
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Functional and statistical genetic effects with multiple alleles 
 

ABSTRACT 
Mapping quantitative trait loci (QTL) is often 
based on a functional or statistical model of gene 
action involving two alleles per locus. Such model 
is adequate for mapping populations derived from 
a cross between two inbred lines as in many plants 
and some laboratory animals and for di-allelic 
molecular markers (e.g., single nucleotide 
polymorphisms, SNPs ). However, many mapping 
populations (e.g., those derived from crosses 
between more than two inbred lines) and multi-
allelic molecular markers (e.g., microsatellites) 
require a model to describe functional genetic 
effects for multiple alleles. This paper has two 
objectives. The primary objective is to develop a 
set of new models of functional genetic effects 
with multiple alleles. The secondary objective 
is to establish the relationship between these 
functional genetic effects with well-known 
statistical genetic effects. Our multi-allelic models 
reveal three new features that do not exist in the 
di-allelic models. First, with r (>2) alleles, there 
are r(r-1)/2 functional additive effects and r(r-1)/2 
functional dominance effects, but only (r-1) 
functional additive effects need to be specified 
and the remaining (r-1)(r-2)/2 additive effects can
be derived. Second, the presence of functional 
dominance effect for one pair of alleles is 
sufficient to cause the presence of statistical
  

dominance deviations for all the genotypes. Third,
the equality of gene frequencies is no longer a 
sufficient condition for any direct relationship 
between physiological and statistical genetic effects 
in the multi-allelic case.  Thus, our new multi-allelic 
models will have a wider range of applications to 
QTL mapping and quantitative genetic studies.  
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ABBREVIATIONS 
GF, general function of genotypic values; HWD, 
Hardy-Weinberg disequilibrium; LD, linkage 
disequilibrium; NOIA, natural and orthogonal 
interactions;  QTL, quantitative trait loci; UWR, 
Unweighted Regression. 
 
INTRODUCTION 
Genome-wide scans for quantitative trait loci 
(QTL) are now a routine strategy for identifying 
effects of individual QTL and interactions 
between QTL. With the availability of ever 
increasing marker density across the entire 
genome, most of the QTL effects will be picked 
up by the tightly linked markers so that the marker 
effects can serve as the reliable surrogates of QTL 
effects [1, 2]. Consequently, while location of a 
particular QTL and estimation of its effect remain
 to be a major effort of QTL mapping, a growing 
focus is now on modeling actions and interactions 
of detected QTL effects [e.g., 3, 4, 5, 6, 7, 8, 9]. 
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are added to the population mean to give
individual’s ‘predicted’ genotypic value (or 
breeding value) and deviations from the predicted 
value are due to the interaction of the two genes 
or to the presence of dominance [11]. This model 
has been extended to include statistical epistatic 
effects at two or more loci with two or an arbitrary 
number of alleles per locus [e.g., 7, 14, 15]. 
Recognizing that the same genotypic values can 
be expressed in terms of either functional or 
statistical genetic effects, Yang [8] suggested a 
connection between functional and statistical 
genetic effects as defined under F2 model and 
Cockerham's model, in the same manner as the 
transformation of Van Der Veen [13] that allows 
for the translation of functional genetic effects 
between F2 model and F∞ model. Alvarez-Castro 
and Carlborg [3] generalized this suggestion for 
the two-allele framework in the natural and 
orthogonal interactions (NOIA) model that unifies 
the functional and the statistical formulations with 
the theory necessary to translate between functional 
and statistical genetic effects for multiple 
unlinked loci with arbitrary epistasis. This 
generalization enables, for instance, to obtain 
multilinear estimates of genetic effects from QTL 
data by embedding Hansen and Wagner’s [16] 
multilinear model into NOIA [17]. However, it 
remains to be seen how functional and statistical 
effects are related to each other for the multi-allelic 
case. With increasing number of alleles, it is 
expected that the functional and statistical genetic 
effects are related in a more complicated manner. 
For example, C. C. Li in Kempthorne [18] 
questioned why in a three-allele case statistical 
dominance effects are present when apparently there 
is lack of functional dominance for some genotype 
pairs. The question remains unanswered since then. 
In this paper, we will first extend the currently 
used two-allele models of functional genetic 
effects to include the cases of more than two 
alleles. We will then develop the relationships 
between functional and statistical effects with the 
presence of multiple alleles. Numerical analysis is 
carried out to illustrate the applications of the 
theory. There is an obvious need for modeling 
multi-allele functional genetic effects for mapping 
populations derived from multi-way crosses between 
more than two inbred lines or for the use of multi-
allelic molecular markers for QTL mapping. 

QTL effects are often defined in two ways using 
the two classic quantitative genetic models of 
Fisher [10], one being the model for defining 
genotypic values (often called functional model) 
and the other being the model for defining the 
average effect of a single gene (often called 
statistical model).  For a locus (say locus A) with
two alleles, A1 and A2, the values of three possible
genotypes, A1A1, A1A2 and A2A2, are m + a, m + d 
and m – a, respectively, where m is the homozygote 
mean located exactly at the mid-way between the 
values of the two homozygotes, a is the functional 
additive effect measured as half the difference 
between the values of two homozygotes and d is 
the functional dominance effect measured as the 
deviation of heterozygote from the homozygote 
mean. This model is subsequently known as the 
F∞ model [11, 12] and can be transformed into 
other equivalent models including F2 model [8, 
13], Unweighted Regression (UWR) model [6] and 
a model of arbitrary reference [3]. The important 
feature of this model is that the ratio of d/a allows 
for discussing the level of dominance in the sense 
of elementary Mendelian genetics or simply 
physiological (functional) dominance [3, 6]. For 
example, the special cases of d/a = 0, d/a = ±1, 
d/a < -1 and d/a > +1 would represent no 
dominance, complete dominance, underdominance 
and overdominance, respectively. This functional 
model has been extended to include physiological 
or functional epistasis at two or more loci [e.g., 3, 
5, 6, 8, 9]. However, to the best of our knowledge, 
all single-locus and multilocus functional models 
are limited to the case of two alleles per locus or 
to highly constrained genetic architectures. 
The functional genetic effects (a and d) defined 
above are simply comparisons among genotypic 
values without reference to any population and 
thus they stay invariant from one population to 
another. However, a diploid individual passes on 
its genes, not its genotype, to offspring, and 
measures of such genic effects are statistical 
because they depend on both frequencies and 
values of genotypes in a given population.  It has 
been well known since Fisher [10] that the 
average effect of a gene is a partial regression 
coefficient from the linear regression of the 
genotypic values on the number of that gene 
weighted by genotypic frequencies in a population.
The average effects of two genes in an individual
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with the prime (′) denoting matrix or vector 
transposition and Gij being the value of the 
genotype carrying alleles Ai and Aj. The genetic-
effect vector is EX.A = [RX.A aA dA]′, where RX.A is the 
reference point for a given transformation operator, 
aA is the additive effect measured and dA is the 
dominance effect. Since the functional additive 
and dominance effects are independent of the 
transformation operator, the reference point can be 
an arbitrary value including a mean of all genotypic 
values, a single arbitrarily chosen genotypic value or 
any numerical number. In particular, if RX.A = 1 then 
E1.A = [1 aA dA]′. The S-matrices derived from the 
well-known transformation operators, F∞-metric, 
F2-metric, UWR and NOIA from an individual 
reference genotype, G11, are, respectively: 
 
 
 
 
 
 
 
 
 
 
 
 
 
product (Kronecker product) of two single-
locus design matrices, SX.A for locus A, and 
SX.B for locus B, i.e., SX.AB = SX.B ⊗ SX.A [3]. The 
two-locus genetic-effect vector EX.AB can be 
obtained by replacing appropriate terms in the 
direct product, 

 
 

 
Once again, subscript X is a transformation 
operator (e.g., X = G11, F∞, F2, or UWR). The vector
of two-locus genotypic values GAB can be 
similarly constructed. The two-locus genetic effects 
are obtained by solving the system equations, 

Functional effects of multiple alleles 

Review of models for two alleles 
A vector of genotypic values at a given locus, say 
locus A (GA) can be transformed to obtain a vector 
of genetic effects (EX.A) through a genetic-effect 
design matrix (SX.A), GA = SX.AEX.A, where 
subscript X represents a transformation operator. 
The dimensions of GA and EX.A are the same 
(say q × 1) and SX.A is a q × q square matrix. The q 
value represents the number of possible genotypes 
which equal to r(r+1)/2 if there are 
r (r ≥ 1) alleles at locus A. The special case of r = 1 
and q = 1 (all genotypes are one type of homozygotes) 
is trivial and thus GA = EX.A. The most 
discussed is the case of two alleles (r = 2 and q = 3) 
[e.g., 3, 5, 8, 9]. In this case, GA = [G11 G12 G22]′ 
 
 
 
 
 
 

and their respective inverses are: 
 
 
 
 
 

It is evident from the first row of the inverse 
matrices that these transformation operators differ 
only in the choice of the reference point, with the 
reference point being either the mean of the 
population or an arbitrary genotypic value. 
The genetic-effect design matrix for two 
unlinked loci (say A and B), SX.AB, is a direct 
 
 
 
 

Specifically, we replace 1 by RX.AB, the product 
terms by single terms (e.g., the product of two 
additive, effects, aAaB, by a single additive × 
additive effect, aaAB). In this way, we obtain the 
two-locus genetic-effect vector 
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The construction of EX.ABC...L and GABC...L is similar 
to that of EX.AB and GAB by the extended use of the 
reverse-order direct products for multiple vectors 
and appropriate subsequent substitutions. The 
multilocus genetic effects are obtained by solving 
the system equations, 
 

 
 
example illustrates a distinct feature with the 
presence of more than two alleles that the additive 
effects derived from individual comparisons between 
pairs of homozygotes are linearly dependent 
of each other. In general, for r > 2, there are r 
homozygotes and (r-1) basic additive effects are 
defined as the differences between the values of 
the reference homozygote (G11) and the remaining 
(r-1) homozygotes. The remaining (r-1)(r-2)/2 
additive effects can be recovered from the basic 
additive effects as aji = a1j – a1i, i, j = 2,…,r. 
The S-matrix can be expanded similarly. In 
general, the new S-matrix shall have i rows below 
and i columns to the right of the previous matrix, 
Si-1, so that it can be expressed as 

 

 
The scalars in the new blocks are the ones for 
keeping on describing the genetic system as a set 
of allele substitutions from the reference of G11. 
This procedure can be automated using the 
following algorithm:  

− Block Mi1, to the right of the previous 
matrix: All zeros. 

− Block Mi2, below the previous matrix: 
Ones in the first column (these reflect the 
reference point) and in positions
 1+ (k −1)

k=1

i

∑  of every row but the first and 

the last ones (these reflect additive effects 
of previous alleles in new genotypes due to 
the new allele) and zeros in the rest of the 
positions. 

− Block Mi3, square i × i remaining block: 
First column of ones, except from the last 
one, which shall be a two (these reflect 
the additive effects of the new allele). 
 

Similarly, the genetic-effect design matrix for three 
or more unlinked loci (A, B, C, ..., L), SX.ABC...L, is 
obtained from the reverse-order direct products of 
multiple single-locus design matrices, SX.A for locus A,
and SX.B for locus B and SX.C for locus C, ..., SX.L for 
locus L, i.e., 

AXBXCXLXLABCX ..... SSSSS ⊗⊗⊗⊗= . 
 
 
 

Clearly obtaining the single-locus genetic-effect 
matrices or their inverses is fundamental for the 
above multilocus generalization. Thus, the subsequent 
development of models for multiple alleles 
focuses on one locus only (locus A). 
 
Extension to an arbitrary number of alleles 
We now show how to obtain the expressions of a 
functional formulation of genetic effects with 
more than two alleles. We first extend the two-allele 
NOIA model [3] to the multi-allelic case. We then 
develop a direct approach based on meaningful 
comparisons that need to be made given available 
homozygotes and heterozygotes for multiple alleles.  
From the expressions of the functional 
formulation of NOIA for two alleles as described 
above, we proceed by recurrence showing how to 
extend an (r – 1)-allele case to an r-allele case, 
for r > 2. By applying this procedure recursively, 
functional genetic effect models for any number 
of alleles can be reached. The extensions of the 
GA and EX.A vectors are simply achieved by 
appending more terms arising from the presence 
of multiple alleles to the end of the respective 
vectors, with the subscribed numerals for the 
alleles in an ascending order. For example, for 
r = 2, there are 3 possible genotypes: A1A1, A1A2 
and A2A2, but for r = 3, there are three additional 
genotypes: A1A3, A2A3 and A3A3. Thus, the vector 
GA is expanded from GA = [G11 G12 G22]′ for r = 2 
to GA = [G11 G12 G22 G13 G23 G33]′ for r = 3.  
Correspondingly, EX.A is expanded from 
[RX.A a12 d12]′ to [RX.A a12 d12 a13 d13 d23]′, where 
additive and dominance effects are simply 
comparisons between pairs of homozygotes and 
deviations of a given heterozygote from the 
average of the two corresponding homozygotes, 
aij = (Gii – Gjj)/2 and dij = Gij - (Gii + Gjj)/2.  Notice 
that a23 is missing from the EX.A vector and can be 
recovered from the relation, a23 = a12 - a13. This 
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where 1 is a 6 × 1 vector of ones. Plugging PGF.A, 
SG11.A and I* into (4), we obtain the general 
expression for the three-allele functional genetic-
effect design matrix, 

 
 
 
 
 
 
 

where p2 = ½P12 + P22 + ½P23 and p3 = ½P13 + 
½P23 + P33 are frequencies of alleles A2 and A3 
with p1 = 1- p2 - p3 = P11 + ½P12 + ½P13 being the 
frequency of allele A1, and P12, P13 and P23 are 
frequencies of heterozygotes A1A2, A1A3 and A2A3, 
respectively. In Appendix, we provide more 
details on the use of the general result in (5) for 
some special three-allele examples. 
 
Direct approach  
The above approach to calculating genetic 
effects involves two steps, first constructing an 
S-matrix and then obtaining its inverse so that 
E GF.A = 1

.
−

AGFS GA. Here we develop a one-step 
approach that allows for a direct calculation of 
functional genetic effects without the need to find 
the S-matrix. Once again, of r(r+1)/2 possible 
genotypes with r alleles at locus A, there are r 
homozygotes (A1A1, A2A2, …, and ArAr), and 
r(r-1)/2 heterozygotes (A1A2, A1A3, …, and Ar-1Ar). 
Numerous comparisons among these genotypes 
are possible.  In particular, two sets of comparisons 
can be meaningfully made corresponding to the 
following two sets of hypotheses: (i) all r 
homozygotes are functionally equivalent (i.e., all 
homozygotes have the same genotypic values, 
G11 = G22 = …= Grr) and (ii) a heterozygote is 
functionally equivalent to the average of the two 
corresponding homozygotes (i.e., Guv = (Guu + 
Gvv)/2).  Testing for hypotheses (i) embodies (r-1) 
comparisons between a base homozygote value 
(say G11) and each of the remaining (r-1) 
homozygote values (i.e., G11 = G22;  G11 = G33; …; 
G11 = Grr) whereas testing for hypotheses (ii) 
requires r(r-1)/2 comparisons, each being between 
a heterozygote and the average of the two 
corresponding homozygotes.  

Zeros in the last row (except from the first 
position, which is already filled by a two). 
And the identity matrix in the remaining 
(i –1) × (i –1) block (these ones reflect the 
new dominant effects). 

Following these steps, a functional formulation of 
genetic effects from the reference of R1 = G11.A 
can be obtained for a one-locus genetic system 
with any number of alleles. For example, the 
three-allele genetic system with the reference of 
G11 can be obtained as GA = SG11.AEG11.A 
expanding to:  

 

 
 
 

 

 
Evidently the choice of G11 as a reference point is 
somewhat arbitrary. In fact, like in the di-allelic 
case, any other genotypic value or any linear 
combination of genotypic values can be used as a 
reference point. The switch from one reference 
point to the other can also be easily achieved by a 
change-of-reference operation that works in the 
same way as for the two-allele case [3]. Suppose 
that the reference is changed from G11 to a general 
function (GF) of all genotypic values,  
 
 

where Puv is the frequency of the genotype carrying 

alleles Au and Av with 
,
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 Following [3], the 

S-matrix for GF as the reference is then given by, 
 
 

where PGF.A is a square matrix in which each 
column is filled with one of the coefficients of the 
linear combination of genotypic values (GF) as 
given in (3) and I* is the identity matrix except 
the first scalar of the matrix being zero. For 
example, with three alleles and six possible 
genotypes, PGF.A  is given by, 
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where Eµ.A = [Rµ.A a12 d12 a13 d13 d23]′, and  
 
 
 
 
 
 
is the inverse of Sµ.A which is the same as 
SGF.A given in (5). If the deviations from µ 
rather than genotypic values per se are used, 
then the reference point is zero, 
 
 

with E0.A = [0 a12 d12 a13 d13 d23]′.  These results 
can be easily generalized for more than three 
alleles and an algorithm such as the one described 
above for obtaining the S-matrices can be 
designed accordingly.  
 
Relations to statistical effects 

Statistical effects  

The statistical additive and dominance effects for 
multiple alleles are defined for a Hardy-Weinberg 
equilibrium (HWE) population. Thus, the value of 

genotype AuAv in the population, ,uvG  can be 

expressed as, 

 
 

where uvuv
r

uv
r
u GP≥==µ ΣΣ 1  is the population mean, 

uα  = µ−= uvv
r
v Gp1Σ   is the average (additive) effect 

of the uth allele with 0Σ 1 == uu
r
u p α  and uvδ  is the 

dominance deviation, i.e., ,uv uv u vGδ µ α α= − − −  
with 1 1 1 1Σ Σ Σ Σ 0.

r r r r

u uv uv v uv uv u v uv uvP P Pδ δ δ= = = == = =  In the 
matrix form, (11) can be written as, 
 
 
where 1 is a (t ×  1) vector of ones,  

Let RG11.A = G11, a1v = (Gvv - 11G )/2 for v = 2, 3, …, r, 
and duv = Guv - (Guu + Gvv)/2 for u < v, u = 1, 2, …, 
r-1. The a’s are obviously not independent of each 
other because unspecified comparisons among 
homozygotes would be functions of the comparisons 
specified under hypotheses (i). For example, the 
comparison between homozygotes, AuAu and AvAv, 
can be obtained from the relation auv = a1u - a1v. 
Collecting all r(r+1)/2 possible equations from 
RG11.A, (r-1) a’s and r(r-1)/2 d’s directly leads to 

AAGAG GSE 1
.11.11

−=  without a priori specifying the 
genetic-effect design matrix AG .11S . For the tri-
allelic case, we have 
 
 
 
 
 
 
 
 
The numerical matrix in (6) obviously is the 

inverse of the S-matrix, 
1

11.G A

−
S  in (2). As 

mentioned earlier, the choice of G11 as a reference 
point is somewhat arbitrary and any of the 
r(r+1)/2 genotype values can serve as the 
reference point.  With the change in the reference 
point, functional additive and dominance effects 
would need to be redefined as comparisons of the 
new referenced genotype with all other genotypes.  
The GF function in (3) can also serve as a 
reference point. Some GF-based examples are 
those equivalent to F∞-metric, F2-metric, UWR 
models in the case of two alleles.  Thus, for the 
case of three alleles, we can also have one of the 
following averages, 
 
 
 
 
 

as the reference point. If GF is equal to the 
population mean (µ) and G11 is used for the 
referenced genotype for all genotypic comparisons, 
then the genetic effects can be directly written as 
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Just like in the two-allele case, the statistical 
additive effects depend on both functional 
additive and dominance effects and the statistical 
dominance deviations depend only on the 
functional dominance effects.  However, a new 
feature emerging from equations (18) and (19) is
that any one nonzero functional dominance effect 
between a particular pair of alleles is sufficient to 
cause nonzero values of all statistical dominance 
deviations. 
 
The presence of Hardy-Weinberg disequilibrium 
(HWD)  
In a HWD population, the average effects 
(statistical effects) of the alleles, A1, A1, …, Ar  
can only be given implicitly [e.g., 15, 19]           

 

where *
uα  is the average excess of allele Au 

defined as the deviation of the mean values of 
genotypes carrying one or two copies of Au 
weighted by its allele frequency from the 
population mean, 
 
 
 
 

In the HWE population, the average effect and 
average excess of a given allele are the same 
(i.e., 

uvP = pupv and thus *
uα  = uα = µ−= uvv

r
v Gp1Σ ). 

However, when mating is not random, uα  and *
uα  

are generally different from each other. It is 
difficult to explicitly establish the relations of the 
average excesses in a HWD population to 
functional genetic effects. Therefore, a numerical 
evaluation is provided in the following section to 
assess the impact of HWD on the average 
excesses of multiple alleles. 

 
 
 
 
 
 
 

The weighted least squares solution of α  in the 
linear model (12) is well known [e.g., 15, 19], 
 

where PHWE = diag{ 2 2 2

1 1 2 2, 2 , , , rp p p p p } is the 
diagonal matrix whose diagonal elements are the 
HWE genotypic frequencies. The dominance 
deviations are, 
 
 
Transformation matrices  
We will now proceed to find a pair of 
transformation matrices that allow for converting 
functional genetic effects into statistical genetic 
effects.  Suppose that statistical additive effects 
may be obtained by finding a matrix, Tα, such that 
α  = TαE0.A. Since )(1

..0 µ−= −
µ 1GSE AAA  (cf. equation 

(10)), it follows that Tα, can be expressed as, 
 
 
Similarly, we can obtain statistical dominance 
effects by finding another matrix, Tδ,  
 
 

such that δ = TδE0.A. For the case of three alleles, 
we have, 
 
 
 
 

and 
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The dominance deviations of six possible 
genotypes: A1A1, A1A2, A2A2, A1A3, A2A3 and A3A3 
based on vuuvuv G α−α−µ−=δ are -8, -3, 2, 5, 0 
and -2, respectively. 

New analysis  
In Li’s original analysis as recapitulated above, the 
allele frequencies (= 0.2 for A1, p2 = 0.3 for A2, and 
p3 = 0.5 for A3) were intentionally chosen to have the 
mean of µ = 40 in the HWE population. The 
genotypic values corrected for the mean (GA - 1 µ) = 
[-30 -10 10 -4 6 2]'.The functional effects using these 
deviations from the mean is  )1(1

..0 µ−= −
µ AAA GSE  = 

[0 20 0 16 10 0]' as in [10]. The statistical additive 
effects can be obtained from their relations with 
the functional effects α  = TαE0.A, i.e., 
 
 
 
 
 
 
Similarly, the statistical dominance effects can be 
obtained from their relations with the functional 
effects δ = TδE0.A, i.e., 
 
 

 
 
 
 
This directly answers Li’s original question of 
why the functional dominance only occurs for the 
allele pair A1A3 (i.e., A1A3 is not at the mid-point 
of A1A1 and A2A2) but the statistical dominance 
deviations are nonzero in all but one genotypes. 

Impacts of HWD on statistical genetic effects  
We now conduct further analyses of Li’s example 
by considering different sets of allele frequencies 
and varying levels of HWD to demonstrate the 
effects of allele frequencies and HWD on 
statistical genetic effects (average effects and 
average excesses in particular) and to gain 
insights into behaviors of average effects and 
average excesses of individual alleles. We construct 
a large number of HWD populations with different 
gene and genotypic frequency distributions but all
 
 

Numerical analysis 
We will now provide a reanalysis of the example 
of a three-allele population taken from C.C. Li in 
Kempthorne [18]. This example is chosen for the 
following reasons. First, it has special features 
(e.g., functional dominance effects appear only in 
some genotypic comparisons but not in others).  
Second, our reanalysis of the example actually 
provides a clear answer to C.C. Li’s original 
question of why statistical dominance effects are 
present in all genotypes when apparently there is 
lack of functional dominance effects for some 
genotypic comparisons. In response, Kempthorne 
[18] did not really answer the question.  And the 
question has left unanswered since then. Third, 
our reanalysis has much broader scope than does 
C.C. Li’s original analysis which only considered 
the simplest case of a HWE population with a 
specific set of allele frequencies, thereby clearly 
demonstrating that a set of genotypic values there 
are only one set of functional genetic effects but 
numerous sets of statistical genetic effects 
depending on gene and genotypic frequencies.   

C.C. Li’s  analysis  
C.C. Li in Kempthorne [8] used a hypothetical 
example of three-allele HWE population to 
calculate functional and statistical effects of 
individual alleles and to ask the question of why 
the two types of effects are different. In Li’s 
example, there are three alleles (A1, A2, A3) and six 
possible genotypes: A1A1, A1A2, A2A2, A1A3, A2A3 
and A3A3 with genotypic values of GA = [10 30 50 
36 46 42]'. Li assumed a HWE population with 
the frequencies of the three alleles being chosen as 
p1 = 0.2 for A1, p2 = 0.3 for A2, and p3 = 0.5 for A3 so 
that the population mean is uvvuvu Gpp3

1
3

1ΣΣ ===µ = 40. 
Using the direct approach, the functional additive 
effects are a12 = (50 – 10)/2 = 20, a13 = (42 – 10)/2 = 
16 and a23 = a12 - a13 = 4 whereas the functional 
dominance effects are d12 = 30 – (10+50)/2 = 0, 
d13 = 36 - (10+42)/2 = 10 and d23 = 46 - (50+42)/2 = 0.  
These functional effects can of course be easily 
obtained using the population mean as the 
reference point (cf. equation (12)), AAA GSE 1

..
−
µµ = = 

[40 20 0 16 10 0]'. The average effects of alleles, 
A1, A2, and A3 are α1 =  µ−= vvv Gp 1

3
1Σ = -11, 

α2 =  µ−= vvv Gp 2
3

1Σ = 4 and α3 =  µ−= vvv Gp 3
3

1Σ = 2.  
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with the same genotypic values of GA = [10 30 50 
36 46 42]'.  For a given set of allele frequencies, we 
calculate six genotypic frequencies as the sums of 
HWE frequencies and HWD deviations (Ds) 
following [20], 
 
 
 

There are a range of values that each HWD coefficient 
(Duv) can take,                                  where  D-

max  = 

                       and +
maxD = vu pp . It is evident that 

if −→ maxDDu
v  (e.g., populations undergoing 

selection for heterozygotes or negative assortative 
matings) then the population is approaching to a 
complete heterozygosity; on the other hand, if
  

+→ maxDDuv
(e.g., populations consisting of inbred

lines) then the populaion is approaching to a 
complete homozygosity. To avoid the possibility
of undefined negative genotypic frequencies with 
the presence of two extreme disequilibria, we 
choose five levels of HWD away from the two 
extremes ( −

maxD  and 
+
maxD ): uvD  = −

max2
1 D , −

max4
1 D , 0, 

+
max4

1 D  and 
+
max2

1 D . We then create the two extreme 
cases, one with complete heterozygosity by equaling 
the frequencies of three alleles to those of the 
three heterozygotes and the other with complete 
homozygosity by equaling the frequencies of 
three alleles to those of the three homozygotes.   

Presented in Table 1 are the values of average 
excess ( *

uα ) and additive effect ( uα ) for seven 
selected sets of allele frequencies each for the 
 

Table 1. The statistical additive effects and average excesses of three alleles in Li’s example* for the populations 
constructed with varying levels of Hardy-Weinberg disequilibrium for seven sets of allele frequencies. 

Level of Hardy-Weinberg disequilibrium 
Allele frequency array  
(p1 : p2 : p3) 

Additive 
effect or 
average 
excess  

All Hetero. 
2
max
−

=
D

Du
v

 
4
max
−

=
D

D u
v

  0=u
vD  

4
max
+

=
D

Du
v

  
2
max
+

=
D

Du
v

     All  
   Homo. 

 
0.05 : 0.1 : 0.85 

 
*
1α   -1.033  -6.825 -7.388  

                     
-7.950 -13.763     -19.575  -31.200 

 1α   -8.350    -7.274 -7.622 -7.950 -11.010     -13.050  -15.600 

 *
2α    3.967   3.075 3.313 3.550    4.863                6.175     8.800 

 2α    1.650   3.375     3.468 3.550    3.890        4.117     4.400 

 *
3α    0.353   0.040 0.045 0.050     0.238        0.425     0.800 

 3α    7.650   0.031 0.040 0.050    0.190        0.283     0.400 

0.1 : 0.1 : 0.8 *
1α   -1.067    -6.200    -7.300 -8.400 -13.700    -19.000  -29.600 

 1α   -8.200 -7.080 -7.786 -8.400 -10.960    -12.667  -14.800 

 *
2α    1.600  2.300     2.950 3.600     5.300       7.000   10.400 

 2α    1.800  2.920 3.295 3.600    4.240               4.667     5.200 

 *
3α    0.711 0.488 0.544 0.600     1.050       1.500     2.400 

 3α   7.800 0.520 0.561 0.600     0.840       1.000     1.200 

0.2 : 0.3 : 0.5 *
1α  -3.514 -6.800 -8.900 -11.000 -15.250     19.500  -28.000 

 1α  -8.900 -9.079  -10.191 -11.000 -12.200    -13.000  -14.000 

 *
2α   1.800  1.667  2.833  4.000     6.000               8.000   12.000 

 2α   1.100 2.491 3.387 4.000     4.800       5.333     6.000 

 
3
*α  1.950 1.720 1.860 2.000     2.500       3.000     4.000   
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Table 1. continued.. 

Level of Hardy-Weinberg disequilibrium 
Allele frequency 
array  
(p1 : p2 : p3) 

    Additive  
    effect or 
    average 
    excess     All Hetero. 

2
max
−

=
D

Du
v 4

max
−

=
D

D u
v

  0=u
vD  

4
max
+

=
D

Du
v

  
2
max
+

=
D

Du
v

 
        All  
     Homo 

    3α  
      

7.100     2.137    2.044      2.000       2.000     2.000       2.000 

0.4 : 0.3 : 0.3    *
1α    -4.029    -5.925    -8.063   -10.200    -13.050  -15.900    -21.600 

    1α   -8.300    -9.480   -9.923   -10.200    -10.440  -10.600    -10.800 

    
*
2α   0.257     2.300 4.550      6.800       9.700   12.600     18.400 

    2α   1.700   3.320     5.551      6.800       7.760     8.400       9.200 

   
*
3α  4.400   5.600     6.200      6.800       7.700     8.600     10.400 

 
  3α      7.700   9.320     7.680      6.800       6.160     5.733       5.200 

0.5 : 0.3 : 0.2   
*
1α   -4.286  -6.760    -7.980     -9.200 -    11.500  -13.800    -18.400 

   1α    -8.000  -9.063    -9.156     -9.200      -9.200    -9.200      -9.200 

   
*
2α  0.000   5.133     6.967      8.800     12.000   15.200     21.600 

   2α  2.000    7.291     8.187      8.800       9.600   10.133     10.800 

 
  

*
3α  6.000   9.200     9.500      9.800     10.750   11.700     13.600 

 
  3α  8.000  11.722   10.609      9.800       8.600     7.800       6.800 

0.3 : 0.6 : 0.1   
*
1α  -8.700   -9.867  -11.533   -13.200    -16.700  -20.200    -27.200 

    1α    -10.100  -12.950  -13.094   -13.200    -13.360  -13.467    -13.600 

   
*
2α  0.467     4.167     4.983      5.800       7.550     9.300     12.800 

    2α   -0.100    5.555     5.690      5.800        6.040     6.200       6.400 

    
*
3α  4.371   4.600     4.700      4.800       4.800     4.800       4.800 

 
  3α      5.900   5.522     5.142      4.800       3.840     3.200       2.400 

0.1 : 0.85 : 0.05    
*
1α  -11.900   -16.100  -16.750   -17.400    -21.950  -26.500    -35.600 

    1α  -11.950 -17.275  -17.339   -17.400    -17.560  -17.667    -17.800 

   
*
2α   0.416   1.952     2.026      2.100       2.675     3.250       4.400 

   2α  -1.950   2.069     2.085      2.100       2.140     2.167       2.200 

 
  

*
3α  1.544  -0.975    -0.938     -0.900      -1.575    -2.250      -3.600 

   3α  4.050 -0.626    -0.766     -0.900      -1.260  -1.500                     -1.800  

*In Li’s example (Kempthorne, 1955), there are three alleles (A1, A2, A3) and six possible genotypes: A1A1, A1A2, 
A2A2, A1A3, A2A3 and A3A3 with genotypic values of GA = [10 30 50 36 46 42]'. With the exception 
of the reference, all functional effects based on this set of genotypic values remain the same across different sets 
of allele frequencies and different levels of Hardy-Weinberg disequilibrium. These effects are a12 = 20, d12 = 0, 
a13 = 16, d13 = 10 and d23 = 0. 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

additive effects, whereas when r>2 there will 
always be linearly dependent additive effects 
 (i.e. (r-1)(r-2)/2>0). Second, the presence of 
functional dominance effect at only one allele pair 
is sufficient to cause the presence of statistical 
dominance deviations for all the genotypes 
[cf. equation (24)]. The reanalysis of LI’s example 
in Kempthorne [18] eloquently shows this feature. 
In the one-locus di-allelic case, the dominance 
effect plays the role of a last-order deviation 
which is thus unaffected by the other estimates. 
The same situation occurs in the two-locus 
di-allelic case, being the dominance-by-dominance 
effect the last-order deviation. However, when 
several alleles are present in one locus, there is no 
single last-order deviation, but several ones at the 
same level that, therefore, generate the above 
emergent property by being affected by each other 
in the system. And finally, the need for the 
functional vs. statistical distinction is more 
pronounced in the presence of multiple alleles 
because the equality of gene frequencies is no 
longer a sufficient condition for any direct 
relationship between physiological and statistical 
genetic effects in the multi-allelic case, as 
opposed to the di-allelic case [3].  
We provide a satisfactory answer to a 
longstanding question of why there is lack of 
direct correspondence between physiological 
and statistical genetic effects in the multi-allelic 
case as raised by C. C. Li in Kempthorne [18]. 
Both previous di-allelic models and present 
multi-allelic models have demonstrated that 
for a given set of genotypic values, there is 
only one set of functional genetic effects 
(measured as an array of genotypic comparisons) 
but numerous sets of statistical genetic effects, 
each varying with gene and genotypic 
frequencies. Therefore, there is little chance for 
functional and statistical effects to be coincident.  
In the presence of two alleles only (r = 2), there 
are special cases (e.g., an F2 population) where the 
two alleles are equally frequent (p1 = p2 = ½) and 
functional and statistical additive effects are 
clearly related: AA ppa α=α−α=α−α= 212112 22 , 
i.e., the functional additive effect ( Aa ) equals to the 
average effect of gene substitution ( Aα ). This is also 
evident from the definition of )( 12 ppda AAA −+=α  
that the functional dominance does not enter the 
 
 
 
 

 
 
 

seven HWD coefficients. The two special features 
of the general relationship between 

*
uα  and uα  as 

given in (20) are evident. First, the average effects 
and average excesses of the same alleles are the 
same in the HWE populations ( *

uα  = uα ). In this 
case, the average effects of the three alleles 
obtained in the Li’s original analysis (α1 = -11; 
α2 = 4; and α3 = 2) are recovered. Second, the 
average excess of a given allele is twice the 
average effects in the populations with complete 
homozygosity, i.e., completely inbred populations 
( *

uα  = 2 uα ). In all other cases, the differences 
between *

uα  and uα  increase with the levels of 
HWD in either positive or negative direction, but 
no clear patterns exist in the direction of such 
differences across different levels of HWD and 
sets of allele frequencies. The deviations of *

uα  
and uα  from their HWE expectations increase 
with the rate of approach to either complete 
homozygosity or complete heterozygosity.   
 
DISCUSSION 
Recently, there is a considerable amount of 
discussion about the need to distinguish functional 
vs. statistical effects of alleles at one or more loci 
[e.g., 3, 5, 6, 8, 9, 16].  However, such discussion 
is often limited to the case of two alleles 
per locus. In the present study, we extend the 
formulation of functional effects for the di-allelic 
case to the general formulation for the 
multi-allelic case from any reference point 
and establish a relationship between functional 
and statistical effects of multiple alleles. 
Our extension reveals some new features that 
do not exist in the diallelic case. First, with 
only two alleles per locus, there is only 
one functional additive effect (one half the 
difference between the two homozygotes) and one 
functional dominance effect (the deviation of 
heterozygote from the average of two 
homozygotes) whereas with r(>2) alleles, there 
are r(r-1)/2 functional additive effects and r(r-1)/2 
functional dominance effects, but only (r-1) 
functional additive effects need to be specified 
and the remaining (r-1)(r-2)/2 can be derived. 
Note that the di-allelic case actually fits to these 
expressions with r = 2 and thus one additive 
effect, one dominance effect and zero remaining 
 

 Models for multi-allelic effects                59 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

equally frequent alleles (p1 = p2 = p3 = 1/3), the 
relationships between functional and statistical 
effects (cf. equation (18)), are no longer as simple 
as in the di-allelic case, 
 
 
 
 
 

 

 
the general two-allele (G2A) model, Zeng  et al. [9] 
made no distinction between aA  and Aα  in their 
equation (20) where the second row of the 1

G2A
−

⋅AS  
matrix multiplied by the column vector of genotypic 
values GA gives, 
 
 
 
 
analyses that our straightforward formulation of 
functional effects of multiple alleles coupled with 
the establishment of its relations to the statistical 
genetic effects will facilitate the use of multi-
allelic models for QTL mapping.  For any of such 
efforts, detection and estimation QTL effects can
 first be based on a functional genetic model 
without regard of gene and genotypic frequencies 
and then estimated effects can be transformed into 
statistical genetic effects accounting for gene and 
genotypic frequencies through the use of 
equations (16) and (17). 
Just like in the diallelic case, both functional and 
statistical effects of multiple alleles are needed for 
describing genotypic and genic effects and 
variation, respectively. The models for the 
statistical effects focus on the heritable part of 
genotypic values. A diploid parent transmits only 
one allele per locus to each of its progeny and the 
additive effect of the transmitted allele is 
expressed when combined with a gene from 
another randomly chosen parent in a particular 
population, but the parent’s dominance deviation 
due to the interaction between its two alleles is 
immediately gone once meiosis takes place to 
produce gametes for next generation. Thus, the 
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average effect of gene substitution, Aα = Aa for 
p1 = p2 = ½. However, this clear relationship 
disappears when the consideration is shifted to 
three or more alleles.  For example, with three 
 

 
 
 
 
 
 
Clearly, each statistical additive effect depends on 
both functional additive and dominance effects.  
Sometimes, confusion may arise from lack of the 
distinction between functional and statistical 
genetic effects. For example, when developing 
 
 
 
 

which is equal to Aα  as describe above, not to aA 
(as Zeng et al. intended to show) unless p1 = p2 = ½.  
Thus, in actual QTL mapping, the distinction of 
functional and statistical genetic effects is needed 
to avoid any unintended interpretation of the 
effects. 
Our models for functional effects of multiple 
alleles complement the existing diallelic models 
for quantitative genetic studies and QTL mapping.  
In the past, QTL mapping has most often been 
carried out using some special segregating 
populations derived from a cross between two 
inbred lines, such as F2 or backcross (e.g., 15).  In 
these populations, there are only two alleles at a 
locus with known gene frequencies. However, 
there are many other types of populations 
including mapping populations derived from 
multi-way crosses between more than two inbred 
lines or populations with an unknown population 
structure (e.g., natural populations). QTL mapping 
for these populations requires multi-allelic 
models. Models for statistical effects of multiple 
alleles are well known (e.g., 7, 15, 19), but these 
models are hardly used in practical QTL mapping 
efforts because of their complicated nature. We 
have shown through theoretical and numerical 
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statistical additive effect of an allele necessarily 
depends on the allele frequency in the population.  
On the other hand, the models for functional 
effects emphasize on describing the standing 
genetic effects without reference to any 
population. As opposed to the statistical 
formulations, the functional ones allow us to 
describe genetic effects as effects of allele 
substitutions preformed from an individual 
genotype. This kind of description is needed, for 
instance, for analyzing studying evolution
processes in which new mutations appear from a 
monomorphic ancestral population [4]. Furthermore,  
in this communication we have also shown that 
the functional formulation conceptually fits to a 
common statistical testing procedure. 
In this study, we have explicitly considered 
only the single-locus models for functional effects 
of multiple alleles. If there is no linkage 
disequilibrium and/or epistasis between different 
loci, then our results for a single locus are directly 
applicable.  In this case, the value of a genotype at 
m loci is simply the sum of the single-locus 
genotypic values (

uv
jm

j G1=Σ ), where uv
jG  is the 

value of genotype AuAv at the jth locus that can be 
described in terms of functional and statistical 
formulations. The presence of epistasis at unlinked 
loci can be accommodated using the Kronecker 
product of genetic-effect design matrices just as 
described for the diallelic case.  The functional 
formulation with linkage disequilibrium (LD) 
presents no further complication because LD 
represents a statistical property of a population 
and functional genetic effects are invariant across 
populations with varying levels of LD.  However, 
if epistasis is present as well, the use of the 
Kronecker product of genetic-effect design 
matrices for individual loci is no longer feasible 
because these loci are not independent.  
Moreover, it is not a trivial matter to establish the 
relations between multilocus statistical and 
functional genetic effects with the presence of LD.
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APPENDIX  

Special cases of equation (5) 

Equation (5) gives the general expression for the 
three-allele functional genetic-effect design 
matrix. Here we describe some special cases of 
this general result that either provide further 
illustration of the change-of-reference operation 
or show the equivalence to some well-known 
S-matrices for two alleles. If the reference point is
changed from G11 to G23, then P23 = 1 and the rest
of genotypic frequencies are zeros, and p1 = 0, 
p2 = p3 = ½.  Plugging these gene and genotypic 
frequencies into (5), we have, 

 

 
 
 
 
 
 

Similarly, different S-matrices can arise from 
changing the reference point to the values of other 
individual genotypes. 

Alternatively, it is possible to use the mean of a 
specific population as a reference point. For 
example, equation (5) can be used to calculate 
tri-allelic equivalents of diallelic F∞-metric, 
F2-metric, UWR S-matrices if, like in the diallelic 
models, the equal allelic frequencies are assumed. 
Thus, for the tri-allelic equivalent of F∞-metric 
model (P11 = P22 = P33 = 1/3; P12 = P13 = P23 = 0; 
p1 = p2 = p3 = 1/3), the S-matrix is 

 
 
 
 
 
 
 
 

Similarly, we can obtain the S-matrices for 
F2-metric model (P11 = P22 = P33 = 1/9; P12 = P13 
= P23 = 2/9; p1 = p2 = p3 = 1/3): 

 
 
 

 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−

−−
−−
−−
−−−

=

101011
000001
110011
101011
101101
101011

.23 AGS

 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−
−
−
−−

=
∞

00101
1001
0101
00011
0011
0001

3
1

3
2

3
1

3
1

3
1

3
2

3
2

3
1

3
2

3
1

3
2

3
2

.AFS
 

(A1) 

Models for multi-allelic effects                 61



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

and UWR model (P11 = P22 = P33 = P12 = P13 = P23 
= 1/6;  p1 = p2 = p3 = 1/3): 

 
 
 
 
 
 

For the two-allele case, the functional 
formulations of the F2, F∞ and UWR models are 
orthogonal in populations whose frequencies fit 
the reference points of those models [3]. It is 
worth noting that this is no longer valid for the 
multi-allelic case. In particular, expressions 
(A1-A3) do not lead to orthogonal formulations of 
different additive and dominance genetic effects. 
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