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Abstract 

Construction labour productivity (CLP) is considered one of the most important parameters 

affecting the performance of construction projects. Therefore, modeling CLP is a crucial step in 

construction projects. Accurate prediction of CLP helps in effective planning, cost estimating, and 

productivity improvement before and during construction project execution. Numerous factors 

affect CLP and cause complexity in predicting and modeling labour productivity. Thus, CLP 

modeling and prediction are complex tasks, which can lead to high computational cost and 

overfitting of data. Since a large number of inputs and high-dimensional data may present different 

problems, such as reduced accuracy and increased complexity, it is necessary to reduce the 

dimensionality of CLP data and determine the factors that most influence CLP. This can be 

accomplished using dimensionality reduction methods, such as feature selection. Existing 

predictive models of CLP do not focus on dimensionality reduction methods appropriately, which 

causes reduced accuracy of CLP prediction. 

This thesis presents a novel approach to predict and optimize CLP by applying hybrid feature 

selection (HFS), machine learning models, and particle swarm optimization (PSO) algorithm. HFS 

methods select the most predictive factors on CLP to reduce complexity and dimensionality of 

CLP. Selected factors are used as inputs to four machine learning models, namely adaptive neuro-

fuzzy system (ANFIS), ANFIS-genetic algorithm (ANFIS-GA), random forest (RF), and artificial 

neural network (ANN) for CLP prediction. Results show that the RF model obtains better 

performance compared to the other three models. Finally, the integration of RF and PSO is 

developed to identify the maximum value of CLP and the optimum value of selected factors. The 

new hybrid model presented, named HFS-RF-PSO, is a CLP optimization-and-prediction 

approach that addresses the limitation of existing CLP prediction studies regarding the lack of 
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capacity to optimize CLP and its most influential factors in regard to a construction company’s 

preferences, such as targeted CLP. Therefore, the main contributions of this thesis include (1) 

development of an HFS model to select the most predicting factors on CLP; (2) development and 

comparison of four different predictive models for CLP and identifying the most accurate model; 

and (3) development of the HFS-RF-PSO algorithm to identify the maximum value of CLP 

considering the minimum deviation from the targeted CLP value and also finding the optimum 

value of the selected. 

The proposed HFS-RF-PSO model will help project managers predict, optimize, and improve the 

CLP value while taking into account the factors that are most predictive of CLP. The results of 

this thesis and implementation of the HFS-RF-PSO model will help project managers identify 

causes of low labour productivity, select and prioritize corrective measures to improve CLP. The 

model will also enable project managers to improve the reliability of predictions. 
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Chapter 1. Introduction 

 

1.1 Background 

As the construction industry makes a significant contribution to global gross domestic product, 

sustaining construction productivity is essential to economic growth (El-Gohary et al. 2017). In 

2015–2019 in Canada, the construction industry contributed to about 7.3% of the gross domestic 

product and also provided employment for about 7.6% of all employees (Statistics Canada 2019). 

The efficiency of construction systems is measured by using construction productivity. Poor 

productivity can cause cost overruns and schedule slippages on large, labour-intensive 

construction projects (Doloi 2008). In general, productivity can be defined as the ratio of inputs of 

the system (e.g., person-hours or cost) to its output (e.g., cubic meters of concrete placed). Based 

on Talhouni (1990), there are three types of measurements for construction productivity, namely 

single factor productivity (SFP), multifactor productivity (MFP), and total factor productivity 

(TFP). SFP measures productivity by using one resource input, while MFP uses any combination 

of labour, equipment, and materials as the resource inputs. TFP measures the construction 

productivity by using labour, materials, equipment, energy, and capital as five resource inputs. As 

predicting and measuring energy and capital inputs in activity or at the project level is difficult, 

measuring TFP can be inaccurate (Gerami Seresht and Fayek 2018; Loosemore 2014). Therefore, 

construction managers often use construction labour productivity (CLP), which is a SFP measure 

that utilizes labour as an only input (Eastman and Sacks 2008; Loosemore 2014; Tsehayae and 

Fayek 2016a). In this thesis, the focus is on CLP, which is defined as either the ratio of units of 

output to units of input or the ratio of units of input to units of output. In this study, CLP is defined 

as  shown in Eq. (1.1), where higher values are better than lower values. For instance, the concrete 

activity installed quantity is measured in terms of total volume placed. 

𝐶𝐿𝑃 =  
𝑂𝑢𝑡𝑝𝑢𝑡 (𝐼𝑛𝑠𝑡𝑎𝑙𝑙𝑒𝑑 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦)

𝑇𝑜𝑡𝑎𝑙 𝑙𝑎𝑏𝑜𝑟 𝑤𝑜𝑟𝑘−ℎ𝑜𝑢𝑟𝑠
 (1.1) 

Three different levels are considered for construction productivity. The first is economic-level 

productivity, which is suitable for industry-wide measurements of construction productivity. The 

second is project-level, which is focused on specific projects. The third is activity-level 

productivity, which is appropriate for specific activities. Based on construction management 
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perspective, productivity is often defined at the project level or activity level (Gerami Seresht and 

Fayek 2018). It is necessary to consider that the environment of CLP is unpredictable and complex, 

because of the large number of parameters that influence productivity directly or indirectly and the 

time-consuming process of tracking productivity. Therefore, providing a predictive model for 

productivity requires complex mapping of the multiple factors affecting labour productivity 

(Heravi and Eslamdoost 2015). A large number of inputs and high-dimensional data may present 

different problems, such as reduced accuracy and increased complexity (Piao and Ryu 2017). In 

data mining, feature selection and extraction are necessary preprocessing approaches for 

identifying a relevant subset for classification and also developing a transformation of the inputs 

onto a low-dimensional subspace that keeps the majority of relevant information. The aim of using 

feature selection and extraction methods is to quickly develop prediction models with better 

performance. 

Productivity prediction studies can be classified into three groups: statistical, simulation, and 

artificial intelligence (AI) techniques. The most common statistical technique is regression 

analysis. In general, regression models are limited by the number of influencing parameters and 

their capability of determining the combined impact of the influencing parameters (Song and 

AbouRizk 2008). System dynamics is one of the most applicable simulation techniques, and it is 

able to model a dynamic system. Although system dynamics models are able to capture the 

probabilistic uncertainties of real-world systems, they cannot capture the non-probabilistic 

uncertainties (i.e., subjective or linguistically expressed information) of real-world systems. On 

the other hand, AI techniques, such as artificial neural network (ANN), and their ability to learn 

from experience to improve their performance and adapt themselves to changes and also find 

patterns among datasets, make them useful methods for prediction (Mirahadi and Zayed 2016). 

For example, Gerami Seresht and Fayek (2018) developed the fuzzy system dynamics technique 

by integrating system dynamics and fuzzy logic to model multifactor productivity of equipment-

intensive activities. Furthermore, Tsehayae and Fayek (2016a) demonstrated the application of 

data-driven fuzzy clustering in the development of fuzzy inference system (FIS). Then, they used 

a GA-based optimization process to address the FIS limitation, which is the inability to learn from 

data. Heravi and Eslamdoost (2015) developed an ANN model to predict CLP rates for foundation 

concrete work on industrial construction projects. 
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1.2 Problem Statement 

CLP has been well studied because it has a direct effect on a company’s efficiency and profitability 

and also because of the importance and vital role of labour productivity in improving project 

performance. The identification of factors that affect CLP is complex and vital for measuring and 

predicting construction productivity. Various studies have identified numerous factors influencing 

CLP, both subjective (e.g., foreman skill and task complexity) and objective (e.g., crew size). 

These studies have used questionnaire surveys to identify top factors influencing CLP (Alaghbari 

et al. 2019; Jarkas 2015; Montaser et al. 2018; Tsehayae and Fayek 2014). 

Based on the above, the first issue in CLP modeling and prediction is related to identification of 

the most influential factors on CLP. Although several studies work on CLP factors identification, 

consensus on the classification and generalization of key parameters is yet to be achieved (Dixit 

et al. 2018). Additionally, the high-dimensional feature space of labour productivity often imposes 

a high computational cost as well as the risk of “overfitting” when classification is performed. 

Therefore, reducing the dimensionality of labour productivity data and identifying the most 

parameters that most influence CLP is necessary, since numerous factors have been identified that 

affect labour productivity. This can be done by using data mining techniques, namely feature 

selection methods. However, very few studies in CLP prediction use those methods to reduce the 

dimensionality of data. Filter and wrapper methods are the main approaches for feature selection 

(Yuan et al. 2018). Filter methods are independent of learning algorithms and choose best features 

based on some of the statistical properties of data, such as their correlation coefficients. 

Furthermore, most filter methods are only suitable for developing mathematical equations by the 

statistical regression method (Gerami Seresht and Fayek 2018; Guyon et al. 2008). Wrapper 

methods, on the other hand, use the accuracy of a learning algorithm as a criterion for selecting 

useful features. Wrapper methods are therefore a more effective means of constructing a predictive 

model than filter methods, because they are tuned to the specific interaction between a learning 

algorithm and its training data (Ahmad and Pedrycz 2012; Aličković and Subasi 2017). However, 

their application is limited because of the high computational complexity that occurs when 

numerous feature sets are considered. To resolve the afore-mentioned problem, it can be helpful 

to merge wrapper methods with suitable filter methods to reduce the wrapper method’s deficiency, 

which is called hybrid feature selection (HFS). The second issue is related to the fact that most of 

past studies on modeling CLP used filter methods for selecting the most influential factors (Bai et 



4 

 

al. 2019; Gerami Seresht and Fayek 2018; Tsehayae and Fayek 2016b). The filter method is 

suitable for dealing with a high dimension of input space and a small number of data instances. 

However, using a wrapper method or HFS is more appropriate for predictive modeling using AI 

techniques, such as FIS and ANN, because of its superior performance (Piao and Ryu 2017). 

The third issue is related to finding appropriate models for developing a predictive model and 

obtaining the optimal prediction evaluation index. Predicting CLP is still a challenge because of 

the limited CLP data availability to study, the complex variability of construction productivity, 

and the requirement of considering the complex effect of multiple variables simultaneously. 

However, maintaining high accuracy and interpretability in the developed models are the most 

important criteria. Predicting construction productivity has been accomplished in several studies 

mostly by using AI techniques (El-Gohary et al. 2017; Golnaraghi et al. 2020; Nasirzadeh et al. 

2020; Sarihi et al. 2021). Despite the wide application of the predictive model of CLP for project 

planning and control, a predictive model on its sole application cannot offer the optimum point of 

the combination of influencing factors to construction companies for improving CLP. Concretely, 

no study has presented a hybrid model for finding the maximum value of CLP and optimum value 

of each influential factor using optimization techniques. Finding the maximum CLP helps project 

managers plan for improving each productivity factor. Therefore, the fourth issue in labour 

productivity modeling research is the absence of a general model to predict and optimize CLP in 

regards to finding the optimum value of each influential factor and the maximum value of CLP. 

1.3 Research Objectives 

The overall objective of this thesis is to develop a model for determining, predicting, and 

optimizing CLP at the activity level by using a combination of FS, AI, and evolutionary 

optimization techniques. To achieve this goal, this research has the following objectives: 

1. Investigate the appropriate filter and wrapper methods as feature selection techniques for 

selecting the most value-adding factors of CLP and use the most effective combination of 

filter and wrapper methods as a hybrid method.  

2. Predict CLP by applying and comparing different AI techniques, namely ANFIS, ANFIS-

GA, RF, and ANN, using the most value-adding factors. 

3. Develop an evolutionary optimization model for finding the maximum value of CLP by 

changing the value of each selected factor. 
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4. Develop a hybrid model to obtain a CLP value that is close to the company’s preferred 

value of CLP and minimize deviation of predicted CLP factors from their average values 

in a dataset. 

1.4 Expected Contributions 

This thesis is expected to produce the following contributions that will positively impact future 

researchers and are classified under academic contributions, while some contributions will benefit 

industry practitioners and are classified under industrial contributions. 

1.4.1 Academic contributions 

The expected academic contributions of this research are: 

 Development of a combination of filter and wrapper methods as an HFS to identify the 

most value-adding productivity factors and reduce the dimensionality of data 

 Development of predictive models of CLP activity by evaluating different AI models’ 

performance, namely ANFIS, ANFIS-GA, RF, and ANN using the selected factors 

 Development of an evolutionary optimization model to obtain the maximum value of CLP 

and the optimum value of all the most value-adding factors 

1.4.2 Industrial contributions 

The expected industrial contributions of this research are:  

 Identification of the most value-adding CLP factors, which helps construction planners 

provide improvement strategies and improve the most value-adding factors 

 Prediction of labour productivity for use in construction project cost estimation and 

scheduling  

 Development of a hybrid model for optimizing CLP and its factors, which will be effective 

for construction planners to carry out productivity improvement studies and analyze 

different scenarios 
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1.5 Research Methodology 

The objectives of this research are achieved in five main stages, which are listed below.  

1.5.1 The first stage: Identification of factors influencing CLP 

The development of productivity modeling and optimization begins with the identification of the 

factors influencing productivity. By analyzing existing literature in the field of CLP analysis and 

modeling, the factors influencing productivity are identified. Finally, identification of the most 

appropriate feature selection techniques is reviewed.  

1.5.3 The second stage: Feature selection 

The large input parameters feature space, made up of the influencing factors, had to be reduced in 

order to maintain the interpretability and accuracy of the productivity models. To overcome these 

challenges and find the factors with the most influence on CLP, feature selection methods are used. 

The feature space is reduced by identifying the key input factors influencing productivity using 

feature selection methods. The HFS, which is the integration of filter and wrapper method, is 

developed to find the factors most influencing CLP.  

1.5.4 The third stage: The predictive model development 

The predictive model for CLP is developed by using the selected features as inputs and CLP as an 

output. Different AI techniques, namely ANFIS, ANFIS-GA, RF, and ANN, are applied for 

developing three different predictive models. As shown in the current literature, ANN has become 

a popular and helpful model for classification, clustering, pattern recognition, and prediction in 

many disciplines. One advantage of ANN is the high-speed processing provided in a massive 

parallel implementation. ANNs are able to deal with noisy or incomplete data and can be very 

effective, especially in problems where the relationships between inputs and outputs are not 

sufficiently known (Almási et al. 2016). So, based on their abilities, ANNs can be ideal alternatives 

for modeling labour productivity. ANFIS is one of the most popular neuro-fuzzy systems. In 

ANFIS, learning ability and relational structure of the ANNs is combined with the decision-

making mechanism of fuzzy logic (Siraj et al. 2016). In order to optimize ANFIS parameters, the 

integration of ANFIS and GA is also developed. Another algorithm that shows accurate 

performance in a number of studies in other disciplines is RF. Comparing the predicted results of 

ANN as an AI technique, ANFIS as a neuro-fuzzy system, and RF as a classifier, the performance 
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evaluation of these models based on the root mean square error (RMSE) and accuracy of predicted 

results are achieved, and the most accurate model is selected for prediction of CLP. 

1.5.5 The fourth stage: Evolutionary optimization model development 

A hybrid model using particle swarm optimization (PSO) is developed to find the maximum 

amount of CLP and optimum value of each factor. Due to the limitations of mathematical 

optimizations such as reaching local optimum, evolutionary-based algorithms have been proposed 

for finding a near-optimal solution space with better results. 

1.6 Thesis Organization 

Chapter 1 provides background information on CLP research and identifies gaps in the CLP 

research. This chapter also presents the research objectives, expected academic and industrial 

contributions, and research methodology of the thesis. 

Chapter 2 presents an extensive literature review on the relevant topics, including feature selection 

methods, identification of factors influencing CLP, and development of predictive models for CLP. 

Chapter 3 presents the methodology of the proposed hybrid model, which contains (1) CLP dataset 

overview, (2) data preparation, (3) HFS process, (4) CLP predictive modeling, and (5) CLP 

optimization. 

Chapter 4 presents the application of the developed hybrid model for CLP prediction and 

optimization. This chapter focuses on experimental results and discussion regarding the proposed 

model.  

Chapter 5 describes the conclusions, contributions, and limitations of the thesis, as well as 

recommendations for future research. 
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Chapter 2. Literature Review 

2.1. Feature Selection Methods 

Feature selection is a vital part of any data mining process, which reduces the number of features 

by selecting a subset of the input features that efficiently represents the input data while removing 

irrelevant, noisy, and redundant data, and results in acceptable classification accuracy (Hall 1999; 

Bai et al. 2019). The main benefits of implementing feature selection methods are that (1) it 

decreases the amount of data needed to achieve learning; (2) it enhances the predictive accuracy 

of models; (3) it reduces model execution time because there are fewer inputs; and (4) it allows 

learned knowledge to be easily understood because it is more compact (Hall 1999). Feature 

selection methods can be broadly categorized as filter, wrapper, and embedded methods (Wei et 

al. 2020). 

Filter methods offer less computational time to provide results than wrapper or embedded methods 

(Atallah et al. 2019). They do not require any learning algorithm; rather, they evaluate statistical 

properties and rank features based on heuristic scoring criteria. As filter methods are independent 

of classifiers, selected features are not the most appropriate for all classifiers (Ghosh et al. 2019; 

Lee et al. 2017). Although filter methods are fast and computationally less expensive, their 

accuracy is low, since the selection process does not involve any classifiers. Filter methods can 

determine optimum features as a subset by using various measures, namely distance, information 

(or uncertainty), dependence, and consistency measures (Dash and Liu 1997). A brief explanation 

of these measures is provided as follows. 

1) Distance measure is also known as divergence or discrimination measurement. Generally, 

this type of measure is primarily utilized for two-class problems, although it can be 

expanded for multi-class problems as well. Various methods can be used for difference 

measurement, such as Euclidean and Manhattan. Relief method is one of the most well-

known techniques of this category. Relief feature scoring is based on the identification of 

distance between nearest neighbor instance pairs. 

2) Information measure usually computes the entropy or uncertainty of features based on class 

labels and thereby calculates information gain. As an example, in a feature problem, the 

feature M is more preferable than another feature N if the information gain of M is more 

than that of N. Information gain of a feature M is specified by the difference between the 
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prior uncertainty of feature M and the expected posterior uncertainty using that feature. 

Mutual information is a popular technique in this category that quantifies the amount of 

information achieved from a random feature, through the other random features. 

3) Dependence measure is also known as a correlation measurement for predicting the value 

of one factor based on that of another factor. By utilizing several classical dependence 

measures, the correlation between a feature and a class is obtained. If the correlation value 

between the feature M and class L is higher than feature N and class L, then feature M is 

more preferable than N. Chi-square feature ranking, which belongs to this category, 

measures the degree of association between two categorical features. 

4) Consistency measure relies on the training dataset and the use of min-features bias in 

selecting a subset of features. Min-feature bias identifies the minimally sized subset that 

satisfies the acceptable rate of inconsistency, which is set by the user (Dash and Liu 1997).  

Wrapper methods use the accuracy of a learning algorithm (e.g., classification algorithm) as a 

criterion for selecting features (Venkatesh and Anuradha 2019). Thus, wrapper methods are tuned 

to the specific interaction between a learning algorithm and its training data. Recently, wrapper 

methods have received a lot of attention because of their better generalization performance 

compared to filter methods (Mafarja and Mirjalili 2018; Monirul Kabir et al. 2010). A wrapper 

method starts with a given feature subset (which can be selected randomly) and evaluates each 

generated feature subset by applying a learning model to the dataset. If the performance of the 

generated feature subset improves, it is selected as a current best feature subset. However, wrapper 

method applications are limited by the high computational complexity when feature sets are wide 

and also a risk of overfitting (Monirul Kabir et al. 2010; Piao and Ryu 2017).  

Embedded methods simultaneously determine features and classifiers during the model training 

process. These methods have the merit of interacting with learning algorithms to perform feature 

selection during the model training. However, for high-dimensional data, embedded methods lead 

to computationally expensive calculations (Liu et al. 2019; Wei et al. 2020). 

In recent years, many feature selection algorithms have been proposed in order to overcome 

limitations of the standard methods (e.g., filter, wrapper, and embedded) in different datasets. HFS 

methods as a combination of filter and wrapper methods are exploited to achieve better accuracy 

than filter methods and reduce computation and complexity of wrapper methods (Nguyen et al. 
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2020). The general approach for hybrid methods is a feature selection method consisting of two 

stages. In the first stage, a filter method refines features (mostly a ranking technique selects the 

top-n features), and in the second stage a wrapper method finds the most discriminative subset 

from the top-n features (Ghosh et al. 2019). Different HFS methods have been proposed by 

researchers. Lee and Leu (2011) proposed a novel HFS method for feature selection in microarray 

data analysis by using a genetic algorithm (GA) with dynamic parameter setting (GADP) to 

generate a number of subsets of genes and rank the genes according to their occurrence frequencies 

in the gene subsets. They used the χ2 test as a feature ranking method to select a proper number of 

top-ranked features and concluded that the proposed GADP method selects fewer genes while 

giving higher prediction accuracy. Hsu et al. (2011) introduced another HFS method that used F-

score and information gain (IG) as filter methods to remove the most redundant or irrelevant 

features, and they applied support vector machine (SVM) as a wrapper method to those selected 

features for further data reduction. Kari et al. (2018) proposed a hybrid approach combined with a 

GA and SVM to improve fault diagnosis accuracy in power transformers. Fei and Min (2016) 

presented a novel optimization approach by using SVM to select a support vector subset and 

feature subset simultaneously based on GA to solve binary classification. Tao et al. (2019) 

proposed an approach of feature selection and parameter optimization of SVM using GA for 

hospitalization expense modeling, which includes binary data sets. Lu et al. (2017) introduced the 

combination of mutual information maximization and adaptive GA as a new HFS method. The 

experimental results of these HFS methods indicate that the proposed methods have the ability to 

reduce time complexity and improve classification accuracy. Therefore, HFS methods are capable 

of obtaining relevant features from large datasets with a high classification accuracy. 

Because numerous factors affect CLP and cause complexity in predicting and modeling labour 

productivity, HFS methods can help obtain relevant features from a complex CLP dataset and 

select an adequate data sample for subsequent CLP analysis. Previous studies mostly focus on 

using questionnaires and determining some statistical measures such as relative importance index 

(RII) and mean response (MR) to identify the most influential CLP and are reviewed in the 

following section. 
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2.2. CLP Measurement and Influencing Factors 

CLP is affected by numerous variables made up of various objective and subjective factors (e.g., 

crew size, complexity of task, and weather condition). Previous studies used questionnaire surveys 

to identify top factors influencing CLP (Agrawal and Halder 2020; Alaghbari et al. 2019; Durdyev 

et al. 2018; Irfan et al. 2020; Jarkas 2015; Montaser et al. 2018; Tsehayae and Fayek 2014). Table 

2.1 shows a brief description of several studies that have identified top factors influencing CLP 

using statistical analysis such as RII, MR, and frequency index.  

Table 2.1. Summary of previous research on CLP factors identification 

Source Methods Most influencing factors on CLP 

Hafez (2014) Using a questionnaire survey 

comprising 27 productivity factors, 

identified and ranked them using RII 

measure 

 

Top 7 factors influencing CLP: (1) payment 

delay, (2) skills of labour, (3) shortage of 

experienced labour, (4) lack of labour 

supervision, (5) motivation of labour, (6) 

working overtime, (7) lack of leadership of 

construction managers 

 

Chigara and 

Moyo (2014) 

 

Using a questionnaire, which 

included 40 preselected CLP factors, 

which were ranked using RII and MR 

measures 

 

Top 5 factors influencing CLP: (1) materials 

unavailability, (2) late payment of salaries, (3) 

plant and equipment suitability/adequacy, (4) 

supervisory incompetence, (5) lack of 

manpower/skills 
 

Tsehayae and 

Fayek (2014) 

Investigating the influence of 169 

parameters on CLP using project 

management and trade surveys; 

positive and negative influences of 

CLP factors evaluated using 

statistical analysis to identify top CLP 

factors  

Top 5 factors influencing CLP: (1) adequate and 

quality work tools, (2) aging of Canada’s 

population, (3) job site orientation program for 

new craftsmen, (4) lack of protection from 

weather effect, (5) use of daily job assessment 

system 
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Jarkas (2015) 

 

Utilizing a structured questionnaire 

survey, which found 37 labour 

productivity factors, and using RII to 

identify the factors most influential 

on CLP 

 

Top 6 factors influencing CLP: (1) skills of 

labour, (2) design disciplines coordination, (3) 

lack of labour supervision, (4) design drawings 

errors and omissions, (5) delay in responding to 

requests for information, (6) rework 

 

Montaser et al. 

(2018) 

A total of 50 respondents consisting 

of owners, contractors, and 

consultants were asked to indicate the 

importance of CLP factors; top CLP 

factors selected using importance 

index and frequency index 

Top 5 factors influencing CLP: (1) lack of 

structure system and design cables, (2) absence 

of authority to discipline labour, (3) rework in 

drawing, (4) lack of communication between 

workers and engineers, (5) slow response of the 

consultant  

Alaghbari et al. 

(2019) 

 

Using a questionnaire comprising 52 

predefined factors and identifying the 

most influencing factors on CLP from 

the perspective of structural engineers 

by determining RII technique 

 

Top 5 factors influencing CLP: (1) experience 

and skills of labourers, (2) availability of 

materials in site, (3) leadership and efficiency in 

site management, (4) availability of materials in 

the market, (5) political and security situation 

 

Agrawal and 

Halder (2020) 

 

Using a structured questionnaire 

survey comprising 29 labour 

productivity factors; identified 

factors ranked using RII technique 

 

Top 7 factors influencing CLP: (1) labour 

personal problems, (2) improper managerial 

skills, (3) scheduling of work, (4) high or low 

temperature, (5) schedule compression, (6) 

labourer dissatisfaction, (7) shortage of materials 

  

 

Most previous studies used questionnaire surveys to identify the most influential CLP factors. 

However, the selected factors highly relied on expert knowledge, which can be very changeable 

from time to time. On the other hand, identification of the factors most influencing CLP without 

using questionnaires is a challenging process because of the limited historical data on CLP 

influential factors. Several studies in labour productivity used filter feature selection methods to 

identify top CLP factors. Tsehayae and Fayek (2016) used a correlation-based feature selection 

(CFS), which is a filter method, to find the key influencing CLP features. The CFS algorithm is 

appropriate because of its ability to deal with a high-dimensional feature space. However, wrapper 
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or HFS methods are more appropriate for predictive modeling that uses AI techniques, such as 

FISs, ANNs, and SVMs, because of their superior performance based on learning algorithms (Piao 

and Ryu 2017). Several studies showed that the use of wrapper or HFS method in the application, 

where the predictive model is developed, shows better results for accuracy (Ahmad and Pedrycz 

2012; Gerami Seresht et al. 2020). 

2.3. Modeling CLP 

Modeling CLP is challenging because the impact of numerous factors must be considered 

simultaneously. A series of modeling techniques, such as regression models, system dynamics, 

and ANN, have been introduced to map the relationship between CLP and factors influencing it 

(El-Gohary et al. 2017). Regression is one of the most common modeling techniques for CLP 

(Song and Abourizk 2008). Thomas and Sudhakumar (2014) developed several linear regression 

models to determine the effect of 11 factors influencing masonry labour productivity. 

Parthasarathy et al. (2018) developed 15 different models using multiple linear regression analysis 

to model manpower and equipment productivity in tall residential building projects. Hai and Tam 

(2020) presented a multiple linear regression model as a statistical method for output prediction, 

to evaluate the impact of 10 factor groups on CLP. However, regression models have a number of 

limitations, such as lack of capacity to deal with large number of inputs and intolerance to noisy 

data (Lu 2000; Tsehayae 2015). Also, multiple linear regression analysis needs each input factor 

to contain a linear relationship with CLP. Since CLP factors are often related to each other, the 

multiple linear regression analysis does not cover the requirements for CLP modeling. 

To deal with the aforementioned challenges, AI techniques such as FISs, ANNs, decision tree 

classifiers, and SVMs are widely used in the construction management domain (Cheng et al. 2021). 

Golnaraghi et al. (2020) developed a prediction model for CLP by using ANN and compared them 

with other techniques including ANFIS and radial basis function neural network. The results 

showed the superior performance of radial basis function neural network compared to other 

models. El-Gohary et al. (2017) introduced the engineering approach using ANN techniques to 

map the relationship between CLP and its influential factors. Nasirzadeh et al. (2020) developed 

ANN-based prediction intervals to predict CLP using historical data. Their model provided various 

sources of uncertainty affecting prediction. Momade et al. (2020) proposed a data-driven approach 
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using SVM and RF to model and predict CLP. Their results showed the SVM model achieved 

higher rate of accuracy compared to RF.  

However, in recent years, the hybrid systems based machine learning, optimization algorithm and 

simulation techniques have been applied in several construction problems due to their superiority 

over sole AI techniques (Cheng et al. 2020; Zhang et al. 2020). Gerami Seresht and Fayek (2018), 

developed the fuzzy system dynamics technique by integrating system dynamics and fuzzy logic 

to model multifactor productivity of equipment-intensive activities. Furthermore, Tsehayae and 

Fayek (2016), demonstrated the application of a data-driven fuzzy clustering in the development 

of FIS. Then, they used a GA-based optimization process to address the FIS limitation which is 

the inability to learn from data. Khanzadi et al. (2017) developed a hybrid simulation model by 

combining system dynamics and agent-based modeling to predict labour productivity by 

considering various influencing factors in a concreting project. Raoufi and Fayek (2018) proposed 

the integration of fuzzy logic and agent-based modeling to predict the performance of construction 

crews according to crew motivational and situational input variables. Gerami Seresht et al. (2020) 

introduced a new fuzzy clustering algorithm by using Gustafson-Kessel’s algorithm and Adam 

optimization method to determines the number of clusters automatically and assigns weights to 

the FIS rules to improve accuracy. Then, the proposed algorithm was used to predict CLP for 

concrete placing activities and the results showed the new approach improves the accuracy and 

efficiency compared to the past research.  

Although the aforementioned papers developed the hybrid methods to model and predict 

construction productivity, very few studies applied HFS methods, as the combination of filter and 

wrapper feature selection methods, to construction productivity prediction to reduce 

dimensionality and to find the most predictive factors. Ebrahimi et al. (2020), proposed the 

integration of ANN and GA as a wrapper method for feature selection and predicting CLP. The 

results showed an improvement in accuracy compared to previous works using filter methods. 

Recently, Cheng et al. (2021) introduced the hybrid model including least square SVM, symbiotic 

organisms search, and wrapper-based feature selection methods to predict construction 

productivity. This thesis presents an HFS method to identify the most predictive CLP factors to 

utilize them as inputs of the developed CLP predictive models.  
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Despite wide application of the predictive model of CLP for project planning and control, a 

predictive model in its sole application cannot offer construction companies the optimum value of 

influencing factors for improving CLP. In the construction domain, most optimization studies were 

found in the context of optimizing time-cost trade-off models. Lin and Lai (2020) introduced an 

optimized time-cost trade-off model that considers variable productivity related to working 

environment and management. They applied GA to identify optimal and near-optimal labour 

productivity. Dehghan et al. (2015) presented an overlapping optimization algorithm based on GA 

principles to develop a practical approach to determining optimal overlapping activities in 

construction projects. Very few studies focus on finding the optimal CLP in construction projects. 

Kisi et al. (2017) introduced a two-prong strategy for estimating optimal productivity in labour-

intensive construction operations. The first prong estimates the upper limit of optimal productivity 

by using a qualitative factor model. The second prong estimates the lower limit of the productivity 

by removing operational inefficiencies from actual value of productivity by using a discrete-event 

simulation. However, hybrid optimization, which simultaneously predicts and optimizes CLP 

while considering its influential factors, has not been explored in the area of labour productivity 

optimization. Therefore, this thesis develops a hybrid evolutionary optimization technique by 

integrating HFS, a predictive model, and an evolutionary optimization technique to optimize CLP 

and its influential factors as a novel method to find the maximum value of CLP while considering 

minimum changes to CLP key factors. 

2.4. Summary 

This chapter provides a literature review on the feature selection methods, factors influencing CLP, 

and different techniques of modeling CLP in previous studies and identifies the research gaps in 

these topics. The existing gaps in the CLP literature include: (1) lack of research on identification 

of the most influential CLP factors using HFS methods as an important preprocessing procedure 

for data mining, and (2) lack of research on developing a hybrid CLP model for prediction and 

optimization using its most influential factors. There are many studies on the identification of 

factors most influencing CLP. However, most previous studies highly relied on expert knowledge 

and statistical analysis without any learning algorithm, which can be a limitation for developing a 

CLP predictive model using AI techniques. There are also very few studies that use HFS methods 

to identify the factors most influencing CLP. Furthermore, CLP prediction and optimization are 

still challenging because of the limited CLP data availability to study, the complex variability of 
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construction productivity, and the modeling requirement of simultaneously considering the 

complex effect of multiple variables. The next chapter presents the methodology for identifying 

the factors that most influence CLP. 

  



20 

 

2.5. References 

Agrawal, A., and Halder, S. (2020). “Identifying factors affecting construction labour productivity 

in India and measures to improve productivity.” Asian Journal of Civil Engineering, 21(4), 

569–579. 

Ahmad, S. S. S., and Pedrycz, W. (2012). “Data and feature reduction in fuzzy modeling through 

particle swarm optimization.” Applied Computational Intelligence and Soft Computing, 

2012(Article ID 347157), 1–21. 

Alaghbari, W., Al-Sakkaf, A. A., and Sultan, B. (2019). “Factors affecting construction labour 

productivity in Yemen.” International Journal of Construction Management, 19(1), 79–91. 

Atallah, D. M., Badawy, M., El-Sayed, A., and Ghoneim, M. A. (2019). “Predicting kidney 

transplantation outcome based on hybrid feature selection and KNN classifier.” Multimedia 

Tools and Applications, 78(14), 20383–20407. 

Bai, S., Li, M., Kong, R., Han, S., Li, H., and Qin, L. (2019). “Data mining approach to 

construction productivity prediction for cutter suction dredgers.” Automation in Construction, 

105, 102833. 

Cheng, M.-Y., Cao, M.-T., and Jaya Mendrofa, A. Y. (2020). “Dynamic feature selection for 

accurately predicting construction productivity using symbiotic organisms search-optimized 

least square support vector machine.” Journal of Building Engineering, 101973. 

Cheng, M. Y., Cao, M. T., and Jaya Mendrofa, A. Y. (2021). “Dynamic feature selection for 

accurately predicting construction productivity using symbiotic organisms search-optimized 

least square support vector machine.” Journal of Building Engineering, 35, 101973. 

Chigara, B., and Moyo, T. (2014). “Factors affecting labour productivity on building projects in 

Zimbabwe.” International Journal of Architecture, Engineering and Construction, 3(1), 57–

65. 

Dash, M., and Liu, H. (1997). “Feature selection for classification.” Intelligent Data Analysis, 1(3), 

131–156. 

Dehghan, R., Hazini, K., and Ruwanpura, J. (2015). “Optimization of overlapping activities in the 

design phase of construction projects.” Automation in Construction, 59, 81–95. 



21 

 

Durdyev, S., Ismail, S., and Kandymov, N. (2018). “Structural equation model of the factors 

affecting construction labour productivity.” Journal of Construction Engineering and 

Management, 144(4), 04018007. 

Ebrahimi, S., Raoufi, M., and Fayek, A. R. (2020). “Framework for integrating an artificial neural 

network and a genetic algorithm to develop a predictive model for construction labour 

productivity.” Construction Research Congress 2020, American Society of Civil Engineers, 

Reston, VA, 58–66. 

El-Gohary, K. M., Aziz, R. F., and Abdel-Khalek, H. A. (2017). “Engineering approach using 

ANN to improve and predict construction labour productivity under different influences.” 

Journal of Construction Engineering and Management, 143(8), 04017045. 

Fei, Y., and Min, H. (2016). “Simultaneous feature with support vector selection and parameters 

optimization using GA-based SVM solve the binary classification.” 2016 1st IEEE 

International Conference on Computer Communication and the Internet, ICCCI 2016, 426–

433. 

Gerami Seresht, N., and Fayek, A. R. (2018). “Dynamic modeling of multifactor construction 

productivity for equipment-intensive activities.” Journal of Construction Engineering and 

Management (ASCE), 144(9), 04018091. 

Gerami Seresht, N., Lourenzutti, R., and Fayek, A. R. (2020). “A fuzzy clustering algorithm for 

developing predictive models in construction applications.” Applied Soft Computing, 96, 

106679. 

Ghosh, M., Guha, R., Sarkar, R., and Abraham, A. (2019). “A wrapper-filter feature selection 

technique based on ant colony optimization.” Neural Computing and Applications, 32, 7839–

7857. 

Golnaraghi, S., Moselhi, O., Alkass, S., and Zangenehmadar, Z. (2020). “Predicting construction 

labour productivity using lower upper decomposition radial base function neural network.” 

Engineering Reports, 2(2), 1–16. 

Hafez, S. M. (2014). “Critical factors affecting construction labour productivity in Egypt.” 

American Journal of Civil Engineering, 2(2), 35. 



22 

 

Hai, D. T., and Van Tam, N. (2020). “Application of the regression model for evaluating factors 

affecting construction workers’ labour productivity in Vietnam.” The Open Construction and 

Building Technology Journal, 13(1), 353–362. 

Hall, M. A. (1999). Correlation-based feature selection for machine learning (Doctoral 

dissertation). University of Waikato, Hamilton, New Zealand. 

Hsu, H. H., Hsieh, C. W., and Lu, M. Da. (2011). “Hybrid feature selection by combining filters 

and wrappers.” Expert Systems with Applications, 38(7), 8144–8150. 

Irfan, M., Zahoor, H., Abbas, M., and Ali, Y. (2020). “Determinants of labour productivity for 

building projects in Pakistan.” Journal of Construction Engineering, Management & 

Innovation, 3(2), 85–100. 

Jarkas, A. M. (2015). “Factors influencing labour productivity in Bahrain’s construction industry.” 

International Journal of Construction Management, 15(1), 94–108. 

Kari, T., Gao, W., Zhao, D., Abiderexiti, K., Mo, W., Wang, Y., and Luan, L. (2018). “Hybrid 

feature selection approach for power transformer fault diagnosis based on support vector 

machine and genetic algorithm.” IET Generation, Transmission and Distribution, 12(21), 

5672–5680. 

Khanzadi, M., Nasirzadeh, F., Mir, M., and Nojedehi, P. (2017). “Prediction and improvement of 

labour productivity using hybrid system dynamics and agent-based modeling approach.” 

Construction Innovation, 18(1), 2–19. 

Kisi, K. P., Mani, N., Rojas, E. M., and Foster, E. T. (2017). “Optimal productivity in labour-

intensive construction operations: Pilot study.” Journal of Construction Engineering and 

Management, 143(3), 04016107. 

Lee, C. P., and Leu, Y. (2011). “A novel hybrid feature selection method for microarray data 

analysis.” Applied Soft Computing, 11(1), 208–213. 

Lee, J., Park, Y. J., Choi, C. H., and Han, C. H. (2017). “BIM-assisted labour productivity 

measurement method for structural formwork.” Automation in Construction, 84, 121–132. 

Lin, C. L., and Lai, Y. C. (2020). “An improved time-cost trade-off model with optimal labour 



23 

 

productivity.” Journal of Civil Engineering and Management, 26(2), 113–130. 

Liu, H., Zhou, M., and Liu, Q. (2019). “An embedded feature selection method for imbalanced 

data classification.” IEEE/CAA Journal of Automatica Sinica, 6(3), 703–715. 

Lu, H., Chen, J., Yan, K., Jin, Q., Xue, Y., and Gao, Z. (2017). “A hybrid feature selection 

algorithm for gene expression data classification.” Neurocomputing, 256, 56–62. 

Lu, M. (2000). Productivity studies using advanced ANN models (Doctoral dissertation). Retrieved 

from ProQuest Dissertations and Theses (204). 

Mafarja, M., and Mirjalili, S. (2018). “Whale optimization approaches for wrapper feature 

selection.” Applied Soft Computing, 62, 441–453. 

Momade, M. H., Shahid, S., Hainin, M. R. bin, Nashwan, M. S., and Tahir Umar, A. (2020). 

“Modelling labour productivity using SVM and RF: a comparative study on classifiers 

performance.” International Journal of Construction Management, 0(0), 1–11. 

Monirul Kabir, M., Monirul Islam, M., and Murase, K. (2010). “A new wrapper feature selection 

approach using neural network.” Neurocomputing, 73(16–18), 3273–3283. 

Montaser, N. M., Mahdi, I. M., Mahdi, H. A., and Rashid, I. A. (2018). “Factors affecting 

construction labour productivity for construction of pre-stressed concrete bridges.” 

International Journal of Construction Engineering and Management, 7(6), 193–206. 

Nasirzadeh, F., Kabir, H. M. D., Akbari, M., Khosravi, A., Nahavandi, S., and Carmichael, D. G. 

(2020). “ANN-based prediction intervals to forecast labour productivity.” Engineering, 

Construction and Architectural Management, 27(9), 2335–2351. 

Nguyen, B. H., Xue, B., and Zhang, M. (2020). “A survey on swarm intelligence approaches to 

feature selection in data mining.” Swarm and Evolutionary Computation, 54(October 2019), 

100663. 

Parthasarathy, M. K., Murugasan, R., and Vasan, R. (2018). “Modelling manpower and equipment 

productivity in tall residential building projects in developing countries.” Journal of the South 

African Institution of Civil Engineering, 60(2), 23–33. 

Piao, Y., and Ryu, K. H. (2017). “A hybrid feature selection method based on symmetrical 



24 

 

uncertainty and support vector machine for high–dimensional data classification.” 

Proceedings Asian Conference on Intelligent Information and Database Systems, 721–727. 

Cham, Switzerland: Springer. 

Raoufi, M., and Fayek, A.R. (2018). “Fuzzy agent-based modeling of construction crew 

motivation and performance.” Journal of Computing in Civil Engineering, 32(5), 04018035. 

Song, L., and Abourizk, S. M. (2008). “Measuring and modeling labour productivity using 

historical data.” Journal of Construction Engineering and Management, 134(10), 786–794. 

Tao, Z., Huiling, L., Wenwen, W., and Xia, Y. (2019). “GA-SVM based feature selection and 

parameter optimization in hospitalization expense modeling.” Applied Soft Computing, 75, 

323–332. 

Thomas, A. V., and Sudhakumar, J. (2014). “Modelling masonry labour productivity using 

multiple regression.” Proceedings 30th Annual Association of Researchers in Construction 

Management Conference, ARCOM 2014, 1345–1354. 

Tsehayae, A. (2015). Developing and optimizing context-specific and universal construction 

labour productivity models (Doctoral dissertation). University of Alberta, Edmonton, 

Alberta. 

Tsehayae, A. A., and Fayek, A. R. (2014). “Identification and comparative analysis of key 

parameters influencing construction labour productivity in building and industrial projects.” 

Canadian Journal of Civil Engineering, 41(10), 878–891. 

Tsehayae, A. A., and Fayek, A. R. (2016). “Developing and optimizing context-specific fuzzy 

inference system-based construction labour productivity models.” Journal of Construction 

Engineering and Management, 142(7), 04016017. 

Venkatesh, B., and Anuradha, J. (2019). “A hybrid feature selection approach for handling a high-

dimensional data.” Proceedings of the 6th International Innovations in Computer Science and 

Engineering Conference, edited by Saini H., Sayal R., Govardhan A., and Buyya R., pages 

365–373. Innovations in Computer Science and Engineering. Lecture Notes in Networks and 

Systems, volume 74. Springer: Singapore. 

Wei, G., Zhao, J., Feng, Y., He, A., and Yu, J. (2020). “A novel hybrid feature selection method 



25 

 

based on dynamic feature importance.” Applied Soft Computing, 93, 106337. 

Zhang, J., Li, D., and Wang, Y. (2020). “Predicting uniaxial compressive strength of oil palm shell 

concrete using a hybrid artificial intelligence model.” Journal of Building Engineering, 30, 

101282. 

 

  



26 

 

Chapter 3. Development of the hybrid model for CLP prediction and 

optimization1, 2 

3.1. Introduction 

The accurate prediction of CLP is vital since it helps construction managers avoid cost overrun 

and falling behind schedule (Grau et al. 2009). Accordingly, several AI techniques have been 

successfully applied to modeling and predicting construction productivity, which is discussed in 

the literature review section. CLP is affected by numerous factors that reduce the accuracy of the 

predictive model and impose the risk of data overfitting (Ebrahimi et al. 2020). Feature selection 

is one of the important preprocessing procedures for data mining. Therefore, it is necessary to 

apply effective feature selection methods that are able to select key features affecting CLP and 

reject the nonessential features in order to achieve high prediction accuracy and reduce model 

complexity (Atallah et al. 2019; Topuz et al. 2018). HFS methods are a combination of filter and 

wrapper methods and therefore reduce deficiencies of both methods (Venkatesh and Anuradha  

2019; Piao and Ryu 2017). Although comprehensive studies have identified CLP factors, few 

works have focused on applying different feature selection methods to CLP factors to reduce the 

risk of overfitting. In other words, a research gap exists regarding development of HFS methods 

as an essential data cleaning process prior to CLP modeling. 

Despite wide application of predictive CLP models for project planning and control, a predictive 

model as a sole application cannot offer construction companies the optimum value of influencing 

factors for improving CLP (Cheng et al. 2021). Concretely, no study has presented a hybrid model 

for finding the maximum value of CLP and optimum value of each influential factor using 

optimization techniques. Although, there are many studies in CLP prediction, their main limitation 

is the lack of capacity to optimize CLP and its most predictive factors with respect to a construction 

company’s preferences, such as a targeted CLP. 

                                                 
1
  Parts of this chapter have been accepted for publication: Ebrahimi, S., Fayek, A. R., and Sumati, V. (2021). 

“Hybrid artificial intelligence HFS-RF-PSO model for construction labor productivity prediction and optimization.” 

Algorithms 14(7), 214. 

 
2 Parts of this chapter have been submitted for publication Ebrahimi, S.; Kazerooni, M.; Sumati, V.; Fayek, A. R. 

(n.d.). “A predictive model for construction labour productivity using the integration of hybrid feature selection and 

PCA methods.” Canadian Journal of Civil Engineering, under review. 
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This thesis aims to fill the gap in the literature by developing a hybrid model that can identify the 

factors that most influence CLP as well as predict and optimize CLP and the factors influencing 

it. The proposed hybrid model will help project managers have more confidence in predicted CLP 

and be able to plan for improving each CLP factor. 

The major contribution of this thesis is developing a model for both predicting and optimizing 

CLP using a combination of feature selection, AI, and evolutionary optimization techniques. To 

achieve this goal, this thesis had the following objectives: (1) identify factors that are most 

predictive of CLP using a combination of filter and wrapper methods as an HFS method, (2) predict 

CLP by developing and comparing four different predictive models using the factors that most 

influence CLP, and (3) develop a novel hybrid evolutionary optimization model for finding the 

maximum CLP value and the optimum value of each selected factor. 

3.2. Model Development 

This section discusses the methodology of a hybrid model for CLP prediction, and optimization, 

which consists of five steps: (1) CLP dataset overview, (2) CLP data preparation, (3) HFS 

technique, (4) CLP predictive models development, and (5) CLP optimization. Figure 3.1 illustrates 

these five steps, which are further discussed in the following sub-sections.  

Predictive models

Hybrid feature selection 

Fitness Calculation

CLP data identification
CLP 

data preparation

Performance 

evaluation

Selected 

predictive 

model

Filter

Method

(ReliefF)

Wrapper 

method

(SVM-GA)
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optimization

Initializing 
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Figure 3.1. A general view of the proposed research methodology for CLP prediction and 

optimization 
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3.2.1. CLP dataset overview 

In this thesis, the proposed methodology was used to predict and optimize CLP of concrete placing 

activities, using the data collected by Tsehayae and Fayek (2016a) in a previous study. Data were 

collected in Alberta, Canada, in four construction project contexts, including residential and 

commercial warehouse buildings, residential and commercial high-rise buildings, industrial 

buildings, and institutional buildings. A literature review conducted by Tsehayae and Fayek (2014) 

initially identified 169 factors that influence CLP. They collected 112 factors influencing CLP for 

concrete placing activities over 92 days of data collection. Based on Tsehayae and Fayek (2014), 

Table 3.1 shows the category, project types, activities studied, description of the activities, and the 

number of data instances collected. In this study, CLP is defined as a ratio of output, which is 

installed quantity, to input, which is labour work hours; CLP has positive real values.  

Table 3.1. Studied activities for CLP modeling 

Trade 

category Project types Activity Activity description 

Data 

instances 

Concreting 

Commercial mixed-

use office-staff 

facility building, 

industrial warehouse 

building, commercial 

warehouse building, 

mixed residential-

community center 

building, high-rise 

mixed commercial-

residential building, 

institutional building 

Columns  Concrete placement for columns 21 

Footings Concrete placement for footings 5 

Grade 

beams 

Concrete placement for grade 

beams 
6 

Pile caps Concrete placement for pile caps 2 

Slabs Concrete placement for slabs 28 

Walls Concrete placement for walls 30 

 

In the existing data set, some CLP factors are objective, such as crew size, which has a numerical 

measure (in terms of number of workers), while other factors are subjective, such as complexity 

of task, which does not have a well-defined measurement. Subjective factors were measured using 

a predetermined rating scale of 1–5, according to Tsehayae and Fayek (2016b). CLP factors can 

be grouped into six levels: (1) activity, (2) project, (3) organizational, (4) provincial, (5) national, 

and (6) global. 
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3.2.2. CLP data preparation 

As real data may be incomplete and noisy, data preparation is an essential preprocessing step for 

data mining. Data preparation produces a data set smaller than the original one, which can improve 

the efficiency of data analysis and prediction. 

The CLP data preparation process consists of normalization, imputing missing values, removing 

factors with zero variance, and eliminating outliers. 

3.2.2.1. Normalization 

Mostly, CLP data have varying scales that lead to increased training time and biases in predictive 

models and affect convergence in prediction (Golnaraghi et al. 2020). Hence, the experimental 

data are normalized using Equation (3.1) in a process called “max–min normalization”, where 𝑥𝑖𝑗 

is the value of instance 𝑖 from factor 𝑗; 𝑥𝑗𝑚𝑖𝑛 and 𝑥𝑗𝑚𝑎𝑥 are the minimum and maximum values of 

factor 𝑗, respectively; and 𝑟𝑖𝑗 is the normalized value of instance 𝑖 from factor 𝑗. Max–min 

normalization guarantees that all features have the exact same scale. 

𝑟𝑖𝑗 =  
𝑥𝑖𝑗 −  𝑥𝑗𝑚𝑖𝑛

𝑥𝑗𝑚𝑎𝑥 −  𝑥𝑗𝑚𝑖𝑛
 (3.1) 

3.2.2.2. Impute missing values 

Data sets often have some missing values, due to human error or non-availability of real data. 

Imputation methods use ML algorithms to help estimate missing values. Based on Choudhury and 

Pal (2019), the neural network-based imputation method is able to train a data set containing 

incomplete samples and identify instances similar to instances with missing values. Based on the 

results of several studies (Choudhury and Pal 2019; Nelwamondo et al. 2013; Yuan et al. 2018), 

neural network imputation was applied in the present study in order to impute missing values of 

CLP. 

3.2.2.3. Remove factors with zero deviation 

Standard deviation is a measure of the variance of each factor in a data set. Removing factors with 

no variation in data instances is a pre-processing step for data sets (Xu et al. 2019). In this study, 

CLP factors with zero standard deviation were removed from the data set. 

3.2.2.4. Eliminate outliers 
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Detecting and eliminating outliers is another essential step in data preparation. Although outliers 

are part of a data set, they are significantly different from other observations. In this study, Tukey’s 

method, which utilizes the median, upper, and lower quartiles of a data set, was applied as an 

outlier detection method. Since quartiles are resistant to farthest data of the data set, Tukey’s 

method is less sensitive, compared to methods using mean and standard variance (Sandbhor and 

Chaphalkar 2019). 

3.2.3. HFS 

The developed HFS is a combination of the ReliefF algorithm as a filter method and the integration 

of SVM and GA as a wrapper method and is utilized to identify the factors that are most predictive 

of CLP. The structure of three algorithms, namely ReliefF, SVM, and GA, are briefly discussed in 

the following sections. 

3.2.3.1. ReliefF algorithm 

Relief is one of the widely used filter based feature selection methods that identifies the best subset 

of features by measuring features’ weights. This algorithm was proposed by Kira and Rendell 

(1992) which assigns weights to features based on the correlation between features and categories 

and also selects all features with greater weight than an artificial threshold. Notably, Relief 

algorithm is limited to binary classification problems. To address this problem, ReliefF algorithm 

was introduced by Kononeko (1994), which has the ability of working with multiclass problems. 

ReliefF is a distance based feature selector, which uses Manhattan distance to measure weights. 

The evaluation criteria of ReliefF algorithm is presented in Equation (3.2), where 𝑊(𝑓0,𝑖) acts for 

the weight of 𝑖th feature before updating; 𝑊(𝑓𝑖) is the updated weight of 𝑖th feature; A is the vector 

of features; 𝑘 is the number of nearest neighbors; ; 𝑚 is the number of cycles, 𝑓ℎ(𝑥𝑖) and 𝑓𝑟(𝐶) are 

the value of 𝑘 nearest neighbors of 𝑥𝑖 in the same and different class, respectively, 𝑃(𝐶) is the 

ratio of the target samples 𝐶 to the total sample; 𝑃(𝑐𝑙𝑎𝑠𝑠( 𝑥𝑖)) is the ratio of the samples in the 

same class including 𝑥𝑖 to the total samples; and 𝑑𝑖𝑓𝑓 () denotes the distance of two samples on 

each feature in 𝐴. 

𝑊(𝑓𝑖) = 𝑊(𝑓0,𝑖) −
∑ 𝑑𝑖𝑓𝑓(𝐴,  𝑥𝑖  , 𝑓ℎ( 𝑥𝑖))𝑘

𝑗=1

𝑚 × 𝑘
+  ∑

𝑃(𝐶)

1 − 𝑃(𝑐𝑙𝑎𝑠𝑠( 𝑥𝑖))
 ×  

∑ 𝑑𝑖𝑓𝑓(𝐴,  𝑥𝑖  , 𝑓𝑟(𝐶))𝑘
𝑗=1

𝑚 × 𝑘
𝐶≠𝑐𝑙𝑎𝑠𝑠( 𝑥𝑖)

 

(

(3.2) 

This study uses the Manhattan distance to measure distance between two samples, as it is shown 

in Equation (3.3). 
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𝑑𝑖𝑓𝑓(𝐴, 𝑅1, 𝑅2) =
|𝑅1 − 𝑅2|

𝐴𝑚𝑎𝑥 − 𝐴𝑚𝑖𝑛
 

(3.3) 

In this study, ReliefF selected the most correlated CLP factors as its output. The factors selected 

by ReliefF were then applied as inputs to the combination of SVM and GA. 

3.2.3.2. Support vector machine 

SVMs can solve linear and non-linear problems and can provide power classification results 

(Mathur and Foody 2008). The most important advantage of SVM is that it can control the over 

learning and high dimensionality and decrease computational complexity and local extremum (Tao 

et al. 2019). For non-linear problems, by using mapping function, the data typically convert to a 

higher-dimensional dataset, which changes the problem to a linear and separable problem. By 

introducing Kernel function, the solving process of this kind of problems is facilitated. There are 

various types of kernel function namely, linear, polynomial and sigmoid functions. However, 

radial basis function (RBF), which is presented in Equation (3.4), is the most popular kernel 

function because it requires only one parameter, 𝛿, which is a free parameter with a significant 

effect on classification accuracy and has a lower complexity in comparison with other functions. 

Another essential parameter in SVM problems is C, which is the penalty factor and shows the cost 

of misclassification. According to the significance of C and 𝛿 on the result of SVM, they needed 

to be optimized for obtaining the desired accuracy, which can be done by using GA optimization. 

𝐾(𝑥, 𝑦) =
exp(−|𝑥−𝑦|2)

𝛿2   (3.4) 

3.2.3.3. Genetic Algorithm (GA) 

GA is an adaptive heuristic search algorithm, which is looking for optimal solution as a goal. GA 

operates with population, and it is inspired by the mechanism of natural selection and natural 

genetics. GA uses a fitness function to estimate the significance of the result in the evaluation step. 

Two GA operators, mutation and crossover functions, randomly transfer chromosomes and affect 

the fitness value. Crossover, specifies two chromosomes those will generate a new offspring 

chromosome. However, mutation is the process used to change genes in chromosomes from their 

initial state. Chromosomes will go through a mutation operation after the crossover process and a 

new offspring is generated (Bean 1994). Elitism as another GA process, copying a small part of 
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the fittest candidates to the next generation. This study selects four best chromosomes to be part 

of the next generation and a single-point crossover and binary mutation were used. 

The GA minimizes the value of the fitness function, which is shown as FF and calculated for each 

chromosome by using Equation (3.5). 𝑆𝑉𝑀_𝑅𝑀𝑆𝐸 is the root mean square error (RMSE) of SVM 

model, w is a weight of the specified number of factors (𝑛𝑓),  𝑠𝑖 is ‘1’ if the factor 𝑖 is selected or 

‘0’ if the factor 𝑖 is not selected, and 𝑐𝑖 is the cost of factor 𝑖. 

𝐹𝐹 = 𝑆𝑉𝑀_𝑅𝑀𝑆𝐸 × (1 + 𝑤 × (∑ 𝑐𝑖 × 𝑠𝑖))
𝑛𝑓

𝑖=1
  (3.5) 

3.2.3.4. HFS process 

An overview of the presented HFS method is shown in Figure 3.2, which presents the process of 

integrating ReliefF as a filter method, and GA and SVM as the wrapper method.  
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Figure 3.2. The overview of HFS method 

 

As shown in Figure 3.2, the detailed explanation of the steps for developing the HFS method are 

as follows.  

Step 1 – The ReliefF algorithm evaluates the weight of each feature according to the 

correlations between features and ranks them in terms of their weights. After the ReliefF 

process is complete, feature weights (𝑤𝑟) are normalized from 0 to 1 to make the wrapper 

process more effective; by using a defined threshold (τ) in the range 0–1, any features with a 

weight 𝑤𝑟 ≥ τ are selected. Note that not all features with a weight greater than the threshold 

(τ) will necessarily be relevant, because it is possible for some irrelevant features to have an 

acceptable weight (Urbanowicz et al. 2018).  

Step 2 – GA generates the random initial population of chromosomes. Each chromosome in 

the population represents an available solution to the feature subset selection problem.  

Step 3 –Selected features that have weights greater than the threshold are the input of the SVM 

classifier.  

Step 4 – The training set and testing set are built from the selected feature dataset. Then, using 

the training set, the process of training the SVM begins, while the testing set is utilized to 

calculate the SVM error. 

Step 5 – The fitness function calculation process is completed using the calculated RMSE for 

SVM classification according to Equation (3.5). 

Step 6 – If termination criteria are satisfied, the process ends; otherwise, the process goes to 

the next generation by GA. 

Step 7 – GA searches for better solutions by using crossover, mutation, and elitism. In this 

study, single-point crossover and binary mutation were performed. Also, per the elitism 

process the four best chromosomes are selected to be part of the population in the next 

generation.  

Once the final generation meets termination criteria, the iteration stops, and the selected feature 

subset is the one that has the best predictor of CLP among all feature subsets. The termination 
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criteria are: either the generation number reaches a determined value, or the fitness value does not 

improve during a specified number of generations. 

3.2.3. CLP predictive modeling 

According to the literature review on past CLP modeling techniques, ANN and ANFIS have been 

found to perform well and thus were chosen for this study. ANN is a suitable model for complex 

relationships between CLP and the factors that influence it, as these relationships cannot be 

obtained in a precise manner (El-Gohary et al. 2017; Song and AbouRizk 2008). ANFIS models 

have been widely used in past CLP studies because of their superiority in being less reliant on 

expert knowledge and having a systematic data-driven process (Sarihi et al. 2021). In order to 

optimize ANFIS parameters, the integration of ANFIS and GA was also developed. Another 

algorithm that shows accurate performance in a number of studies in other disciplines is RF, which 

was developed and compared with the other techniques in this study. Results from past studies 

show that RF is highly capable of solving non-linear classification problems compared to other 

ML models (Momade et al. 2020). As most crucial factors related to CLP do not follow a normal 

distribution, RF is a common ML technique in modeling construction productivity (Liu et al. 

2018). The following sections discuss the structure and components of these four widely used ML 

modeling techniques and developed in this study. 

3.2.3.1. Artificial neural network (ANN) 

In the past few decades, ANN has become popular and helpful model for classification, clustering, 

pattern recognition, and prediction in many disciplines (Taheri et al. 2017). The potential of ANNs 

is the high-speed processing provided in a massive parallel implementation. ANNs have the ability 

to learn from experience to enhance their performance and adapt themselves to changes in the 

environment. ANNs are able to deal with noisy or incomplete data and can be very effective, 

mostly in problems where the relationships between inputs and outputs are not sufficiently known 

(Almási et al. 2016). So, based on their abilities ANNs can be ideal alternatives for modeling 

productivity. ANN consists of three layers: input layer, hidden layers, and output layer. Based on 

Boussabaine et al. (1996), ANNs mainly comprises the following components: (1) a set of neurons, 

(2) a connection pattern among the neurons, (3) each neuron’s state of activation, (4) the activation 

rules, (5) the propagation method, and (6) a learning method. In this study, a multi-layer 
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feedforward back-propagation network with one hidden layer is developed as an ANN model to 

predict CLP. 

3.2.3.2. Adaptive neuro fuzzy systems (ANFIS) 

ANFIS is a hybrid FIS that integrates the linguistic interpretability and fuzzy reasoning of FIS and 

learning capability of ANN in order to map inputs to an output (Siraj et al. 2016). In an ANFIS 

structure, fuzzy rules are extracted from ANN and the parameters of fuzzy membership functions 

are adaptively utilized during the hybrid learning process (Moayedi et al. 2020).  

3.2.3.3. ANFIS-GA 

The combination of ANFIS and GA, is presented to improve the performance of the ANFIS model 

and optimize its parameters. GA is utilized to find the optimum parameters of ANFIS. Figure 3.3 

shows the scheme of ANFIS-GA model. The population size, maximum iteration, mutation and 

crossover rate of the model has significant effect on the performance.  
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Figure 3.3. The ANFIS-GA structure 

 

3.2.3.4. Random forest 

RF could be considered an ensemble of classification and regression tree (CART), since multiple 

CART models are generated and used as base models (Liu et al. 2018; Momade et al. 2020). In 

this approach, the non-correlated trees (Tb) with low bias and variance are generated (Breiman 



36 

 

2001). Then, RF algorithm integrates all the regression trees using the bagging method (Schapire 

2003). By reducing the variance, bagging method is able to improve prediction accuracy. CART 

is an unstable learner as one change in learning data can change the first splitting parameter, and 

consequently, change the tree structure. By using a set of trees instead of a single tree for 

prediction, RF prevails the instability of CART. RF tries to improve the diversity of trees using 

training data and input variables randomization. In this approach firstly, RF generates several 

training dataset by sampling randomly from the original training dataset. After generating new 

training datasets and before trees splitting process, RF implements variable randomization to boost 

the diversity of trees. Variable set randomization generates a random variable for each new training 

dataset. As both training data and variable sets are generated randomly, the trees in RF different 

from each other and also independent (Wang et al. 2018). Then, RF combines all trees by averaging 

their predictions. This joint prediction process increases the accuracy and decreases the large errors 

(Grandvalet 2004). 

3.2.4. CLP optimization 

In the last step of the methodology, the PSO algorithm searches for the optimum values of CLP 

and the factors influencing it, using the predictive model proposed in the previous section. 

Swarm intelligence (SI) refers to a subset of artificial intelligence and it has been identified by 

Beni and Wang (1993) in the context of developing cellular robotic systems. There are several 

reasons responsible for the growing popularity of such SI-based algorithms, most importantly 

being the flexibility and versatility offered by these algorithms. Also, the self-learning capability 

and adaptability to external variations are the key features of these algorithms which has attracted 

immense interest and identified several application areas. PSO is one of the popular SI-based 

algorithms proposed by Kennedy and Eberhart (1995) for the first time. PSO is inspired by the 

behavior of flocks of birds, or swarm of insects in which individuals are called particles and the 

population is called a swarm. Although, PSO is simple to implement, it is able to find solutions 

with acceptable accuracy that makes it popular (Zheng et al. 2018; Sengupta et al. 2018). Each 

particle maintains three D-dimension vectors: position vector, velocity vector and personal best 

vector. Particles retain in their current position in position vector 𝑋𝑖 = (𝑥𝑖
1, 𝑥𝑖

2, … , 𝑥𝑖
𝐷), for 𝑖 = 1 

to N (N is the number of particles). Particles obtain their initial positions randomly in the search 

space. Velocity vector 𝑉𝑖 = (𝑣𝑖
1, 𝑣𝑖

2, … , 𝑣𝑖
𝐷) of 𝑖th particle is utilized to update its position and also 
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gets initial value randomly. The best position attained by 𝑖th particle is preserved in personal best 

vector is denoted as 𝑃𝑏𝑒𝑠𝑡𝑖 = (𝑃𝑏𝑒𝑠𝑡𝑖
1, 𝑃𝑏𝑒𝑠𝑡𝑖

2, … , 𝑃𝑏𝑒𝑠𝑡𝑖
𝐷). Therefore, the swarm best position 

is considered as 𝐺𝑏𝑒𝑠𝑡 = (𝐺𝑏𝑒𝑠𝑡1, 𝐺𝑏𝑒𝑠𝑡2, … , 𝐺𝑏𝑒𝑠𝑡𝐷). The movement of the particle is related 

to updating its velocity and position attributes in the 𝑡th iteration (𝑡 = 2, 3 . . .), based on Equation 

3.6 and Equation 3.7. 

𝑣𝑖
𝑑(𝑡 + 1) = 𝑤𝑉𝑖

𝑑(𝑡) +  𝑐1𝑟1 (𝑃𝑏𝑒𝑠𝑡𝑖
𝑑(𝑡) − 𝑥𝑖

𝑑(𝑡)) + 𝑐2𝑟2(𝐺𝑏𝑒𝑠𝑡𝑖
𝑑(𝑡) − 𝑥𝑖

𝑑(𝑡))  (3.6) 

𝑥𝑖
𝑑(𝑡 + 1) = 𝑥𝑖

𝑑(𝑡) + 𝑣𝑖
𝑑(𝑡 + 1) (3.7) 

where 𝑤 is the inertia weight, 𝑐1 is the cognitive acceleration coefficient, 𝑐2 is the social 

acceleration coefficient, and 𝑟1 and 𝑟2 are random values between 0 and 1. Figure 3.4 presents a 

flowchart of PSO algorithm. 
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Figure 3.4. Overview of PSO 

 

The objective of the optimization phase of this study contained the following goals: 

 Goal 1: Predicted CLP (𝐶𝐿𝑃𝑃𝑟𝑒𝑑) has minimum deviation from “targeted CLP” (𝐶𝐿𝑃𝑡𝑔𝑡), as 

shown in Equation (3.8), where 𝜔 is the relative importance of Goal 1 compared to Goal 2. 

Goal 1 = 𝜔 × (𝐶𝐿𝑃𝑡𝑔𝑡 − 𝐶𝐿𝑃𝑃𝑟𝑒𝑑)
2
 (3.8) 

 Goal 2: Predicted CLP factors (𝐹𝑃𝑟𝑒𝑑𝑖) have minimum deviation from “average value of 

factors” (𝐹𝐴𝑣𝑔𝑖) in the dataset, among all the possible combinations of improvement 

scenarios, as shown in Equation (3.9). 

Goal 2 = (1 − 𝜔) × ∑(

𝑛

𝑖=1

𝐹𝑃𝑟𝑒𝑑𝑖 − 𝐹𝐴𝑣𝑔𝑖)2 (3.9) 

In Goal 1, “targeted CLP” is the preferable CLP that a company tries to achieve. In this study, the 

value of CLP is between 0 and 1 after the normalization process, and greater CLP indicates better 

productivity in a project. Goal 1 tries to predict CLP considering the minimum distance from the 

targeted CLP. 

Goal 2 tries to minimize changes in factors that most influence CLP. Companies mostly prefer 

minimum changes and corrective measures to achieve the preferable CLP because of the cost of 

implementing new strategies and corrective measures. In Goal 2, the average value of each factor 

is achieved from the existing CLP dataset, which is discussed in section 4. Since obtaining a value 

near the average value of each factor in the dataset is feasible, the goal is to have minimum distance 

between the average and optimum values for each factor. Therefore, the objective function is 

defined as in Equation (3.10): 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 (𝑍 = 𝜔 × (𝐶𝐿𝑃𝑡𝑔𝑡 − 𝐶𝐿𝑃𝑃𝑟𝑒𝑑)
2

+ (1 − 𝜔) × ∑(

𝑛

𝑖=1

𝐹𝑃𝑟𝑒𝑑𝑖 − 𝐹𝐴𝑣𝑔𝑖)2) (3.10) 

where 𝐶𝐿𝑃𝑡𝑔𝑡  𝑎𝑛𝑑 𝐶𝐿𝑃𝑃𝑟𝑒𝑑 are the targeted CLP and predicted CLP, respectively, 𝑛 is the number 

of selected factors affecting CLP, 𝐹𝑃𝑟𝑒𝑑𝑖 is the predicted value of the 𝑖th CLP factor, 𝐹𝐴𝑣𝑔𝑖 is the 

average value of the 𝑖th CLP factor in the dataset, 𝜔 is the relative importance of Goal 1 compared 

to Goal 2, and Z is the minimum value of objective function. Objective function ranges from 0 to 
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1, where 0.5 means Goals 1 and 2 have equal importance. The outputs of this model will be 

𝐶𝐿𝑃𝑃𝑟𝑒𝑑, which is the optimized and predicted CLP value, and 𝐹𝑃𝑟𝑒𝑑𝑖, which is the predicted value 

of factors influencing CLP.  
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 Chapter 4. Experimental results and discussion3 

4.1. CLP Data Preparation and Feature Selection 

Based on the data preparation process, the CLP value was normalized using Equation (3.1). As a 

result of normalization, the CLP value is between 0 and 1, and greater CLP indicates better labour 

productivity for the project. After imputing missing values and removing factors with zero 

standard deviation, the number of factors was reduced to 108. By eliminating outliers from the 

CLP dataset, 7 data points were removed as outliers, and the total number of data points became 

85. Therefore, the CLP dataset after the preparation process had 85 data points, 108 CLP factors, 

and a CLP value. 

Next, the number of features was reduced by the proposed HFS method. For this study, the 

threshold of 0.25 was defined for ReliefF. All features with weights greater than or equal to 0.25 

were selected as essential features in the next HFS stage. From 108 factors in the final CLP dataset, 

ReliefF selected 43 as essential features. In the next stage of HFS, which is the integration of SVM 

and GA as a wrapper method, the GA parameter settings were a population size of 50, GA 

maximum iteration of 60, crossover rate of 0.83, and mutation rate of 0.2. SVM penalty factor C 

was 10, kernel type was RBF, and kernel cache was 200. These parameters were obtained by trial 

and error and are the optimum values for this case. The termination criteria were a maximum of 

60 generations or no improvement of performance over 5 generations. The proposed wrapper 

method was developed considering these parameters, and it selected 14 of the 43 factors identified 

by ReliefF. After running the model multiple times, the set of 14 factors was selected when the 

RMSE of the run of the model was lowest. Table 4.1 presents the selected CLP factors resulting 

from HFS. As shown in Table 4.1, the first 11 factors are all from the activity level, and the next 

3 factors belong to the project level, which shows the significant impact of activity-level factors 

on predicting CLP. From the selected factors, “Level of interruption and disruption,” “Complexity 

of task,” “Working condition (dust and fumes),” “Location of work scope (elevation),” and 

“Congestion of work area” are factors that negatively influence CLP. In other words, after 

normalization, when negatively influencing factors have values close to zero, they result in greater 

                                                 
3 Parts of this chapter have been accepted for publication: Ebrahimi, S., Fayek, A. R., and Sumati, V. (2021). 

“Hybrid artificial intelligence HFS-RF-PSO model for construction labour productivity prediction and 

optimization.” Algorithms, 14(7), 214. 
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CLP, compared to when their values are close to 1. The other selected factors are positively 

influencing factors, and when their values are close to 1, they result in greater CLP. 

Table 4.1. Input factors for CLP modeling 

Selected factor Scale of measure 

(1) Crew size Integer (Total number of crew 

members) 

(2) Crew composition Proportion (Ratio journeyman to 

apprentice to helper) 

(3) Treatment of craftsperson by 

foreman 

1–5 Predetermined rating 

(4) Craftsperson trust in foreman 1–5 Predetermined rating 

(5) Level of interruption and 

disruption 

Integer (Number of interruptions and 

disruptions per day) 

(6) Complexity of task 1–5 Predetermined rating 

(7) Working condition (dust and 

fumes) 

1–5 Predetermined rating 

(8) Location of work scope (elevation) Real number (elevation, m) 

(9) Congestion of work area Real number (ratio of actual peak 

manpower to actual average manpower) 

(10) Fairness in performance review of 

crew by foreman 

1–5 Predetermined rating 

(11) Ground conditions 1–5 Predetermined rating 

(12) Quality audits Real number (Number of inspections 

per month) 

(13) Risk monitoring and control 1–5 Predetermined rating 

(14) Crisis management 1–5 Predetermined rating 
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4.2. CLP Modeling Comparison and Results 

To develop the predictive CLP model, four different AI models were developed using the selected 

factors from HFS as input variables and CLP as the output. In order to avoid overfitting and 

manage the possible variations of input data, ten-fold cross validation is used for developing the 

classification models by partitioning the data into 10 random subsets (Huang et al. 2018). One 

subset is utilized to validate the model trained by the remaining subsets. This procedure is repeated 

10 times such that each subset is used once for validation, and finally, the subset with minimum 

error is selected. 

The accuracy of the four models was measured by comparing their predictions to the actual field 

data and calculating two commonly used error measures, mean absolute error (MAE) and RMSE, 

which are shown in Equation (4.1) and Equation (4.2), where 𝑡𝑖 and 𝑦𝑖 are the actual and predicted 

CLP values for the ith instance, respectively, and m is the number of instances. For this purpose, 

data were divided into training and testing datasets, in which 70% of data are used for training and 

30% for testing. 

𝑅𝑀𝑆𝐸 = √∑(𝑡𝑖 − 𝑦𝑖)2

𝑖

𝑚⁄  (4.1) 

𝑀𝐴𝐸 = (∑|𝑦𝑖 − 𝑡𝑖|

𝑖

) 𝑚⁄  (4.2) 

For development of the ANN model, using MATLAB NN Toolbox, a multilayer feedforward 

back-propagation network with two hidden layers was considered, and the hidden layer sizes were 

5 and 6. The learning rate was set to 0.33, and 200 training cycles were performed. The ANN 

model resulted in an RMSE of 0.164 and MAE of 0.130 for the training dataset, and an RMSE of 

0.165 and MAE of 0.135 for the testing dataset. 

The ANFIS model was generated using the ANFIS function of MATLAB Fuzzy Logic Toolbox. 

The basic learning rules for optimizing membership functions in ANFIS are either hybrid learning 

or back-propagation gradient descent. Hybrid learning combines the gradient descent and least 

square methods, and it overcomes the major limitation of the back-propagation method, which is 

that the learning process gets trapped in local minima. Therefore, this thesis used the hybrid 
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learning method. The training dataset was grouped using subtractive clustering with an influence 

range of 0.4, squash factor of 1.15, and accept and reject ratios set at 0.5 and 1.15, respectively. 

The selected CLP factors were used as input variables and CLP as the output of ANFIS. The 

ANFIS model resulted in an RMSE of 0.042 and MAE of 0.034 for the training dataset and an 

RMSE = 0.176 and MAE = 0.138 for the testing dataset. 

The ANFIS-GA model, developed using MATLAB, tries to optimize ANFIS parameters, and it 

showed better performance than ANFIS alone. In this study, the values of 0.2, 0.83, and 60 were 

assigned for the mutation rate, crossover percentage, and maximum iteration of GA, respectively. 

These parameters are obtained by trial and error and are the optimum values for this case. Different 

sizes were tested to find the appropriate population size and based on the results as shown in Table 

4.2 the ANFIS-GA model with a population size of 25 had the best testing performance, which 

included an MAE of 0.096 for the training dataset and MAE of 0.129 for the testing dataset. 

Therefore, a population size of 25 was used in this study. 

Table 4.2. Selecting the population size in ANFIS-GA modeling 

ANFIS-GA    

model no. 

Population 

size 

RMSE 

Training Testing 

1 12 0.159 0.185 

2 18 0.165 0.191 

3 25 0.162 0.172 

4 30 0.163 0.19 

 

The RF model was developed using Python language programming and required three parameters, 

namely the minimum number of terminal nodes for each tree, the number of trees, and the number 

of randomly selected variables to grow the trees (Wang et al. 2018). In this study, these three 

parameters were set to 5, 145, and 6, respectively. The results of the RF prediction model are listed 

in Table 4.3 along with results of the ANN, ANFIS, and ANFIS-GA models for comparison. 

The results presented in Table 4.3 indicate the RF model had the highest accuracy among the four 

predictive models, with an RMSE of 0.137 and MAE of 0.112 in the testing dataset. The second 



49 

 

most accurate algorithm was the ANN model, with a testing dataset RMSE of 0.165 and MAE of 

0.135. The third most accurate algorithm was the combination of ANFIS and GA, with an RMSE 

of 0.172 and MAE of 0.129 in the testing dataset. Finally, testing dataset RMSE of 0.176 and MAE 

of 0.138 indicate the ANFIS model was the least accurate. 

Table 4.3. Comparing the performance of the four developed models for 

predicting CLP 

Model Training Dataset Testing Dataset 

RMSE MAE RMSE MAE 

ANN 0.164 0.130 0.165 0.135 

ANFIS 0.042 0.034 0.176 0.138 

ANFIS-GA 0.162 0.096 0.172 0.129 

RF 0.074 0.051 0.137 0.112 

According to the RMSE value of 0.137 for the RF testing dataset, CLP predicted by RF was closer 

to the actual CLP values than for the other three developed models. In other words, RF was found 

to be better than ANN, ANFIS, and ANFIS-GA in mapping the relationship between the selected 

CLP factors and CLP. Moreover, the closeness of the RMSE values for the training and testing 

datasets indicate that ANN and RF were more stable than ANFIS and ANFIS-GA. Therefore, the 

RF model was selected to predict CLP in the optimization process for this study. Comparing the 

results of this study with past studies indicate that the RF predictive model has better performance. 

For example, Gerami Seresht et al. (Gerami Seresht et al. 2020) obtained an RMSE value of 0.22 

for their proposed CLP predictive model, while in this study using the same dataset, the RMSE 

value of the RF model was 0.137. Therefore, the proposed CLP predictive model achieved better 

performance accuracy in CLP prediction compared with Gerami Seresht et al. (2020). 

4.3. CLP Optimization 

Next, the integration of RF and PSO was developed to achieve the optimum value of the selected 

factors and maximum CLP value, according to the objective function in Equation (3.10). For this 

case study, the average value of each factor (𝐹𝐴𝑣𝑔𝑖) and CLP after normalization are shown in 

Table 4.4, and the average CLP value for the dataset is 0.259. 
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Table 4.4. Average values of selected factors and CLP of the dataset 

Selected factor and CLP Average value in 

normalized dataset 

(𝑭𝑨𝒗𝒈𝒊) 

(1) Crew size 0.302 

(2) Crew composition 0.289 

(3) Treatment of craftsperson by foreman 0.569 

(4) Craftsperson trust in foreman 0.518 

(5) Level of interruption and disruption 0.162 

(6) Complexity of task 0.500 

(7) Working condition (dust and fumes) 0.218 

(8) Location of work scope (elevation) 0.132 

(9) Congestion of work area 0.438 

(10) Fairness in performance review of crew 

by foreman 

0.694 

(11) Ground conditions 0.368 

(12) Quality audits 0.832 

(13) Risk monitoring and control 0.264 

(14) Crisis management 0.634 

CLP 0.259 

 

4.3.3. Sensitivity analysis 

For the purpose of illustrating a CLP improvement trend, a sensitivity analysis was carried out to 

show the influence of different values of input parameters (namely 𝜔 and 𝐶𝐿𝑃𝑡𝑔𝑡) on output 
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variables (𝐶𝐿𝑃𝑃𝑟𝑒𝑑 and Z) for understanding the impact of input parameters on model output. Table 

4.5 shows the results of the sensitivity analysis, which indicates the value of Z and predicted CLP 

as outputs based on different values of 𝜔 and 𝐶𝐿𝑃𝑡𝑔𝑡 as inputs of the RF-PSO model. The value 

of 𝜔 was changed between 0.27 and 1; 𝜔 =1 is the largest possible value for 𝜔 and indicates that 

Goal 2 has no impact on the model. The 𝐶𝐿𝑃𝑡𝑔𝑡 is in the range of 0.45 to 1, and 𝐶𝐿𝑃𝑡𝑔𝑡 = 1 is the 

largest possible value for CLP resulting from the normalization process. Figure 4.1 is based on the 

results in Table 4.5, which shows the value of 𝐶𝐿𝑃𝑃𝑟𝑒𝑑 for different values of 𝜔 and 𝐶𝐿𝑃𝑡𝑔𝑡. For 

a specific 𝐶𝐿𝑃𝑡𝑔𝑡, by increasing 𝜔, 𝐶𝐿𝑃𝑃𝑟𝑒𝑑 increases, which shows the model sensitivity to 𝜔, 

which is the relative importance of Goal 1. For 𝐶𝐿𝑃𝑡𝑔𝑡 = 0.45 and 𝐶𝐿𝑃𝑡𝑔𝑡 =0.6, the changes in 

𝐶𝐿𝑃𝑃𝑟𝑒𝑑 are much less given 𝜔 greater than 0.4. So, it can be concluded that when 𝐶𝐿𝑃𝑡𝑔𝑡 is less 

than or equal to 0.6, the most appropriate value of 𝜔 is less than or equal to 0.4. This means the 

minimum deviation of 𝐹𝑃𝑟𝑒𝑑𝑖 (predicted value of CLP factors) from 𝐹𝐴𝑣𝑔𝑖 (average value of CLP 

factors in the dataset) as a Goal 2 in Equation (10) has more weight compared to the minimum 

deviation of 𝐶𝐿𝑃𝑃𝑟𝑒𝑑 from 𝐶𝐿𝑃𝑡𝑔𝑡 as a Goal 1 in Equation (9). 

Table 4.5. The results of sensitivity analysis 

CLP(tgt)    
ω 0.27 0.4 0.5 0.6 0.73 1 

0.45 
Z 0.041 0.045 0.038 0.056 0.033 0.000 

CLP 0.374 0.43 0.441 0.439 0.448 0.449 

0.6 
Z 0.042 0.129 0.0496 0.078 0.055 0.000 

CLP 0.386 0.565 0.586 0.599 0.596 0.599 

0.75 
Z 0.057 0.049 0.079 0.124 0.116 0.001 

CLP 0.522 0.561 0.616 0.649 0.671 0.721 

0.9 
Z 0.071 0.19 0.184 0.186 0.157 0.032 

CLP 0.555 0.558 0.664 0.678 0.685 0.728 

1 
Z 0.152 0.146 0.205 0.189 0.162 0.054 

CLP 0.713 0.697 0.714 0.728 0.737 0.769 

 

For selecting the most appropriate weight and targeted CLP, a company’s preference is important. 

Most companies prefer minimum deviation from “average value of factors,” which is feasible to 

reach, helps them decrease the number of corrective measures that are required, and thus reduces 

the cost of implementing corrective measures. Based on this, Goal 2 needs to have more weight 
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compared to Goal 1, which leads to selecting a value of 𝜔 less than or equal to 0.5 as a weight of 

Goal 1. 

 

Figure 4.1. Predicted CLP from sensitivity analysis results 

 

4.3.4. Optimization results 

For this case study, the targeted CLP (𝐶𝐿𝑃𝑡𝑔𝑡) of 0.75 and 𝜔 of 0.27 were selected. Equation (4.3) 

indicates the objective function of the HFS-RF-PSO algorithm according to the selected factors. 

In the presented algorithm, settings were number of particles = 50, maximum number of iterations 

= 30, and maximum velocity = 2, and the value of learning factors 𝑐1 and 𝑐2 were both set to 2.05. 

The initial values of the parameters were established on the basis of the relevant literature (El-

Ghandour and Elbeltagi 2018). A large number of trials were performed to obtain the optimum 

values for this case. 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 (𝑍 = 0.27 × (0.75 − 𝐶𝐿𝑃𝑃𝑟𝑒𝑑)2 + 0.73

× ∑(

14

𝑖=1

𝐹𝑃𝑟𝑒𝑑𝑖 − 𝐹𝐴𝑣𝑔𝑖)2) 

(4.3) 
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Based on the selected inputs, the result of the RF-PSO model indicated 0.057 as a minimum value 

of Z, which is the minimum value of objective function (Equation (4.3)), and 0.522 was achieved 

as a maximum value of predicted CLP (𝐶𝐿𝑃𝑃𝑟𝑒𝑑). The optimum value of each factor is shown in 

Table 4.6. 

Table 4.6. Result of the RF-PSO algorithm for selected factors and CLP 

Selected factor and CLP Optimum value 

(𝑭𝑷𝒓𝒆𝒅𝒊) 

Deviation 

(𝑭𝑷𝒓𝒆𝒅𝒊 −
𝑭𝑨𝒗𝒈𝒊) 

(1) Crew size 0.326 0.024 

(2) Crew composition 0.364 0.075 

(3) Treatment of craftsperson by foreman 0.587 0.018 

(4) Craftsperson trust in foreman 0.535 0.017 

(5) Level of interruption and disruption 0.043 -0.119 

(6) Complexity of task 0.549 0.0490 

(7) Working condition (dust and fumes) 0.108 -0.110 

(8) Location of work scope (elevation) 0.176 0.044 

(9) Congestion of work area 0.452 0.014 

(10) Fairness in performance review of crew by foreman 0.808 0.114 

(11) Ground conditions 0.372 0.004 

(12) Quality audits 0.733 -0.099 

(13) Risk monitoring and control 0.271 0.007 

(14) Crisis management 0.629 -0.005 

CLP 0.522 0.263 

 

The optimum value of each factor was obtained from the RF-PSO model as the predicted values 

for CLP factors (𝐹𝑃𝑟𝑒𝑑𝑖) and the deviation of the optimum value from the average value for each 

factor. In other words, deviation from average value was achieved using Equation (4.4): 

𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 =  𝐹𝑃𝑟𝑒𝑑𝑖 − 𝐹𝐴𝑣𝑔𝑖 (4.4) 
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As shown in Table 4.6, the optimum value of the factors “Ground condition,” “Crisis 

management,” and “Risk monitoring and control” have the least deviation from the average value 

of selected factors from dataset (𝐹𝐴𝑣𝑔𝑖) with values of 0.004, -0.005, and 0.007, respectively. 

Therefore, these factors do not need major changes to achieve the optimum CLP value, which is 

0.522. It is notable in Table 4.6 that the optimum values of “Level of interruption and disruption,” 

“Working condition (dust and fumes),” and “Fairness in performance review of crew by foreman” 

have the largest deviation from the average value of the factors, which are -0.119, -0.110, and 

0.114, respectively. In other words, “Level of interruption and disruption” needs to be reduced to 

0.043, “Working condition (dust and fumes)” needs to be reduced to 0.108, and “Fairness in 

performance review of crew by foreman” needs to increase to 0.808 in order to obtain the optimum 

CLP value. Improving factors with high deviation helps companies reach optimum predicted CLP. 

In order to improve factors that have a high deviation from their average value, a number of 

improvement strategies and corrective measures can be implemented. For example, for reducing 

dust and fumes in working area, preventive maintenance for air-conditioning system can be 

conducted. 

The proposed HFS-RF-PSO model has the potential to benefit construction companies in 

achieving their preferred labour productivity by applying the minimum changes to factors 

influencing CLP. Another capability of the proposed model is that companies can define their 

targeted value for each factor influencing CLP instead of the average value of factors. The results 

of the model will give them the values of predicted CLP and predicted factors in regard to having 

the minimum deviation from their targeted values for CLP as well as each factor. This novel 

approach can help companies identify factors that need the most changes for achieving their 

targeted CLP and, consequently, to prioritize the management practices that focus on factors with 

the greatest deviation from average value in the HFS-RF-PSO model.  
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Chapter 5. Conclusions and Recommendations 

5.1. Introduction 

This chapter provides the research summary, academic contributions, and industrial contributions 

of this research. This chapter also discusses the limitations of the research and provides 

recommendations for future research and development. 

5.2. Research Summary 

This research aimed to fill the gaps in construction research on CLP prediction and optimization. 

An extensive review of past research in developing CLP predictive and optimization models 

revealed several gaps. The first gap is the fact that the construction literature on identifying factors 

most influential on CLP mostly relied on expert knowledge, which can be very changeable from 

time to time. Furthermore, the high-dimensional feature space of labour productivity often imposes 

a high computational cost as well as the risk of “overfitting” when classification is performed. 

Therefore, reducing the dimensionality of labour productivity data and finding the most 

influencing parameters for CLP is necessary, and this can be done by applying feature selection 

methods. The second gap is related to the fact that most past CLP modeling studies used filter 

methods for selecting the most influential factors (Bai et al. 2019; Gerami Seresht and Fayek 2018; 

Tsehayae and Fayek 2016). However, using wrapper or HFS is more appropriate for predictive 

modeling using AI techniques, because of their superior performance (Piao and Ryu 2017). The 

third gap is related to the lack of comparative analysis on developing CLP predictive models in 

order to identify the appropriate AI models that achieve an optimal prediction evaluation index. 

Despite the wide application of the predictive model of CLP for project planning and control, a 

predictive model in its sole application cannot offer construction companies the optimal 

combination of influencing factors for improving CLP. As a fourth gap in labour productivity 

modelling, no studies have considered a predictive model for finding the maximum value of CLP 

considering changes in the most influential factors by using optimization methods. 

To fill the mentioned research gaps, the objectives of this research were achieved in four stages, 

as discussed below. 
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5.2.1. The first stage: Literature review 

An extensive literature review was conducted on relevant topics as listed in Chapter 2. First, 

previous research on developing different feature selection methods, namely filter, wrapper, and 

HFS methods, were reviewed. Thereafter, previous research on identifying CLP factors was 

reviewed. Next, previous predictive modeling techniques for CLP prediction were reviewed. 

5.2.2. The second stage: Feature selection modeling 

The input parameters’ large feature space consisting of the factors influencing CLP had to be 

reduced to maintain interpretability and accuracy of CLP prediction. As discussed in Chapter 3, 

data preparation steps including normalization, imputing missing values, removing factors with 

zero deviation, and eliminating outliers were applied to improve the efficiency of data analysis and 

prediction. Max-min normalization was carried out to normalize the CLP dataset, and then neural 

network-based imputation method was applied to impute missing values. Tukey’s method was 

used to detect and eliminate outliers. Next, the integration of ReliefF algorithm as a filter method 

with SVM-GA as a wrapper method was presented as an HFS model for identifying the factors 

most influential on CLP.  

5.2.3. The third stage: CLP predictive modeling 

Different predictive models of CLP, namely ANN, ANFIS, ANFIS-GA, and RF, were developed 

to carry out a comparative analysis of CLP prediction. Based on the results as RMSE and MAE, 

CLP predicted by RF was closer to the actual CLP values than that for other three developed 

models. Therefore, the RF model was selected to predict CLP in the optimization process. As a 

validation process, the achieved RMSE value was compared with a previous study (Gerami Seresht 

et al. 2020) that developed a CLP predictive model using the same dataset. 

5.2.4. The fourth stage: CLP optimization 

As a last stage of the proposed methodology, the integration of RF and PSO was developed in 

Python® to achieve the maximum CLP value, considering the minimum deviation from a 

company’s targeted CLP value and finding the optimum value of the selected factors based on 

minimizing their deviation from their average value in the dataset. Then, a sensitivity analysis was 

carried out to illustrate a CLP improvement trend. 
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5.3. Research Contributions 

5.3.1. Academic contributions 

The academic contributions of this research are: 

 Development of an HFS model that contains the integration of ReliefF and SVM-GA for 

identifying the most predictive factors for CLP. The proposed HFS model is expected to 

enhance the accuracy of CLP prediction and identify the most predictive factors for CLP. 

 Development of four different predictive models for CLP using ANN, ANFIS, ANFIS-GA, 

and RF and identifying the most accurate model based on a comparative analysis. The 

comparative analysis of four predictive models showed the RF model obtained better 

accuracy compared with the three other models. 

 Development of a novel approach – the HFS-RF-PSO algorithm – for optimizing factors that 

influence CLP and identifying the maximum CLP value, considering the minimum deviation 

from targeted CLP value and finding the optimum value of the selected factors based on 

minimizing their deviation from their average value in the dataset. The proposed model can 

determine the maximum value of CLP and optimum value of each influential factor using 

optimization techniques.  

5.3.2. Industrial Contributions 

The industrial contributions of this research are:  

 Identification of the most value-adding CLP factors, which helps construction planners 

identify strategies for improving the most value-adding factors. This finding provides 

construction practitioners with information about the factors that have the highest level of 

influence on predicting CLP. 

 Prediction of labour productivity for use in construction project cost estimation and 

scheduling. The developed model can be used to provide reliable prediction of CLP values 

for concrete-placing activities. 

 Development of a hybrid HFS-RF-PSO model for optimizing CLP and its factors, by 

considering a company’s targeted CLP value, which helps project managers predict, 

optimize, and improve the CLP value by taking into account factors that are most predictive 

of CLP. Furthermore, the model will be effective for construction planners to carry out 

productivity improvement studies and analyze different scenarios. This approach can help 
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companies identify factors that need the most changes for achieving their targeted CLP 

and, consequently, to prioritize management practices that focus on factors with the 

greatest deviation from average value in the HFS-RF-PSO model. 

 Facilitating the adoption of best practices. Although a number of best practices have been 

presented in past studies, substantiating the possible gain in CLP due to the adoption of 

such best practices remains difficult. This research developed a CLP hybrid model that can 

quantify expected gains in CLP due to the adoption of best practices, such as implementing 

labour productivity measurement practices or safety training, and the predicted gains in 

CLP can be further examined using case study projects.  

 Although construction projects are unique and the factors affecting CLP may differ from 

project to project, the proposed model is flexible and generic, and new influencing factors 

can be added to the existing model structure to predict and optimize CLP and its factors for 

a given project. 

5.4. Research Limitations and Recommendations for Future Research 

The following limitations were encountered in the research study, and recommendations are suggested 

for future work.  

1. The hybrid model was developed using field data collected for concrete-placing activities 

in the past study. However, in order to develop a generic model of CLP for different types 

of labour-dependent activities, new data need to be collected. Additional investigation of 

other labour-intensive activities, such as welding, piping, and scaffolding, is recommended 

to further improve the developed hybrid model. Further, another limitation of modeling 

CLP is that data collection still relies on experts since the large number of factors are 

subjective. Future data collection also needs to investigate scale of measure of each factor 

and define factors to be less reliant on other factors. 

2. Although PSO algorithm is computationally efficient compared to other optimization 

techniques and is robust with respect to control parameters, it can fall into a local optimum 

in high-dimensional space. In future research, an adaptive PSO algorithm can be developed 

and added to the hybrid model to improve diversity of algorithm and avoid falling into 

local optimum.  
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3. The proposed hybrid model that has been developed for labour-intensive activities cannot 

accurately predict the productivity of equipment-intensive activities. Therefore, future 

research can focus on using the proposed methodology to model and optimize multifactor 

construction productivity, which includes labour, equipment, and materials. 

4. This research has shown which factors need major improvement in order to achieve a CLP 

value close to the targeted CLP value. However, it does not present corrective measures 

relevant to the specified factors. Therefore, future studies can present corrective measures 

to improve CLP according to HFS-RF-PSO results that show which factors need the most 

changes for reaching targeted CLP. Future studies with case studies can further validate 

the proposed model for predicting CLP. 

5. Many of the factors influencing CLP are subjective factors. As fuzzy models have the 

capability to deal with several subjective factors, and random forest shows the best 

performance compared to the other three models in this study, future studies can develop a 

fuzzy random forest model to deal with subjectivity of data as well. 
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Appendix A. CLP Factors of Dataset 
 

Table A1. CLP factors 
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  Factors  Linguistic Descriptors  Scale of Measure 

1 
Crew size small, average, large Integer (Total number of crew 

members) 

2 

Craftsperson education Elementary (1), High School 

(2), Technical (3), College (4), 

University (5)  

Categorical (Most frequent category) 

3 
Craftsperson on job training poor, fair, good Real number (No. trainings attended x 

Duration of Training, hrs) 

4 
Craftsperson technical  

training 

poor, fair, good Real number (No. trainings attended x 

Duration of Training, hrs) 

5 
Crew composition  poor, fair, good Proportion (Ratio journeyman to 

apprentice to helper) (1 JR / 2 AP) 

6 
Crew experience (seniority) poor, fair, good Real number (Crew average years of 

experience ) 

7 
Number of languages 

spoken  

low, medium, high Integer (Number of languages spoken, 

total for a crew) 

8 
Co-operation among 

craftsperson  

poor, fair, good 1–5 Predetermined rating 

9 
Treatment of craftsperson 

by foreman  

poor, fair, good 1–5 Predetermined rating 

10 Craftsperson motivation low, average, high 1–5 rating 

11 
Craftsperson fatigue low, average, high Real number (Total worked hours per 

week to Regular work hour per week) 

12 
Craftsperson trust in 

foreman 

poor, fair, good 1–5 Predetermined rating 

13 Team spirit of crew poor, fair, good 1–5 Predetermined rating 

14 

Level of absenteeism low, medium, high Percentage (% average number of 

absent crew members to total crew 

size, daily average) 

15 Crew turnover low, medium, high Turnover rate (% of crew) 

16 
Discontinuity in crew 

makeup 

small, medium, large  Real number (Average occurrence of 

crew member change) 

17 
Level of interruption and 

disruption 

low, medium, high Integer (Number of  interruption and 

disruption per day) 

18 Fairness of work assignment poor, fair, good 1–5 Predetermined rating 
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19 

Crew participation in 

foreman decision-making 

process 

Without explanation (1), Joint 

(2), With (3)  

Categorical (Decision Type) 

20 Crew flexibility low, average, high 1–5 rating 

21 Job site orientation program No (0), Yes (1) Categorical 

22 
Job security poor, fair, good Integer (Average length of 

unemployment period, months) 

23 

Availability of craftsperson poor, fair, good Integer (Average number of unmet 

labour demand per crew for a given 

task) 

24 
Availability of task 

materials 

poor, fair, good Real number (Average waiting time for 

getting materials, manhours) 

25 Quality of task materials poor, fair, good 1–5 Predetermined rating 

26 
Material unloading practices poor, fair, good Real Number (average unloading time, 

min.) 

27 
Material movement 

practices (horizontal) 

poor, fair, good Real Number (average distance, m) 

28 
Material movement 

practices (vertical) 

poor, fair, good Real Number (average distance, m) 

29 
Availability of work 

equipment (crane, forklift) 

poor, fair, good 1–5 rating 

30 
Availability of transport 

equipment (man lift) 

poor, fair, good 1–5 rating 

31 

Equipment breakdown infrequent, frequent, very 

frequent 

Integer (Equipment Type and Average 

number of breakdown occurrence per 

week) 

32 
Availability of tools poor, fair, good Real number (Average waiting time, 

min.) 

33 
Sharing of tools low, average, high Real number (Number of crews sharing 

a tool) 

34 
Quality of tools poor, fair, good Real Number (Average no. of tool 

breakdown per week) 

35 
Misplacement of tools infrequent, frequent, very 

frequent 

Real Number (Average no. of 

misplacement per day) 

36 
Availability of electric 

power 

poor, fair, good Real number (Average waiting time, 

min) 

37 
Availability of extension 

cords 

poor, fair, good Real number (Average waiting time, 

min) 

38 Complexity of task low, average, high 1–5 Predetermined rating 

39 
Repetitiveness of task  low, medium, high Real number (ratio of identical work 

tasks qty to the total work task qty) 
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40 
Total work volume small, medium, large  Real number (Approved quantity for 

construction) 

41 
Level of rework low, average, high Real number (Construction Filed 

Rework Index) 

42 
Frequency of rework infrequent, frequent, very 

frequent 

Real number (No. of rework 

occurrence per scope of work) 

43 

Task change orders – Extent low, average, high Real number (Ratio of approved total 

volume of change order to total work 

volume) 

44 
Task change orders – 

Frequency  

few, some, many Real number (No. of occurrence per 

scope of work) 

45 Working condition (noise)  low, average, high 1–5 Predetermined rating 

46 
Working condition (dust and 

fumes)  

low, average, high 1–5 Predetermined rating 

47 
Location of work scope 

(distance)  

very close, close, far Real number (distance, m) 

48 
Location of work scope 

(elevation)  

very close, close, far Real number (distance, m) 

49 

Congestion of work area low, average, high Real number (ratio of actual peak 

manpower to actual average 

manpower) 

50 
Cleanliness of work area poor, fair, good Integer (Number of cleaning operations 

per day) 

51 
Foreman skill and 

responsibility  

poor, fair, good 1–5 rating 

52 
Fairness in performance 

review of crew by foreman 

poor, fair, good 1–5 Predetermined rating 

53 
Change of foremen infrequent, frequent, very 

frequent 

Turnover rate (No. of turnovers per 

month) 

54 
Span of control low, medium, high Integer (Average total number of crews 

per foreman) 

55 Response rate with RFI's poor, fair, good Real number (Response time, hrs) 

  56 
Concrete placement 

technique 

Pump (1), Crane and Bucket 

(2), Direct chute (3)  

Categorical 

  57 

Structural element  Columns (1), Footings (2), 

Grade Beams (3), Pile Caps 

(4), Slabs (5), Walls (6) 

Categorical 

P
ro
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58 

Change in design drawings  infrequent, frequent, very 

frequent 

Real number (Ratio of number of 

changed drawings to total number of 

drawings per discipline) 
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59 

Change in specifications infrequent, frequent, very 

frequent 

Real number (Ratio of number of 

changed specifications to total number 

of specification clauses on specific 

scope) 

60 

Changes in contract 

conditions 

infrequent, frequent, very 

frequent 

Real number (Ratio of number of 

contract conditions changes to total 

number of contract clauses on specific 

scope) 

61 
Lack of information infrequent, frequent, very 

frequent 

Real number (Number of RFI's per 

month per discipline) 

62 
Approval for building 

permit  

poor, fair, good Real number (average process time for 

work or permit approval, months) 

63 
Year of construction (to 

identify relation) 

Year Integer (Year of Construction) 

64 
Project level rework infrequent, frequent, very 

frequent 

Real number (Project Overall CFRI) 

65 

Project level change order low, average, high Real number (Ratio approved total cost 

of change order overall project to 

original approved project cost) 

66 Weather (temperature) low, medium, high Real number (˚C) 

67 Weather (precipitation)  low, medium, high Real number (mm) 

68 Weather (humidity)  low, medium, high Real number (%) 

69 Weather (wind speed) low, medium, high Real number (km/hr) 

70 Variability of weather low, medium, high 1–5 rating 

71 Ground conditions poor, fair, good 1–5 Predetermined rating 

72 
Site congestion low, medium, high Real number (Ratio free site space to 

total site area) 

73 Width of site access  low, medium, high Real number (Width of access, m) 

74 
Queue time to access site  low, medium, high Real number (Average queue time to 

access time, minutes) 

75 Project work times poor, fair, good 1–5 rating 

76 
Owner staff on site low, average, high Integer (Total number of owner staff 

on site) 

77 
Approval of shop drawings 

and sample materials  

poor, fair, good Real number (Average time taken to 

approve, days) 

78 
Support and administrative 

staff 

poor, fair, good Real number (Ratio of support to 

technical staff) 

79 
Level of paper work for 

work approval  

low, medium, high 1–5 rating 
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80 

Treatment of foremen by 

superintendent and project 

manager 

poor, fair, good 1–5 Predetermined rating 

81 
Uniformity of work rules by 

superintendent 

poor, fair, good 1–5 Predetermined rating 

82 
Availability of labour low, medium, high Real number (Unmet labour 

requirement, for the given trade) 

83 

Labour disputes (legal cases 

between a worker on a 

project) 

low, medium, high Real number (Average number of cases 

per project) 

84 Project cost control  poor, fair, good 1–5 rating 

85 
Labour productivity 

measurement practice 

poor, fair, good 1–5 Predetermined rating 

86 
Quality audits low, average, high Real number (Number of inspections 

per month) 

87 
Inspection delay poor, fair, good Real number (Average delay for 

inspection, min) 

88 
Interference poor, fair, good Real number (Average number of 

interruption due to interference) 

89 
Out of sequence inspection 

or survey work 

poor, fair, good Real number (Number of occurrence 

per week) 

90 
Project safety plan 

execution  

poor, fair, good 1–5 rating 

91 
Safety training poor, fair, good Real number (No. trainings attended x 

Duration of Training, hrs) 

92 
Safety inspections  low, average, high Real number (Number of inspections 

per month) 

93 
Safety audits low, average, high Real number (Number of audits per 

month) 

94 Safety incidents low, average, high 1–5 Predetermined rating 

95 

Equipment/property damage infrequent, frequent, very 

frequent 

Integer (Number of reported 

equipment/property damage incident 

per month) 

96 Safety incident investigation  poor, fair, good 1 - 5 rating 

97 
Project safety administration 

and reporting  

poor, fair, good 1–5 Predetermined rating 

98 Risk monitoring and control   poor, fair, good 1–5 Predetermined rating 

99 Crisis management poor, fair, good 1–5 Predetermined rating 

100 
Communication between 

different trades 

poor, fair, good 1–5 Predetermined rating 
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101 
Availability of 

communication devices 

poor, fair, good Real number (ratio of communication 

radio to number of crews, %) 

102 Hiring practices (open shop) poor, fair, good 1–5 Predetermined rating 

103 Project team development  poor, fair, good 1–5 rating 

104 Project team closeout poor, fair, good 1–5 rating 

105 
Project environmental 

assurance 

poor, fair, good 1–5 Predetermined rating 

106 
Environmental audits low, average, high Real number (Number of inspections 

per month) 

107 Sorting of waste materials  poor, fair, good 1–3 Predetermined rating 

108 
Project environmental 

control  

poor, fair, good 1–5 Predetermined rating 

G
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a
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109 Oil price low, average, high Real number (Dollar/barrel) 

110 Oil price fluctuation  low, average, high Real number (Weekly price change, %) 

111 
Natural gas price  low, average, high Real number (Dollar/GJ) 

112 Natural gas fluctuation  low, average, high Real number (Weekly price change, %) 

 


