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Abstract

Text contains a wealth of knowledge about who we are, what we know, how we think, and how 

we communicate. We are just beginning to tap into the information that is available in the tales 

we read to our children, the narratives that capture our thoughts, and the stories that shape our 

world. In this work, we present some recent advances in automatically acquiring knowledge from 

text. We propose a general-purpose clustering algorithm called CBC (Clustering By Committee) 

from which we will organize documents according to topics as well as discover concepts and 

word senses. We will explore the value of these systems by experimenting with two novel 

evaluation methodologies that attempt to define what a word sense is and define the quality of a 

particular clustering.

CBC addresses the general goal of clustering, which is to group data elements such that the 

intra-group similarities are high and the inter-group similarities are low. Using sets of 

representative elements called committees, CBC attempts to discover cluster centroids that 

unambiguously describe the members of a possible class. CBC will be shown to outperform 

several common clustering algorithms in document clustering and concept discovery tasks. 

Document clustering is practical in many information retrieval tasks such as document browsing 

and the organization and viewing of retrieval results. Broad-coverage lexical resources such as
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WordNet are extremely useful but are mostly hand generated. They often include many rare 

senses while missing domain-specific senses. Automatically generating them is useful for many 

applications such as word sense disambiguation, question answering and ontology construction. 

Sample concepts discovered by CBC include baking ingredients, symptoms, academic 

departments, Impressionists, Canadian provinces, musical instruments, and emotions.

We present two novel evaluation methodologies. The first is based on the editing distance 

between output clusters and a manually constructed answer key. It defines how much work is 

necessary in order to convert from one to the other. For the word sense discovery system, we 

present an evaluation methodology for measuring the precision and recall of discovered senses. 

Using WordNet, we formulate what is a correct sense of a word.
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Chapter 1

Introduction

Clustering is an exploratory science that discovers patterns in data by grouping data elements 

according to their similarity. It is a mature field with a rich history spanning many disciplines 

such as machine learning, natural language processing, image analysis, data mining, information 

retrieval and bioinformatics. The intuition behind clustering is that elements that belong to a same 

cluster are similar and elements that belong to different clusters are not similar. For example, in a 

medical diagnosis system, a clustering algorithm may discover groups of patients with similar 

diagnoses based on their symptoms.

There are many other applications of clustering. Scouts for professional sports teams may use 

clustering to find the next superstar. For example, by clustering college basketball players with 

the likes of known superstars such as Michael Jordan and Kobe Bryant, scouts may identify 

players who are similar to each superstar. In biotechnology, given a series of micro-array 

experiments measuring the expression of a set of genes, we can discover groups of genes that 

vary in similar ways over time. Genes belonging to the same cluster may then be hypothesized as 

being co-regulated. In data mining, clustering can be used to gain insight on the buying patterns 

of different groups of people, while in information retrieval, clustering is useful to improve the 

organization and viewing of retrieval results as well as to generate Yahoo-like hierarchies. 

Insurance companies may also employ clustering to detect groups of high risk customers.

1
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Figure 1.1 -  A clustering example.
(a) a set of English words; (b) a possible clustering of the words (words with the same border 
belong to the same cluster).

Figure 1.1 shows an example of clustering words according to their meanings. The general 

goal of clustering is to group data elements such that the intra-group similarities are high (i.e. 

those elements within a same cluster are very similar) and the inter-group similarities are low (i.e. 

those elements that are in different clusters are not very similar). The clusters should also span the 

total set of elements.

1.1 Summary of contributions

This dissertation presents a novel general-purpose clustering algorithm called Clustering by 

Committee, or CBC for short. It addresses the general goal of clustering, which is to group data 

elements such that the intra-group similarities are high and the inter-group similarities are low. 

Using sets of representative elements called committees, CBC attempts to discover cluster 

centroids that unambiguously describe the members of a possible class.

Although CBC is a general-purpose algorithm, it was designed to learn from textual data. 

One application that will be presented is document clustering. The goal of document clustering is 

to discover documents with similar topics. It is practical in many information retrieval tasks such 

as document browsing and the organization and viewing of retrieval results. CBC will also be 

applied to the task of automatically discovering concepts by clustering words in large collections 

of text. Concept discovery is the process of inducing semantic classes such as countries, pastries, 

scientific disciplines and sports teams. Broad-coverage lexical resources such as WordNet are

2
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extremely useful but are mostly hand generated. They often include many rare senses while 

missing domain-specific senses. Automatically generating them is useful for many applications 

such as word sense disambiguation, question answering and ontology construction. As an 

extension to concept discovery, CBC will automatically discover the senses of words. CBC will 

be shown to outperform several common clustering strategies in both document clustering and 

concept discovery tasks.

Evaluating clustering results has remained a very challenging task. We present a novel 

evaluation methodology to automatically evaluate clustering output, whose measure is more 

intuitive and easier to interpret than previous measures. It is based on determining the percentage 

of savings by using the clustering result to construct an answer key versus constructing it from 

scratch (i.e. a baseline clustering). We measure this by determining the editing distance, which is 

the number of operations required to transform a clustering into an answer key.

1.2 Clustering components

Generally, a clustering algorithm consists of the following components (Jain and Dubes 1988):

1) representing the data elements by patterns;

2 ) defining a proximity measure between patterns;

3) grouping elements according to the proximity measure;

4) abstracting the data; and

5) interpreting the output.

In this section, we describe each of these components and explore common practices used in 

clustering. We will present the concept of a feature and describe similarity measures for different 

types of features. The two major categories of clustering algorithms, hierarchical and partitional, 

will also be introduced.

1.2.1 Pattern representation

Pattern representation typically consists of defining a vector of measurements, called features, 

which will represent each element to be clustered. Features may be of various types such as

3
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numerical, binary and categorical. For example, in a medical diagnosis system, patients may be 

represented by features such as their age (numerical), gender (categorical), blood pressure 

(numerical) and smoking habits (binary). The set of features used to represent an element makes 

up the element’s feature vector. Suppose we are to cluster a set of n elements, {x,, x2, ..., xn}, 

and each element’s feature vector consists of m measurements. The feature vectors are 

represented in a matrix:

*11  * 12  

* 2 1  * 2 2

_ * n i  • • •

where Xy is the / h feature of element x„ i< n  and j  < m.

Some features are more useful than others. Consider the task of clustering text documents 

according to their topics. Suppose the feature vector for a document consists of the frequency 

count of all possible words that may be contained in the document. Many words will never occur 

in a particular document causing many of these features to have zero frequency. Feature 

selection is the process of selecting the most informative features. In this example, we might 

select only the words that occurred at least k times in the document. Reducing the set of features 

typically leads to a better clustering. Also, it is useful in making a clustering algorithm more 

efficient in both time and space complexity.

Word frequencies may not be the best features for clustering documents. The word the has a 

very high frequency in most documents but is not very indicative of the document’s topic. Once 

we have a feature vector of word frequencies, we can define a new feature for each word. Instead 

of directly using a word’s frequency, we can normalize it by the number of documents in which it 

occurs. Since the occurs in most documents, its value will be reduced dramatically. This process 

of extracting more salient features from a feature vector is called feature extraction. Feature 

selection / extraction may optionally be performed during pattern representation.

1.2.2 Proximity measurements

A proximity measure quantifies the closeness between two elements’ feature vectors. We 

measure the proximity using either a similarity or distance measure depending on the pattern

4
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representation. Similarity and distance are essentially synonymous and can usually be 

interchanged (i.e. the distance between elements measures their dissimilarity).

As a preprocessing step, given a proximity measure, we can convert the n x m matrix 

representation of feature vectors into an n x n  half-matrix of the proximity between each element:

'  0

d 2l 0

d  31 d i2

where dy is the distance or dissimilarity between elements x, and x,. Note that the distance 

between two identical elements is 0  (i.e. the diagonal of the matrix) and that the distances are 

symmetrical (i.e. dt] -  dji). If the proximity metric is not symmetric then the full matrix must be 

used. This matrix is a general representation of the proximity between elements and it can be used 

directly in any clustering algorithm.

Since clustering decisions are based on the proximity between feature vectors, the selection 

of a good proximity measure is critical for the success of a clustering algorithm. For this reason, 

there are many proximity measures available. The selection of a measure is partially driven by the 

types of features in the feature vectors. Below we discuss common proximity measures for 

different feature types.

Numerical features

Numerical features can be discrete or continuous. Suppose we wish to cluster college basketball 

players and we represent each player by a set of predefined attributes (features). Examples of 

discrete features include a player’s age and jersey number1. A player’s weight, average points per 

game and average rebounds per game are examples of continuous features.

Given two elements x, and xy represented by numerical feature vectors, the most common 

distance metrics are derived from the Minkowski metric (Han and Kamber 2001):

1 A player’s jersey number can be a minor indicator of his or her skill level since popular numbers are often awarded to 
better players (e.g. #33 in basketball and #10 in soccer).
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The most common metric, the Euclidean distance, sets p = 2:

d * =
2

(Eq. 1.2)

Another popular metric, the Manhattan distance, sets p  = 1:

m

(Eq. 1.3)
k= 1

The Minkowski metric is not very reliable for features of different scale (e.g. a player’s 

height and average points per game). The largest-scaled features tend to dominate the other 

features. A solution is to standardize each feature Xy to unitless measures zy as follows (Han and 

Kamber 2001):

1) Compute the mean absolute deviation sf.

nXh,-nij
— (Eq. 1.4)

n

where m-s is the mean of feature j:

f t

_ «=1 (Eq. 1.5)
n

2) Compute the unitless measurement of x-y.

s :
(Eq. 1.6)
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Table 1.1 -  Contingency table for
binary variables.

X j

1 0

1 A B
X ;

0 C D

Other measures of Sj may be used. For example, the standard deviation may be used, 

however, it is more susceptible to outliers.

Certain features may be more important than others. In our college basketball example, a 

player’s average points per game might be more indicative of his or her ability than his or her 

shoe size. The weighted Minkowski distance may then be used:

I m
d y = $ E wk\x i k - x jk\P (Eq. 1.7)

V *=1

where wk is a predetermined weight of perceived importance of feature k.

The Minkowski metric is also not reliable for features that do not have linear scale (e.g. a 

feature that measures the growth of a bacteria population). A simple solution is to apply a 

logarithmic transformation to such features Xy. Zy = log(xy).

Binary features

A binary feature takes on one of two values. We will assume that these values are {0, 1} where a 

0 indicates false, no or the first choice and 1 indicates true, yes or the second choice. Consider a 

prenatal diagnosis system. The gender of the fetus is one possible binary feature where 0 indicates 

a girl and 1 indicates a boy.

Suppose each element (e.g. a fetus) is represented by m binary features. Table 1.1 gives a 

contingency table for two elements x, and xj. A is the number of features where both x, and xj 

instantiate to 1, B is the number of features where x, = 1 and Xj = 0, C is the number of features 

where x, = 0 and xj = 1 and D is the number of features where both x, and x, equal 0. One common 

measure of similarity between x, and x, is the matching coefficient:

7
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Table 1.2 -  Example binary feature vectors for college basketball players.

E lem ent Na m e A tte n te d  IV- 
l e a g u e S c h o o l

A l l -
A m e r ic a n

H o n o r  R o ll S h o o t s  R ig h t - 
H a n d e d

A m e r ic a n

C it iz e n

1 Roland N Y Y N N

2 Ed Y Y N Y N

3 Chris Y N Y Y Y

d i}=  A + D  (Eq. 1.8)
9 A + B + C + D

This measure works well for binary features like the gender feature in the prenatal example 

since either value attached to the feature is equally weighted. Such features are called symmetric. 

Asymmetric features must be treated differently. An example of an asymmetric feature is 

“Positive Mother’s Alphafetoprotein Screening Blood Test”. Most fetuses with spina bifida will 

cause a positive test. However, two fetuses are not inherently similar if they both cause a negative 

test. For asymmetric features, the Jaccard coefficient (Jain, Murty and Flynn 1999) is a better 

measure:

d , =  A ■ (Eq. 1.9)
9 A + B + C

Consider the binary feature vectors of three college basketball players in Table 1.2. The 

matching coefficient measures are:

d „ - ---- — ---- = 0.4
12 1 + 1 + 2 + 1

d l3 = — — —  = 0 .2  
13 1 + 1 + 3 + 0

j  2 + 0  n ad n  = ---------------- = 0.4
23 2 + 1+ 2 + 0
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and the Jaccard coefficient measures are:

d n =  1----- = 0.25
12 1 + 1 + 2

d n = — -—  = 0 .2  
13 1 + 1 + 3

d n  =   —  = 0.4
23 2 + 1 + 2

Categorical features

Categorical features are a generalization of binary features. The difference is that the domain of a 

categorical feature is not limited to {0, 1}. Instead, it could be any one of a finite set of values. 

There are two types of categorical features: nominal and ordinal. In nominal features, the actual 

ordering of values is meaningless. For example, a basketball player’s eye color may instantiate to 

one of {black, blue, brown, green, hazel} but there is no notion of order. A common similarity 

measure between two elements x, and xj whose features are all nominal is the matching 

coefficient:

d “ = J T B  ( E q M 0 )

where A is the total number of features in agreement between x, and x, while B is the total number 

of disagreements between x, and x,.

Another way of computing the similarity is to transform each nominal feature into a set of 

binary features and then apply the similarity metrics described above in the Binary features 

section. A nominal feature that instantiates to t values is transformed into t binary variables, each 

representing the truth of the value. For example, the eye color feature from above is transformed 

into five binary features: eye color black, eye color blue, etc.

An ordinal feature is like a nominal feature except that the ordering of its values is 

meaningful. For example, a person’s highest conferred degree/diploma may be a feature that 

takes on the following values {high school, certificate, diploma, Bachelor, Masters, Ph.D.). We
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can represent these values by their relative ranking (e.g. {1, 2, 3, 4, 5, 6 } for the previous

using the methods from the Numerical features Section. Since most ordinal features will have 

varying sizes of domains, we can normalize all relative rankings in the range [0 , 1].

Combining features of mixed types

Most applications will not have homogeneous feature types. There are two common ways of 

dealing with feature vectors of mixed types. The first simply groups together features of the same 

type and computes the similarity for each separate group. The resulting set of similarities must 

then be comparable in order to obtain an overall similarity.

Another method computes the similarity between two elements of mixed type feature vectors 

using all features simultaneously (Han and Kamber 2001):

where 8*} = 0  if (i) xik or xjk has no measurement or (ii) xik = xjk = 0  and feature k is asymmetric

binary; otherwise. S*. = 1 .  d k is the contribution of feature k on the distance measurement

between elements xik and xjk. It is computed differently depending on feature k ’s type:

• k is binary or nominal: d~ = 0  if xik = xjk; otherwise dy = 1

• k is numerical: dy = > where h can be any element xh such that xhk has a
* * * * * *

measurement

Note that if k is ordinal, it can be converted to numerical as described in the above Categorical 

features Section.

example). We then compute the similarity between two elements whose features are all ordinal

m

(Eq. 1.11)

k=1

10

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



1.2.3 Grouping elements

The grouping component is what is often referred to as the clustering algorithm. Generally, 

clustering algorithms are classified as hierarchical vs. partitional. Hierarchical algorithms use a 

proximity measure to create a hierarchical decomposition of the data elements. Clusters are 

iteratively merged or split until a stopping condition is met. Partitional algorithms produce a 

single partitioning by optimizing some criterion. The next chapter provides a survey of commonly 

used clustering algorithms.

1.2.4 Data abstraction

Data abstraction, an optional component of the clustering process, is the practice of compacting 

the representation of clusters. This may be required for making the clustering more efficient or for 

making the output clusters interpretable by humans. Many clustering algorithms represent a 

cluster by a set of representative elements (often just one) or by an artificial element (often 

constructed by averaging the feature vectors of the elements of the cluster). This representation 

allows more efficient similarity computations between clusters since pairwise comparisons of 

elements are not required.

1.2.5 Output interpretation

Finally, output interpretation is the optional procedure of using or evaluating the clusters 

discovered by the clustering process. Evaluating clustering results is a very difficult task. 

Evaluation methodologies generally fall under two categories:

• comparing cluster outputs with manually generated answer keys; and

• embedding the clusters in an application and using its evaluation measure.

The methods corresponding to the first category typically measure a specific property of the 

clusters. However, these properties are not directly related to application-level goals of clustering. 

The second category is goal-oriented however these methods generally do not apply to clustering 

algorithms that are not designed for the application. Examples of each category are described in 

Section 5.1.

11
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1.3 Classification vs. clustering

It is important to make the distinction between classification and clustering. Classification is a 

supervised learning problem where the target classes are predefined. The training examples 

consist of a series of data elements with their target class (usually manually assigned) and the 

learning algorithm typically uses these elements to discover a description of the classes. The goal 

of classification is to place a new element into the class whose description best fits the element. 

An example of classification is to classify electronic mail messages into one of two categories 

spam and not_spam (Pantel and Lin 1998). Here, a collection of manually tagged spam and non

spam electronic mail is collected and is used to describe the two classes using a naive Bayes 

model. In contrast to classification, clustering is an unsupervised learning problem. The classes 

are not designated a priori. Instead, the algorithm searches for natural groupings of elements 

according to their similarity. Also, the number of clusters is unknown.

1.4 Clustering issues

Choosing a proper clustering strategy for a particular application is driven by the type of data 

elements and the nature of the application. Consequently, many clustering strategies exist only to 

deal with the particular intricacies of a single application. Following are some general issues 

regarding clustering systems.

• Scalability: Many algorithms, such as the hierarchical clustering algorithms described in 

the next chapter, cannot easily handle a large number of data elements in high

dimensional space. A clustering algorithm must have efficient space and running time 

complexity to be able to deal with such data.

• Ability to deal with features of different types: In many applications, features are of 

varying types. Computing the similarity between two elements must combine the 

different feature types in some way.

• Ability to classify elements in sparse feature-spaces: High dimensional data is very 

challenging because it is often very sparse and skewed. Clustering algorithms should be 

able to handle such data sets.
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• Ability to classify unknown elements into existing clusters: A clustering algorithm 

should be able to assign unseen elements into existing clusters in an online fashion.

• Ability to classify elements with few outside parameters requiring domain 

knowledge: Many clustering algorithms require input parameters from the user. For 

example, in most partitional clustering algorithms, the output number of clusters must be 

predetermined. Outside information constrains the discovery process and should be 

minimized.

• Ability to deal with noisy data: Data sets are often not clean. They contain erroneous 

elements and outliers. Clustering algorithms must be robust enough to minimize the 

effect of such elements.

1.5 Outline

Following is a brief description of the chapters in this dissertation:

• Chapter 1 -  Introduction: Motivations for clustering, an introduction to the 

contributions of this dissertation, and a description of common clustering properties and 

practices.

• Chapter 2 -  Literature Review: A survey of commonly used clustering algorithms.

• Chapter 3 -  Resources: A definition of the terms and notation used in the dissertation as 

well as a description of the required resources for our work (including WordNet, a parser 

called Minipar, a feature database, a vector-space model, and a similarity model).

• Chapter 4 -  CBC: A description of CBC as a general-purpose clustering algorithm as 

well as its application to document clustering and concept discovery.

• Chapter 5 -  Evaluation Methodology: A description of the methodology used to 

evaluate CBC, including two novel evaluation methodologies.

• Chapter 6 -  Experimental Results: The experimental results obtained by applying the 

evaluation methodology of Chapter 5.

• Chapter 7 -  Conclusions: A synthesis of the contributions of this dissertation as well as 

future applications of CBC.
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Chapter 2

Literature Review

Clustering algorithms are generally categorized as partitional and hierarchical. This chapter 

describes some common clustering algorithms, which are shown in the taxonomy of Figure 2.1. 

The shaded algorithms are only briefly discussed. Here are general properties that characterize 

clustering algorithms (Jain, Murty, Flynn 1999):

• Agglomerative vs. Divisive: In agglomerative algorithms (bottom-up approach), each 

element is initially its own cluster and then the most similar clusters are iteratively 

merged until we are left with one large cluster containing all elements or until a stopping 

condition is met. Conversely, divisive algorithms (top-down approach) initially begin 

with a single all-encompassing cluster and iteratively split the clusters until each element 

belongs to its own cluster or until a stopping condition is met.

• H ard vs. Soft: Hard clustering algorithms assign each element to exactly one cluster 

whereas soft (fuzzy) algorithms may assign an element to multiple clusters. In soft 

clustering, a membership degree is associated with each element’s assignment to a 

cluster.

• Deterministic vs. Stochastic: These types of searches mostly apply to partitional 

algorithms that optimize some clustering function. Stochastic algorithms use random 

searches of the feature space while deterministic algorithms do not.

14
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Figure 2.1 -  Taxonomy of clustering algorithms.
The algorithms within the taxonomy will be presented in this chapter. Shaded algorithms are only briefly 
discussed.

Throughout this chapter, we use n to represent the number of elements that are to be 

clustered. When the number of clusters must be fixed by an input parameter, like in many 

partitional clustering algorithms, we refer to this number by K.

2.1 Hierarchical algorithms

Hierarchical algorithms produce a nested partitioning of the data elements by merging or splitting 

clusters. Agglomerative algorithms iteratively merge clusters until an all-encompassing cluster is 

formed while divisive algorithms iteratively split clusters until each element belongs to its own 

cluster. The merge and split decisions are based on the similarity metric. The resulting 

decomposition (tree of clusters) is called a dendrogram.

Figure 2.2 shows a possible dendrogram produced by an agglomerative hierarchical 

algorithm. At the topmost level of the dendrogram, we have a single cluster containing all 

elements. Using a similarity threshold, we can extract a clustering of the data by cutting the 

dendrogram according to this threshold. Then, each connected component of the dendrogram 

forms a cluster. For example, assuming that the best clustering in the 2-dimensional space of 

Figure 2.2 consists of small tight clusters, the dotted line in (b) gives a good threshold for this 

data resulting in three clusters: {A, E, C), {H, 1} and {D, B, G, F}. The problem with any 

threshold is that on some data sets, a particular threshold will be good but on another data set, it 

will fail. For example, in Figure 2.2, if the similarity threshold was just a little higher, we would 

have five clusters with elements C and D in separate clusters.
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Figure 2.2 -  Dendrogram visualization of a hierarchical clustering result.
(a) Nine data points in 2-dimensional space; (b) the dendrogram produced by a hierarchical agglomerative 
clustering algorithm (the dotted line indicates a possible similarity threshold for selecting the final 
clustering).

The dendrogram provides a visualization of how the algorithm produced its output. For 

example, if a particular output cluster is bad, the dendrogram provides a method of verifying how 

this bad cluster was formed. Hierarchical algorithms rigidly make merge and split decisions. If a 

particular decision is wrong, the algorithm will never go back and undo the decision. This makes 

the algorithm more efficient than performing a combinatorial search of all possible decisions but 

it can never correct itself.

2.1.1 AGNES

AGNES (AGglomerative NESting) is a standard agglomerative clustering algorithm (Kaufmann 

and Rousseeuw 1990):

1) initially start with n clusters each containing a different element;

2 ) merge the two most similar clusters (repeat n -  1 times).

In the final step, an all-encompassing cluster is created and the result is a dendrogram like the 

one in Figure 2.2. The different versions of AGNES differ in how they compute cluster similarity. 

The most common versions of AGNES are single-link, complete-link and average-link clustering. 

The complexity of these algorithms is 0(n2logn) (Jain, Murty, Flynn 1999),

16

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



® ® © ®

Figure 2.3 -  Clusters discoverable using single-link clustering. 
Complete-link and average-link cannot discover these two 
clusterings.
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Figure 2.4 -  The chaining effect in single-link clustering.
(a) Data points in 2-dimentional space; (b) the clustering produced by single-link clustering; (c) the 
clustering produced by complete-link clustering. The proximity measure is the Euclidean distance.

Single-link clustering

In single-link clustering (Sneath and Sokal 1973), the similarity between two clusters is the 

similarity between their most similar members (e.g. using the Euclidean distance). It is capable of 

discovering clusters of varying shapes like the clusters of Figure 2.3. However, single-link is not 

practical because it suffers from the chaining effect (Nagy 1968). For example, in Figure 2.4 (b), 

single-link clustering generates an elongated cluster because of a bridge of elements connecting 

two clusters.

Complete-link clustering

In complete-link clustering (King 1967), the similarity between two clusters is the similarity 

between their least similar members (e.g. using the Euclidean distance). Although complete-link 

clustering is not capable of discovering clusters like the two in Figure 2.3, it does not suffer from 

the chaining effect. Rather than producing straggly elongated clusters like single-link, complete-
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Figure 2.5 -  Single-link vs. complete-link cluster similarity.
Ci and C2 are two clusters in 2-dimensional space where their similarity is the 
similarity between the two elements joined by a dotted line for (a) the single-link 
algorithm and (b) the complete-link algorithm.

link generates compact clusters (Baeza-Yates 1992). Figure 2.4 (c) shows an example. Complete- 

link generates better clusterings than single-link in many applications (Jain and Dubes 1988). 

Figure 2.5 illustrates the different computations for cluster similarity between single-link and 

complete-link.

Average-link clustering

Average-link clustering (Han and Kamber 2001) produces similar clusters to complete-link 

clustering except that it is less susceptible to outliers. It computes the similarity between two 

clusters as the average similarity between all pairs of elements across clusters (e.g. using the 

Euclidean distance). Figure 2.6 shows snapshots of merge decisions comparing the three linkage 

algorithms on a 2 -dimerisional data set.

2.1.2 DIANA

DIANA (Divisive ANAlysis) is a standard divisive clustering algorithm (Kaufmann and 

Rousseeuw 1990) although it is not as common as AGNES. Divisive clustering algorithms start 

with a single cluster containing all elements. Considering all possible splits o f  the cluster into two 

clusters gives 2" ' -  1 possibilities. Using a splitting heuristic to iteratively split the largest 

cluster, DIANA has worst-case time complexity 0(n2logn).

Let the diameter of a cluster c be the similarity between the two least similar elements in c. 

The algorithm is as follows:
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Figure 2.6 -  Single-link, complete-link and average-link clustering.
Dotted ellipses denote previously merged clusters and solid ellipses denote newly merged clusters, (a), (b) 
and (c) illustrate the fifth merge decisions for single-link, complete-link and average-link respectively 
while (d), (e) and (f) illustrate the seventh merge decisions.

1) initially start with a single cluster encompassing all elements;

2 ) select /, the largest cluster or the cluster with highest diameter;

3) find the element e in I that has the lowest average similarity to the other elements in /;

4) e is the first element added to the splinter group while the other elements in I remain in 

the original group;

5) find the element /  in the original group that has highest average similarity with the 

splinter group;

6 ) if the average similarity of /  with the splinter group is higher than its average similarity 

with the original group then assign/to  the splinter group and go to Step 5; otherwise do 

nothing;

7) repeat Step 2 -  Step 6  until each element belongs to its own cluster.
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Figure 2.7 -  DIANA clustering.
(a) the initial all-encompassing cluster with diameter D ; (b) the first splinter 
group defined by the cross (d\ is the diameter of I from Step 2); (c) the result 
of the reassignment of elements to the splinter group after the first iteration - 
the new splinter group is defined by the cross (d2 is the diameter of the new I 
from Step 2); (d) the result of the reassignment o f elements to the splinter 
group after the second iteration and the DC measure assuming that this is the 
final partitioning.

After completion, each element will belong in its own cluster (i.e. there will be n clusters). 

DIANA provides a measure of the strength of the clustering structure called the divisive 

coefficient, DC:

[ Z d ( e )
DC = ± ^  (Eq. 2.1)

d
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where D is the set containing all elements to be clustered, d{e) is the diameter of the last cluster to 

which element e belonged before being split to a single-element cluster, and d is the diameter of 

D. The higher the DC, the stronger becomes the clustering structure. DC will be lowest when 

each element’s before-last-split results in a very tight cluster. However, the union of before-last- 

splits of the elements is rarely the desired clustering. When using the hierarchy given by a 

hierarchical clustering algorithm, one usually obtains a partitioning by applying a similarity 

threshold on the hierarchy. Defining d(e) as the diameter of the cluster to which element e 

belonged before being split into the cluster in which it resides in the final partitioning (by 

applying some threshold on the hierarchy) gives a better indication of the strength of the 

clustering structure. Here, an element lowers the DC if its last split before the final partitioning 

was unnecessary.

Figure 2.7 shows an example of clustering using DIANA. The different shadings represent a 

possible target clustering. In (a), the all-encompassing cluster is shown as well as the diameter D 

of the data set, which is used in computing the divisive coefficient. The element with the cross in

(b) is the element with the lowest average similarity to all other elements and it defines the first 

splinter group. The small cluster in (c) shows all the elements that were added to the splinter 

group (Step 5 and Step 6  of the algorithm). The larger cluster is then selected as the next cluster 

to split since it has the largest diameter, shown by d2. The element with the cross in (c) represents 

the next splinter group. The resulting reassignment of elements to the splinter group is shown in 

(d) as well as the divisive coefficient assuming that this is the selected partitioning.

2.2 Partitional algorithms

Partitional algorithms do not produce a nested series of partitions. Instead, they generate a single 

partitioning, often of predefined size K, by optimizing some criterion. A combinatorial search of 

all possible clusterings to find the optimal solution is clearly intractable. The algorithms are then 

typically run multiple times with different starting points. Partitional algorithms are not as 

versatile as hierarchical algorithms but they often offer more efficient running time (Jain, Murty 

and Flynn 1999).
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2.2.1 AT-means

The most commonly used family of partitional algorithms is based on the AT-means algorithm 

(McQueen 1967). A'-means clustering is often used on large data sets since its complexity is linear 

in n, the number of elements to be clustered. It creates a partitioning such that the intra-cluster 

similarity is high and the inter-cluster similarity is low. AT-means uses the concept of a centroid 

where a centroid represents the center of a cluster. A centroid is usually not an element from the 

cluster. Rather, it is a pseudo-element that represents the center of all other elements. Often the 

mean of the feature vectors of the elements within a cluster is used as that cluster’s centroid. It is 

often difficult to define a centroid for categorical features.

AT-means iteratively assigns each element to one of K  clusters according to the centroid 

closest to it and recomputes the centroid of each cluster as the average of the cluster’s elements. 

The following steps outline the algorithm for generating a set of K  clusters:

1) randomly select AT elements as the initial centroids of the clusters;

2 ) assign each element to a cluster according to the centroid closest to it;

3) recompute the centroid of each cluster as the average of the cluster’s elements;

4) repeat Steps 2-3 for T  iterations or until a criterion converges, where T  is a predetermined 

constant.

The most commonly used criterion is the squared-error criterion, E:

where e is an element in cluster c, and m,- is the centroid of c,. Figure 2.8 illustrates the operation 

of AT-means on 2-dimensional elements with AT=4. In the initialization of A'-means, four elements 

are chosen as the initial centroids (represented by crosses). After the sixth iteration of the 

algorithm, shown in (/), the element assignments to clusters will no longer change and the 

algorithm terminates.

AT-means has complexity O(KxTxn) and is efficient for many clustering tasks since the 

parameters AT and T  are usually small fixed constants. Because the initial centroids are randomly

K
(Eq. 2.2)
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Figure 2.8 -  AT-means clustering.
The crosses represent cluster centroids and AT=4. (a) the initial randomly selected centroids and the first 
cluster assignment; (b) -  (f) the second to sixth iterations of AT-means. After the sixth iteration, the element 
assignments do not change and the algorithm terminates.

selected, the resulting clusters vary in quality. Some sets of initial centroids lead to poor 

convergence rates or poor cluster quality.

2.2.2 Bisecting /T-means

Bisecting AT-means (Steinbach, Karypis and Kumar 2000), a divisive variation of AT-means, begins 

with a set containing one all-encompassing cluster consisting of every element and iteratively 

picks the largest cluster in the set, splits it into two clusters and replaces it by the split clusters. 

Splitting a cluster consists of applying the AT-means algorithm a  times with AT=2 and keeping the 

split that has the highest average element-centroid similarity. Note here that a ^ T .  It is the whole 

AT-means algorithm that is repeated a  times. Each instantiation of AT-means will have T  iterations.
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2.2.3 /t-medoids

The centroids constructed by AT-means are sensitive to outliers, if there are many of them, since 

each element has a direct influence on the construction of the centroids. AT-medoids (Kaufmann 

and Rousseeuw 1987) is a family of algorithms that addresses this shortcoming. Instead of 

representing a cluster by its centroid, K-medoids uses one of the elements of the cluster as its 

representative. The algorithm is very similar to AT-means. Initially, AT random elements are chosen 

as the initial representative of the AT clusters. In each iteration of the algorithm, a representative 

element is replaced by a randomly chosen non-representative element if the criterion (e.g. 

squared-error criterion) is improved. The elements are then reassigned to their closest cluster. 

Examples of AT-medoids algorithms include PAM (Kaufmann and Rousseeuw 1987) and CLARA 

(Kaufmann and Rousseeuw 1990).

2.3 Hybrid algorithms

Hybrid clustering algorithms are characterized as multi-phase algorithms that combine 

hierarchical and partitional techniques. CBC falls within this class of algorithms. In this section, 

we present five algorithms: Buckshot, BIRCH, CURE, Rock and Chameleon.

2.3.1 Buckshot

Buckshot (Cutting, Karger, Pedersen and Tukey 1992) addresses the problem of randomly 

selecting initial centroids in AT-means by combining it with average-link clustering. Buckshot first 

applies average-link to a random sample of 4n elements to generate K  clusters. It then uses the 

centroids of the clusters as the initial AT centroids of AT-means clustering.

As the random sample-size approaches AT, Buckshot degenerates to the AT-means algorithm. 

The strict definition of the sample size makes Buckshot unsuitable for some situations. Suppose 

one wish to cluster 100,000 documents into 1000 newsgroup topics. Buckshot could generate at 

most y]100,000 ~316  initial centroids. The sample size counterbalances the quadratic running

time of average-link to make Buckshot efficient: 0(KxTxn + nlogn). However, the algorithm can 

be run with any sample size as long as the speed of clustering is acceptable.
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Figure 2.9 -  Clustering features for two subclusters.

2.3.2 BIRCH

BIRCH, Balanced Iterative Reducing and Clustering using Hierarchies (Zhang, Ramakrishnan 

and Livny 1996), is a two phase algorithm that uses a structure called a CF-tree to abstract the 

data yielding an efficient algorithm. A CF-tree is a compression of the data elements that attempts 

to preserve the inherent structure of the data. The two phases are:

1) construct a CF-tree by scanning through each element to be clustered;

2) apply any clustering algorithm to cluster the leaf nodes of the CF-tree.

A CF-tree is a hierarchy of sets of clustering features. Given a subcluster whose elements are 

represented by m-dimensional feature vectors, a clustering feature, CF, summarizes the 

information contained in the elements:

2.9 shows an example of two CF’s in 2-dimensional feature space.

Figure 2.10 shows an example of a CF-tree. A non-leaf node summarizes the statistics of its 

children by storing the sum of the CF’s of its children. A maximum branching factor, b, must be 

given. This is the maximum number of children that a non-leaf node may have. In Figure 2.10, k 

< b. Also, the user must specify a maximum diameter threshold d. This is the maximum distance 

allowed between elements of a subcluster at a leaf node.

(Eq. 2.3)

» "i./V _  ^  ^ _► 2
where N  is the number of elements in the subcluster, LS  = /  r ix i and SS = 2ui_ix i . Figure
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CF,root node CF, CF.

non-leaf node CF, CF. CF,

CF, CF. CF,CF, CF. CF,leaf node

Figure 2.10 -  Example CF-tree.

In Step 1 of BIRCH, elements are taken one at a time and they are inserted into the subcluster 

of the leaf node to which it is closest. If an insertion causes the diameter of the subcluster to 

exceed d, then the leaf node is split into two using a splitting criterion like the one discussed in 

Section 2.1.2. A split may result in the parent node to be split if its branching factor exceeds b. 

This process of splitting can propagate all the way up to the root node if all antecedents’ 

branching factors exceed b. After the insertion is completed, the CF’s of all antecedent nodes in 

the tree are updated to maintain the sum of their children’s CF’s.

The first step of BIRCH has time complexity 0(n). As long as the chosen algorithm for step 2 

is also linear (e.g. a partitional algorithm like F-means), BIRCH has overall time complexity 

0(n), which is more efficient than AGNES and DIANA. Because BIRCH uses a diameter 

parameter, it is not very good for discovering clusters that are not spherical. Another problem 

with BIRCH is that it is sensitive to the order in which the elements are scanned in Step 1 of the 

algorithm.

2.3.3 CURE

Single-link clustering has the advantage of being able to discover clusters of various shapes and 

sizes but it is not robust in the presence of outliers (i.e. the chaining effect). CURE, Clustering 

Using REpresentatives (Guha, Rastogi and Shim 1998), is similar in operation to single-link 

clustering but is more robust to outliers. Clusters are represented by a set of initially well- 

scattered points that are shrunk towards the center of gravity of the cluster.
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Figure 2.11 -  CURE clustering.
(a) a sample set of 2-dimensional elements; (b) the single partition created is 
represented by the dashed line, the partial clustering is represented by the dotted 
ellipses and the crosses represent cluster means; (c) the resulting clusters with 
representative elements shrunk towards the cluster centers.

Given a set of elements X  to cluster, CURE initially selects a random sample of size 5 from X. 

The random sample is then partitioned into p  partitions each with size sip and then the partitions 

are partially clustered using an agglomerative hierarchical algorithm (e.g. AGNES). Setting a 

high similarity threshold in AGNES gives many small clusters. Clusters that grow too slowly are 

tagged as outliers and are eliminated. At this point, we have several small tight clusters and each 

is represented by the mean of its constituting elements (a centroid as described in Section 2.2.1). 

Figure 2.11 (a) shows a set of 2-dimensional elements to be clustered using CURE while (b) 

shows the partition, the small tight clusters and the cluster centroids.

Each partial cluster is represented by a single representative element. No new representatives 

will be created; only the current ones will be moved. CURE now clusters the partial clusters by 

iteratively merging the closest clusters. When two clusters are merged, their representative 

elements are shrunk towards the mean of the new cluster by a user specified shrinking factor a. 

The distance between two clusters is the minimum distance between a pair of representative 

points (one from each cluster). This is similar to single-link clustering except that only 

representative points are used. This similarity measure allows CURE to discover clusters of 

arbitrary shapes and sizes. Using only representative points reduces the effect of outliers since 

these points are continuously shrunk toward the center of the clusters. Figure 2.11 (c) shows the 

resulting clusters after this step. Notice that the crosses have been pulled toward the center of the 

clusters. At the final stage, each element from X  that was not in the random sample is assigned to 

the cluster containing the representative element closest to it.
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The time complexity of CURE is O(n), making it efficient for large data sets. However, the 

algorithm is very sensitive to its input parameters: the shrinking factor a  and the random sample 

size.

2.3.4 Rock

ROCK, RObust Clustering using linKs (Guha, Rastogi and Kyuseok 1999), is an algorithm for 

clustering binary and categorical data. Previous clustering methods that use a distance measure, 

such as the Euclidean distance between elements, are not suitable for binary and nominal data. 

For example, in CURE, it is hard to define the mean of a cluster of nominal feature vectors. 

Furthermore, consider a data set containing customers’ transactions at a grocery store where each 

transaction is represented by a set of asymmetric binary variables describing each item available 

in the store. The feature space is large but each transaction may only have a small number of 

features instantiated to 1. Consider the cluster of purchased French delicacies such as {Bordeaux 

wine, Blue cheese, croissants, baguettes, etc.} It is common that two transactions in this cluster 

will have few common items and thus their distance will be large. However, there may exist 

another transaction in the cluster that overlaps with several features of both of them.

Most previous methods tend to prefer clusters of similar shapes. ROCK allows different 

shape clusters. Suppose dy gives the similarity between two elements x, and Xj. A pair of elements 

x, and Xj are neighbours if dy > 0 for some fixed threshold 0. A typically used similarity function 

is the matching coefficient described in Section 1.2.2:

where A is the number of matching features between x, and x, while B is the number of non

overlapping features between x, and xj. If a feature is missing from either x, or x, then that feature 

is considered non-overlapping.

The number of links between two elements x, and xp lih is defined as the number of their 

common neighbours. Links incorporate global information of neighbouring elements in the 

relationship between pairs of elements. This addresses the issue of the two transactions in our 

French delicacy example that share few items but that both share items with another transaction.

Let the aggregate interconnectivity of a cluster c, 1(c), be:
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/(c )  = £ / # (Eq. 2.5)
X j  , X j G C

Intuitively, a good cluster c will have high aggregate interconnectivity. This ensures that 

elements with many common neighbours will be placed in the same cluster. However, this 

measure is maximized when all elements are placed in the same cluster. ROCK normalizes the 

aggregate interconnectivity by a static model of expected interconnectivity of a cluster:

'(<0= E  T T ^ m  (Eq-2.6)
xi tx j ec  C

where |c| is the number of elements in cluster c, |c f0) is the expected number of neighbours in c 

and M1+2*0) is then the expected number of links between elements in c.

ROCK first selects a random sample of elements and performs agglomerative hierarchical 

clustering (AGNES) using the following similarity computation (based solely on links):

/ \ clinks[ci , c .)
d \ C‘,Cj ' J ~ \  I |Y+2/(*) I 11+2f(e) j 11+2f(e) (E(l- 2-7)

ri| + |cy|/ — r<l — |Ci|

where clinks(ch Cj) is the number of cross-links between pairs of elements from clusters c, and cj. 

All elements that were not part of the random sample are then assigned to their closest cluster.

ROCK has worst-case time complexity of 0(n2 + nmmma + n2logn) where mm is the maximum 

number of neighbours and ma is the average number of neighbours. ROCK is a good algorithm 

for categorical data but its complexity makes it inefficient for large data sets.

2.3.5 Chameleon

CURE ignores the aggregate interconnectivity between two clusters while ROCK ignores the 

average closeness between clusters. Chameleon (Karypis, Han and Kumar 1999) combines the 

advantages of CURE and ROCK while employing dynamic modeling of clusters to improve 

clustering quality. Clusters are merged in Chameleon if they have high interconnectivity and 

closeness relative to each cluster’s internal interconnectivity and closeness.
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Figure 2.12 -  Chameleon algorithm.

The steps of the Chameleon algorithm are illustrated in Figure 2.12. In the first step, a K- 

nearest neighbour graph is constructed. Each element to be clustered is represented by a vertex in 

the graph and a weighted edge between vertices represents the similarity between the two 

vertices. An edge is only present between two vertices jc,- and xj if x) is one of the k most similar 

elements of jc, and vice versa. This data abstraction dramatically reduces the dimensionality of the 

data, making the algorithm more efficient.

The absolute interconnectivity between two clusters (subgraphs) Gi and G2, AI(GU G2), is 

defined as the aggregate similarity between the two clusters:

A l(G l , G2) = ^  sim(x, y ) (Eq. 2.8)
agG[ >'gG2

where sim(x, y) is any similarity measure between two elements.

The absolute closeness between two clusters (subgraphs) Gi and G2, AC(Gh G2), is defined 

as the average similarity between a pair of elements, one from each cluster:

A C{GX, G2) = j|—-r Al{G l , G2) (Eq. 2.9)
I ill 21

A difference between the absolute interconnectivity and the absolute closeness is that the 

latter takes zero similarity pairs into account. In Figure 2.13, the interconnectivity in (a) and (b) 

remains constant. However, the closeness in (a) is higher than in (b) since there are more zero 

similarity pairs in (b).

Let mincut(G) be the minimal edge bisection of a graph G. An even-sized partition {G', G"} 

of a graph G is called a minimal edge bisection of G if A/(G', G”) is minimal among all such 

partitions.
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Figure 2.13 -  Interconnectivity vs. closeness.
The interconnectivity between (a) and (b) is the same but the closeness changes.

Let GL be a list of graphs initially containing the K-nearest graph. In the second step of 

Chameleon, the ^-nearest neighbour graph is iteratively partitioned by splitting the largest graph 

G from GL into two subgraphs using mincut(G) and replacing G by the two subgraphs in GL. 

This step repeats until G contains fewer than 6  elements. At this point, the original K-nearest 

graph is partitioned into several small tight subgraphs.

In the final step of the algorithm, Chameleon iteratively merges the two subgraphs Gi and G2 

from GL that maximize gsim(G\, G2), where gsim is defined below in Eq. 2.12. The merged 

cluster is then placed in GL and this step repeats itself until gsim(G\, G2) < cj.

The similarity between clusters (subgraphs) Gi and G2, gsim(G\, Gi), combines the relative 

interconnectivity, RI(GX, G2), and the relative closeness, RC(G(, G2), between Gi and G2. The 

relative interconnectivity is obtained by normalizing the absolute interconnectivity by the internal 

interconnectivity of the individual clusters:

, ^ ' Z )  < E q ' 2 i o >

where 11(G) = AI(G', G") for {G', G"} being the minimal edge bisection of G. This normalization 

is similar to the one in ROCK except that here we have a dynamic model of the expected 

interconnectivity between clusters. Similarly, we have:

RC{GVG2) = ----------------------

G' I C (G , )+ . p t ,  , IC(G2)

(Eq. 2.11)

N  + N  |c , | + |g 2
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where IC(G) = AC(G\ G") for again {G\ G"} being the minimal edge bisection of G. The final 

similarity formula is:

gsim(Gu G2) = RI{GU G2) x RC(GU G2f  (Eq. 2.12)

where a  is a predefined combination parameter.

Chameleon has been shown to produce higher quality clusters than CURE but it suffers from 

a worst case time complexity of 0(n2).

2.4 Other algorithms

There are several other well known families of algorithms. Density-based methods such as 

DBSCAN (Ester, Kriegel, Sander, Xu 1996) and OPTICS (Ankerst, Breunig, Kriegel, Sander 

1999) discover clusters of dense elements that are separated by low density regions. Grid-based 

multi-resolution algorithms typically collect statistical information in grid cells and perform all 

clustering operations on these grids. CLIQUE (Agrawal, Gehrke, Gunopulos, Raghavan 1998) is 

a hybrid of grid and density methods. It is capable of handling high-dimensional data because all 

clustering operations are performed on the quantized space of the grid. Finally, model-based 

algorithms assume that the observed data points are generated by a mixture of underlying 

probability distributions. Usually, a mixture of Gaussians is assumed and the parameters of the 

individual Gaussians must be learned. Manning and Schiitze (1999) provide a nice description of 

using the EM algorithm to leam the parameters.
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Chapter 3

Resources

In this chapter, we describe the resources that are required for the CBC clustering algorithm. 

First, we describe WordNet, an online lexical hierarchy of concepts, and Minipar, a parser that 

will be used in our application of CBC to concept discovery. We will explain in detail the 

dependency trees output by Minipar as well as its lexicon. We proceed by presenting a data 

structure, called a feature database, which stores the features of elements to be clustered. Finally, 

we describe CBC’s vector space model, a representation for our features, and the similarity model 

used for computing the similarity between two elements in CBC.

3.1 WordNet

WordNet2 (Miller 1990) is an electronic dictionary organized as an acyclic graph. Each node in 

the graph, called a synset, represents a concept with an associated set of synonymous words. The 

arcs between synsets represent hyponym/hypernym (subclass/superclass) relationships3 between 

concepts. In this dissertation, we use the term WordNet to refer to WordNet version 1.5.

2 WordNet is available for download at http://www.cogsci.princeton.edu/~wn/.
3 WordNet also contains other semantic relationships such as meronyms (part-whole relationships) and antonyms.
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natural-object 0.0163 
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geological-formation 0.00176

0.000113 natural-elevation

1
0.0000189 hill

shore 0.0000836

coast 0.0000216

Figure 3.1 -  Example hierarchy of synsets in WordNet. 
The numbers beside the synsets represent their probability.

Figure 3.1 shows a fragment of WordNet. The number attached to a synset s is the probability 

that a randomly selected noun refers to an instance of 5 or any synset below it. These probabilities 

are not included in the original WordNet distribution. We use the frequency counts of synsets in 

the SemCor corpus (Landes, Leacock and Tengi 1998) to estimate them. Each word in SemCor is 

manually tagged with the WordNet sense that corresponds to the sense of the word. Since 

SemCor is a fairly small corpus (200K words), the frequency counts of the synsets in the lower 

part of the WordNet hierarchy are very sparse. We smooth the probabilities by assuming that all 

siblings are equally likely given the parent.

Lin (1997) defined a similarity measure between two WordNet synsets S! and s2 as:

sim (si,J2) =
2 x lo g  P(s)

logP{sl) + logP{s2)
(Eq. 3.1)

where s is the most specific synset that subsumes and s2- For example, using Figure 3.1, if si = 

hill and s2 = shore then s = geological-formation and sim(hill, shore) = 0.626.

WordNet is a general-purpose lexicon containing approximately 120,000 words organized 

into some 100,000 synsets. It includes many multi-word terms such as act o f God and Addison’s 

syndrome but lacks coverage of proper names. Although some are included, no serious attempt 

has been made to incorporate them. The coverage of words is similar to that of most dictionaries. 

However, it is the structure of the hierarchy of synsets that differentiates WordNet. One of its
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limitations is that it misses many domain specific senses of words. For example, WordNet does 

not include the user-interface-object sense of the word dialog (as often used in software manuals).

3.2 Minipar

Minipar4 is a principle-based English parser (Berwick 1991). Like Principar (Lin 1993), Minipar 

represents its grammar as a network where nodes represent grammatical categories and links 

represent types of syntactic (dependency) relationships. The grammar network consists of 35 

nodes and 59 links. Additional nodes and links are created dynamically to represent subcategories 

of verbs. Minipar employs a message passing algorithm that essentially implements distributed 

chart parsing. Instead of maintaining a single chart, each node in the grammar network maintains 

a chart containing partially built structures belonging to the grammatical category represented by 

the node. The grammatical principles are implemented as constraints associated with the nodes 

and links.

3.2.1 Parser internals

There are two major types of parsers: those that break the sentences into constituents and those 

that link individual words (dependencies). Minipar works with a constituency grammar internally, 

however the output of Minipar is a dependency tree. The idea of a constituent stems from the fact 

that a sentence is not just an ordered sequence of words, but that those words form groups 

(constituents) within the sentence. Example constituents include noun phrases, verb phrases, and 

prepositional phrases. A noun phrase can take many forms. It may consist of only a noun as in 

“Carol went to school”, or a pronoun as in “She enunciates well”, or a determiner followed by a 

noun as in “The sun is shining”, etc. Constituents may also consist of other constituents. For 

example, a noun phrase may be a determiner followed by a noun and a prepositional phrase such 

as in “Henry ate the salad with croutons".

A constituency grammar is a context-free grammar with some optionally added information. 

Starting with a sentence symbol S, the grammar defines all legal sentences in the language. Figure

3.2 shows a small constituency grammar. A grammar consists of:

4 Available at http://www.cs-ualberta.ca7~-lindek/minipar.htm .
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1 . S NP VP S 4- N P : s u b j  V P :h
2. NP <r N NP N : h
3 . NP 4- NP PP NP NP:h  P P :mod
4 . NP 4- DET N NP 4- DET: d e t N :h
5 . VP 4- V NP VP V : h  NP :o b j
6 . PP <r P NP PP 4- P :h  NP:pcomp

Figure 3.2 -  Sample constituency grammar.
The left column shows the rewriting rules used to define all the 
legal sentences in the language; the right column shows the same 
rules augmented with relations (shown in italic).

• a set of terminal symbols, which are the possible parts-of-speech (e.g. noun, verb, 

adjective);

• a set of non-terminal symbols, which are the constituents (e.g. noun phrase, verb phrase);

• a starting symbol, which is the sentence symbol S', and

• a set of rewriting (or production) rules, which are rules for replacing a non-terminal 

symbol with a sequence of non-terminal and terminal symbols.

The terminal symbols in Figure 3.2 are N, V, and P, representing nouns, verbs, and 

prepositions respectively. The non-terminal symbols are NP, VP, and PP representing noun 

phrase, verb phrase, and prepositional phrase respectively. The six lines represent the rewriting 

rules. Rule 1 is the only one involving the sentence symbol 5 so the grammar covers all sentences 

that consist of a noun phrase followed by a verb phrase. It covers three ways in which noun 

phrases may be decomposed (rules 2-4). Below are sentences that are covered by this simple 

grammar; sentences that are not covered are marked with an asterix (*):

Gisele likes golf.
Grandma baked the pies with love.
♦Hubert disliked the haircut that Leo gave him.
♦Annette shopped with Denise.
The man saw a dog in the park with a telescope.

The third sentence is not covered by the grammar since the grammar does not allow relative 

clauses. In the fourth sentence, the prepositional phrase with Denise cannot be attached to the 

verb without adding a rule in the grammar such as VP 4- V PP. The last example shows that even 

some complicated sentences are covered by the simple grammar of Figure 3.2. In that sentence, 

there are two different possible analyses. This is due to the ambiguity of the prepositional phrase
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VP

NPsubj

mod

PP

pcomp
\
NPNP NP

det

DET DET

foundJohn solution the problem.

Figure 3.3 -  Example constituency tree.
Constituency tree, using the grammar of Figure 3.2, for the sentence John found a solution to 
the problem.

attachment (Pantel and Lin 2000). The prepositional phrase with a telescope can either attach to 

the noun phrase in the park (meaning that the park is “that special park that has a telescope”) or to 

the noun phrase a dog in the park (meaning that the dog has a telescope). However, the more 

semantically plausible attachment of with a telescope is to the verb phrase the man saw (meaning 

that the man is seeing a dog by looking through a telescope), which is not legal in this grammar.

A constituency grammar also allows the parser to enforce constraints between constituents. 

For example, we may enforce the agreement between the subject and the verb of a sentence such 

that if the subject is second person then the verb must be conjugated in the second person. In 

French, we may enforce the agreement in gender between a noun phrase and its adjective.

In Minipar, the constituency grammar was augmented with relations. An example is shown in 

the right column of Figure 3.2. Because these relations allow Minipar to identify the head of each 

constituent (e.g. the head of a noun phrase is the noun and the head of a prepositional phrase is 

the preposition), represented by the relation h, the conversion from a constituency tree to a 

dependency tree is straightforward. For each constituent (non-terminal) C in a constituency tree, 

we create |C| -  1 dependency relationships, where |C| is the number of non-terminals and
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Table 3.1 -  A subset of the dependency relations in Minipar outputs.

r e l a t io n D e sc r ip t io n E x a m p l e

appo appositive of a noun the CEO, John

det determiner of a noun the dog

gen genitive modifier of a noun John’s dog

mod adjunct modifier of any type of head tiny hole

nn prenominal modifier of a noun station manager

pcomp complement of a preposition in the garden

subj subject of a verb John loves Mary.

sc small clause complement of a verb She forced him to resign

JoftrT^

found 
subj obj

solution
det mod 

a to
pcomp

the

problem  
det

Figure 3.4 -  Example dependency tree.
The dependency tree extracted by Minipar for the sentence 
John found a solution to the problem.

terminals in its rewrite rule. Each dependency relationship will be between the head of C and the 

head of one of the non-terminals in C’s rewrite rules, or between the head of C and the lexical 

entry linked to one of the terminals in C’s rewrite rules. The name of a dependency relationship 

will be the relation of the non-head link in C’s rewrite rule. Consider the constituency tree shown 

Figure 3.3. The dependency relationship to -> problem with relation pcomp will be created for 

the PP non-terminal and found -> solution with relation obj will be created for the VP non

terminal.

Figure 3.4 shows the resulting dependency tree after converting the constituency tree in 

Figure 3.3. The links in the diagram represent dependency relationships. The direction of a link is 

from the head to the modifier in the relationship. Labels associated with the links represent the 

relations that were added in Minipar’s constituency grammar. Table 3.1 lists a subset of the
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dependency relations in Minipar outputs. The dependency tree in Figure 3.4 can also be 

represented in a more compact form as follows:

The lexicon in Minipar is derived from syntactic features (parts of speech and subcategorization 

frames) in WordNet. A subcategorization frame defines a particular syntactic category of a verb 

by listing the arguments (required modifiers) that the verb takes. They are essential in parsing to 

help attach the right arguments to the verbs. With additional proper names, the lexicon contains 

about 130,000 entries (in base forms). The lexicon entry of a word (or term) consists of the 

properties of its syntactic usages, the log of the ratio between the total number of words in the 

corpus and the frequency of the word, and the phrases in which the word is the head. The log 

ratios are obtained by parsing a corpus of text and accumulating the usages of words in the 

resulting parse trees. The lexical ambiguities are handled by the parser instead of a tagger.

Figure 3.5 shows a sample of some lexical entries. Each occurrence of a syn tag indicates a 

separate syntactic usage for a word. For example, in Figure 3.5, the word algebra has one 

syntactic usage, noun (N). That means that whenever the parser sees the word algebra, it will 

know that it is a noun. The freq  tag indicates the log of the ratio between the total number of 

words in the corpus and the frequency of the noun usage of algebra. The phrases tag is used to 

enumerate the phrases in which algebra is the head: Boolean algebra, linear algebra, matrix 

algebra, etc. In the lexicon, a phrase such as Boolean algebra is written as “algebra, Boolean” so 

that the head of the phrase is always in front.

The word cluster in Figure 3.5 contains two usages. It may either be a noun (N) or a verb that 

may or may not take an object. Its noun usage log ratio was 10 whereas its verb usage was 14. 

The syn  tag may contain more detailed information. For example, A lberta 's  syntactic tag means 

that it is a proper noun (.PN) and it has a semantic value of province (+province). New York's 

single usage is as a compound noun (+cn) and proper name (PN) with semantic value city 

(+city). There are over 100 possible features in a syn tag, like cn, PN, etc.

,-obj pcomp

SubjV ^ cletV mod V7* wT'det\
John found a solution to the problem.

3.2.2 Lexicon
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(Alberta 
(syn (PN (sem (+province))))
(freq N 9)

)

(algebra 
(syn (N))
(freq N 11)
(phrases (algebra, Boolean) (algebra, linear) 
(algebra, matrix) ...)

)

(cluster 
(syn (N) )
(syn (T[n]))
(freq N 10 V_N_N 14)

)

(York, New 
(syn (+cn PN (sem (+city))))

)

(walk 
(syn (N) )
(syn (T[n] ) )
(freq N 13 V_N_N 7)
(phrases (walk of life) (walk out) (walk out of) 
(walk out on) ...)

)

Figure 3.5 -  Sample entries from Minipar’s lexicon.
Lexicon entries for the words Alberta, algebra, cluster, New York and walk.

3.2.3 Probability model

Like chart parsers, Minipar constructs all possible parses of an input sentence. However, only the 

highest ranking parse tree is output. Although the grammar is manually constructed, the selection 

of the best parse tree is guided by the statistical information obtained by parsing a 1GB 

newspaper corpus with Minipar. The statistical ranking of parse trees is based on the following 

probabilistic model. The probability of a dependency tree is defined as the product of the 

probabilities of the dependency relationships in the tree. Formally, given a tree T  with root root 

consisting of D dependency relationships (head■„ relationship„ modifier,), the probability of T  is 

given by:

D

P (T ) =  P(root )J^[ P{relationship i , m odifier \ head i ) (Eq. 3.2)
i = i
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where P(relationship„ modifier, | headi) is obtained using Maximum Likelihood Estimation 

(MLE).

Minipar parses newspaper text at about 500 words per second on a Pentium-Ill 750Mhz with 

500MB memory. Evaluation with the manually parsed SUSANNE corpus (Sampson 1995) shows 

that about 89% of the dependency relationships in Minipar outputs are correct (Lin 1998c). The 

recall of Minipar outputs, defined as the percentage of dependency relationships in the 

SUSANNE corpus that are extracted by Minipar, varies a great deal depending on the genre of 

the input document, from 80% (novels) to 87% (news reportage). This accuracy is comparable to 

other state-of-the-art broad coverage English parsers (Collins 1996; Chamiak 2000).

3.3 Similarity measure

In this section, we describe the vector space model used by CBC and the data structure, called a 

feature database, used to retrieve the features of an element. The use of a database is motivated by 

the need to deal with a large number of elements and features. The features that will be used in 

the document clustering and concept discovery applications will also be explained. We then 

proceed by describing the similarity model used in CBC for computing the similarity between 

two elements.

3.3.1 Feature database

The elements to be clustered are represented by a feature vector, which is a series of 

measurements that quantitively describe the elements. For example, you might describe a set of 

professional basketball players by their height, age, and average points, rebounds, assists, and 

blocks per game. If you wish to describe the buying patterns of a set of customers, you might 

measure the number of individual products purchased in each transaction. The feature vectors are 

used to compute the similarity between elements. Given an element, the feature database is used 

to retrieve the features of the element along with their measurements. We now describe the data 

structure used for storing the feature database.
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Haaretz 180 
-V:in:N

write 3 6.033
observe 1 4 . 857
quote 1 4.141

-N:in:N
report 3 6.966
headline 1 4.787

-N:for:N
columnist 1 4.561
source 1 4 .229
correspondent 1 4.163

-N:o f :N
editor 1 3 .565
issue 1 3 .290

-V:subj:N
quote 16 7.496
report 10 5.595
say 40 3 . 956
experiment 1 3 .631
publish 1 2 .759
launch 1 2.588
predict 1 2 .506
complain 1 2 .376
suggest 1 2 .115

-V:obj:N
tell 5 4 . 722
quote 1 3 .102
catch 1 3.024
beat 1 2 . 880
report 1 2 .699
say 1 2 .212

-N:nn:N
newspaper 20 8.801
Daily 8 8 . 061
report 3 4.814
interview 1 3 .466

N :n n :N
newspaper 22 9.090
Hebrew 2 6.871

Figure 3.6 -  Feature database entry excerpt for the word Haaretz.
The feature database was built using Minipar and a 1GB newspaper 
corpus.
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Triples

Although the implementation of the feature database is meant to be general enough to represent 

any data set, it was designed with the applications of document clustering and concept discovery 

in mind. As long as the features for a clustering problem can be stored in the feature database, 

CBC is directly applicable.

The features that we will use for clustering documents are the words that occur within each 

document. Slightly more complicated, the features for concept discovery will be the grammatical 

contexts in which each word occurs. In the parsed sentence of Figure 3.4, we can extract six 

features; one for each dependency relationship (or context). One such context is that John is the 

subject of the verb found. We write this in the form of a triple as (John, subj-of found), where 

John is the element and the feature is the relationship subj-of and the word found. Entries in the 

feature database will contain these triples along with their frequency. Suppose for document 

clustering we want to add the feature word for the document doc. We will then create a dummy 

relationship called contains and add the triple (doc, contains, word) to the feature database.

Figure 3.6 shows an example of the format that will be used throughout the dissertation to 

describe an entry in the feature database. It shows an excerpt of the entry for the word Haaretz 

using a 1GB newspaper corpus. The frequency counts, in the second column, are obtained by 

counting the triples in the parser output of Minipar on the corpus. The numbers in the third 

column are pointwise mutual-information scores. Mutual-information is described in Section 

3.3.2. The number beside Haaretz is the total frequency of the word in the corpus. Try looking at 

the features in Figure 3.6 to determine what Haaretz is. It might be obvious to you that Haaretz is 

a newspaper5.

Implementation

The implementation of the feature database consists of two hash tables. One is a persistent hash 

table on disk and the other is a hash table in memory. A hash table, also called a direct access 

table, is an efficient data structure for inserting and searching elements under certain conditions. 

The hash table on disk contains the full database of element-feature mappings. The hash table in

5 Haaretz is an Israeli new spaper that was founded in Jerusalem  in 1919 by a group o f  Z ionist im m igrants, m ainly from  
Russia.
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memory is used as a cache and is initially empty. When a request for an element is made, first the 

cache is verified. If the element exists, then it is returned without going to disk. If it does not 

exist, then the hash table on disk is verified. If the element is not found, then NULL is returned. 

Otherwise, the element is returned and the cache is updated with the element. Each cache entry 

also contains a Boolean flag indicating whether the entry was changed. When an element is 

purged from the cache, the disk entry will be updated only if this flag indicates that the entry has 

changed.

A hash function, h(e), is a function that maps an element e to a bucket in the hash table. A 

perfect hash function is one where each element will be mapped to a unique bucket. 

Unfortunately, a perfect hash function rarely exists. In practice, a good hash function maps most 

elements to unique buckets in the hash table, but occasionally maps a small number of elements 

to the same bucket. When this occurs, it is called a collision. If not many collisions occur, then a 

hash table is searchable in effectively constant time. If too many collisions occur, then another 

data structure such as a binary tree should be used since the hash table search time may become 

linear.

To handle collisions, we store a linked list at each bucket in the hash table. When elements 

are inserted into the hash table, they are added to one of the linked lists. Assuming that elements 

are unique, insertion is made in constant time since we only need to do a table lookup for a bucket 

and add the element to the front or back of the linked list. Searching for an element, however, 

requires a linear search of a linked list. If a hash function mapped all elements to the same bucket, 

searching would be 0(n), where n is the number of elements. Other collision-handling algorithms 

apply a second hash function after a collision (re-hashing) or look at the next sequential bucket in 

the hash table after a collision (linear probing).

In document clustering and concept discovery, the elements are strings. The hash function 

h(e) must therefore map strings to buckets in the hash table. A good strategy for designing hash 

functions for strings is to first determine a positive integer h from the characters of the string and 

then take h modulo m, where m is the size of the hash table. A simple function for h simply adds 

up the integer value of each character in the string. We use the hash function hashpjw (Aho et al. 

1986, pp. 435-436):
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h = 0 ;
for each character c in the string {

shift the bits of h four positions to the left;
h = h + c;
if any of the four high-order bits of h equals 1 {

shift the four high-order bits of h 24 positions to the 
right
exclusive-or the four shifted bits into h 
reset to 0 the four high-order bits of h

}
}

hashpjw was shown to distribute strings consistently well in many different table sizes.

The feature database also has inverse indexing allowing efficient retrieval of all elements that 

contain a given feature. Suppose we wish to add a feature for the word emblazon in the sentence:

Guzman's umbrella was emblazoned with cartoon character
Bart Simpson -- a character that clearly remains popular 
in the school supplies market.

Minipar will analyze emblazon as the head of an object relation with umbrella (shorthand is 

V:obj:N). Therefore the triple (emblazon, V:obj:N, umbrella) will be added to the feature database 

in the entry for emblazon. We will also add the feature “-V:obj:N emblazon” in the database for 

the umbrella entry; the triple is (umbrella, -V:obj:N, emblazon). The (-) sign indicates the inverse 

relationship. In the context of grammatical relationships, the inverse implies that the head and 

modifier of the relationship are inverted. More examples of inverse relationships are shown in 

Figure 3.6. The inverse relationship allows us to ask a question like “what else can you do to 

umbrellas?” Figure 3.7 shows the most frequent verbs that occurred in a 1GB newspaper corpus 

with object umbrella.

3.3.2 Vector-space model

The feature database described in the previous section is used to store and retrieve the features of 

elements. In this section, we describe the feature vectors used in CBC, called the vector-space 

model. It will be used to describe documents in our document clustering system and words in our 

concept discovery system.

In document clustering, each document can be represented by the terms that occur within it 

and the value of a feature is a statistic of the term. The statistic can simply be 1 if the term occurs 

in the document; or 0 otherwise. This is called the Set-of-Words model. Or, the statistic can be

45

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



umbrella 892
-V:obj:N 251 0.715

carry- 14 5.118
open 11 4.964
use 11 3 .590
provide 7 3 .723
hold 7 3 .512
like 6 3 .317
unfurl 5 7.765
fall under 5 7.316
install 5 4.948
bring 5 3 .364
put 5 3 . 051
have 5 1.353
emblazon 4 6.924
place 4 3.580
sell 4 3 . 008
erect 3 5.087
plant 3 4.384
test 3 3.856
extend 3 3 .791
choose 3 3 .573
create 3 2.865
send 3 2.698
furl 2 6.778
wield 2 4.618
swallow 2 4.535
wave 2 4 . 057
manufacture 2 3 .817
retain 2 3 .402
serve as 2 3 .027
look at 2 2.753
design 2 2.696
close 2 2 .566
schedule 2 2 .447

Figure 3.7 -  Feature database entry excerpt for the word umbrella. 
Shows the verbs that take umbrella as object. The feature database 
was built using Minipar and a 1GB newspaper corpus.

the term’s frequency, tf, within the document. This is called the Bag-of-Words model. Figure 3.8 

shows a subset of the features in Chapter 1 of this dissertation using the Bag-of-Words model. 

The numbers in the right column represent frequency counts.

The feature database can be used to retrieve the frequency of a particular word in a document. 

In Figure 3.8, the features in bold are not very informative as to the subject of the document. In 

order to discount such terms with low discriminating power, t f  is usually combined with the 

term’s inverse document frequency, idf, which is the inverse of the percentage of documents in 

which the term occurs. The assumption is that informative words will occur many times within a
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Chapter 1 3694
The 185
of 142
a 114
is 79
and 75
to 73
Clustering 66
features 53
in 47
feature 46
are 44
elements 39
be 36
For 34
as 25
that 24
by 21
data 20
we 19
an 18

Figure 3.8 -  Document clustering features using the Bag-of- 
Words model.
Subset of the features in Chapter 1 of this dissertation.

document but not in many other documents. This measure is referred to as tf-idf (Salton and 

McGill 1983):

t f - id f  = t f x  log id f  (Eq. 3.3)

Mutual Information

Mutual information is a commonly used measure for the association strength between two words 

(Church and Hanks 1989). The pointwise mutual information (Manning and Schutze 1999) 

between two events x  and y, mixy, is given by:

m,»=los7my) < E q ' 3 ' 4 )

Mutual information compares two models for predicting the co-occurrence of x  and y: one is 

the MLE of the joint probability of x  and y and the other is some baseline model. In the above 

equation, the baseline model assumes that jc and y  are independent. Mutual information is high
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when x and y occur together more often than by chance. Note that in information theory, mutual 

information refers to the mutual information between two random variables rather than between 

two events as used in this dissertation. The mutual information between two random variables X 

and Y, MIXy, is given by:

The mutual information between two random variables is the weighted average of the pointwise 

mutual information of all possible combinations of events involving the two variables. It 

measures the amount of information one variable gives about another.

Mutual Information vector-space model

In CBC, for each element e, we construct a frequency count vector C(e) = (cel, ce2, ..., cem), 

where m is the total number of features and cef is the frequency count of feature /  occurring in 

element e. In document clustering, e is a document and cef is the frequency of term /  in e. In 

concept discovery, e is a word and cef is the number of times e occurred in context /.  Once we 

have collected these features in the database, we perform feature extraction by constructing a 

mutual information vector Ml(e) -  (miel, mie2, ..., miem) for each element e, where mief is the 

pointwise mutual information between element e and feature/, which is defined as:

Cef

mi4  =  |0 S ■ % (Eq. 3.6)
X c i f  X c ej

where n is the number of elements to be clustered and N =  £  Sc is the total frequency count of
;= iy=i

all features of all elements. The experiments presented in Section 6.1.3 illustrate that using the 

mutual-information vector M I(e) produces much higher quality clusters then by using the term 

frequency vector C(e).

A well-known problem with mutual information is that it is biased towards infrequent 

elements/features. We therefore multiplied mief  with a discounting factor:
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3.3.3 Similarity model

Any similarity metric may be applied in CBC as long as it can measure the similarity between 

two feature vectors. In Section 1.2.2, we presented some commonly used similarity measures. 

Other measurements that are applicable in CBC include the Dice coefficient (Frakes and Baeza- 

Yates 1992) and Lin’s information theoretic similarity (Lin 1998b). In CBC, we will compute the 

similarity between two elements e, and using the cosine coefficient (Salton and McGill 1983) of 

their mutual information vectors:

The cosine coefficient is a common similarity model because of its simplicity. However, it is 

only applicable with numerical features. The applications of CBC proposed in this dissertation all 

deal with numerical features and hence the cosine coefficient is applicable.

xmv
f___________ (Eq. 3.8)
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Chapter 4

CBC

In this chapter, we describe the Clustering by Committee (CBC) algorithm. CBC is designed to 

address the general goal of clustering, which is to group data elements such that the intra-group 

similarities are high and the inter-group similarities are low. We first provide a motivation for 

CBC and then present two versions of the algorithm: a hard clustering version where each 

element is assigned to only one cluster and a soft clustering version where elements may be 

assigned to multiple clusters. We proceed by comparing CBC with its predecessor, UNICON, and 

by describing two applications of CBC: document clustering and concept discovery.

4.1 Motivation

CBC was motivated by a desire to automatically extract concepts and word senses from large 

collections of text. Broad-coverage lexical resources such as WordNet, described in Section 3.1, 

are extremely useful in applications such as word sense disambiguation (Leacock, Chodorow and 

Miller 1998) and question answering (Pasca and Harabagiu 2001). In previous approaches, word 

senses are usually defined using a manually constructed lexicon such as WordNet. There are 

several disadvantages associated with such lexicons. First, manually created lexicons often 

contain rare senses. For example, WordNet included a rare sense of computer that means ‘the

50

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



person who computes’. Using WordNet to expand queries to an information retrieval system, the 

expansion of computer will include words like estimator and reckoner. Also, the words dog, 

computer and company all have a sense that is a hyponym of person (a hyponym is defined in 

Section 3.1). Such rare senses make it difficult for a coreference resolution system to use 

WordNet to enforce the constraint that personal pronouns (e.g. he or she) must refer to a person. 

The second problem with these lexicons is that they miss many domain specific senses. For 

example, WordNet misses the user-interface-object sense of the word dialog (as often used in 

software manuals). One way to deal with these problems is to use a clustering algorithm to 

automatically induce semantic classes (Lin and Pantel 2001a).

Many clustering algorithms represent a cluster by the centroid of all of its members (e.g., K- 

means) (McQueen 1967) or by a representative element (e.g., K-medoids) (Kaufmann and 

Rousseeuw 1987). When averaging over all elements in a cluster, the centroid of a cluster may be 

unduly influenced by elements that only marginally belong to the cluster or by elements that also 

belong to other clusters. For example, when clustering words, we can use the contexts of the 

words as features and group together the words that tend to appear in similar contexts. For 

instance, U.S. state names can be clustered this way because they tend to appear in the following 

contexts:

List A  appellate court
 capital
 driver's license
 _ outlaws sth.
 's sales tax

If we create a centroid of all the state names, the centroid will also contain features such as:

List B  's airport archbishop o f___
 's business district fly to _ _
 _’s mayor mayor o f___
 's subway outskirts o f___

because some of the state names (like New York and Washington) are also names of cities.

Using a single representative from a cluster may be problematic too because each individual 

element has its own idiosyncrasies that may not be shared by other members of the cluster.
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In CBC, the centroid of a cluster is constructed by averaging the feature vectors of a subset of 

the cluster members. The subset is viewed as a committee that determines which other elements 

belong to the cluster. By carefully choosing committee members, the features of the centroid tend 

to be the more typical features of the target class. For example, CBC chose the following 

committee members to compute the centroid of its state cluster: Illinois, Michigan, Minnesota, 

Iowa, Wisconsin, Indiana, Nebraska and Vermont. As a result, the centroid contains only features 

like those illustrated in List A. Cities are less likely to be attracted to the centroid.

4.2 Algorithm

CBC consists of three phases. In Phase I, we compute each element’s top-& similar elements, for 

some small value of k. In our experiments, we used k in the range of [10, 20]. In Phase II, we 

construct a collection of tight clusters using the top-k similar elements from Phase I, where the 

elements of each cluster form a committee. The algorithm tries to form as many committees as 

possible on the condition that each newly formed committee is not very similar to any existing 

committee. If the condition is violated, the committee is simply discarded. In the final phase of 

the algorithm, each element e is assigned to its most similar clusters.

The framework of CBC allows it to cluster any set of elements as long as their features may 

be placed in the feature database described in Section 3.3.1. It should be noted that choosing the 

right features for a given clustering problem is critical to the success of any clustering algorithm.

4.2.1 Phase I

Computing the complete similarity matrix between pairs of elements is obviously quadratic. 

However, one can dramatically reduce the running time by taking advantage of the fact that the 

feature vector is sparse. By indexing the features, one can retrieve the set of elements that have a 

given feature (see Section 3.3.1). To compute the top similar elements of an element e, we first 

sort the features according to their pointwise mutual information values and then only consider a 

subset of the features with highest mutual information. Finally, we compute the pairwise 

similarity between e and the elements that share a feature from this subset. Since high mutual 

information features tend not to occur in many elements, we only need to compute a fraction of 

the possible pairwise combinations. Using this heuristic, similar words that share only low mutual
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account
checking account 0 .145
bank account 0 .143
fund 0 .130
savings account 0 .124
report 0 .115
story 0.105
deposit 0 . 097
description 0 . 096
statement 0 . 095
testimony 0.093
trust fund 0.092
loan 0 . 090
claim 0.089
investment 0 .088
assessment 0.085
document 0 .084
asset 0.084
transaction 0 . 084
certificate of deposit 0.084
detail 0.083

duty
responsibility 0 .143
obligation 0.119
job 0 .114
chore 0 .100
assignment 0.099
task 0 . 099
role 0 . 095
post 0 .092
military service 0.091
position 0 . 090
function 0 . 089
service 0 . 084
Patrol 0 .083
work 0.080
mission 0.078
tariff 0 . 075
action 0.071
stint 0.069
prerogative 0 . 069
activity 0 . 068

Figure 4.1 -  Top-20 similar words of account and duty.
The similar words were obtained from the TREC corpus using Lin’s 
similarity measure (Lin 1998b).
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information features will be missed by our algorithm. However, in our experiments, this had no 

visible impact on cluster quality (see Figure 6.1).

The similarity matrix is stored in a hash table similar to the feature database presented in 

Section 3.3.1. By querying an element in the hash table (e.g. a document or a word), we retrieve 

in constant time its top-k similar elements along with their similarity scores. The similarity 

between two elements is simply the cosine of the elements’ feature vectors (see Section 3.3.3).

Figure 4.1 shows a sample of a similarity matrix, constructed using the TREC corpus 

described in Section 6.2.1, for the words account and duty. Notice that the lists of similar words 

do not distinguish between the senses of a word. For account, we find similar words for its bank 

account sense and its story sense. For duty, there are similar words for its responsibility and tax 

senses.

4.2.2 Phase II

The second phase of the clustering algorithm recursively finds tight clusters scattered in the 

similarity space. In each recursive step, the algorithm finds a set of tight clusters, called 

committees, and identifies residue elements that are not covered by any committee. We say a 

committee covers an element if the element’s similarity to the centroid of the committee exceeds 

some high similarity threshold. The algorithm then recursively attempts to find more committees 

among the residue elements. The output of the algorithm is the union of all committees found in 

each recursive step. The details of Phase II are presented in Figure 4.2.

The highest scoring clusters at the end of Step 1 represent candidate committees. The score 

reflects a preference for bigger and tighter clusters. After clustering the similar element of e, only 

the highest scoring cluster is kept as a candidate committee. However, it is possible that a lower 

scoring cluster will be accepted as a committee in the recursion of Phase II (Step 6 ). The 

candidates have high intra-cluster similarity but they do not have low inter-cluster similarity (i.e. 

some candidates are similar to each other).

Step 2 gives preference to the larger and tighter candidate committees for Step 3, where a 

candidate committee is only kept if its similarity to all previously kept candidates is below a fixed 

threshold. This assures that the inter-cluster similarities are low. In our experiments, we set 01 = 

0.35. Step 4 terminates the recursion if no committee is found in the previous step.
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Input: 

Step 1:

Step 2: 

Step 3:

Step 4: 

Step 5:

Step 6:

Output:

A list of elements E to be clustered, a similarity database S from 
Phase I, thresholds 0i and 02.

For each element e e E

Cluster the top similar elements of e from S using average-link 
clustering (see Section 2.1.1).

For each discovered cluster c, compute the following score:
Icl x avgsim(c), where Id is the number of elements in c and 
avgsim(c) is the average pairwise similarity between elements in c.

Store the highest-scoring cluster in a list L.

Sort the clusters in L  in descending order of their scores.

Let C be a list of committees, initially empty.

For each cluster c e  L in  sorted order

Compute the centroid of c by averaging the feature vectors of its 
elements and computing the mutual information scores in the same 
way as we did for individual elements.

If c’s similarity to the centroid of each committee previously added 
to C is below a threshold 0i, add c to C.

If C is empty, we are done and return C.

For each element e e E

If c’s similarity to every committee in C is below threshold 02, add 
c to a list of residues R.

If R is empty, we are done and return C.

Otherwise, return the union of C and the output of a recursive call 
to Phase II using the same input except replacing E  with R.

a list of committees.

Figure 4.2 -  Phase II of CBC.
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The residue elements are identified in Step 5. An element is covered if its similarity to the 

centroid of any committee exceeds some high similarity threshold; we used 02 = 0.25. Every other 

element is a residue element. If no residues are found, the algorithm terminates; otherwise, we 

recursively apply the algorithm to the residue elements. In the recursive step, the top-£ similar 

elements of element e will no longer be the same since the similar elements must be part of the 

residue elements. Therefore, the highest scoring clusters of Step 1 may result in the discovery of 

new committees. For example, suppose that the highest scoring cluster of the similar words of 

bank is (financial institution, corporation, business, organization) but that it is rejected in Step 3 

because a similar candidate committee was previously accepted. Now suppose that bank is part of 

the residue elements and that in the recursive step its most similar words are (shore, coast, 

coastline, shoreline). The recursive step gives CBC the opportunity to discover this concept 

(although it might have already been discovered it in the previous recursion of Phase II by a word 

other than bank, like shore).

Each committee that is discovered in Phase II of CBC defines one of the final output clusters 

of the algorithm. Below are some sample committees discovered by CBC using the TREC 

corpus:

• basketball, soccer, volleyball, softball, tennis, hockey,
football, water polo, baseball, golf, badminton

• pink, purple, mauve, yellow, turquoise, blue, red,
lavender, green, beige

• tulip, peony, carnation, daffodil, iris, lilac, 
chrysanthemum, orchid

• apricot, pear, nectarine, peach, plum, mango, fig, cherry,
persimmon, melon, prune

As discussed in Section 4.1, the words in the committees tend to be words that are not 

polysemous6. For example, in the color and fruit committees above, orange is omitted because of 

its polysemous use in the corpus. If orange were included in the color committee, then that 

committee may later incorrectly attract fruits to it.

6 The words m ay in fact be polysem ous words bu t only one sense tends to be  utilized in the dom ain o f the corpus used 
to  discover the comm ittees.
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4.2.3 Phase III

Phase III has two different versions: one for outputting a hard clustering and one for a soft 

clustering. We use the hard clustering version for document clustering and the soft clustering for 

discovering word senses.

Hard-clustering version

In the hard-clustering version, every element is simply assigned to the cluster containing the 

committee to which it is most similar. This version resembles A'-means in that every element is 

assigned to its closest centroid. Unlike A'-means, the number of clusters is not fixed and the 

centroids do not change (i.e. when an element is added to a cluster, it is not added to the 

committee of that cluster).

Soft-clustering version

In the soft-clustering version, each element e is assigned to its most similar clusters in the 

following way:

let C be a list of clusters initially empty 
let S be the top-200 similar clusters to e 
while S is not empty {

let c e S  be the most similar cluster to e 
if similarity(e, c) < a  

exit the loop 
if c is not similar to any cluster in C { 

assign e to c
remove from e its features that overlap with the features

of c;
add c to C

}
remove c from S

}

When computing the similarity between a cluster and an element (or another cluster) we use 

the centroid of the committee members as the representation for the cluster. The key to the soft- 

clustering version of the algorithm for discovering word senses is that once an element e is 

assigned to a cluster c, the intersecting features between e and c are removed from e. This allows 

CBC to discover the less frequent senses of a word and to avoid discovering duplicate senses.
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1 . facility 16. station
2 . factory 17. farm
3 . reactor 18. operation
4 . refinery 19. warehouse
5. power plant 2 0. company
6. site 21. home
7 . manufacturing plant 22. center
8. tree 23. lab
9. building 24. store
10 . complex 25. industry
11. landfill 26. park
12 . dump 27. house
13 . proj ect 28. business
14. mill 29. incinerator
15. airport 30. power station

Figure 4.3 -  Top-30 similar words of p la n t.
The similar words were obtained from the TREC corpus using Lin’s 
similarity measure (Lin 1998b). The word tree  in bold is the only 
word that represents the life  sense of p lan t.

For example, consider the clusters to which the word plant would be assigned. The top-30 

similar words of plant are shown in Figure 4.3. Suppose there exists the following two clusters:

C].: ground cover, perennial, shrub, bulb, annual,
wildflower, shrubbery, fern, grass, ...

C2: factory, power plant, refinery, power station, reactor,
oil refinery, facility, manufacturing plant, ...

It is clear by Figure 4.3 that plant is often used as & factory in the training corpus. Only one of the 

top-30 similar words of plant refers to its life sense (this is the bold word tree shown in Figure 

4.3). The feature vector of plant is dominated by features like (-V:obj:N, operate), (-N:nn:N, 

owner), and (-V:subj:N, produce). The similarity between plant and Cj will therefore be very low. 

Most clustering algorithms would be unable to assign the word plant to Cj.

CBC’s assignment algorithm will first assign plant to its most similar cluster C2. It then 

removes the features that intersect from plant's feature vector and C2’s feature vector. Below are 

some of the features of C2:

C2:   project,   owner, build   , close  ,   produces,
  makes, __ operates, .. .
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Removing the intersecting features can be viewed as removing the factory sense from the word 

plant. After removal, the similarity between the revised feature vector of plant and Q  greatly 

increases, allowing CBC to discover plant’s life sense.

4.3 Comparison with UNICON

UNICON (Lin and Pantel 2001a) also constructs cluster centroids using a small set of similar 

elements like the committees in CBC. One of the main differences between UNICON and CBC is 

that UNICON only guarantees that the committees do not have overlapping members. However, 

the centroids of two committees may still be quite similar. For example, the following two 

committees generated by UNICON do not share any members. However, their centroids are very 

similar.

• Harvard University, Harvard, Stanford University, 
University of Chicago, Columbia University, New York 
University, University of Michigan, Yale university, MIT, 
University of Pennsylvania, Cornell University

• University of Rochester, University of Miami, University 
of Colorado, Ohio State University, University of Florida, 
Harvard Medical School, University of North Carolina, 
University of Houston

UNICON deals with this problem by merging such clusters. In contrast, Step 2 in Phase II of 

CBC only outputs a committee if its centroid is not similar to any previously output committee.

Another main difference between UNICON and CBC is in Phase III of CBC. UNICON has 

difficulty discovering senses of a word when this word has a dominating sense. For example, 

UNICON cannot discover plant’s life sense as described in the previous section.

4.4 Applications

In our experiments, we will apply CBC to the tasks of clustering documents and discovering 

concepts. Below, we describe these applications. For each clustering application, the feature 

representation is very important. After collecting the features in the feature database described in 

Section 3.3.1, CBC may be directly applied.
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4.4.1 Document clustering

The goal of document clustering is to discover documents with similar topics. It is useful in many 

information retrieval tasks. Document clustering was initially proposed for improving the 

precision and recall of information retrieval systems (van Rijsbergen 1979). Because clustering is 

often too slow for large corpora and had indifferent performance for this application (Jardine and 

van Rijsbergen 1971), document clustering has been used more recently in document browsing 

(Cutting, Karger, Pedersen and Tukey 1992), to improve the organization and viewing of retrieval 

results (Hearst and Pedersen 1996), to accelerate nearest-neighbor search (Buckley and Lewit 

1985) and to generate Yahoo-like hierarchies (Roller and Sahami 1997). Common characteristics 

of document clustering include:

• there is a large number of documents to be clustered;

• the number of output clusters may be large;

• each document has a large number of features (e.g. the features may include all of the 

terms in the document); and

• the feature space, the union of the features of all documents, is even larger (e.g. all 

possible English words).

We use the Bag-of-Words model and represent a document by the stemmed words that occur 

within it. Stemming is the process of removing the common morphological and inflexional 

endings from words. It is used to reduce terms to a common-base form and consequently reduce 

the data sparseness. We use a standard stemming algorithm used in IR called Porter’s stemmer 

(Porter 1980). For example, this stemmer will stem the word answering to answer and the word 

feature to featur. Given a corpus of documents, we use a tokenizer to collect the frequency counts 

of all stemmed words and we insert these counts along with pointwise mutual information scores 

into the feature database described in Section 3.3.1.

One of the datasets that we experimented with consists of 18,828 newsgroup articles 

partitioned nearly evenly across 20 different newsgroups. Each file contains one article and the 

pathname of the file represents the newsgroup of the article. For example, 

rec.sport.baseball/102663 is an article about the uniforms of certain teams in Major League 

Baseball while talk.politics.mideast/76234 discusses Israel's occupation of the West Bank, Gaza, 

and Golan. Here is a sample cluster discovered by CBC on this dataset:
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sci.med/59498, sci.med/59474, sci.med/59641, sci.med/59167, 
sci.med/59080, sci.med/59459, sci.med/59490, sci.med/59511, 
sci.med/59191, sci.med/59447, sci.med/59432, sci.med/59244, 
sci.med/59487, sci.med/59393, alt.atheism/54136

Here are the top-15 features (stemmed words) of this cluster according to mutual-information 

scores:

stone, kidnei, pain, calcium, oxal, doctor, prevent, intak, 
help, wai, treatment, told, patient, rai, effect

By looking at these features, a good guess is that the documents in the cluster are about kidney 

stones. In fact, each sci.med/* document is about patients discussing kidney stones. The last 

document in this cluster, alt.atheism/54136, seems out of place but in fact does refer to kidney 

stones. Here is the content of that document:

In article <1993Apr26.000410.18114@daffy.cs.wise.edu> 
writes
> In article <C62B52.LKz@blaze.c s .jhu.edu> 
arromdee@jyusenkyou.cs.jhu.edu (Ken Arromdee) writes:
> >1 can think of a lot more agonizing ways to get killed.
> >Fatal cancer, for instance.
> >
> >Anyone else have some more? Maybe we can make a list.
> How about dying of a blood clot in a _very_ bad place.

Kidney stones with complete blockage.

4.4.2 Concept discovery

Manually generated lexical resources such as WordNet (Miller 1990) are extremely useful in 

applications such as word sense disambiguation and question answering. Their limitations are 

discussed in Section 4.1. Concept discovery is the process of automatically inducing semantic 

classes, like those found in WordNet, from textual data. For example, CBC discovers semantic 

classes such as countries, pastries, scientific disciplines and sports teams.

We use a set of words and the contexts in which the set of words tends to occur to define a 

concept. We introduce some linguistic information in the feature representation of the words. The 

meaning of an unknown word can often be inferred from its context. Consider the following 

sentences:
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wine suit
Beer 0.190 lawsuit 0.317
white wine 0.185 j acket 0 .176
red wine 0.185 shirt 0.161
Chardonnay 0.176 pant 0.152
champagne 0.145 dress 0 .149
fruit 0.143 case 0.141
food 0.142 sweater 0 .133
coffee 0.136 coat 0.130
Juice 0.134 trouser 0.129
Cabernet 0.128 claim 0 .128
cognac 0.128 blazer 0 .125
vinegar 0 .126 slack 0 .124
Pinot noir 0.126 business suit 0 .124
milk 0.125 blouse 0 .122
vodka 0 .124 skirt 0 .122
grape 0.123 litigation 0 .121
Zinfandel 0.122 complaint 0 .119
Cabernet Sauvignon 0 .122 Jean 0.119
olive oil 0 .121 vest 0 .119
sauce 0.121 legal action 0 .117

Figure 4.4 -  Top-20 similar words of wine and suit.
The similar words were obtained from the TREC corpus using Lin’s similarity measure (Lin 1998b).

A bottle of t e z g i in o is on the table.
Everyone likes t e z g i i n o .
Tezgiino makes you drunk.
We make t e z g i in o out of corn.

The contexts in which the word tezgiino is used suggest that tezgiino may be a kind of 

alcoholic beverage. This is because other alcoholic beverages tend to occur in the same contexts 

as tezgiino. The intuition is that words that occur in the same contexts tend to be similar. This is 

known as the Distributional Hypothesis (Harris 1985). There have been many approaches to 

computing the similarity between words based on their distribution in a corpus (Hindle 1990; Lin 

1998b). The output of these programs is a ranked list of similar words to each word. For example, 

Lin’s approach outputs the top-20 similar words of wine and suit shown in Figure 4.4.

Following (Lin 1998b), we represent each word by a feature vector where each feature 

corresponds to a context in which the word occurs. We use the parser Minipar, described in

Section 3.2, to collect the contexts in which words occur. For example, “threaten w ith  ” is a

context. If the word handgun occurred in this context, then the context is a feature of handgun. As 

in document clustering, the value of the feature is the pointwise mutual information between the 

feature and the word. These contexts and scores are inserted into the feature database described in 

Section 3.3.1
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As an extension to concept discovery (using the soft-clustering version of Phase III of CBC, 

see Section 4.2.3), we can discover word senses. In Figure 4.4, the similar words of wine 

represent the meaning of wine. However, the similar words of suit represent a mixture of its 

clothing and litigation senses. Such lists of similar words do not distinguish between the multiple 

senses of polysemous words (Resnik 1998).

CBC discovers word senses by assigning words to more than one cluster. Each cluster to 

which a word is assigned represents a sense of that word. Using the Soft-clustering version of 

Phase III of CBC allows CBC to assign words to multiple clusters, to discover the less frequent 

senses of a word and to avoid discovering duplicate senses.
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Chapter 5

Evaluation Methodology

Evaluating clustering results is a very difficult task. We will now review some common 

approaches to automatically evaluating clustering algorithms. Many of these methodologies lack 

either generality or goal-orientation. We will propose two novel methodologies that attempt to 

strike a balance between the two. The first methodology is based on the editing distance between 

clustering results and manually constructed classes (the answer key). It measures the percentage 

of savings obtained by using the clustering result to construct the answer key versus constructing 

it from scratch (i.e. a baseline clustering). The second methodology, specific to word sense 

discovery, measures the precision and recall of discovered senses using WordNet as the gold 

standard of senses. We provide a mechanism for mapping a sense discovered by CBC to a 

WordNet synset and formulate whether the discovered sense is correct.

We conclude by describing an evaluation methodology in which clustering outputs are 

embedded in language modeling (Goodman 2001). The standard n-gram language model is 

presented as well as the predictive clustering model, which combines n-grams and clusters. We 

then describe perplexity, the standard evaluation measure used in language modeling.
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5.1 Previous approaches

Many cluster evaluation schemes have been proposed. They generally fall under two categories:

• comparing cluster outputs with manually generated answer keys (hereon referred to as 

classes); or

• embedding the clusters in an application (e.g. information retrieval) and using its 

evaluation measure.

5.1.1 Comparison with manually generated answer keys

An example of the first type of approach considers the average entropy of the clusters, which 

measures the purity of the clusters (Steinbach, Karypis, Kumar 2000). Given a clustering C and 

an answer class A, for each cluster c in C we compute the class distribution as:

where a is a class in A,f(c, a) is the number of elements in cluster c that intersect with class a and 

the asterix (*) represents a wildcard. This methodology assumes that classes are disjoint and that 

they contain all elements to be clustered. The entropy of cluster c is then:

This measure prefers small tight clusters. In fact, maximum purity, 0, is trivially achieved 

when each element forms its own cluster.

Another way to evaluate clusters is to compute the percentage of the decisions that are in 

agreement between the clusters and the classes (Wagstaff and Cardie 2000). Given a partitioned

(Eq. 5.2)
ae A

Finally, the overall entropy (or purity) is given by:

(Eq. 5.3)
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set of n elements, there are n x (n -  1) / 2 pairs of elements that are either in the same partition or 

not. So, a partition implies n x (n -  1) / 2 decisions. The percentage of the decisions that are in 

agreement between the clusters C and the classes A, d(C, A) is given by:

where agreements(C, A) gives the number of agreements between the clusters C and the classes 

A. This measure sometimes gives unintuitive results. Suppose the answer key consists of 20 

equally sized classes with 1000 elements in each. Treating each element as its own cluster gets a 

misleadingly high score of 95%. Consider a slightly better clustering with 2 clusters where each 

cluster contains half of the classes in the answer key. The resulting score is 55%.

5.1.2 Application-embedded evaluation

An example of a methodology that evaluates clusters by embedding them in an application is in 

document retrieval (Hearst and Pedersen 1996). Suppose we cluster the documents returned by a 

search engine. Assuming the user is able to pick the most relevant cluster, the performance of the 

clustering algorithm can be measured by the average precision of the chosen cluster. Under this 

scheme, only the best cluster matters.

Another example is in smoothing probability distributions using language modeling (Lee and 

Pereira 1999). A methodology for this is described in detail in Section 5.4.

The entropy and pairwise decision schemes each measure a specific property of clusters. 

However, these properties are not directly related to the application-level goals of clustering. The 

information retrieval scheme is goal-oriented, however it measures only the quality of the best 

cluster. We now propose an evaluation methodology that strikes a balance between generality and 

goal-orientation.

2 x  agreements(C, A)
(Eq. 5.4)

5.2 Editing distance
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5.2.1 Methodology

Like the entropy and pairwise decision schemes, we assume that there is an answer key that 

defines how the elements are supposed to be clustered. We also assume a hard clustering where 

each element belongs to exactly one cluster. Let C be a set of clusters and A be the answer key. 

We define the editing distance, dist{C, A), as the number of operations required to transform C 

into A. We allow three editing operations:

• merge two clusters;

• move an element from one cluster to another; and

• copy an element from one cluster to another.

The copy operation is only needed if the answer classes are not disjoint 

clustering where each element is its own cluster. We define the quality 

follows:

quality{C, A ,B ) = 1 -  ^ (Eq.  5.5)

This measure can be interpreted as the percentage of savings obtained by using the clustering 

result to construct the answer key versus constructing it from scratch (i.e. a baseline clustering). 

Suppose there are m classes in the answer key. We assume that we start with a list of m empty 

sets, each of which is labelled with a class in the answer key. The goal is to use the editing

operations to make the sets identical to the answer class A. The transformation procedure is as

follows:

1) For each cluster, merge it with the set whose class has the largest number of elements in 

the cluster (a tie is broken arbitrarily).

2) If an element is in a set whose class is not the same as one of the element’s classes, move

the element to a set where it belongs.

3) If an element belongs to more than one target class, copy the element to all sets

corresponding to the target classes (except the one to which it already belongs).
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merge
merge

m erge

move

copy

Figure 5.1 -  Transformation rules example.
(a) The clusters to be transformed; (b) the classes in the answer key;
(c) the sets used to reconstruct the classes (Initialization); (d) the sets 
after three merge operations (Step 1); (e) the sets after one move 
operation (Step 2); (f) the sets after one copy operation (Step 3).

dist(C, A) is the number of operations performed using the above transformation rules on C. 

Figure 5.1 shows an example. In (d) the cluster containing e could have been merged with either 

set (we arbitrarily chose the second). The total number of operations is five.

Proposition: The above transformation procedure generates the optimal number of operations for 

any clustering.

Proof: Suppose there are n clusters. Since we have a hard clustering, each cluster contains an 

element that must be merged into the sets. Therefore, each cluster must be merged at least once

with a set. The transformation procedure produces exactly n merge operations, which is the

minimum number possible. If the answer class contains p  duplicate elements then at least p copy 

operations are required since we have a hard clustering7. The transformation procedure generates 

exactly p copy operations. Now, all that there is left to show is that the optimal number of move 

operations is performed by the transformation procedure. The copy operations do not influence 

the number of move operations, only the merge operations do. Let c be a cluster and si be the set 

whose class has the largest number of elements in c. Suppose that in Step 1, c is merged with a set 

s2 whose class does not have the largest number of elements in the cluster c. Let f[c, s) be the 

number of elements that intersect between cluster c and set s. f(c, .vO >f(c, s2). Therefore, more

7 Note that it is only assum ed that the clustering is hard. The answ er class may in fact contain duplicate elem ents. This 
scenario w ill be  observed in our concept d iscovery application.
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mergemerge

merge merge

copy

Figure 5.2 -  Counter-example to transformation rules’ optimality for soft 
clusterings.
The upper rectangle shows the four editing operations performed by the 
transformation rules while the lower rectangle shows that the transformation is 
possible using three editing operations, (a) and (e) The clusters to be transformed;
(b) and (f) the classes in the answer key; (c) and (g) the sets after two merge 
operations; (d) the sets after two copy operations; (h) the sets after one copy 
operation.

move operations (exactly/(c, X|) -  f(c, ,v2)) will be required if c is initially merged with s2. Now, 

could there be fewer moves if Step 1 remains the same but then more merges are performed? 

Suppose in Step 1, cluster c i is merged with set $i and cluster c2 is merged with set s2. Then, 

suppose we merge Si into s2. The elements of c\ that belong to si will now have to be moved or 

copied from s2 into s\. But, since/(ci, ij) si) the number of moves and copies cannot be

less then before the merge. Thus, at least one extra operation will occur with the extra merge 

operation. Hence, the number of operations performed by the transformation procedure is 

optimal. ■

Now, suppose that we have a soft clustering. The optimality claim no longer holds. The 

transformation rules may even use varying numbers of editing operations depending on its 

random choices in Step 1. Consider the example in Figure 5.2. The Steps (a) -  (d) illustrate the

69

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Figure 5.3 -  Two examples of sets consistent with classes.
(a) and (c) are sets consistent with the classes in (b) and (d) respectively.

four editing operations performed by the transformation rules when a particular random choice is 

made in Step 1. (e) -  (h) shows a transformation sequence that results in only three editing 

operations if the other choice in Step 1 was made.

5.2.2 Consistent extension

In some clustering applications, it is not reasonable to transform a clustering to be identical to the 

answer key A. For example, in concept discovery from textual data, some senses in A may not 

exist in the corpus used to generate C. In this dissertation, we will extract answer classes from 

WordNet for our concept discovery algorithm. In WordNet, the word dog belongs to both the 

Person and Animal classes. However, in the newspaper corpus that we use to discover concepts, 

the Person sense of dog is at best extremely rare. There is no reason to expect a clustering 

algorithm to discover this sense of dog.

For such data, we redefine the editing distance, dist(C, A), as the number of operations 

required to make C consistent with A. We say that C is consistent with A if there is a one to one 

mapping between the clusters in C and the classes in A such that for each cluster c in C, all 

elements of c belong to the same class in A. Figure 5.3 illustrates an example. We now only allow 

the first two editing operations since the copy operation is no longer needed. The baseline 

distance dist(B, A) is now exactly the number of elements to be clustered since each element e 

only needs to be merged with the set that corresponds to a class that contains e.
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5.3 Evaluating word senses

The second evaluation methodology we propose is used to evaluate our word sense discovery 

extension to concept discovery. Below, we describe a method of obtaining the precision, recall 

and F-measure of a sense discovery output. We provide a mechanism for mapping a sense 

discovered by CBC to a WordNet synset and formulate whether the discovered sense is correct.

5.3.1 Precision

For each word in the sense discovery application, CBC outputs a list of clusters to which the word 

belongs (i.e. a soft clustering using Version 2 of Phase III of CBC). The goal is that each cluster 

corresponds to a sense of the word. The precision of a word measures the percentage of output 

clusters that actually correspond to a sense of the word. To compute this precision, we must 

define what it means for a cluster to correspond to a correct sense of a word. Consider the 

following output of CBC:

(palm
Nql9 0.21 (fir, douglas fir, pine, eucalyptus)
Nq570 0.14 (towel, cheesecloth, sponge, rag)
Nq3 0.12 (abdomen, thigh, buttock, wrist)

)

Intuitively, Nql9 and Nq3 correspond to two correct senses of palm while Nq570 does not. 

To automatically determine whether a cluster corresponds to a correct sense of a word w, we map 

the cluster to a WordNet sense of w.

Let S(w) be the set of WordNet senses of a word w (each sense is a synset that contains w). 

We define simW(s, u), the similarity between a synset s and a word u, as the maximum similarity 

between s and a sense of u:

simW(s,u) = maxsim(s,t) (Eq. 5.6)
t e S ( u )

where sim(s, t) is defined in Eq. 3.1 on page 34.
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Let q  be the lop-k members of a cluster c, where these are the k most similar members to the 

committee of c. We define the similarity between 5 and c, simC(s, c), as the average similarity 

between s and the top-k members of c:

y 's im W (s,u )
simC(s,c) = ̂ L

k
(Eq. 5.7)

Suppose a clustering algorithm assigns the word w to a cluster c. We say that c corresponds to 

a correct sense of w if the maximal average similarity between a synset containing w and the top- 

k members of c exceeds a threshold 0 :

In our experiments, we set k = 4 and varied the 0 values. The WordNet sense of w that 

corresponds to c is then:

It is possible that multiple clusters to which w is assigned will correspond to the same 

WordNet sense. In this case, we only automatically count one of them as correct.

We define the precision of a word w as the percentage of correct clusters to which it is

assigned. The precision of a clustering algorithm is the average precision of all the words.

In the palm example, using 0 = 0.25, Nql9 correctly maps to the tree sense of palm in 

WordNet with average similarity 0.644. The sense of palm that is most similar to towel, 

cheesecloth, sponge and rag is the palm/bodyjpart. However, the average similarity is only 

0.093, which is less than the threshold 0.25. Therefore, Nq570 is incorrect. Nq3 correctly maps to 

palm/body_part with average similarity 0.364. The precision of palm is 2/3. Figure 6.5, in our 

experimental results, shows the general effect of varying the value of 0  on the clustering output of 

several algorithms.

m axsim C{s,c)>6
sesM  v '

(Eq. 5.8)

arg maxsimC(s,c)
5g 5(w )

(Eq. 5.9)
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5.3.2 Recall

The recall (completeness) of a word w measures the ratio between the correct clusters to which w 

is assigned and the actual number of senses in which w was used in the corpus. Clearly, there is 

no way to know the complete list of senses of a word in any non-trivial corpus. To address this 

problem, we pool the results of several clustering algorithms to construct the target senses. For a 

given word w, we use the union of the correct clusters of w discovered by a set of clustering 

algorithms as the target list of senses for w. While this recall value is likely not the true recall, it 

does provide a relative ranking of the algorithms used to construct the pool of target senses.

Suppose another sense discovery algorithm outputs the following clusters for palm:

(palm
Cl 0.23 (pine, oak, fir, redwood)
C2 0.10 (inch, meter, foot, yard)

)

The clusters C l and C2 are correctly mapped to palm_tree and palmAinearjunit senses of 

palm, respectively. The target senses for palm from the two algorithms are: palmjtree, 

palm/body_part and palmAinearjunit. Therefore, the recall of palm is 2/3 for both algorithms.

The overall recall is the average recall of all words.

5.3.3 F-measure

It is sometimes useful to have a single measure that combines precision and recall aspects. One 

such measure is the F-measure (Shaw Jr., Burgin and Howell 1997), which is the harmonic mean 

of recall and precision:

, /, \ , (Eq. 5.10)

where R is the recall and P is the precision. Typically, a  = Vi is used:

I-, 2 RP
~R + P
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F weighs low values of precision and recall more heavily than higher values. It is high when 

both precision and recall are high.

5.4 Language Modeling

As part of our evaluation of our concept discovery system, we will embed concepts in a language 

modeling task. The goal of language modeling is to predict sequences of words. Language models 

are key in applications such as speech recognition (Church 1988), machine translation (Brown et 

al. 1990), language identification (Dunning 1994), optical character recognition (OCR) (Hull and 

Srihari 1982), and spelling correction (Kemighan, Church and Gale 1990). In this section, we 

describe the n-gram language model and the standard perplexity evaluation metric. We proceed 

by describing predictive clustering, which is a language model that incorporates clusters with n- 

grams.

5.4.1 Review

Given all the words previously seen in some text, a language model estimates the probability of 

the next word:

P(w, | w ,,w 2 ,...,wM ) (Eq. 5.12)

where wk is the kth word in the text. For large i, it becomes difficult to compute this probability. A

typical estimation is to assume that w, is dependent only on the previous n -  1 words:

P(w,. | wp w2 ,...,w M ) «  P(w,. | w,_n+1,....w,.,,) (Eq. 5.13)

This model is referred to as an n-gram model. In a bigram model (n = 2), the current word is 

dependant only on its previous word whereas, in a trigram model (n = 3), it depends on its two 

previous words, n-gram m odels are very effective for language m odeling. A  typical problem  

encountered when using an n-gram model is zero probabilities. Suppose we use a trigram model 

to estimate the probability of a document. Many trigrams in the document will never have been 

seen before and consequently, Eq. 5.13 will yield a zero probability. This is referred to as the data 

sparseness problem. Smoothing algorithms such as Backoff (Katz 1987) and deleted interpolation
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(Jelinek and Mercer 1980) reserve probability mass for unseen events to avoid generating zero 

probability events.

Several techniques have been developed to improve upon the n-gram model: skipping, 

caching, sentence mixtures, and clustering (Goodman 2001). In skipping models, instead of using 

the previous n -  1 words as history, we condition on a displaced context. For example, instead of 

computing P(w, | w,_2, vvM), we may compute P(w, \ w^3, w,_2)- In a caching model, it is assumed 

that the probability of a word increases if we have seen it recently. In a sentence mixture model, it 

is assumed that there are different types of sentences (e.g. general news story, financial statement, 

sports stat lines, etc.) and that these are then modelled separately. Each of these models, on its 

own, often performs worse than the standard n-gram model. They are typically used in 

combination with the n-gram model or even with each other.

Perplexity measures how well a model predicts some data. It is the standard measure for 

comparing the predictability of different language models over a corpus. From information 

theory, the entropy of a random variable X, H(X), with probability mass function p(x), is defined 

as:

X  describes what we are predicting (e.g. words in language modeling). The logs calculated 

may be in any base. Using base 2 provides us with an intuitive description of entropy: it is a 

lower bound on the number of bits required to optimally encode X. A related measure, cross

entropy, is useful in comparing an unknown probability mass function p(x) with an approximation 

m(x). Cross-entropy, Hip, m), is defined as:

Cross-entropy gives us an upper bound on the true entropy of X, H(p, m) > H(X). But, we do 

not know p(x). A model X  is stationary if p(x) does not change over time and ergodic if p(x) is 

aperiodic and irreducible. If X  is stationary and ergodic, then the cross-entropy may be simplified 

to (Cover and Thomas 1991):

5.4.2 Perplexity

(Eq. 5.14)

(Eq. 5.15)
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H ( p , m )  = lim  log2 m (xlx 2x 3...xn)
n

(Eq. 5 .1 6 )

Now, we can obtain an upper bound on H(X) without knowing p(x). For finite strings, we 

only get an approximation to Hip, m). A related measure, cross-perplexity, is defined as:

perplexity(p,m ) -  2H(p'm) (Eq. 5.17)

To be consistent with the literature, we now refer to this measure as simply perplexity, 

although cross-perplexity is the correct term. Roughly speaking, the perplexity of a random 

variable X  measures the number of weighted decisions that must be made by the model X. If X  

predicts words, then perplexity measures the number of weighted choices we have for a word at 

any point in time.

Now, let W be a random variable describing words. The true probability mass function, piyv), 

is unknown. Let us define m{w), an approximation to p(w), as an n-gram model. Since Markov 

models such as n-gram models are stationary and ergodic, the simplified cross-entropy formula 

applies. Then, the cross-entropy of our model may be computed as:

H ( p , m )  = l im - —log2 m(wlw2w3...wn) (Eq. 5.18)
«->“ n

Using a testing corpus L with a finite number of words n, we approximate Hip, m) with:

H { p , m)  = ——^T log2 m(w)  (Eq. 5.19)
n  w e L

where w is a word in L. The better the language model, the more predictive the model will be of a 

testing corpus (i.e. the lower H{p, m) will be). Given two language models and a training corpus, 

we have the probability mass function m^iw) for the first model and m2(w) for the second model. 

After computing the perplexity of each probability mass function on a same test set, we say that 

the first language model is better than the second if:

H ( p , m x) < H ( p , m 2) (Eq. 5.20)

or
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2 # ( p , m | )  jH(p,m2) (Eq. 5 .2 1 )

5.4.3 Predictive Clustering

Clusters may be used in language models to relieve the data sparseness. Suppose we have seen 

strings like drink Pepsi and drink cola. Even though drink Sprite may never have been seen, we 

may hypothesize that Sprite can indeed follow drink since Sprite is very similar to Pepsi and cola. 

Let W-, be the cluster that contains word w,. Predictive clustering is a language model that 

incorporates clusters as follows (Goodman and Gao 2000):

Suppose we have a trigram model and that BEVERAGE is the cluster that contains the word 

Sprite. Then, predictive clustering computes the probability of Sprite in the string He drinks 

Sprite as:

P(Sprite | He drinks) = P(BEVERAGE\ H edrinks)x P(Sprite | He drinks BEVERAGE)

It is important to note that the above equality is true only with a hard clustering. That is, each 

element must belong to only one cluster.

Given a clustering, the probability model of Eq. 5.22 may be estimated using a training 

corpus. For a set of 5 clusterings, we may generate s language models and compare them using 

the perplexity measure described in the previous section. A better clustering will generate a 

language model with lower perplexity than the other language models.

(Eq. 5.22)
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Chapter 6

Experimental Results

We experimented with CBC in the document clustering and concept discovery tasks described in 

Section 4.4. In this chapter, we describe the data sets used for document clustering and concept 

discovery and we apply the evaluation methodologies presented in the previous chapter. We will 

compare CBC’s results with those of the clustering algorithms reviewed in Chapter 2 and we will 

inspect a sample of CBC’s outputs.

6.1 Document clustering

In this section, the test data used in our document clustering system is first described. We then 

apply the editing distance evaluation methodology from Section 5.2.1 to the clustering outputs 

obtained from CBC and the algorithms from Chapter 2. We proceed by evaluating the robustness 

of CBC by studying the effect of some of its clustering parameters on clustering output. Finally, 

w e present an illustrative example of a CBC output on a small data set consisting of the research 

papers presented at the 2001 SIGIR conference.
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Table 6 .1 -  Document clustering test data sets.
The number of classes in each test data set and the number o f elements in 
their largest and smallest classes.

D a t a  S e t
T o t a l

D ocs
T o t a l

Cl a s s e s

La r g e s t

Cl a s s

S m a l l e s t

Cl a s s

R euters 2745 92 1045 1

20-new s 18828 20 999 628

6.1.1 Experimental setup

We conducted document clustering experiments with two data sets: Reuters-21578 V1.28 and 

20news-188289. Table 6.1 describes for each data set the total number of documents, the number 

of classes, and the number of elements in their largest and smallest classes. For the Reuters 

corpus, we selected the 2745 documents that:

1) are assigned one or more topics;

2) have the attribute LEWISSPLIT=“TEST”; and

3) have <BODY> and </BODY> tags.

The 20news-18828 data set contains 18,828 newsgroup articles partitioned nearly evenly 

across 20 different newsgroups. We will now use Reuters to refer to the Reuters-21578 V1.2 data 

set and 2 0 -news to refer to the 20news-18828 data set.

6.1.2 Cluster evaluation

We clustered the data sets using CBC and the clustering algorithms of Chapter 2 and applied the 

evaluation methodology from Section 5.2.1. Table 6.2 shows the results. The columns are our 

editing distance-based evaluation measure. On the 20-news data set, our implementation of 

Chameleon was unable to complete in reasonable time. For A'-means, we used A^IOOO over five 

iterations for 20-news and K= 50 over eight iterations for Reuters. For Buckshot, we used A=80 

for 20-news and A=50 for Reuters, each over eight iterations. For the 20-news corpus, CBC

8 Available at http://w w w .research.att.com /~lew is/reuters21578.htm l.

9 Available at http://w w w .ai.m it.edu/people/irennie/20 newsgroups/.
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Table 6.2 -  Cluster quality (%) of various clustering 
algorithms on document clustering.
The quality is computed using the Reuters and 20-news 
data sets.

R e u t e r s 2 0 -n e w s

CBC 65.00 74.18

K-means 62.38 70.04

Buckshot 62.03 65.96

Bisecting K-means 60.80 58.52

Chameleon 58.67 n/a

Average-link 63.00 70.43

Complete-link 46.22 64.23

Single-link 31.53 5.30

spends the vast majority of the time finding the top similar documents (38 minutes) and 

computing the similarity between documents and committee centroids (119 minutes). The rest of 

the computation, which includes clustering the top-2 0  similar documents for every one of the 

18828 documents and sorting the clusters, took less than 5 minutes. We used a Pentium El 

750MHz processor and 1GB of memory. CBC outperforms each algorithm. Its closest 

competitors were average-link and A'-means, which CBC beat by 3.75% and 4.14% respectively. 

The algorithms performed better on the 20-news corpus because that corpus contains much fewer 

classes (20 vs. 92) and many more examples (18,828 vs. 2745).

Buckshot has similar performance to A'-means on the Reuters corpus; however it performs 

much worse on the 20-news corpus (see Table 6.2). This is because AT-means performs well on 

this data set when K  is large (e.g. Af=1000) whereas Buckshot cannot have K  higher than 137. On 

the Reuters corpus, the best clusters for Af-means were obtained with K  -  50, and Buckshot can 

have K  as large as V2745 = 52. However, as K  approaches 52, Buckshot degenerates to the K- 

means algorithm, which explains why Buckshot has similar performance to Af-means.

6.1.3 Clustering parameters

CBC has several parameters that can affect its clustering output. We experimented with several of 

them. Below, we describe each parameter and its possible values:
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1) Vector Space Model: (described in Section 3.3.2) This is the feature representation for 

the elements (e.g. documents) to be clustered. In the mutual-information model, the 

statistic for each element-feature pair is the pointwise mutual information between the 

element and the feature. In the term-frequency model, the statistic is simply the frequency 

of the element-feature pair. The term-frequency / inverse-document frequency (tf-idf) 

model combines the term-frequency model with the inverse of the percentage of 

documents in which the term occurs. The possible values of this parameter are:

a) MI : the mutual-information model;

b) TF : the term-frequency model, tf,

c) TFIDF1 : the tf-idf model: tf-idf = t fx  log idf,

d) TFIDF2 : the tf-idf model using the formula: tf-idf = Jtf x  log idf.

2) Stemming: Stemming is the process of removing the common morphological and 

inflexional endings from words in English (described in Section 4.4.1). We use Porter’s 

stemmer (Porter 1980). The possible values of this parameter are:

a) S - : terms are not stemmed;

b) S+ : terms are stemmed using Porter’s stemmer.

3) Stop Words: Stop words are frequently occurring common words such as be, at, a, with, 

for, etc. These words are often insignificant and ignored. Our list of stop words contains 

about 200 words. The possible values of this parameter are:

a) W- : no stop words are used as features;

b) W+ : all terms are used.

4) Filtering: Filtering is used to reduce the size of the feature vectors, making the similarity 

computations much faster, as described in Section 4.2.1.

a) F - : no term filtering is performed;

b) F+ : terms with MI<0.5 are deleted.

We refer to an experiment using a string where the first position corresponds to the Stemming 

parameter, the second position corresponds to the Stop Words parameter and the third position
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Figure 6.1 -  CBC evaluation of cluster quality when varying clustering parameters.
Cluster quality is obtained using the Reuters corpus.

corresponds to the Filtering parameter. For example, experiment S+W-F+ means that terms are 

stemmed, stop words are ignored, and filtering is performed. The Vector Space Model parameter 

will always be explicitly given.

Figure 6.1 illustrates the quality of the clusters generated by CBC on the Reuters corpus 

while varying the clustering parameters. Most document clustering systems use TFIDF1 as their 

vector space model; however, the MI model outperforms each model including TFIDF1. 

Furthermore, varying the other parameters on the MI model makes no significant difference on 

cluster quality, making CBC with MI more robust. TF performs the worst since terms with low 

discriminating power (e.g. the and furthermore) are not discounted. Although TFIDF2 slightly 

outperforms TFIDF1 on experiments S + W -F - and S+W -F+, it is clearly not as robust. Except for 

the TF model, stemming terms always produced better quality clusters.

6.1.4 Illustrative example

The results shown in Table 6.2 show that CBC outperforms the other clustering algorithms. 

However, by simply looking at the numbers in that table, it is difficult to get an appreciation for 

the quality of the clustering. When clustering words, we can inspect a sample of the clustering to
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Table 6.3 -  Output of CBC applied to the 46 papers presented at SIGIR-2001.
The left column shows the clustered documents and the right column shows the top-7 features (stemmed 
terms) forming the cluster centroids.

#  Cl u s t e r  E l e m e n t s  T o p -7  F e a t u r e s  (s t e m m e d )

1 Cat/017, Cat/019, Lm/037 text, featur, leam, categor, classif, approach, svm

2 MS/035, Eval/011, MS/036, Sys/006, threshold, score, term, base, distribut, optim,
Cat/018 scheme

3 LM/015, LM/041, LM/016, CL/012, model, languag, translat, expans, estim, improv,
CL/013, CL/014 framework

4 US/029, US/028, US/027, Sys/008, 
Sum/024, Eval/009, Lm/038

user, result, use, imag, system, search, index

5 Web/030, Sys/007, MS/033, Eval/010 search, engin, page, web, link, best

6 Sum/002, Lm/039, LM/042 stori, new, event, time, process, applic, content
7 Sum/003, Sum/004, Sum/025, LM/043, summar, term, text, summari, weight, scheme,

Sum/001 automat
8 Lm/040, Sys/005 level, space, framework, vector, comput, recent

9 QA/046, QA/044, QA/045, MS/034 answer, question, perform, task, passag, larg, give

10 RM/021, RM/022, RM/023, RM/020 queri, languag, similar, data, framework, seri
11 Web/032, Sum/026, Web/031 link, algorithm, method, hyperlink, web, analyz,

identifi
Cat=Categorization, CL=CrossLingual, Eval=Evaluation, LM=LanguageModels, Lm=Leaming, 

MS=MetaSearch, QA=QuestionAnswering, RM=RetrievalModels, Sum=Summarization, Sys=Systems,
US=UserStudies, Web^Web

get an intuitive idea of its quality. This is because humans have prior knowledge about the 

meaning of words. For document clustering, we would have to supplement a sample of the 

clustering with the content of the documents clustered, which is too large. For our illustrative 

example, we therefore used a smaller data set.

We collected the titles and abstracts for the 46 papers presented at SIGIR-2001 and clustered 

them using CBC. For each paper, we used as part of its filename the session name in which it was 

presented at the conference and a number representing the order in which it appears in the 

proceedings. For example, Cat/017 refers to a paper that was presented in the Categorization 

session and that was the 17th paper in the proceedings. The resulting 11 clusters generated by 

CBC are shown in Table 6.3.

The features of many of the automatically generated clusters clearly correspond to SIGIR- 

2001 session topics (e.g. clusters 1, 4, 7, 9, 10 and 11). Applying the editing distance evaluation 

methodology of Section 5.2.1 gives a quality of 32.60%. This score is fairly low for the following 

reasons:
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• Some documents could potentially belong to more than one session. For example, 

Lm/037 was clustered in the categorization cluster #1 because it deals with learning and 

text categorization (it is titled “A meta-learning approach for text categorization”). Using 

the sessions as the answer key, Lm/037 will be counted as incorrect.

• CBC generates clusters that do not correspond to any session topic. For example, all 

papers in Cluster # 6  have news stories as their application domain and the papers in 

Cluster #5 all deal with search engines.

6.2 Concept discovery

In this section, we describe our experimental setup and present the results of evaluating CBC 

when it is used in concept discovery. To apply the editing distance evaluation methodology from 

Section 5.2, we need a test set and an answer class. However, unlike in document clustering, a 

standard test set does not exist for concept discovery. We therefore show how to construct one 

using the senses in WordNet. It is then possible to compare the outputs of CBC and the 

algorithms from Chapter 2 using the editing distance methodology.

To get an intuitive idea of the quality of CBC outputs we will analyze the quality of a random 

sample of concepts. We then proceed with evaluating the clustering algorithms by embedding 

them in predictive clustering language models and computing their relative perplexity, the 

standard evaluation used in language modeling, described in Section 5.4.2. We will show that the 

relative rankings of the clustering algorithms are similar for the language modeling evaluation 

and our editing distance evaluation on both document clustering and concept discovery.

Finally, we will experiment with the word sense discovery extension to concept discovery 

described in Section 4.4.2. We will apply the precision/recall methodology from Section 5.3 to 

the word senses generated by CBC and a subset of the clustering algorithms from Chapter 2. We 

will study the effect of two important thresholds in word sense discovery: the 0 threshold (Eq. 

5.8) that defines a correct sense mapping to a WordNet synset and the a  threshold that determines 

how many senses a word will have. We will also perform a manual evaluation of a random 

sample of CBC concepts and compare our results with the automatic evaluation. We then 

conclude by inspecting the quality of several low-precision clusters.
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Table 6.4 -  Concept discovery test data sets.
Properties of the test sets used for evaluating cluster quality of the concept discovery task.

D a t a  S e t
T o t a l

W o r d s
M

A v g . F e a t u r e s  

p e r  W o r d
T o t a l  C l a s s e s

S 13403 13403 250 740.8 202

S 3566 3566 3500 2218.3 150

6.2.1 Experimental setup

To extract target classes from WordNet, we first estimate the probability of a random word 

belonging to a subhierarchy (a synset and its hyponyms). As described in Section 3.1, we use the 

frequency counts of synsets in the SemCor corpus to get the estimated probabilities. Figure 3.1 

illustrates an example WordNet hierarchy of synsets with their probabilities. A class is then 

defined as a maximal subhierarchy with probability less than a threshold (we used e 2).

We used Minipar, from Section 3.2, to parse about 1GB (144M words) of newspaper text 

from the TREC collection (1988 AP Newswire, 1989-90 LA Times, and 1991 San Jose Mercury) 

at a speed of about 500 words/second on a PIII-750 with 512MB memory. We collected the 

frequency counts of the grammatical relationships (contexts) output by Minipar and used them to 

compute the pointwise mutual information values from Section 3.3.2. The test set is constructed 

by intersecting the words in WordNet with the nouns in the corpus whose total mutual 

information with all of its contexts exceeds a threshold m. Since WordNet has a low coverage of 

proper names, we removed all capitalized nouns. We constructed two test sets: Si34o3 consisting of

13,403 words (m = 250) and S3566 consisting of 3566 words (m = 3500). We then removed from 

the answer classes the words that did not occur in the test sets. Table 6.4 summarizes the test sets. 

The sizes of the WordNet answer classes vary considerably. For Si3403 there are 99 classes that 

contain three words or less and the largest class contains 3246 words. For S3566,78 classes have 

three or less words and the largest class contains 1181 words.

6.2.2 Cluster evaluation

We clustered the test sets using CBC and the clustering algorithms of Chapter 2 and applied the 

evaluation methodology from Section 5.2. Table 6.5 shows the results. The columns are our
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Table 6.5 — Cluster quality (%) of several clustering algorithms on S3566 
and S ^ ^-

A l g o r it h m S i3403 S 3566

CBC 60.95 65.82

AT-means (AT=250) 56.70 62.48

Buckshot 56.26 63.15

Bisecting A'-means 43.44 61.10

Chameleon n/a 60.82

Average-link 56.26 62.62

Complete-link 49.80 60.29

Single-link 20.00 31.74

editing distance-based evaluation measure. Test set 53566 has a higher score for all algorithms 

because it has a higher number of average features per word than 5 13403.

For the A'-means and Buckshot algorithms, we set the number of clusters (K) to 250 and the 

maximum number of iterations to 8 . We used a sample size of 2000 for Buckshot. For the 

Bisecting A'-means algorithm, we applied the basic AT-means algorithm twice (a = 2 in Section 

2.2.2) with a maximum of 8  iterations per split. Our implementation of Chameleon was unable to 

complete clustering 5 i3403 in reasonable time due to its time complexity. A'-means, Buckshot and 

average-link have very similar performance. CBC outperforms all algorithms on both data sets.

The relative ranking of the clustering algorithms according to cluster quality is nearly 

identical to that reported in our evaluation of document clustering in Table 6.2. This supports the 

editing distance evaluation methodology presented in Section 5.2. Figure 6.2 plots the cluster 

quality of both the document clustering test set 20-news, described in Section 6.1.1, and Si3403 

over several clustering algorithms. The shapes are nearly identical except for at the single-link 

point. On the 20-news test set, our implementation of single-link grouped every element into one 

large cluster.

6.2.3 Manual Inspection

Let c be a cluster and wn(c) be the WordNet class that has the largest intersection with c. The 

precision of c is defined as:
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Cluster quality - A comparison between document clustering 
and concept discovery tasks

80

60

50

40

B uckshot C om plete-link  B K -m eans S ingle-linkCBC Average-link K -m eans

S 1340320-new s

Figure 6.2 -  Cluster quality comparison: document clustering vs. concept discovery.
The cluster quality of the 20-news document clustering test set and the S',3403 concept discovery test set 
plotted over several clustering algorithms.

precision) (Eq. 6.1)
FI

Note that this measure of precision is different from the one presented in Section 5.3.1. That one 

will be used in our evaluation of word sense discovery in Section 6.2.6.

CBC discovered 943 clusters from S13403. We sorted them according to their precision using 

Eq. 6.1. Table 6 .6  shows five of the clusters evenly distributed according to their precision 

ranking along with their Top-15 features with highest mutual-information. The words in the 

clusters are listed in descending order of their similarity to the cluster centroid. For each cluster c, 

we also include wn(c). The underlined words are in wn(c).

The first cluster is clearly a cluster of firearms and the second is one of pests. In WordNet, 

the word pest is curiously only under the person hierarchy. The words stopwatch and houseplant 

do not belong to the clusters but they have low similarity to their cluster centroid. The third 

cluster represents some kind of control. In WordNet, the legal power sense of jurisdiction is not a 

hyponym of social control as are supervision, oversight and governance. The fourth cluster is 

about mixtures. The words blend and mix as the event of mixing are present in WordNet but not
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Table 6.6 -  Manual inspection of five of the 943 clusters discovered by CBC from S13403.
Columns include each cluster’s members and features with top-15 highest mutual information as well as the WordNet 
classes that have the largest intersection with each cluster. The rank is the placement of the clusters in the precision- 
sorted list of all clusters.

Ra n k M em bers Top-15 Fe atu res WN(C)

1 handeun. revolver, shotgun, 
pistol, rifle, machine gun, 
sawed-off shotgun, submachine 
gun, gun, automatic pistol, 
automatic rifle, firearm, carbine, 
ammunition, magnum, 
cartridge, automatic, stopwatch

__blast, barrel o f__ , brandish__ , f ire__,
p o in t__, pull o u t__, __discharge,__ fire,
__go off, arm w ith__ , fire w ith__, kill
w ith__, open fire w ith__., shoot w ith__,
threaten w ith__

artifact / 
artefact

236 whiteflv. pest, aphid, fruit flv, 
termite, mosauito, cockroach, 
flea, beetle, killer bee, maggot, 
predator, mite, houseplant. 
cricket

__control,__ infestation,__ larvae,__
population, infestation o f__, specie o f__,
swarm o f__, attract__ , breed__, e a t__,
eradicate__,, feed o n __, get rid o f__,
repel__, ward o ff__

animal / 
animate being / 
beast / brute / 
creature / fauna

471 supervision, discipline, 
oversight, control, governance, 
decision making, jurisdiction

breakdown in __, lack o f__, loss o f__ ,
assum e__, exercise__, exert__, maintain
__, re ta in__, seize__, tighten__, bring
under__, operate under__, place under
__, put under__, remain under__

act /  human 
action / human 
activity

706 blend, mix, mixture, 
combination, juxtaposition, 
combine, amalgam, sprinkle, 
svnthesis. hvbrid, melange

dip in __, marinate in __, pour in __., stir
in __, use in __, add to __, pour__, s tir__,
curious__, eclectic__, ethnic__, o d d__,
potent__, unique__, unusual__

group / 
grouping

941 employee, client, patient, 
applicant, tenant, individual, 
participant, renter, volunteer, 
recipient, caller, internee, 
enrollee, giver

benefit fo r__, care fo r__, housing fo r__,
benefit to __, service to __, filed b y __,
paid b y __, use b y __, provide fo r__,
require for —, give to __, offer to __,
provide to __, disgruntled__, indigent

worker

as the result of mixing. The last cluster is about consumers. Here is the consumer class in 

WordNet:

addict, alcoholic, big spender, buyer, client, concert- 
goer, consumer, customer, cutter, diner, drinker, drug 
addict, drug user, drunk, eater, feeder, fungi, head, 
heroin addict, home buyer, junkie, junky, lush, nonsmoker, 
patron, policyholder, purchaser, reader, regular, shopper, 
smoker, spender, subscriber, sucker, taker, user, 
vegetarian, wearer

In our cluster, only the word client belongs to WordNet’s consumer class. The cluster is ranked 

very low because WordNet failed to consider words like patient, tenant and renter as consumers. 

Table 6 .6  shows that even low ranking CBC clusters are fairly coherent.
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Table 6.7 -  A comparison of clusters representing the cell concept. 
The comparison is for several clustering algorithms using S13403.

A l g o r it h m s C l u s t e r s  w it h  t h e  l a r g e s t  in t e r s e c t i o n  w it h  t h e  W o r d N e t  c e l l  c l a s s .

CBC white blood cell, red blood cell, brain cell, cell, blood cell, cancer cell, nerve cell, 
embrvo, neuron

AT-means cadaver, meteorite, secretion, receptor, serum, handwriting, cancer cell, thvroid. 
body part, hemoglobin, red blood cell, nerve cell, urine, gene, chromosome, 
embrvo, plasma, heart valve, saliva, ovarv, white blood cell, intestine, lvmph node, 
sperm, heart, colon, cell, blood, bowel, brain cell, central nervous svstem, spinal 
cord, blood cell, cornea, bladder, prostate, semen, brain, spleen, organ, nervous 
system, pancreas, tissue, marrow, liver, lung, marrow, kidney

Buckshot cadaver, vagina, meteorite, human bodv. secretion, lining, handwriting, cancer cell, 
womb, vein, bloodstream, body part, eyesight, polyp, coronary artery, thyroid, 
membrane, red blood cell, plasma, gene, gland, embrvo. saliva, nerve cell, 
chromosome, skin, white blood cell, ovarv, sperm, uterus, blood, intestine, heart, 
spinal cord, cell, bowel, colon, blood vessel, lvmph node, brain cell, central 
nervous svstem, blood cell, semen, cornea, prostate, organ, brain, bladder, spleen, 
nervous system, tissue, pancreas, marrow, liver, lung, bone marrow, kidney

Bisecting AT-means picket line, police academy, sphere of influence, bloodstream, trance, sandbox, 
downtown, mountain, camera, boutique, kitchen sink, kiln, embassy, cellblock, 
voting booth, drawer, cell, skylight, bookcase, cupboard, ballpark, roof, stadium, 
clubhouse, tub, bathtub, classroom, toilet, kitchen, bathroom,

WordNet Class blood cell, brain cell, cancer cell, cell, cone, egg, nerve cell, neuron, red blood cell, 
rod, sperm, white blood cell

Table 6.7 shows the clusters containing the word cell that are discovered by various 

clustering algorithms from S134o3. The underlined words represent the words that belong to the cell 

class in WordNet. The CBC cluster corresponds almost exactly to WordNet’s cell class. AT-means 

and Buckshot produced fairly coherent clusters. The cluster constructed by Bisecting AT-means is 

obviously of inferior quality. This is consistent with the fact that Bisecting AT-means has a much 

lower score on S13403 compared to CBC, AT-means and Buckshot.

6.2.4 Language Modeling

We embedded the outputs obtained in Section 6.2.2 for several clustering algorithms into 

predictive clustering language modeling, described in Section 5.4.3. The algorithms we used were 

CBC, AT-means, Buckshot, Bisecting AT-means, and average-link. The predictive clustering models 

were trained using the 1991 San Jose Mercury files, a subset of the TREC corpus. The six 

training sets extracted from these files are described in Table 6 .8 .
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Table 6.8 -  Language modeling training sets.
The training sets are drawn from the 1991 San Jose Mercury corpus.

T r a in in g

S e t
F i l e n a m e s

S i z e

(M B )
W o r d s

t 5 SJM_001 -  SJM_005 5 589,724

T,o SJM_001 -  SJM_010 10 1,143,800

T25 SJM_001 -  SJM_025 25 2,871,660

Tso SJM_001 -  SJM_050 50 5,710,310

T75 SJM_001 -  SJM_075 75 8,544,940

T100 SJM_001 -  SJM_100 100 11,368,700

Each predictive clustering model uses trigrams and Katz’ backoff for smoothing for zero- 

probability events (Katz 1987). We employed the standard trigram language model with Katz’ 

backoff as a baseline for our evaluation. We computed the perplexity (see Section 5.4.2) of each 

language model over each training set. The perplexity is computed using a testing set consisting 

of the SJM_298 and SJM_299 files (about 219,454 words).

Figure 6.3 shows the relative perplexity of each predictive clustering model with the standard 

trigram model. Each curve represents a language model and each point represents the difference 

in perplexity between that point’s model and the standard trigram model. The lower the 

perplexity, the better the model.

All algorithms converge towards the standard trigram model as more training data is 

available. This is expected since clusters are most useful when data is sparse. As additional 

training data is available, more trigrams in the test set will have been seen during training. With 

smaller training sets, the quality of clustering is more apparent. All algorithms, apart from CBC, 

have higher perplexity than the standard trigram model. A poor clustering smoothes across 

unrelated words and produces higher perplexity whereas a good clustering smoothes across 

related (or similar) words and lowers perplexity.

Both the training sets and testing set are taken from the 1991 San Jose Mercury files. We 

applied the same methodology to a comparable (i.e. news story domain) but different test set 

consisting of files AP881206 and AP881209 from the 1988 AP Newswire corpus (approximately 

244,606 words). The training data remains the same. Figure 6.4 shows the results. The shapes of 

the curves are similar to those in Figure 6.3 and the relative rankings are also the same. However, 

there is a larger gap in relative perplexity with smaller training data. There are more unseen
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Relative Perplexity - Standard Trigram Model vs. Predictive Clustering
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Figure 6.3 -  Relative perplexity of predictive clustering on the SJM test set.
The predictive clustering language models use CBC, AT-means, Buckshot, Bisecting AT-means, and 
average-link clustering. Each point represents the difference between that model’s perplexity and the 
standard trigram model’s perplexity. Katz’ backoff smoothing is used for all models.

trigrams in the AP test set so the clusters are more important than in the SJM test set. The 

absolute values of perplexity are significantly worse on the AP test set: 413 for AP vs. 194 for 

SJM.

The relative ranking of the clustering algorithms in Figure 6.3 and Figure 6.4 remains the 

same as those reported in Table 6.5 for S3566 and similar to those reported in Table 6.2.

6.2.5 Sample concepts

Appendix A lists 30 of the concepts discovered by CBC on the ACQUAINT corpus, which is 

three times larger than the TREC corpus described in Section 6.1.1. It consists of roughly 375 

million words correlating to about 3 GB of data. The text is drawn from three news wire sources: 

Xinhua News Service (People's Republic of China) (1996-2000), the New York Times News 

Service (1998-2000), and the Associated Press Worldstream News Service (1998-2000). The
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Relative Perplexity - Standard Trigram Model vs. Predictive Clustering
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Figure 6.4 -  Relative perplexity of predictive clustering on the AP newswire test set.
The predictive clustering language models use CBC, AT-means, Buckshot, Bisecting AT-means, and 
average-link clustering. Each point represents the difference between that models perplexity and the 
standard trigram model’s perplexity. Katz’ backoff smoothing is used for all models.

sample shown in Appendix A includes only the words that have a similarity >0.15 with the 

centroid of a cluster (i.e. 0  = 0.15 for the algorithm presented in Section 4.2.3).

6.2.6 Word sense discovery

Experimental setup

We used the same 1GB TREC collection as described in Section 6.1.1. We applied the 

precision/recall evaluation methodology described in Section 5.3 using the test set consisting of

13,403 words, S13403.

We modified the average-link, AT-means, Bisecting AT-means and Buckshot algorithms 

reviewed in Chapter 2 since these algorithms only assign each element to a single cluster. For 

each of these algorithms, the modification is as follows:
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Table 6.9 -  Precision, Recall and F-measure on S13403 for various algorithms. 
The evaluation parameters are a  = 0.18 and 0 = 0.25.

A l g o r it h m P r e c is io n  (% ) R e c a l l (% ) F -m e a s u r e  (% )

CBC 60.8 50.8 55.4

UNICON 53.3 45.5 49.2

Buckshot 52.6 45.2 48.6

K-means 48.0 44.2 46.0

Bisecting K-means 33.8 31.8 32.8

Average-link 50.0 41.0 45.0

Apply the algorithm as described in Chapter 2 
For each cluster c returned by the algorithm

Create a centroid for c using all elements assigned to it 
Apply Mif-means using the above centroids

where MAT-means is the A'-means algorithm, using the above centroids as initial centroids, except 

that each element is assigned to its most similar cluster plus all other clusters with which it has 

similarity greater than a. We then use these modified algorithms to discover senses.

These clustering algorithms were not designed for sense discovery. Like UNICON, when 

assigning an element to a cluster, they do not remove the overlapping features from the element. 

Thus, a word is often assigned to multiple clusters that are similar. Also, as discussed in Section 

4.2.3, an infrequent sense of a word, like the life sense of plant, will likely not be discovered.

Word Sense Evaluation

We ran CBC and the modified clustering algorithms described above on the data set S13403 and 

applied the precision/recall evaluation methodology from Section 5.3. Appendix B lists a 1% 

random sample of the polysemous words discovered by CBC. Table 6.9 shows the results of our 

experiment. For Buckshot and AT-means, we set the number of clusters to 250 and the maximum 

number of iterations to 8. For the Bisecting AT-means algorithm, we applied the basic AT-means 

algorithm twice (a = 2) with a maximum of 8 iterations per split. CBC returned 943 clusters and 

outperformed the next best algorithm by 7.5% on precision and 5.3% on recall.

In Section 5.3.1, we stated that a cluster corresponds to a correct sense of a word w if its 

maximum simC similarity with any synset in S(w) exceeds a threshold 0 (Eq. 5.8). Figure 6.5
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Figure 6.5 -  F-measure of several algorithms with a  = 0.18 and varying 0 thresholds.

shows our experiments using different values of 0. The higher the 0 value, the stricter we are in 

defining correct senses. Naturally, the systems’ F-measures decrease when 0 increases. The 

relative ranking of the algorithms is not sensitive to the choice of 0 values. CBC has higher F- 

measure for all 0 thresholds.

For all sense discovery algorithms, we assign an element to a cluster if their similarity 

exceeds a threshold o. The value of 0  does not affect the first sense returned by the algorithms for 

each word because each word is always assigned to its most similar cluster. We experimented 

with different values of 0  and present the results in Figure 6.6. With a lower 0  value, words are 

assigned to more clusters. Consequently, the precision decreases while recall increases. CBC has 

higher F-measure for all 0  thresholds.

Manual Evaluation

We manually evaluated a 1% random sample of the test data consisting of 133 words with 168 

senses. Here is an example of the instances that would be manually judged for the words aria, 

capital and device:
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Figure 6.6 -  F-measure of several algorithms with 0 = 0.25 and varying a  thresholds.

a r i a Si: song, ballad, folk song, tune
c a p i t a l Si: money, donation, funding, honorarium
c a p i t a l S2: camp, shantytown, township, slum
d e v i c e Si: camera, transmitter, sensor, electronic

device
d e v i c e S2: equipment, test equipment, microcomputer,

video equipment

For each discovered sense of a word, we include its top-4 most similar words. Appendix C 

lists all the instances that were manually judged. The evaluation consists of assigning a tag to 

each sense as follows:

V: The list of top-4 words describes a sense of the word that has not yet been seen

x: The list of top-4 words does not describe a sense of the word

+: The list of top-4 words describes a sense of the word that has already been seen 

(duplicate sense)

The S2 sense of device is an example of a sense that is evaluated with the duplicate sense tag.
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Table 6.10 -  Confusion matrix of manual vs. automatic 
evaluations.
The comparison is of a 1% random sample of the data set.

V

Manual E valuation

X +

•S V<3 104 2 0
I xa 17 41 0
^  + 0 1 3

Table 6.10 compares the agreements/disagreements between our manual and automatic 

evaluations. Our manual evaluation agreed with the automatic evaluation 88.1% of the time. This 

suggests that the evaluation methodology is reliable.

Most of the disagreements (17 out of 20) were on senses that were incorrect according to the 

automatic evaluation but correct in the manual evaluation. The automatic evaluation misclassified 

these because sometimes WordNet misses a sense of a word and because of the organization of 

the WordNet hierarchy. Some words in WordNet should have high similarity (e.g. elected official 

and legislator) but they are not close to each other in the hierarchy.

Our manual evaluation of the sample gave a precision of 72.0%. The automatic evaluation of 

the same sample gave 63.1% precision. Of the 13,403 words in the test data, CBC found 2869 of 

them polysemous.

Discussion

We computed the average precision for each cluster, which is the percentage of elements in a 

cluster that correctly correspond to a WordNet sense according to Eq. 5.8. We inspected the low- 

precision clusters and found that they were low for three main reasons.

First, some clusters suffer from part-of-speech confusion. Many of the nouns in our data set 

can also be used as verbs and adjectives. Since the feature vector of a word is constructed from all 

instances of that word (including its noun, verb and adjective usage), CBC outputs contain 

clusters of verbs and adjectives. For example, the following cluster contains 112 adjectives:

weird, stupid, silly, old, bad, simple, normal, wrong, 
wild, good, romantic, tough, special, small, real, smart,
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The noun senses of all of these words in WordNet are not similar. Therefore, the cluster has a 

very low 2.6% precision. In hindsight, we should have removed the verb and adjective usage 

features.

Secondly, CBC outputs some clusters of proper nouns. If a word that first occurs as a 

common noun also has a proper-noun usage it will not be removed from the test data. For the 

same reasons as the part-of-speech confusion problem, CBC discovers proper noun clusters but 

gets them evaluated as if they were common nouns (since WordNet contains few proper nouns). 

For example, the following cluster has an average precision of 10%:

blue jay, expo, angel, mariner, cub, brave, pirate, twin, 
athletics, brewer

Finally, some concepts discovered by CBC are completely missing from WordNet. For 

example, the following cluster of government departments has a low precision of 3.3% because 

WordNet does not have a synset that subsumes these words:

public works, city planning, forestry, finance, tourism, 
agriculture, health, affair, social welfare, transport, 
labor, communication, environment, immigration, public 
service, transportation, urban planning, fishery, aviation, 
telecommunication, mental health, procurement,
intelligence, custom, higher education, recreation, 
preservation, lottery, correction, scouting

Somewhat surprisingly, all of the low-precision clusters that we inspected are reasonably 

good. At first sight, we thought the following cluster was bad:

shamrock, nestle, dart, partnership, haft, consortium, 
blockbuster, whirlpool, delta, hallmark, rosewood, odyssey, 
bass, forte, cascade, citadel, metropolitan, hooker

Here are some of the features of the centroid of this cluster:

  product, __ customer, work at __, leave  , __
announced, __  disclosed,___ introduced, etc.

By looking at the features, we realized that it is m ostly a cluster o f  com pany names.
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Chapter 7

Conclusions

We proposed a general-purpose clustering algorithm called CBC (Clustering By Committee) 

from which we organized documents according to topics and from which we discovered concepts 

and word senses. We explored the value of these systems by experimenting with two novel 

evaluation methodologies that defined what a word sense is and defined the quality of a clustering 

output.

7.1 Contributions

The main contribution of this dissertation is the general purpose clustering algorithm CBC. It 

addresses the general goal of clustering, which is to group data elements such that the intra-group 

similarities are high and the inter-group similarities are low. Using sets of representative elements 

called committees, CBC attempts to discover cluster centroids that unambiguously describe the 

members of a possible class. The algorithm initially discovers committees that are well scattered 

in the similarity space. It then proceeds by assigning elements to their most similar clusters. After 

assigning an element to a cluster, CBC removes their overlapping features from the element 

before assigning it to another cluster. This allows CBC to discover the less frequent senses of a 

word and to avoid discovering duplicate senses.
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We explored CBC’s use in learning from textual data by applying it to the tasks of document 

clustering and concept discovery. Docum ent clustering is practical in many information retrieval 

tasks such as document browsing and the organization and viewing of retrieval results. Apart 

from the CBC algorithm itself, the concept and word sense discovery system is the next largest 

contribution from this work as it may become an important resource in the natural language 

processing and data mining communities. Broad-coverage lexical resources such as WordNet are 

extremely useful but are mostly hand generated. They often include many rare senses while 

missing domain-specific senses. Automatically generating them is useful for many applications 

such as word sense disambiguation, question answering and ontology construction. CBC was 

shown to outperform several common clustering strategies in both document clustering and 

concept discovery tasks.

Evaluating clustering results has remained a very challenging task. We presented two novel 

evaluation methodologies to automatically evaluate clustering output. These methodologies 

provided measures that are more intuitive and easier to interpret than previous measures. The first 

is based on the editing distance between output clusters and a manually constructed answer key. It 

defines how much work is necessary in order to convert from one to the other. Intuitively, it 

determines the percentage of savings of using the clustering result to construct an answer key 

versus constructing it from scratch (i.e. a baseline clustering). The experiments conducted using 

various testing sets and by a separate evaluation using language modeling resulted in similar 

rankings of the clustering algorithms. CBC consistently outperformed all other algorithms.

The second methodology is specific to word sense discovery. It measures the precision and 

recall of the senses discovered by CBC using WordNet as the gold standard of senses. We 

provided a mechanism for mapping a sense discovered by CBC to a WordNet synset and 

formulated whether the discovered sense is a correct sense. In our experiments, CBC surpassed 

the next best algorithm by 7.5% on precision and 5.3% on recall. A manual evaluation of a 1% 

sample of the concepts discovered by CBC agreed 88.1% of the time with the automatic 

evaluation supporting the reliability of the evaluation methodology. 85% of the disagreements 

were on senses that were incorrect according to the automatic evaluation but correct in the 

manual evaluation. These disagreements were mostly due to lackings in the WordNet hierarchy.

We studied the effect of various CBC parameters on clustering quality. Using the mutual- 

information vector space model, CBC is robust to design choices such as stemming terms, 

removing stop words, filtering, and the minimum similarity threshold for assigning elements to 

clusters in our soft clustering model. We also showed that CBC generates reasonable clusters
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even when using a minuscule corpus such as the 46 papers presented at SIGIR-2001. Finally, in a 

manual inspection of the concepts and senses generated from the TREC corpus, we showed that 

even the lowest ranking CBC clusters are fairly coherent.

7.2 Future work

CBC is already being used by several research groups in the world. One group is looking at 

clustering French words. Without a French parser, the feature representation must be modified 

from our concept discovery application. A simple approach is to use proximity features. This 

approach assumes that words can be characterized by the words that surround them. Instead of 

representing each word by the contexts in which it occurs, we may represent each word by the 

words that surround it. Consider the following sentence:

Edmonton won the seventh game at home, and then went 11-0 
last year en route to their fourth Cup in five seasons.

In our concept discovery application, the word game in this sentence would have the following 

features: -V:obj:N:win, N:det:D:the, and N:adj:A:seventh. Using a proximity window of two 

words, the features of game would be -2:the, -1:seventh, +l:at, and +2:home. Using a similarity 

measure like (Lin 1998b) to generate a similarity matrix of words using proximity features yields 

comparable results to using dependency features. It is therefore expected that reasonable results 

would be obtained by applying CBC to a French corpus using proximity features.

CBC may also be used in word sense disambiguation (WSD). The goal of WSD is to resolve 

the ambiguity of polysemous words in text. For example, the following two sentences depict two 

different senses of the word chair:

If I threw 500 chairs in 900 games, that would be one 
thing, but I've thrown one and now I'm the chair- 
t h r o w e r .

Support of those candidates is not dependent on whether 
they support me for caucus chair.

Typical WSD systems disambiguate a word by tagging it with a WordNet synset. A standard 

hand-coded testing corpus called SemCor (Miller, Chodorow, Landes and Leacock 1994) is 

usually used for evaluating systems. CBC offers the capability of disambiguating senses in an 

unsupervised manner. Given a polysemous word w in a parsed sentence, we can use w’s local
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features to assign it to an existing concept. Using Eq. 5.9, we can map this concept to a WordNet 

synset and assign that sense to w.

A group is looking at CBC’s discovered concepts as a first step in identifying a large number 

of words (particularly polysemous words) for an automatically created ontology representing 

complex entities that have different perspectives (e.g. a chair can be something to sit on or the 

head of a group; an ensemble can be a musical group or a clothing outfit). Another group is 

looking at clustering web pages. Here, the bag-of-words model might not be sufficient for 

representing small pages. Additional features that include the topology of the website in which 

the page exists may help.

In earlier work, we presented an algorithm, called DIRT (Discovery of Inference Rules from 

Text), to automatically learn paraphrase expressions from text (Lin and Pantel 2001b). It is a 

generalization of previous algorithms used for finding similar words (Hindle 1990; Pereira, 

Tishby and Lee 1993; Lin 1998b). These algorithms use the Distributional Hypothesis, which 

states that words that occurred in the same contexts tend to have similar meanings (Harris 1985). 

Instead of applying the Distributional Hypothesis to words, we applied it to paths in dependency 

trees. Essentially, if two paths tend to link the same sets of words, we hypothesized that their 

meanings are similar. A path is an expression that represents a binary relationship between two 

nouns and we generated an inference rule for each pair of similar paths. For example, Table 7.1 

lists the 50 most similar paths to “X solves T ’ generated by DIRT.

Consider the following parse tree for the sentence John found a solution to the problem:

^ subV  ^
John found a solution to the problem.

An example of a path extracted by DIRT for this sentence is between John and problem:

N:subi:V|<-find->|V:obj:N|->solution->[N:to:N|. The left and right sides (X  and Y) of the path are 

called slot fillers. For this particular sentence, the path has two fillers (features): X = John and Y = 

problem. Using a large corpus, we can collect all the paths along with their features into a feature 

database as described in Section 3.3.1. CBC may then be directly applied using the database.

CBC may also be useful in question answering. Falcon (Pasca and Harabagiu 2001), one of 

the top question answering systems, uses an answer type taxonomy that is linked to WordNet
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Table 7.1 -  Top-50 most similar paths to “X solves Y” generated by DIRT.

1. Y is solved by X 1. X clears up Y

2. X resolves Y 2. *X creates Y

3. X finds a solution to Y 3. *Y leads to X

4. X tries to solve Y 4. Y is eased between X

5. X deals with Y 5. X gets down to Y

6. Y is resolved by X 6. X worsens Y

7. X addresses Y 7. X ends Y

8. X seeks a solution to Y 8. *X blames something for Y

9. X do something about Y 9. X bridges Y

10. X solution to Y 10. X averts Y

11. Y is resolved in X 11. *X talks about Y

12. Y is solved through X 12. X grapples with Y

13. X rectifies Y 13. *X leads to Y

14. X copes with Y 14. X avoids Y

15. X overcomes Y 15. X solves Y problem

16. X eases Y 16. X combats Y

17. X tackles Y 17. X handles Y

18. X alleviates Y 18. X faces Y

19. X corrects Y 19. X eliminates Y

20. X is a solution to Y 20. Y is settled by X

21. X makes Y worse 21. *X thinks about Y

22. X irons out Y 22. X comes up with a solution to Y

23. *Y is blamed for X 23. X offers a solution to Y

24. X wrestles with Y 24. X helps somebody solve Y

25. X comes to grip with Y 25. *Y is put behind X

synsets. Given a query, the system identifies an answer type (i.e. a specific semantic category) 

and prefers answers contained in the WordNet synsets linked to that type. One serious limitation 

of WordNet in this context is that it does not contain many proper nouns. For example, the 

composer synset in WordNet contains names like Mozart and Beethoven, but it is more 

illustrative than a complete listing. CBC concepts do not have this limitation. CBC also has the 

advantage that its concepts are specific to the domain of the text used to generate them. This is 

useful for domain specific question answering systems.
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Text contains a wealth of knowledge about who we are, what we know, how we think, and 

how we communicate. We are just beginning to tap into the information that is available in the 

tales we read to our children, the narratives that capture our thoughts, and the stories that shape 

our world. In this dissertation, we presented some recent advances in automatically acquiring 

knowledge from text. It is, however, just a drop in the bucket of the vast information available in 

text.
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Appendix A
Sample o f 30 concepts discovered by CBC on 
the 3GB ACQUINT corpus -  only words with 
similarity >0.15 with a cluster centroid are 
listed

NqO : chili powder, baking powder,
paprika, cayenne pepper, curry 
powder, baking soda, turmeric, 
allspice, salt, cumin, sugar, 
cayenne, oregano, nutmeg, pepper. 
Cinnamon, black pepper, garlic salt, 
powder, brown sugar, cornstarch, 
thyme, coriander, Ginger, mustard, 
fennel seed, cumin seed, white 
pepper, coriander seed, flour, 
seasoned salt, vanilla, cardamom, 
vanilla extract, peppercorn, 
cornmeal, flake, clove, seasoning, 
honey, paste, Herb, mustard seed, 
spice, molasses, saffron, SAGE, 
yeast, mace, cocoa, cheese

N q 2 : Cleveland Indians, Houston Astros,
San Diego Padres, Detroit Tigers, 
Philadelphia Phillies, Pittsburgh 
Pirates, Cincinnati Reds, Milwaukee 
Brewers, St. Louis Cardinals,
Arizona Diamondbacks, Los Angeles 
Dodgers, New York Mets, Boston Red 
Sox, Chicago Cubs, New York Yankees, 
Atlanta Braves, Baltimore Orioles, 
Colorado Rockies, Toronto Blue Jays, 
San Francisco Giants, Texas Rangers, 
Oakland Athletics, Kansas City 
Royals, Yankee, Florida Marlins, 
Anaheim Angels, Chicago White Sox, 
Seattle Mariners, Tampa Bay Devil 
Rays, Mets, dodger, Minnesota Twins, 
Astros, Montreal Expos, Red Sox, 
brave, Ranger, Giants, White Sox, 
cub, Padre, diamondback. Orioles, 
A's, Phillies, mariner, angel, 
marlin, cardinal, Tampa Bay 
Lightning, blue jay, Calgary Flames, 
Washington Capitals, California 
Angels, devil ray, Indian, Royals, 
New York Giants, expo, Carolina 
Hurricanes, red, Columbus Crew, 
pirate, Toronto Maple Leafs, Yomiuri 
Giants, Dallas Stars, New York-New 
Jersey MetroStars, Rockies, Edmonton 
Oilers, brewer, Sox, Detroit Red 
Wings, Seibu Lions, Washington 
Redskins, Boston Bruins,
Indianapolis Colts, Ottawa Senators, 
Colorado Avalanche, Arizona 
Cardinals, Green Bay Packers, New 
Jersey Devils, Buffalo Sabres, Los 
Angeles Kings, Phoenix Coyotes, St. 
Louis Blues, tiger, Pittsburgh 
Penguins, Brooklyn Dodgers, Seattle

Seahawks, Tampa Bay Mutiny, San 
Francisco 49ers, Baltimore Ravens, 
twin, Boston Braves, Washington 
Senators, Kinder Bologna, ARIZONA, 
oriole

N q 5 : Mike Richter, Tommy Salo, John
Vanbiesbrouck, Curtis Joseph, Chris 
Osgood, Steve Shields, Tom Barrasso, 
Guy Hebert, Arturs Irbe, Byron 
Dafoe, Patrick Roy, Bill Ranford, Ed 
Belfour, Grant Fuhr, Dominik Hasek, 
Martin Brodeur, Mike Vernon, Ron 
Tugnutt, Sean Burke, Zach Thornton, 
Jocelyn Thibault, Kevin Hartman, 
Felix Potvin, Hasek, Nikolai 
Khabibulin, Stephane Fiset, Jamie 
Storr, Olaf Kolzig, Belfour, Roman 
Turek, Fiset, Salo, Damian Rhodes, 
Richter, Dan Cloutier, Dafoe, Jorge 
Campos, Osgood, Hebert, Storr, 
Barrasso, Kolzig, Gao Hong, Rob 
Tallas, Peter Schmeichel,
Khabibulin, Roy, Brodeur, Briana 
Scurry, Ranford, Vanbiesbrouck, 
Walter Zenga, Schmeichel, Grahame, 
Taffarel, Turek

N q 6 : onion, tomato, cucumber, bell
pepper, carrot, red onion, eggplant, 
green onion, scallion, shallot, 
garlic, celery, potato, zucchini, 
red bell pepper, red pepper, leek, 
green pepper, plum tomato, garlic 
clove, fennel, cilantro, spinach, 
chilies, water chestnut, radish, 
bean sprout, cabbage, JALAPENO, 
beet, turnip, parsnip, bay leaf, 
green bean, chervil, winter squash, 
Vidalia onion, Pimento, hard-boiled 
egg, mushroom, lettuce, asparagus, 
Basil, chive, pineapple, pancetta, 
tomatillo, black olive, avocado, 
sweet potato, snow pea, okra, 
cantaloupe, chorizo, ARUGULA, 
artichoke, broccoli, lima bean, 
plantain, Swiss chard, Cauliflower, 
brussels sprout, vegetable, 
lemongrass, lemon, Dill, shiitake 
mushroom, mango, nectarine, olive, 
pear, hot pepper, Apple, rhubarb, 
breadcrumb, TOMATOES, endive, 
watercress, melon, egg, cherry 
tomato, chiles, radicchio, Kale, 
watermelon, mesclun, pumpkin, 
papaya, bok choy, romaine lettuce, 
anchovy, fava bean, string bean, 
peach, green olive, sauerkraut, 
yuca, Collard, blueberry, kumquat, 
fig, ROMAINE, ricotta, chard, pinto 
bean, chili pepper, chili, collard 
greens. Quince, root vegetable, 
veggie, plum, BERRY, lime, tofu, 
passion fruit, Feta, iceberg 
lettuce, anise, tortellini, 
sparerib, cranberry, wild rice, 
matzo, grapefruit, vanilla bean, 
sweet corn, chutney, persimmon, 
Tamarind, pomegranate, smoked 
salmon, salad, corn, YAM, Chinese 
cabbage, morel, chanterelle, 
Chipotle, POTATOES, caper, sorrel.
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kernel, raw meat, ground beef,
ORANGE, blackberry, fruit, julienne, 
truffle, Grand Marnier, licorice, 
green, corned beef, salsa, 
tangerine, white wine

NqlO: table tennis, judo, water polo,
weightlifting, gymnastics, 
volleyball, Badminton, archery, 
field hockey, taekwondo, handball, 
rowing, soccer, tennis, cycling, 
track and field, pentathlon, 
swimming, softball, takraw, wushu, 
fencing, diving, triathlon, karate, 
athletics, lacrosse, yachting, 
billiards, chess, Bowling, swimming 
event, under-21, snooker, Shooting, 
croquet, equestrian, squash, three- 
meter, ice skating, track

N q l 2 : nausea, dizziness, vomiting,
diarrhea, stomachache, pain, fever, 
headache, skin rash, shortness, 
constipation, palpitation, fatigue, 
chest pain, insomnia, symptom, sore 
throat, upset stomach, memory loss, 
dehydration, disorientation, 
drowsiness, numbness, indigestion, 
jaundice, irritability, tiredness, 
coughing, cough, irritation, ache, 
cold, exhaustion, skin disease, 
panic attack, LETHARGY, weakness, 
anxiety, bronchitis, seizure, 
sweating, infection, depression, hot 
flash, psychosis, rash, Breathing, 
hallucination

Nql3 : computer science, anthropology,
sociology, mechanical engineering, 
zoology, chemical engineering, 
comparative literature, biology, 
mathematics, Science, economics, 
political science, psychology, 
electrical engineering, Engineering, 
linguistics, geology, social 
science, literature, physic, 
biochemistry, chemistry, physics, 
liberal arts, math, botany, 
astronomy. Microbiology,
Criminology, astrophysics, molecular 
biology, geography, agronomy, 
journalism, pharmacology, physical 
education, civil engineering, social 
work, physiology, natural science, 
theology, fine arts, Archaeology, 
architecture, environmental science, 
neuroscience, information science, 
medicine, English, nursing, civics, 
communication, earth science, 
political economy, education, 
philosophy, accounting, archeology, 
geophysics, ecology. Oceanography, 
e l e m e n t a r y  e d u c a t i o n ,  a r t ,  

paleontology, hydrology, fine art, 
folklore, humanity, anatomy,
FINANCE, language, ethic, theory, 
algebra, HEALTH, special education, 
bioethics

Nql4: Cezanne, Gauguin, Renoir, Manet,
Matisse, Gogh, Chagall, Monet, 
Picasso, Degas, van Gogh,

Modigliani, Bonnard, Giacometti, 
Mondrian, Rembrandt, Miro, Kooning, 
Ingres, Rothko, Vincent van Gogh, 
Claude Monet, Delacroix, Vermeer, 
Klee, Jackson Pollock, Pollock,
Goya, Van Dyck, Dali, Rodin, Leger, 
Norman Rockwell, Heade, Andy Warhol, 
Calder, Warhol, Caravaggio, Salvador 
Dali, Jasper Johns, Michelangelo

N q l 5 : multiple sclerosis, diabetes,
Parkinson's disease, OSTEOPOROSIS, 
cardiovascular disease, Parkinson's, 
rheumatoid arthritis, heart disease, 
disease, ASTHMA, cancer, 
hypertension, lupus, high blood 
pressure, arthritis, emphysema, 
epilepsy, cystic fibrosis, leukemia, 
hemophilia, DISORDER, congestive 
heart failure, Alzheimer, myeloma, 
glaucoma, schizophrenia, lung 
cancer, illness, infection, anemia, 
liver disease, muscular dystrophy, 
colon cancer, narcolepsy, 
depression, obesity, syndrome, 
angina, kidney disease, cirrhosis, 
ADHD, osteoarthritis, heart failure, 
dementia, ailment, stroke, 
psoriasis, ALS, manic depression, 
allergy, autism, bronchitis, 
atherosclerosis, bipolar disorder, 
lymphoma, ulcer, skin cancer, 
alcoholism, heart attack, clinical 
depression, migraine, mental 
illness, cataract, apnea, sclerosis, 
eye disease, infertility, heart 
condition, reflux, asthma attack, 
SIDS, genetic disease, anxiety 
disorder, neurological disease, 
fibrillation, virus, neurological 
disorder, diarrhea, nearsightedness, 
anorexia, hay fever, bulimia, 
pregnancy, degeneration, 
cholesterol, INJURY, gout, C, back 
pain, carcinoma, complication, 
condition, failure

Nq23: Yale Law School, Harvard Business
School, Harvard Law School, Brown 
University, Harvard, City College, 
Harvard University, Morehouse 
College, Amherst College, Yale 
university, Yale, New York 
University, Columbia University, 
University of Chicago, University of 
Wisconsin, Stanford University, Ohio 
State University, Boston University, 
University of Southern California, 
MIT, University of Virginia, 
Massachusetts Institute of 
Technology, Northwestern University, 
University of Michigan, Georgetown 
University, University of Texas, 
Syracuse University, Michigan State 
University, Princeton, law school, 
George Washington University, 
University of Georgia, Williams 
College, Rutgers University, London 
School of Economics, Emory 
University, Indiana University, 
Cornell University, American 
University, Hunter College, Queens
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College, Princeton University, 
University of Minnesota, Smith 
College, University of Kansas, 
University of Washington, Cambridge 
University, Dartmouth College, Tufts 
University, Louisiana State 
University, University of North 
Carolina, Southern Methodist 
University, Harvard College, 
University of Maryland, Oxford 
University, Howard University, 
Northeastern University, school of 
law, San Francisco State University, 
Duke University, California State 
University, University of Arizona, 
Cornell, Juilliard School,
Vanderbilt University, University of 
New Hampshire, University of 
Toronto, University of 
Massachusetts, Rice University,
State University of New York, 
University of Missouri, University 
of Utah, Juilliard, Arizona State 
University, Columbia, Oxford, Iowa 
State University, Georgia State 
University, University of New 
Mexico, University of Tennessee, 
Brandeis University, Vassar, 
Dartmouth, University of Florida, 
University of Alabama, Trinity 
College, Texas Christian University, 
University of Dayton, academy, art 
school, University of Miami, 
Pennsylvania State University, 
Barnard College, Wellesley College, 
University of Connecticut, Brigham 
Young University, UC Berkeley, 
University of Oklahoma, NYU,
Carnegie Mellon University, Fordham 
University, Culinary Institute of 
America, air force academy, 
University of Wyoming, U.S. Naval 
Academy, naval academy, Baylor 
University, University of Notre 
Dame, University of Oregon, City 
University of New York, Hebrew 
University, University of 
Mississippi, school of music, 
University of Nebraska, Temple 
University, Kansas State University, 
Georgetown, University of Arkansas, 
Eton, University of South Carolina, 
Ohio University, CAMBRIDGE, Catholic 
University, Tehran University, 
Florida State University, West 
Point, Hofstra University, UT, 
Brandeis, North Carolina State 
University, University of Maine, 
Wharton School, University of 
Cincinnati, Florida International 
University, Berkeley, Seton Hall 
U n i v e r s i t y

Nq29: Conchita Martinez, Arantxa Sanchez
Vicario, Mary Pierce, Nathalie 
Tauziat, Jana Novotna, Amanda 
Coetzer, Iva Majoli, Arantxa 
Sanchez-Vicario, Lindsay Davenport, 
Anke Huber, Monica Seles, Julie 
Halard-Decugis, Carlos Moya, Yevgeny 
Kafelnikov, Sandrine Testud, Irina

Spirlea, Felix Mantilla, Venus 
Williams, Martina Hingis, Henrieta 
Nagyova, Dominique Van Roost, Sarah 
Pitkowski, Steffi Graf, Richard 
Krajicek, Nathalie Dechy, Goran 
Ivanisevic, Barbara Paulus,
Francisco Clavet, Patty Schnyder, 
Karol Kucera, Wayne Ferreira, Alex 
Corretja, Tim Henman, Alberto 
Berasategui, NATASHA ZVEREVA, 
American Lindsay Davenport, Cedric 
Pioline, Gustavo Kuerten, Jerome 
Golmard, Andre Agassi, Brenda 
Schultz-McCarthy, Patrick Rafter, 
Marcelo Rios, Albert Costa, Jonas 
Bjorkman, Sergi Bruguera, Ai 
Sugiyama, Thomas Enqvist, Chanda 
Rubin, Magdalena Maleeva, Michael 
Chang, Carlos Costa, Amy Frazier, 
Thomas Muster, Petr Korda, Serena 
Williams, Lisa Raymond, Ruxandra 
Dragomir, Magnus Norman, Alexandra 
Fusai, Marc Rosset, Amelie Mauresmo, 
Arnaud Boetsch, American Todd 
Martin, Sabine Appelmans, American 
Michael Chang, Slava Dosedel, Greg 
Rusedski, Hernan Gumy, Anna 
Kournikova, Fabrice Santoro, Nicolas 
Kiefer, Tommy Haas, Mary Joe 
Fernandez, Anne-Gaelle Sidot, Karina 
Habsudova, Bohdan Ulihrach, Magui 
Serna, Elena Likhovtseva, Byron 
Black, Andrea Gaudenzi, Magnus 
Gustafsson, Gabriela Sabatini, 
Barbara Schett, Alberto Costa,
Thomas Johansson, Tamarine 
Tanasugarn, Malivai Washington, 
Guillaume Raoux, Dominik Hrbaty, 
Andrei Medvedev, Silvia Farina, 
Mariano Puerta, Sebastien Grosjean, 
Galo Blanco, Yayuk Basuki, Martin 
Damm, Pete Sampras, Marat Safin, 
Vincent Spadea, Russian Yevgeny 
Kafelnikov, Karim Alami, Helena 
Sukova, ROGER FEDERER, Corina 
Morariu, Nicolas Escude, Jiri Novak, 
Nicolas Lapentti, Kimiko Date, Guy 
Forget, Jacco Eltingh, Arnaud 
Clement, Peter Nicol, Daniel Vacek, 
Julian Alonso, Jennifer Capriati, 
Paul Haarhuis, Todd Martin, American 
Pete Sampras, Mariano Zabaleta, 
Mahesh Bhupathi, Brett Steven, 
Florencia Labat, David Prinosil, 
Rodney Eyles, Javier Sanchez, 
Kimberly Po, Gianluca Pozzi, Sargis 
Sargsian, Michael Stich, Filip 
Dewulf, Michelle Martin, Magnus 
Larsson, Jansher Khan, Jeff Tarango, 
Grant Stafford, Elena Dementieva, 
Daniel Nestor, Hicham Arazi, Davide 
Sanguinetti, Mikael Tillstrom, Zhang 
Ning, American Andre Agassi, Kim 
Clijsters, Vince Spadea, Mirjana 
Lucie, John Higgins, Justin 
Gimelstob, Poul-Erik Hoyer-Larsen, 
seed, Kristie Boogert

Nq30: manslaughter, racketeering, grand
larceny, burglary, sexual assault, 
larceny, ENDANGERMENT, theft,
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N q 3 9 :

Nq46 :

robbery, mail fraud, fraud, assault, 
extortion, homicide, conspiracy, 
crime, bribery, embezzlement, armed 
robbery, sodomy, securities fraud, 
forgery, assault and battery, tax 
evasion, treason, money laundering, 
corruption, perjury, breach of 
trust, child abuse, offense, 
possession, violation, genocide, 
tampering, shoplifting, espionage, 
bribe-taking, count, indecency, 
insider trading, sedition, 
terrorism, DWI, obstruction, stolen 
property, contempt of court, 
violence, battery, spying, 
carjackings, subversion, fraud 
charge, solicitation, Blackmail, 
mischief, murder charge, graft, 
bombing, enrichment
shirt, jacket, sweater, pant, polo 
shirt, windbreaker, sweatshirt, 
trouser, pullover, blouse, T-shirt, 
jean, turtleneck, Cardigan, sweat 
pants, blue jean, skirt, leather 
jacket, overcoat, sneaker, tunic, 
dress shirt, pantsuit, legging, 
miniskirts, coat, waistcoat, poncho, 
hat, undershirt, raincoat, tights, 
dark glasses, loafer, parka, 
bellbottoms, hot pants, suit, dress, 
leotards, sandal, bandanna, mitten, 
camisole, knickers, bandana, 
baseball cap, tennis shoe, corduroy, 
mink coat, pants suit, evening gown, 
rubber boot, cocktail dress, 
coverall, bodice, shoe, smock, 
sarong, cowboy hat, nightgown, 
trench coat, suspender, miniskirt, 
cloth, bodysuit, bustier, headband, 
moccasin, khaki, straw hat, cowboy 
boot, capris, evening dress, fur 
coat, caftan, evening bag, bathrobe, 
bow tie, sombrero, necktie, hosiery, 
combat boot, wristband, ski mask, 
sleeve, frock, kimono, halter, 
slicker, sari, kilt, running shoe, 
ball gown, TOP, chino, brassiere, 
tote bag, tux, sheath, lapel, 
petticoat, cap, G-string, wedding 
dress, waistband, SHORT, bloomers, 
clothes, wedding gown, slipcover, 
Stetson, clothing, name tag, 
handkerchief, belt buckle, shoulder 
pad, breech, duster, body armor, 
neckline, cleat, spacesuit, life 
jacket, toupee, drawstring, pocket 
watch, finery, bulletproof vest, 
sportswear, black tie, docker, 
lingerie, stiletto, wader, Bolero, 
getup, headgear, face mask
Lennox Lewis, George Foreman,
Evander Holyfield, Michael Moorer, 
Riddick Bowe, Mike Tyson, Larry 
Holmes, Oscar De La Hoya, Oliver 
McCall, Buster Douglas, Tyson, 
Holyfield, Francois Botha, Felix 
Trinidad, Lewis, Julio Cesar Chavez, 
Ike Quartey, Sugar Ray Leonard, De 
La Hoya, Roy Jones Jr., Axel Schulz, 
Pernell Whitaker, Arturo Gatti,

Henry Akinwande, Muhammad Ali, 
Shannon Briggs, Trinidad, Orlin 
Norris, Joe Frazier, Lou Savarese, 
Rocky Marciano, Vaughn Bean, Bowe, 
Roberto Duran, Shane Mosley, Joe 
Louis, David Reid, Quartey, Sonny 
Liston, Fernando Vargas, Oba Carr, 
Roy Jones, Moorer, Andrew Golota, 
Johnny Tapia, Akinwande, Botha, 
Michael Grant, Tszyu, Tua, Ali, Jack 
Dempsey

Nq70: clarinet, flute, saxophone, violin,
guitar, oboe, banjo, Cello, 
trombone, harmonica, piano, 
mandolin, trumpet, drum, harp, 
electric guitar, tuba, INSTRUMENT, 
acoustic guitar, sax, percussion, 
woodwind, keyboard, viola, bagpipe, 
accordion, Bass, steel guitar, 
fiddle, cymbal

Nql62: Indian Ocean, Red Sea,
Mediterranean, South China Sea, 
Aegean Sea, gulf, Arabian Sea, Sea 
of Japan, Persian Gulf, Aegean, 
Pacific, Atlantic, Adriatic, Black 
Sea, Baltic Sea, Mediterranean Sea, 
Caribbean, Pacific Ocean, Adriatic 
Sea, Gulf of Mexico, Caspian Sea,
Bay of Bengal, East China Sea, sea, 
South Atlantic, Yellow Sea, Beibu 
Gulf, Atlantic Ocean, Bering Sea, 
Caribbean Sea, North Atlantic, 
Arabian Peninsula, South Pacific, 
North Pacific, Baltic, Manila Bay, 
Western Pacific, strait, Barents 
Sea, English Channel, North Sea

Nql72: pink, red, turquoise, blue, purple,
green, yellow, beige, ORANGE, taupe, 
color, white, lavender, fuchsia, 
brown, gray, Black, mauve, royal 
blue, VIOLET, chartreuse, deep red, 
teal, dark red, Aqua, gold, 
burgundy, lilac, crimson, black and 
white, garnet

Nq202: Antelope, deer, rhino, elephant,
giraffe, Leopard, Bengal tiger, 
tiger, rhinoceros, elk, cheetah, 
snow leopard, gazelle, wild boar, 
black bear, zebra, bighorn sheep, 
bison, lion, hippo, bear, panda, 
brown bear, wolf, gray wolf, Red 
Deer, macaque, moose, mastodon, 
gorilla, blue whale, Gibbon, 
pheasant, kangaroo, elephant 
population, golden eagle, sperm 
whale, bighorn

Nq326: novel, book, memoir, biography,
essay, autobiography, poem, short 
story, novella, magazine article, 
monograph, film, fiction, picture 
book, nonfiction, cookbook, tome, 
literary work, diary, best seller, 
anthology, Treatise, documentary, 
writing, movie, bestseller, 
bibliography, poetry, Good Book, 
prose, screenplay, newspaper 
clipping, libretto, manuscript, love 
letter, paperback, trilogy, life
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Nq474: 

Nq4 7 5: 

Nq743:

Nq744:

Nq745: 

Nq746:

Nq832:

Nq944: 

Nqll07

Nql367

Nql372

story, glossary, travelogue, 
yearbook, piece of work, newspaper 
article, reminiscence, scrapbook, 
literature, script, reportage, 
Satanic Verses, LOLITA
Manitoba, Saskatchewan, British 
Columbia, Alberta, Ontario, New 
Brunswick, Newfoundland, Quebec,
Nova Scotia, Prince Edward Island
master's degree, bachelor's degree, 
doctorate, law degree, Ph.D, degree, 
B.A, MBA, laude, honorary degree, 
diploma, B.S, knighthood, MASTER
orchestra, ensemble, troupe, choir, 
symphony orchestra, opera company, 
ballet company, band, sextet, jazz 
band, chamber orchestra, chorus, 
bagpiper, dance band, military band, 
theater company, musical group, 
festival, cast
commotion, brouhaha, hubbub, 
hullabaloo, fuss, firestorm, 
excitement, mess, hysteria, ruckus, 
flap, tempest, scare, fanfare, 
clamor
crocodile, alligator, snake, lizard, 
spider, scorpion, tarantula, hyena, 
rattlesnake, gecko, python
protein, gene, enzyme, receptor, 
molecule, antibody, leptin, 
telomerase, peptide, chemical 
compound, neurotransmitter, 
dopamine, antigen, serotonin, 
hemoglobin, mutation, amino acid, 
angiogenesis, interferon, nitric 
oxide, electric current, brain wave, 
isotope, mitochondria, chromosome, 
RNA, Y chromosome, fatty acid, 
antifreeze, Herceptin, taxol
fame, stardom, notoriety, 
prominence, respectability, renown, 
popularity, celebrity, glory, 
success, immortality, Recognition, 
wealth
width, length, size, height, 
diameter, thickness, circumference, 
depth, surface area, speed, weight, 
distance
juggler, acrobat, dancer, magician, 
puppeteer, comedian, Clown, 
entertainer, belly dancer, movie 
star, celebrity, comic, 
photographer, ventriloquist
hearsay, innuendo, misinformation, 
conjecture, propaganda, gossip
ravine, gully, crevasse, ditch, 
gorge, CANYON, BAY, crater
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Nq573 0.12 (fluctuation, volatility, 
gyration, run-up)

App<endlix B gasoline
Nql4

Nq540

0.43

0.11

(natural gas, diesel fuel, 
gasoline, heating oil) 
(cooking oil, dairy product,

1 % random sample o f the polysemous words hpad nf state
legume, cereal)

discovered by CBC on S2 3403 Nq872 0.32 (cabinet minister, finance
minister, head of state)

NqlOO 0.11 (organization, group, 
government, coalition)

argument imprisonment
Nq623 0 . 3 4 (tug-of-war, custody battle. Nq594 0.23 (annihilation, deportation,

wrangling, public debate) extermination, persecution)
Nq72 9 0.18 (assertion, suggestion, 

notion, contention)
Nq200 0 .21 (prison term, penalty, 

sentence, fine)
beating judge

Nq712 0.31 (mutilation, cannibalism, Nq826 0.37 (military court, tribunal,
strangulation, torture) magistrate)

Nq594 0.14 (annihilation, deportation, Nq418 0.17 (auditor, appraiser,
extermination, persecution)

logic
accountant, adjuster)

Nq636 0.12 (spasm, twinge, contraction)
buoyancy Nq628 0.18 (cohesion, coherence.

Nq573 0.19 (fluctuation, volatility. continuity, predictability)
gyration, run-up) Nq827 0.13 (gist, crux, good part,

Nq628 0.16 (cohesion, coherence. thrust)
continuity, predictability) Nq706 0.10 (genetic engineering,

challenger biotechnology, artificial
Nql81 0.25 (candidate, nominee, intelligence, computer

opponent, contender) technology)
Nq564 0.11 (shuttle, spacecraft. Nq209 0.10 (strategy, policy, method.

spaceship, discovery)
military

tactic)
communication training

Nq335 0.32 (avionics, electronic Nq687 0.19 (vocational training,
warfare, sonar, propulsion) tutoring, vocational

Nq798 0 .20 (teamwork, coordination, education, retraining)
interaction, bonding) Nql58 0.10 (equipment, computer,

Nq442 0.19 (city planning, public works, 
forestry, social welfare) neutron

technology, system)

Nq364 0.13 (telex, fax, electronic mail, Nq444 0.41 (neutron, electron, neutrino
facsimile) proton)

Nq306 0.11 (logging, drilling, mining) Nq735 0.11 (ultraviolet light,
cost cutting ultraviolet radiation.

Nq726 0.30 (damage control, 
stabilization, cost cutting, pan

magnetic field, radio wave)

eradication) Nq83 0.41 (skillet, saucepan, frying
Nql07 0.13 (revenue, earnings, profit, pan, casserole)

income) Nq50 0.11 (machete, ax, hatchet,
delegate

plank
baseball bat)

Nq541 0 .25 (executive council, standing
committee, general assembly. Nq613 0.14 (armoire, bookcase, dining
legislative assembly) table, paneling)

Nq61 0.18 (legislator, lawmaker, 
leader, official)

Nql35 0.13 (concrete, brick, marble, 
tile)

domination privilege
Nq454 0.30 (supremacy, preeminence, 

dominance, primacy)
Nq810 0.25 (prerogative, legal right, 

right to vote, discretion)
Nq562 0.19 (imperialism, colonialism, 

fascism, totalitarianism)
Nq269 0.11 (plaudit, accolade, kudos, 

commendation)
equilibrium real estate agent

Nq771 0.27 (equilibrium, reciprocity, 
parity, coexistence)

Nq553 0.23 (real estate broker, 
stockbroker, businesswoman,

Nq334 0.11 (tranquility, tranquillity, insurance broker)
serenity, stillness) Nq268 0.12 (resident, citizen, voter,

Nq536 0.11 (shamble, flux, disarray, 
limbo) robbery

homeowner)

firmness Nq817 0.35 (stolen property, mischief.
Nq628 0.15 (cohesion, coherence. trespass, battery)

continuity, predictability) Nq712 0.18 (mutilation, cannibalism.
strangulation, torture)
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Nq80 0.10 (accident, earthquake, 
explosion, quake)

sewing
Nq754 0.15

Nq287 0.14

sound system 
Nq304 0.17

Nql58 0.14

styrofoam
Nq397 0.24

Nq85 0.11 
theology

Nq2 0.32

Nq209 0.11

tumble
Nq573 0.12

Nq803 0.10
water

Nq721 0.37

Nq361 0.20
Nq593 '0.10

(carpentry, woodworking, 
interior design, gardening) 
(free time, leeway, extra 
time, leisure time)

(public address system, 
loudspeaker, megaphone, 
bullhorn)
(equipment, computer, 
technology, system)

(polystyrene, polyethylene, 
fiberglass, foam)

(container, bottle, bag, jar)

(mechanical engineering, 
political science, 
anthropology, sociology) 
(strategy, policy, method, 
tactic)

(fluctuation, volatility, 
gyration, run-up)
(jaunt, detour, trek, jog)

(liquid, blood, moisture, 
water)
(ocean, pond, lagoon, creek) 
(tide, surf, wave, swell)
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Appendix C
1 % random sample o f the senses discovered by 
CBC on S1 3 4 0 3 used for our manual evaluation

acronym
Si: last name, first name, surname, 

title
agenda

Si: guideline, framework, timetable, 
blueprint

S2: ideology, dogma, orthodoxy, 
principle

alternative
Si: option, way, means, solution

anti-Semitism
Si: racism, bigotry, prejudice, sexism

aria
Si: song, ballad, folk song, tune 

assist
Si: kiss, hug, embrace, pat

avant garde
Si: life, archeology, professional life, 

folklore
ballet dancer

S!: singer, musician, artist, guitarist
basketball

Si: football, soccer, baseball, 
volleyball

belly
Si: leg, neck, arm, chest 

black bear
Si: deer, rabbit, squirrel, coyote 

bluster
Sx: nonsense, lie, fabrication, baloney 

borough
Si: city, country, state, community 

breeze
Si: sea breeze, air mass, gust, weather 
S2: shock wave, ripple, tremor, shudder 

bull
Si: torero, bruin, cougar, sea king 
S2: horse, elephant, donkey, camel

cab
Si: car, pickup truck, van, patrol car

capital
Si: money, donation, funding, honorarium
S 2 : c a m p ,  s h a n t y t o w n ,  t o w n s h i p ,  s l u m

caster
Si: toying, tipster, swinger, stopgap
S2: equipment, test equipment,

microcomputer, video equipment
chalet

Si: home, apartment, duplex, condominium
chicken broth

Si: chicken stock, soy sauce, broth, 
tomato sauce

circumstance
Si: condition, situation, economic 

condition, financial condition
S2: free time, cash, extra time, credit
S3: identity, whereabouts, motive, 

presence
closed session

Si: meeting, session, conference, news 
conference

collector
Si: enthusiast, buff, fan, lover

commuter
Si: motorist, passenger, tourist, 

traveler
condor

Si: bald eagle, owl, bird, whooping 
crane

contaminant
Si: chemical, pesticide, substance, 

pollutant
cornea

Si: kidney, bone marrow, liver, pancreas
cover charge

Si: fee, property tax, cost, payment
crossing

Si: train station, railroad station, 
railway station, hotel

cynic
Si: critic, proponent, opponent, 

advocate
debut

S2: premiere, preview, opening, world 
premiere

demonstration
Si: sit-in, protest, work stoppage, 

protest march
devotion

Si: commitment, loyalty, dedication, 
allegiance
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disco
Si: discotheque, nightclub, club, 

theater
S2: reggae, funk, jazz, blue 

dividing line
Si: border, frontier, boundary, county 

line
drawer

Sx: freezer, closet, pantry, locker 
duration

Si: extent, magnitude, severity, scope
elected official

Si: member, lawmaker, legislator, 
activist

enchilada
Si: taco, burrito, tamale, sandwich

eroding
Si: toying, tipster, swinger, stopgap
S2: asset, investment, real property, 

penny stock
exertion

Si: toying, tipster, swinger, stopgap 
S2: stress, exhaustion, strain, hardship

facsimile machine
Si: equipment, test equipment,

microcomputer, video equipment
feature film

Si: movie, film, comedy, documentary 
film

final period
Si: quarter, first period, first half, 

overtime
flag

Si: banner, balloon, streamer, national 
flag

S2: ancestry, descent, heritage, culture 
foil

Si: plastic wrap, wax paper, aluminum 
foil, cheesecloth

foster home
Si: shelter, hospice, center, soup 

kitchen
frosting

Si: icing, whipped cream, cream, glaze
garbage truck

Si: truck, school bus, vehicle, tractor 
trailer

girder
Si: wall, door, tile roof, sliding door

good will
Si: peace, reconciliation, conciliation, 

m u t u a l  u n d e r s t a n d i n g

S2: courage, determination, patience, 
strength

greenhouse
Si: swimming pool, pool, tennis court, 

sauna
gum

Si: candy, chewing gum, popcorn, candy 
bar

hard hat
Si: glove, goggles, helmet, face mask

heat exhaustion
Si: illness, infection, ailment, health 

problem
honoree

Si: member, lawmaker, legislator, 
elected official

S2: award, trophy, honorary degree
human rights

Si: freedom, civil liberty, human right, 
civil right

imaging
Si: equipment, test equipment,

microcomputer, video equipment
indian reservation

Si: property, site, piece of land, 
timberland

inquiry
Si: study, audit, medical report, police 

investigation
international

Si: mutual fund, fund, municipal bond, 
certificate of deposit

jakes
Si: organization, group, government, 

business organization
justice

Si: judge, tribunal, military court, 
magistrate

S2: equilibrium, parity, reciprocity, 
neutrality

labor market
Si: market, business, housing industry, 

stock market
l a w s u i t

Si: allegation, case, charge, complaint
letdown

Si: spasm, contraction, cramp, twinge
S2: need, demand, challenge, financial 

loss
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line
St: compliance, accordance, conformity, 

noncompliance
S2: track, fairway 

log cabin
Si: house, cottage, bungalow, farmhouse

machinist
Si: flight attendant, personnel, 

beautician, ticket agent
manse

Si: home, apartment, duplex, condominium 
matter

Si: issue, question, topic, agenda item
mental hospital

Si: psychiatric hospital, mental 
institution, institution, ward

militant
Si: guerrilla, rebel, insurgent, 

extremist
mitigation

Si: study, audit, medical report, police 
investigation

mosaic
Si: pottery, piece, figurine, object 

musical
Si: movie, film, comedy, feature film 

neglect
Si: indifference, apathy, complacency, 

carelessness 
S2: battery, false imprisonment, 

possession, assault
noise level

Si: blood pressure, cholesterol, blood 
sugar, intake

obscurity
Si: disarray, chaos, limbo, flux

onlooker
Si: protester, demonstrator, marcher, 

student
outdoors

Si: free time, cash, extra time, credit 
paintbrush

Si: shovel, spade, rake, broom 
part

S i :  m u c h ,  m o s t ,  p o r t i o n ,  s q u a r e  f o o t

S2: goods, product, consumer goods, 
semiconductor

pear
Si: peach, nectarine, apricot, apple 

personal loan
Si: mortgage, loan, second mortgage, 

credit card

pigment
Si: resin, coating, fiber, polymer 

playing field
Si: volleyball court, basketball court, 

picnic area, playground
S2: equilibrium, parity, reciprocity, 

justice
political scientist

Si: historian, sociologist, expert, 
economist

potter
Si: adage, proverb, maxim, aphorism 

press agent
Si: company, retailer, distributor, 

consulting company
production

Sx: gross national product, output, 
export, labor force

S2: transportation, distribution, 
storage, processing

S3 : exposure, concentration, use, 
toxicity

S4: premiere, preview, opening, world 
premiere

provocation
Si: sabotage, bribe 

pusher
Si: drug trafficker, trafficker, 

offender, smuggler
radiologist

Si: doctor, physician, psychiatrist, 
psychologist

read
Si: burn, scratch, cut, turn 

redemption
Si: offering, purchase, repurchase, 

issuance 
S2: bankruptcy, foreclosure, 

liquidation, insolvency
religious order

Si: organization, group, government, 
business organization

resin
Si: coating, fiber, polymer, packaging 
S2: coal, charcoal, liquid, wood 

rich man
Si: toying, tipster, swinger, stopgap 
S2: liar, traitor, thief, criminal 
S3: wife, daughter, husband, father 

roll call
Si: meeting, session, conference, news 

conference
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runoff
Si: election, primary election, 

balloting, primary 
S2: tap water, well water, seawater, 

syrup
saturation

Si: toying, tipster, swinger, stopgap 
S2: need, demand, challenge, financial 

loss
scourge

Si: infestation, plague, epidemic, swarm
secretary of state

Si: commissioner, commander, 
representative, secretary 

S2: governorship, lieutenant governor, 
judgeship, presidency 

S3 : member, lawmaker, legislator, 
elected official

serenade
Si: concerto, quartet, sonata, symphony 

sheet
Si: piece of paper, card, sheet of 

paper, slip of paper
S2: robe, handkerchief, bathrobe, shawl 
S3 : pipe, tube, tubing, rod 

shrinkage
Si: slowdown, decline, upturn, growth 

skateboarding
Si: skiing, fishing, horseback riding, 

swimming
slur

Si: slogan, graffiti, swastika, epithet 
software

Si: operating system, software product, 
software package, computer program 

S2: copyright, patent, trademark, 
property right

sparring
Si: squabble, feud, spat, quarrel 

sports section
Sj: newspaper, magazine, tabloid, 

publication
standby

Si: respirator, ventilator, support 
system, auction block

stickler
Si: contempt, disregard, disdain, 

disrespect
striker

Si: protester, demonstrator, marcher, 
student

suitability
Si: effectiveness, validity, 

r e l i a b i l i t y ,  f e a s i b i l i t y

sweating
Si: headache, chest pain, nausea, 

diarrhea
tale

Si: thriller, love story, fable, saga 
technology

Si: biotechnology, genetic engineering, 
artificial intelligence, computer 
technology

S2: equipment, test equipment,
microcomputer, video equipment

test equipment
Sx: equipment, microcomputer, video 

equipment, technology
tide

Si: wave, swell, surf, rising tide 
torso

Si: leg, neck, arm, chest
transformation

Si: transition, evolution, changeover, 
metamorphosis

trooper
Si: officer, peace officer, patrolman, 

prison guard
tweed

Si: silk, wool, cotton, leather 
upper

Si: top, side, edge, bottom 
vendor

Si: producer, exporter, importer, 
supplier

visit
Si: trip, tour, excursion, vacation 

warhorse
Si: filly, colt, mare, gelding 

weekly
Si: newspaper, magazine, tabloid, 

publication
willingness

Si: intention, readiness, sincerity, 
intent

S2: discipline, professionalism, 
s p o r t s m a n s h i p ,  a w a r e n e s s

works
Si: plant, facility, refinery, oil 

refinery
zone

Si: camp, shantytown, township, slum
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