INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may be

from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate

the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in reduced
form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6” x 9” black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly to

order.

UMI

A Bell & Howell Information Company
300 North Zeeb Road, Ann Arbor MI 48106-1346 USA
313/761-4700 800/521-0600






UNIVERSITY OF ALBERTA

BANACH ALGEBRA STRUCTURE AND AMENABILITY
OF A CLASS OF MATRIX ALGEBRAS
WITH APPLICATIONS

BY

GHOLAM HOSSEIN ESSLAMZADEH @

A THESIS
SUBMITTED TO THE FACULTY OF GRADUATE STUDIES AND RESEARCH IN
PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

IN

MATHEMATICS
DEPARTMENT OF MATHEMATICAL SCIENCES

EDMONTON, ALBERTA

SPRING 1998



i+l

National Library

of Canada du Canada

Acquisitions and Acquisitions et

Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

395, rue Wellington
Ottawa ON K1A ON4

Bibliothéque nationale

services bibliographiques

Your fie Votre reférence

Our fie Notre référence

L’ auteur a accordé une licence non
exclusive permettant a la
Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette these.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

0-612-29033-6

Canadi



University of Alberta
Faculty of Graduate Studies and Research

The undersigned certify that they have read, and recommend to the Faculty of
Graduate Studies and Research for acceptance, a thesis entitled Banach Algebra
Structure and Amenability of a Class of Matrix Algebras with Applica-

tions submitted by Gholam Hossem Esslamzadeh/in partial fulfillment of the

requirements for the degree of Docto of P in Mathematics.

/ /«\ / C/( “.
A.T. Lau ( Superv1sor

%Qém_[

\JE Marcoux (Chairman)

/5 i

J. E/Lewis

/—/KQQ%L\/

\ Tomczak-Jaegermann

™

ML

M. Razavy [

:I
'
/
\\/

W. Bade (University of California at Berkeley)

Date: (Jrtober 3/, 199>



To my Parents, Sisters and

Brothers that I love the most



ABSTRACT

In this thesis we consider the structure and applications of a new class of matrix
algebras that we call them ¢!-Munn algebras. Some functional analytic properties
as well as the relations between certain members of this category and the alge-
bra of compact operators on a separable Hilbert space are described. Then some
characterizations of amenable ¢!-Munn algebras are proved. Semisimple ones in
this category are also considered and semisimple ¢!-Munn algebras with bounded
approximate identity are characterized.

€!'-Munn algebras and semigroup algebras are connected by a generalization of the
main result of Munn. Amenability and semisimplicity of semigroup algebras in
terms of the ideal structure of the underlying semigroups are studied here and
some characterizations of amenable semigroup algebras are obtained by using the
corresponding results on ¢!-Munn algebras. Also a counter example to a conjecture
of Duncan and Paterson is provided here.

The topological center of the second dual of ¢-Munn algebras are considered and
they are fully described in terms of the algebras that they were based on. Applica-
tion of this result to semigroup algebras, gives a generalization of Young’s theorem
to semigroups. A variety of examples and open problems at the end, suggests some

directions for future research.
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Chapter 1

Introduction

After Johnson introduced the notion of amenable Banach algebra [21]. in [7. 8.
13. 14. 26] the authors studied the amenability of semigroup algebras for certain
weighted cases. In the process of characterizing amenable weighted semigroup alge-
bras we discovered a new category of Banach algebras which we call them /'-Munn
algebras. Indeed a very special finite dimensional case of these algebras. without
any topological structure. was introduced by Munn [30]. He used this algebra to
interpret the algebraic semigroup algebra of a finite Rees matrix semigroup in terms
of a matrix algebra over a finite group. and since then his technique has been used
in the study of algebraic semigroup rings (for example see [33]). Quite recently.
Duncan and Paterson [8, page 145] observed that Munn's technique can be used
in the study of semigroup algebras of completely 0-simple semigroups with a finite
number of idempotents. Besides, some special /!-Munn algebras have certain rela-

tions and interactions with well known algebras. These applications provide strong



reasons to study these algebras as abstract objects and then apply the results to the

concrete cases like semigroup algebras. We will follow this direction in this thesis.
group alg

This thesis consists of six chapters and one appendix. In chapter 2 we define our
notations. In chapter 3 we introduce #!-Munn algebras and show some basic facts
about their structure. In particular a ¢!-Munn algebra £.M(A. P) has a bounded
approximate identity if and only if it is unital. if and only if its sandwich matrix P is
invertible and its index sets are finite. Then we obtain the following characterization
of amenable ¢!-Munn algebras, by explicit construction of approximate diagonals: A
(!-Munn algebra £L.M(A. P) is amenable if and only if it has a bounded approximate
identitiy and A is amenable. Also we consider the semisimplicity of these algebras
and this is used to show the interaction of semisimplicity and amenability in the
concrete case of semigroup algebras, in chapter 5. In private communications with
Professor N. Gronbaek. he suggested that some of the results of this chapter can

have an alternate proof by using Morita equivalence.

The second dual of a Banach algebra can be made into a Banach algebra in two
ways as was first shown by Arens [1] and their study was continued by different
authors for the case of group algebras and Fourier algebras [4. 11. 12 and 24|. One
of the main problems that has been considered in the study of the second dual of
a Banach algebra is the coincidence of two multiplications or more generally the
topological center. For a recent and abstract approach see [29]. Isik, Pym and

Ulger [20] showed that for any compact group the topological center of L!(G)** is
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L'(G). This was extended to any locally compact group by Lau and Losert [28].
Also Young [39] showed that for a locally compact group G. L!(G) is Arens regular
if and only if G is finite. Chapter 4 starts with the study of the first and the second
duals of ¢!-Munn algebras. One of the major results of this thesis is Theorem 4.3.2
in which we consider the topological center of the ¢!-Munn algebras. Part (ii) of
this Theorem is indeed an analog of the Young's Theorem [39] for the #!-\Munn
algebras, as it shows that Arens regularity of LM(A, P) implies that at least two
of the three cardinal numbers |I|, |J| and dim A are finite. The last section of
chapter 4 is devoted to the study of involutive ¢!-Munn algebras. their positive
elements. positive functionals and representations. In this section we characterize
their positive functionals. Then we construct some of the representations of ¢!-
Munn algebras from the representations of the underlying algebras and show their

relations.

Most of the results of chapter 5 are based on the ideal structure and the struc-
ture of principal factors of semigroups. Since amenability of ¢}(S. ). « a weight
on S. implies that S is a regular semigroup with a finite number of idempotents 8.
Theorem 2], in most of the results we consider without loss of generality this type
of semigroups only. In this chapter we provide some characterizations of amenable
weighted semigroup algebras which show that the amenability problem of the semi-
group algebras is reduced to the completely [0-]simple case. Previously this was
done only for inverse semigroups in [8, page 145]. We also give a counter example

3



to the conjecture of Duncan and Paterson [8. page 145]. In [7. Theorem 8] the au-
thors showed that for an inverse semigroup S. ¢!(S) is amenable if and only if every
maximal subgroup of S is amenable. We extend this result by showing that for a
regular semigroup with a finite number of idempotents. ¢!(S) is amenable if and
only if every maximal subgroup of S is amenable and all of the principal factors of
S have semisimple semigroup algebras. In particular if ¢!(S) is amenable. then it is
semisimple. Consequently it is the semisimplicity of the semigroup algebras of the
principal factors i.e. completely [0-]simple semigroups that build the above result.
By applying Theorem 4.3.2 to the semigroup algebras and also giving some counter
examples in section 6.1, we show that up to certain extent Young's Theorem [39]
can be generalized to semigroups. In the last section we show that the involution
which we defined on ¢!-Munn algebras naturally arises in some cases. for example
in the case of semigroup algebras of inverse semigroups.

The last chapter is devoted to examples and open problems. In section 6.1 we
give some examples of the algebras that appeared earlier in this thesis plus some
interesting counter examples that were promised in the previous chapters. In section
6.2 we discuss some of the open problems that arise naturally from the chapters 3.
4 and 5.

Finally for the convenience of the reader, we have included an index of terms and

svmbols at the end.



Chapter 2

Notations and Preliminaries

2.1. Banach algebras

Let A be a Banach algebra. Throughout by A module we mean Banach A
module. left. right or two-sided, whichever specified. We denote the projective

tensor product of two A modules X and ¥ by X = Y. A short exact sequence
0—x-Ly L z_40

of A modules and bounded A module homomorphisms is called admissible [split]
if f has a bounded linear [4 module homomorphism)] left inverse. A bounded net
{ee} in A & A with eqa — ae, — 0 and m(eqa) — a is called an approzimate
diagonal. Here # : A 3 A — A is the canonical projection. Let X be a Banach
A bimodule. We will denote the set of all bounded [inner] derivations from A into
X by Z'(A,X) [BY(A,X)). Also H'Y(A,X) = ZY(A.X)/BY(A.X). Ais called

)



amenable if H'(A.X*) = 0 for every dual 4 bimodule X* or equivalently if A has
an approximate diagonal [20. Lemma 1.2 and Theorem 1.3]. A is called weakly
amenable if H!(A, A*) = 0.

Suppose A is unital. D(A.1) denotes the set of normalized states on A. i.e. all
f € A” such that ||f|l = 1 and f(1) = 1. Let z € A V(A.r) = {f(a) : f €
D(A.1)} is called the numerical range of r. r is called positive if V(A.r) C R*U{0}.

An involution * on Aisamap * : A — A that satisfies the following conditions:
For every a.b € A. (i) (a*)* = a (ii) (aa + b)* = @a" + b* (iii) (ab)* = b*a*. A is
called involutive if it has an isometric involution.

Let A be an arbitrary Banach algebra. The first and second Arens multiplications
on A" that we denote by "o” and”.” respectively are defined in three steps. For
a.b€ A f € A" and m.n € A**, the elements foa. a.f. mo f. f.m of A* and

mon. m.n of A** are defined in the following way:

<foa.b>=<f.ab> <a.f.b>=<f.ba>
<mof.a>=<m.foa> <f.m.b>=<m.b.f>
<mon.f>=<m, nof> <m.n. f>=<n. f.m>.

Throughout we assume A** has the first Arens multiplication. unless stated other-
wise.

For fixed n € A** the map m — mon [m +— n.m] is weak® — weak*® continuous,
but the map m — nom [m — m.n] is not necessarily weak* — weak® continuous.

unless m is in A. The topological center Z(A**) of A** is defined by

Z(A™)={n€ A** : The map m — nom is weak® — weak" continuous}.

6



It can be shown that
ZA")={n€eA™ : nom=nmforallme A™}.

If A is commutative. then Z(A4"*) is precisely the algebraic center of A*".
Throughout by X(H) we mean the algebra of compact operators on the Hilbert

space H.

2.2. Semigroups and semigroup algebras

In the algebraic notations for semigroups mainly we follow [5]. Throughout S
[G] is a semigroup [group| and Es is the set of idempotent elements of S. If T is
an ideal of S. then the Rees factor semigroup S/T is the result of collapsing T into
a single element 0 and retaining the identity of elements of S\ 7. We make the
convention that §/o = S. If S has an identity, then S! = S: otherwise S! = SuU {1}
where 1 is the identity joined to S. For a € S. J(a) is the principal ideal S1aS!
and J, is the set of elements b € J(a) such that J(b) = J(a). The inclusion among
the principal ideals induces the following order among the equivalence classes Jgs:
Jo < Jy if J(a) C J(b) [Ja < Jp if J(a) C J(b)]. By I(a) we mean the ideal
{b € J(a) : Jy < J,} ie. I(a) = J(a)\ J,. On Es we have a usual order:
e.f€Es. e< fifef =fe=e Anidempotent ¢ € Es is called primative if it
1s nonzero and is minimal in the set of nonzero idempotents. A semigroup S with
zero is 0-simple if {0} and S are the only ideals of S. S is called completely [0-]

7



stmple if it is [0-] simple and contains a nonzero primitive idempotent. The factors
J(a)/I(a). a € S are called the principal factors of S. Each principal factor of S
is either O-simple. simple. or null i.e. the product of any two element is zero [3.
Lemma 2.39]. If every principal factor of S is O-simple or simple. we say that $ is
semistmple.

A [relative] ideal series S = S5; D 52 D ... D Sm D Sm+1 = o that has no proper
refinement is called a principal [composition] series. If S has a principal series as
above, then the factors of this series are isomorphic in some order to the principal
factors of S [5. Theorem 2.40].

A semigroup S is called regular if for every a € S there is a b € S such that
a = aba. S is an inverse semigroup if for every a € S there is a unique a* € S such
that aa*a = a and a*aa®* = a*.

Let G be a group. I and J be arbitrary nonempty sets and G° = G U {0} be the
group with zero arising from G by adjunction of a zero element. An I x .J matrix A
over G° that has at most one nonzero entry a = A(i.j) is called a Rees I x .J matriz
over G° and is denoted by (a);;. Let P be a J x I matrix over G. S = G x I x.J with
the composition (a.1.j)o(b.l.k) = (aPjb.i. k) . (a.i.j),(b.l.k) € S is a semigroup
that we denote by M (G, P) (18, page 68]. Similarly if P is a J x I matrix over GO°.
then § = G x I x JU {0} is a semigroup under the following composition operation:

(aPjb.i.k) if Py #0
0 if Pi=0

(a.i.3)00=00(a.i.j) =000=0.

(a,z,7) o (b1, k) = {

8



This semigroup which is denoted by .M%(G. P) also can be described in the following
way: The set of all Rees I x J matrices over G form a semigroup under the binary
operation Ao B = APB, which is called the Rees I x J matriz semigroup over G°
with the sandwich matriz P and is isomorphic to M%(G. P) [18. pages 61-63]. An
I x .J matrix P over G° is called regular [invertibl e] if every row and every column
of P contains at least [exactly] one nonzero entry.

For f € £°°(S) the left and right translations of f by s € S will be denoted by
fs and sf respectively. S is called amenable if there exists m € (><(S)* such that
m > 0. m(ls) =1 and m(zf) = m(f) = m(fz). foreverv r € S. f € £=(S5). As
usual semigroup algebra of S is £'(S) with the convolution product:

(f*g)(z) =) flu)g(r). f.gel(S). zeSs.
If S has a zero. then we call the algebra ¢!(S)/(}(0) the contracted semigroup algebra

of S. where (}(0) = €1({0}).



Chapter 3

¢:-Munn algebras, their amenability and

semisimplicity

3.1. Introduction

In this chapter we introduce the ¢!-Munn algebras and compare them with the
algebras K(JH) and the /'-algebra that was defined in [37, page 710]. These will
be done in section 3.2. The rest of section 3.2 is devoted to investigating some of
the basic structural properties of £!- Munn algebras. Amenability and simplicity of

these algebras will be studied in sections 3.3 and 3.4 respectively.

3.2. {1-Munn algebras, definition and basic

properties

Definition 3.2.1. Let A be a unital Banach algebra, I and J be arbitrary index
sets and P be a J x I nonzero matrix over A such that sup{||P;,|| : i€ I.j ¢

10



J} < 1. Let LM(A.P) be the vector space of all ] x J matrices 4 over 4 such
that Z{EGIJ fl4:;1] < oc. Then it is easy to check that £LM(A. P) with the product
AoB = APB. A.B € LM(A.P) and the ¢!-norm is a Banach algebra that we
call it €!-Munn I x J matriz algebra over A with sandwich matriz P or briefly /!-

Munn algebra. When I = J and P is the identity J x J matrix over A. we denote

LM(A.P) by LM ;(A). In addition we denote LM ;(C) simply by £.M ;.

Convention. (i) From now on we use A for an arbitrary unital Banach algebra.

I and J for index sets and P for the sandwich matrix exclusively.

(i) Throughout {z;; : 1 € I. j € J} is the standard matrix unit system of the

matrix algebra under discussion.

(ii1) As we will see in the applications. nonzero entries of P are invertible. Also
P has no zero row or column i.e. P is regular. So from now on we assume P satisfies

these conditions unless stated otherwise.

(iv) If we assume 1 < ||P||o < 2. then ¢!-norm is not an algebra norm but
still is a complete norm. So by [31, Proposition 1.1.9] LM (A. P) with a norm
equivalent to ¢!-norm. is a Banach algebra. Obviously duals of LM(A.P) in both
norms are the same. So in this case for simplicity we don't refer to the equivalent

norm explicity.

The following Lemma in a sense is a generalization of the Lemma 4. page 231 (3]
which can be proved with a similar argument. The Lemma 3.2.3 is well known for
the case that J is finite, see [33, page 4]. The general case can be proved with the

11



same technique and using Lemma 3.2.2. We will present the proofs of these two
Lemmas in the appendix.

Lemma 3.2.2. Every u € LM ;Z A has a unique expression in the form u =
> ijes i € aij.

Lemma 3.2.3. LM ;(A) is isometrically algebra isomorphic to LM ; = A.

Let H be a separable Hilbert space with an orthonormal basis {en : n € N}
Using Tanbays’s notation [37. page 710], let A be a N x N matrix with complex
entries for which there is a m € R¥ such that 3, .\ |4i;| < m for all j € N and
Z]e:‘: [Ai;] < mforall i € N. Let Mg be the collection of all such matrices. Then
My is a self adjoint subalgebra of B(J). Define the norm [||.||| on .M by

il =int {m + 3Ly < m S byl ).
iEN jEN
Then for every 4 € Mg we have ||A|| < [||4{||. where ||.|| is the operator norm [37.
page 710]. Let M = m“'". With these notations we have:

Proposition 3.2.4. (i) LMy is a proper ideal in .M and for every T.U €
Mo. A€ LMy we have: [TAU| < |||TI| |4l T

(i) LMx G TM= " = x(30) S M.

Proof.(i) Let A € LMx, T.U € Mq. Then it is easy to check that I1TAl <
NITHI I All: and [[AU|); < |41 |||U]}]. Combination of these two relations with the
fact that identity matrix is in M \ LMy, proves the first part.

(i1) Let T € LMN. There is a sequence T, of matrices, each with a finite number

of nonzero entries such that T, ll—'—") T. Now by part (i) and the fact preceding the

12



Proposition. |[.|| < |||.{|| € |-l which implies that T, I T and since T, € X(H).

then T € X(H). Also the diagonal matrix diag(1/n) is in K(H)\ £.M:; which shows
the first inclusion is proper. On the other hand every finite rank operator is the
(operator norm) limit of matrices with a finite number of nonzero entries. So the
middle equality holds.

The last inclusion was shown by Tanbay [37. page710].///

Lemma 3.2.5. Suppose [ and J are finite and V [W] is an invertible J x J [I x I
matrix over A. Let B = LM(A,P)andC = LM(A.VP) [C = LM(A. PW)]. Then
B and C are topologically algebra isomorphic.

Proof. Define the map 0 : B — C by o(A) = AV™! [o(4) = W~14] It is

easy to check that o is an onto algebra isomorphism. Let 4 € B. Then.

oA < 37 ST AV < 14NV,

i€l.jeJkeJ

So by the open mapping theorem o is a topological algebra isomorphism.///
Lemma 3.2.6. Let I and J be finite of orders m and n respectively. Then there

is an invertible n x n matrix V over A. an invertible m x m matrix 1} over A. a

natural number k. & < min(m.n). and a (n — k) x (m — k) matrix E over A such

that

(I O
erw= |1 9]
Proof. It is easy to show that each of the following linear algebraic operations is
equivalent to multiplying P on the left [right] by an (invertible) elementary matrix:

(1) Multiplying a row [column] of P by an invertible element a of A.

13



(ii) Adding a row [column] of P to another row [column]| of P.

(iii) Interchanging two rows [columns] of P.

Since every nonzero a € A can be written as a = 2”0”((1'Ila—all ~—1)+ 1) whichisa
difference of two invertible elements, then we can combine parts (i) and (ii) to get:

(iv) Adding a nonzero multiple of one row [column] of P to another row {column].

Now we can do a finite sequence of the above operations to get:
o 2]
0 E

which is the result of multiplying P on the left and right by appropriate invertible
matrices V" and ¥ respectively.///

Lemma 3.2.7. The following conditions are equivalent:
(1) LM(A. P) has an identity,
(i1) LM(A. P) has a bounded approximate identity.
(ii1) I and J are finite and LM (A. P) has a left and a right approximate identity.
(iv) I and J are finite and P is invertible.

Proof. (ii)==(iii) We need only to show that the index sets are finite. Let

{E”: 4 €T} be a bounded approximate identity for £LM(A.P). E* = [C:'J] and

|IEY|| < M for all ¥ € I'. Then for given k € I, | € J we have:

0=Lm[lE” 0 ci = enl = Lm || 3 clieij 0 et — ewall = im | Y ¢ Pwsa — <
1,

J
= tim (215 e Pl + 15 e — 1)
J

ik

1.

14



So lim, || 3= ¢z Pjx — 1]l = 0. Let < > 0 be given and every k € I. -4 € T be such
that for every v > . 1 —z < Zj “CZJH Now if [ is infinite. choose N = N such
that (1 — ).V > M. then choose distinct kj...ky € I and ~ > max{~k,....Tky }-

We have:
N
M<1=aN <3 3 gl <D el <M
i=1 j iy

which is a contradiction. So I is finite. Similarly if we apply E” to the right. we
conclude that J must be finite.

(iii)==(iv) Suppose P is not invertible and {E”: v € '} be a left approximate
identity for LM (A, P). By Lemma 3.2.6 there are invertible matrices 1~ and 11", a

non invertible matrix E and a positive integer k such that:

Q=VPW = [I“ 0].

0 F

Assume n = |J| < |I| = m. By induction on m we can show that there is a nonzero
column matrix ¥ in A™ such that QY = 0 and hence there is a nonzero column
matrix X in A™ such that PX = 0. Now if B € LM(A. P) is the matrix that all
of its columns are equal to X. then B = lim E,PB = 0 which is a contradiction.
So P must be invertible. If n > m, by using a right approximate identity and a
similar argument we conclude that P must be invertible.

(iv)J=>(i) By Lemma 3.2.5, LM(A, P) = LM ;(A) and since LM J(A) is unital.

then so is LM(A,P).///



3.3. Amenability of the /1 -Munn algebras

Theorem 3.3.1. The following conditions are equivalent:
(1) LM(A. P) is amenable.
(i1) A is amenable. I andJ are finite and P is invertible.

Proof. (i)==>(ii) Since LM(A. P) has a bounded approximate identity. then by
Lemma 3.2.7, I and J are finite and P is invertible. So by using Lemma 3.2.5 and
then Lemma 3.2.3 we conclude that L.M(A. P) is topologically algebra isomorphic

to Mm Z A where m = |I| = [J]. Since M,, £ A is amenable. then it has an

approximate diagonal which by Lemma 3.2.2 can be represented in the form:

k=1 1.j=1 ri=1

Let Y 7 _ st STy € MnS A. Then.

m

Z Est B Iy —hm 7 (Z ( Z R a,‘-‘f) z ( Z SR b;‘.',")) (i et T r,,)
1 s

s.t=1 i, =1 ri=1

¢ m
: § : - krak
= h Z ( Eit 3 GZ- b?l l'[g)

k=1 “ijlt=1

Eit & hgnf: Z af;"b;-’,"r“).

1 k=1 jl=1

8

s -

~
I

t,
Therefore we have:

D ea® (z,, - hmz Z aZFost 1‘1:) =0. (1)

1,t=1 =1 j.i=1
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On the other hand.

k=1 1.)=1 r.i=1 s.t=1
m oc m m
- - ak - ak
—( E Cstgrst) E ( E &y 20,]‘)8( E ;,-12br,>
s.t=1 k=1 1,7=1 rl
oc m m
= k - = k - - -
= lim ( E gj3ay 8ere B by T — E g4 TTaay; T Th )
a
k=1 “ugrlia=1 s.t.g.r.il=1

Let v be the onto linear isometry:

v (MmB AEMnB A) — (M3 Mp)EA T A

v((cezr)8(d2y))=(cz2d)=(r3y). ccde€ M. 1.y € A

If we apply v to the above identity. we get:

x m m
- - k ~ k P ak - k
0=11£I1 E ( E Cij?.:;rtzag ba[ TIie — E Si3 < Ere IalJ bo )
k=1 “ij.rlt=1 t.y.rd.t=1
m x m
- Lo R T k E L - k
= E ((Cx] - Crt) < hCI'Il E E (a?] L b Ilt - Illa[] bo )>
t..r.t=1 k=1 l=1
So for every i.j.r.t < m we have:
x m
c{n (alJ ’ l I“ laI] ) (-)
k=1 l=1

Suppose r € A. ;3 =randz;;, =0if i # 1 or t # 1. By the relation (1) we have:

r—hénZZa Fr =1 cflnr' ZZ k“‘b I. (3)

k=1 j=1 k=1 j=1

Suppose j = r and i =t = 1. Under the assumptions preceding relation (3). we

conclude from the relation (2) that:
hmZ(a IJ.‘—J:a1]®b F)=0.
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Taking sum over j. we get:
x< m x m
im | (LS arsnt)o-s(L S atfzst) =0 w
k=1 j=1 k=1 j=1
Relations (3) and (4) together with the boundedness of the given approximate

diagonal of M,, £ A imply that:

iiai’f@bﬁk rael

i1s an approximate diagonal for A. Therefore A is amenable.

(i1)==(i) As in the previous part LM (A. P) is topologically algebra isomorphic
to M, = Afor some m € N. So by [21. Proposition 5.4] L.M(A. P) is amenable.///

Remark 3.3.2. In the proof of the above Theorem we constructed an approx-
imate diagonal for A from an approximate diagonal for .M,, = A which is the
converse of [21. Proposition 5.4] for this particular algebra. This is the only partial
converse for that result. known to the author. Besides this constructive method can
be used to provide an alternate proof for [21. Proposition 3.4] without involvement

of derivations and their extensions. This will be presented in the appendix.

3.4. Semisimplicity of the /1-Munn algebras

Theorem 3.4.1. The following conditions are equivalent:
(1) I and J are finite and LM(A, P) is semisimple,
(i1) A is semisimple and LM(A, P) has a bounded approximate identity.
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Proof.(i) ==(ii) First we show that semisimplicity of £.M(A. P) implies that P
is invertible. Suppose P is not invertible. Then as in the proof of (iii) = (iv)
of Lemma 3.2.7. there is a nonzero matrix B in LM(A.P) such that PB = 0
or BP = 0. So B € Rad(LM(A.P)) which is a contradiction. Therefore P is
invertible and by Lemma 3.2.7. LM(A, P) has a bounded approximate identity.
Now let |I| = m and o be the topological algebra isomorphism from £.M(A. P)

onto M, (A). as in Lemma 3.2.5. By [31, Proposition 4.3.12].

M (Rad(A)) = Rad (M, (A)) = o (Rad (LM(A. P))) = 0.

Therefore A is semisimple.
(i1)==(1) By Lemma 3.2.7 and Lemma 3.2.5 we need only to show that .M, (A4)
is semisimple which can be done similarly to the previous part. by applying [31.

Proposition 4.3.12].///
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Chapter 4

Duality of /1 -Munn algebras

4.1. Introduction

In this Chapter we study the duals of the ¢!-Munn algebras and characterize their
topological center. These will be done in the sections 4.2 and 4.3. In the section
1.4 we consider involutive ¢!-Munn algebras. their positive linear functionals and
representations.

Let X be an arbitrary Banach space. It is well known that ¢!(J. X )" is isomet-
rically isomorphic to (I, X*). In particular LM(A. P)* = (=<(] x J. A*). Note
that if I is a finite index set. then ¢}(I.X) = X! = r>=(]J, .X') as vector spaces
and equivalence of the two norms in this case implies that these two are topolog-
ically isomorphic. So in this case all of the Banach spaces {>(I. X)*. (>(I.X").
£'(1.X)" and €*(I,X*) are topologically isomorphic. Besides these facts. we can
embed ¢°(I, X*) into B (¢!(I,X),¢'(I)). This can be done simply by defining an

20



injective contraction.

0: (*(I.X") — B(E(L.X).0°I)) . o(F)((av)ier) = (F(i)(a)) -

4.2. First and second duals of ¢1-Munn algebras

Convention. If F € ¢*(I x J,A*), then we denote F(i.j) by F;;. Also by
fey, € (I x J.A*) we mean an I x J matrix over 4* that has f as its (i.j)th
entry and O elsewhere. From now on by v we mean the map v : LM(A. P)* —
(I x J. A*) . <U(F)(i.j) : a> = <F. a;-,,>. We will denote ¢(F) by £. We will
use similar notations for £>=(/ x J..A**) and its elements. Also when I and .J are

finite we will use the same notations to identify the two Banach spaces £.M(A. P)**

and LM (A*". P).

use the invertiblity of nonzero entries of P. So we can drop this condition in those
results. Indeed we will need this case in one of the steps in the proof of Theorem
4.3.2 (i).

Lemma 4.2.2. If the index sets are finite. then LM(A. P)** is topologically al-
gebra isomorphic to LM (A**, P), when both of A** and LM(A. P)** are equipped
with the first [second| Arens product.

Proof. Using the facts that were mentioned at the beginning of this section. we
need only to show that the linear isomorphism v : LM(A. P)** — LM (A**.P)
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is multiplicative. Throughout we will use the fact that restriction of Arens product
of A** to A agrees with the multiplication of 4. Let 4. X € LM(A.P). F <
LM(A.P)* and M. N € LM(A.P)**. Then.

(75

(Fod); . X,-,—> = <F. .40)(.—,-5,-,) =y <F. .~1k,P1,X,~,sk]>

-~

So

Applying this relation to M o F, we get:

<(.\7§?“),-,- : .4,-,> = <M . Fo (.4.-,;—,-,)) =y <17 . E,o (.4,,P,,)>

<.—1,-]— onr . ﬂr, Of{s> <ZP]rO \'Is OF:s) . t]>

So

(-m)ij = ZPjr © (-Tirs o fis)-
Now

((Fe30)y . Fy) = (N Mo(Fyey)) = 3 (Fu . Puo (3L, o F,))
r.d
= <Z.‘ il © (PI,-O.’M,-J') . f,‘j>.
r.l

Thus

(.'m),'j = Z .&'7,'1 o(Pio H,-j). (1)

rl
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Similarly for the second Arens product we can prove the following identities:

—~—

(A-F)i; =Y (PyAu).Fi
k.l
(FM)i; =Y (Fry.My,).Py,
(N M)ij =Y (Na.Pr). M. (2)
r.d

Therefore v(.V o M) = w(XV) o w(M) and w(N. M) = ©(N).v(M).///

Corollary 4.2.3. Suppose the index sets are finite. Then LM (A. P) is an ideal
in LM(A.P)** if and only if A is an ideal in 4**.

Proof. 1t is easy to check that v(LM(A. P)) = LM(A. P).

Suppose A is an ideal in A**. Let A € LM(A.P) and M € LM(A. P)*". By

Lemma +.2.2 and relation (1) in its proof we get:

(Ao M)y =S (AuPy)oM,; € AforallicI. jeJ

rd

Thus .—To\./l[ € LM(A.P). Similarly 4\71-?371 € LM(A.P). Therefore LM(A. P) is
an ideal in LM(A. P)**.

Conversely suppose LM(A, P) is an ideal in LM(A.P)** and fix i € [. j € .J
such that P;; #0. Let m € A*" anda € A. Let M = v~!(me;;) and A = PJ?las,J.
By relation (1) in the proof of Lemma 4.2.2 (_.M/\oji),-j = moa. Now by assumption
Mo A€ LM(A,P) and hence Moa € LM(A, P). Therefore moa € A.///

Definition 4.2.4. We will call the following relations mized associativity rela-
tions. They can be proved easily just by using the definition of Arens product.

For every a,z € A, f € A* and m € 4**.
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(for).a = fo(za) ao(r.fy=(az).f (r.floca=r.(foa)
(aam)o f=a(mof) f(moa)=(fm)oa

(moa).r =mo(ar) ao(z.m)=(az).m.

Lemma 4.2.5. Suppose the index sets are finite and let § : LM (A4**.Q) —
LM (A", P) be the topological algebra isomorphism that was defined in Lemma
3.2.5. Then the restriction of § to L.M(.A. P) which we will denote by 6§ again. maps

LM(A,Q) onto LM(A, P) and makes the following diagram commutative:

LM(A Q)™ - LM(A. P)

LM(A™.Q) —2> LM (A" P).
Proof. The first statement of the Lemma follows from the argument of Lemma 3.2.5.
Let A : LM(A.Q) = LM(A™.Q)and p : LM (A™*.Q) — LM (A".Q)"" be the
natural embeddings. It is easy to check that the following diagram is commutative

Le. A*™™ = uv

LM(A.Q)*

b

LM(A™,Q) — = LM (A**.Q)™.
Let M € LM(A, Q) and f € A*. Whenever necessary. we will assume fa €

(I xJ A*") = LM (A**. P)". By using the above commutative diagram we get:

(@O () . £) = (M, 6 (fei)) = (A1) . 8 (fe.)

<0'(fs.-,-) . w(M)) - <(9u(M)),, . f>.

Therefore w6** = 6 as required.///



4.3. Topological center of the second dual of

¢1-Munn algebras

Proposition 4.3.1. If the index sets I and J are finite. then
LM(Z(A*),P) Cv(Z(LM(A.P)*")).

In particular if Z(LM(A, P)**) = LM(A, P). then Z(A™) = A.

Proof. Let M € LM (Z2(A®"),P) and M = v~} (M) € LM(A.P)*. As AC
Z(A™*). by relation (1) in the proof of Lemma 4.2.2 for every \V € L.M(A. P)* we
have:

(Mo N); Z Mo (ProNy) =Y Mu(P,.N,;) = (A[N),
r.l

So M o N = M.N and hence M ¢ v(Z(LM(A.P)**)). The second statement
follows from the first part and the fact that ©v(LM(A. P)) = LM (A. P).///

Now we prove the main result of this section which explains the relation between
the topological center of the second dual of the ¢!-Munn algebras and some other
finiteness conditions. in particular existence of bounded approximate identities in
the ¢!-Munn algebras. Throughout the proof we will use the following fact without
any specific reference: If § : B — C is a topological algebra isomorphism between
two arbitrary Banach algebras B and C, then 6** (Z(B**)) = Z(C**).

Theorem 4.3.2. (i) LM(A, P) has a bounded approximate identity if and only
if the index sets are finite and ¥(Z (CM(A, P)**)) = LM (Z(A**). P).
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(ii) Suppose A admits a nonzero multiplicative linear functional. Then L.\ (A. P)

is Arens regular ie. Z(LM(A.P)**) = LM(A.P)** if and only if one of the

following conditions hold:
(a) A is Arens regular and both of the index sets are finite.
(b) A is finite dimensional and one of the index sets is finite.

Proof. (i)(=) Suppose LM(A, P) has a bounded approximate identity. By
Lemma 3.2.7. I and J are finite and P is invertible. Assume 8 : LM (A**.P) —
LM ;(A"") is the topological algebra isomorphism that was constructed in Lemma

3.2.5. By Proposition 4.3.1,

LM(Z(A™).P) Cu(Z(LM(A.P)™™)).

Let M € Z(LMj(A)**). n€ A and i.j € J. Let N = nz,, and N = v~1( V).

Then by relations (1) and (2) in the proof of Lemma 4.2.2 we have:

P g

Mijon=(MoN);=(MN)y=M;.n.
So v(M) € LM ;(Z(A**)) and for this special case the equality £.M ;(Z(A**))
= v(Z(LM ;(A)**)) holds.
For rest of this part we follow the terminology of Lemma 4.2.5. The equality
6" (Z(LMj(A)**)) = Z(LM(A, P)**) implies that if we restrict the maps v and

6°* to the Z(LM ;(A)**) in the commutative diagram of Lemma 4.2.5. we will get
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the following commutative diagram:

Z(LM(A)) LS Z(LM(A P)*)

LM 5(A™) S ~LM(A.P).

So we have:

w(Z(LM(A P)™)) = 6u(8" )" (Z(LM(A. P)™)) = fu(Z(LM 1(A)*))

= (LM (Z(A™))) = LM (Z(A™).P).

(<) Suppose I and J are finite and w(Z(LM(A.P)**)) = LM (Z(A*"). P).
By Lemma 3.2.7. it is enough to show that P is invertible. We will do this by
induction on k& = max{|I|.|J|}. If & = 1. trivially P is invertible. So we assume

k > 1. If P is not invertible. then by Lemma 3.2.6. there is a r < k such that P is

I. 0
0 FE

isa M € Z(LM(A.E)*) such that v(M) ¢ LM(Z(A").E). So M, ¢ Z(A™)

equivalent to Q = [ J and E is non invertible. By induction assumption there

for some: € I. j € J. Thus

E | e emza.o) (1)

On the other hand M € Z(LM (A, E)**) together with relations (1) and (2) in the
proof of Lemma 4.2.2 imply that for every N € LM(A, E )** we have: MoEoN =
M.E.N where these products are ordinary matrix products when A** is equipped
with the first and the second Arens products respectively. By applyving this identity

for the special case that NV has only one nonzero column. we conclude that it is true
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for every finite matrix .V of appropriate size on A** that the above matrix product

is defined. So for every [‘1,1 }-,QJ € LM(A**.Q).
NV,

1 0 —-Q.' fo) i1 ‘/S.;l &2 = w—l [ — 0 ~ _— 0 ~
¢ 0o M|/)°¥ N N T | MoEoXN; MoEoXN,

Thus

0 0 .
[0 MJGw(Z(LZM(A,Q) ).

Comparing this with relation (1). we conclude that

LM(Z(A™).Q) # v(Z(LM(A.Q)™)). (:

o
~

On the other hand by using the commutative diagram of Lemma 4.2.5 and our

assumption we get:

V(Z(LM(A.Q)™")) = 07 v (Z(LM(A,Q)*")) = 67 ' L(Z(LM(A. P)™))

=67 (LM (Z(A™),P)) = LM(Z(A**). Q).

which contradicts (2). Therefore P is invertible.

(ii)(<=) Suppose LM(A, P) is Arens regular. First assume both of I and J are
infinite and choose countable infinite subsets {i,} and {j } from them respectively.
Choose k € J, | € I such that P # 0 and let V be a closed subspace of A such

that A=V & <Pkl>. Suppose h € A* is such that h(Py)=1and h=0on 1.
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Define F : I x J — A" by f',-njm =hifn > mand Z::,', = 0 otherwise. Let

Xn=¢i k. Ym=2, € LM(A.P), m.n € N. Then

(L)

(F. Xao¥m) =3 (F;. (Xa 0 ¥mis) = (Fuusm - Pu).

‘-J

So limy, lim,, <F . X0 Y,,,) = h(Py) = 1 and lim,, lim,, <F . Xno Y,,,> = 0 which
contradicts Arens regularity of LM(A, P) by {31. Theorem 1.4.11]. Therefore at

least one of the I and J must be finite.
If dim A < oc. we have condition (b). If A is infinite dimensional. then we will

show that the other index set is finite too.

We may assume that .J is finite but [ is infinite. By regularity of P there
is at least one row of P that has infinitely many nonzero entries. say row k. Let
{tn : n € N} C Ibesuchthat Py, #0, n € N. Choose a sequence {a,, : m € N} in

Asuch that {an : m € N}U{1} is linearly independent and |lam|| = 1. Then by [34.

Theorem 10.7] for every m € N, b, = 1 —ay, is invertible and ||b7}|| < 18—3. Moreover
{bm : m € N} is linearly independent. For every n > 1 let V,, = <b1. ....b,,_.1> and

W, be a closed subspace of A such that 4 = V;, = W,. Then V] € 13 G ... and

=
W20, 2 ...

Now let h be a nonzero multiplicative linear functional on 4. X, = &;

tn

x and
Yoo = (Prin) "omerk € LM(A,P). nmeN.

Define the map F : I xJ —+ A* in the following way: For every n > 1. fi"k =h
on V, and fi,,k =0on W, and F',-j = 0 otherwise. Then F(X,0Y},) = F(bmei k) =
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f,' k(bm). So lim, lim, F(X, o Y;n) = 0 but since h is multiplicative we have:

1
|imlim F(X, o Yp,)| = lim |h(b;,)| = lim —
m n m m 'h(bml)l

3

Again by [31. Theorem 1.4.11] this contradicts Arens regularity of LM(A. P). So I
is also finite. Now we need only to show that A is Arens regular. Let i € I. j € .J
be such that P;; # 0. Suppose m,n € A**, M= me,; and N = (no(P))™)e,,.
Arens regularity of LM(A. P) implies that NoM = NM. So by using relations

(1) and (2) in the proof of Lemma 4.2.2 and mixed associativity identities we get:
nom = (No M) = (N M), =nm.
(=) Suppose condition (a) holds. By Proposition 4.3.1.
LM(A.P) = LM (A, P)) = v (LM (Z(A™). P)) C Z(LM(A. P)*)

So in this case L.M(A. P) is Arens regular.

Now suppose condition (b) holds. We may assume that .J is finite. Let {X™" :
n € N} and {Y™ : m € N} be sequences in LM(A. P). bounded by M ¢ R+
and F € LM(A. P)" be such that both of the limits lim, lim,, F(X™ o Y™) and
limg, lim, F(X" o Y™) exist.

Define the sequence {gm : m € N} of functions on N x J x J by gm(n.j, k) =
dier f’,-,- (X,’}: doter PL-IYI?). Since {gm : m € N} is a uniformly bounded se-
quence of complex functions (with the uniform bound ||F||M?) on a countable set.
then it has a point wise convergent subsequence, say {gm. : r € N}.
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With a similar discussion we can find a sequence {ns} in N such that
{lim, Zie[ f,j (X:}c‘ Zlel PHYI;-"') : s € N} is convergent for every ;. k € .J.
So:

ll'Ilnh”I}lF(Xn o™ hmhm Z ZRJ (X:; ZPHY m,.)

J.keJ el lerl
= Y limlim ) F; (X,k ZP“Y’"'>.
nkeJ el lel

Now by doing the same process on the lim, lim, F(X,,, 0Y;,.) and denoting the new

subsequences by {X": n &€ N}and {Y™: m € N} again. we will get:

limlim F(X" o ¥™) = ) limlim V F <XZZ > PM",;-")

J.keJ el

lmlim FOX" 0 ¥™) = ) limlim ), (X&ZPHY;T) |

1.keJ €] el
Suppose {f:} be a (finite) basis for A* and 1":,']' =Y. inalfi. 1€l e
Since A is finite dimensional. like the previous step we can pass to subsequences
iteratively and rename the subsequences by {X": ne&N}and {Y™: me N}

again. to get:

limlim F(X"oY™) = 3~ 3" limlim f, (ZQ,JX > PuY >

k€T t el ler (4)
imlimF(X"oY™)= 3 3 limlim f, (Za,,x > Puym )
mor jkET 1 el 1€l

Now fix j. k.t and define:

E t
el ler
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Then by Arens regularity of A (as it is finite dimensional). we have:

limlim f, (Z al, X3 )~ PHY,;"> = limlim fi(anbm) = imlim fi(anbm)

i€l lel
= limlim f, (Z al i Xh Z P“Y,;"> .

€l ler

So the right hands of the relations (4) are equal and hence by [31. Theorem 1.4.11]

LM(A.P) is Arens regular.///

4.4. Involutive /1 -Munn algebras, positive

functionals and representations

Throughout this section we assume A is a unital involutive Banach algebra and P
is J x J. Definea map * : LM(A.P) — LM(A.P) by [a;,]" = [a};}. Throughout
by A}, we mean (4;;)*

Lemma 4.4.1. The above map * is an isometric involution on LM(A. P) if and
only if P is self adjoint in the sense that P;=P,. 1.5¢eJ.

Proof. Suppose * is an isometric involution. Let 4 = g,j and B = z.,. Since
(Ao B)* = B*0 A", then PJ-‘,..»:,i = Prje,i which implies Pj‘, = P,;. Therefore P is
self adjoint.

Conversely suppose P is self adjoint. We need only to check that for everv
A,B € LM(A,P), (Ao B)* = (B* 0 A*) as the other properties of involution follow
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from those of A.

(4 B) )y = (40 B)j, = (Y AuPuBu)" =Y BjPudl
k.1 k.l

= D (B")aPu(A% )y = (B 0 A7),
k.l

So (Ao B)* =(B*0A*).///

Convention. For the rest of this section we assume P is self adjoint. Moreover
since involutive Banach algebras with bounded approximate identities are of special
interest. except in Lemma 4.4.4 and Proposition 4.4.5. we assume £.\M(A. P) has
a bounded approximate identity. Consequently .J is finite. £.M(A. P) is unital
(Lemma 3.2.7) and P € LM(A. P). For simplicity. for every X € (2(.]). J € .J we

denote X(j) by X,.
Lemma 4.4.2. (i) If X € LM(A. P) is positive. then X,; >0foralli.je.J.
(i) If LM(A.P)is a C*-algebra. then |P;|| =1. i€ J.

Proof.(i) Recall that D(A,1) and V(A. z) denote the set of normalized states on
A annd numerical range of r respectively. Since LM(A, P)* = £>(J x J. A*), then

for every i.7 € J

D(A.l)eij = {fe; € A" = ||fl =1. f(1) =1} C D(LM(A.P).1).
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So
V(A.Xi;) ={f(Xy;) : f€D(A.1)}
= {(fei; (X) : feij € D(A. 1)ey,}
C {F(X) : Fe D(LM(A. P).1)}

= V(LM(A.P).X) CR*.

(i) Let j € J and A = ¢j;. Then ||Pj;|| = |[Ao A*|| = |42 =1.///

Naturality of involution. The involution that we defined on the /!-Munn
algebras coincides with the natural involution not only in the case of .\, but also
in the concrete case of the contracted semigroup algebra of completely O-simple
semigroups as we will see in the section 5.6.

Remark 4.4.3. Let V be an invertible J xJ matrixon Aand o : £LM(A.P) —
LM(A.VP), A~ AV™! be the topological isomorphism as in the Lemma 3.2.3.
© is not a x—homomorphism unless A*V'~! = (1"~1)* 4* which is not true in general.
Suppose this condition holds. Even if we assume A = C and [.Ji = m < =. then
V™l = (V~1)*. So V~! commutes with every A € M, and hence by Shur's Lemma
it is a scalar multiple of identity. Therefore o is just a scalar multiple of the identity
map.

Lemma 4.4.4. Let F € LM(A,P)*. If F > 0, then for everya.be A. i.j,k.l e

J we have:

~ —~—

(1) Fij(a) = Fji(a*).
(ii) I:'"g,-(anja‘) 2 0 and if P has a nonzero positive diagonal entry. then f,-, > 0.
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(iii) |Fx,(b* Pua)l* < Fjj(a®Pia)Fra(b* Pyb). In particular if all diagonal entries of

P are zero. then there is no nonzero positive functional on £.M(A. P).

Conversely if F satisfies (i) and (ii). then F(A o A*) € R for every 4 € LM(A.P).
Proof. (i) Let r € .J be such that P;, # 0. A = agi; and B = P'z,,. Since

F > 0. then F(A* o B) = F(B* 0 A). So

Fji(a*) = F(a*z;;)=F(A*"0oB)=F(B 0 A) = F(az,;) = F;(a).

(i1) Let 4 = ag;;. Then

-~

Fi,-(anja') = F(aP]'J‘(l‘S,',') =F(AdoA") >0.

Now suppose P;; > 0. By [3. Lemma 7 page 207] P;; has a positive square root
u € A. Since u(uP]-—J-l) =1= (P;lu)u. then u has a two sided inverse. Let
¢ = au~!. Then cP;;c* = aa*. So F,,-(aa‘) = fii(chjc‘) > 0ie. F, >0

(iii) Let 4 = as;; and B = beyx. Then

lf’kj(b‘Pua)F = |F(b* Piiacx;)|* = |F(B* o 4)
< F(A" 0 A)F(B” o B) = F(a*Pi;ac;;)F(b* Pybs i)

fjj(a'Pgia)Fkk(b‘Pub).

So the inequality in part (iii) holds. Now suppose all diagonal entries of P are zero

and 7.l € J are such that P;; #0. Let k,j € J. b€ A and a =P,x_1. Then

|Fij(b)[? = Fij(bPya)l®> < Fjj(a® Piia) Eer (b° Pub) = 0.
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Therefore F = (.

Conversely assume F satisfies (i) and (ii). Then for every 4 € £.M(A. P).

F(Ao A%) Z Z Fij(Aic Pudj) = Z (A PrrAj)
.7 k.1 t kU

+> D F(AuwPuds) + 3. S Fi(AuPuy)
1<j k.l 1>7 k.

= Z (Z Fii(AuPre Ay Z (Aix Pt AD) + Z Fii(Au Py A; ))
k< k>1
+ZZF'J(4'kPklAJI ZZ (Aik PriA})

= Z R,’(A,‘kPkkA k) + Z Z 2R (Rx(AtkPkl ’1,[)

Therefore F(4 0 A*) € R. by part (ii).///
Proposition 4.4.5. If FF € LM(A.P)* is positive. then [I?',](.-l o A%}l is a
positive operator on ¢?(J) for every A € LM(A. P). If J is finite. then this condition

is sufficient for F to be positive.

Proof. Suppose F > 0. X € ¢*(J) and 4 € LM(A. P). Then.

([Fiyae an,)X) , X) = Z<ZF., Ao ATy, . X,)
Z~1] (Z A.’ksz(:ljz)') X, X,
k.l
= ZI“:;J (Z(YiAik)Pkl(YjAjl)‘) . (1)

k.l
Let B be the J x J matrix on A defined by B;; = Y,-A,-j. Since

1Bl = - I%Aiill < 3 ll4s X = 41X < .
1,) t,)
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then B € LM(A. P). Now by relation (1).

<[F,J Ao A");]X . > ZR, (Z B;x Pri(Bji) )

_—_ZR]-(BOB‘),»]» = F(BoB*)>0.

ij
Therefore [f,'j(.-l o A");;] is a positive operator on ¢2(J).

Conversely suppose J is finite and [f':,-j(A o A*);;] is a positive operator for every

1
A€ LM(A.P). Let X = { :' . Then
1
F(Ao 4% ZF,,(AO 4% <[1? (Ao A"),]X . \:> > 0.

Therefore F > 0.///

Notation. Let (7.}) be a x—representation of A on the Hilbert space K and
A € LM(A. P). The matrix [7(A;;)]ijes can be considered as a bounded operator
on H 7. the Hilbert space direct sum of J copies of H . From now on we denote
[7(Ai;)]i.jes simply by m(A). If moreover P as an element of £.M ;(A) is positive,
then by (3. Lemma 7 page 207] P has a positive square root I” € £.M ;(A). Since "
is ¢'-bounded, then L' € LM(A. P) as well. So we can relate the *—representations
of LM(A. P) and those of A by defining a map 7 : LM(A.P) — B(H) in the
following way: 7(A) = n(U)n(A)n(U). The following Proposition shows that this
is a x—representation. Throughout hé; € H’ denotes the vector that has h as its
Jth component and zero elsewhere.

Proposition 4.4.6. (i) 7 is a *—representation of LM (A. P) on H.
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(ii) (F.H7) is irreducible [resp. faithful, nondegenerate]| if and only if (7. K) is
irreducible [resp. faithful. nondegenerate].

(iii) If (7. X) is cyclic. then (7, H7) is cyclic.

Proof. (1) Since w is multiplicative, then for every 4. B € LM(A.P). =(AB) =

7(A)7(B). So
#(AoB) = F(AU?B) = T(U)r(A)m(U)n(U)7(B)=(L) = 7(A)F(B).
Also w(A*) = =(A)* implies that

7(AT) = 7(U)w(A)"n(U) = (n(U)m(A)=(L))*"

Il
2
e
~

Linearity of = is obvious. Therefore % is a x—representation.

(ii) suppose 7 is reducible and V is a non trivial invariant subspace of H 7/ under
T(LM(A.P)). Let j € J be such that T,;(V) # 0 where T, : H/ — His the
canonical projection. Let a € A and A = U'"!(as,;)U~!. Then by assumption for

every X € V.

(7(a)T;(X))é; = (7(a)e;; (X) = m(aegj; )(X) == (TUHae,;)U~I0) (X))

= (7(U)m(A)x (1)) (X) = F(A)(X) € V.

So m(a)T;(X) € T;(V) and hence T;(V) is invariant under 7(A) i.e. = is reducible.
Conversely suppose W is a nontrivial invariant subspace of H under m(A). Then

it is easy to see that W is invariant under F(LM(A. P)). So 7 is reducible.
Suppose 7 is nondegenerate. Let X € H 7 and j € J be such that X; # 0. Choose

a € A such that n(a)X; #0. f A = U~!(aej;)U!. then similar to the previous
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part one can check that 7(A4)(X) = 7(a)X;d; which is nonzero by assumption.
Therefore = is nondegenerate.
Conversely suppose 7 is nondegenerate and r € H. Choose A € LM(A.P) such

that ¥ = 7(A)(zd;) # 0. Let j € J be such that Y; #0and a = (UAL);;. Then

m(a)(z) = ((UAU))1(z) = (F(A)j1(z) = ¥, #0.

So = is nondegenerate.
The last equivalence is fairly easy to check.

(11) Suppose = is cyclic with cyclic vector £. Let X be the vector in K7 that all

of its components are £. Since <77(A)(§)> = XH. then < (=(A)(E)) 5,> = H4,. Bur

(7(A)(€)) di = (m(A)(za1 ) (X) = F (U7 (A ) U1 (X)

CT(LM(A.P))(X).

So

W = 256,908 = 25 ((=(ANE) §,) € (F(LM(A P)) (X)),

Therefore 7 is cyclic with cyclic vector X. /]
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Chapter 5

Applications to semigroup algebras

5.1. Introduction

In this chapter we apply the results of chapters 3 and 4 to the semigroup algebras.
We characterize the amenable semigroup algebras and semisimple ones in sections
5.2 and 5.3 respectively. Then in section 5.4 we prove a generalized version of
Young's Theorem for the semigroups. Most of the results of sections 3.2 and 5.3
are valid for certain weighted semigroups. But since the proofs are basically the
same. we state and prove the results for the nonweighted case. then we state the
weighted version. This is done in section 5.5. In the last section we consider
involutive semigroups and we show that the involution which we defined in section

4.4, naturally arises from the inverse semigroup algebras.
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5.2. Amenable semigroup algebras

Without any topological assumptions. for finite semigroups part (iii) of the fol-
lowing Lemma is due to Munn [30, 3.1].

Lemma 5.2.1. Let T be an ideal of S.
(i) €'(T) is isometrically algebra isomorphic to a closed complemented ideal of £!(S).
(1) If S has a zero element. then ¢!(S) is topologically algebra isomorphic to
€1(S)/€1(0) = ¢1(0).
(iii)€'(S)/¢(T) is isometrically algebra isomorphic to ¢1(S/T)/¢1(0).

Proof. (1) Straightforward.

(ii) Consider the following short exact sequence of ¢1(S) modules and module

homomorphisms:
0 — £1(0) = 64(S) =+ £(S5)/¢€1(0) —> 0

where i is the inclusion map and 7 is the canonical map. Define the map v :
£1(8) — €10) by v(f) = f*d. f € €S). For every f = Y .o f(s)d, .
h =3 ,csh(s)d, € ¢}(S) we have,
U(fxh)=f« (Zh(s)a, *50) =f=* (50* Zh(s)&,) = u(f) *h.
s€ES s€S
Similarly w(f *h) = f «¥(h). So ¥ is a bounded ¢'(S) module homomorphism and
since v is a left inverse for ¢, then the sequence splits. Now as in the argument of
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[19. Theorem IV.1.18] the map

o: €1(S) — (£1(S)/€1(0)) = €(0). o(f) = (v(f).7(f))

is an ¢!(S) module isomorphism. Moreover for every f.h € ¢}(S ) we have:

o(f = h) = ((f o) * (hxbo). f k) = o(f)o(h).

Thus o is a bounded algebra isomorphism and hence it is a topological algebra
isomorphism. by the open mapping theorem.
(iii) Define the map 6 : ¢!(S) — ¢*(S/T)/€*(0) by 8(f) = h + €!(0) where

ua={f“ oere
iof 5=0.

One can show that 6 is an onto algebra homomorphism with kernel /}(T). So the

map

€1(8)/€1(T) — €1(S/T)/€(0)
v(f +€(T)) = 6(f)

1s an algebra isomorphism. Since |[w(f + ¢1(T))|| = 18(H)I = ||f + £1(T)}). then v
is an isometrical algebra isomorphism.///

The following Lemma is more or less known [8, page 141]. The finiteness of index
sets is based on the observation that every nonzero entry (Pg);i of the sandwich
matrix P produces a nonzero idempotent (( P );-1 .2,7) in the k-th principal factor
and consequently in S. Also note that for regular semigroups there is no distinction
between principal and composition series. since regular semigroups are semisimple.
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Lemma 5.2.2. If S is a regular semigroup with Es finite. then S has a principal
series S =51 D S2 D ... 2 5Sn D Smi1 = 0. Moreover there are natural numbers
ng. lk. a group Gi. k = l....m. a regular [i x n; matrix Py on G9 such that
Sk/Sk+1 = M%Gr.P). k=1....m -1 and a I, x n, matrix P, on G,, such

that S = M(Gm. Pm).

Proposition 5.2.3. For a semigroup S. ¢!(S) is amenable if and only if S has
a principal series S = 5; D 52 D ... D S D Sm+1 = o and ¢}(T) is amenable for

every principal factor T of S.

Proof. Suppose ¢!(S) is amenable. [8. Theorem 2| and Lemma 5.2.2 imply that
S has a principal series S = 5, D 52 D ... D S;n D Sm+1 = 0. [21. Proposition 3.1].
and [6. Theorem 3.7] together with Lemma 5.2.1 imply that ¢1(Si4;/5¢)/¢}(0). k =
l....m1s amenable. Since the factors Sx/Si4+1. A = 1.....m are the principal factors

of § [5. Theorem 2.40]. then ¢!(T) is amenable for every principal factor T of S.

Conversely suppose S has a principal series S =51, D 5, 3 ... D S 3 Sma1 =0
and ¢!(T) is amenable for every principal factor T of S. By [5. Theorem 2.40] and

inductive application of Lemma 5.2.1 and [21. Proposition 3.1] one can conclude

that ¢!(S) is amenable.///

In order to provide a counter example to the conjecture of Duncan and Paterson

[8. Page 145]. we need the following Lemma.

Lemma 5.2.4. Suppose S is a semigroup which admits a principal series S =
51 285 D ... D> 8n DO Sm+1 = ¢ such that Sm is an inverse semigroup and
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every Rees factor semigroup Si/Sk+1. k = 1.....m — 1 is completely [0-]simple with

invertible sandwich matrix. Then S is an inverse semigroup.

Proof. First suppose T = M%(G, P) where P is invertible; In particular || = I.J|.
Let @ be the identity I x I matrix on G° i.e. Q;; = € and Qij = 0for i # .
[5. Corollary 3.12] with the identity map on G® as w. U’ = P and V" = Q implies

that M%(G. P) = M(G.Q). Now by [5. Theorem 3.9] T is an inverse semigroup.

By the previous part. Si/Sk+1 is an inverse semigroup. k = 1.....m. In the rest
of the proof we use the fact that if z.y € Si \ Sk41 are such that = §. then
r =y. Let r € Sk \ Siy1 for some kK < m and z* be the inverse of 7 in Si/Sk+1.
Then r* # 0. because otherwise we would have 7 = 77*F = 0. Thus rz"r = r and
r*rr* = r* and hence r has an inverse r* in S. If y is another inverse for r. then
Iyr = I and §Ty = §. So § = r* which implies y = z* as § = r* # 0. Therefore
" is the unique inverse of r in Si \ Sk41. If k£ > 1. then by a similar argument we

can see that r has no inverse in S\ Sk. Therefore S is an inverse semigroup.///

Remarks 5.2.5. (i) With the notations of Lemma 5.2.2 . Duncan and Paterson
[8. page 143] have conjectured that if €'(S) is amenable. then G is amenable for
every k < m. S, = G, and P4 is invertible for every k = 1.....m — 1. If this
conjecture is true, then by Lemma 5.2.4, amenability of £!(5) implies that S is an

inverse semigroup. which is not the case as we will see in Example 6.1.3.

(i) Existence of a principal series is a crucial assumption in the second part of
the Proposition 5.2.3 and can not be dropped as we will see in Example 6.1.2.
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(iii) Let S be a semigroup such that ¢}(S) is amenableand S=5;,2>5,> ... D
Sm D Sm+1 = © be a composition series for S. Duncan and Paterson [S. page 141]
have asked which ones of these ideals Sy have amenable semigroup algebra. Lemma
3.2.1 (1) provides a positive answer to this question.

(iv) It is well known that when G is a group and H is a normal subgroup of G.
then ¢!(G) is amenable if and only if ¢! (H ) and ¢!(G/H) are amenable. Proposition
5.2.3 is the analog of this result for semigroups.

(v) Proposition 35.2.3 reduces the amenability problem to the completely
(0-)simple case.

(vi) Existence of an identity in £!(S) does not imply that S has an identity even
in the special case of regular Rees matrix semigroups. One can check that a regular
Rees matrix semigroup S = .M%G. P) [S = M(G. P)] has an identity if and only
if |I| = |J|=1.

Now we characterize those regular Rees matrix semigroups S for which /!(S) is
amenable. In order to do this, we need the following Proposition. The algebraic
version of the first part for finite semigroups without any analytical assumption is
due to Munn {30, 3.8]. Also in (8, page 145] the authors have remarked it for the
case of finite index sets, without proof. However the general case can be proved

directly by showing that the following map is an isometrical algebra isomorphism:
o: LM ((G),P) — ¢(S5)/¢*(0)

o ([fi;]) = (ZZ > f-'j(g)5(g,x‘.j)) +£4(0).

€l jeJ geG
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Our proof is totally different from Munn's proof. Indeed Munn's proof is based on
the finite dimensionality of ¢1(S).

Proposition 5.2.6. Suppose S = MP9(G. P). Identify the zero of G° with the
zero of the ¢!'-Munn algebra LM (¢!(G). P), where P is considered as a matrix over
€'(G). Then €'(S)/€(0) is isometrically algebra isomorphic to £LM (¢1(G). P).

A similar statement holds for S = M(G, P).

Proof. 1t is easy to check that the above mentioned map o is a linear isometry.

Let [fi;]. [hr] € LM (€1(G), P). Then.

o((fij] o [hre]) = (ZZ DTS (it Pra= e )o(g,..,,) + (0

1€l teJ g€G lel ked

(Z Z Z f’k h“ 5(.1:sz 1!)) 1‘[1(0) (l)

tleltkeJr.zeG

On the other hand we have:

o([fij])e _(ZZZLJ T)o(r.ijz) * Zzzhrt(Z)J(;.r.t))+(l(0)

i€l jeJzeG rel teJ z€G

(Z z Z ftJ rt( cs'(.z'PJ...xt)) +£l(0) (2)

ir€l jteJr.z€G
From (1) and (2), we conclude that ¢ is an algebra homomorphism.

Let f+€(0) € €1(5)/€(0), f = ¥,esf(t)é:. Define fi;(g) = f((g.1.4)).
g€G. 1€l jeJ Then [fi] € LM(¢(G).P) and of[f,]) = f + £}(0).
Therefore ¢ is onto.

In the case of § = M(G. P). similar to the previous case ¢1(S) is isometrically
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algebra isomorphic to LM (€}(G), P) via the map

0: LM (£4(G).P) —s ¢Y(S)

fx] Zzz.fx](g 5(91]) ///

1€l jeJ geG

Now we can have an alternate proof of the main result of [8] for a special case.

Corollary 5.2.7 [8. Theorem 2] Suppose S is a regular semigroup that admits

a principal series. Then amenability of £!(S) implies that Es is finite.

sition 5.2.6. LM (¢'(Gk). Px) is amenable and hence by Theorem 3.3.1 the index
sets of every principal factor are finite. Now using regularity of sandwich matrices
of the principal factors and the fact that every nonzero idempotent corresponds to

a nonzero entry of the sandwich matrices, we conclude that Es is finite.///

are equivalent:
(i) £*(S) is amenable.
(i) LM (€ (Gk). P;) has an identity and Gy is amenable. k = 1.....m.
Proof. (ii)==(i) Similarly to the argument of Proposition 3.2.6. we can define a

bounded algebra homomorphism:

o: LM (£4(Gi). Pe) —s €(Sk/Ske1)/€4(0)

6 ([fre]) = (Z Y frelg)iiq.r, ,)) +£4(0).

r=1t=1g€G
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Since LM (£}(Gk). Px) is amenable (Lemma 3.2.7 and Theorem 4.1). and o is a
continuous algebra homomorphism with dense range. then ¢!(Si/Sk+1)//1(0) is
amenable by [21, Proposition 5.3] k = 1.....m—1. Similarly £'(S;m/Sm+1) = #(Sm)
is amenable. Therefore ¢!(S) is amenable, by Proposition 5.2.3 .

(i)==(ii) By Proposition 5.2.3, ¢}(S¢/Sk+1). k¥ = 1.....m is amenable. Since
€'(Sk/Sk+1) is isometrically algebra isomorphic to £.M (¢*(Gk). Pt) (Proposition
3.2.6), then the later algebra is amenable. Now the result follows from Theorem

3.3.1 and Lemma 3.2.7.///

5.3. Semisimple semigroup algebras

A special case of the following Lemma for inverse semigroups has been proved in
(8. Theorem 8], with a very technical method. Here we present an elementary proof

for the general case.

maximal subgroups of S (up to isomorphism) are precisely Gx. k = 1.....m and the
trivial group {0} (in the case that P; has a zero entry for some A < m).

Proof. Let G be a maximal subgroup of S. Suppose GN(Sk \ Sk+1) # o for some
k<m. If GN Sk41 # @, then choose £ € GN(Sk\ Sks1) and y € GN Sk+1.- We
have z = (zy~!)y € Sk+1 which is a contradiction. Therefore G C (St \ Sk41) for
some Ak < m. For simplicity in the rest of the proof we denote P; by P.

Case I. Suppose G C Sp and (f.i.j) € Sm = M(Gm. P,,) be the identity of
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G. Then for every (h.r.t) € G we have r = i and t = j. Now define the map
v:G —+ Gm by v((h.i.j)) = hP;;. Then v is a group homomorphism. Moreover
if v((h.1.7)) = e. then (h.1.7) = (P;l._i.j) = (f.i.7). Therefore v is a group
monomorphism. On the other hand the set H = {(h.i.j) | h € Gn} 2 G forms
a subgroup of S, under the product of S which is isomorphic to G,, by a similar
argument. Indeed this shows that S has at least one subgroup isomorphic to G,.

Now since G is maximal, then H = G. Therefore G is isomorphic to G,,.

Case II. Suppose G C (Si \ Sk41) for some & < m. G ~ G is the image of G
in St/Sk+1 and (f.i.j) is the identity of G. Then we can show that all of the
elements of G are of the form (h,i. ). as in the previous case. Now if P;, # 0. then
similar to the first case we can show that G ~ G and S has at least one maximal
subgroup of this kind. If P;; = 0 then every subgroup H of S in Si \ Sk+; that
H ~ H C {(h.i.j) | h € Gk}, is the trivial group {0}. since the product of H
is zero. Moreover any zero entry of Py gives the trivial group {0} as a maximal

s.ubgroup as we showed.///

It is well known that ¢!(S) is semisimple for every inverse semigroup [38. Theorem
2]. So the following theorem is the general form of [7. Theorem 8] which was proved

for the special case of inverse semigroups.

Theorem 5.3.2. Let S be a regular semigroup with a finite number of idempo-

tents. The following conditions are equivalent:

(i) #1(S) is amenable,
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(i) Every maximal subgroup of S is amenable and ¢!(T) is semisimple for every
principal factor T of S.

In particular if £!(S) is amenable, then it is semisimple.

(i)==(ii) LM(€(Gk), Pi) is amenable by Proposition 5.2.3 and Proposition 5.2.6
k = 1....,m. Now amenability of maximal subgroups of S follows from Lemma 5.3.1.
On the other hand Theorem 3.4.1 implies that LM(¢'(Gy), Pi) is semisimple. k =
1.....m. Thus by [31 Theorem 4.3.2(c)] and Lemma 5.2.1 (iii) Rad (¢!(Sk/Sk+1)) =
Rad (¢'(0)) = 0. k = 1....,m — 1. Therefore ¢!(T) is semisimple for every principal
factor T of S.

(ii)==(i) By Lemma 5.3.1 ¢!(Gy) is amenable. k = 1.....m. Also Lemma 5.2.2
(ii) implies that €'(Sk/Sk+1)/€*(0) is an ideal of ¢} (S¢/Sk4+1). k=1.....m —1: So

by [31. Theorem 4.3.2(a)].
Rad(€'(Sk/Sk+1)/€*(0)) = (€'(Sk/Sk+1)/€'(0)) N Rad(£'(Sk/Sk+1)) = 0.

Therefore LM (€' (Gk). Pi) is semisimple. Similarly semisimplicity of ¢! (Sm) implies
that LM (61 (Gr), Pn) is semisimple. Now by Theorem 3.3.1 and Theorem 3.4.1
LM(€ (Gk), Px) is amenable. k = 1, ...,m. Therefore ¢!(S) is amenable by Lemma
3.2.7 and Proposition 5.2.3.

For the last statement it is enough to show that if £!(T) is semisimple for every
principal factor T of S, then ¢!(S) is semisimple. As in the previous part we can
check that €!(Sk)/€'(Sk+1) is semisimple, k = 1....m — 1. Now [31. Theorem
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4.3.2(c)] implies that Rad(¢'(Sm~1)) = Rad(€'(S,)) = 0. By doing this process

repeatedly we conclude that Rad(¢!(S)) =0.///

5.4. Young’s theorem for semigroup algebras

Young [39] showed that for a locally compact group G. L!(G) is Arens regular if
and only if G is finite. The following Theorem is an extension Young's theorem to
semigroups.

Theorem 5.4.1. In any of the following two cases if £1(S) is Arens regular. then
S is finite.

(1) S is a regular semigroup with a finite number of idempotents.
(1) S is an inverse semigroup which admits a principal series.

Proof. (i) We use the notations of Lemma 3.2.2 . By Lemma 35.5.2. Proposition
5.2.6 and [31. Corollary 1.4.12]. LM (¢!(Gk). Pi) is Arens regular. Now Theorem
4.3.2 (ii) implies £!(Gy) is Arens regular, k = 1.....m. So by Young's Theorem [39].
Gy is finite. &k = 1, ....m. Therefore each principal factor of S and consequently S
itself is finite.

(ii) Using the same argument of part (i) except the fact that the index sets
of principal factors can be infinite initially, we conclude that £.M (€1(Gy). Pi) is
Arens regular, k = 1,....,m. Let 1 < k& < m. By Theorem 4.3.2 (ii) we have two
possibilities:
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Case I: £'(Gy) is Arens regular and both index sets are finite. Then by Young's
Theorem G and consequently Si/Sk+; is finite.

Case 2: €'(Gy) is finite dimensional and one of the index sets is finite. In this
case by [5. Theorem 3.9 page 102] both of the index sets are of the same cardinality
and hence are finite. So Si/Sk+ is finite.

Therefore in any case we conclude that principal factors of S are finite which
implies that S is finite.///

Remark 5.4.2. Young's Theorem [39] is not true in general for regular semi-
groups even if they admit a principal series, as we will see in the Example 6.1.6.
On the other hand Theorem 5.4.2 says that it is true for regular semigroups with a
finite number of idempotents. These two facts together say that up to what extent

Young's Theorem can be extended.

5.5. Weighted semigroup algebras

Definition 5.5.1 Suppose S is a semigroup. A function «w : § — R* U {0}
is called a weight if w(zy) < w(r)w(y). z.y € S and w(r) > O for every nonzero
z € S [in the case that S has a zero element]. If w(z) > 0 for all z € S. then
is called a positive weight. If S has a zero element and w is a weight on S, then
€'(S.w)/€*(0,w) is a Banach algebra that we denote it by £1(5.2). A weight « on
the semigroup M(G, P) [M®(G, P)] is called uniform if « is independent from the

indices in the sense that for every g € G. w((g.1,5)) = w((g.!. k)ilel. j kel
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Note that a nonzero weight on a group is automatically positive. So in this case we
don’t mention the word positive.

The following two results are generalizations of Lemma 5.2.1 and Proposition
5.2.3 that can be proved with similar arguments.

Lemma 5.5.2. Let . be a weight on the semigroup S and T be an ideal of S.
(i) If « is positive. then ¢!'(T,w) is isometrically algebra isomorphic to a closed
complemented ideal of £1(S,w).

(11) If S has a zero element. there is a continuous algebra isomorphism from ¢!(S. )
onto ¢!(5.2) = ¢'(0.«). In particular if « is positive. then #!(S..) is topologically
isomorphic to (1(S.Z) = €1(0.»).

(ii1) The map = : S/T —s R* U {0} defined by

_‘(:)_{w‘(s) if 5#0
“77 0 if 5=0

is a weight on S/T and ¢'(S.w)/€'(T.x) is isometrically algebra isomorphic to
((S/T.2).

Proposition 5.5.3. Let S be a semigroup and « be a positive weight on §.
Then ¢!(S.«) is amenable if and only if S has a principal series S = §; D S, D
D Sm O Sm41 = o and £(T,3) is amenable for every principal factor T of S.

Lemma 5.5.4. (i) Suppose w is a weight on the semigroup S = M(G. P)

[MO(G. P)]. If

sup{u(P;l.i,j)I iel,jed} <o [sup{w(Pﬁl.i,j)l i€l.j€J P #0} < x].
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then the map

wmar 1 G — R¥. wmaz(g) = sup{w(gP;'.i.j)| i€l jeJ}

[._‘;mu(g) = sup{.u(gPJ;l.i.j)[ tel. jel] P, # O}Jl

is a weight on G.

(11) Suppose w is a weight on the group G and all [nonzero] entries of P are equal
to the identity e of G. Then the map &: M(G,P) — R* [Z: M%G.P) —
R* U {0}] defined by Z(g.i.j) = w(g) [and J(0) = 0] is a positive weight [weight]
on S.

Proof. Straightforward.///

The following results are generalizations of Proposition 5.2.6. Corollary 5.2.7
and Theorem 5.2.8 repectively. They can be proved by using Lemma 5.2.4 and
arguments similar to the nonweighted case.

Proposition 5.5.5. Suppose S = .M%G.P) and . is a uniform weight on
S that satisfles the assumptions of Lemma 35.5.4(i) and M = sup{...'(P;'l.i.j)l
t€l, jeJ Pj #0} < oc. Identify the zero of G° with the zero of the ¢!-Munn
algebra LM (€!(G.wmaz). P). where P is considered as a matrix over (1(G. < may).
Then ¢'(S,3) is topologically algebra isomorphic to LM (¢(G.wmaz). P). In the
case that w = 1, this isomorphism is isometrical.

A similar statement holds for S = M(G. P).

Corollary 5.5.6. [8, Theorem 2] Suppose S is a regular semigroup that admits

a principal series and w is a positive weight on S that satisfies the conditions of
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Proposition 5.3.5 on every principal factor of S. Then amenability of £1(S. ) implies
that F's is finite.

Theorem 5.5.7. Let w be a positive weight on the regular semigroup S with

condition implies that ¢1(S..) is amenable:

LM (él(Gk,EmaI),Pk) has an identity and ¢!(Gk.Zma,) is amenable for every
k=1,...m.

If moreover = is uniform on Si/Sk4+; for every k < m. then the converse is also

true.

5.6. Involutive semigroup algebras

In this section we show the naturality of the involution that we defined on the
€!-Munn algebras in section 4.4.

Let J be arbitrary and § = MO%(G. P) where P is a self adjoint .J x .J matrix
on G ie. if Pijj # 0. then P! = Pj;. Note that P is self adjoint on ¢!(G). since
6; =471 So LM (¢'(G), P) is involutive by Lemma 4.4.1.

On the other hand we can define an involution on .M%(G.P) by (g.1.7)" =
(g7',j.1), since P is self adjoint on G. This involution coincides with the natural
involution i.e. inverse, in the case of inverse semigroups. Indeed by [5. Theorem 3.9.
page 102] we can assume P is the identity matrix on G. Then the inverse of (g-1.7)
is (¢71,5.1). i.e. (g.1,7)* = (g7, 7,1). This defines an involution on €1(8)/€(0) in
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the following way:

For every f = ¥yeq X, F((9:1.7)805.5 + F(0)do € (1(S) define f* by f* =
Yo i F((9:1.7))8(g-1 sy + F(0)o and (f + £1(0))" = £~ + €1(0).

We showed in Proposition 5.2.6 that the map o : LM (£1(G). P) — ¢}(S)/¢1(0)
o([fi;]) = (erI > set 2ogec fii(9)dg.s 1)) +£1(0) is an isometrical algebra isomor-
phism. With these notations we have:

Proposition 5.6.1. The involution on ¢!(S)/¢*(0) that was defined before the
Proposition coincides with the invoiution induced by o i.e.

(f +€10))* = o ((o—l(f+e1(0)))‘) . feds).

Proof. Let f € £1(S). Then o~!(f + €!(0)) = [f.;] where f,;(g) = f(g.i.j). So
(™1(f +€1(0))" = [f;]- Since f}i(9) = fii(g™)A(g™!) = Flg=".j.1) g€ G.
then

o ((o1(f +£(0)) M) =3 @) + 100)

geG 1.

—sz )8(g.jy +11(0)

9e€G 1]

= Z Z f(g-1.7)8(g-1 j.iy + €1(0)

9€G 1
= f* +€40).

Therefore both definitions coincide.///



Chapter 6

Examples and open problems

6.1. Some examples

Example 6.1.1. Let A be an arbitrary unital Banach algebra. I = .J he finite
1 0
-1
of order n and P =
)

Let D be the set of all lower t;ingilar elements [a;;] of LM(A. P) that in every
column all entries on and under the main diagonal are equal i.e. there is a subset
{a1....an} of A such that a;; = a; if i > j and a;; = 0 otherwise. Clearly D is a
closed subalgebra of LM(A, P) and one can check that multiplication of D which
is inherited from LM (A, P) coincides with Shur i.e. componentwise multiplication.
Now suppose p is a probability measure and A4 = L!(n). Then D is a special algebra
of triangular arrays of random variables that are of interest to the experimental

scientists as the data of previous experiments are usually reused in the new (bigger)

samples.

[@]]
~1



Example 6.1.2. Let S = N be the natural numbers with the binary operation

m.n = min(m.n). Then.
(i) £*(S) is not amenable as Es is infinite.

(i) €Y(T) is amenable for every principal factor T of S. since J(a)/I(a) ~ {0.1}

with the usual product, for every a € S. which has amenable semigroup algebra.

(ii) S has no principal series. Indeed {1} C {1.2} C {1,2.3} C ... is a chain of

1deals of S.

Example 6.1.3. Let G = {1} be the trivial group. P = [ i ‘13

J and § =
MO(G. P). Then.
(i) £'(S) is amenable. Indeed Proposition 5.2.6 implies that (1(S)/£1(0) is isomet-

rically algebra isomorphic to LM(€!(G). P) which is amenable.

(ii) S is not an inverse semigroup. since ¢;; = (1.1.1) has two different inverses 11

and ;2 = (1.1.2).

m

Example 6.1.4. Let m and n be natural numbers. G, = {1}. Gy.....G s
be groups such that all of them but G, are amenable and Gn = {0}. Let T, =
MOUG,.I}) . i = 1....m — 1 where I! is the identity n x n matrix over G? and
Tm = {0}. We identify the zeros of all of these semigroups with 0 € G,,,. Suppose
S is the direct union of T},...,Tp ie. S=T, U...U Tn with the product a.b = ab
if a.b € T; for some i < m and a.b = 0 otherwise. Then.

(i) S is regular as every T; is an inverse semigroup [5, Theorem 3.9] and Es is finite,

since Eg = ET1 U ET._, u...u ETm-



(i1) S is amenable as S has a zero element. But £!(S) is not amenable. since G,
which is a maximal subgroup of S. is not amenable.
Example 6.1.5. Suppose S is the semigroup of Example 6.1.4. Then.
(i) €'(T) is semisimple for every principal factor T of S. since Ti.....T,, are the
principal factors of S and each T; is an inverse semigroup [38. Theorem 2.
(ii) At least one maximal subgroup of S is not amenable and the same as ¢1(S).
Example 6.1.6. Let G be a finite group, [I| = n for some n € N and J
be an arbitrary infinite index set. Let P be a regular matrix over G°. Then
S = M?G. P) is a regular semigroup with a principal series. By Theorem 4.3.2(ii)
LM (€' (G).P) is Arens regular and hence so is £1(S)/€(0) as it is topologically
algebra isomorphic to £M (¢!(G). P) (Proposition 5.2.6). Now it is easy to check
that €!(S)/€'(0) = €'(0) is Arens regular. But by Lemma 5.2.1(ii) this algebra is
topologically algebra isomorphic to £!(S). Therefore £1(S) is Arens regular. but §
is infinite. Note that Es is infinite in this example which shows the conditions of

Theorem 3.4.1 can not be weakened.

6.2. Discussion and open problems

In section 3.2 we compared the algebra LMy and the matrix algebra M that
was introduced in [37, page 710]. By Theorem 3.3.1, LMy is not amenable.
Problem 1. Is the algebra M amenable?

59



Existence of bounded approximate identity is necessary for amenability [21.

Proposition 1.6]. Analog of this for weak amenability is the following:

If A is weakly amenable, then A2 = A [15. Proposition 2.4]. We characterized
those ¢!-Munn algebras that have bounded approximate identity in Lemma 3.2.7.
But the above step toward weak amenability has not been taken vet. So one can

ask:

Problem 2. Characterize those ¢!'-Munn algebras LM(A.P) for which
LM(A. P)Z = LM(A,P).

After characterizing those ¢!-Munn algebras that have bounded approximate
identity. the next step is finding necessary and sufficient conditions for amenability

which was done in Theorem 3.3.1. But the weakly amenable case is still open.
Problem 3. Characterize weakly amenable ¢!-Munn algebras.

In Proposition 3.2.4 we showed that LMy is an ideal in X(H). K a separable
Hilbert space. As X(H) is semisimple. LMx; is also semisimple. by [31. Theorem
4.3.2]. but in the general case of infinite index sets the problem is still open. More

generally.

Problem 4. What is Rad(LM (A, P)), when at least one of the index sets is
infinite?

As the positive cones of involutive Banach algebras are primary tools in the study
of the structure of such algebras, we started studying positive elements of involutive
€'-Munn algebras in Lemma 4.4.2. In particular we showed that if B € LM(A. P),.
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then B € A, forall .)€ J.

Problem 5. Is the converse of this statement true? More generally characterize

positive elements of involutive ¢!-Munn algebras.

As we observed in Lemma 4.4.2 and Lemma 4.4.4. diagonal entries of P play an
important role in determining the structure of an involutive #!-Munn algebra. Being
a C*-algebra or more generally admiting a nonzero positive linear functional imposes
certain necessities on the diagonal entries of P, but still no sufficient condition is
known. However we conjecture that the sufficient conditions should be stronger
than the necessary conditions obtained in 4.4.2 and 4.4.4. More generally we can
ask:

Problem 6. Characterize £!-Munn algebras that admit a nonzero positive func-

tional.

In Lemma 4.4.4 we showed that if F € LM(A.P)* is positive. then for every

a.be A. i1.j3. k.l € J we have:

~

Fi(a) = f':j,-(a‘)

Fi(aPj;a®) >0

|Fij(b" Pia)|? < Fjj(a”Piia)Fx(b" Pub).

But still we don’t know whether the converse is true or not.

Problem 7. Do these conditions imply that F > 07

In section 4.4 we constructed a *-representation {7, ”} from a *-representation
{m.H} of A and we showed that 7 is irreducible [resp. faithful. nondegenerate]. if
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and only if = is. Besides we showed that if = is cvclic. then so is 7.

Problem 8. Is the converse of the last statement true?

In Theorem 5.3.2 we obtained the relation between amenability and semisimplic-
ity for semigroup algebras by showing that amenability of ¢!(S) is equivalent to the
following statement:

Every maximal subgroup of S is amenable and ¢!(T) is semisimple for every prin-
cipal factor T of S.

In the same Theorem we showed that the above semisimlicity statement implies
that ¢1(S) is semisimple.

Problem 9. (Conjecture). In the Theorem 5.3.2. we can replace semisimplic-
ity of ¢! (T) for every principal factor T of S by the weaker condition. semisimplicity
of £1(S).

In the weighted case the result might be totally different and it is not known
even for the groups. More clearly suppose « is a weight on the group G. Then.

Problem 10. Does amenability of ¢!(G. ) implies that ¢}(G..) is semisimple?

In the proof of Theorem 5.3.2 we used the semisimplicity of the group algebras.
It is possible that the same argument works for the weighted semigroups. if problem
10 has a positive answer.

Problem 11. Suppose problem 10 has a positive answer. Is the weighted version

of Theorem 3.3.2 true?



Appendix

Some generalizations and alternate proofs of some

known results

In this appendix as it was mentioned in the Remark 3.3.2. we present an alternate
proof of [21. Proposition 5.4] that does not depend on the extension of derivations.
Also we present the proofs of Lemma 3.2.2 and Lemma 3.2.3.

[21, Proposition 5.4.] If A and B are amenable Banach algebras. then A = B
is amenable.

Proof. Suppose {e, : v € '} and {fa : A € A} are approximate diagonals for A
and B respectively. We show that {¢'=(e, 5 fa): (4.)) € T x \} is an approximate

diagonal for A £ B where as in Theorem 3.3.1. v is the linear 1sometry defined by-:

v : (ABB)8(ABB)— (A& A) % (BR B)

v({(c2z)8(dBY))=(c®d)S(z28y). ec.d€ A. 1.y €B.

For every c.d, f € A r.y,z € B we have:
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U((ch) 2z y))(fs S =(cEdf) T (23 ye)
- u(<cs 2) 5 (df 2 y:>)
= w(((c 22)2(dzy)(f 2 ))
So v is a right A & B module homomorphism. Similarly it is a left A = B module

homomorphism. Hence both of v and v~! are A 2 B bimodule homomorphisms.

Moreover let

be the canonical maps. Then one can show that =y = 7 = =v~!. So for everv
1 3

-

azr € A< B we have:

im ((U-l(fv BfANazr)—(azz)(v ey 3 fn)) =

(v.A)
ool (3’&‘) ((e7 2@z z)-(acr)(ey 2 fﬂ)) =
vt ((l.i,rf\l) (6’70 B(faz—zfy) —(eya—ae,) 2 If*)) =0

and

lim me~! <(€7 S fa)ag .1‘)) = lim (7, 3 7.'2)((6-7 T fa)la = 1))

= lim ((7:'1(67a) 2 772(f,\1‘)> =ar.

T (1A
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Therefore {v'~!(e4 T fo) : (7.A) € T x A} is an approximate diagonal for A = B.///
Lemma 3.2.2. Every u € LM ;% A has a unique expression in the form u =
2ijesis © aij.
Proof. We know that u has an expression u = Y_>_, B® T a,. B" € LM.
an € A. So if we assume a;; = Y o Bla,, then

Z (Z B,J:x]) gan = Z &ij Z (Z B?jan> = Z s z Q.

ijeJ ijeJ i.jeJ

For the uniqueness we need only to show that if $ 2ijes€i; 8 ci; =0. then ¢,; =
0. 1.j € J. Here we use the technique of [3. Lemma 4. page 231]. By [3.
proposition 12. page 234]. LM ;& A can be represented as a linear subspace of
BL(LM5.A":C). consisting of all elements of the form « = Y < r, =y, with
Yo, Izillllyill < oc. Here BL (LM%, A*:C) is the space of bounded bilinear func-
tionals on £M7 x A* and the action of r Sy € LM ;= Aon LM x A is defined
by (r Z y)(f.g) = f(z)g(y).

Let f € LM7G and g€ A" Then ), . ;g(cij)ei; € LM and

f (Z cl] e']) Z g Cl] 51] (Z Eij & Ci]) (f‘g) = 0.

1.JjeJ 1.)€J 1.j€J

As f and ¢ are arbitrary. then 2 ijes9(cij)ei; = 0 and hence ¢;; = 0 for all
.jelJ.///
Lemma 3.2.3. LM ;(A) is isometrically algebra isomorphic to LM & A.
Proof. Define the map ¢ : LM j(A) — LM E Aby o(A) = Yo e i Ty
It is easy to check that ¢ is an algebra homomorphism. Also by Lemma 3.2.2 it is
onto.
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Let 4 € LM(A) and v = o(A). Then [lu|| < 3 ;450 = 4]
On the other hand if u = 3 . B™ € an. then u = Yijerfy T (Xaz Blan)
and by the uniqueness part of Lemma 3.2.2. 4;; =377, Bla,. Thus

1A= > 1) Biaal <D llaall Y UBEI =D Naallli B
i.j€J n=l n=1 LjEJ n=1
Since this is true for every expression Y -, B™ % a, of u. then ||| < |u|l and

hence ||A|| = ||lu]|, i.e. © is an isometry.///
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