge
uncon;ggn;nated uncontaminated cont:rdncljr;ated
ddy
contaminated P(©) p(C)<<0 PE)

eddy

turbulent
flow

———>  gource \'. il il

1o l 0

0 0
¢ T~
® G p(©)

Time

Figure 2.3: Physical model for interpreting the pdf of negative concentrations as
intermittent periods of clean air (zero concentration).



Stochastic Differential Equation for Concentration Fluctuation
dc=a+bdg
dt dt
"a" is a deterministic restoring "force"
to pull fluctuations back to well-mixed
mean concentration C_
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Figure 2.4: General form of the a and b terms in the stochastic simulation
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Chapter 3

A Model for Effective Toxic Load

from a Hazardous Gas Release

3.1 Introduction

The hazard posed by an acutely toxic gas release depends non-linearly upon the
exposure concentration and the exposure duration. At a fixed receptor location in a
dispersing atmospheric gas plume. random turbulent dilution and dispersion processes
cause wide fluctuations in the instantaneous concentrations from zero (background)
levels to greater than 20 times the mean concentration. These large fluctuations
coupled with the non-linearity of toxicity with exposure concentration can have a
large effect on the toxic response from a release.

Acutely toxic chemicals cause effects ranging from annoyance caused by an offen-
sive odor to fatality. All of these effects are important, but in practice only serious
injury or fatalities can be reliably measured and reported. Less severe effects are

necessarily subjective and difficult to quantify. Variability in individual susceptibility
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means that there are variable levels of response. At low doses only sensitive individ-
uals respond while much higher doses are required to affect the resistant individuals.
In some cases, the same sort of reactions leading to fatality may also cause the less
severe effects so that dose levels that cause only a small fraction of population fatal-
ities will cause less severe effects in the resistant individuals. In this study, the acute
toxicity of a gas is evaluated in terms of the level of fatal response.

The limited information available for creating acute toxicity models consists mostly
of experiments in which laboratory animals were exposed to constant concentrations
for a fixed period of time and the number of fatalities were recorded. In these experi-
ments, the only independent variables were the mean exposure concentration and the
exposure duration.

In 1924, Haber reported experiments with various military poison gases and pro-
posed that the appropriate parameter for describing fatal toxicity was A" = Ct. where
K is some constant value for a given level of fatalities. C is the mean exposure con-
centration. and ¢ is the exposure duration. see Gelzleichter. Witchi and Last (1992).
Haber’s law predicts the same level of response provided the product of concentration
and time is the same. For example. doubling the exposure concentration would cause
the same level of fatalities in half the exposure time. If Haber’s law were true. con-
centration fluctuations would not affect the outcome of a gas release and the mean
concentration would be sufficient to predict toxicity.

Busvine (1938) proposed that the toxic response of insecticides was better fit by
a non-linear parameter with the exposure concentration and time C"t where C is the
mean exposure concentration. ¢ is the exposure duration. and n is an exponent that
is constant for a particular chemical. This parameter is now more widely known as

the toxic load L = C"t. The exponent n in the toxic load relationship is typically
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found by analyzing experimental data using the probit method first proposed by Bliss
(1934a.b). A complete discussion of the probit method is given by Finnev (1971).

The toxic load concept and probit relationships have been applied in many studies
of acutely toxic gases. Cremer and Warner (1982) applied toxic load to the risk
analysis of an industrial facility in Rijnmond Holland. Withers and Lees (1985a.b.
1987) used toxic load to evaluate the effects of chlorine releases. The Center for
Chemical Process Safety of the American Institute of Chemical Engineers (CCPS.
1989) lists probit relationships to use for evaluating the hazard of many common
industrial gases.

A thorough investigation of acutely toxic gas exposure experiments by ten Berge.
Zwart and Appelman (1986) determined that the exponent n in the toxic load pa-
rameter is between 1.0 and 3.5 for a wide variety of industrial gases and the most
common values of n are between 2 and 3. This non-linear relationship between the
effects of concentration. duration and toxic load means that doubling the exposure
concentration has the same effect as increasing the exposure time by a factor of 4 to 8.
In an atmospheric exposure to a point source plume with concentrations fluctuating
between 0 and more than 20 times the mean concentration. this calculated non-linear
effect on toxicity is very large.

There have been attempts to deal with the toxicity of fluctuating concentrations
by simplifving the fluctuating time series. Griffiths and Megson (1984). Griffiths and
Harper (1985) and Griffiths (1991) modelled fluctuating concentrations as a series
of constant peak level square concentration pulses and zero concentration intermit-
tent periods. Ride (1984) modelled the fluctuations as uniform spherical eddies of
contaminated air suspended inside a cloud of clean air. The problem with both of

these approaches is that they oversimplify the exposure concentration fluctuations
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and do not include physically realistic limitations on the receptor absorption rates or
recovery from previous exposure.

Some recent work has incorporated receptor dependent factors into the toxicity
calculations. Ride (1995) notes that the uptake of toxic chemicals is not instantaneous
and not all of the high frequency fluctuations are important for toxicity. Saltzman
(1996) does not specifically consider toxic load. but does examine the effect that a sine
wave fluctuating concentration has on toxicity and notes that the important frequen-
cies of fluctuations are related to the biological half-life of the chemical. However.
receptor frequency response is only one of several interacting factors important to the
toxic response.

In the present study. the exposure toxic load model is modified by accounting
for three receptor response factors: an uptake time constant. a recovery time con-
stant. and a saturation concentration. Applving these factors. the exposure toxic
load is converted to an effective toxic load. This effective toxic load model is used
in conjunction with realistic simulated time series of concentration fluctuations in a
point source plume. Ensemble averages for a wide range of the uptake. recovery. and
saturation will be examined to determine their effect on the effective toxic load. A
hydrogen sulphide exposure example is considered to examine the effects of realistic
receptor response parameters on a realistic exposure. The objective of this study is
to demonstrate that the definition of toxic load can be modified to produce more

realistic estimates of fatal toxicity.
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3.2 Exposure Toxic Load Model

3.2.1 Probit Method

The toxic load equation can be derived from experimental data that are fit using the
probit method of Finney (1971). The probit method. first proposed by Bliss (1934a.b).
is a way of linearizing a cumulative normal distribution of population response to some
toxic exposure variable. One probit unit, Pr. is equal to one standard deviation of the
normal distribution. The median or 50th percentile response was defined arbitrarily
as Pr=5.0 by Bliss. A probit value of Pr=4.0 is one standard deviation below the
median at a cumulative probability of 16%. That is. it is expected that 16% of the
population responds to a toxic load that produces a probit value of 4.0. Similarly.
84% of the population would be expected to respond to a toxic load that produces
a probit of Pr=6.0, one standard deviation above the mean. The fraction F of the
population responding to a toxic exposure can be calculated from the probit value Pr

using the following relationship

F:%(erf(Pi/—is) +1) (3.1)

where erf is the error function.

For acutely toxic gases it is observed that the logarithm of the toxic load L fol-
lows a normal distribution. This implies that the population response level follows
a lognormal distribution with L. Toxic load L = ¢t is the combination of two vari-
ables, the concentration ¢ and the exposure duration ¢. To find the value of n for a
particular chemicai both variables must be considered using a two dimensional probit

relationship:

Pr=q+rlnc+sint (3.2)
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where ¢ is the offset from zero. r is the coefficient of the logarithm of concentration.
and s is the coefficient of the logarithm of time. The logarithms in Equation (3.2)
produce the required lognormal distribution of response with toxic load. For each
experiment the probit of response is recorded along with the logarithm of the con-
centration ¢ and the logarithm of exposure duration ¢. The linear two dimensional
relationship is solved to give the coefficients g¢. r. and s.

The toxic load relationship is obtained by combining the last two terms of Equa-

tion (3.2):
Pr=g+sinc"t (3.3)

where n is the toxic load exponent equal to r/s from Equation (3.2) and the toxic

load L is defined as

L=c" (3.4)
In terms of the toxic load L. Equation (3.3) can be rewritten as:

Pr=g+sinL (3.5)

To determine the proportion of a population responding to a release. the toxic load L
is calculated and then Equation (3.5) is used to determine the probit value Pr. The

percentage fatalities is obtained from the Pr value and Equation (3.1).

3.2.2 Mean Concentration Toxic Load

In animal experiments. the exposure is in controlled conditions at a constant concen-
tration for a set period of time. In this case, there are no fluctuations in concentration

and the instantaneous exposure concentration ¢ is constant with time over the entire
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exposure duration ¢,. With ¢ = C, the mean concentration. the appropriate variables

to calculate the toxic load L., are
Lmean = Cnte (36)

The calculation of L,y is the original definition of toxic load. Note that Linean is
not the mean toxic load . but rather is a representative toxic load based on the mean
concentration C.

The toxic load of a fluctuating exposure concentration could also be calculated
with the mean concentration C and the exposure duration .. If n = 1. the effect of
concentration is linear and this is a reasonable approach. but it still does not take
into account any uptake. recovery or saturation processes. For most chemicals. where
n > 1. the mean concentration toxic load L p.e,, misses the important non-linear effects

of the concentration fluctuations as well as any limitations on receptor response.

3.2.3 Instantaneous Exposure Toxic Load

In the risk assessment literature. the definition of toxic load has been extended. with-
out any toxicological justification. to include time varving exposure concentrations.

see Ride (1984) and ten Berge. Zwart and Appelman (1986):

t!
L=/ c"dt (3.7)
0

where c is the exposure concentration as a function of time. This definition of the
toxic load L is the total fluctuating exposure toxic load. and is the most useful toxic
load for real exposure scenarios. If the toxic load exponent n is greater than 1 then
the exposure toxic load L will be larger than the toxic load calculated with the mean

exposure concentration Lpean.



The exposure toxic load does not take into account any physically realistic limi-
tations on the fluctuations that will determines the effective toxic load that produces

fatalities. In Equation (3.7) it is implicitly assumed that:

e uptake of any exposure concentration is instantaneous.

e recovery does not occur. so toxic load increases indefinitely with time and repeated

exposures.

e saturation of biological uptake pathways does not occur.

None of these assumptions are justifiable for real exposures and responses.

3.3 Effective Toxic Load

In this study. the problems with calculating the toxic load for fluctuating concentra-

tions are addressed by adding three receptor response parameters:

¢ uptake time constant 7,
e recovery time constant 7,

e saturation concentration C,

With these parameters an effective toxic load L.g is calculated instead of the exposure
toxic load.
3.3.1 Uptake Time Constant 7,

The uptake rate of a toxic gas determines how much of the exposure concentration is

available to cause damage. We define an effective concentration Ceg that is a function

of the exposure concentration c and the uptake time constant Tup-

=1
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Toxic gases have many possible absorption routes and mechanisms. so there are
many possible models of uptake that could be considered. For example. if the gas
is a contact irritant. it acts directly on the nose. throat and lung tissue and the
relevant effective concentration is the concentration measured in the airways. If it
is assumed that each breath fills the lungs with a uniform well-mixed concentration
then the effective concentration is the average concentration during the breath. If
the toxic gas acts on internal organs it must first be absorbed into the bloodstream
through the alveoli in the lungs and the effective concentration is the concentration
in the bloodstream. This bloodstream concentration depends on absorption rates
and transfer mechanisms between the lungs and the blood. Absorption of a toxic gas
through the skin would involve different mechanisms and rates. The uptake process
is complex and is gas specific.

In this study. we assume that all of the complex absorption processes that control
the effective concentration can be approximated bv a simple first order response

function. Using the standard equation for a first order response:

dceff C — Ceff

dt Tup (3.8)

where c.g is the effective concentration. c is the instantaneous exposure concentration.
and 7,p is the uptake time constant.

The uptake time constant 7,, simply filters the exposure concentration fluctuation
time series. Rapid changes in concentration are attenuated so c.q fluctuates more
slowly than the external exposure concentration. Figure 3.1 illustrates the effect of an
uptake time constant with a on an exposure pulse of concentration. The toxic load Leg
in this fluctuating exposure accumulates based on the effective concentration ceg and

not the external instantaneous exposure concentration ¢. The uptake time constant

3



reduces the rate of change of concentration. and so reduces the rate of increase of
effective toxic load as well as reducing the final effective toxic load accumulated as
compared to the toxic load L calculated using an instantaneous uptake assumption

as in Equation (3.7).

3.3.2 Recovery Time Constant 7.

By definition, no repair or recovery processes are accounted for in exposure toxic
load. As a consequence. even a very small exposure concentration will produce a large
toxic load if the exposure time is long. This is unrealistic because the atmosphere
contains trace concentrations of many toxic gases. but no measurable effects occur
in the general population. Even at much higher concentrations there are few or no
measurable effects for many chemicals. For example. Young (1983) discusses the case
of the people of Rotorua. New Zealand who live in an area with a large amount of
geothermal activity and who are routinely exposed to levels of 0.5 to 1.0 ppm of
hvdrogen sulphide without any apparent ill effects. A standard toxic load exposure
calculation using Equation (3.7) would predict that evervone in Rotorua would be
dead.

As with uptake, recoverv is a complex process involving a number of different
biological mechanisms. One method of recovery is elimination of the toxic substance
by excretion or metabolic reactions that convert it to a less toxic material. This tvpe
of recovery would be based primarily on the internal concentration. Another recovery
mechanism is the repair of damaged tissue. with recovery rate dependent on the tvpe
of tissue damaged and its repair mechanisms. Repair might occur at a constant rate
or at a rate dependent on the amount of damage.

For our model, we arbitrarily chose a recoveryv rate dependent on the damage
3 3 g
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level. which was assumed to be linearly proportional to the current effective toxic
load. This assumption makes the recovery process a first order process with recovery

time constant T,:

dLeﬂ' = — Leff
dt ~ °fF

(3.9)

Equation (3.9) produces an exponential decrease in the effective toxic load with time
to simulate recovery. Because recovery is the most complex of the three receptor
responses, alternative recovery models. such as a constant rate recovery independent
of damage level. are equally plausible. The objective of this study was to include
some recovery mechanism. because accounting for any recovery. even with a simplistic
approximation. has a profound effect on estimated fatalities.

Figure 3.1 shows the effect of the recoverv time constant with a simple pulse of
concentration. If 7. < oc there is some recovery from any toxic load accumulated.
This causes a reduction in the total toxic load accumulated and a gradual reduction

in the toxic load during periods of zero concentration.

3.3.3 Saturation Concentration C,

Biological reactions are often limited by the availability of enzyvmes or reaction sites
for the toxicant. To address this issue we propose a saturation concentration C, that
Is incorporated into the effective toxic load model:

dLeff _ Cgﬁ'
dt 1+ =

(3.10)

This relationship follows the well-documented Michaelis-Menten enzyme reaction ki-

netics, see Pratt and Taylor (1990, p.302) .



The saturation concentration C, simply clips off high concentration peaks and
reduces the effective toxic load L.g compared to having no saturation concentration.

A simple example of a saturation concentration is shown in F igure 3.1.

3.3.4 Effective Toxic Load Model

The complete effective toxic load model for L.g incorporates an uptake time constant
Tup- @ Fecovery time constant 7, and a saturation concentration Cs. The easiest way to
present the model is with two differential equations. First. the uptake time constant

Tup 15 used to calculate the effective concentration ceq

dCef  C — Cef

7 - (3.11)

and then c.q. 7 and C; are used to calculate the rate of increase of effective toxic

load L.g

n
dj:ff = ( Cefl_ ) - L_eff (3.12)
1+ Z,‘g' Ir
Equations (3.11) and (3.12) can be expressed numerically in time steps of A\t as:
€ — Ceff(n)
Ceﬂ'(n-:—l) = ceﬂ'(n) + - _ At (313)
Tup
C:ﬂ'(n-é-l) Leff(n)
Lefns1) = Legin) + At . - At (3.14)
1 + eff(n+1) Tr
o

For the case of instantaneous uptake (Tup = 0.0). no recovery (7, = o). and no
saturation level (C; = oc) equations (3.11) and (3.12) reduce to the original definition
of exposure toxic load toxic load integrated with time over a fluctuating concentration
time series as in Equation (3.7).

dlg , dL

a ¢ T &

frp=07=00,Cs =2 (3.15)
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The numerical toxic load model given by equations (3.13) and (3.14) can be ap-
plied directly to experimental or numerically generated time series of concentration

fluctuations.

3.4 Concentration Fluctuations in Plumes

The effective toxic load model Leg is most useful when applied directly to a concen-
tration time series. Figure 3.2 shows two examples of typical intermittent exposure

concentration fluctuation time series that can be described using four parameters:
e intermittency factor vy

e mean concentration

e conditional fluctuation intensity i,

e integral time scale of concentration fluctuations T,

Highly intermittent plumes are characterized by short bursts of high concentration
interspersed with long periods of zero concentration. Plumes with a low intermittency

are characterized by much smaller fluctuations about the mean concentration.

3.4.1 Intermittency Factor

The intermittency factor ~ is defined as the fraction of the total exposure time t,
during which the concentrations are greater than zero (background) concentration.
In practice. the cutoff for zero concentration is set by the measurement instrument at
some concentration slightly greater than zero or equal to the atmospheric background

concentration of the particular chemical. For analysis purposes. all non-measurable



or background concentrations in the fluctuating time series will be treated as zero
concentrations.

With the intermittency concept, two different sets of statistics can be calculated
for a given time series. Conditional (in-plume) statistics apply only to the non-zero
measurable concentrations and are denoted by a subscript “p”. The total statistics
include all of the zero concentrations as well as the in-plume concentrations and have

no subscript.

3.4.2 Mean Concentration

The mean concentration C is the average concentration over the entire duration of

the exposure. including the zero periods:

te
C =/ c dt (3.16)
1]

where c is the instantaneous concentration at time ¢. and ¢, is the total exposure time.
A conditional mean concentration C, is calculated by including only the non-zero

(in-plume) concentrations where:
Cp=—= (3.17)

The total mean concentration C is the most sensible concentration to use for
comparing two different fluctuation time series. It is the easiest concentration to
measure because it is a long term average and is insensitive to the probe response
time. Virtually all dispersion models are based on time averaged mass flux balances
In a dispersing plume and they provide estimates of only the time or ensemble mean

exposure concentration for a particular spatial position.
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3.4.3 Fluctuation Intensity

The conditional fluctuation intensity i, is defined as

iy = é—’; (3.18)

where ¢}, is the conditional (in-plume) standard deviation of the concentration. The

total fluctuation intensity 7 includes the zero concentrations and is defined:

d

= (3.19)

1=

where ¢’ is the standard deviation including the zeroes. The conditional fluctuation
intensity 7, and the total fluctuation intensity i are related to each other through the

intermittency factor v by the exact equation:

)
1+

2 (3.20)

A derivation of this relationship can be found in Wilson (1995. p. 139).

The conditional fluctuation intensity i, is used as the parameter of interest because
it is easier to interpret than the total fluctuation intensity and is less much sensitive
to the intermittency factor v. The conditional intensity gives an indication of how
large the fluctuations are when measurable (non-zero) concentrations are present. If
Ip increases. peak concentrations and exposure toxic load will both be higher.

The total time series fluctuation intensity : is less informative because it includes
the intermittent periods of zero concentration. If i increases it could be due to either
a smaller intermittency factor or an increase in the fluctuation intensity. so two pieces
of information are required to decide if the peak concentrations increase.

Any combination of conditional fluctuation intensity tp. fluctuation intensity i.

and intermittency factor v that satisfies Equation (3.20) is possible. but it has been
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observed that in dispersing atmospheric plumes there is some relationship between
i2 and iﬁ. Wilson (1995. p. 32. p. 139) suggests the following empirical equation

determined from a variety of laboratory and full scale plumes:

2i%
2+

~

i (3.21)

SIS

Equation (3.21) can be combined with equation (3.20) to determine the relationship

between the intermittency factor  and i, as illustrated in Figure 3.3.

3.4.4 Fluctuation Time Scale

The time scale T is the integral autocorrelation fluctuation time scale of the turbulent
concentration fluctuations. The shorter the T.. the faster the fluctuation process
occurs. In the atmosphere. the fluctuation time scale varies depending on the wind
speed. atmospheric turbulence. downstream position. height above the ground and
distance from the centreline of the plume. Using an approximation for the fluctuation
time scale near ground level given by Wilson (1995. p. 104) T, is tvpically 10 to 100

seconds for receptor locations a few hundred meters downwind of a point source.

3.5 Parametric Study

Each effective toxic load parameter Tup. 7r- and C; was studied by applying the effec-
tive toxic load model calculation Leg to an ensemble of random time series of inter-
mittent concentration fluctuations generated with the stochastic simulation technique
presented in Chapter 2. Using the relationship between the conditional fluctuation
intensity ¢, and the intermittency factor ~ from Figure 3.3 a realistic range of inter-

mittency factors v = 0.1.0.5 and 0.9 and the corresponding conditional fluctuation
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intensities 7, = 1.4.1.1 and 0.7 were tested with the toxic load exponents n = 1. 2
and 3. Ensembles of 100 random time series were generated for each intermittency
factor v and conditional fluctuation intensity Z, pair.

Large ensembles were required to find stable values for highly intermittent fluctua-
tions. Even with 100 realizations there was still significant variability and the plotted
lines are not smooth. The implication is that the realization to realization variability
is large and that there can be a large difference between the ensemble average level
of toxic response and the actual toxic response of a real release that will have onlv
a single realization. This has important implications for estimating the “worst-case”
scenario in a risk assessment.

The objective of this parametric study was to determine the range of Tup- Tr-
and C; that produced a significant effect on the effective toxic load. The effective
toxic load Leg calculated from Equations (3.11) and (3.12) is significantly different
from either the exposure toxic load Lpes, calculated with the mean concentration
as in Equation (3.4) or the fluctuating exposure toxic load L calculated from the

integrated instantaneous exposure concentration as in Equation (3.7).

3.5.1 Toxic Load Ratio (TLR)

For the parametric study of the effective toxic load it is convenient to normalize by the
mean concentration exposure toxic load Lmean calculated from Equation (3.6) This
toxic load ratio TLR is similar to that defined by Ride (1984). The TLR is:
Leﬂ'

mean

TLR = (3.22)

The TLR can also be thought of as an amplification factor for the toxic load caused

by the fluctuating concentration.
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3.5.2 Fluctuating Concentration Exposure Toxic Load

Consider the case where there is instantaneous uptake (Tup = 0). no recovery (7, = oc)
and no saturation level (C; = oo). The effective toxic load from Equations (3.11) and
(3.12) reduces to the fluctuating exposure toxic load L from Equation (3.7). Figure
3.4 shows the toxic load ratio TLRgy produced by calculating the exposure toxic
load with no uptake time constant. no recovery and no saturation.

If the toxic load exponent n = 1. the effect of concentration is linear and the fluc-
tuations have no effect on the exposure toxic load. The mean concentration toxic load
Linean is correct for this situation. If n > 1 the concentration has a non-linear effect
and the fluctuations become very important. For example. if n = 3 and the inter-
mittency factor is 0.1 with the corresponding fluctuation intensity of 1.4 the TLRg,,
amplification factor is about 1500. That is. the fluctuations cause an exposure toxic
load 1500 times larger than the toxic load predicted from the mean concentration.

The additional time constants and saturation levels of the effective toxic load
model Leg will moderate these TLRg,., amplification factors with realistic limitations

on the uptake rate. recovery from the exposure. and a saturation level.

3.5.3 Uptake Time Constant

The uptake time constant 7,, was studied by setting the recovery time constant
7r = o (no recovery) and the saturation concentration C = oc (no saturation). In
Figure 3.5 the toxic load ratio with some uptake time constant TLR.,, was calcu-
lated and normalized by the steady state TLR.. that occurs as time t — oc. This
TLR.,,/TLR« value was plotted against the elapsed time ¢ normalized by the uptake

time constant 7,,. Figure 3.6 is the value of that steady state toxic load ratio TLR
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as function of the uptake time constant Tup: the intermittency factor and fluctuation
intensity pair (v,%,), and the toxic load exponent n.
Figure 3.5 shows the normalized rate at which the TLR,,, approaches some steady
state value TLR. A simple approximation function for this relationship is:
n
%I:{: = (1 — exp (—%)) (3.23)
For all n values. after about 5Typ the TLR,,up is within about 20% of TLR,..

Figure 3.6 shows the difference between a fast 7,;, and a slow 7,, and demon-
strates the importance of the toxic load exponent n. If the uptake rate is slow.
say Typ > 1007, all fluctuations are removed by the filtering effect of 7up and the
TLR. ~ 1. This means that the fluctuations have no enhancing effect because the
uptake is so slow and Leg = Lmean. If the uptake rate is rapid. say Tup < 0.017,. then
the uptake is effectively instantaneous as the TLR. values are approximately equal
to the TLRgye values in Figure 3.4 and L.g ~ L.

A typical exposure scenario can be considered to help interpret the information
in Figures 3.5 and 3.6. In an atmospheric exposure near ground level a few hundred
meters from the source the time scale of the concentration fluctuations is T, ~ 100
seconds. If the uptake rate for a human was 7,, =~ 1 second. after about dTyp = 3
seconds. the TLR,,, will be near its steady state value of TLR... If the toxic load
exponent is n = 3 and the fluctuations have a low intermittency factor ~ = 0.1 with
a fluctuation intensity of i, = 1.4 then TLR, = 1500 and the effective toxic load Leg
accumulated is about 1500 times larger than the mean concentration exposure toxic
load Lmean. Even if the uptake rate of the gas were much slower. on the order of 100

seconds TLR« =~ 500 and L.g ~ 500L pean.
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3.5.4 Recovery Time Constant

The recovery time constant 7, was isolated by setting the saturation concentration
Cs = oc (no saturation) and the uptake time constant Typ = O (instantaneous up-
take). In Figure 3.7 the toxic load ratio with some recovery time constant TLR., is
normalized by the toxic load ratio that would be calculated with 7. = oc (no recovery)
which is equal to the toxic load ratio of the fluctuating exposure toxic load TLRaye
as shown in Figure 3.4.

Figure 3.7 shows the decay of the toxic load with time. This decay rate is inde-
pendent of ~. 7;. and n and is only a function of the elapsed time. After about 107,
the TLR,, is less than 10% of the TLRgy with no recovery. This relationship can

be well approximated by:

TLR- Tr
— T —J{—exp(_1" 5
TRy I —exp ( ; ) (3.24)

The recovery time constant always makes the effective toxic load Leg less than the
fluctuating exposure toxic load L calculated from Equation (3.7). If the total exposure
time is long enough the TLR,, amplification factor can be less than 1.0.

For a typical example. consider the hvdrogen sulphide biological half life of 20
minutes from Saltzman (1996). This corresponds to a recoverv time constant 7,
of about 30 minutes. The toxic load exponent n for hvdrogen sulphide is about
2.5. Assume that the exposure is in a moderately intermittent point source plume
with 7 = 0.5 and i, = 1.1. If the total exposure time is less than 30 minutes. the
recovery time constant has no effect. and TLR,, /TLRgyc is approximately unity so
Leg = L =~ 10Lpeay- If the exposure goes on for longer than 300 minutes or 5 hours

Left < Lmean With significant recovery occurring during the exposure.
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3.5.5 Saturation Concentration

The saturation concentration C; was isolated by setting Tup = 0.0 (instantaneous up-
take) and 7. = oc (no recovery). Unlike uptake and recovery, saturation is not a time
dependent process. The saturation concentration simply cuts off peak concentrations
and has a constant effect throughout the exposure. Because concentration controls
the rate of increase of the toxic load, C; also limits the maximum uptake rate. F igure
3.8 shows the effect of C, on concentration peaks by comparing the toxic load ratio
with some saturation concentration TLR¢, with the toxic load ratio TLRgy: calcu-
lated from the fluctuating exposure concentration. The TLR¢, amplification factor
is independent of the elapsed time, but does depend on the toxic load exponent n.
and the (~.1,) pair.

If the saturation concentration is very high. that is greater than 100 times the
mean concentration Cy > 100C. then it has little effect and the TLR¢, amplification
factor is approximately equal to the fluctuating exposure toxic load ratio TLRAue- As
Cs becomes small. more of the high concentration peaks are cut off. If the saturation
concentration is approximately equal to the mean concentration then the fluctuation
peaks are all removed and the TLRe, is very small.

Values of the saturation concentration are difficult to find in the literature for any
toxic gases. Consider an exposure to an average concentration of 10 ppm of hvdrogen
sulphide where n >~ 2.5. From Figure 3.8. if the saturation levels are low. on the order
of 100 ppm. then the TLR¢, /TLRgy. is about 0.05 for the highly intermittent case
with 4 = 0.1. This means that the fluctuations would only amplify the toxic load of
the mean concentration by about a factor of 5. The conservative assumption is that
the saturation level is very high and therefore the saturation concentration does little

to reduce the effects of high peak concentrations.
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3.6 Example for Hydrogen Sulfide Exposure

The effective toxic load model is intended to be used by applving it directly to a
realistic fluctuating time series. The limited parametric study in Section 3.5 demon-
strated the effects of each individual factor 7. 7+ and C,. but it is not clear how
these receptor response factors interact in a realistic exposure. To demonstrate that
these factors are significant the following exposure scenario of hydrogen sulphide gas

was considered and the results are shown in Figure 3.9:

¢ mean concentration C' = 10 ppm. This is the 8 hour average concentration allowed

for occupational exposure in Alberta (Alberta Health. 1988).

e two intermittency factor and fluctuation intensity pairs to simulate a wide range
of exposure conditions from near the plume centreline with ~ = 0.9 and ip =07

to the highly intermittent edges of the plume where ~ = 0.1 and i, = 1.4

e fluctuation time scale T. = 100 seconds is a tvpical time scale for fluctuations in

the atmosphere.

e fatal toxic load calculated from the probit model given by Rogers (1990) for pre-

dicting fatalities for human exposures in Alberta. The probit equation is:

(1]

Pr=-36.2+2.3661n" ¢ (3.25)

where Pr is the probit value. ¢ is the concentration in ppm. and f is the time
in seconds. The toxic load equation from this probit relationship is L = ¢25¢.
Using Equation (3.23) the exposure toxic load required to produce a certain
level of fatalities can be calculated. At Pr=3.72 we expect 10% fatalities in the
population, Ljg = 2.1 x 107 ppm?®3s. At Pr=5 we expect 50% fatalities and

L3 = 3.7 x 107 ppm?°%s.
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e uptake time constant 7,, was determined by making the conservative assumption
that the uptake rate is governed primarily by the inhalation rate. It is estimated
that 7, is about 1 second. Given that the uptake is treated as a first order process
this means that the effective concentration c.g would reach 95% of the external
concentration c after 3 time constants or 3 seconds (approximately the time for a

deep breath).

® recovery time constant 7. was based on the biological half life of hvdrogen sulphide
given by Saltzman (1996) of “less than 20 minutes”. This corresponds to a recovery

time constant of 7. ~ 30 minutes.

e saturation concentration C; has not been documented in the literature. A con-
servative assumption of C; = 5000 ppm was used for this simulated hydrogen

sulphide exposure.

3.6.1 Simulated Exposure Results

For each intermittency and fluctuation intensity pair 10 separate random realizations
were created with the stochastic model and the average effective toxic load Leg was
calculated using Equations (3.13) and (3.14). Figure 3.9 shows the results of these
calculations. For comparison. Ly, from Equation (3.6) calculated using the mean
exposure concentration of 10 ppm and the fluctuating exposure toxic load L from
Equation (3.7) are also plotted in Figure 3.9. The Lyo and Ljo lines indicate the
toxic load necessarv to cause 10% and 50% fatalities according to Rogers (1990).
In these examples only the average toxic loads have been considered. with curves
smoothed through variations caused by the small ensemble of 10 realizations. Worst

case scenarios could be evaluated by considering a number of random realizations and
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finding the time at which the toxic load first exceeds a dangerous level.

If the total exposure time is short, ¢ < 600 seconds. then the effective load Leg
is approximately equal to the fluctuating exposure toxic load L. The additional
parameters of the effective toxic load model have little effect for very short duration
exposures. At longer times it is apparent that the exposure toxic load calculated from
the mean concentration Lye,, and the fluctuating exposure toxic load L without any
receptor response parameters both increase steadily with time while L.g levels off
after approximately 2000 seconds or 30 minutes when the effect of the increasing

toxic load caused by uptake is balanced by the recovery process.

3.6.2 Accuracy of the Toxic Load Model

It is difficult to determine the accuracy of any of the methods of calculating the
toxic load because there is no direct experimental data available for human or ani-
mal exposures to fluctuating concentrations. However. more general information on
the toxicity of hydrogen sulphide can be used to estimate which of the toxic load
calculation approaches is more realistic.

Figure 3.9 (a) has a mean concentration of 10 ppm. an intermittency factor of
7 = 0.9 and fluctuation intensity tp = 0.7. This relatively constant exposure with
small fluctuations about the mean meets the requirements of a safe occupational
exposure level according to Alberta Health (1988). The toxic load calculated with
the effective toxic load model L.g indicates that not even 10% fatalities would occur
with this type of exposure and the toxic load would level off at a relatively safe level.
Calculation of the mean concentration exposure toxic load Lmean and the fluctuating
concentration exposure toxic load L indicate at least 10% fatalities after 30.000 to

60.000 seconds or 8 to 16 hours of exposure. It is inconceivable that the allowable
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occupational exposure limit would be set at a level that would produce fatalities. so
in this particular case we conclude that the effective toxic load Leg is a more realistic
estimation of the actual effects of the release.

In contrast. Figure 3.9 (b) shows a highly intermittent exposures with v = 0.1 and
i = 1.4. The time averaged concentration is still 10 ppm. so these fluctuations would
meet the Alberta occupational exposure limits. Other exposure limits for hvdrogen
sulphide have been defined in an attempt to cover some fluctuating situations. For
example. the immediate danger to life and health limit (IDLH) is 300 ppm set by
the National Institute for Occupational Safety and Health (NIOSH) in the United
States, see Environmental Protection Service (1984). There is no time factor given
with this value. The exposures in Figure 3.9 (b) do exceed 300 ppm for times as long
as 17T, = 100 seconds despite the fact the average concentration is onlv 10 ppm.

In Figure 3.9 (b). the fluctuating exposure toxic load L produces 50% fatalities
in about 10 minutes. the effective toxic load L.g indicates up to 50% fatalities within
about 30 minutes and the toxic load calculated with the mean concentration Lean
predicts 50% fatalities after approximately 28 hours. The fatalities would be caused
by exceeding the high concentration levels long enough to cause adverse effects. With
large fluctuations it seems reasonable that this could occur relatively quickly. The 28
hour estimate of Ly,, is probably too long. while the 30 minute estimate of Leg is
more reasonable.

With these two simple example release scenarios it seems that the effective toxic
load L. is a more realistic estimation of the fatal response from a hvdrogen sulphide
release that the mean exposure toxic load Lean or the fluctuating exposure toxic load

Lﬂuct .
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3.7 Conclusions

The effective toxic load model presented in this study adds three additional receptor
response parameters to the standard toxic load model: an uptake time constant Tup-
a recovery time constant 7. and a saturation concentration C,. These additional
parameters are used to correct the exposure toxic load model which is based on
constant concentration and fixed duration exposures to laboratory animals. Real
exposure scenarios are much different than these experimental exposures and include
large fluctuations about the mean concentration and intermittent periods of zero
concentration clean air.

The parametric study demonstrated that the receptor parameters make a signif-
icant difference to the toxic load that is calculated for a fluctuating exposure. The
simple methods of calculating exposure toxic load using the mean exposure concen-
tration. or even using the instantaneous fluctuating concentration. produce different
toxic load levels than those calculated with the effective toxic load model.

Two realistic example hydrogen sulphide exposures were considered to determine
the accuracy of the effective toxic load model. There is no direct data available
for human exposures to fluctuating concentrations. but some simple concentration
exposure standards were used to determine which toxic load model is more realistic.
For a low intermittency low fluctuation intensity plume the effective toxic load model
agreed with the Alberta occupational exposure limits while the exposure toxic loads
predicted unrealisticallv high fatalities. For a highly intermittent high fluctuation
intensity exposure which would exceed the immediate danger to life and health level.
all toxic load models predict fatalities. but the effective toxic load model] predicted up

to 50% fatalities within 30 minutes while the mean concentration exposure toxic load
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model required 28 hours to cause fatality. The effective toxic load model provides more
consistently realistic estimates of toxicity for a wide range of intermittent fluctuating
exposures.

The effective toxic load model is a significant advancement over the standard ex-
posure toxic load calculations because it incorporates some simple receptor response
parameters and produces more realistic estimates of fatalities from a fluctuating ex-
posure. Although the ideal toxicity model would be a complete physiologically based
pharmacokinetic model of the human body for each specific toxic gas. at the present
time this is not technically feasible. The effective toxic load model provides a method
of accounting for some of the most important receptor response factors and improving
the hazard assessment of toxic releases.

The weakest link in the present effective toxic load model is the simplified recovery
process which is difficult to justifyv in toxicological terms. Future work should test
alternative models for recovery and applying the effective toxic load model to toxic

gases other than hydrogen sulphide.
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Chapter 4

Summary and Conclusions

The two unpublished papers in this thesis have presented modelling tools for more
realistic evaluation of the effects of accidental gas releases. The first tool is a stochastic
numerical simulation of intermittent concentration fluctuation time series and the
second tool is an effective toxic load model for predicting fatalities from realistic
fluctuating concentration exposures. These two tools complement each other because
the effective toxic load model is designed to be applied directly to time series of
concentration fluctuations that can be generated either experimentallv. or with a

simulation like the proposed stochastic model.

4.1 Summary of the Stochastic Simulation

The first paper “Stochastic Simulation of Intermittent Concentration Fluctuations”
presented an extension of the stochastic model developed bv Du (19935) to the sim-
ulation of realistic intermittent concentration fluctuation time series as a first order

inertialess Markov process. The user inputs for the simulation are the intermittency
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factor v, the conditional fluctuation intensity i§ and the probability density function
(pdf) of concentration p(c) for the intermittent fluctuations.

The stochastic simulation cannot handle intermittent periods directly so the fluc-
tuation time series is first simulated in pseudo-concentration c. coordinates using
a lognormal pdf without intermittency. After a simulated time series is generated
the concentrations are all shifted by a concentration cpaee to give positive and nega-
tive concentrations. The key assumption is that the same physical mixing processes
are responsible for both the intermittent periods of zero concentration and the non-
zero concentration fluctuations. The negative concentrations are interpreted as zero
concentrations where the magnitude of the negative concentration is inversely propor-
tional to the probability of obtaining a non-zero concentration in the next time step.
The final result is an intermittent concentration fluctuation time series represented
by a clipped lognormal pdf.

The clipped lognormal was tested with experimental data from Wilson (Zelt and
Pittman) water channel experiments and found to provide a good fit to the data.
There was some evidence of evolution of the probability distribution with downstream
distance. but the effect was small. No effect of intermittency. fluctuation intensity or
cross stream distance on the pdf was observed.

The stochastic simulation accuracy was demonstrated by comparing the first
derivative of concentration with respect to time and the upcrossing statistics of
the simulation with the experimental data over a range of intermittency factors

7 = 0.7 t0 0.01 and fluctuation intensities :2 = 2.2 to 7.5. In all cases. the con-

2
p
centration derivative and the mean upcrossing rate from the simulation were within

a factor of two of the experimental measurements.
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4.1.1 Conclusions from the Stochastic Simulation

The stochastic simulation of intermittent concentration fluctuations produced real-
istic time series of fluctuations so it should be useful for generating time series to
evaluate the hazardous effects from gas release. The advantages of the stochastic
model are that it can be used to produce time series with any realistic combination of
intermittency and fluctuation intensity and it can generate large ensembles of random
time series with identical means. variances. and intermittencies. Each simulated time
series represents an individual realization of the event and complex hazard models
can be time stepped through simulated releases to observe the effects of realization
to realization variability as well as large ensemble averages.

All the data used in this thesis were for fluctuations at the source emission height.
Near ground level. where most receptor exposures occur. atmospheric mixing is com-
plicated by large shearing forces and the present form of the stochastic simulation
may not work as well. Additional experimental and theoretical work is required to
further develop and validate this stochastic model for concentration fluctuations near
ground level.

The information missing from this presentation of the stochastic model was the
determination of the input fluctuation intensity if, and the intermittency factor ~
for a real release. This information must come from other models of dispersion and
fluctuating concentrations in plumes or from further research into the general behavior

of dispersing gas plumes.
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4.2 Summary of the Effective Toxic Load Model

The second paper “A Model for Effective Toxic Load from a Hazardous Gas Release™
added three receptor response parameters to the standard exposure toxic load model:
an uptake time constant 7,,. a recovery time constant 7., and a saturation concen-
tration C,. These additional factors are simplified approximations of the important
biological processes that affect toxicity. The receptor response factors are used to
correct the exposure toxic load model that is based on constant concentration and
fixed duration exposures to laboratory animals for real exposure scenarios that in-
clude large fluctuations about the mean concentration and intermittent periods of
zero concentration clean air.

The stochastic time series simulation model from the first paper was used to
demonstrate that realistic values for the receptor response parameters cause the ef-
fective toxic load to be significantlv different than either the exposure toxic load
calculated using the mean exposure concentration. or the fluctuating exposure toxic
load assuming instantaneous uptake. no recovery. and no saturation.

There is no direct experimental toxicology data for fluctuating exposures. so a
simple hydrogen sulphide exposure simulation was used to demonstrate that the ef-
fective toxic load model provides predictions of fatalities consistent with information
obtained from concentration exposure limits set by various regulatory agencies. Us-
ing this limited information. it seems that the effective toxic load model produces
results that are more consistent with the experiences associated with simple concen-
tration exposure limits than the results produced by the mean concentration exposure
toxic load model or the fluctuating exposure toxic load model. The latter produce

predictions which are seriously inconsistent with the exposure limits.
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4.2.1 Conclusions from the Effective Toxic Load Model

The effective toxic load model is a significant advancement over the standard exposure
toxic load calculations because it incorporates some simple. but physically realistic
receptor response parameters and produces more realistic estimates of fatalities from
a fluctuating exposure for the purposes of hazard assessment. Effective toxic load is a
compromise between the very simple exposure toxic load model and the ideal toxicity
model which would be a complete physiologically based pharmacokinetic model of
the human response for each specific toxic gas.

The weakest link in the present model is the simplified recovery process which is
difficult to justify in toxicological terms. Future work should include testing alter-
native models for recovery and application of the effective toxic load model to toxic

gases other than hydrogen sulphide.
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Appendix A

Relationship between the
Deterministic and Random Terms
in the Stochastic Differential
Equation

The stochastic model for intermittent time series of concentration fluctuation is based
on the stochastic differential Langevin equation for a first order Markov process.
Consider the simulation of the pseudo-concentrations c. where the intermittency
factor 7. = 1.0. That is. there are no intermittent periods so all concentrations

c. are greater than zero. This process is represented bv the stochastic differential

equation:
de. d¢
T - a(c.,.,t) +b(c+7t)zt' (-'\1)

where a(c..t) is the deterministic portion of the time derivative dependent on the
concentration c.. and time ¢ and b(c..¢)d( is a random forcing function where dC is
a Gaussian random number with a mean of zero and variance dt.

The one-dimensional Fokker-Planck equation that describes the time evolution of
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the probability distribution of concentration in terms of a and b is:

oo _ _dlap)  18(%p)
ot dc. 2 82

(A.2)

It is assumed that the concentration fluctuation process is stationary. therefore 9p/0t =

0 and the relationship for a and b in terms of the pdf p is:

2 o0
b? = —/ —ap dc,. (A.3)
p Cun
The a term is the deterministic term in the fuctuation process. In the absence of
fluctuating force. a determines the behavior of the derivative of concentration. It is
assumed that in the absence of fluctuations the concentration will stabilize at some
fixed value K. The functional form of the a term which includes the time scale of

fluctuation process T is:

[’— -+
0= ‘T c (A4)

where c. is the instantaneous concentration.

To find the b term. (A.4) is substituted into (A.3).

2 [*cp~-K
2 = + -
b = P/c T p dc, (A.5)

-

The probability distribution p was chosen to be the lognormal

1 .
C+) = ——eX —_——— A6
pl ) \/E"':UI+C+ P 2012+ ( )

where o0;. is the log standard deviation of the probability distribution of pseudo-

concentrations. and cso. is the median pseudo-concentration value.
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Solving (A.5) for 4% using (A.6) produces

2 Co
b2 _ \Y4 2W0’[C+ o In (65o+)

T., P 20}
(A7)
Ct 2 - L
Co (1 e o (cso"') i B e —ln (cso’)
2 \/50’1 2 \/501

where C. is the mean pseudo-concentration.

The range of acceptable values for the constant K is a problem of limits. As
the pseudo-concentration c. approaches zero the value of b2 goes to infinity if A is
less than the mean pseudo-concentration C.. If A~ < C.. the stochastic model will
produce very large derivatives as the concentration c. becomes small and the pseudo-
concentrations c.. can become negative. Negative c.. concentrations are not acceptable
because the pseudo-concentrations must be entirely positive and non-intermittent for
the shifting and clipping process to produce the required intermittency and fluc-
tuation intensitv. The constant A" > C_ to avoid producing negative c. pseudo-
concentrations.

If A is greater than C.. b goes to negative infinityv. The value of b is imaginary.
Imaginary numbers cannot be utilized in the simulation calculations so A" < C.in
order to avoid this problem.

To satisfy both of the above conditions A~ > C. and K < C.. the constant
K must be equal to the mean pseudo-concentration C.. With A" = C. . b* from
Equation (A.7) goes to zero as instantaneous pseudo-concentration c. goes to zero.
No negative concentrations are produced by the stochastic model and the 52 term
always produces real values.

The only value of a that prevents the stochastic model from generating negative
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¢+ concentrations or imaginary b values is

_ C+ - C+
a = T (AS)

In the absence of a fluctuating component. Equation (A.8) causes the pseudo-concentration

C+ to return to the well-mixed mean pseudo-concentration C., .
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Appendix B

Clipped Lognormal Distribution

A clipped lognormal probability distribution is used to describe the intermittent time
series of concentration fluctuations. All of the steps required to work out the statistics
of the clipped lognormal are presented in this appendix. Aitchison and Brown (1957)
and Crow and Shimizu (1988) provide detailed information on the lognormal and
include some discussion of clipped or truncated lognormal. Integrals of the lognormal
distribution used in this analysis are contained in appendix C.

All of the concentrations will be nondimensionalized by normalizing by the median
concentration c¢sg including all of the zero periods. The dimensionless concentrations
will be denoted by ¢ to avoid confusion with the dimensioned concentration c. Cap-
ital letters denote mean values and the subscript “p” indicates conditional in-plume

values that exclude intermittent periods of zero concentration. These normalized



concentrations are:

o = — (B.1)
Cs0

s = & (B.2)
Cs0

®, = 2] (B.3)
Cs0
c

¢ = — (B.4)
Cs0
CI

¢, = = (B.3)
Cs0

where @ is the instantaneous dimensionless concentration. & is the mean dimension-
less concentration. @, is the conditional (in-plume) mean concentration. ¢’ is the
standard deviation of the dimensionless concentration. and 0, is the conditional stan-
dard deviation of concentration excluding the zero periods. By definition. 05 = 1 is
the median dimensionless concentration.

The subscript “+" indicates the shifted values of concentration that are used for

the purposes of the stochastic simulation where:
0 = OT - @‘base (B'6)

The 6 concentrations can be positive or negative. To obtain the real concentrations
o all of the negative o concentrations are transformed to a zero concentration delta
function.

In pseudo-concentration “+" coordinates all concentrations are normalized by the

median concentration cso. of the pseudo-concentration time series:

o = C50+ (B.1)

9, = L* (B.8)
C50+
c

¢, = —= (B.9)
C50+
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where ¢, is the instantaneous dimensionless pseudo-concentration. ®. is the mean
dimensionless pseudo-concentration. ¢/, is the standard deviation of the dimensionless
pseudo-concentration. and by definition the median dimensionless pseudo-concentration

is @50+ = 1.

B.1 Lognormal Distribution in “+” Coordinates

The lognormal density function in “+” coordinates is:

Lo (_ln2 (B?T)) (B.10)

0:) = ———
p(os) oo 0. 3o

I+
The mean of the distribution is

o, = / 0.p(0.)do. (B.11)
0
Which is
2
&, = 050, exp (g');) (B.12)
The variance of the distribution is
x<
62 = [ (0. - ®.)(0. )do. (B.13)
0
= / 02 p(o.)dc. — ‘2<I>*/ o.plo)do. + (B.14)
0 0
@2 / p(o.)do.
0
which is
2 2 2 ' of 2
0; = 05y, exp (20,+) —2®_, 0504 €Xp —21 + &< (B.13)

and simplifies to:

67 = 2 (exp(o?) - 1) (B.16)
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B.2 Concentration Shift ¢pace

The strictly positive concentrations of the lognormal distribution in “+" coordinates
are shifted by a value of @pase to give positive and negative concentrations. The
clipped distribution is formed by removing all of the negative concentrations and
replacing them with a delta function at zero concentration. The Gp.se value must be
chosen such that the probability of getting a concentration greater than zero is equal

to the intermittency factor v. Therefore.

oC

v = / p(o.)do. (B.17)

Obase .
Solving this gives
In (oh..:)

1 050+

~==|1-erf | ————= B.18
2 \/io'l+ ( )

B.3 Clipped Lognormal

Now we solve for the parameters of the clipped distribution in o coordinates. (Note

the absence of the subscript “+”). The total mean & of the clipped lognormal is:

obue o
= / 0p(64)do. + / (04 ~ Guase)p(62 )doo (B.19)
0

@base



These integrals are easily solved to give:
Os0+ €XP (0’7‘*) In (%!::f)— of.
1 —erf (B.20)
\/§Ul+

¢ = 5

Obase (1 —erf (—ln\gzjﬁ) ))
201+

(-4

2
The total second moment is
— Obase <
of = / 0%p(o_)do. + / (0~ — Obase)?plo.)do-. (B.21)
1] Obase
which when integrated gives
9 Obase 9 2
— 30 exp (207.) In (Z"o‘:) 207
o = 1 —erf - B.22
Obase @ e‘(p< f,> 1 —erf i (%}:ﬁi) i
base 050+ €3 - -
¢ 2 \/§Ul+
Foce in (=)
+ I -erf | ———&
2 \/501?
LA R (%m’:) i B.23
= —er .
In gﬁu) - af?))

92
o2
4 —Dase (1 — erf



With the total mean & and the total second moment 6? we can use the definition
for relating the conditional moments to the total moments. Conditional statistics

include only the non-zero concentrations.

7@ =on (B.24)
therefore
3, = _ii (B.25)
and
9} = 9_—2 (B.26)

By definition the total second moment o2 is
0? = §% + 0" (B.27)
and the conditional second moment is

o2 = &2 + o (B.28)

Therefore using (B.26) with (B.27) and (B.28) we get

(92 + o) = &2 (B.29)

dividing through by &2

o
S+ = (B.30)
CER
then dividing by v
e -5
o, @
1+%,-2 (B.31)
P2 o2
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and subtracting 1

o 42
P

The conditional fluctuation intensity z'f, is defined as

012
i = 3}’2- (B.33)

-1 (B.34)

Equation (B.34) is solved using the definitions of the total second moment @2 from

(B.23) and the definition of the total mean & from (B.20).
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Appendix C

Integrals of the Lognormal

Integration of the lognormal probability density function is required to evaluate the
moments of the density function. The easiest method to solve for these definite
integrals is to find the solution in terms of the error function. Tables of the error
function or numerical approximations can then be used to determine the value of the
integral.

The lognormal probability density function that is used to describe concentration

fluctuations is p(c).

p(c) = L exp (—l—nﬁ) (C.1)

V27oc 20}
The general form of the integral that is required in order to calculate moments of

the lognormal distribution is c?p(c).

2 [
/n cp(c)de = /n < ex _ln(—‘?") de (C.2)
m m V 27TU[C ’ p )

n In2 £
1 _ c
= Voo /m exp (“%) o (©3)
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To solve this integral the following substitution is required. Let

t_ln(co) — ac}

B V20,

therefore
de
\/-2-0' 1C

Changing the limits on the integral

dt =

m =
@ c= \/2-6[
In{ 2 ) —ac?
() e
- \/50’[

Putting (C.4).(C.5).and (C.6). into (C.3)
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Canceling out terms in (C.7) gives

7)
n i n( a2y ) ot
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Given that

.) ~
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then using (C.9) in (C.8) the solution is
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Appendix D

Random Number Generation

A large number of random numbers must be generated to implement a numerical
stochastic model. Unfortunately. most random number generators included in com-
pilers and other numerical programs are inadequate for large scale simulations. For
example. the ANSI C standard only requires that the period of the generator is at
least 32767 (Press et al.. 1992). This means that after generating 32767 numbers with
a given seed. the sequence repeats itself. Repeating the same sequence of numbers
within a stochastic simulation is not the same as generating several million indepen-

dent random numbers with no repetition.

D.1 Uniform Random Number Generators

In this study two long period random number generators were examined:

ran2 A combination of two linear congruential generators implemented by Press et al.

(1992) with a period of approximately 2 x 108,

R250 A shift register sequence generator implemented by Maier (1991) and Carter
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(1994). The period of the R250 generator is approximatelyv 9 x 107,

A linear congruential generator. such as that used by ran2. generates a random

sequence of integers I),. I,. I3, ... with the recurrence relationship given by Press et al.
(1992):
L.y =(alj+¢) medm (D.1)

where a is the multiplier, c is the increment. m is the modulus. The values of a. ¢ and
m are constants that are carefully chosen to give a random sequence with a period
that can be at most m.

A shift register generator is comprised of a 1-bit random number generator of the

form:
I =clr_y +C-31k_-_,+...+c,,_1[k_p-, ":'[k—p mod 2 (DZ)

where p = 250 for the R250 generator and most of the ¢, terms are chosen to be zero.

From Carter (1994)
I, = [k-q + [k—p (D3)

with ¢ = 103. A random bit /; is generated by adding the previously calculated 103rd
and 250th bits that were generated. To implement this generator it is first seeded
with another random number generator. Each bit in a random integer is calculated
using equation (D.3).

Both the ran2 and R230 random number generators were tested and there was no
discernible difference in the output from the stochastic model. The R250 generator
was used for all of the modelling because it proved to be marginally faster than the

ran2 generator.



D.2 Converting to a Gaussian Random Number

The ran2 and R250 random number generators produce integer outputs that are
converted to a uniform series of floating point numbers between zero and one by nor-
malizing by the maximum possible integer. For the stochastic simulation a Gaussian
distribution of random numbers with a mean of zero and a variance of one is required.
The Box-Muller (1958) transformation allows the conversion of uniformly distributed
random variables to a Gaussian distribution.

Following Box and Muller (1958) if two random numbers z; and I,. that come
from a uniform distribution between 0 and 1 are chosen thev can be converted to two

random numbers y; and y, from a Gaussian distribution by the following equations:

n = v—-2lnr,cos2xz, (D.4)
y2 = /—2lnz;sin27xx,
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Appendix E

Experimental Data Compared to

the Clipped Lognormal pdf

The choice of the clipped lognormal pdf to describe concentration fluctuations was
tested by comparison with the water channel experimental data. For this comparison
only conditional (in-plume) concentrations were considered so all concentrations were
normalized by the conditional mean concentration C »- The theoretical clipped log-
normal distributions were given the same intermittency ~ and conditional fluctuation
intensity if, as the experimental data sets.

The evidence presented in Figures E.1 through E.6 demonstrates that the clipped
lognormal is a reasonable distribution to describe the concentration fluctuations at
source height. The clipped lognormal fits well over a wide range of intermittency
factors from v = 0.7 to v = 0.012 and for a range in fluctuation intensities from
i2 = 2.2 toi2 = 7.5. The plots show some evidence that the shape of the probability

distribution of concentration evolves slowly with downstream distance. but the effect

is small.



<Gl

E.1 Probability Density

Figures E.1 and E.2 are the normalized conditional probability densities pp (c/Cp)

where:

[n(8)e(8) -1
The clipped lognormal pdf in Figures E.1 and E.2 fits the data well over a wide
range of intermittencies with a maximum error of about a factor of 2. There is
little apparent difference in these plots between the clipped lognormal and unclipped
lognormal. A lognormal and a clipped lognormal pdf should look different at very
low concentrations ¢ < 0.1C, because the lognormal goes to zero at ¢ = 0 while
the clipped lognormal pdf has some value greater than zero. The probe background
noise level intermittency cutoff of the experimental data eliminated concentrations

less than 0.1C}, so the fit of this portion of the pdf cannot be evaluated.

E.2 Cumulative Probability

Figures E.3 and E.{ are the normalized conditional cumulative probability distribu-
tions (cdf) P, (c/C,) defined as the probability of finding a concentration less than

c/Cp

w(g)=[77(5)(5) 2
The log-log cdf plots emphasize the low concentrations ¢ < C » where the difference
between the lognormal and the clipped lognormal are apparent.

In Figures E.3 and E.4 there is some evidence that the probability distribution

evolves with downstream distance although it seems to be independent of intermit-

tency and fluctuation intensity. At z/h, < 19 the clipped lognormal fits the data



better than the lognormal. but at z/h, = 29 the clipped lognormal overestimates
the cdf of concentration and the lognormal provides a better fit. A similar effect is
reported in Yee. Wilsor: :nd Zelt (1993) who found that a clipped normal distribution
provides a good fit to low dilutions near the source while the lognormal fits better far
downwind. Although the initial assumption that the shape of the pdf is independent
of location may not be true. a clipped lognormal provides a reasonable fit to the data

in the present study at downstream locations from z/h, = 9.0 to 29.

E.3 Exceedance Probability

Figures E.5 and E.6 show the normalized conditional exceedance probability Ey(c/Cp)

defined as the probability of finding a concentration greater than c/Cp

()= [7(8)4(5) -2 (3)

The log-log plots of exceedance probability emphasize the high concentrations
¢ > Cp and complement the information presented by the cdf. Agreement with the
experimental data is within a few percent up to E, = 0.1. that is the 90th percentile
concentration. At the 99th percentile concentration or E, = 0.01. the error is within
a factor of two. even when the intermittency factor ~ 1s very small and there are mea-
surable concentrations only 1% of the total time. All of the plots go to E, = 0.00001
that gives the concentration that is exceeded only 0.001% of the time during which
there is a measurable concentration. This low probability means that there are at onlyv
1 or 2 events in the entire experimental data set that exceeded that concentration.
It is difficult to evaluate the fit at these high concentration. low probability values,

because only 125,000 data points were recorded in each experimental time series.
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