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© ABSTRACT

This thesis presents the complete analyﬁis and synthesis of
a device, which will automatically, rapidly, and continuously match
time-varying microwave loads to a feeder waveguide.

The thesis describes, in detail, the selection of an advantageous
matching scheme, the development of a novel loading condition sensing
method, and the construction of electromechanically actuated matching
components of unusual design.

A closed-Toop implementation of the automatic matching device,
which becomes a non-linear multi-variable system, is analyzed in terms
of stability and performance. Both theoretical and computer simulation
results are presented. Some consideration is also given to optimization
and adaptive control techniques to improve the system performance.

Finally, a detailed description of the construction and actual
performance of an X-band prototype device, together with recommenda-
tions for use of the device in medium and high power microwave systems,"

completes the thesis.
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INTRODUCTION

In the electrical engineering and physics fields, the measurement
of admittance or impedance has always been of considerable importance.
Of particular interest were measurement means involving comparison of
unknown impedances against known standards. These rapidly evolved into
a variety of bridge methods of impedance or admittance measurement.

With the growth in importance of automatic Eontro] engineering a
new dimension was added to the field of measurement. It became pos-
sible to make impedance or admittance bridges fully automatic. This
allowed direct read-out of the impedance or admittance value of an
unknown, while retaining all the advantages of the basic bridge type
of measurement. Considerable work in this area was carried out in the
Department of Electrical Engineering at the University of Alberta. A
specific example is the thesis entitled "Self Balancing Capacitance
Bridge" (]).

In that area of electrical engineering concerned with the genera-
tion of large amounts of radio frequency power, for use in both com-
munication and industrial fields, the problem of matching a dissipative
Toad to its power source is of some importance. There are several major
reasons for desiring a matched condition between a radio frequency
power source and its load.

Firstly, mismatched conditions between the power source and its
load entail Tosses in efficiency, since not all of the available power
is transferred to the load.

Secondly, in the communications field, mismatch'conditions mean

that unwanted reflections and "echos" exist on the transmission 1line
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connecting the power source and load, which can cause distortion of a

transmitted, modulated signal.

Thirdly, the power reflected from a mismatched load, if no further
precautions are taken, is transmitted back to the power source to be
dissipated there. Some specialized radio frequency power sources are
very intolerant of high degrees of load mismatch that persist for any
Tength of time.

Many methods have been developed and documented for matching of
certain static radio frequency loads to their power sources. These
need no further consideration here. Problems arise when the radio fre-
quency lcad changes rapidiy and unpredictably. Under these conditions,
manual adjustment of matching components could become at Teast tedious,
and often impossible. It might be feasible, only, to match to certain
average loading conditions. However, completely satisfactory results
would not readily be obtained.

Since radio frequency load matching involves, in a sense, a spec-
ialized form of Lridge type measurement of impedance or admittance, in
that the Toad properties are compared to the feeder 1ine characteris-
tics, it seems only natural that the work done, in this Departmeht of
Electrical Engineering, on automatic impedance bridges, should evolve
into consideration of an automatic load matching device. Automatic Toad
matching devices could, conceivably, maihtain a matched condition bet-
ween a radio frequency power source and its load, even if the load were
to change with time. Several workers have indeed devoted their atten-
tion to the development of automat{c matching devices suitable for the
frequency range from 2 to 30 MHz (2’3).

In recent years, microwave power has increasingly come to be used
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for industrial purposes. It is now utilized in many processes such as

food preparation, batch and conveyor belt drying of materials, drying
of films, hardening of glues, and so forth. It is characteristic of
this usage of microwave power that the power levels are high and that
the loads are not constant, but vary with time. To maintain efficiency
at all times and to protect the power sources from damage, continual
attention must, thus, be devoted to the matching of the loads and
power sources.

Even though work has been done on automatic load matchihg devices
for the Tower radio frequency ranges, the microwave frequency range has
so far been neglected in this respect. The work reported on in this
thesis attempts to fill the gap.

Impetus for the development of a microwave automatic load matching
device was further provided by some problems arising out of the ING
Project as proposed by Atomic Energy of Canada Limited. The ING Project
involved the design and construction of an Intense Neutron Generator.
It was planned that the intense neutron beam be produced by impinging
a high fntensity, high energy proton beam upon a splallation target. The
continuous proton beam would have been accelerated in a linear accel-
erator consisting of a long chain of alternate microwave acceleration
cavities and drift regions. The electric field intensity in each cavity
as well as the phasing of the microwave power signal from cavity to
cavity, would have had to be very carefully controlled in order to pro-
duce acceleration. Both temperature variations of the cavity walls and
intentional or unintentional beam intensity changes would have caused
varying load impedances or admittances to be presented to the power

sources. The large number of cavities and power sources involved, to-



gether with the partially unpredictable nature of the load changes
would have made automatic matching very desirable.

The above considerations should make it obvious that there is a
definite need for an automatic microwave matching device capable of
matching time-varying waveguide loads to a feeder waveguide rapidly
and accurately. The métching device should be're]atiyely simple and
economical compared to the complexity and cost of the main microwave
pover system. This thesis is Gevoted entirely to the analysis and -

synthesis of such a device.




CHAPTER ONE

GENERAL SYSTEM CONSIDERATIONS

In conceiving of a.contro] system which will automatically match
a time-varying load to a feeder waveguide, one is faced with a choice
of several matching and measurement methods and components. This chap-
ter is devoted to a discussion of the system arrangement, and the se-

lection of specific control system components and matching methods.

1-1  System Concept

In developing an automatic matching device that, is relatively
simple in construction, has predictable accuracy, continuously monitors
and corrects for mismatch conditions without involving memory, and
which is insensitive to component parameter changes, only closed-

lToop control systems may be considered.

SUMMER
- CONTROLLER
input + error controlled or
variable signal output variable

MEASURING ¢
feedback DEVICE

variable

FIGURE 1.  COMVENTIONAL CLOSED-LOOP CONTROL SYSTEM
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Figure 1 schematically illustrates a conventional closed-loop con-
trol system. The conventional system contains a controller which am-
plifies the error signal, and which uses the amplified error signal to
make adjustments to the output or controlled variable. A measuring de-
vice monitors the output variable and converts output variable infor-
mation into a feedback variable. A summer, as shown, takes the differ-
ence between the input variable and the feedback variable to produce
the error signal. Ihe closed-loop control system shown operates in such
a manner as to minimize the error signal at all times, thus causing the
output variable to follow the input variable with predictable accuracy.

A similar system arréngement may be devised tb match a microwave
load automatically. A schematic diagram of a feasible system arrange-
ment is shown in figure 2. This diagram illustrates some of the impor-
tant similarities as well as differences between a conventional control
system and an automatic microwave Toad matching device. The measuring
device produces an error signal which is mathematically related to the

degree of mismatch, and which is processed by the computational and

/
S~
ADJUSTABLE
L ffEE\‘,\,SCUER'NG €4—»{ MATCHING 4—>| LOAD
microwave DEVICE
signal /
E’!TOF drivg
signal “signal
cpntrol
COMPUTING signals
—=>1 AND CONTROL .
ELECTRONICS ———)p Mmicrowave
signals

FIGURE 2.  PROPOSED MATCHING CONTROL SYSTEM



and control electronics. If the combined load and matching device pre-
sent a matched load condition to the feeder vaveguide, the measuring
device senses this and adjustment ceases.
The important similarities and differences between the conventio-
nal control system of figure 1 and the system shown in figure 2 may
be tabulated as follows:
1. The input variable in figure 2 is a constant and corres-
ponds to a matched Toad condition.
2. The load is a disturbing signal in the control Toop, the
effect of which the control system tries to minimize.
3. The feedback varjab]e in figure 2 is represented by the
microwave signal reflected from the load.
4. A summer which takes the difference between the input
variable and the feedback variable is difficult to define as
such. The mixing of the input and feedback variables takes
place along the waveguide in the microwave system itself.
5. Most of the operations in the control system of figure 2
are highly non-linear. The matching operation itself is non-
Tinear, the mixing of the input and feedback variables is

non-linear, and the measuring operation is also non-linear.

1-2  System Concept Details

The system scheme represented by figure 2 is a deceptive simpli-
fication of the actually required matching system arrangement.
Sinusoidal electric or magnetic field variations, and equally so

lToad reflection coefficients or impedance and admittance quantities,

7



MATCHING DEVICE
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MEASURING ¢ >

>, REAL PLUS [€—¥{ LOAD
VEVICE
IMAGINARY IMAGINARY
~.] CONTROL
ELECTRONICS
.COMPUTING
.DEVICE S control

signals

| = conTROL
' ELECTRONICS —3p Mmicrowave
signals

FIGURE 3.  MORE COMPLETE SYSTEM PROPOSAL

can be adequately characterized only by complex variables consisting of
either real and imaginary parts, or of magnitude and angular parts.
Since matching of a microwave load means, in effect, reducing the re-
flection coefficient of a combined Toad and matching unit to zero, two
separate adjustments are always required. The real and imaginary parts
of the reflection coefficient individually have to be reduced to zero.
Similar reasoning applies if impedance and admittance or angle and mag-
nitude are considered.

From the previous discussion it is obvious that a single control
Toop will not suffice. A minimum of two control Toops is always re-
quired in any automatic load matching device. Unfortunately, the nature

of microwave systems is such that two control loops cannot be made



mathematically independent.

The interdependence of the two control loops and the non-1inear
nature of the system add complexities in system analysis and design
that need further consideration in later chapters.

Figure 3 represents a more complete control system which takes
into account that two control Toops are necessary and which also shows

that the control Toops are not independent.

1-3  Matching Methods

Many methods are available that allow the matching of a waveguide
Toad to its feeder waveguide. These have been well documented (4’5’6).
Matching methods can roughly be divided into two classes. First, there
are those that add reflections of predetermined magnitude at selected
positions along a waveguide. The slide-screw tuner and the three-screw
tuner be]dng to this class. Secondly, there are those tuners which, for
their operation, depend upon the addition of series and/or parallel
waveguide admittances and impedances. The latter class includes E-H
tuners, double stub tuners, and single stub tuners. Several variations
of the tuners of class two are possible also.
The reflection type tuners of class one are totally unsuited to
use in an automatic tuning device. The main reasons are:
1. It is difficult to match loads that represent a high de-
gree of mismatch.
2. Protrusions of various forms parallel to the E-field into
waveguides that are used at medium or high power Tevels often

cause breakdown difficulties.
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3. The devices do not lend themselves readily to electro-

mechanical adjustment procedures carried out at reasonably

nigh speeds.
4. Three, instead of two control Toops may be required, thus
adding unnecessary complications.

This class of devices, though eminently useful in certain applications,

will be considered no further.

1-4  Double Stub and E-H Tuners

The double stub and E-H tuners are most easily discussed with ref-
erence to a Smith chart (7), even though a characteristic waveguide im-
pedance may be difficult to define. Arbitrarily, normalized admittance
rather than impedance values will be used.

Since admittance is used in the discussion, the double stub tuner

shoun in figure 4 will be assumed to contain two shorted stubs connec-

7 17 SHORTED STUBS WITH
7 © ®/ VARIABLE POSITION
RT
WAVELENGTH
YQT | Y,T
e Y, Yal)|n
—— LOAD
Yo | g
4

FIGURE 4.  THE DOUBLE STUB TUNER

)
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ted to the main waveguide by means of H-plane tees. The spacing between

the stubs is one-quarter electrical guide wavelength.

Figure 5 shows a Smith chart applicable to the discussion of
double stub tuners. Referring to figures 4 and 5, the operation of the
double stub tuner may be explained as follows:

An ideal stub, shorted at one end by a movable short, and connec-
ted to a main waveguide by means of an H-plane tee, is capable of ad-

ding to the main waveguide admittance any value of susceptance between

FIGURE 5.  SMITH CHART FOR THE DOUBLE STUB AND E-H TUNERS
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tjo and -jo. The imaginary part of a load admittance, as it appears at

some point along a feeder waveguide, may thus be changed at will by ad-
Justment of a parallel connected shorted stub.

A Toad admittance, YL’ 1f susceptance is added by means of stub 1,
may be altered along a constant conductance circle on the Smith chart
until it becomes admittance YA’ which Ties oh circle 2 of figure 5.
Circle 2 is the locus of those admittances which, if transformed or
rotated by means of a quarter wavelength section of waveguide, will
become the admittances of circle 1. The quarter wavelength waveguide
section between stubs 1 and 2 will thus transform YA into YB' Admi t-
tance YB lies on circle 1, which is the locus of all admittances for
which the real part is equal to one. By means of stub 1 susceptance may
again be added, such that the imaginary part of YB is cancelled. This
changes YB into YC’ which equals Y0 at the origin of the Smith chart.
The Toad YL has now been matched.

The operation of the E-H tuner is similar to that of the double
stub tuner. The transformation of a certain impedance into its equiva-
Tent admittance on a Smith chart is entirely analogous in every respect
to transforming YA into YB by means of a quarter wavelength guide sec-
tion. Referring again to figure 5, a load impedance, ZL’ may be changed
along a constant resistance line into ZA by the addition of series re-
actance. Impedance ZA is equivalent to admittance YB’ which may be
changed to Y0 by the addition of further susceptance. The H-plane stub
1 and the quarter wavelength guide section of figure 4 may, thus, be
replaced by an E-plane shorted stub at the location of stub 2. The
explanation of the operation of the E-H tuner, as presented above, has

however, ignored some of the fundamental difficulties in analysis that
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arise if two extended discontinuities, such as an E- and H-tee,are pre-

sent at one position along a waveguide.

Matching devices of the type just described, even though they can
be adapted to automatic operation, have one serfous drawback. Unmatched
loads, YL’ that Tie inside the unity conductance circle 1 on the Smith
chart of figure 5, cannot be matched by a double stub or E-H tuner. For
loads, YL’ inside circle 1 the simple addition of pure susceptance can;
not place YA on circle 2 since the constant conductance circles inside
circle 1 do not intersect circle 2.

The above difficulties may be remedied by several methods, one of
which is shown in figure 6. Here, a phaseshifter has been added between
the actual load and stub 1. Proper adjustment of the phaseshifter of
figure 6 will rotate or transform YL into Yi which does lie in the re-
gion outside circle 1 of the Smith chart, and can thus be matched.

Although the double stub tuner or E-H tuner with a phaseshifter

added could possibly be used in an automatic matching device, these tu-

741 741 MOVABLE SHORTS
@ ®
ef| v
Ye {8, Ya Y Y
—» >17> 7> 7 |nosustasie > 1 oo
Yo PHASESHIFTER

FIGURE 6.  IMPROVED DOUBLE STUB TUNER
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ners were not considered to be sufficiently suitable. The extra phase-

shifter necessitates the addition of a third control loop. From an
automatic control point of view the third control loop introduces some
redundancy which may cause the automatic hatching device to search for
a matched condition without reaching it. Because of the third adjust-
ment, the matching operation is no Tonger unique. Uniqueness of ad-
justment is an essential requirement for successful automation of the
matching operation. Undesirable complexities are also added by the fact
that the measuring device, still to be discussed, would have to detect
if the load to be matched lies inside the unity conductance circle of
figure 5. |

A more advantageous matching method is available and will be dis-

cussed in the next section.

1-5  The Single Stub Tuner

The most suitable matching method for automatic control purposes
is a single stub tuner, or some variation of the single stub tuner.
This type of tuner is capable of matching any load, other than com-
plete open or short circuits or purely reactive loads, with just two
adjustable components. This means, that the theoretical minimum of
two control loops can be used to perform the matching operation.
Figure 7 shows a schematic diagram of a single stub tuner arrangement.

The operation of the single stub tuner is again most easily ex-
plained by means of a Smith chart as shown in figure 8, and bears some
resemblance to the double stub tuner.

Adjustment of a series phaseshifter as shown in figure 8, can
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74" MOVABLE SHORT
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YiT Yg g

microwave
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signal B A L
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Yo H-PLANE Tee | PHASESHIFTER

FIGURE 7  THE SINGLE STUB TUNER

transform any load admittance, YL’ into any other admittance which
Teaves the magnitude of the ref]eqtion coefficient unaltered. Expres-
sed differently, a series phaseshifter can rotate a load admittance
along a circle which passes through the original foad admittance and
which has the origin of the Smith chart as center. The family of con-
centric circles,that have the Smith chart origin as centers, all inter-
sect the unity condﬁctance circle 2 in figure 8. By proper adjustmént
of the series phaseshifter any load, YL’ can, therefore, be transform-
ed into admittances YA or YA, both of which Tie on the unity conduct-
ance circle 2.

Once YA or YA lies on circle 2, the imaginary part of admittance
YA or YA can be cancelled by addiﬁg susceptance of appropriate sign by
means of the movable shorted stub shown in figure 7. This makes the
composite Toad admittance equal to YO’ and the Toad is matched.

In anticipation of the discussions in later chapters, it should be
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(2R

FIGURE 8.  SMITH CHART FOR THE SINGLE STUB TUNER

mentioned that the selection of the sign of the loop gain associated
with the series phaseshifter allows one to choose either the upper or
the Tower half of the unity conductance circle 2 of figure 8 as the
stable Tocus of admittance values YA to which the phaseshifter will
always adjust.

Again anticipating later chapters, certain load changes, that ef-

fectively represent repeated encirclements of the Smith chart origin,
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would cause the series phaseshifter to seek equilibrium adjustment

positions corresponding to ever increasing phase angles. However, al-
ternate selection of the upper and lower unity conductance semi-circles
by appropriate methods can limit the actually required phaseshifts to
a range of plus and minus- 90°. Carefy] attention to the points just
mentioned will make the matching adjustments entirely unique.
The inmediate advantages of using the single stub matching method
in an automatic matching device are as follows:
1. Any Toad, other than loads on the perimeter of the Smith
chart, can be matched.
2. The number of adjustable components, and therefore, the
number of control loops required, is equal to the theoretical
minimum of two.
3. Some Timited degree of separation between the two adjust-
ments exists in that the Susceptance added by the stub does
not affect the real part of the Joad admittance, while phase-
shifter adjustment corresponds to a purely angular change in
the reflection coefficient.
4. The adjustment of the matching device for any particular
Toad is unique once the phaseshifter range has been Timited
by automatic selection of the proper unity conductance semi-
circle.
The single stub tuner was chosen as most suitable for an

automatic matching device.
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1-6  Measurement Methods

Automation of microwave matching procedures requires the develop-
ment of a device which will detect if a matched condition exists and
which, in the absence of a matched condition, will produce an error
signal that is mathematically related to the degree of mismatch. More
specifically, the error signal should be an electrical signal which is
zero if fhe lToad is matched, but which also contains polarity informa-
- tion related to the required direction of adjustment to obtain a match-
ed condition. These requirements appear simple, buf are, in fact,
rather stringent. .

The two normal measurement methods often employed in microwave
engineering are reflectometry and standing wave ratio meésurement.

Reflectometry is based on the fact that a load is completely char-
acterized, in terms of the feed line properties, by its reflection

coefficient (8). This fact can be deduced from the following equation:

1.Y,
1+Y,

kp =

1.1

where kR is the reflection coefficient, and YL is the Toad admittance.
Under matched conditions kR is zero.

.The magnitude squared, and therefore the magnitude, of the reflec-
tion coefficient may be measured by sampling the power reflected from
the load(by means of a directional coupler).The ratio of reflected pow-
er to incident power is equal to the square of the reflection coeffic-

ent magnitude. Often however, the actual ratio is not’determined, but
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kR:
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ient magnitude. Often however, the actual ratio is not determined, but
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only the reflected power is measured.

The angular part of the reflection coefficient is not easily de-
termined. The angular part of the reflection coefficient is equal to
the phase angle difference between the E-field of the incident wave and
the E-field of the reflected wave. To measure this phase difference,
some rather sophisticated equipment, such as a phase discriminator, has
to be designed. Again, in many applications the angular part of the
reflection coefficient is ignored, even though it contains vital infor-
mation.

The main disadvantages of using reflectometry to derive error
signals useful for automation of the matching apparatus are:

1. The reflection coefficient magnitude signal does not con-
tain polarity information to indicate the direction of re-
quired adjustment.
2. The equipment required to measure the angular part of the
“reflection coefficient is complex.
3. Angular and magnitude information about the reflection
coefficient is not directly useful for automation. Trigono-
metric calculations would have to be performed to extract
the real and imaginary parts of the reflection coefficient,
but, trigonometric calculations are not readily carried out
by analogue methods.

Instead, standing wave ratio measurement methods are better suited
to use in automated matching equipment. |

If two electromagnetic waves,of the same frequency, but travelling
in opposite directions through a waveguide, 1nterfere,they produce a

characteristic space pattern of maxima and minima along the waveguide.
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The incident wave and the wave reflected from a mismatched load inter-

fere in exactly this manner. The ratio of the field intensity at a
maximum to that at a minimum is known as the standing wave ratio; it is
related to the magnitude of the reflection coefficient. The positions
of the maxima and minima along the waveguide, in turn, are related to
the angular part of the reflection coefficient. The nature of the load
is, therefore, completely characterized, in terms of the feeder guide
properties, by the standing wave pattern in the feeder guide, provided
the feeder guide exhibits Tow Toss properties and provided also that
the power source is matched to the feeder waveguide.

A simple measuring device, incorporating three microwave crystal
detector probes, may be designed which directly extracts two signals
from the standing wave pattern, which respectively, are proportional to
the real and imaginary components of the reflection coefficient. The
signals so extracted do contain polarity information indicative of the
desired direction of adjustment of the matching device.

Complete details of this measuring device, which samples the stan-

ding wave pattern, will be given in a subsequent chapter.



CHAPTER THWO

MATCHING DEVICE COMPONENT DESIGN

In chapter one, use of the single stub matching method for an
automatic matching device was advocated. The single stub matching
method employs one phaseshifter and one adjustable shorted stub to
accomplish the matching of a load. For reasons of symmetry, and be-
cause phaseshifters are more easily adjusted electromechanically, the
movable short in the shorted stub may be replaced by a fixed short
and a phaseshifter. Then, only one basic type of phaseshifter need be
developed for the entire matching unit.

From a variety of possible phaseshifter designs, the dielectric
slab phaseshifter was specifically chosen for the following reasons:

1. The adjustment of the phaseshifter involves only linear
motion, while the necessary range of motion is small.

2. The mechanical construction of the phaseshifter is simple,
and the moving parts have relatively Tow mass.

3. The phaseshifter is readily adaptable to electromechan-

ical actuation.

4. Careful design of the phaseshifter will allow operation

at microwave power levels of 10 to 20 kiloWatts.

Design of a medium power dielectric slab phaseshifter is possible
if the following points are borne in mind:

1. To reduce Tosses and prevent overheating, only very low
loss dielectric materials, such as teflon or polystyrene,

should be used in the phaseshifter.
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2. To prevent breakdown and arcing, no areas of excessive

electric field strength concentration must be allowed.
3. To reduce the effects of unwanted reflections, the dielec-
tric slab and its supports must be properly matched into the

waveguide.

Further attention will be given to these considerations in sub-

sequent sections of this chapter.

2-1

Phaseshifter Microwave Design Formulae

Expressions for the phaseshifts obtainable with a dielectric slab

of given dimensions may be derived using perturbation formulae. Among

others, Altman (6) develops a perturbation formula for rectangular

waveguide with a Tongitudinally placed slab of material inside. His

expression for waveguide perturbation is:

where:

_ 9 CCE-€QELE + Cu_pug) FEAT] da

2/, (Egx).da

2.1

it

annd HO are the electric and magnetic fields, respectively,
in an unperturbed waveguide.

E and R are the fields in the perturbed waveguide

a5 is the cross-sectional area of the slab of perturbing

material.

S is the cross-sectional area of the waveguide.
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da is a differential element of area.

Xb and ] are the complex propagation constants of the un-
perturbed and perturbed waveguides respectively.

Mg and EO are the permeability and dielectric constants of
free space.

Mand € are the permeability and dielectric constants of the
perturbing material.

wis the radian frequency of the microwave signal.

* indicates the éomp]ex conjugate of the quantity.

The fields Eb, E', ﬁb, and fi' are defined by the equations:

2.2

where t is time, z is the direction of propagation, and j is the
imaginary operator of complex variables.
Consider now a lossless, purely dielectric slab in a lossless

waveguide as shown in figure 9. Thus, with specific reference to

figure 9:
Y0=/Po-i% — By ; § =R /3 o= 2.3

If the dielectric material is homogeneous and isotropic, then, by use
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of 2.3, equation 2.1 may be simplified to:

€€ EFF.E da

[0z 25 91/";_0 - 2.4
y (Egxi’).da
S
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FIGURE 9.  DIELECTRIC SLAB PERTURBED WAVEGUIDE

For the common TE]0 mode of waveguide operation, one has the fol-
Iowing expressions for the electromagnetic field components ( see for

instance Altman (6) ):

Ex:Ez:Hy:O 2.5

and:
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Ey:_ACéié)J% _;_\\_g_g %Einc"z_xﬂeitcot—ﬂoz) 2 6
Hx=A§[sin(“TxJ]eijt"/3°ZJ | 2.7

where:

A is an amplitude constant.

Ago is the guide wavelength in the unperturbed guide.

A is the free space wavelength.
The component HZ exists, but will contribute nothing to the intégra]
JA;}Ebtcﬁ').dE » since H, is parallel to da.Thus, H, will not be con-

sidered.

Assuming that AS«S and that, as a result, the fields outside the
dielectric are practically equal to the fields in an unperturbed wave-
guide, the denominator integral of equation 2.4 may be evaluated as
follows, taking into consideration that there is no chénge in Ey and

Hx in the y-direction:
ot =iy = Pom b .
[(Ea xH").da i/s:(!nyHx).da :_% Ey Hydx 28

Substituting equations 2.6 and 2.7 into equation 2.8, and knowing that

bc=S, one has:

| % (EgxA").da=
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g0
,
2 Mol Pg T
SA
Ceo) 2 2.9

To evaluate the numerator integral of equation 2.4, several as-
sumptions must again be made. The fields in the perturbed and the un-
perturbed waveguides are taken as being equal. Also, considering that
85<<S, and that the tangential electric field component acfoss an air-
dielectric boundary must be continuous, the electric field is assumed
to be constant across the width, th’ of the dielectric slab and is
taken as being equal to its value in an empty guide at the midpoint

of the slab. Therefore:

_ oarMov Ng. Tr. Xy | (@toBez
By --A(Eo)/‘g N ?[5'“(———17')]?( P, 0,
atx1 0
Thus:
fEé*.E'da:
As
2 Mo g° 51n2 (fotl/fﬁ
€9 N b2
2 U >\2 2 TOX
A .__0.. (AS) sm ( 1) 2.1

€o X
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Substitution of the results of equations 2.9 and 2.11 into equation

2.4 gives, after simplification:

2.12

- - _(e- eo)w(ﬂoeo)/‘?)\ ASsme(lTEJ-XJ

EgAS

Realizing that wj uy&, =%\7L » and settngE =€’, equation 2.12 may
o
be written into its final form:

ﬁ. So 1 (E' 0)\90 AsS 2(71')(1)

-——— e - =

2w on >\g >\g° S

2.13

where >‘g is the wavelength in the perturbed waveguide, and € is the
relative dielectric constant of the dielectric slab material.

The differential phaseshift, DPS, that is, the difference in
phaseshifts between an empty guide and the same guide with the dielec-

tric slab inserted is:

as .
sl

1 1 A
OPS=(__ _ _' )oTtd = 21td (1) "Jo
A A ) (& A2

2,.T(x
> el BRI
g g, b

Similarly, the incremental phaseshift, IPS, i.e. the change in
phaseshift in moving the dielectric slab from position X1 to position
Xo st

IPS = 270d (€% 1)7‘90 As [sm (m“ _sin (“’Q)] 2.15
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Equations 2.13, 2.14, and 2.15 are the basic dielectric slab

phaseshifter design equations. These three equations are not exact,
especially if the dielectric slab is not very thin. However, they will

be found to offer sufficient accuracy for engineering purposes.

2-2  Dielectric Slab and Slab Support Design

For a given dielectric slab thickness, th’ usually taken as less
than 10% of the waveguide width, and for a certain value of maximum
slab displacement for the range of phaseshifts desired, the required
slab length may be determined by use of equation 2.15.

If the dielectric slab ends were abrdpt]y terminated, large re-
flections from them wou]d occur, The best method of drasfical]y redu-
cing these ref]ectioﬁs is to taper the ends. The effectiveness of
‘tapers in reducing reflections from the slab ends is almost independent
of perturbed guide wavelength, and therefore, of slab position in the
guide. Tapers were thus chosen over some other method of matching the
slab into the guide. Experimentél]y 1t was found that tapers, equal
in Tength to one empty quide wavelength, are adequate since the voltage
standing wave ratio caused by the slab alone, under these conditions,
will be less than 1.03.

In calculating the required tength, d, of the slab, the effective
electrical lengths of the tapers may be considered to be one half of
their actual lengths. This is so because, according to equation 2.15,
the differential phaseshift is proportional to AS, the cross-sectional
area of the slab, and AS varies Tinearly a]oﬁg the length of each ta-

per if the slab thickness is constant.
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The main features of the dielectric slab are illustrated in

figure 10.
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’-‘ Set Screw/
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I

" FIGURE 10.  THE DIELECTRIC PHASESHIFTER SLAB

The Tow loss polystyrene slab, shown in figure 10, should be sus-
pended in the waveguide by means of three entirely equally constructed
supports. The reflections from any two equal supports spaced at a dis-
tance of”xg/4 vould cance]vperfectly at one particular value of guide
propagation constant/B, but, the guide propagation constant in the sec-
tion containing the dielectric s]ab changes with varying slab positions
in the guide. Broadbanding is thus required. This is accomp]ishéd by
using three supports spaced at a distance of 32b/8. The value of xg
used is calculated from equation 2.13 for an average value of slab

displacement Xq
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Very low friction sliding supports are required for the dielec-

tric slab. Polished rhodium sliding on teflon exhibits the necessary
Tow coefficient of friction. In addition, teflon is another low Toss
material with a dielectric constant that is not very different from
that of polystyrene. Teflon inserts, at A and C in figure 10, may thus
be used without causing excessive disturbances of the electric fields.
The dielectric slab slides, at A and C, on highly polished, rhodium
plated, hollow, brass rods which pass through the waveguide sidewalls
by means of holes ten one-thousandths of an inch larger than the rod
diameter. The support rods at A and C, which should have a diameter of
less than 10% of the waveguide height, are firmly attached to the out-
side of the waveguide through use of a teflon plate with brass cover
plate.

The central teflon insert, at B in figure 10, is used for sym-
metry reasons only. The rod at B is the pusher rod, which extends well
beyond the waveguide sidewalls through sidewall holes, also ten one-
thousandths of an inch larger than the rod diameter. The slab is fixed
to rod B with a polystyrene setscrew, as shown. By means of the pusher
rod, motion may thus be imparted to the slab from outside the wave-
guide. Rod B is supported in a bearing hole drilled into the same tef-
lon plate, on the outside of the waveguide, which also fixes the rods
at A and C. Further constructional details will be discussed in a later
section.

If the phaseshifter is constructed according to the principles set
forth, its insertion loss will be Tow, while the voltage standing wave
ratio, caused by the phaseshifter, over a phaseshift range of 180° will

be no greater than 1.1. Since the entire matching device is capable, to
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some degree, of compensating for its own errors, this is adequate.

2-3  Phaseshifter Servomotor Design

To use the phaseshifter in an automated matching device, it must
be possible to adjust the position of the dielectric slab in the wave-
guide by means of an externally applied electrical signal.

The preferred method of directly producing Tinear motion is to
move a Tong coil in a short magnetic gap. Some details of the proposed
method are shown in figure 11. As indicated, a standard heavy loud-
speaker magnet is used, but with the polepieces modified such as to

allow a much longer than normal coil to be inserted into the magnetic

POLE PIECES

N\

% PUSHER ROD
L~
g ,
EEEE i3£=;
POLE PIECE [
MAGNETIC GAP 6~ STRENGTHENER

RN R AR
A AKX

DN

ANNULAR MAGNET

ZéiTEN&ON RING

FIGURE 11.  THE LINEAR MOTION DC SERVOMOTOR
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gap. The circular gap shown was also enlarged in diameter by modifica-

tion of the polepieces. With this type of gap construction, practically
all of the magnetic flux generated by the magnet is concentrated in a
fairly uniform field in the short gap region G in figure 11. The coil
itself is made Tong enough so that, over the desired range of motion,
the ends of the coil never come close to entering the gap region G.
Under these circumstances, for any coil position within its range of
motion, the same number of turns is contained within the effective
magnetic gap. Therefore, for a given constant value of coil current,
the force produced by the coil is independent of coil position.

The drive coil consists of two or four layers of enameled copper
wire wound into wet €poxy cement such as to produce a self-supporting
coil, without a coil form to use up valuable gap space. The coil wire
size and the number of layers should be chosen appropriately to give
a coil DC resistance of about 6 or 7 Ohms. The coil may then be driven
from a conventional transistorized DC power amplifier. The coil wire
size does, of course, depend on the transient current magnitudes occur-
ring during adjustmenf, which must be withstood without overheating.

The following is the design formula for the drive coil:

F:T(DNi_Bi 2.16

where:
F is the force in newtons produced by the coil.
D is the average coil diameter in meters.

N is the number of coil layers.
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s is the wire diameter in millimeters.

1 is the gap Tength in millimeters.
B is the average field strength in the gap in teslas.
i is the coil current in amperes.
The coil resistance may be determined from the total wire length

in the coil and its resistance per meter.

2-4  Rate €oil Design

As will become obvious in later chapters, it is necessary to
obtain an electrical signal proportional to the rate of motion, or
velocity, of the dielectric slab, which is used for damping of the
control loops. The rate signal is obtained by means of a coil and mag-
net structure that is exactly analogous in construction to the arrange-
ment of the servomotor drive coil and magnet.

The magnet used for the rate of motion structure is somewhat
smaller than that of the servomotor. A smaller coil diameter is there-'
fore used, but the coil is now wound with 6 or 8 layers of number 40
enameled copper wire formed into a self-supporting coil by means of
epoxy cement.

The magnetic gap and coil arrangement is again such that, for a
constant rate of motion, the voltage generated by the coil is virtually

independent of the position of the coil in the gap.

2-5 The Complete Phaseshifter

A complete and detailed cross-sectional view of the entire phase-
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shifter, taken at a central plane through the pusher rod, is shown in
figure 12. Figure 13 is a cross-sectional view, taken at a vertical
plane through a support rod, to explain the method of attaching the
support rods to the waveguide walls. Lack of space on the drawings
makes it necessary to use numbers to refer to the various parts.
Referring to figure 12, wavegﬁide section (1) contains dielec-
tric slab (2) with teflon insert (3), fastened to pusher rod (4) by
means of setscrew (5). The pusher rod protrudes from each sidewall of
the waveguide and rests in bearing holes in teflon plates (6) which
are held in place by brass plates (7) screwed to the waveguide side-

walls. One end of the pusher rod carries drive coil (8) attached to the

FIGURE 13.  PARTIAL CROSS-SECTION OF SUPPORT ROD ARRANGEMENT

pusher rod by means of an end plate and stiffeners (9), while the other
pusher rod end carries rate coil (10) with end plate (11). Each magnet
structure, in which the coils move, consists of a magnet (12), a magnet

extension ring (13), and polepieces (14). The magnet structures are
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fastened to a support structure by means of bolts (15) passing through

oversize holes in the support sideplates (16) to allow position adjust-
ment of the magnets. The magnet support structure, consisting of sup-
port sideplates (16), a top plate (17), a bottom plate (18), and two
bearing plates (19), is clamped to the waveguide section with four
long bolts through the top and bottom plates next to the waveguide
sideWa]]s. For clarity of the diagram, these bolts are not shown. Set-
screw (5) may be reached through a hole in the top wall of the wave-
guide , which is later closed by means of a screw (20) which is flush
with the inside surface of the Qaveguide top wall. The connections to
the coils are brought out to terminals (21) mounted on the bottom
support plate. The Teads from the coils to the terminals consist of
very fine copper wire spirals.

Figure 13 explains how the dielectric slab (2) in waveguide sec-
tion (1) slides on support rod (22) by means of a teflon insert (23)
to obtain Tow friction. The pusher rod of figure 12 had to bear on
teflon only, and therefore, was made to pass through the waveguide
sidewall in such a manner as to Jeave five one-thousandths of an inch
Space around the pusher rod. To maintain complete symmetry at 319/8,
the support rod (22) also passes through the sidewall of the wavegquide
with 0.005 inches of space around the rod. Support rod (22) in figure
13 is clamped to the waveguide sidewall as shown using the same teflon
plates (6) which serve as bearings for the pusher rod. Brass plates (7)
hold the teflon bearing plates in place. Finally, the screws that se-
cure the brass and teflon plates to the waveguide (screws not shown) are

ground flush with the inner surface of the waveguide sidewall.
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2-6  Phaseshifter Performance

It has a]reédy been mentioned that the phaseshifter insertion loss
is ]ow, and that the voltage standing wave ratio for the phaseshifter
is better than 1.1. Moreover, the reflections caused by the phaseshift-
er tend to be almost purely reactive. The shorted stub in the matching
device cancels the imaginary part of the load admittance by adding the
‘appropriate amount of reactive admittance of opposite sign. The stub

can, therefore, also cancel the small reactive part contributed by the

phaseshifters.

The currents generated in the pusher rods and support rods have
no axial components along the rods. At the same time, the rod support
mechanism consisting of the waveguide sidewall holes, the teflon plates
and the brass plates acts,together with the rods, like a very low im-
pedance mismatched coaxial line section. As a result there is practi-
cally no leakage of microwave signal from the phaseshifters.

Great care has been taken to make the entire phaseshifter as 1in-
ear as possible, but, equations 2.14 and 2.15 show that the phaseshift
obtained from the phaseshifter varies as a squared sine function of the
slab disp]acement. Nevertheless, measurement has shown that the finite
thickness of the dielectric slab has an averaging effect over the small
dispTacement range necessary to obtain phaseshifts of plus and minus
90°. In addition, the 180° phaseshift range is only a part of the total
phaseshift available from the device. Consequently, the phaseshift ap-
pears to be an almost linear function of slab displacement. In the
system analysis work of later chapters, it will be assumed that the

phaseshift is indeed a linear function of slab displacement. This will
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38



CHAPTER THREE

MEASURING DEVICE DEVELOPMENT

The measuring device, which develops the control Toop error vol-
tages as functions of the loading conditions, is a vital part of the
automatic matching device. As previously discussed, the measuring de-
vice will use the standing wave pattern to extract §ignals proportional
to the real and.imaginary parts of the reflection coefficient.

Relationships,expressing the output voltage from a single micro-
wave crystal detector in terms of the reflection coefficient and the
detector position along the waveguide, will first be developed. Using
these results, the proper waveguide positions of three probes for ob-
taining reflection coefficient information will be selected. Finally,
the measuring device will be designed.

Two separate cases will be considered, E-field sampling, and H-
field sampling. The H-field sampling method will be discussed in grea-

ter detail, since it is more suitable for high power systems.

3-1 Single Detector E-Field Sampling

The probe section analysis is most easily carried out by estab-
lishing an analogy between.waveguide transmission on the one hand, and
wire Tine transmission on the other. Such an analogy has, in effect,
already been used in discussing waveguide matching problems with the
aid of a Smith chart.

Without loss of generality, it may be assumed that the voltage ap-
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FIGURE 14. AN E-FIELD PROBE AND DETECTOR

pearing on a vertical E-plane probe, in the center of the top wall of

a waveguide operating in the TE]0 mode, is analogous to the voitage on
a wire transmission line. If the probe penetration is properly adjusted
to sample only a small part of the tota] E-field, the voltage on such

a probe may be rectified and detected by a microwave crystal detector
operating in its square law region, to give a crystal output voltage
that is proportional to the square of the E-field magnitude in the

center of the waveguide.

A typical E-field sampling probe and detector assembly is shown in
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FIGURE 14. AN E-FIELD PROBE AND DETECTOR

pearing on a vertical E-plane probe, in the center of the top wall of

a waveguide operating in the TE]O mode, is analogous to the voltage on
a wire transmission line. If the probe penetration is properly adjusted
to sample only a small part of the total E-field, the voltage on such

a probe may be rectified and detected by a microwave crystal detector
operating in its square law region, to give a crystal output voltage
that is proportional to the square of the E-field magnitude in the

center of the waveguide.

A typical E-field sampling probe and detector assembly is shown in
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cross-section in figure 14, and is self-explanatory.

Returning now to the wire transmission line analogy, the output
voltage from the crystal detector may be expressed in terms of the in-
cident voltage, the load reflection coefficient, and the distance bet-
ween the Toad and the probe. The relationships between these quantities
may be expressed first by means of a vector diagram as shown in figure
15,

In figure 15, let the incident voltage at the load be EE and let

the reflected voltage be E&. Then:

Ep=kpEf = Kl el®R | 3.1

where KR is the magnitude of the reflection coefficient, kR’ and GR is
the angular part of the reflection coefficient.

Now, let the incident voltage at a distance d from the load be E+,
and let the reflected voltage at a distance d from the load be E~. A
phase difference will occur between the voltages at the load and those
measured at a distance d from the Toad, which may be expressed by the

following relations:
E*= £}l 3.2

£ = Eﬁe-'pd ' 3.3

where B is the propagation constant for a lossless line. Substituting
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CCW = Pos. Angle

REFERENCE

FIGURE 15.  THE REFLECTION COEFFICIENT VECTOR DIAGRAM FOR VOLTAGE

equation 3.1 into equation 3.3 and then combining equations 3.2 and 3.3

gives:

E™= kpetel (Or-269) 3.4

The total voltage at the probe, denoted by E, is the vector sum of E'

and E”, Application of the cosine rule to the vector diagram of figure

15 allows E to be expressed as follows:

®%= D%+ (€2- 2(6*)(E7) cos 10 (0 2,60)] =
= (E"2+ (€)% 4+ 2(EY)(E7) cos (85— 2.84) 3.5
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Substituting of equation 3.4 into 3.5, and considering voltage

magnitudes only gives:

lel=leY2+ 3%+ kgl cos (og- 2,84) 3.6
or:

.,._,_.: + K& + 2Kgcos (6 - Zpd) 3.7

For a fixed source power level, the dicde sensitivity and the
probe attenuation may be combined into a proportionality factor Ny
Since the detector DC output voltage, Ed’ is proportional to the square

of the voltage applied to it by the probe, one finally has:
) ‘
Eg=n, (14 K; + 2Kgcos(05-2/8d)] 3.8

Equation 3.8 expresses the microwave crystal detector output vol-
tage as a function of the reflection coefficient magnitude KR’ the
reflection coefficient angle SR, the position of the probe along the
transmission line, d, and the probe and diode sensitivity Ny This is

the desired result.

3-2  Single Detector H-Field Sampling

In view of the fact that, for a TE]0 mode of rectangular waveguide
operation, the magnetic field has a transverse and a Tongi tudinal

component, two methods of H-field sampling may be employed. The trans-
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verse H-field component'may be sampled by means of a pick-up loop
directed along a Tongitudinal vertical plane, while the longitudinal
H-field component may be sampled with a vertical loop in a transverse
plane.

By application of Poynting's vector theorem (8) to a waveguide
section, it may be shown tha£ only the transverse magnetic field
component is involved in power transfer along the waveguide. However,
direct sampling of the transverse magnetic field component implies that
a discontinuity must be introduced into the waveguide through the top
wall, resulting in areas of electric field concentration. This is un-
desirable at high microwave power Yevels.

Let one examine the magnetic field components in a rectangular
waveguide operating in the TE]0 mode. Referring to fjgure 16, the mag-

netic field components are:

Hy= AT sin (%) el (@t - B0
X b b . 3.9

2 .
Hz:_jALC_. cos(j-rx—)ej(mt -/0%) 3.10
o b

where:
H is the magnetic field intensity.
A is an amplitude constant.
/30 is the guide propagation constant at a certain
frequency.
kc is the waveguide cut-off propagation constant;

If the z-component of the magnetic field is sampled with a proper-



——— ) — >

A x

FIGURE 16. A RECTANGULAR WAVEGUIDE SECTION

ly .oriented pick-up Toop, the voltage generated in the Toop will

be proportional to the time rate of change of Hz’ Thus, from 3.10:

., |
M 2 _jA_kc_cos(E)f.)eJ(wt_poz):]
3t ot o b

2 ot
_p kew Cos(wrx)ej(wt_/soz)
o b

From equation 3.9,the transverse H-field component involved in the

transfer of power, at the center of the waveguide, is:

Hy :Al(_ej(wt"poz)
x:_zb-. b

3.1

3.12

45
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Similarly, from expression 3.11, the time rate of change of Hz’ at a

sidewall of the waveguide, is proportional to the voltage generated
in a properly oriented pick-up Toop at the waveguide sidewall. This

time rate of change is:

2 )
M, :Aﬁgiej@”"@oa
ot [x=0 ﬁo

Comparison of expressions 3.12 and 3.13 shows that, provided the
power source frequency and the waveguide dimensions are fixed, the time
rate of change of HZ at a waveguide sidewall is simply related by a
constant to Hx in the center of the waveguide. The sidewall pick-up
Toop voltage is thus proportional to the transverse component of the

magnetic field.

CCW=Pos. Angle

REFERENCE

DIRECTION

FIGURE 17.  THE REFLECTION COEFFICIENT VECTOR DIAGRAM FOR CURRENT
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The actual method of sampling the longitudinal H-field componhent

at a sidewall, where the electric field is zero and will cause no
arcing problems,will be discussed in detail later.

The transverse magnetic field component in a rectangular waveguide
operating in the TE]0 mode may, again, be considered to be entirely
analogous to the current in a wire transmission line. And again, by use
of transmission Tine theory, an expression may be derived for the DC
voltage obtained from a single H-field sampling detector probe (1oop)
and crystal, in terms of the load reflection coefficient magnitude and
angle, the distance between the load and probe, and the combined sen-
sitivities of the probe and detector diode.

Starting with a vector diagram as shown in figure 17, the currents
on the Tine may be expressed as follows. Let the incident current at

the load be I; and let the reflected current at the load be I&. Then:

h = - Kl elOR = k1h el (180716R) 3.14

where KR s the magnitude of the reflection coefficient, and OR is its
angle
At a distance d from the load, and for a propagation constant (3,

the incident current, I+, and the reflected current, I~, may be written

as follows:

Sy
il

21k el 3.15

I e-iAd 3.16

—
1
1"
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Combining the results of expressions 3.14, 3.15, and 3.16 gives final-

ly:

. 0 . : )
I"= Kp1*el (180403 - 234) 3.17

Then, by application of the cosine rule to the vector diagram of

figure 17:
(0% (1934 (192, 21919 cos(eR-zﬁd) 3.18

Substituting of eQuation 3.17 into 3.18, and considering current mag-

nitudes only, results in:

[112= [1+? + KR I1*1% _ 2 KRl1+l2cos(eR-2de 3.19

Equation 3.19 may be normalized to the square of the incident current.

Doing this gives:

lllz 2 )
'__ﬂ_zzuxR_zKRcos (eg-284d 3.20
I

Now returning to waveguide transmission, the sensitivities of the
detector crystal operating in its square law region, the attenuation of
the probe assembly, and the proportionality factor for conversion from
transverse to longitudinal H-field may be combined into a factor N2

to yield:
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Ed =n2 EHKs_aKRcos(eR_z/&d)] 3.21

as the final expression for the DC voltage, Ed, obtained from the

detector diode.

3-3  Three Detector E-Field Sampling

Three E-field sampiing detector probes may be so placed along a
waveguide that the DC output voltages can be combined to yield the real
and imaginary components of the reflection coefficient. The derivation
of this result follows.

Let three separate E-field probes be positioned along a waveguide

Ed3 Edq2 Egy

.

'El A

@ ———— b e
o]’
(2’
w
ol
/1717777777

A}b
a

SHORT

D
INCIDENT VOLTAGE

FIGURE 18.  E-FIELD PROBE PLACEMENT
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as shown in figure 18. The reference is taken to be a short-circuit at

the plane of the load, although an arbitrary number of half wavelengths

may be added between the probes and the load. The short is used only to

define the position of the minima. The distances from the Toad to the

probes, shown in guide wavelengths in figure 18, may be converted to

eiectrical'degrees. These distances in degrees are:

Probe 1: 135" or 2/43d;= 270°
Probe 2: 180 or 28dp= 360
Probe 3: 225" or 2/dg= 450

3.22

By substituting the results of 3.22 into equation 3.8, the expressions

for the DC output voltages from the detector diodes become:
Eq1 = m[1 4 Kg + 2 Kgeos (85 - 270°) ]
= g [1+Kg - 2 Ky sin 6]

Eqa = M1 1Ky + 2Kgeos(eg - 360°) ]
= N [1 4 Kg.+ 2 Kg coseg]

Eq3 = Mi[1+Kg + 2 Ky oos (B - 450°) ]
=y [1+Kg t 2Kgsineg]

Forming [(3.25)-(3.23)] gives:

(Eqz-Eq1) = 0y [2Kg sin Oz + 2K sin6R]
=4 rh Kp sin oR

3.23

3.24

3.25

3.26
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Since (KRsin SR) is equal to KRV’ the imaginary component of the

reflection coefficient, one has:

- Ed3 - Eqgt

4|71

KRy 3.27

Equation 3.27 clearly shows that the difference in DC output vol-
tages from detector crystals one and three is proportional to the ima-

ginary component of the reflection coefficient.

Similarly, forming [-(3.23)-(3.25)+2(3.24)] produces:
~Ed41 - Eq3 + 2E¢42 =
:?1E2KRdnBR..2KRsmeR4-4KRcoseR]

=4 I?1 KR cos eR . 3.28

The quantity (KR cos OR) is equal to KRH’ the real component of the

reflection coefficient. Thus:

KR = 3.29

It is evident from equation 3.29 that twice the output voltage
from probe two minus the sum of the output voltages from detectors
one and three is directly proportional to the real component of the re-

flection coefficient.

The above illustrates how the reflection coefficient may be meas-
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ured simply and conveniently, using three E-field sampling detector

probes.

3-4 Three Detector H-Field Sampling

Three H-field sampling probes may equally readily be positioned
along a waveguide such that the reflection coefficient can be measured.
The derivation is analogous to that of the three probe E-field sampling
arrangement.

Figure 19 shows the special placement of three H-field detector
brobes along a waveguide, where a reference short at the plane of the
Toad is again used to define the positions of the minima. The spacing
between the probes is 19/8 as before, but since the current at a short

is maximum, the distance from the load to the first minimum is now

Ed3 Edo Eqy
i |
I
!
!
d f N
f ' ! N SHORT
—_— N
INCIDENT CURRENT M | A | Ag R
—_— g e —_—
8 8 8

FIGURE 19.  H-FIELD PROBE PLACEMENT
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53

The distances from the load to the probes, if translated into

electrical degrees are:

o

Probe 1 : 45" or

Probe 2 : 90’ or
Probe 3 135° or

2/3dy=90°
2/3dy=180°

2/3d3=270° 3.30

Substitution of the values for (Zﬁd) from 3.30 into equation 3.21 gives

the detector output voltages as:

na C1+ K3 - 2Kg cos (65 -90° )]

Edy =

= Q2E1+Kg'2KRSin BR] 3.31

Edo = n2 E1+ Kg = 2Kp cos (BR"180°)j
n2 E1 +K% + 2KR cos 6R j 3.32

Eq3 = n2[[1+Kg - 2Kgcos (8 -270°)]
= Q2[1+K§+2KR sip 8y _] 3.33

By forming [(3.33)-(3.31)] one obtains:

| Ed3"'Ed1 = q2[2KR sin BR+ 2KR sin BR]

3.34

= 4’22 KR sin GR

But, KRV’ the imaginary component of the reflection coefficient, equals
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(KR sin GR). Equation 3.34 can thus be expressed as:

Eqa - E
—d3 - *d1 3.35

Ky =
. 4722

Also, taking [-(3.3])-(3.33)+2(3.32)] one obtains:
-Ed‘l - Ed3 + 2Ed2 =

= N2 [-2Kp sin 65 + 2Kg sin 6 + 4 Kp cos 8g ]
= 4N KR cos B ‘ - 3.36

Again, (KR cos eR) equals the real part of the reflection coef-

ficient, and therefore, equation 3.36 becomes:

“Eq1-Eqa
2Ed2 E(“ d3 3.37
4l?2

KRH =

These results are the same as those derived‘for the E-field
probes.

It should be recognized that the results derived above are correct
only if a set of three perfectly matched detector crystals, operating
in their square law regions, is used. However, use of a closed Toop
system for automatic matching implies that deviations from square law
operation of the crystals, which might occur during matching of highly

mismatched loads, are of Tittle consequence. The main feature of the
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measuring device must be that, under matched conditions over a range

of power levels, the error voltages generated are zero. Differences in
sensitivities and tracking errors of the crystals may be compensated
for, over a limited range of microwave power levels, by static adjust-

ment of the individual probe attenuators.

3-5 H-Field Probe Coupling and Attenuation

The desirability of sampling the longitudinal magnetic field com-
ponent in a rectangular waveguide operated in a TE]0 mode was discussed
in a previous section.

The microwave power level at which the matching device is expected
to be used is 1 kW or more. However, normal microwave detector crystals
must be operated at power levels of about 1 mW in order to insure
square law response from these crystals. An attenuation of at least
60 dB is, therefore, required between the main waveguide and the de-

tector probe pick-up Toop. Because the microwave power Tevel is not

t
MAIN WAVEGUIDE

COUPLING HOLE

CUT_OFF MODE
WAVEGUIDE

FIGURE 20. THE H-FIELD PROBE AND ATTENUATOR
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definite, and because the detector crystal sensitivities and tracking

must be compensated for, it is furthermore required that the attenua-
tion between the main guide and the probe be adjustable.

The stated requirements are most easily met by designing an adjus-
table position probe which samb]es the magnetic field in 5 cut-off
waveguide, while coupling main quide energy into the cut-off guide by
means of a main waveguide sidewall coupling hole. Figure 20 schematic-
ally illustrates the probe arrangement.

Consider, first, the sidewall coupling hole. Bethe has déveloped
design formulae for the attenuation through coup]ing holes in wave-
guide walls. His work is presented in several reference texts such as,
for instance, Montgomery( ) Bethe's expression for the attenuat1on

through a single sidewall coupling hole (see figure 20) is:

1

714\ Y2

¢ =20 10g 1__}‘5_-16(-'_ J Y 33
2a3

where:
C is the coupling factor for the coupling hole, given in dB.
d is the coupling hole diameter in cm.
t is the main guide sidewall thickness in cm.
a is the main guide width in cm.
b is the main quide height in cm.
Zg is the guide wavelength in cm.
Ais the free space wavelength in cm.

Expression 3.38 allows one to find the hole diameter, d, neces-

sary to give a fixed attenuation of about 60 d8 for a specific size of
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main wavegu1de and a fixed frequency. Only the ]ong1tud1nal magnetic

field component W1]1 coup]e through the hole.

Further adJustable attenuation may be obtained from the cut-off
mode rectangular waveguide shown in figure 20, into which coupling
takes place. The coupling hole will attempt to excite a TE]0 mode in
the cut-off guide, but no electromagnetic wave can be propagated by
this guide. Instead, the fields will decay exponentially, away from the
excitation point, thus producing a constant logarithmic attenuation
per unit length of cut-off guide.

Montgomery(g) gives the design formulae for cut-off mode wave-

guide. They are:

K = 8,686 2 [ (7‘0)2 2 3.39
and:
Ac = 2(591/2 3.40
(D% @)
where:

oCis the attenuation constant in dB/cm.

Ab is the cut-off wavelength in cm.

X is the free space wavelength in cm.

€ is the relative dielectric constant of the material

filling the guide.
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a is the width of the waveguide in cm.

b is the height of the guide in cm.
m and n are the mode numbers of the wave in the guide.

The cut-off wavelength, }b, may be obtained from equation 3.40,
for a particular guide size. This value may then be substituted into
expression 3.39 to obtain &, The attenuation may readily be made adjus-
table over a 40 dB range, so that practically any power level can be

accommodated.

3-6  The Complete Three Probe H-Field Measuring Section

As discussed previously, resolution of the voltages measured by
the three probe device, into signals proportional to the real and
imaginary components of the load reflection coefficient, requires
special positioning of the probes with respect to the load. In fact,
of the three probes at 7§/8 spacing, the central one should be located
at a standing wave minimum as defined by a short substituted for the
lToad at the load reference plane. Moreover, the definition of a lToad
reference plane position directly affects the angular part of the
reflection coefficient as measured.

In a closed-Toop system for automatic matching, the load com-
prises the actual load and, also, the matching device (a single stub
tuner). In defining a reference plane for the combined Toad and match-
ing device, consideration should be given to the fact that the s1gna]
which is proportional to the imaginary part of the reflection coef-
ficient, will be used as the error voltage for the control loop that

adjusts the stub. The stub affects only the imaginary part of the total
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load admittance. The combined load reference plane should, therefore
be chosen at the null plane of the stub H-plane tee.

9), show that the actual position of

A]tman(B),and also Montgomehy(
the null plane for a stub and H-plane tee does not coincide with the
vertical plane of symmetry through the stub, because the tee forms an
extended discontinuity in the main waveguide. If the stub is so ad-
Justed that it appears to place a short across the main waveguide, the
first minimum in the H-field standing wave pattern will not occur at
a distance of Ag/4 away from the stub plane of symmetry. Rather, that
distance will be somewhat less than 95/4.

Measurement has shown that for the H-piane tee and stub used,the
distance from the plane of symmetry to the first H-field null is
0.246)@. Later analysis will demonstrate that small errors in this dis-
tance are not detrimental.

Since the distances from the probes to the H-plane tee are fixed
%or a fixed microwave power source frequency, it seems reasonable to
combine the measuring section and H-plane tee into one unit.

Figure 21 shows the complete measuring section and tee arrangement
as discussed. To conserve space, the cut-off mode guides are alternate-
1y mounted on opposite sidewalls of the main waveguide. Furthermore,

a fourth coupling hole and cut-off mode guide (a dummy) are included at
a distance of AQ/B, to help cancel any reflections caused by the meas-
uring section.

A detailed cross-sectional view of one probe and detector crystal,
showing the adjustable mounting method on the cut-off guide, is in-

cluded as figure 22. The probe pick-up Toop is inserted into the cut-
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off mode waveguide through a central Tongitudinal slot in the top
wall of the cut-off guide.
Further constructional details of the measuring section and H-
plane tee should be obvious from the diagrams of figures 21 and 22.
This completes the discussion of the automatic matching device
microwave components. Subsequent chapters will deal with the analysis
of the closed-Toop system, and will describe a specific implementation
of the automatic matching device. Some consideration will also be given

to the electronic part of the system.



CHAPTER FOUR

THE CLOSED LOOP SYSTEM

The components described in previous chapters may be combined with
some control electronics, for amplifying and conditioning of the error
signals, to form an autdmatic microwave Toad matching device.

However, the automatic matching apparatus will be useful only if:

1. The control Toops are stable under all microwave load con-
ditions; i.e. a stable equilibrium can be reached for all
microwave loads, and the control loop output variables remain
bounded during load variations. |

2. The equilibrium values of the output variables correspon-
ding to each microwave load value are unique, and always
represent a matched load condition. )

3. The equilibrium conditions are reached rapidly, but with-
out excessive dariped oscillations about the equilibrium point.

The existence of the three conditions Tlisted above is not guaran-
teed, and careful analysis is required to show that they can be attain-
ed.

This chapter wiil be concerned mainly with the system configura-
tion, the input-output relationships of the microwave portion of the
system, the system differential equations, and uniqueness of the solu-

tions. Stability will be treated in another chapter.
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4-1 The Closed-Loop System Configuration

Before proceeding with the system analysis, it is advantageous to
discuss the system configuration. The system can be considered as con-
sisting of the following:

1. A load admittance YL’ which acts as a disturbing signal

to the control loops.

2. A series phaseshifter, which "rotates" the load YL’ al-
Towing YL to become YR such that on1y the angular part of the
reflection coefficient is affected.

3. A parallel shorted stub, made adjustable by means of a
phaseshifter, which affects only the imaginary part of admit-
tance YR’ and which changes YR ipto Y.

4. A three detector-probe measuring device with associated
analogue operational amplifiers to combine the detector out-
puts to yield two signals, one proportional to the real part
of the reflection coefficient of Y, and another proportional
to the imaginary part of the reflection coefficient of Y.

5. Amplifiers in each control Toop to add gain and make the
signals (that are proportional to the real and imaginary
parts of the reflection coefficient)powerful enougn to drive
the phaseshifters.

6. Minor feedback Toops within each of the two main control
loops to provide electrical damping of the main control loops.

If damping terms are not considered, the e]ecéromechanica] port-
ions of the two phaseshifters may each be represented, in an analogue

fashion, by two cascaded integrators. This is so because, according to
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equation 2.16, the drive coil current produces a force that is propor-
tional to coil current. That force accelerates the moving mass of the
phaseshifter at a rate which is proportional to coil current. But, die-
lectric slab acceleration, if integrated twice, gives the position of
the dielectric slab. Slab position corresponds to the output variable
of the control Tloop.

It should immediately be recognized that a closed control loop,
containing just two integrators and linear or non-linear gain, would
tend to oscillate if an input or disturbing signal were to be applied
to the loop. Therefore, it is always necessary to include some form of
damping to obtain stable operation.

In the actual system, damping may be derived from the drive coil
back e.m.f., from friction in}the phaseshifter teflon bearings, from
viscous air damping action on the dielectric slab, and from feedback of
the rate coil signal. The air and frictional damping terms were found
to be sufficiently small that they could be ignored. The main damping
terms, derived from the drive coil back e.m.f. and from the rate coil
signal, on the other hand, may be combined into a single damping feed-
back loop around one of the integrators discussed above.

The entire closed loop system is represented in block diagram form
in figure 23. Al admjttance variables shown are normalized to the fee-
der line characteristic admittance and are considered as consisting of
a real part, the conductance, and an imaginary part, the susceptance.

The diagram of figure 23 is basic and will serve for analysis

purposes.
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4-2  The System Differential Equations

To derive the system differential equations, consider the phasg-
shifter moving mass and drive coil arrangement with rate feedback, as
shown in figure 24. Let the drive coi] be fed from an operational type
power amplifier which has practically zero output impedance. For the
time being, éssume that the drive coil and rate feedback coil have zerd
inductance, so that the voltage current relationships are not frequen-
Cy dependent.

Define the following quantities:

i] is the drive coil current.

e is the amplifier input vol tage.
e, is the amplifier output voltage.
e, is the drive coil back e.m.f.

e. is the rate coil output voltage.

Position
L————-a--x

AMPLIFIER

MAGNET AND MAGNETAND
= DRIVE COIL MASS RATE COIL

-k

-«.-?b—> -

q”

FIGURE 24.  THE PHASESHIFTER ELECTROMECHANICAL SYSTEM
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R. is the drive coil resistance.

c
M is the phaseshifter moving mass.
X is the phaseshifter moving mass (slab) position.
t is time.
k] is the rate feedback amplifier input gain.
k2, k3, and k4 are.proportionality constants.

The quantities so defined,'which refer to figure 24, are interrelated

as expressed by the following equations:

ij.= S0 = €b 4.1
Re

er= kg ot 4.2

ep = kg ¥/t | 4.3

eo= - ef - ke, 4.4

Combining of equations 4.1, 4.2, 4.3, and 4.4 gives:

i,:-."i_-(ﬁfi+k_4 44 4.5
Re Re Re

The force produced by the drive coil is proportional to the dfive coil

current. Thus:

2
M a2 <k, iy 4.6

Equation 4.6 may be substituted into 4.5 which, after rearranging of
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terms, yields:

2
d°x /k1k2k3 + k2k4) 91 0 4.7
dté ReM ReM R.M

The result of eduation 4.7 justifies the analogue representation of the
phaseshifter electromechanical parts given in figure 23.

The actual differential equations are readily obtained if the
diagram of figure 23 is redrawn into the equivalent diagram of figure
25. From equation 4.7 and'figure 25, the system differential equations
may immediately be written down as equations 4.8 and 4.9. The symbols

are defined as follows:

INPUT1. =0

INPUT OF
<

KRH +
Y_ OR kg
NLo

INPUT 2.=0

FIGURE 25.  COUPLED NON-LINEAR FEEDBACK LOOPS
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"." indicates the time derivative d/dt.

X 1s the series phaseshifter slab position.
y is the stub phaseshifter slab position.
4 and a, are the damping loop gains.

¢ and ¢, are the main static Toop gains.

X + ax T C1KRH(X,y,YL) =0 4.8
y o+ 52;’ + CgKR\/(X,Y,YL) =0 4.9

Notice that the input signals (1 and 2) in figure 25, correspon-
ding to the desired values of KRH and KRV’ are zero. The load admit-
tance YL acts merely as a disturbing signal applied to the non-linear-
ities NL] and NL2. To each initially unmatched load there corresponds
a new set of equilibrium values of x and y. A Step change in load ad-
mittance YL makes the system behave as if new initial conditions on x
and y had been applied. The system can thus be regarded as being

autonomous in nature.

System equations 4.8 and 4.9 may also be expressed in state vari-

able form as in equation set 4.10:

Xq = X2

X2 = -ayx2 - cq Kpy (x,y,Y,)

91 = Yo _

V2 = -a2¥2 -ca Kpy(x,y,Y) 410

The system equations are not complete until KRH and KRv have been



71
defined in terms of x, y, and YL' This will be done next.

4-3  The System Non-Linearities

Expressions for the non—}inearities, KRH(x,y,YL) and KRv(x,y,YL),
may be obtained using standard transmission 1line theory(5’]0).

Referring to figure 23, load admittance YL is transformed by the
series phaseshifter, and any interconnecting waveguide, into an admit-
tance YR=GR+J'BR on the load side of the neutral plane of the H-plane
tee. The interconnecting waveguide contributes only a constant phase-
shift angle to the ref]ect%on coefficient and is considered no further
here.

The shorted stub adds, by means of the H-plane tee, a variable
amount of susceptance to YR’ thus transforming YR into Y=G+jB on the
generator side at the neutral plane of the H-plane tee.

The reflection coefficient, kR, corresponding to Y at the neutral
plane of the H-plane tee, is measured by the three-probe detector de-
vice. The measuring device,therefore, does not measure the actual Tload
admittance YL’ but measures rather the reflection coefficient of Y,
which corresponds to YL transformed by the matching device.

Without loss of generality, assume that the incremental phase-
shifts p, and Qb (in radians) produced by the series and stub phase-
shifters respectively, are numerically equal to their respective slab
displacements in centimeters. This is lTegitimate since the necessary
proportionality constants can be considered as part of the static loop
gains < and ¢, in equations 4.8 and 4.9, °

Then, for a series incremental phaseshift ﬂa, one has:
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Yq - YL+ jtan P, - Yutjtanx

4.11
1 +jYLtan¢d 1+jY|_tanx
or, by setting YL=GL+jBL and YR=GR+J'BR, and expanding:
6 (1 +tan2x)
GR = 4.12
(1-Btanx)? + 6tan®x
2 2 2

gy = fanx.* BL(1-tan®x) _ (62 +B) tan x 113

(1-8tan x)2 + 6 2tanx
For a short-circuit admittance Ys=oo and a stub incremental phase-
shift ﬂb, the susceptance added by the ‘parallel stub at the H-plane
tee is: '

jBs=jtan @y , or Bg= tany 4.14

Moreover, susceptance addition by the H-plane tee results in:

6= g - 6, (1+tan?x)
(1-8rtanx)? + 62 tan?x

4.15

B=Bgrt BAS

_ tanx+B (1-tan®9) - (62 + BR) tanx
(1-Btan 92+ 62 tan?x

+tany 4.16

The three-probe detector device measures kR’ the reflection coef-
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ficient corresponding to Y=G+jB. From transmission line theory:

1y _(1-6)-j8 4.7

kp =
1ty (1+6)+jB

Separating expression 4.17 into real and imaginary parts and setting

kR= RH+jKRV gives:

2 L2 '
1.6°_8
Ky = 4.18
(1+6)2+82
-2B
Ky = 4.19
(1+6)2 +B2

Substitution of equations 4.15 and 4.16 into the expressions for
KRH and KRV’ as given by 4.18 and 4.19, completely defines KRH and KRV’
and thus NL] and NLZ’ in terms of x, y, and YL' The‘complexity of the
expressions prevents this substitution from being carried out.

Even though the results just derived will be useful in subsequent
analysis work, equally applicable and convenient results may be derived
using polar coordinate representations of the non-linearities.

Let the load admittance, YL’ be characterized by its reflection
coefficient kRL=KRL e j(ORL), where e is the exponential operator. Then

kRR’ the reflection coefficient corresponding to YR (see figure 23), is
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where Qa is the phaseshift contributed by the series phaseshifter.
Now: |

YR_.I-kRR _ I-KRLPJW _
g+ kRR 1+ KRLQ‘N

_1-KpLcos¥ - jKp sin¥ 4.2
1 +Kppcos¥ +jKpysin®

Assuming that the susceptance added by the shorted stub is

Bs=tan ¢b=tan ¥, one has:

Y:YR+jtany:

. 1-Kgrcos ¥ — Kppsin¥ tany

1+ Kpicos ¥ +jKp sin ¥

j tany + K‘E“_cos Y tany - Kgsin ¥ 4.22

+
14 KR&Q‘} iKpsin ¥

Again, from transmission Tine theory, the reflection coefficient, kR,

corresponding to the admittance, Y, at the neutral plane of the H-plane

tee, is given by:
1-Y | 4.23

2KpLcos ¥ - Kg sin¥ tany .
(2-KgLsin¥tany) + j(tany + Kppcos¥Ptany)

tany + Kgpcos¥ tany - 2Kgsin ¥
(2. Krpsin ¥.tan y) +j(tany + Kricos¥ tan y)

-
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The components of kR’ as actually measured by the three probe

measuring device, are:

Re [kg] 4.2

Im[kg] 4.25

KRH

KRy

Separation of equation 4.23 into real and imaginary components accor-
ding to 4.24 and 4.25, and simultaneous substitution of‘P=(6RL+x), will
yield defining equations for KRH and KRV’ and hence for NL] and NL2, in
terms of x, y, and YL or kRL' Because of their length, the resulting
expressions for'KRH(x,y,YL) and KRv(x,y,YL) are given in table 1 as
equations 4.26 and 4.27.

The results expressed by the equations of table 1 are entirely
equivalent to those given by equations 4.15, 4.16, 4.18 and 4.19. Ei-
ther set of equations completely characterizes the two system non-
Tinearities, NL] and NLZ' |

In subsequent parts of this report an analysis of the system
operation will be attempted based on the results of this and previous

sections.

44 Some Properties of the Non-Linearities

It is of some importance to examine the behaviour of the non-
linear functions defined by equations 4.26 and 4.27. This may be done
with reference to a Smith chart as in figure 26.

The relationship between admittances and reflection coefficients,




+
K Y=0

CIRCLE NUMBER LOAD x-VALUE y-VALUE
(1) 0.33+j0.5 constant varying
(2) 0.33+j0.5 varying 0.0
(3) 0.33+j0.5 varying -0.964
(4) 0.33+j0.5 varying +1.182
(5) 0.33+j0.5 varying -1.538

FIGURE 26.  TYPICAL SMITH CHART TRAJECTORIES

as expressed by equation 4.17, is a bi-linear transformation from an
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admittance plane to a reflection coefficient plane (the Smith chart).
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One of the basic properties of a bi-Tinear transformation is that

straight Tines and circles (in the admittance plane) are transformed
into straight lines and circles (in the reflection coefficient plane).
As a consequence of this property, the Smith chart trajectories that
result from changes in x and y, for any given Toad admittance YL, are
all circles. Unfortunately, the expressions for KRH and KRV are too
complex for analytical derivation of information about the Smith chart
trajectories. Where necessary, a digital computer was employed to cal-
culate and plot KRH and KRv simuTtaneously for specific values of YL’
as X and y were varied separately. Some typical trajectories are shown
in figure 26.
The properties of the non-linearities may be summarized as
follows:
1. For any initial value of YR (for definitions of the admit-
tance variables used see fig.23) determined by the values of
YL and x, the shorted stub adds pure susceptance BS to YR to
produce Y. Varying y will, therefore, leave the real .part of
Y unaffected. Thus, changing y inevitably causes motion only
along constant conductance circles on the Smith chart. The
radii of the constant conductance circles are functions of
the real part of admittance Y, and all their centers lie on
the KRH-axis between 0 and -1. Changing either YL or x, or
both, merely shifts YR to a new constant conductance circle
along which motion will proceed if y is again varied. The
changes in the trajectories resulting from changes in x are
not profound. It is especially important to note that, for

motion along any constant conductance circle, there is always
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a value of y which will cause KRv to be equal to zero.

2. For any load admi ttance YL, and for y=0 such that the
shorted stub adds zero susceptance, the series phaseshifter
affects only the angular part of the reflection coefficient
correspondihg to admittance Y. Varying x will, consequently,
cause motion along circles whose centers are always the Smith
~ chart origin. The radii of these circles are directly propor-
tional to the magnitude of the reflection coefficient corres-
ponding to Y.
3. For constant'va]ues of y other than zero, varying x has
less effect than for y=0 as discussed under ? above, since
parallel suséeptance has now been added which tends to
“shield" Y from changes in YR‘ The trajectories, as x is var-
ied, are sti]]'circ]es, but the radii are smaller and the
centers no longer lie between KRH=0 and KRH=—1 on the KRH'
axis. Rather, the centers now lie on circular arcs above and
below the KRH-axis that connect the points KRH=0 and KRH=-1
on the KRH-axis. As |y| increases, the centers move away from

the Smith chart origin and the radii decrease. Also, as kRL

corresponding to YL increases the radii increase.
4. The non-linearities NL] and NL2 are periodic in x and y,
with a period of 7C radians. A1l the circular trajectories
discussed above are traversed once for a change of T¢C radians
in x or y, as the case may be.

The properties of the non-linearities, as given here, will be used

in chapter five to prove stability.
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4-5  Equilibrium and Uniqueness

Even though the results to be derived in this section will appear
mathematically trivial, they a;e nevertheless of vital importance with
regard to proper operation and stability of the control system.

Assume that the control system as described by equations 4.8 and
4.9 has come to rest; i.e. an equilibrium point has been reached. Under
these conditions all fime derivatives_of the system variables must be

zero, otherwise deviations from equilibrium would occur. Thus:

3
°
o
°

4.28

[§]
Xe
1]
1§
e
1
o

Substitution of conditions 4.28 into equations 4.8 and 4.9 leads to:

KRH = Kpy = 0 4,29

Equations 4.29 indicate that, in terms of KRH and KRV on the Smith
chart, there is only one equilibrium point which simultaneously corres-
ponds to a matched condition (kR=0). Therefore, if the system is
stable and exhibits no Timit cycles, a matched condition will be
reached as time goes to infinity. |

For a given load admittance YL=GL+jBL, the values of x and y which
produce a matched Toad condition are by no means unique. This can be
shown by solving equations 4.15 and 4.16 for x and y. If, first, con-
ditions 4.29 are substituted into equations 4.18 and 4.19, the expected

equivalent requirements for a matched load condition become:
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6=1; B=0 4.30

Setting G and B in equations 4.15 and 4.16 equal to the values of 4.30

and solving yields:

3 .2 2, W
2 - + + 2
- tan] BL2(6L - 26F + 687 + 6) 4

mT 4.31
6C + B2 - 6,
2.n2 2 .
y=tan” (6€ +B{) tanx _tanx _B|_(1- tanx) ¢ e 4.3

(1-8(tan x)2 + 62 tanx

where:
x and y are the respective phaseshifter dielectric slab
positions.
GL and BL are the normalized unmatched load conductance and
susceptance respectively.
m and n are integers.
The values of x in equation 4.32 are equal to all possible
values of x obtained from equation 4.31.

As demonstrated by the solutions to 4.31 and 4.32, to each load
admittance YL there corresponds an infinite set of periodically re-
curring equilibrium values of x and y. Physical limitations on the
ranges of slab motion prevent many of these pairs of equilibrium values
from being reached. Furthermore, as n changes by unit increments, and
for a closed loop system, the equilibria are alternately stable and
unstable. More importantly, for a closed Toop system, as the equilib-

rium values of y approach [(KVZ)an)], the stable equilibria tend to
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become saddle points. Therefore, if the system exhibits any overshoot,

successive sets of stable equilibria, under these conditions, may be
bypassed altogether, thus preventing the system from coming to rest.
This would render the system useless.

The above difficulties may be avoided, and the equilibria may, at
least partly, be made unique by the methods described hereafter.

Let the range of motion of the stub phaseshifter slab be mechani-
cally limited such that the allowable phaseshift range is slightly less
than +/2 radians. This will restrict y in equation 4.32 to its prin-
cipal values, while the parallel admittance BS’ as given by expression
4.14, will only assume values betweento, contained between the tangent
function asymptotes at y=£192, Moreover, for any given set of values
GL’ BL’ and x, the solution for y obtained from equation 4.32 will now
be unique.

Note also, by reference to the Smith chart of figure 27 that, for
motion along any constant conductance circle, the sign of KRv is neg-
ative in the upper semi-circular region, positive in the lower semi-
circular region, and zero on the real axis of the Smith chart. Proper
arrangement of negative feedback, in a loop involving KRV and the stub
phaseshifter, will thus reduce KRv to zero for any YL and x, provided
the system is asymptotically stable. At equilibrium values of y close
to £m72, the mechanical slab motion stop will 1imit the overshoot S0
that, even under these conditions, equilibrium of the stub phaseshifter
loop can be attained.

The situation with regard to the series phaseshifter is not as
simple. Again, let the range of motion of the series phaseshifter slab

be mechanically Timited to 72 radians. In these circumstances it
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\YR CIRCLE for y=0
X VARYING G=1 CIRCLE

Y=+j1

?;H MATCH |

=+
Kpy or ERROR KRy oF ERROR
POSITIVE - N 'N‘EGATIVE
with Kgy forced to Yz‘”'#KRV:'” \ with Kpy
zero by an active forced to zero
stub loop. by stub loop.

FIGURE 27.  ERROR SIGNALS AND POLARITIES ON THE SMITH CHART

might be expected that, from expression 4.31, x is limited to its prin-
cipal values, but this is, in fact, not necessarily so. The explanation
follows.

The reflection coefficient components as measured by the three de-
tector measuring device are those corresponding to the total admittance
appearing at the neutral plane of the H-plane tee. Measurement allows

determination of the contribution by the parallel shorted stub to the
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admittance at the neutral plane of the H-plane tee. A proper stub

phaseshifter reference point, which is independent of the load admit-
tance or the series phaseshifter adjustment, may be chosen ds that
particular stub phaseshifter adjustment,which causes zero admittance to
be added by the stub to the main waveguide admittance at the neutral
plane of the H-plane tee.

Measurement of the admittance at the neutral plane of the H-plane
tee in the main waveguide does not allow the contribution by the series
phaseshifter to be separately determined. The angle of the reflection
coefficient of Y,at the neutral plane of the H-plane tee, is the sum
of the phase angle contributions of the load admittance, the series
phaseshifter, and the interconnecting waveguide. Changes in phase angle
resulting from adjustment of the series phaseshifter can be measured,
but a zero phaseshift reference point cannot be defined; it is inde-
terminate. The series phaseshift reference point will be discussed
again later.

The above difficulties should not imply, however, that the phase-
shifter matching adjustments cannot be made unique. Reference to the
Smith chart of figure 27 shows that, for y=0, varying x through its
range of 7t radians causes the reflection coefficient vector to move
in a circle about the Smith chart origin. On this circle there are two
points at which KRH is zero. In the left hand semi-circular region of
the Smith chart KRH is positive, while in the right hand semi-circular
region KRH is negative. More specifically, with KRv always maintained
at KRV=0 while x is adjusted, there are two values of x (i.e. X] and
Xo in figure 27) that correspond to system equilibrium and matched load

conditions. For the range of values of x in the left hand circular sec-
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tor between X1 and Xos KRH or the error signal will be positive, while
for values of x in the right hand sector between X1 and Xo s KRH or the
error signal will be negative. A feedback Toop, involving the series
phaseshifter activated by KRH’ Will thus adjust to either one of the
two equilibrium points X] O Xo, depending on the sign of the loop
gain. One of the two equilibrium points will be stable, while the other
will be an unstable equilibrium point. On the Smith chart of figure 27,'
note particularly that the phase angle distances in radians from X] to
X, are unequal in the two possible directions of motion, but that the
sum of the two exactly equals 7 radians. Expression 4.31 indicates also
that, within any series'phaseshifter adjustment range ¢ radians wide,
there are only two values of x which could correspond to matched load
conditions, one stable and one unstable (determined by the plus and mi-
nus signs in front of the square root sign).

Two difficulties arise in automating the matching adjustments. For
a sudden change in load admittance YL’ and depending on the previous
adjustment of x,the necessary change in x in the direction specified by
the sign of the loop gain, may exceed the remaining allowable range of
phaseshifter adjustment in that direction. Furthermore, continual chan-
ges in YL’ which cause the phase angle of fhe reflection coefficient to
increase by more than 7 radians in one direction, would make the series
phaseshifter loop try to adjust in that one direction only to follow
the reflection coefficient phase change. Either of these conditions
would force the series phaseshifter against its mechanical stop, upon
which adjustment would cease without equilibrium having beenvreached.

The above difficulties may be overcome by a method of e]ectfica]]y

reversing the polarity of the serjes phasehifter loop gain, each time




86
the series phaseshifter reaches one of its two mechanical stops. This

guarantees that, while the phaseshifter was previously driven against

one of its stops, now it will proceed away from that stop in the oppo-
site direction. After reversal of the lToop gain sign, there is always

one stable équi]ibrium within the phaseshifter range of adjustment, as
was demonstrated above.

The response speed of the series phaseshifter control loop, for
those Toads or load changes which cause the phaseshifter to reach one
of its mechanical stops, may be improved by adding a short duration
electrical pulse signal into the control toop, which will impart some
initial velocity, in the opposite direction, to the phaseshifter slab
each time the Toop gain polarity is reversed at one of the stops. This
initial velocity signal will also help the control lToop to bypass an
unstable equilibrium point, if necessary. Usually though, the first
equilibrium point encountered,after sign reversal of the loop gain,
will be a stable equilibrium.

Electrical circuit details of the sign reversing and initial
velocity component blocks in the automatic matching device will be
given later.

It has been shown that mechanical limit stops, incorporated into
both phaseshifters, which 1imit the allowable phaseshift ranges to 7¢
radians, cause there to be two and 6n]y two distinct equilibrium ad-
Justment positions for the phaseshifters, which correspond to a match-
ed load condition.At any one time, only one of these represents a sta-
ble equilibrium. On the Smith chart the matched load condition is en-
tirely unique.

However, the pair of equilibrium points is repeated over and over
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again in consecutive periods of series phaseshifter adjustment. The
lToop gain sign switching, at the mechanical limit stops of the series
phaseshifter, has the effect of folding the entire series phaseshift
range at the limit stops, such that one single period covers the entire
range of phaseshifts from - to +m. This is possible, because the dif-
ferent periods are indistinguishable one from another.

After a sudden change in load admittance, and provided the pre-
vious adjustment positions of the phaseshifters are known (equivalent
to initial conditions), the equilibrium point towards which the system
wi]]fmowe and the Smith chart trajectory, including a possible auto-
matic loop gain sign revefsa] at the series phaseshifter 1imit stop,
may be predicted. In this sense the equilibrium position and the ad-
Justment procedure may be considered as being unique. Therefore,

stability analysis may proceed on this basis.



CHAPTER FIVE

SYSTEM STABILITY AND RESPONSE ANALYSIS

In the previous chapter it was shown that, provided the control
system is stable, the equilibrium positions of the phaseshifter slabs
are unique. Furthermore, the non-linear differential equations were
completely defined and the properties of the non-linearities were ex-
amined. It now remains to show stability. System stability will be
demonstrated by three methods:

1. Theoretical analysis.
2. Computer simulation of the entire system.
3. Building of an actual prototype matching deyice.

This chapter will be devoted to theoretical analysis of the sys-

tem.

5-1 Stability Analysis Preliminaries

Historically, a great deal of attention has been devoted to the
study of non-linear differential equations, which characterize many
control systems. Lyapunov(]]) was the first worker to develop theory
which allowed the stability of a system to be considered without the
necessity of solving the differential equations. Many others have con-
sidered the stability of systems containing a single memory-less non-
Tinearity, for example Lur'e(]z), Popov(13), and Ka]man(]4). Popov,
especially, has contributed a great deal by presenting a frequency

domain stability criterion applicable to non-linear closed loop control
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systems containing a single non-linearity. Popov's results have since

been extended to cases that place greater restrictions on the non-Tine-
arities, but fewer restrictions on the linear part of the system (see
for instance Brockett and Ni]]ems(]s)).

Also of great interest are those studies, which have attempted to
extend Popov's result to systems containing multiple non-linearities.
Ibrahim and Rekasius(lﬁ), Jury and Lee(]7), Ku and Chieh(]s), and
Anderson(lg) have all derived multi-dimensional frequency domain stabi-
lTity criteria for multiple non-linearity systems.

Unfortunately, because the non-linearities are restricted too much
by these criteria, not all of the multi-dimensional stability criteria
developed by the above workers are abp]icab]e to the system under con-
sideration in this report. However, Anderson's, and also Ku and Chieh's
work is applicable. Anderson's stability criterion, particularly, may
be applied if the non-linearities of this system are given special con-
sideration.

The theorem derived by Anderson(]g’zo), and the conditions under
which it applies, are stated next. |

Let a multi-dimensional non-linear control system be represented
by the block diagram of figure 28, where U and z are column vectors
corresponding to the multiple inputs and outputs, respectively, to the
Tinear part of the system. Let W(s) be the complex frequency domain
transfer function matrix of the linear part of the system. Also, let
f(z) be a non-Tinear vector function of its input z. The output from
the non-Tinearity is then identified with u, the vector input to the
Tinear part.

Furthermore, Tet W(s) be a matrix of stable, rational functions
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sl LINEAR PART
" w(s)

c
IN

NON_LINEAR PART|@ |
t(z) [

FIGURE 28.  THE GENERAL MULTI-DIMENSIONAL NON-LINEAR SYSTEM

of s such that:

W(S)l =0 . 5.1

S_, 0O

which means that each non-zero element of the transfer function matrix
must have more finite poles than it has finite zeros.
And, Tet the vector non-linearity be restricted to generalized

n-dimensional sectors by the inequality:

Q> ki@ 5.2

where the superscript T indicates the matrix transpose, and where K
is a non-negative definite matrix of éonstants.
For a system as shown in figure 28, and under the restrictions
imposed by expressions 5.1 and 5.2, Anderson's theorem states that:
The system of figure 28 is stable (Lyapunov type stability)

if there exist constants « and 3 such that:
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€0 ; B0 ; K+B8>0 5.3
and such that:

M(s). = KK+ («+ @s) W(s) is positive real. 5.4

A matrix M of functions of a complex variable s is called
Positive Real if and only if:
1. M(s) has elements which are analytic for Re[s]>0.
2. M*(s)=M(s*) for Re[s]>0, where * indicates the complex
conjugate.
3. The Hermitian matrix_ﬂ(s)am(s)tMT(s*) is non-negative
definite for Re[s]>0.
The non-negative definite character of the Hermitian matrix N(s) may be
established with the aid of the method of Principal Minors(Z]).
Anderson proves his stability theorem in two parts. In an initial

(20)

paper he shows that a transfer function matrixugl(s),with a minimum

dimension realization:

and such that:

| .
21(s) =Ml (s1-F )7 g, | 5.6



is Positive Real if and only if there is a positive definite matrix

E], and if there are matrices L] and MO] such that:

_L1L‘|

P1Fy + 5181 :
P1Gy .= Hy - L1 Wgy

21(c0) + 2] (o)

T
Wo1 Wor
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5.7

Then, in é second paper(]g), he considers the stability of a sys-

tem characterized by:

with transfer function matrix W(s) for the linear part defined in a

\

5.8

manner similar to that of 5.6. He relates a triple [52’§2’ﬂ2] associa-

ted with a minimum realization of [KK+(c+@s)H(s)] to the triple [F,G,H]

associated with M(s) for the actual system. This yields expressions

for P, L and -wO’ defined according to 5.7, in terms of <, (3, and E, G

and H of the actual system.

Based on the above, he proceeds to show that a positive definite

Lyapunov function for the system, defined and restricted by 5.8, is:

and that, again under the restrictions on the non-Tinearity, the time

derivative of V(x) as given by:

5.9



V(x) = - Cx'L- (O WhI L - wot (T3]
~2a [ () () -£T(Tx) K £ (HTx))

is negative definite.

Stability is thus proven if M(s) is Positive Real and the non-

linearity obeys condition 5.8.

Anderson's theorem will be used in the next sections.

5-2 The System Transfer Function Matrix
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5.10

As a first step in the stability analysis of the automatic match-

ing system, the transfer function matrix, W(s), of the linear part of

the system needs to be determined. This is most easily accomplished by

rearranging the system block diagram once more, and by simultaneously

examining the system differential equations 4.8 and 4.9. The redrawn

block diagram appears in figure 29.

Referring to the diagram of figure 29, let u and z be defined as:

Then, for the linear part of the system, and in terms of Laplace

transforms:

[y Kry (x,y.Y)
! = =
up Krv (x.y.YQ)
[ %
; =
y

2(s) = wW(s)u(s)

5.11
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FIGURE 29. THE TWO DIMENSIONAL NON-LINEAR SYSTEM

System differential equations 4.8 and 4.9 may be rearranged, substitu-
ting the components of u for KRH and KRV' After Laplace transformation

and solving for X(s) and Y(s) in terms of U](s) and U2(s) one has:

X(S):__:_ﬁ__U(S); Y(s):____CL_U (5)
s(s+ag) ! s(s+ay) °
5.12

Therefore, W(s) is as given by expression 5.13 where, as is common in
control engineering, the minus signs appearing in equations 5.12 have
been omitted and are considered as being part of a summing device

external to W(s).
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s(s+ay)
w(s) =
0 L
s+a 5.13

Since, as will be shown later, the non-linearities NL] and NL2
have some peculiar properties which make them disobey Anderson's con-
ditions on the non-linearities, it will also be necessary to consider
the stability of the stub phaseshifter control loop alone (this Toop
involves KRV)' To this end the block diagram of figure 29 may be re-
drawn as in figure 30.

Let the load admittance, YL’ be transformed into YR by the series
phaseshifter (see figure 23). The non-linear dependence of YR upon x

and YL may be represented by non-linearity NL,.. Similarly, KRH’ one

la
of the inputs to the linear part of the system, is a non-linear func-
tion of YR and y. The latter non-linear function may be represented by
non-linearity NL]b. In effect, NL] has been split into two cascaded

non-linearities NL,. and NL]b. The nature of non-linearity NL2 has not

la
changed by this rearrangement. Changes in YL and x are entirely equiva-
Tent, in their effect upon NL2, to appropriate changes in YR alone.
That the above interpretation is correct may also be demonstrated
by referring to some equations developed in chapter four. Equations
4.15 and 4.16 show that the effects of y (i.e. a quantity equal to the

function (j tan y)) are simply added to YR' Another separate non-linear

function (equation 4.18), which is equivalent to NL]b, converts the



. 96
result into KRH' And, as shown by equations 4.12 and 4.13, the depen-

dence of Yp upon Y, and x (non-Tinearity NL;,) is independent of the

addition of the effects of y.

s > LINEAR PART
W1 1 (S) X

LINEAR PART
™ Wao(s) y

Kry Kry| Stub Control Loop

NLo ‘_+

< Y, INPUT

y YR
[ T B R 2 1
{ !
L NL NL ——
| Series b fa | X
:Loop YR {
o e e e J

FIGURE 30.  SYSTEM BLOCK DIAGRAM SHOWING THE SEPARATE STUB
PHASESHIFTER CONTROL LOOP

Figure 30 shows that the stub phaseshifter control Toop is quite
separate and independent within the overal] system. The only "connec-
tion" between the stub phaseshifter control Toop and the rest of the
| system is through input YR into the stub control Toop and output y from
it.

It must be emphasized that the series phaseshifter loop may, under
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no circumstances, be similarly independently considered. The stub

control Tloop is, effectively, a loop within a Toop and is always part
of the series phaseshifter control Toop.

From the above discussion and from figure 30, it should be obvious
that the stability of the stub phaseshifter control loop may be con-
sidered separately. To do this the one-dimensional case of Anderson's
theorem, which is equivalent to Popov's stability criterion, will be
used.

The applicable transfer function for the stub loop may be obtained

from the transfer function matrix W(s) given in 5.13. Thus:

Wop(s) = 2 5.14

s(s+a2)

Again, the minus sign will not be considered as being part of the

transfer function.

5-3 The Positive Real Associated Matrices

Before stability can be proven it must be shown that the H(s) ma-
trices, discussed in connection with Anderson's theorem, are Positive
Real.

Consider first the stub phaseshifter control Toop with linear part
wzz(s) and non-linearity NL2 (see figure 30).

The expression for wzz(s), from 5.14, may be substituted into the

one-dimensional case of expression 5.4 to yield:
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M](S) = Kk +(0< +ﬂs) W22(5)

=oCk + (€4,85) ___°2 5.15
: s(s+ap)

where M](s) must be Positive Real.

Initially, assume only that o€ and 3 conform to the requirements of
5.3, and that a, and k are non-negative definite. Clearly, under these
assumptions, M](s) is analytic in the right half s-plane. Also,

M]*(s)=M](s*) in the right half s-plane. Setting s=T*jw, one has:

NI(S) = M1(SJ + M-{(S*) =

=2 k+ C2E>C+ﬁ(¢+j&))] + C2E><+/3(0’-j&))]

(i) +iw)+a,] (@ -jw)[F-jo)+ay]

After algebraic manipulation, this finally leads to:

N1(S): 2O<.k+ca:2¢[(0<+/3¢)(¢+62)+/3wzj+2€"2(p52-00

%+ ?)[([T+ap)%+ea?]
5.16

N](s),as given by expression 5.16,must be non-negative definite for all
values ofc, and for all values of ¢ such that 9>0.

Assume that k=0; this corresponds to the least conservative res-
trictions on the non-Tinearity. Then, since 4" may approach zero arbi-
trarily closely from the positive direction, and since the denominator

of expression 5.16 is clearly positive definite, the non-negative def-



99
inite nature of N](s) is assured if:

20 ; (Baz-o)> o0 5.17

Conditions 5.17 may be divided into two separate cases, each of which

conform with requirements 5.3 of Anderson's theorem, as follows:

-c2>0;o€..:0;p>0;a2>0 5.18a
220;:K>0;:8>0; a>%p 5.18b

Thus, the stub phaseshifter loop is stable (system asymp-
totic stability will be proven later) provided conditions 5.18a or

5.18b are satisfied, and provided non-linearity NL2 obeys the restric-

tion:
Krv(0,y.YR) y>> 0 for all y and g 5.19

where the x and YL dependences of KRV have been replaced with YR.
Consider now the entire two-dimensional control system.
The transfer function matrix is given by 5.13. According to ex-

pression 5.4 the associated matrix is:

M(s) =K+ (& +35) w(s)

Therefore, M(s) becomes:
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FEOCRH + (OC+/35) c ]
s(s+ay)

M(s) =

0 [kt K82 | 5 4
s(s+ay)

Note that W(s) contains a free integrator in every non-zero element.
This fact will be used later. |

By similarity of the non-zero elements of M(s) to the single
element of M](s) just considered, it is clear that M(s) has elements
which are analytic in the right half s-plane, and that M*(s)=M(s*) for
Re[s]>o0.

Algebraic procedures exactly analogous to those used for M](s)

yield an expression for the Hermitian matrix N(s) as follows:

. m(s) o
N(s)=M(s) +M'(#) = 0 n22(s) 5.21

- 2ckey + 2T AOE ) + p 0] +26%(pay - )
nH(SJ—EoCkn % (¢2+w2)][(¢+a1)2+w2_] pa -

_ 20+ (T+as) + 3 2J+2w2(pa -x)
n22(s)_20<.k22+ (¢Z+m2§[(¢+;)2+w2:' 2 : .02

The matrix N(s) must be non-negative definite for all values ofc¢d, and
for all values of ¢ such that§>0. For this simple two by two diagonal

matrix, the method of principal minors for determining if N(s) is non-
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negative definite reduces to the requirement that each of the diagonal

elements must be non-negative definite. As a result of the similarity
of the elements of N(s) to the single element of N](s) just treated it

is again apparent that such is the case if:

>0 ; (Baj-K) >0
>0 ; (Bag-d) >0 5.22

Two separate cases of conditions 5.22 may, once more, be recognized:

€120;c5>0;K=0;8>0;21>>0;2,>>0 5.23a
10,0 20;,K>0;8>0;a1> “Yp;ao >  5.23b

Conditions 5.23 conform with requirements 5.3 of Anderson's theorem.
The non-negative definite nature of N(s) is not affected by K.
Any non-negative definite matrix K is, therefore, acceptable including

the Teast conservative case:

5.24

[~
n
o

The entire system is now stable if conditions 5.23 are satisfied and if

the non-Tinearities obey:

F'(2) 2> F(2) Ki(2) (5.2)

where:
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Ken (x,y,YL) X

f(._z_) =1. M
) Kpv (x .y, ) Sy

By condition 5.24 the above inequality reduces to:

f(z) 2> 0 ' 5.25

Expansion of inequality 5.25 gives:

Ker (x.9.YL) x + Ky (x.y,Y ) y> 0
for all x,y and Y 5.26

Inequality 5.26 is, here, given in a form which assumes that the
origin is the equilibrium point. The non-]ihearities of the actual sys-
tem do not comply with this requirement. However, it will be shown in
the next section that the origin may be translated to the equilibrium
point, but, as a consequence of this fact, expression 5.26 will have
~ to be put into a slightly different form.

It should be noted that the conditions derived in this section
imply that both the stub phaseshifter control lToop and the entire sys-
tem are absolutely stable, since there are no gain restrictions on the
non-linearities. The resulting stability requirements are, nevertheless,
rather deceptive. Condition 5.26 does, in fact, represent a rather
stringent restriction on the total system non-Tinearity, if the system
is not a single variable system.

Moreover, the system non-linearities are periodic, which increases
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the difficulties of proving stability. The problems of dealing with

periodic non-linearities, and of complying with inequality 5.26 can be
resolved only by considering the actual Lyapunov function associated

with Anderson's theorem (equations 5.9 and 5.10). This will be done in
a later section. In the next section the non-linearities will be tested

for compliance with conditions 5.18 and 5.26.

5-4  The Non-Linearities and Stability

In chapter four it was established that, to each admittance value
YL’ there corresponds a pair of equijibrium values of x and y, which
cause the load to become matched, and which are different for every new
value of YL' Moreover, in view of the restrictions on the ranges of al-
lowable motion of the phaseshifters, the pair of equilibrium values is
unique for every load admittance value but one. The one exception is a
load admittance YL=]+j0, which is already matched, but it will be shown
later that a matched load YL presents no particular problem.

Let the equilibrium values of x and y, for a particular load ad-
mittance YL’ be denoted by X0 and Yor The values of Xq and yq are al-
most never zero. Since all non-zero elements of the linear system part
transfer function matrix, Y(s), contain a free integrator, the system
can come to rest with Xg and Yo not equal to zero, provided the error
signals KRH and KRV are zero at Xq and Yo But, Xg and ¥q were defined
to be precisely those values of x and y for which KRH=KRV=0 for a par-
ticular YL.

Most stability criteria which, for their proof, depend on Lyapunov

theorems, require that the origin be the equilibrium point (i.e. in
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our case x=y=0 must be the equilibrium). If the equilibrium point and

the origin do not coincide, the origin is usually translated to the

equilibrium point. The inclusion of the free integrators in the trans-

fer function matrix makes the origin translation quite Tegitimate.
Origin translation, if applied to the control system under dis-

cussion, changes conditions 5.18 and 5.26 to:

KRv(O.Y.YR)(y-y01)> 0 for al! y and YR 5.27
KRH(X.Y,YL)(X-Xo)+KRv(X,y.YL)(Y-YoJ>0
for all x,y and YL 5,28

where yO] is the equilibrium value of y which makes KRV=O for the stub
Toop alone, and where Xq and Yo are as defined before.

Inequality 5.28 includes the more conservative conditions:

Ken(x.y, YL (x-x0) >0 for all x,y and v,  5.29
KRv(X,Y.YL)(y-yO) =0 forall x,yand v 5.30

It is important to note that expression 5.29 implies that y must appear
in KRH(x,y,YL) merely as a single poTarity gain parameter. Similarly,
5.30 implies that x must act only as a single sign gain parameter in
KRv(x,y;YL). More specifically, if KRV(O,y,YR), KRH(x,y,YL), and
KRV(x,y,YL) are plotted as functions of y, x, and y respectively with
Yors Xgs and Yo chosen as the origins, and with X5 ¥» YR and YL varied
as applicable, the resulting curves must lie entirely within the first
and third quadrants and must pass through their respective origins.

The functions KRH and KRV are the projections upon the KRH-ax1s
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and KRv-axis, respectively, of motion along the circular Smith chart

trajectories discussed in section 4-4, particularly as x and y are va-
ried separately. Closer exahination of the non-linearity properties
given-in section 4-4 can show if conditions 5.27, 5.29 and 5.30 may be
satisfied.

Clearly, since KRV(O,y,YR) is not a function of x, and since
KRV=0 at Y=yq; and Yo1 is the origin, and also since the constant con-
ductance circles have their centers on the KRH—axis of the.Smith chart,
it is indeed possible to satisfy condition 5.27 for all Y over the
range and domain of def1n1t10n of KRV as determined by the dielectric
“slab motion stops. '

On the other hand, conditions 5.29 and 5.30 cannot be satisfied,
because the circular Smith chart trajectorieg of admittance Y, as x or
y are varied (see section 4-4), change in radius as functions of y and
YL’ and have centers that are located in the first and fourth quadrants
of the Smith chart on neither the KRH—axis nor the KRV-axis. Further-
more, none of these circles (except the ones for y=y0) pass through the
Smith chart origin. In fact, under certain conditions, these circular
trajectories‘do not even intersect the KRH-axis and KRv-axis._Therefore,
in p]éts of KRH and KRv versus x and y respectively, offsets from the
origins Xo and Yq are certain to occur. The curves can, thus, not lie
exclusively in the first and third quadrants, and 5.29 and 5.30 are
not satisfied.

The points just discussed are brought out more clearly in sample
plots of KRH and KRv versus x and y for various values of YL’ as shown
in figures 31, 32, and 33 with the applicable conditions marked di-

rectly on the figures. Also shown on these figures are the equilibrium
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points corresponding to each curve. This makes the offsets Just dis-

cussed rather obvious.

In figure 31, the KRH curves, as x is varied, are plotted for one
period of x only. This single period for each curve extends between
specific phaseshift points, which will be discussed next.

Lyapunov stability theory, on which Anderson's theorem is depen-
dent, requires that disturbances from equilibrium be considered as dis-
turbances about the origin. For each specific load admittance value,
YL’ the corresponding equilibrium values of x and y (i.e. Xg and yo)
may indeed be chosen as the origins. However, since the phaseﬁhift
functions are periodic, proper period endpoints must be chosen such
that a single period is divided into two distinct portions, one with
a positive error signal, and the other with a negative error signal.

For the stub phaseshifter, the period endpoints are readily es-
tablished astq92 radians away from that value of y (slab position)
for whicﬁ the stub reactive admittance is zero. For y=im?2, the stub
admittance, and therefore Y, the admittance at the neutral plane of
the H-plane tee, is*o. Since Y=YR+YS, where YS is the stub reactive
admittanée, and since the values Y=*m and Y=tjeoall plot as a single
point on the Smith chart (see figure 34), the period endpoints for the
stub phaseshifter are not functions of either x or YL.

The choice of period endpoints for the serieﬁ-phaseshifter is
governed by the sign of the error signal and the direction of the re-
sultant motion for initial values of x close to the period endpoints.
For specific values of YL and y, the circular Smith chart trajectory
of Y may intersect the KRV-axis twice. The period endpbints are chosen

as those values of x farthest removed from the equilibrium value X0
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for which KRH=O. this accomplishes the required division of the period

into positive and negative error signal portions about Xg> and at Y=ygy-
Even for values of y other than ¥=Yg» this choice of period endpoints
is appropriate, since investigation has shown that these particular
endpoints correspond to the largest initial values of x which do not
cause matching device adjustment to an equilibrium point in an adjacent

period. The above demonstrates that the period endpoints, and hence

-KRVA Equilibrium Values
+1 of x are xoj
Period Endpoints are P;
i=1,2,3

FIGURE 34.  ILLUSTRATION OF PERIOD ENDPOINT LOC/\.TION WITH
RESPECT TO THE EQUILIBRIUM VALUES OF x
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the definitions of the principal period, are variable and are functions

of y and YL’ in the case of the series phaseshifter. Some specific ex-
amples, where the period endpoints are denoted by Pi’ are shown in
figure 34.

Unfortunately, as explained in chapter four, for each specific
load admittance YL’ there are two critical values of y beyond which
the circular trajectories.of Y, as x is varied, do not intersect the
KRV-axis. As y is increased or decreased from Yor the intersection of
the circles in question with the KRH—axis usually disappears first,
and as y is increased or decreased further, the intersection with the
KRv-axis disappears also. Whenever y and YL are such that no inter-
section with the KRv_axis occurs, the period endpoints cannot be de-
fined and are indeterminate. It is clear,however, that (x-xo) cannot be
greater than T radians, the width of the period.

To return now to consideration of Anderson's conditions on the
non-iinearities.

It has already been established that conditions 5.29 and 5.30
cannot be satisfied, but it may still be possible to satisfy inequality
5.28. Unfortunately, the complexity of expressions 4.26 and 4.27 in
table 1 is such that it is very difficult to prove compliance with
inequality 5.28 by analytical means. Therefore, a series of numerical
computations was performed, with the aid of a digital computer, to
calculate the left hand side of inequality 5.28 for various conditions.

For each of a number of representative values of load admittance
YL’ the following computational steps were performed:

1. The equi]ibrium.va]ues X0 and yq ere computed from ex-

pressions 4.31 and 4.32.
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2. A single period of y from -T2 to +7?2 radians was

divided into intervals 0.2 radians wide. Also, a single pe-
riod of x from Xy to (xo-ﬁ) was divided into intervals 0.2
radians wide. An x-y grid was thus creafed.
3. For each grid value of y, KRv and KRH were computed
for all grid values of x (equations 4.26 and 4.27).
4. The proper.period endpoints of x,for each value of Y, were
detected from the first sign change in KRH’ and the period of
X was shifted appropriately.
5. The Teft hand side of inequality 5.28 was computed for
éach pair of grid values of x and Y.

The results obtained from the above computations may be summarized

as follows:

1. For every load admittance YL’ except a matched load or a
load on the Smith chart perimeter, there is a range of values
of y containing the origin (xo,yo) for which the Y circles
resulting from varying x do intersect the KRv-axis. For those
values of y for which an intersection with the KRV-axis ex-
ists, the left hand side of inequality 5.28 is zero at the
origin and positive for all other values of x in the single
period as defined.
2. For those values of y for every load,for which no KRv-axis
intersection exists, a proper period endpoint for x cannot be
defined, and the sign of the left hand side of inequality
5.28 is indeterminate.
3. For those values of y and YL for which no KRV-axis inter-

section exists, there are several possible choices of period
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endpoints for x, which could cause inequality 5.28 to be

satisfied.

The above shows that Anderson's conditions on the non-linearities
are certainly not satisfied everywhere, a]though, for all values of x
and for a limited range of values of y about the origin (xo,yo), the
left hand side of inequality 5.28 is positive definite. |

It should be noted that, in the special case where YLis already a
matched load, YR equals YL independent of the adjustment of the series
phaseshifter. Therefore, no Y circle results from adjustment of x, and
Anderson's conditions are satisfied at the origin only. However, this
need not be a concern because, under these conditions, the effective
gain of the non-linearity as a function of X, and hence the series
phaseshifter loop gain, is zero. The series phaseshifter slab adjust-
ment is thus indeterminate, but no instability can result.

Since Anderson's conditions cannot be met, stability of the system
cannot be proven by direct application of Anderson's theoren. Never-
theless, for a system with a linear part transfef function matrix as
given by expression 5.13, stability may still be established. This will

be done in the next sections.

5-5 Stability of the Stub Phaseshi fter Loop

Stability of the stub phaseshifter loop alone must first be estab-
Tished in order to prove asymptotic stability of the entire system.

The stub phaseshifter control Toop stability conditions and non-
linearity properties, derived in sections 5-3 and 5-4 respectively, may

be summarized as follows:
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1. The "matrix" M](s) is Positive Real if either of the fol-

lTowing sets of conditions holds:
k>0; c2>0;oC>0;/3>0;42>°C/p (5.18b)
k>0;c2>0;,0C:0;/3>0;a2>0 (5.18a)

where C, is the gain of the linear part, a, is the damping
loop gain, and M](s) is as defined before.
2. In accordance with the restrictions on the motion of the
actual phaseshifter slab, let y be restricted to[y,<:(%§..§),
where & is an arbitrarily small positive constant. Then, for
any value of YR for which an equilibrium value of Yy exists
within the restricted range of y, the non-linear function

| KRV(O,y,YR) satisfies condition 5.27.

It should be emphasized at this point that, theoretically, $ may
approach zero. Uniqueness of the stub phaseshifter adjustment is assy-
red by restricting the slab motion as indicated (see chapter four). In
a practical system, however, & must be approximately 0.05 radians in
order to make absolutely certain that, despite system inaccuracies, the
KRV error signal will change polarity only at the "origin", and not at
the phaseshifter adjustment extremes also. For‘£=0.05 radians, loads on
or close to the Smith chart perimeter cannot be matched by the automa-
tic device. But, this will be no drawback, because very low dissipation
loads, such as these, cannot be matched in any case.

The mechanical restriction of the phaseshifter slab motion may be

incorporated into the stub control loop block diagram by combining a
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saturating non-linearity, NL3, with the non-linearity described by
KRV(O,y,YR). This is shown in figure 35. The output from NL3 nokma]]y
equals the input, but, whenever y is greater than (%%-S), or less than
-(%-b), the output from NL, remains at (&-8), or -(%«S) respectively.
Consideration of the Smith chart indicates that, in those circumstances
where Iy[?(%-é), the output from the composite non-linearity is such
that lKRVl:>e, where € is a small positive constant. Clearly therefore,
y may now be regarded as being unrestricted, while the composite non-
Tinearity shown in figure 35 will satisfy condition 5.27 for all values
of y.

Consider now the Lyapunov function and its time derivative, asso-
ciated with the proof of Anderson's theorem, as given by expressions

5.9 and 5.10. These expressions may be rewritten in terms of a state

vector:
o LINEAR PART
KRV WZQ(S) y

| Mkt et el adedeaieb ekl o Re d Y e bata T R R PR 3 -1

; COMPOSITE NON_LINEARITY !

1 |

I |

| | NON_UNEAR PART SATURATING !

- ¢ ——— |

E Krv(0.9.YR) [Ty ¢ | NONZUNEARITY « 5

! NLp NLg | CHARACTERISTIC
S RS | OF NL3

FIGURE 35.  THE STUB CONTROL LOOP WITH RESTRICTED
) PHASESHIFTER SLAB MOTION -
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with ¥y and y2=dy]/dt (see equation 4.10). The expressions for the

Lyapunov function and its time derivative become: ,

T HTEY T
V(zy)=zyPzy + 2p F@de 531

[}

. T T T T
V(Zy) = -1 Z;L— -t (H .Z.y) WB][L;y -Wof(H Zy)]
Te T T Tr, T T
-2 [ (H Zy)'.". zy-f (H Ey) KE(H Eyn 5.32

Since the "matrix" M](s) is Positive Real (see point 1 above), the
matrix P is positive definite and the matrix L exists by Anderson's
theorem. It was also shown that the composite non-linearity,consisting
of the saturating non-linearity and KRV(O,y,YR), obeys condition 5.27
and Ties entirely in the first and third quadrants for any value of y,
and passes through the origin corresponding to each particular value
of Y,.

R
Therefore:

V(gyJ is Positive Definite
V(_Z_yJ —> o for fzy] > e 5.33

The row matrix [gyTE-f_T(HTz )_l»gOT], occurring in expression 5.32,

generally has elements which are zero, positive, or negative. At least

one of its elements may change polarity at points other than the origin.
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Since:

T T, T T -
[y -t 2y w0 = [z, - wor (472,

the product

- T T T ST
CzyL-£(8zy ) WoICL'zy -wor(H'z,)]

represents a scalar, which may be zero at points other than the origin,

but which is otherwise positive.

Suppose that conditions 5.18a are chosen as the pertinent stabil-
ity conditions. This allows the damping loop gain 3, to be zero, but,
since L is zero, V(iy) is at best negative semi-definite. Thus, mere
stability with the possibility of a stable 1imit c&c]e has been demon-
strated.

Instead, select conditions 5.18b as appropriate stability condi-
tions. These conditions indicate that the damping Toop gain may assume
any positive value, but may not be zero. By condition 5.18b, «Cis
poéitive only. Also, since the non-linearity satisfies condition 5.27,

the scalar

-2 L1 (H2)0"2y - 7172, k £ (T2, )

is zero at the origin only, and negative elsewhere.

Therefore:

O(Zy)* is Negative Definite 5.34
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According to Lyapunov's second method stability theorem, con-

ditions 5.33 and 5.34 assure asymptotic stability in the large of the
stub control Toop, provided the equilibrium value Yo corresponding to
a particular value of YR lies within the restricted range of phase-
shifter slab motion, and provided also that c2;20 (negative feedback),
and a,>0 (some loop damping is incorporated).

The stub phaseshifter control loop, in fact, exhibits absolute
stability, since any non-Tinearity, which satisfies condition 5.27,
leaves the stub control loop stable. Moreover, the stub phaseshifter
loop will stably reach an equilibrium from any arbitrary set of initial
condi tions.

In an actual system, external access to the control loop is ob-
tained only through admittance YR. Since the stub control loop non-
lTinearity is a function of phaseshifter slab position y and admittance
YR (see chapter four), a step change in the value of YR affects the
nature of the non-linearity, and also suddenly causes a translation
of the equilibrium value of y to a new value Yo Changes in the non-
linearity do not affect the loop, because the Toop is absolutely stable.
The step translation of the equilibrium point Yo (origin) merely cor-
responds to a set of new initial conditions, which the loop can readily

deal with in a stable manner.

5-6 Stability of the Complete System

For the most part, the proof of stability of the entire system
closely parallels the stability proof for the stub control loop given

in the previous section.
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A summary of pertinent system stability conditions and non-

linearity properties, as derived in sections 5-3 and 5-4, may be pre-
sented as follows:
1. The matrix M(s) is Positive Real if either one of the

following conditions holds:
€120 ¢220 £=0 >0 210 23>0 (5.23a)

=0 €230 £>0 B0 a="hay>" (5.230)

where ] and c, are the gains of the linear parts, and 3
and a, are the damping loop gains. Matrix M(s) was defined
before.

The positive real property of M(s) is a necessary condition
for stability.

2. The total system non-linearity must satisfy:

Krn (%, ¥, YL (x=x6) + Ky (%, v, Y )(y -yg) >0
for all x,y and Y| (5.28)

Condition 5.28 is satisfied for all values of x, but only fof
a limited range of values of y. The a]]owab]e'range of y va-
lues is that for which the Smith chart Y circles, which re-
sult from varying x, intersect the KRv-axis. The values of x
and y,for which condition 5.28 is satisfied,are plotted in an
X-y plane in figure 36, and are denoted by region R. The di-

mension of region R, along the y-axis, is a function of YL
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and increases with increasing load reflection coefficient.
The equilibrium point (xo,yo), for a particular Y, and the

point x=y=0 always lie within region R.

INDETERMINATE

Y

¢ Y-CIRCLE TANGENT

T0 Kpy-AXIS
ANDERSON’ \ RV
g/?#ggg)oN%ERE § R \
'%k \§\0 N g‘ ‘
NN
Y_CIRCLE TANGENT

TO Kry-AXIS
INDETERMINATE -~

1
A

FIGURE 36.  DIELECTRIC SLAB POSITIONS SATISFYING ANDERSON'S
CONDITIONS ON THE NON-LINEARITIES

Assume that the stub phaseshifter slab motion is restricted me-
chanically in such a way that the stub and series phaseshifter slab
motions are confined to region R of figure 36. Furthermore, let the
mechanical restriction on the stub slab motion be accounted for, in
the system block diagram, by means of a saturating non-Tinearity,
inserted into the stub Toop, ahead of the non-linearity representing

KRV(x,y,YL). This is shown in detail in figure 37. The most important
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consequence of this procedure is,that condition 5.28 is now satis-

fied for all x, y, and YL’ The explanation of the effect of this
saturating non-linearity is analogous to that given in section 5-5

for the stub phaseshifter control lToop alone.

NOTE: y,,y, are functions

of YL‘
LINEAR PART
—p
KRH Wi(s)  [x
?yout
yd ....... ra———
KRV’ LINEAR PART |V y . y
Wos (s b :
22(5) oy,
b
ot lsamuranivg |y
e NL NON.LINEARITY <+ NL3 CHARACTERISTICS
Key 2 NL3 2
Yo | lYLINPUT
y
NL NL X
Koy 1b 1a
R

FIGURE 37.  THE SYSTEM BLOCK DIAGRAM WITH RESTRICTED STUB
PHASESHIFTER SLAB MOTION

The applicable expressions for the Lyapunov function and its time

derivative, based on 5.9 and 5.10, are given by:

.HT '

T 8%

V(2)=7Tpz+ e/f o) ag 5.35
. g
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V(D)=L W Iz wor(HT2)]
-2 [H(H2) W2 - 11(H"2) K (WD) 5.36

where z is the state vector of equation set 4.10, and is defined as:
z=[x, %, y, §1'

Select conditions 5.23b as the appropriate system operating con-
ditions (some damping included). Then, the matrix M(s) is Positive
Real, and by Anderson's theorem P is positive definite and L exists.
Also, since the composite system and saturating non-linearities obey

condition 5.28 for all x, ¥y, and YL’ there results:
V(z) is Positive Definjte
V(z) Do for Jz] — o 5.37

Once again, just as for the separate stub control loop stability

proof given in section 5-5, expression

[2L. fT(HTz.J ng[ LTz _ Wor(H'2 )]

is at best positive semi-definite, but with condition 5.28 satisfied

and with >0 from condition 5.23b, one has:
V(z) is Negative Definite 5.38

Therefore, by 5.37 and 5.38 and by the stability theorem of
Lyapunov's second method, the system with restricted stub phaseshifter
motion is asymptotically stable in the large.

Note particularly, that the velocities % and y in the actual
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system (assuming it is stable) are bounded. Hence, with sufficiently

large damping incorporated into the system, and without the type of
mechanical slab motion restriction described above, a state point may
enter region R of figure 36, and be Captured there subsequently to
proceed towards the origin in a stable manner.

Now reconsider the entire system. Insert mechanical motion stops
in the stub phaseshifter, as required in an actual system, exactly as
was done in section 5-5, such aé to limit the obtainable phaseshift
to t(%%-—é) radians, where § is a small positive constant. Any other
phaseshifter motion stops have been removed at this point. Consequently,
the Lyapunov function of Anderson's theorem needs re-examination.

A summary of applicable system non-linearity properties, based
on the work of chapter four and section 5-4, may be given as follows:

1. Condition 5.28 is satisfied only in region R of figure
36. Outside region R the sign of the left hand side of in-
equality 5.28 is indeterminate.
2. The system non-linearity is periqdic in x and y. Since
the series phaséshifter slab motion x has not been mechani-
cally restricted (the periods have only been folded as des-
cribed in section 4-5), the periodicit} in x will be apparent.
3. For values of y such that M)(’%-&), the outputs from
the non-linearity will be:

]KRVI——>€; Key—> -1
where € is a small constant. .
4. For all values of x, y, and YL’ the outputs from the

non-linearity are bounded; i.e.

max=] ; [KRV,max=]'

'KRH
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On the basis of the above summary, a worst case curve and envelope

for the normalized values of the left hand side of inequality 5.28 are
shown plotted, in figure 38, as a function of the norm of the slab dis-
placement vector. Note that @ is merely a dummy variable. The portions
of the curves to the left of line "r" in figure 38 correspond to region
R of figure 36. Anderson's conditions are satisfied there, and the nor-
malized product of the non-linearity output and slab displacement vec-
tors is positive semi-definite. To the right of line "r", the worst
case value of the same function is -1.

The Anderson type Lyapunov function for the system is still given
by expression 5.35. According to this expression, the worst case non-
linearity output may be integrated with respect to the slab displace-

ment vector to produce a worst function representing:

Hz
(@) dax
0

Consider, now, the term gIEg, where, by Anderson's theorem, P is
a positive definite matrix. Clearly, this is a quadratic form which is
zero at the “origin". A typical range of values of this function, as z
is varied; is plotted in figure 38.

It is obvious from the final curves of figure 38, that a suffici-

ently small positive value of‘B may be selected such that:

V(z) is Positive Definite

V(z) —> o for [z] — oo | 5.39
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for the worst case of the non-linearity outputs, and therefore, for

all possible outputs from the non—]inearity.
To prove stability of the entire system, select conditions 5.23a

as the appropriate Anderson conditions. That is:

«£=0

2> 0 but sufficiently small for V to be Pos.Def,
¢1=20; c2>0

1>>>0; as>>0 for considerable damping

Therefore, by Anderson's theorem, the matrix L exists and the time de-

rivaiive of the Lyapunov function becomes:
V(@=L WDz -wor (H"2)) 5.40

According to previously presented arguments, one has from 5.40;

V(z) is Negative Semidefinite 5.41

From Lyapunov's stability theorem, and from 5.39 and 5.41, one
may conclude that the entire system is stable. Nevertheless, there re-‘
mains the possibility of the existence of a stable Timit cycle.

It was shown above that, for initia] values of x and y in region
R of figure 36 (and for any initial velocities), the system is asymp-
totically stable, if the damping is not zero, and if ¥y is restricted
to region R. We selected a]>0 and a2>>0. Therefore, with y restric-

ted to region R, asymptotic stability prevails. Consequently, even if
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y were not so restricted, region R can certainly not support a limit

cycle. In fact, for a large range of velocities of entry into region R,
an asymptotic approach of the equilibrium point is guaranteed,

From the block diagrams of figure 30 and 37 it is clear that the
stub phaseshifter can be considered as being somewhat independent of
the series phaseshifter loop, but the converse is not trye. More im-
portantly, for values of y outside region R, and as x is varied, the
Smith chart Y admittance circles intersect neither the KRV' axis nor
possibly the KRH-axis. The non-linearity properties are such that a
stable limit cycle, for which y does not enter region R (to be captured
there), cannot exhibit symmetry about the KRH-axis on the Smith chart,
and will 1ie mostly in one quadrant of the Smith chart. The projection
of this limit cycle on the KRv-axis represents the error signal KRv
for the stub phaseshifter contro] lToop. For this limit cycle, the er-
ror signal will contain a sizable "pC" component.

On the other hand, it was shown that the stub phaseshifter control
loop, separately, is asymptotically stable in the large. This control
loop contains a free integrator. The stub control loop cannot, there-
fore, suppoft an error signal with a Tasting DC component. Thé average
magnitude of KRV must decrease, and consequently, the average magnitude
of y must also decrease. As‘]y[ decreases, the system state will enter
region R of figure 36, resulting in a stable approaéh of the equilib-
rium or origin. No stable limit cycle is thus possible.

Asymptotic stability in the large of the entire matching system

under consideration has now been demonstrated.
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5-7  System Response Speed

Once a system has been proven stable, considerable attention is
customarily devoted to analysis of the system response speed. In the
case of this system, that task is greatly complicated by the fact that
there are two interacting loops, each with its own non-linearity. To
make matters worse, the non-linearities are functions of the Toad ad-
mittance YL' As a result, some of the normally used methods of estima;
ting the overall system response speed are impractical.

For instance, the mthod of using the normalized rate of change,
V(z)/V(z), of the Lyapunov function to estimate the response speed,
cannot be used here, because only the general forms of the Lyapunov
function and its derivative are known. And, the Lyapunov function
changes with load admittance YL'

Perhaps the most practical method of investigating the system res-
ponse speed, is to Tinearize the system about the equilibrium point
(xo,yo), for every load admittance YL. The response speed of the line-
arized system may then be investigated instead. For values of x and y
far removed from (xo,yo), some impression of the rates of adjustment
of the phaseshifters may be obtained by considering the actual magnitu-
des of the error signals KRH and KRV’ and by regarding these as activa-
ting two second order linear loops.

Linearizing of system state equations 4.10, by means of a Taylor
series expansion about equilibrium point (xo,yo) and considering the
first order terms only, while ignoring the constant forcing terms
necessary to keep the system at the equilibrium point (which does not

change the character of a linear system), results in:



)'(1 = X2
X2 = =¢1 61Xy -~ a1x2 -c46o Yy
y1 = ¥y2
Yo = -coB3X) -~ asyp - Co64 ¥y

where:

6, = 2KRH(x¥1y1.1)
‘ 0X4

6, = OKRH(x,y1. L)
oy

6 = OKry (x1.y1,YL)
3x1 .

_ OKpy (x1y1.7L)
31

Gq

X0.Y0

X0.Y0

Xg.¥0

X0.Y0
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5.42

5.43

Based on equations 5.42, a signal flow graph for the linearized system .

may be drawn as in figure 39. By Mason's ru]e(zz), the characteristic

equation for the linearized system is then:

A= s4+(a1+a2) 53+(a,a2 +C1G1+02G4) 52"'

+(a1c264 + ap¢161)s + c1cp (6164 - 663)

where s is a complex frequency operator (Laplace).

5.44

Some general conclusions may first be drawn concerning this sys-

tem (figure 39 and equation 5.43):

1. For this fourth order system, the s-plane root locations
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are markedly affected by all of the constants ars 3y, Cys
Cos G], GZ’ G3, and G4.
2. There is a specific range of values that each of the con-
stants G], GZ’ 63, and G4 can assume as the Toad admittance
YL is varied. Since none of the constants in the characteris-
tic equation appear merely as gain constants, but rather af-
fect also the open-loop pole and zero lTocations, it is entire-
ly poésib]e that varying any one of these constants over a
large range of positive values will not cause instability,
but will only change the character of the system response.
3. Routhian array(23) analysis of the characteristic equation
has shown that appropriate ranges of values exist for the _
constants, such that the system will be stable.

The actual range of values of each of the constants G], GZ’ G3,

and G4, as the load admittance YL is varied, may be very approximately

€16y

...C2 64

FIGURE 39.  SIGNAL FLOW GRAPH FOR THE LINEARIZED SYSTEM
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established byvconsideration of figures 31, 32, and 33, and the mate-
rial in chapter four and section 5-4. The ranges of values of each of
these constants, expressed in terms of the load reflection coefficient
magni tude KRL rather than YL’ are as follows:

1. G]|= 0 for Ko =0
Gﬂf\;l for Koy —1

2. c;z]= 0 for all Ky

3. G3l= 0 for Ky =0
lel,\’V,] for KRL—-z—l
4. F4I= 1 for Ky =0

=g for K, —=>1 with the imaginary part
F4lmax RL of ¥ large.

g is a large positive constant whose value depends on how
closely the stub phaseshift is allowed to approach t'W/Z
radians. -
Clearly, with Gz=0, the number of loops in the signal flow graph
is reduced and the system now merely consists of two cascaded second

order systems. The new characteristic equation becomes:

A:(52+a1s+c161](52+a25+c264) 5.45

The two separate second order parts of the system are always stable,
while, for a given set of values for G] and G4, the other constants
a5 255 Cqs and c2'may be adjusted to give any desired type of respon-
se from overdamped through critically damped to underdamped, at any
speed of response. Obviously, for fixed values of a, éz, C1s and Cos

the Toad admittance YL’ to be matched, will have a profound effect on
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the type of response obtained from the system, since G] and G4 depend

on YL.

The Tinearized model of the system is highly inaccurate, because
even small deviations away from the equilibrium point will greatly
change G], Gz, G3, and G4. Especially 62 is seriously affected and will
no longer be zero, thus completely changing the nature of the system.
However, the fact that the linearized system is unconditionally stable
proves that, in the actual system, the origin itself, at least, 1is
asymptotically stable. This supports some of the theory presented in
chapter five.

Far away from the equilibrium point, the relative magnitudes of
the error signals KRH and KRv determine how rapidly each of the linear

parts characterized by:

G g 2
s(s+ay) s(s+ay)

will respond and adjust x and/or y. For example, for load admittances
close to the KRH-axis on the Smith chart, the series phaseshifter will
start to adjust most rapidly. On the other hand, for loads close to the
KRv-axis, the stub phaseshifter, initially, will adjust most rapidly.
In general, these effects will become more obvious in the material .of
the next chapter.

The following chapter will consider stability and response speed

further, but from an experimental and practical point of view.



CHAPTER SIX

SYSTEM SIMULATION AND PRACTICAL CONSIDERATIONS

An automatic microwave 1oad matching system was analyzed in some
detail and the stability of the somewhat idealized closed-loop system
was demonstrated. But, the complexity of the system non-linear part
prevented the presentation of a stability proof that was mathematically
rigorous.

Similarly, the chara;ter and speed of response of the system were
considered, but no accurate details could be presented. The system res-
ponse varies a great deal with operating conditions and microwave loa-
ding, making detailed analysis impractical.

To show by alternate means that this system is indeed asymptot-
ically stable and that time-varying inputs can be stably handled, a
computer simulation was carried out. At the same time, the computer
simulation served two other purposes. The types of system response and
the response speed could be examined, and experimentation could be
carried out to attempt improvement of the system.

This chapter deals in some detail with the above matters.

Additional discussions in this chapter are concerned with the
properties of an actual system and its components. Stability of an
actual system, particularly, needs further consideration, since in the
idealized system analyzed thus far, some important component properties

were neglected.



134
6-1 Computer Simulation of the System

The performance of the proposed microwave load matching system
was tested, in detail, by means of a computer simulation.

Generally, computer simulations of control systems may take the
form of all digital simulation, all analogue simulation, or analogue-
digital hybrid simulation. The latter method was favored for the fol-
Towing reasons:
| 1. Real-time éimulation of a system offers the advantages of

easy observation of system variables and system operation,
greater freedom to experiment and to examine the effects of
modifications immediately, and convenient means of developing
a "feeling" for and understanding of system operation.

2. The linear part of the system is easily implemented on aﬁ
analogue computer, and initial conditions and inputs are
easily applied (and varied while the system is running).

3. The non-linearity of the system under consideration is
sufficiently complex that it cannot be simulated on an ana-
Togue computer. Digital simulation of the same non-linearity,
on the other hanq, is easy and accurate.

The hybrid computer system used consisted of a standard analogue
computer with electronic mode control, operable from the digital com-
puter, analogue to digital and digital to analogue multi-channel con-
version equipment, and a small digital computer, with typewriter input
and output device. The analogue computer was used only to build up the
linear part of the system and to incorporate the necessary loop gain.

The required transfer functions for the linear part (two Toops) are
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given by the elements of the'transfer function matrix defined by
expression 5.13. The method of implementation was similar to that shown
in block diagram form in figure 25. For each loop, only two integrators
were needed, one of which had damping feedback applied around it. Com-
plete details of this part of the simulation are shown in figure 40.

Thelnon—]inearity could have been simulated by programming formu-
las 4.26 and 4.27 into the digital computer. However, the digital com-
putation is slightly faster if formulas 4.15, 4.16, 4.18 and 4.19 are
used instead. For each run, a particular value of load admi ttance YL
was read into the computer via the typewriter. Based on YL and current
values of the dielectric slab positions x and y, the digital computer
was programmed first to calculate G and B, the real and imaginary parts
respectively of the admittance at the neutral plane of the H-plane tee
(by 4.15 and 4.16). The computer would then convert the values of G
and B into current values of KRH and KRv through use of formulas 4.18
and 4.19. Communication between the analogue and digital computers was
obtained by means of the A/D and D/A converters. The digital computer
would repeatedly update KRH and KRv as the sampled current values of
x and y changed.

The simulation of the entire system, shown diagrammatically in
figure 40, was quite accurate in that no approximations were made with
respect to either the Tinear part or the non-linearity. However, the
simulation was essentially a sampled-data system. To make the simula-
~ tion appear continuous, the digital computation had to be performed as
rapidly as possible, and the Tinear part had to be made purposely slow.
As long as no attempt was made to increase the response speed excessive-

ly, the simulation was good.
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The changes in the dielectric slab positions, x and y, could be

monitored directly on the analogue computer. More importantly, the
analogue values of KRH and KRv could be scaled to be plotted directly
on a Smith chart. This produced an accurate record of the Smith chart
trajectories of either the reflection coefficient, or of the admittance
presented to the microwave power source and its output transmission
line, by the load and matching device.

Complete results of the simulation will be presented in the next

section.

6-2  System Simulation Results

The main reasons for simuTating the system on a hybrid computer
were, first, to establish its practical stability, and second, to gain
an impression of its response characteristics.

Extensive testing at many Toading and operating conditions has
shown that the system is indeed stable as predicfed in the previous
chapter. Moreover, the system was tested for many initial conditions on
both position and velocity of the dielectric slabs, such as might occur
during operation of an actual system, as well as for forced conditions
with sinusoidal inputs. Even in these circumstances, which were not
covered in the pkoof of stability given in the previous chapter, the
system reacted in an entirely stable manner.

For the sake of both simplicity and ease of comparison, graphical
results are presented only for zero initial conditions on the dielec-
tric phaseshifter slab positions and velocities, and for suddenly ap-

plied unmatched Toads. These results will now be discussed.
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Figures 41, 42, and 43 show sets of Smith chart matching trajec-

tories for, respectively, an overdamped, a crftica]]y damped, and an
underdamped system. The trajectories shown in these figures all consist
of three identifiable sections. These are an initial load rotation, a
section of direct approach to the origin, and a trailing portion of
rather slow approach to the origin- (the latter is not really visible,
but can be observed in analogue computer read-out of the rate of

change of the dielectric slab positions). During the direct approach

of the origin, all the trajectories in one set appear to move towards
the origin along one preferred direction line.

The definitions of closed-loop overdamped, critically damped, and
underdamped response, as used above, are purely qualitative and refer
mainly to fhe character of the matching trajectories at the preferred
direction line, and partly refer to the average (for many load admit-
tances) behaviour of x and y, as functions of time, as matching pro-
ceeds. The underdamped trajectories tend to overshoot and oscillate
about the preferred direction line, while also exhibiting a barely dis-
cernible spiralling into the origin. The critically damped trajectories,
on the other hand, move into the origin almost directly with Tittle
overiap of the curves. Lastly, overdamped trajectories merely approach
the preferred direction line asymptotically, with almost no overlap of
the curves. |

Considering the two Toops individually, the degree of damping of
the series loop affects mostly the amounts of overshoot of, and oscil-
Tation about the preferred direction line. In contrast to this, the
speed of approach to the origin and the spiralling in effect depend

mainly on the degree of damping of the stub Toop. Nevertheless, there
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Smith Chart for i
Admittance

CONDITIONS:

Error Signals: KRH and KRV’ normal system.

Operating Conditions: C]=C2=O.5 into X1 Amp. Gain
A]=A2=1.O into X20 Amp. Gain,
(see figure 40).

FIGURE 41.  COMPUTER SIMULATION:
MATCHING TRAJECTORIES FOR AN "OVERDAMPED" SYSTEM
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Smith Chart for +H1
Admittance
< 0 [s ¢}
KrH
_j1
*KRV
CONDITIONS:

Error Signals: KRH and KRV’ normal system.

Operating Conditions:

C]=C2=O.05 into X1 Amp. Gain
A]=A2=0.4 into X1 Amp. Gain,

(see figure 40).

FIGURE 42,  COMPUTER SIMULATION:

MATCHING TRAJECTORIES FOR A "CRITICALLY DAMPED" SYSTEM
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Admittance
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Trajectories in this part
are similar to those
above, :

i1

*KRV

CONDITIONS:

Error Signals: KRH and KRV’ normal system.

Operating Conditions: C]=C2=0.05 into X1 Amp. Gain
A]=A2=0.2 into X1 Amp. Gain,
(see figure 40).

FIGURE 43.  COMPUTER SIMULATION:
MATCHING TRAJECTORIES FOR AN "UNDERDAMPED" SYSTEM
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is enough interaction between the loops that, to change the overall

character of the system response from underdamped to overdamped, the
amount of damping of both Toops has to be changed appropriately.

There was but one set of circumstances which did cause instability
of the simulated system. If the loop gains were increased excessively,
and simultaneously the damping 1oop gains were drastically reduced,
such that the effective response speed was high compared to the number
of samples taken per second by the D/A and A/D converters, the system
would break into oscillation. The problem appeared to be the additional
phaseshift introduced as a result of the sampled-data nature of the
simulation. This was furtﬁer tested by the introduction of an additio-
nal Tagging time constanf into each of the two loops. At low values of
gain, and with sufficient damping, the system remained stable. As the
gain was increased and/or the damping decreased, thé system became un-

stable, but the instab.lity conditions were affected by the value of YL

Loads representing large reflection coefficients caused instability for
Tower values of gain ( or greater damping), than loads with correspon-
dingly Tower ref]ection.coefficient magnitudes. In fact, for "border-
line" stability settings of the gain and damping, there appeared to be
a definite curve that divided the Smith chart into stable and unstable
reflection coefficient loads. This last test has some bearing on the
stability of a practical system. Hence, it will be discussed again in
a later section.

Further discussion of the preferred direction of approach to the
origin is required. For the operating conditions shown in figures 41,
42, and 43 (all appropriate operating conditions are marked directly on

the figures and refer to figure 40), the angle of thé preferred direc-
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tion line is.about 120°. The direction of this line is a function of

the relative response speed of one loop compared to the other. Since
the response speed of each Toop depends directly on the linear part
gain and damping of the Toop in question, these same parameters also
affect the angle of the preferred direction line. If the stub leop is
much faster than the series loop, the preferred direction of approach
is almost coincident with the KRH-axis, while for a faster series loop,
the approach is nearly along the KRV~axis. These cases are clearly il-
lustrated in figure 44, where the upper half of the Smith chart corres-
ponds to a fast stub loop and the lower half to a fast series loop.

The trajectories can'never coincide completely with either the
KRH-axis, or the KRv-axiS. To show this, let the matching trajectory
be the KRH-axis. Motion along the KRH—axis requires a rate of change of
the series loop slab position; But, to change the trajectory which, for
the series Toop alone is normally circular, into a straight line, the
stub Toop must also be active, and there must be a rate of change as-
sociated with its output (non-Tinear coupling between loops). Since
each loop contains only one free integrator, there must be an error
signal to maintain the stub loop output rate of change. Hence, KRv can-
not be zero whi]e KRH is changing.

The rate of decrease of the reflection coefficient, as matching
proceeds, is of great practical importance. In fact, the rate of re-
flection coefficient decrease is the true measure of system response
speed. This matter"was, therefore, investigated by having the digital
computer calculate the magnitude of the reflection coefficient on a

continually sampled basis from:
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Smith Chart for H1
Admittance \
‘ 0 o0
KRH '
/>
-j1
vKRv

CONDITIONS FOR UPPER HALF OF PLOT:

Error Signals: KRH and KRV' Stub control loop faster.
Operating Conditions: C]=0.05, C2=0.5 both into X1 Amp. Gain

A]=A2=1.O into X20 Amp. Gain (see fig. 40).

CONDITIONS FOR LOWER HALF OF PLOT:

Error Signals: KRH and KRV' Series control loop faster.
Operating Conditions: C]=0.5, C2=O.05 both into X1 Amp. Gain
A;=A,=1.0 into X20 Amp. Gain (see fig. 40).

FIGURE 44.  MATCHING TRAJECTORIES FOR A FASTER
STUB LOOP (UPPER) OR A FASTER SERIES LOOP (LOWER)
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[¥r | =)/ ¥&n + K&, ~ 6.1

Plotting of the reflection coefficient magnitude as a function of time
for several typical loads results in a family of curves as shown in
figure 45, all of which were obtained for the same over-damped

system with nearly equal Toop speeds. Fach of the curves shows the
three typical sections of the matching trajectories discussed before.
Especially the slow trai]ihg portion is clearly visible.

Varying of the loop gains or damping did not materially alter the
nature of the curves representing the reflection coefficient as a func-
tion of time. Amount of damping affected mostly the relative length of
three typical periods of each curve one with respect to another, while
changing of the Toop gains either shortened or elongated the curves. It
becarme apparent that, under all possible operating conditions, large
reflection coefficient Toads are matched at least twiqe as quickly as
small reflection coefficient loads.

Finally, the integral of the squared reflection coefficient mag-

nitude is of some interest. It is given by:

. |
Q i/ |tp|? de- 6.2
0

where t is time and ¢ is a dunmy variable. For a given fixed valye of

incident microwave power, the quantity Q’t—>oois direct]y proportional
to the total microwave energy reflected from the Toad and matching de-

vice combined during a conplete matching operation. Thus, it serves as
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a figure of merit for the automatic matching device, which, ideally,

should be minimized for all possible loading conditions.

In figure 46, Q is plotted as a function of time for the same
Toads and operating conditions as those of figure 45. But, rather than
plotting the actual values of Q, the curves were all normalized to an
effective load reflection coefficient magnitude of one. This was done
to make comparison of. the curves easier. For example, if the system
were to consist of a single linear loop, the normalized integral of the
"squared error" would be the same single curve for all step input dis-
turbances.

The shape of the normalized Q-curves did not change appreciably as
operating conditions were varied, but the value of Qltﬁ>00’ for each
particular Toad admittance, did depend on the operating conditions.
Notably, for a particular value of YL, the value of Qltﬁpcoappeared to
be minimum for a slightly underdamped system with approximately equal
response speeds for the two loops. Since the system response character-
istics are vefy much dependent upon the value of YL, no one set of ope-
rating conditions could assure that Q tesmooaS minimum for all loads.
This is clearly illustrated in figure 46, where the normalized values
of Q t%»oofor small reflection coefficient loads are, in fact, larger
by about 50% than the values of the same function for large reflection

coefficient loads.

6-3  System Improvement and Optimization

Overall system response speed is a major consideration in design-

ing a satisfactory automatic load matching device, particularly since
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the response speed is related to the total microwave energy reflected

from the load and matching device during a matching operation. It is
clearly desirable to minimize the total energy reflected from an initi-
ally mismatched load. Several methods,that can aid in improving the

response of the system, will be discussed.

Consider first the linearized system of section 5-7. It was shown
there that, very close to equilibrium, the system behaves like two cas-
caded second order loops, while away from equilibrium, the system char-
acteristics are those of a multi-loop fourth order arrangement. In
either case, the characteristic equations (5.44 and 5.45) may be fac-
tored into two second order parts and appropriate loop error signals
may be defined which are generally not equal to, but which are related
to KRH and KRV' An integrated squared error signal similar to Q of ex-
pression 6.2 may, thus, be derived, which is equal to the sum of the
integrated squared errors of the second order parts. It was shown else-
where(24) that, for a type one, second order, linear system the squared
error integrated from zero time to infinjty is minimal if the closed-
lToop damping ratio, %, equals 0.5 (underdamped system with about 16%
overshoot). Unfortunately, the actual system is so severely non-linear
in x and y (the slab positions), and the non-linear characteristics are
so greaf]y dependent upon Toad admittance YL’ that no specific damping
loop gains to optimize the system can be dictated on the basis of this
theory. The above may be used as a guide only to adjust the system para-
meters in a general sense, "averaged" over all possible Toading condit-
ions. This was shown experimentally in section 6-2.

The proposed control system for automatic matching of microwave

Toads is rather unusual in that no discrete feedback elements or sum-
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ming junction are identifiable. The system output, consisting of slab

positions x and y, are not measured and compared, as such, to an input
signal to produce a system error signal. Rather, the error signal, com-
prising the real and imaginary parts of the reflection coefficient of
the Toad and matching device combined, is measured and used directly to
activate the control elements. This causes peculiar problems if optimi-
zation of the system is attempted.

The reflection coefficient as measured is a non-linear function of
slab positions x and y and of load admittance YL‘ It contains no ex-
plicit informatioﬁ regarding the actual values of x, y, and YL at any
instant in time. A changé in Toad admittance YL is indistinguishable
from a change in slab positions x and/or y, in the manner in which the
reflection coefficient is affected. Time optimization of the system,
which will assure that the microwave energy reflected from an initially
mismatched load is minimal, implies that to each set of initial values
of x and y and to each value of YL for these initial conditions, there
corresponds a particular optimal Smith chart matching trajectory. How-
ever, these trajectories can be neither computed, nor obtained in an
actual system based on information extracted from the reflection coef-
ficient alone. ‘

To force the system to follow certain specific matching trajecto-
ries, it is necessary to measure or compute both the state of the Sys-
tem and the complete Toading conditions. The required additional in-
formation may be obtained either by direct measurement of x, y, and YL’
or by computation from measurements of the load reflection coefficient,
the reflection coefficient immediately after the series phaseshifter,

and the admittance added by the stub.
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An example of a method which will lead to a time optimal system

design is outlined below.

By appropriate, but rather complex calculations performed upon
measured data of the load reflection coefficient, the slab positions,
and the reflection coefficient at the neutral plane of the H-plane tee,
two error signals may be derived, which are directly proportional to
the remaining angles through which the phaseshifters have to be adjus-
ted to obtain a matched load condition. In other words, two linear and
independent feedback signals may be computed as functions of time,
which may be used to adjust the phaseshifters. The system non-linearity
has thus been "inverted" and the system has been transformed into a
Tinear system with two second order loops. Once the system has been
linearized in this manner, standard, well documented methods(24) of
time optimizing second order systems may be applied to each loop. This
will Tead to "bang-bang" controllers for the Toops.

Tﬁe two linear loops will not be completely independent, but will
have a common output, namely the reflection coefficient at the neutral
plane of the H-plane tee. Since, for time optimal control, both control
Toops must simultaneously reach equilibrium, and since the Smith chart
origin must be approached from a specific direction for each load to be
matched, the maximum adjustment rates of the two Toops must be coordina-
ted, and altered in relative ratio, according to the actual value of
the Toad to be matched. This implies that the system must contain mem-
ory.

The time optimal system, the general form of which was suggested
above, has very limited practical value. The complexity of the neces-

sary calculations and the need for memory forces the use of a digital
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computer to implement such a system. Moreover, the measurement proce-

dures now required are more complicated and difficult to perform. The
attractive advantages of simplicity and reasonable system cost have,
thereby, been lost. In view of the above, time optimization of this
type was persued no further.

Provided the coupling between the loops is neglected, another form
of system improvement may be attempted, based on the Timited information
contained in the measured reflection coefficient at the neutral plane

of the H-plane tee.

Assume that the angle of the measured reflection coefficient is in-
dicative of the remaining-angu]ar adjustment of the series phaseshifter
necessary to bring the coﬁductance to unity. Assume further that series
phaseshifter adjustment causes pure rotation about the Smith chart ori-
gin. The coordinates of the intersection point (only the intersection
point in the upper half of the Smith chart is considered) of the unity

conductance circle and a particular constant reflection coefficient

magnitude circle are given by:

K&y = K& 6.3
- Kby = Kp]/1- K5 6.4

where the primes indicate that the values of KRH and KRV refer to the
intersection point coordinates. From figure 47, the desired remaining

angle of adjustment ist=ﬁ—dl One has from the diagram:

2
’ran'(f:tan(p_dj): KRKRV-KRHPLKR 6.5

2
Kpy)/1-KR + KRy KR
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MEASURED
k INTERSECTION POINT

CONSTANT
Kg CIRCLE

UNITY CONDUCTANCE
CIRCLE

*KRV

FIGURE 47.  SMITH CHART GEOMETRY FOR LINEARIZED ERROR SIGNALS

Since K2 = KgH + st » the error signal for the series phaseshifter

R
becomes:

}/ 2+ 2 }/ 2 2"
e = = Tan” KRv/ KRH* KRy -Kruy/1-KRH-KRv 4.6
K]/ 1- KR -KRy + Krel Kan * KRy

At the same time, from the Smith chart geometry, the remaining reactive

adnittance that has to be added by means of the stub phaseshifter is

equal to (2 tan/B). The error signal for the stub phaseshifter is thus:
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: }/ 2 2
eg = Tan'1(2 tan {3) = Tan~1 2/ MRe * KRy 6.7

L

2 2
1-KRH - KR

In a hybrid computer simulation of the system, the above linear-
ized error signals are easily computed. Rather than feeding back sig-
nals KRH and KRV in a scheme as shown in figure 40, signals e and eq
may be used for activation of the phaseshifters. If this is done,
matching trajectories for various load admittances may again be obtain-
ed. Results for two representative sets of static loop gains and dam-
ping Toop gains are shown in figure 48, where the actual gains used
have been marked directly on the diagram.

The matching trajectories shown in the upper half of figure 48
are especially interesting since they represent a set of operating con-
ditions for which each and evéry Toad (starting with zero initial con-
ditions on the slab positions) is matched in equal time. If the same
relative loop speeds are maintained, it should, therefore, be possible
to minimize Q (defined before) with respect to the damping Toop gains.
This would represent a form of optimization. These same curves also
give some idea of the shape of true time optimal trajectories.

The above method of improving the system, though simpler than full
time optimization, is still not suitable for analogue implementation in
an actual system. No memory is required, but the non-linear functions
of KRH and KRv required to calculate e and eg are too complex for
anything but digital equipment. |

There remains one method of improving the system response (especi-
ally for small reflection coefficient Toads), which.is simple enough to

be suitable for direct implementation in an actual system by analogue
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Smith Chart for +1
Admittance

KRH

N

-“* KRy

CONDITIONS FOR UPPER HALF OF PLOT: Max. Error Signals scaled to 10 V

Error Signals: e and e replace KRH and KRV’ see text for details.
Operating Conditions: C]=C2=O.2 into X1 Amp. Gain
A]=A2=;.O into X10 Amp. Gain.

CONDITIONS FOR LOWER HALF OF PLOT: Max. Error Signals scaled to 10 V

Operating Conditions with C]=O.2 into X1 Gain, C2= 0.1 into X1

Error Signals as above: A]=A2=1.O into X10 Amp. Gain.

FIGURE 48.  MATCHING TRAJECTORIES FOR
A PARTIALLY LINEARIZED SYSTEM
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methods alone. This approach will now be described.

As mentioned in several previous sections and as shown graphically
in figure 26, the diameters of the circular Smith chart trajectories,
obtained for various load admittances YL as x is varied (but for con-
stant values of slab position y), are directly related to the magnitude
of the reflection coefficient corresponding to the load to be matched.
As the Toad reflection coefficient decreases in magnitude, so does the
circle diameter. The average change in KRH’ which is the projection of
the circular trajectories upon the KRH-axis as x is varied is, thus,
also a function of the load reflection coefficient. Therefore, the ef-
fective average series phaseshifter loop gain varies with the reflec-
tion coefficient of the Toad to be matched.

Similarly, by examination of figure 31, and by consideration of
the theory presented earlier, one finds that the slope of the KRV ver-
sus y curves close to equilibrium is a direct function of the reflec-
tion coefficient magnitude of the initially unmatched load. The effec-
tive stub phaseshifter loop gain, as the system approaches equilibrium
is, thus, dependent upon the load reflection coefficient magnitude.
This effective loop gain increases with increasing reflection coeffic-
ient magnitude.

The above two Toad dependent'effects are responsible for the slow-
er system response for small reflection coefficient Toads than for
Toads of large reflection coefficient. Clearly, to compensate for this
effect, the loop gains must be made into functions of the load reflec-
tion coefficient magnitude such as to counteract the effects inherent
in the primary system non-linearities. Fully in accordance with earlier

remarks regarding the necessity of obtaining additional information not
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contained in the error signals as measured, the load reflection coef-

ficient must be measured.

Let a directional coupler be used to sample some of the microwave
power reflected from the actual load. If a matched crystal detector
terminates the coupler sidearm, the output signal from the crystal will
be proportional to the reflected power. And, at a constant incident
microwave power level, the same crystal output signal will be propor-
tional to the squared load reflection coefficient magnitude KgL.

For the sake of circuit simplicity, rather than extracting the
square root of the KﬁL—sfgnal, the crystal output may be amplified and
used directly to modify the error éigna]s KRH and KRV according to the

following formulae:

(Ridm = (- K&L) gy 6.8
2
(Kav)m = (P-KRU) Kry . 69

where the subscript m indicates the modified values of the error sig-
nals and where p is a positive constant. Since the maximum and minimum
values of KﬁL are 0 and 1 respectively, the choice p=2 will cause a
maximum system loop gain change factor of two; this gain variation
corresponds directly to the experimentally determined difference in
system response speed to low and high reflection coefficient loads |
(see section 6-2). In an actual system both p and KsL must, of course,
be scaled to the input and output voltage capabilities of the electron-

ic components used. Details of this will be given in the next chapter.

Although this has not been emphasized anywhere in the previous
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work, the error signals KRH and KRV’ as measured, are not equal to,

but are merely proportional to the real and imaginary parts of the re-
flection coefficient. The magnitude of the proportionality factor is
linearly related to the microwave power level at which the system is
operated. The effective system loop gains, therefore, also depend on
the microwave power level, resulting in changes in response speed as a
function of microwave power level. However, since the KSL—signa], as
measured, is affected in exactly the same manner, the response speed
compensation suggested by formulae 6.8 and 6.9 will partly cancel the
power level effects.

In chapter five the {dealized system was proven stable for any
set of series and stub loop gains, provided the damping was never zero.
The adaptive type of gain modulation given by expressions 6.8 and 6.9
is a function of the load admittance only, and does not depend on slab
positions x and y. Furthermore, each of the two loops is affected in
exactly the same manner. Anderson's conditions on the non-linearities
- will, thus, not be upset. Therefore, the system will remain stable;
only the response speed will be altered.

Once again, the system modifications suggested above were easily
incorporated into the digital simulation of the non-linear part of the
system. A representative set of matching trajectories is shown in fig-
ure 49. For a specific set of 6perating conditions such that the sys-
tem was approximately critically damped, the trajectories for small re-
flection coefficient loads approached the origin noticeably more rapid-
ly.

The suggested response speed compensation is, by no means, ideal

or exact, nor is the compensation for microwave power level perfect.
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Smith Chart for
Admittance, upper half
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§ LOAD ADMITTANCES:
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0 50 secs 100 secs 150secs  200secs

TIME FROM START OF MATCHING OPERATION
CONDITIONS:

Error Signals: (KRH)m and (KRV)m replace Kpyy and Kpy With p=2,
see text for details.
Operating Conditions: C]=C2=0.5 into X1 Amp. Gain
A=A,=1.0 into X20 Amp. Gain, (see fig. 40).

FIGURE 49.  MATCHING TRAJECTORIES AND REFLECTION
COEFFICIENT CHANGES FOR AN ADAPTIVE SYSTEM
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Nevertheless, the improvement in system performance is considerable,

and the required computations are easily performed by means of opera-

tional amplifiers and integrated circuit analogue multipliers.

6-4 Non-Ideal Properties of the System and jts Components

In all of the previous work only an ideal system was considered,
but the open-loop frequency response of the linear part of the system
s, éctua]ly, more complex than the double integrator with rate feed-
back model used. Some of the factors that affect the frequency response
and which have, so far, been ignored are:

1. The time constants associated with the inductance and re-
sistance of the phaseshifter drive coils and the output im-
pedances of the power amplifiers.

2. The time constants of the rate feedback coil inductances
and resistances, and the input impedance of the rate signal
amplifiers.

3. The closed-Toop frequency response of the various, indi-
vidual, operational amp]iffers that must be used in the sys-
tem electronics.

4. The dynamic response of the microwave portion of the sys-
tem, i.e. the bandwidth and envelope roll-off characteristics
of any resonant effects that may occur in the microwave sys-
tem.

None of the system imperfections mentioned above are likely to
cause any severe difficulties in obtaining system stability. If the

drive coil and rate feedback coil inductances prove bothersome, the
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time constants associated with them may always be decreased by increas-

ing of the power amplifier outpuf impedances and rate signal amplifier
input impedances. The closed-loop bandwidth of integrafed circuit op-
erational amplifiers is normally at least 100 kHz and is much wider
than the expected bandwidth of the automatic matching device, which con-
tains mechanical components. Lastly, the bandwidth of even narrow band
microwave resonant effects can be expected to be much greater than the
bandwidth of a mechanical adjustment system.

By far the most important imperfection of the system components is
the occurrence of mechanical resonance effects in the moving structural
parts of the phaseshifters. To test the phaseshifter performance, a
positional servo was arranged using the actual phaseshifters. The cir-
cuit schematic of the test set-up is shown in figure 50. To measure the
position of the dielectric slab, the image of a narrow slit was projec-
ted through the phaseshifter waveguide section onto a rectangular so-
lar cell type of photocell. At various positions of the slab a portion
of the slit image was shadowed off by the slab. An output signal pro-
portional to slab position could, in this manner, be obtained from the
photocell.

Thé test circuit waé first subjected to square wave input signals.
Although the damping could be adjusted to produce any type of response
desired from underdamped to overdamped, the gain settings had a very
pronounced effect on the appearance of 650 Hz ringing superimposed on
the normal output. At low gains the ringing was not evident, but as the
gain was increased ringing would first occur and as the gain was in-
creased still further, the system would break into oscillation. The

amount of damping did not influence this effect at all. An oscilloscope
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FIGURE 51.  PHASESHIFTER TEST CIRCUIT,
SLAB POSITION SQUARE WAVE RESPONSE
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record of slab position versus time, for the X-band phaseshifters tes-

ted, illustrates the above points.(see figure 50).

In an effort to characterize the frequency response of the phase-
shifters, sinusoidal inputs were also applied to the test circuit. By
determining the complex ratios of slab position to drive coil input
signal, and slab velocity to drive coil signals, it was attempted to
obtain Bode plots for the phaseshifters. However, the results obtained
were very dependent on signal amplitude, average slab position in the
waveguide, frictional effects, and play in the bearings. No Bode plots
suitable for the accurate determination of the phaseshifter transfer
function were, therefore, obtained. Nevertheless, it became abundantly
clear that damped mechanical resonance effects existed, which resulted
from the sprihg-]ike f]exing properties of the dielectric slab itself.
Several resonance peaks and dips are present in the phaseshifter res-
ponse curve, with the main and lowest one occurring at 650 Hz. Efforts
to increase the resonance frequencies to more than 650 Hz led only to
solutions that were not compatible with proper microwave operation of
the phaseshifters.

For purposes of determining stability of an actual matching system,
the transfer function of the 1inear part of each control loop (with the
damping Toop closed) may be assumed to include at Teast a complex con-
Jjugate pair of poles and possibly a complex conjugate pair of zeros,
as well as the poles of the ideal transfer function discussed before.
However, the actual s-plane location of the additional poles and zeros
could not be determined.

The effects discussed above will be considered again in the next

section in connection with stability of the actual system.
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6-5 Stability of the Actual System

As for the idealized system discussed before, proof of the stab-
ility of the actual system depends, first of all, on the positive real
nature of the expression oK+ (€45 )1 (s) ] (see chapters 4 and 5), as
well as on the properties of the non-linearities. In particular, to
prove stability one requires that [CK+ (c+3s )4 (s) ] be positive real for |
€=>0,4>0, and K=0. Since W(s) for the actual system has two diagonal
elements (the others are zero) which are complicated and not accurate-
ly known, this is virtually impossible to show. Nonetheless, there are
several considerations whiéh, although they do not constitute a proof,
lead one to expect that the actual system might well be stable for cer-
tain operating conditions. These considerations are discussed below.

A. It is conceivable, although not very likely, that W(s) may be
such that M(s)=dk+(«+3s)W(s) is positive real for£=0,3>0, and X=0.
Should M(s) not be positive real as such, it may be possible to com-
pensate the system in order to make M(s) positive real for the condit-
ions given above. In that case,stability may be proven by methods
similar to those used for the idealized system.

B. It may be stated with some degree of certainty that M(s) will
be positive real, or may be made positive real by compensation, for a
lTimited range of values of «, (3> and K. The acceptable values of £, /3,
and K thus determined will not Tikely include &€=0 and [.’>—>Of as required
for a stability proof as given for the idealized system. Therefore, a
proper Lyapunov function can only be found if the non-linearities do,
in fact, obey Anderson's conditions on the non-linearities. In section

5-4, condition 5.28 was shown to hold true for a limited range of val-
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ues of y only, because proper period endpoints for x could not be

defined for extreme values of y. Inabi]ity to define such period end-

points, however, does not imply that these period endpoints do not ex-
ist. There are several endpoint choices which make the non-linearities
obey condition 5.28, but they cannot be proven to be the correct ones.

Assuming that the non-linearities obey condition 5.28, the system
can be proven stable, but only for a non-zero value of K. A non-zero
value of K restricts the non-linearities to sectors in the first and
third quadrants. However, this need not be of any concern, because ad-
justment of the gains associated with W(s) allows these sectors to be
opened up. Furthermore, réstriction of the Toad reflection coefficient
magnitude to less than one by means of mechanical range of motion stops
on the stub phaseshifter will restrict the non-linearities to sectors
less than one quadrant wide. One may, thus, expect a relationship be-
tween the loop gains used and the maximum allowable reflection coeffic-
ient magnitude of the loads to be matched.

C. In the case of linear systems, stability is often determined,
both experimentally and theoretica]]y, on the basis of the dominant
open-loop poles and zeros only. The method used is that of reducing
the Toop gains sufficiently such that the troublesome minor poles and
zeros occur at frequencfes for which the effective loop gain has drop-
_ped to considerably less than one. In other words, the minor poles and
zeros have been "buried" below the zero dB line in a Bode plot.

Similar methods may, frequently, be applied to non-Tinear systems.
If this were not so, computer simulations of non-linear systems (or
Tinear systems) would be valueless, since any non-ideal computer will

add undesirable poles and zeros of its own to the system simulated.
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Therefore, it is reasonable to expect that an idealized system, which

has been proven stable by both theoretical means and computer study,
may be implemented as a stable practical system, despite the presence
of additional higher frequency poles and zeros.

D. As discussed in section 6-2, the hybrid computer simulation of
the idealized system remained stable, even if additional poles were
purposely added to the linear parts of the system. The addition of these
poles merely imposed restrictions on the allowable Toop gains and un-
matched load reflection coefficients, if stability was to be maintained.
The simulation study, therefore, supports the theories put forth in
the above paragraphs.

The final and most powerful demonstration that an actual system
can be stable will be presented in the form of an ﬁctua] system proto-
type. The performancé'of the prototype will be discussed in chapter

seven.



CHAPTER SEVEN

THE ACTUAL SYSTEM AND ITS PERFORMANCE

To establish with certainty that an actual system }s both stable
and practical, an automatic matching system prototype was built and
tested. This chapter will deal with the construction of the system pro-
totype and will give details of the required electronics. System per-
formance results will be presented, and suggestions will be made regar-

ding alternate system forms and possible practical improvements.

7-1  The Microwave System Arrangement

For convenience and safety reasons, the system prototype was exe-
cuted as a 10 mWatt X-Band system. The microwave power source used was
a Sylvania type SYA 3200 tuned cavity Impatt diode device, which opera-
ted at a frequency of 9.9081 GHz and with a power output of about 12 my.
The Impatt diode was supplied with DC power from an electronic constant
current source with built in overvoltage, and "crowbar" type overcur-
rent protection. To prevent excessive frequency pulling and reflection
of major amounts of power from the mismatched power source during the
initial mismatched Toad conditions, the power source was coupled to the
transmission waveguide through a standard isolator. The transmission
waveguide power level could be adjusted, if desired, by means of a va-
riable attenuator.

The Toads used for testing purposes consisted of such varied de-

vices as a precision variable attenuator terminated by a movable short,
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an open-ended waveguide radiating towards or through metal or dielec-

tric objects respectively, a horn antenna fadiating towards a rapidly
movable reflecting metal plate, as well as others.

The matching device was assembled exactly according to the single
stub tuner arrangement suggested in chapter one. It consisted of an
H-plane tee, a series phaseshifter inserted in the main waveguide be-
tween the H-plane tee and the load, and a shorted stub connected to the
pr]ane tee, comprising a stub phaseshifter terminated by a movable
short. The purpose of the movable rather than fixed stub short was to
allow the stub length to be adjusted, such that the zero stub admittan-
ce position of the stub phaseshifter corresponded to the center of its
allowable range of motion. This assured that the largest, but finite,
available stub admittance was equal in the positive and negative direc-
tions.

The waveguide Toading conditions,resulting from the combined load
and matching device, were measured with an E-fieid sampling version 6f
the three detector measuring device discussed in chapter three. Since
mounting of E-field, X-band detector probes to an accuracy of a few
thousandths of an inch is rather difficult, the probes were located on
a slotted section of waveguide. This made it possible to adjust their
positions with respect to the standing wave pattern produced by a short
at the neutral plane of the H-plane tee. In all other respects, the
measuring device construction was similar to that discussed in an earl-
ier chapter.

A directional coupler,with its sidearm terminated in a matched
detector crystal,was inserted between the load and the series phaseshif-

“ter for the purpose of obtaining a signal that is proportional to the
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square of the load reflection coefficient magnitude.

A schematic diagram of the microwave component arrangement is
shown in figure 52. The connections to the electronic control unit are

shown, but will be discussed in greater detail in a later section.

7-2  Special Phaseshifter Features

The general manner of construction and mode of operation of the
dielectric phaseshifters was discussed in detail in chapter two.

Some special features not previously considered or shown in diagrams
need mentioning here.

For successful operation of the automatic matching system, the
range of motion of the stub phaseshifter slab must be restricted such
that the maximum obtainable phaseshift is slightly less than tﬂ92 ra-
dians. This was easily accomplished by simply bolting two slotted angle
brackets to the top support plate of the phaseshifter structure. The
slots allowed transverse positioning of the brackets with respect to
the waveguide. At either adjustment extreme for the slab, the drive
coil or rate coil endplates, respectively, would strike the angle brack-
ets and would, thus, restrain the slab from moving further in that di-
rection. Normally, the brackets were positioned such that the slab
remained as close as possible to the waveguide sidewall, in order to
take advantage of the Tinear range of the phaseshifter. The cross-
sectional view of part of the phaseshifter and one angle bracket, shown
in figure 53, further explains the phaseshifter motion stop arrange-

ment.

The series phaseshifter range of adjustment must also be restricted



172

TOP_SUPPORT PLATE

LIMIT STOP
ANGLE BRACKET

coiL
ENDPLATE

b\ \PUSHER ROD

STRENGTHENER

FIGURE 53.  STUB PHASESHIFTER MECHANICAL LIMIT STOP

PHOTGCELL

TOP SUPPORT

PLATE \
<
~

COIL AND

HOLLOW PUSHER STIFF
TUBES RCD WIRE

LAMP AND
TUBES

BEND AS
REQUIRED

TOP_VIEW

SIDE_VIEW

FIGURE 54.  SERIES PHASESHIFTER PHOTOELECTRIC LIMIT STOP




173
to prevent undesirable overshoots and to keep the slab in the Tinear -

range of phase.angle adjustment. Preferably, the series phaseshifter
range should be less thanTU radians, but, to make matching of all dis-
sipative Toads possible, the adjustment range should be at 1east1ﬂ92
radians. In the actual device, the series phaseshifter motion was re-
stricted in exactly the same manner as that for the stub phaseshifter.
Whenever the series phaseshifter slab reaches one of the motion
stops, a signal must be generated, which may be used in the electronic
unit to switch the polarity of the series phaseshifter loop gain. Simul-
taneously, a short pulse must be generated and added to the Toop error
signal to help drive the slab away from the motion stop. The primary
signals to activate the sign reversal and pulse circuits were obtained
from lamp and photocell systems placed one at each motion stop. Stiff
wires, attached to the drive coil and rate coil endplates, would inter-
rupt light beams that passed from narrow beam sources to narrow accep-
tance angle photocells mounted close to the motion stops. The Tight
beams and acceptance angles were narrowed without the use of lenses,
and ambient Tight was kept out of the system, by almost joining the
lamps and photocells with very small diameter brass tubes. The wire
attached to the coils would pass through narrow gaps between the ends
of the brass tubes in front of the photocells and light sources, res-
pectively, whenever the slab approached one of the motion stops. The
photocell tripoints could be easily adjusted by bending of the wires
attached to the coils. The actual arrangement of one photocell and lamp
system is shown in figure 54. Circuit details will be given in the

next section.
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7-3  The Electronic Control Unit

The electronic control unit performs a number of important func-
tions, which may be enumerated as follows:

1. The measuring device crystal detector output signals are
accepted, amplified equally, and combined arithmetically to
yield error signals KRH and KRV'
2. The rate coil output signals-are accepted, amplified, and
mixed with the appropriate error signals to provide 1oo§
damping.
3. The series control loop gain polarity is reversed in res-
ponse to signals from photocell limit stops mounted on the
phaseshifter. Initial velocity pulses are generated during
each polarity reversal operation, and are added to the series
loop error signal.
4. The directional coupler detector crystal output signal
(squared Toad reflection coefficient magnitude) is amplified,
modified, and used to modulate both loop gains.
5. The rate feedback frequency response characteristics of
both lToops are modified to compensate for phaseshifter mech-
anical resonance effects.
6. The composite loop sigmals are further amplified into
powerful output signals suitable for feeding of the phase-
shifter drive coils.

The electronic control unit front panel provides full electrical

and supervisory access to the control circuitry. As such, the coﬁtro]

panel contains the following:
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1. Two center-zero meters to indicate the static values of _

the crystal detector output signals, or the relative static
values of the error signals KRH and KRV'

2. Dial potentiometers for gain adjustment of the two control
Toops.

3. Dial potentiometers for damping adjustment of the two
control Tloops.

4. Coaxial cable connectors (BNC) for the crystal detectors
(input signals).

5. Multi-pin connectors for the signals to and from the
phaseshifter units.

6. Test signal input jacks for each Toop.

7. Test signal output jacks for each loop, for purposes of
oscilloscope examination of KRH and KRV‘

8. AC power on-off switch.

The electronic control unit circuits are all silicon solid state.
Wherever possible, integrated circuits were employed to perform the
required circuit functions. More specifically, integrated circuit oper-
ational amplifiers provide all necessary gain and perform the arithme-
tic operations. Figure 55 shows the complete electronic control unit
circuit diagram. It may be assumed that, where no details of the inte-
grated circuit connections are shown, the manufacturer's recommenda-
tions regarding connections were followed. In figure 55, the gain and
input resistance values of each amplifier channel are indicated. This
provides all necessary information. To conserve space, the actual input
and feedback resistors were not drawn. Some electronic control circuit

details follow, and refer to figure 55.
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The four input signal preamplifiers are special low noise, low

drift units that consist of a Fairchild mA 709 operational amplifier
with a type mA 726 temperature controlled, integrated, differential
input stage added. The combined unit is still used in an operational
amplifier mode. A typical drift figure for these combined units is
0.5 mV/°C. AIT other operational amplifiers used are standard xA 709
types.
| The mu]tipiiers need not be accurate, because the compensation for
Toad admittance and power level effects is only approximate in any case.
Simple integrated circuit multipliers, with direct inputs and output
(and automatic scaling to 10 Volts), could thus be employed. The units
used are of type MC 1595L (Motorola).

.The power amplifiers for the drive coil signals, again, contain
amA 709 operational amplifier, but with a complimentary compound emit-
ter follower power stage added. The output capabilities for voltage
are, therefore similar to those of the operational amplifier, but up
to 1.5 Amps of load current may be drawn from them. As in a standard
operational amplifier, feedback is applied from the emitter follower
output to the summing junction.

The series Toop polarity reversal circuit operates in the follow-
ing manner. The multiplier output signal passes to the next amplifier
in two ways, once directly, and once through a switched amplifier with
a gain of minus two. With the switched amplifier off, only the direct
siéna] is present at the next amplifier. But, with the switched ampli-
fier on, the direct signal plus twice the negative of the direct sig-
nal appear at the input of the next ampfifier (to be added there). The

net result is a simple sign reversal. On-off switching of the amplifier
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is accomplished with a field effect transistor in the summing junction.

With 0 Volts on the field effect transistor gate, the transistor is on,
and the amp]ifief operates. With 15 Volts on its gate the field effect
transistor is off, thus isolating the amplifier from its input. The
switching signal for the field effect transistor gate, as well as the
initial velocity pulses are derived from the series loop polarity cir-
cuit. A complete circuit diagram of this is shown in figure 56. An
explanation of the circuit operation follows.

Normally, both photocells are illuminated, but, whenever the series
phaseshifter reaches a limit stop, one of the photocells will receive
no Tight. The resulting change in resistance causes a Schmitt trigger,
associated with that photocell, to change states. An additional common
emitter stage alters the Schmitt trigger output to a signal which is
zero whenever the photocell is illuminated, but which becomes a 1.5
Volt signal (of a specific single polarity) during the time that the
photocell is dark. The second photocell operates a similar, but com-
plimentary circuit, which also produces an output whenever that photo-
cell is dark. However, the polarity of its output is opposite to that
of the firsf circuit. The outputs are combined in a resistive network
and are then fed to the initial velocity pulse output of the circuit.
| The initial velocity pulse output voltage is, therefore, +1.5 Volts,
1.5 Volts, or 0 Volts depending on whether photocell 1 is dark, photo-
cell 2 is dark, or both are illuminated, respectively. The velocity
pulse polarity has been arranged always to drive the phaseshifter slab
away from its stops. Note that the pulse lasts only as long as the
photocell is darkened. The magnitude of the velocity pulse and the gain

of the amplifier channel into which it is fed are such that the pulse
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overrides even the largest possible error signal magnitﬁde. This
prevents "hang-up" of the slab at one of the limit stops.

The change of states of the Schmitt triggers, as a photocell dark-
ens,'is changed to a pulse of appropriate polarity and magnitude (by
means of another pair of complementary transistors and differentiating
networks), which is fed into a flip-flop. The circuit is so arranged
that a pulse originating from either photocell and Schmitt trigger com-
bination will cause the flip-flop to change states. The flip-flop out-
put fs fed to the final switch signal output terminal by means of a
pulse shaping transistor gtage. Since the flip-flop state determines
whether the field effect transistor in figure 55 is on or off, darken-
ing of either one of the photocells will cause a Toop gain sign revers-
al which lasts until a photocell is again darkened.

This completes the discussion of the electronic control unit

circuit.

7-4  System Adjustments

To assure that the system operates properly, the measuring device
probe positions along the waveguide and the probe attenuations must be
adjusted correctly. Furthermore, the phaseshifter 1imit stops must be
set. Finally, the Toop gain and damping potentiometers must be properly
adjusted. The adjustment procédure, which applies to the system proto-
type in particular (with E-field probes on a slotted guide section),
will be given in abbreviated form.

1. Arrange a directional coupler and detector crystal such

as to make possible the measurement of the power reflected
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from the matching device.

2. Connect a matched load to the system and set the phase-
shifters to their minimum phaseshift positions. Remove the
drive coil fuses from the electronic control unit panel.

3. Adjust the stub movable short until no power is reflected
from the matching device.

4. Connect just one outside probe to the electronic control
unit and adjust its attenuator to obtain a stub error meter
reading of 40% of full scale.

5. Connect the secdnd outside probe also and adjust its att-
enuation such as to return the stub error reading to zero.
6. Connect the center probe to the control unit and adjust
its attenuator until the series error signal is zero.

7. Readjust the stub movable short to obtain maximum power
reflection from the matching device.

8. Connect only the center probe to the electronic control
unit and locate the probe at a convenient minimum (using

the stub error meter for indication).

9. Connect only an outside probe to the control unit and ad-
Just its position to the nearest minimum away from the center
probe.

10. Connect the other outside probe only and move it to the
nearest minimum on the other side of the center probe. Then,
incréase its distance from the center probe until the out-
side probe in question is at the next maximum.

11. Connect both outside probes to the control unit. Maintain

the.distance between the outside probes as established in
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steps 9 and 10 (use a micrometer) and slide the probes along

until the stub error meter reads zero. The direction of
motion to accomplish this must be the one which tends to
center the middle probe between the two outside ones.
12. Repeat steps 2 to 6 inclusive if necessary.
Probe édjustment is complete at this point. For a measuring device with
pre;positioned probes (such as the H-field sampling section of chapter
three), only steps 1 to 6 are required. Alternate probe adjustment
methods by measurement and/or calculation are, of course, possible.
The stub phaseshifter range of motion and the movable short are
adjusted as follows:
1. Make the system fujly operational, but remove the drive
coil fuses. Adjust the series phaseshifter to its minimum
phaseshift position.
2. Connect a matched Toad to the unit.
3. With the stub phaseshifter set to its minimum phaseshift
position, adjust the movable short until a reading of plus 5%
of full scale is obtained on the stub error meter.
4. While holding the phaseshifter against its maximum phase-
shift limit stop, adjust this limit stop until a reading of
minus 5% of full scale is obtained on the stub error meter.
For these adjustments to be correct the stub error meter
reading must behave in the following manner to slow manual
adjustment of the stub slab position from minimum to max-
imum phaseshift: the meter reading must increase from +5%
to a maximum; it must then decrease (through zero) towards

a minimum; from the minimum it must increase again to a
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maximum reading of -5%. Only one zero value of stub error

must be included within the stub slab range of motion.

The series phaseshifter mechanical stops should simply be adjusted
to give a series slab range of motién equal to that of the stub phase-
shifter. The photocell arrangements should then be adjusted to obtain
complete darkening of the photocells with the series slab about 0.5 mm
from its extreme positions.

The gain and damping of each loop should be set by applying a
small square wave signal to the test input for the loop in question,
and by examining the loop response by connecting an oscilloscope to
the Toop output test jack; For each loop:

1. Connect a mismatched microwave load to the apparatus.

Set the gains to low values and the damping to maximum.

Make the unit operational.

2. Adjust the damping for the desired type of response.

3. Adjust the gain to the maximum value which will just

leave the slab resonance, of the loop in question, invisible.
4. Repeat steps 2 and 3 several times for both loops, to
eliminate the effects of interaction.

The circuit is purposely so arranged that only the damping affects
the type of system response. The gain adjustment affects mainly the
response speed. This arrangement allows maximum response speed to be
obtained without interference from the slab mechanical resonances.

The system adjustment is now complete and should not have to be
changed unless the microwave operating frequency or maXimum power
Tevel is changed.

It should be noted that small errors in positioning of the meas-
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uring probes on the waveguide section will have no effect on the

system operation. If the spacing between the probes is correct, but the
distance to the neutral plane of the H-plane tee is in error, the KRV"
axis and KRH-axis will remain orthogonal, but will be rotated with
respect to the main Smith chart axis. Should the probe spacing be in
error instead, the KRH-axis and KRv-axis will not remain orthogonal.
Errors in crystal detector tracking and deviations from square law
operation will cause curving of the KRV and KRH axes with respect to
the Smith chart. If these errors are sma11; they are of no importance,
provided the detector output signals are equal for matched load cond-

itions. However, large errors could cause instability problems.

7-5  Actual System Performance

The performance of the actual system prototype may be summarized
as follows:

A. By displaying one test jack output versus the other on a stor-
age oscilloscope, while changing the load and slowly adjusting the
phaseshifter slab positions the theoretical results regarding the error
signal and non-linearity derivations of chapters three and four were
verified. A1l of the "Smith chart" trajectories were essentially circ-
ular.Some distortions occurred as a result of detector crystal tracking
errors and lack of square law operation. However, the errors were not
considered detrimental.

B. Loads with reflection coefficient magnitudes as large as 0.95
(VSWR of about 50) could be matched in a stable manner. The maximum

allowable load reflection coefficient magnitudes (determined by the
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stub phaseshifter range of motion), the maximum allowable gains, and

the minimum allowable damping were all found to be interdependent.The
matching of larger reflection coefficient loads required the use of
less gain and greater damping to maintain stability.

C. After matching of a Toad the voltage standing wave ratio in
the main waveguide was no more than 1.03. At the same time, loads with
reflection coefficient magnitudes of less than 0.02 caused no match- |
ing device corrective action. These results were affected by the effect-
ive Toop gains and the phaseshifter frictional effects. To overcome
the static friction in the phaseshifter bearings a certain minimum
drive coil signal is required. The gain and degree of mismatch, togeth-
er determine the minimum drive coil signal magnitude available.

D. The maximum stable system response speed obtainable for large
reflection coefficient loads was dependent upon the slab mechanical
resonance frequencies. This was tested by using several slab designs
of differing dimensions. Figures 57 and 58 show some typical tracings
of oscilloscope records for a system with slab resonance frequencies
of 650 Hz. The obtainable response speed is clearly between 2 and 5
milliseconds per complete matching operation. Small reflection coeff-
icient loads were matched in up to 15 milliseconds. The respohse speed
for small reflection coefficient loads could be improved by incorpor-
ation of the load dependent Toop gain modulation discussed in chapter
six. This was proven by manually adjusting the loop gains in accordance
with the formulae given in chapter six. Small reflection coefficient
loads were then matched in Tess than 5 milliseconds also.

E. Typical prototype system matching trajectories,as displayed

on an oscilloscope, are shown in figure 59. These trajectories differ
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somewhat from those obtained from the computer simulation. The differ-

ences were thought to be the result of:

1. Differences between linear part transfer function matrices
for the simulated and actual systems.

2. Additional non-linearities caused by slab bearing friction.
3. Crystal detector tracking errors and deviations from
square Taw operation.

In general, however, the performance of the actual system was much

as expected.

7-6  System Operation at High Microwave Power Levels

The X-Band system prototype was used at very small microwave
power levels. However, S-Band phaseshifters of a similar design were
tested at microwave power levels of up to 1.5 kWatts. An H-field meas-
uring section was also operated at this same power level. Although
these devices were never assembled into a complete matching system, it
was felt that ( based on slab temperature and leakage radiation
measurements), the S-Band system could be operated at levels of up to
10 KW of microwave power. .

Larger systems are thought to be feasible if other than polysty-
rene dielectric slabs are used. Materials such as beryllia and titania
appear especially promising. They are hard ceramics that exhibit high
dielectric constants. As such, use of these materials would result in
phaseshifters with slabs of smaller dimensions and much higher mechan-
ical resonance frequencies. Although these materials are more lossy

than polystyrene at microwave frequencies, they are far more tolerant
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of temperature increases. Therefore, their use at high power levels
is recommended.

If the necessarily slow response speed and much greater mechanic-
al friction effects can be tolerated, the series and stub phaseshifters
may be replaced by devices that contain motorized movable shorts. Care-
ful design of such a modified system can result in a matching device
that is useful even at very high microwave power levels. For example,
the stub phaseshifter and short may be replaced by a stub terminated
directly by a motorized movable short. Similarly, the series phaseshif-
ter may be replaced by a motorized microwave "line-stretcher". One form
of line-stretcher consists of a short-slot hybrid (a form of 3-dB coup-
ler) with two adjacent ports terminated by symmetrically coupled, track-
ing, movable shorts.

Automatic matching system modifications, as suggested above, do
not alter the basic principles of operation of the matching device. The
non-linear functions remain the same, and even the transfer function
lmatrix for the Tinear part is altered very little. The system analysis
presented in this thesis is, thus, applicable and stability of such a
system is guaranteed. |

Several other types of matching devices, incorporating two or three
movable shorts, and applicable to use at high power levels, are known.
These alternate devices match loads in a manner which is different from
that of the single stub tuner. Hence, the real and imaginary components
of the reflection coefficient may no longer be useful as system error
signals, and adjustment may not be unique. In any case, the system non-
linearities would be vastly different from those of the single stub

matching device. Complete re-analysis,to establish modes of operation
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and to determine stability, would certainly be required. No further

consideration was given, at this time, to systems of this type.



CONCLUSIONS AND RECOMMENDATIONS

The automatic microwave 1ogd'matching system, described in this
thesis, employed special adaptations of standard microwave components.
The matching system was arranged as a single stub tuner with the shorted
stub and series line Tengths made adjustable by means of dielectric
slab phaseshifters. Short stroke Tlinear motion DC servomotors (of brush-
less design) were directly coupled to the phaseshifter dielectric slabs
and all moving parts were suspended on very low friction bearings. The
resulting electrically actuated Toad matching device was found to be
ideally suited for use in an automatic microwave load matching system.

The main feeder waveguide loading conditions were sampled with the
éid of three crystal detector probes. Probe spacing was selected as
one-eigth of a guide wavelength with the center probe positioned at an
E-field or H-field minimum with respect to a waveguide short at the
stub tee connection. The signals from the crystal detector probes were
arithmetically combined to produce two error signals that, respectively,
were proportional to the real and imaginary components of the combined
load and matching device reflection coefficient. This simple device has
proven remarkably effective as a means of extracting accurate error
signals suitable for use (after amplification) as actuating signals
for the phaseshifters.

The actual, automatic system became practical only after means
were devised of dealing with the periodic nature of the matching device
characteristics. The particular selection of appropriate error signals,
the Timiting of the phaseshifter ranges of adjustment, and the incor-

poration of automatic series phaseshifter loop gain polarity reversal
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circufts all combined to make the matching device adjustment unique.
Although periodicity of the device adjustment was not e]iminated, these
effects were successfully modified such that the control lToop action
was not adversely affected.

The complete closed-loop system was analyzed in detail for stabil-
ity and performance. Theoretical results were tested experimentally
by means of computer simulation and the building of a}prototype system.
Good agreement was obtained between theoretical and experimental re-
sults. In particular, the X-band prototype was found to be capable of
matching all loads with reflection coefficient magnitudes of Tess than
0.95 to a residual reflectionlcoefficient magnitude of 0.02 within 15
mi]liseéonds. Incorporation of a circuit which modulated the control
Toop gains, in response to actual Toad reflection coefficient changes,
reduced the matching time required for all loads to lTess than 5 milli-
seconds. Furthermore, the system operated in a continuous fashion and
would follow rapid load changes in a stable manner.

The system, as devised, is of reasonably simple and economicﬁ]
design and has a response speed that is more than adequate for indus-
trial applications. As a special feature, the system is readily adapt-
able to use at higher microwave power levels, without there being a
need for complete re-design or re-analysis.

Although the work carried out for this thesis was detailed, it has,
by no means, been exhaustive. Attractive areas for investigation remain.
Particularly interesting is the possibility of developing a very fast
automatic matching device, incorporating electrically actuated ferrite
phaseshifters. A fast matching device of this type may well prove use-

ful in some specialized research applications of microwave power, where
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response times of microseconds rather than milliseconds are required.

The methods of analysis and stability determination used in the work
of this thesis would be directly applicable to the development of a
ferrite phaseshifter automatic matching device.

It is hoped that the work, as reported in this thesis, will con-
tribute substantially to the more economical and convenient industrial

utilization of microwave power.
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