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Abstract

Modern signal processing algorithms need to work in complicated and variable noise

environments. The generalized Gaussian distribution (GGD) can be used to accu-

rately model noise in signal processing for telecommunication and other fields be-

cause the GGD covers a wide range of distributions. Three distributions widely used

for the modeling of noise including the Laplace, Gaussian and uniform distributions

are special cases of the GGD with the shape parameter p having values of 1, 2 and

∞ respectively. In this thesis, estimation of the location parameter of the GGD is

investigated. When the shape parameter p takes different values, three estimators

are derived based on the maximum likelihood estimation theory. An optimal de-

tector in the presence of generalized Gaussian distributed noise is proposed. The

asymptotic performance of the optimal detector is analyzed by using the Gaussian

approximation method.
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Chapter 1

Introduction

1.1 Background

Modern signal processing algorithms need to perform in complicated and variable

noise environments. Gaussian background noise model is commonly used for the

design of signal processing systems. However, in reality noise sources are often

non-Gaussian. The different characters of non-Gaussian noise can significantly de-

grade the performance of signal processing systems. Accurate statistical model for

observed data is important for signal processing applications. Parametric model

can be used for generating unknown probability density function of observed data.

One parametric model is the generalized Gaussian distribution (GGD). The GGD

can be used to accurately model noise in signal processing for telecommunication

and many other fields. The GGD covers a wide range of distributions. Three dis-

tributions widely used for the modeling of noise including the Laplace, Gaussian

and uniform distributions are special cases of the GGD with its shape parameter p

having values of 1, 2 and ∞ respectively.

The GGD has been reported to successfully model non-Gaussian noise. For

example, it was reported that the generalized Gaussian model is valid for Arctic

under-ice noise [1]. Based on samples collected in South China Sea in the winter of

2006, it was concluded that the generalized Gaussian family is suitable for under-

water ambient noise [2]. In ultra-wide bandwidth (UWB) receiver structure design,

the GGD has been successfully applied to model the probability density function of

the multiple access interference in UWB systems [3]. The GGD is also widely used

in image coding [4], video coding [5], and speech enhancement [6].

The conventional matched-filter (MF) detector is widely used in receiver design

for non-Gaussian noise. The MF detector is optimal for detection in Gaussian noise,

yet is suboptimal for detection in non-Gaussian noise. The MF detector significantly

degrades the performance of the receiver in presence of generalized Gaussian noise.

Therefore it is necessary to find an optimal detector for data detection in generalized

Gaussian noise. The minimum error probability principle can be applied to get the

1



optimal detector.

1.2 Generalized Gaussian distribution

The probability density function (PDF) of the GGD is given by [7, 8],

f(x) =
1

2Γ(1 + 1/p)α
exp

{
−
(
|x− µ|

α

)p}
(1.1a)

α =

[
σ2Γ(1/p)

Γ(3/p)

] 1
2

(1.1b)

where −∞ < x < ∞, µ is the location parameter, p is the shape parameter, and σ2

is the variance. The parameter space is given as,

−∞ < µ < ∞ (1.2)

p > 0 (1.3)

α > 0 (1.4)

σ2 > 0. (1.5)

The gamma function Γ(·) is defined as,

Γ(t) =

∫ ∞

0
xt−1 exp(−x)dx. (1.6)

The GGD is more flexible than the Gaussian distribution due to its addition-

al degree of freedom added by the shape parameter p. The GGD becomes the

Gaussian distribution when p = 2, and becomes sub-Gaussian distributions and

super-Gaussian distributions when p > 2 and p < 2 respectively.

The super-Gaussian distributions with values of p between 0 and 2 represent

impulsive noise sources well. When p takes values closer to 0 (more distant from

p = 2), it becomes more impulsive when the width of the PDF becomes narrower.

Fig. 1.1 illustrates the trend of the PDF when p takes values from 2 to 0.5. As shown

in Fig. 1.1, the super-Gaussian distributions have sharper peaks around the center

and longer tails than the Gaussian distribution. The sub-Gaussian distributions

with values of p ranging from p = 2 to p = ∞ evolve from the Gaussian distribution

to the uniform distribution. The trend of the sub-Gaussian PDF is illustrated in

Fig. 1.2. As shown in Fig. 1.2, the sub-Gaussian distributions have lower, wider

peaks around the center and shorter tails than the Gaussian distribution.

When p = 1, the GGD becomes the Laplace distribution,

f(x) =
1

2c
exp

{
−|x− µ|

c

}
(1.7)
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Figure 1.1: The GGD with p ≤ 2 when the location parameter µ = 0 and the
variance σ2 =1/2.
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Figure 1.3: The Laplace distribution with different values of the variance σ2 when
the location parameter µ = 0.

where the parameter c is same as α. It is custom to use the letter c instead of α for

the Laplace distribution. The relationship of c, α and σ is,

c = α =

√
1

2
σ2. (1.8)

Fig. 1.3 plots the Laplace distribution when the variance σ2 takes on different

values, illustrating the dependence of the statistical dispersion of the PDF on the

variance.

When p = 2, the GGD becomes the Gaussian distribution,

f(x) =
1√
2πσ2

exp

{
−(x− µ)2

2σ2

}
. (1.9)

Eq. (1.9) is the PDF of the Gaussian distribution. Fig. 1.4 plots the Gaussian

distribution with the variance takes on difference values.

When the shape parameter p approaches to infinity, the GGD becomes the uni-

form distribution on the interval [µ− α, µ+ α]. The PDF of the uniform distribution

can be expressed as,

f(x) =

{
1
2α , x ∈ [µ− α, µ+ α]

0, otherwise
. (1.10)

Fig. 1.5 plots the GGD PDF with p = 1000 for several variance values. Even

though the shape parameter p is only one thousand, rather than infinity, the PDF

of the GGD is close to a uniform distribution.
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Several mathematical properties of the GGD are provided next.

If X is a random variable of the GGD, then the standardized variable Z can be

defined as,

Z =
X − µ

α
. (1.11)

The random variable Z will have the PDF,

f(z) =
1

2Γ(1 + 1/p)
exp(−|z|p). (1.12)

The kth moment of Z is given by [9],

E(Zk) =

∫ ∞

−∞
zk

1

2Γ(1 + 1/p)
exp(−|z|p)dz

=
1 + (−1)k

2Γ(1/p)
Γ(

k + 1

p
) (1.13)

where the equation Γ(1 + t) = tΓ(t) was used.

The moments of the random variable Z are used to get the central moments and

the moments of the random variable X. The nth central moment of X is given as,

E [(X − µ)n] = E [αnZn]

=
αn [1 + (−1)n]

2Γ(1/p)
Γ(

n+ 1

p
). (1.14)

The nth moment of X can be obtained as,

E(Xn) = E [(u+ αZ)n]

=
µn

2Γ(1/p)

n∑
k=0

(
n

k

)(
α

µ

)k [
1 + (−1)k

]
Γ

[
(k + 1)

p

]
(1.15)

where
(
n
k

)
denotes combinations of k elements from n elements.

By using the results (1.14) and (1.15), the mean and variance of the random

variable X are easily obtained as,

E(X) = µ (1.16)

V ar(X) = σ2. (1.17)

1.3 Literature review and research motivation

An optimal detector based on the minimum error probability principle was proposed

in [3]. However, no performance analysis of the detector was reported. Analysis of

7



the bit error rate (BER) performance is important for receiver design in presence of

generalized Gaussian noise. In this thesis, we analyze the asymptotic BER perfor-

mance of the optimal detector and provide knowledge of data detection in generalized

Gaussian noise.

The implementation of the optimal detector requires knowledge of the received

signal amplitude which needs to be estimated at the receiver before data detection

in order to optimize the performance of the receiver. Estimation of the received

signal amplitude in generalized Gaussian noise can be regarded as estimation of the

location parameter of the GGD.

In literature, the estimators currently adopted are the mean estimator and the

median estimator. In [10], for p ≤ 2, the sample mean and sample median have good

performance in estimating the location parameter of the GGD. When p increases

from 2, the performance of these two estimators degrades significantly and they pre-

vent receivers with the optimal detector from achieving their optimal performance.

By assuming that the shape parameter is known, the maximum likelihood (ML)

estimation equation of the location parameter could be easily obtained. Though the

ML estimator has optimal performance, in general there is no closed-form expression

for the ML estimator. Therefore, to implement the optimal detector, it is necessary

to give efficient estimators for the location parameter.

1.4 Contributions

This thesis mainly focuses on parameter estimation and optimal detection in Gen-

eralized Gaussian noise.

In Chapter 2, three estimators are proposed based on the ML estimation theory.

They enhance our knowledge of estimation of the location parameter of the GGD.

The first estimator is an exact ML estimator for p = 4. It is an optimal design and

gives an explicit closed-form expression whereas previous estimators for p = 4 were

based on numerical solutions of the ML equation. The second estimator is a non-

linear estimator for p ≥ 2, which has a simple structure and excellent mean square

error (MSE) performance. The non-linear estimator is unbiased and compatible with

known superior estimators. A generalized non-linear estimator is also mentioned.

Finally, the third estimator, an approximate ML estimator for p = 5 is proposed.

In terms of MSE performance, the proposed approximate ML estimator gives better

performance than previous best estimators. These works have been published in

the IEEE Communications Letters and IEEE Signal Processing Letters [11 - 13]. A

close-form expression for the Cramér Rao lower bound (CRLB) is derived as well.

In Chapter 3, an optimal detector for generalized Gaussian distributed noise

is proposed based on the minimum error probability decision rule. The asymptotic

BER performance of the optimal detector is analyzed by using the Gaussian approx-

8



imation method. A closed-form expression for the asymptotic BER performance is

obtained and numerical simulations are done to verify the theoretical result.

1.5 Outline of thesis

This chapter introduced the motivation and background of the thesis. Some common

properties of the GGD were also discussed. The moments and central moments of

the GGD as well as some integrals that will be used in Chapter 3 were also derived

in this chapter.

Chapter 2 focuses on the estimation problem of the location parameter for the

GGD. The ML estimation equation is derived first, and then the CRLB for estima-

tors for the location parameter is discussed. Three new estimators are derived and

numerical results are given to show the performances of the proposed estimators.

In Chapter 3, an optimal detector in the presence of generalized Gaussian dis-

tributed noise first, and then using the Gaussian approximation method, the asymp-

totic BER performance of the optimal detector is analyzed. A closed-form expression

for the asymptotic performance is obtained. Simulations in a special case of half-sine

pulse shape are performed to verify the theoretical analysis.

Finally, Chapter 4 concludes the thesis and suggests some potential future re-

search directions.

9



Chapter 2

Estimators for the location
parameter of the GGD

2.1 ML estimation

In Page 2, the probability density function (PDF) of the GGD has been introduced.

Let us write the expression here again,

f(x) =
1

2Γ(1 + 1/p)α
exp

{
−
(
|x− µ|

α

)p}
(1.1a)

α =

[
σ2Γ(1/p)

Γ(3/p)

] 1
2

. (1.1b)

In this thesis, when studying the problem of estimation, we focus on estimating the

location parameter µ. we assume that the shape parameter p has been known or

estimated.1

Let X1, X2, ..., Xn be independent and identically distributed (i.i.d.) random

samples from a GGD. Define a vector X̄ = [X1, X2, ..., Xn]. Thus, the multivariate

generalized Gaussian distributed PDF is

f(x̄|µ)=
n∏

i=1

1

2Γ(1 + 1/p)α
exp

{
−
(
|xi − µ|

α

)p}
. (2.2)

Here the log-likelihood function (LLF) with n samples is,

ln f(x̄|µ) = −n ln[2Γ(1 + 1/p)α]−
n∑

i=1

|xi − µ|p

αp
. (2.3)

According to the ML principle, taking the derivative of (2.3) with respect to µ

and setting the result equal to zero, the ML estimation equation is obtained,
n∑

i=1

sgn(xi − µ)|xi − µ|p−1 = 0 (2.4)

1If estimation of p needs knowledge of the location parameter µ, we can use the average of the
samples as µ. The estimated p may have small deviation from the true value. However, since the
NL-estimator proposed in Section 2.4 is robust, we can use the estimated p to estimate µ and get
a much exacter estimated µ. An exacter estimated µ gives an exacter estimated p.

10



where xi are known variables , µ is unknown and sgn denotes the signum function

given as [14],

sgn(x) =


1, x > 0

0, x = 0

−1, x < 0

. (2.5)

The ML estimator for the GGD is given by the solution of (2.4).

Unfortunately, no explicit solution of (2.4) is available for arbitrary p. The only

exceptions are p = 1, p= 2 and p = ∞ for which the GGD becomes the Laplace

distribution, the Gaussian distribution and the uniform distribution, respectively.

In the case of the Laplace distribution, namely p= 1, the ML estimation equation

(2.4) becomes,
n∑

i=1

sgn(xi − µ) = 0. (2.6)

The solution of (2.6) is given as the median [15],

µ̂ = median(xi) =


zn+1

2
, n = 2k + 1

zn
2
+zn

2 +1

2 , n = 2k

. (2.7)

where the order statistics of {Xi}ni=1 are defined as {Zi}ni=1, and Z1 ≤ Z2 ≤ ... ≤ Zn.

In the case of the Gaussian distribution, namely p = 2, the ML estimation equation

(2.4) becomes,
n∑

i=1

(xi − µ) = 0. (2.8)

So the solution of (2.8) is given as the mean,

µ̂ = mean(xi) =

∑n
i=1 xi
n

. (2.9)

In the case of the uniform distribution, namely p = ∞, the solution of the ML

estimation equation (2.4) is given as the midrange [16],

µ̂ = midrange(xi) =
max(xi) + min(xi)

2
(2.10)

where max(xi) is the maximum of the random samples xi and min(xi) is the mini-

mum of the random samples xi.
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2.2 Cramér Rao lower bound

In this section, the Cramér Rao lower bound (CRLB) is derived. The ML estimator

for the location parameter of the GGD is unbiased [17]. The variance of any unbiased

estimator is bounded by the CRLB [18, Theorem 3.1].

The Cramér Rao lower bound (CRLB) is given as the inverse of the Fisher

information I(µ),

CRLB =
1

I(µ)
(2.11a)

and the Fisher information is defined as,

I(µ) = −E[
∂2

∂µ2
ln f(x̄|µ)] (2.11b)

where the notation E(·) denotes expectation operation.

For a single observation, the second-order derivatives of the LLF is given in [9],

∂2

∂µ2
ln f(xi|µ) = −p(p− 1)

α2

∣∣∣∣(xi − µ)

α

∣∣∣∣p−2

. (2.12)

When p is even, the expectation of
∣∣∣ (xi−µ)

α

∣∣∣p−2
is,

E

[∣∣∣∣(xi − µ)

α

∣∣∣∣p−2
]
= E

[(
xi − µ

α

)p−2
]

=
1

Γ(1/p)
Γ(1− 1/p). (2.13)

When p is odd, the expectation of
∣∣∣ (xi−µ)

α

∣∣∣p−2
is,

E

[∣∣∣∣(xi − µ)

α

∣∣∣∣p−2
]

=

∫ µ

−∞
−
(
x− µ

α

)p−2

f(x)dx+

∫ ∞

µ

(
x− µ

α

)p−2

f(x)dx

=
−(−1)p−2

2Γ(1/p)
Γ

(
p− 1

p

)
+

1

2Γ(1/p)
Γ

(
p− 1

p

)

=
1

Γ(1/p)
Γ(1− 1/p). (2.14)

12



Therefore, when p is an integer, the expectation of (2.12) is given by

E[
∂2

∂µ2
ln f(xi|µ)]

= −p(p− 1)

α2

1

Γ(1/p)
Γ(1− 1/p)

= −p2Γ(2− 1/p)

α2Γ(1/p)
(2.15)

Since X1, X2, ..., Xn are i.i.d. random samples, the Fisher information I(µ) is

given as,

I(µ) = −E[
∂2

∂µ2
ln f(x̄|µ)]

= −
n∑

i=1

E[
∂2

∂µ2
ln f(xi|µ)]

=
np2Γ(2− 1/p)

α2Γ(1/p)
. (2.16)

Using (2.11a) and (2.16), a compact closed-form expression for the CRLB is derived,

that is

CRLB =
α2Γ(1/p)

np2Γ(2− 1/p)
(2.17)

where p is an integer.

Though (2.17) was derived in the case of integer p, simulations show that it is

applicable for non-integer p. Since the variable x in Γ(x) should not be negative

integers or zero, p should satisfy p ̸= 1/k, where k is an integer greater than 1.
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2.3 True ML estimator for p = 4

An explicit solution for the GGD with p = 4 is derived in this section.2

2.3.1 True ML estimator for p = 4

In Section 2.1, ML estimation of the location parameter of the GGD has been

introduced. Let X1, X2, ..., Xn be independent and identically distributed (i.i.d.)

random samples from a GGD with (µ, p, σ2). Define a vector X̄ = [X1, X2, ..., Xn].

The ML estimation equation is given in (2.4), which is,

n∑
i=1

sgn(xi − µ)|xi − µ|p−1 = 0. (2.4)

There are only three values of p for which the true ML estimator is known in an

explicit form. They are p = 1, p = 2 and p = ∞. In this section, a new exact ML

estimator for p = 4 is derived. The process of derivation of the new estimator is

given as following.

When the shape parameter p = 4, eq. (2.4) becomes,

n∑
i=1

(xi − µ)3 = 0. (2.18)

Expand the above equation by using binomial expansion,

n · µ3 − 3

n∑
i=1

xi · µ2 + 3

n∑
i=1

xi
2 · µ−

n∑
i=1

xi
3 = 0 (2.19)

where the variables xi are known and the location parameter µ is unknown deter-

ministic. Eq. (2.19) is a cubic equation in µ. Corresponding to the general form of

a cubic equation, µ3 + aµ2 + bµ2 + c = 0, each coefficient is given as,

a = −
3
∑n

i=1 xi
n

(2.20a)

b =
3
∑n

i=1 xi
2

n
(2.20b)

c = −
∑n

i=1 xi
3

n
. (2.20c)

Three intermediate variables are defined below to express the roots of a cubic equa-

tion,

s =
(3b− a2)

3
(2.21a)

t =
2a3 − 9ab+ 27c

27
(2.21b)

∆ = −4s3 − 27t2 (2.21c)

2The work in this section has been published in IEEE Communications Letters [12].

14



where ∆ in (2.21c) is the discriminant of the cubic equation. For a cubic equation

with real coefficients, if ∆ > 0, the equation has three distinct real roots; if ∆ < 0,

the equation has one real root and two complex conjugate roots; if ∆ = 0, the

equation has a double real root and a simple real root, or a triple real root [19]. Eq.

(2.4) has a unique real solution in probability for p > 1 [7]. The unique real root of

(2.19) is given by [20, p. 23],

µ̂=−a
3
+
1

3
3

√
−27
2
t+

3

2

√
−3∆− s

3

√
−27

2 t+
3
2

√
−3∆

. (2.21d)

Eq. (2.21d) is an explicit closed-form expression for the ML estimator obtained for

the GGD with p = 4.

It is an incremental contribution for the following reasons.

1. It is an optimal design.

2. The range of values of p extends from 0 to infinity and there is a fundamental

and natural division of the range of p into two ranges 0 to 2, and 2 to infinity.

The optimal estimator for the upper endpoint of the p = 2 to infinity range,

i.e., infinity, is known. Finding the optimal estimator for p = 4, sets a new and

improved limit on the range for which optimal estimators are known, i.e., the

improvement is in changing the range from 2 to infinity to 4 to infinity. This

reduces the range for which optimal estimators for the GGD are not known.

3. The optimal estimator for p = 4 is given in an explicit form whereas previous

estimators for this value were based on numerical solutions of the ML equation.

2.3.2 Numerical results and discussion

In this subsection, we compare the mean square error (MSE) of the proposed M-

L estimator with the MSEs of the mean estimator and the moment/Newton-step

(MNS) estimator [7] as well as with the Cramér Rao lower bound (CRLB).

The mean estimator, rather than the median estimator, is chosen for comparison.

Recall that the median estimator is the ML estimator for p = 1, and the mean

estimator is the ML estimator for p = 2. It is intuitive that the median estimator

will become increasingly worse compared to the mean estimator as p increases to 4.

Simulations verify this behaviour.

The MNS estimator proposed in [7] is a corollary of Newton’s method [21].

Newton’s method is a useful iterative method for seeking the roots of a real-value

function [22]. Therefore the MNS estimator should be regarded as an approximate

ML estimator. An explicit expression for the MNS estimator is given as,

µ̂mns = µ0 +
Γ(1/p)

npαp−2Γ(2− 1/p)
·

n∑
i=1

sgn(xi − µ0)|xi − µ0|p−1 (2.22)
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Figure 2.1: The MSEs of the ML estimator, the MNS estimator and the mean
estimator and the CRLB with p = 4.

where p is equal to 4 in this section and µ0 takes the value of the mean estimator.

The ML estimator for the location parameter of the GGD is unbiased [17]. The

variance of any unbiased estimator is bounded by the CRLB [18, Theorem 3.1]. The

CRLB for the GGD was derived in Section 2.2; it is

V ar[µ̂] ≥ CRLB =
σ2

12n

(
Γ(1/4)

Γ(3/4)

)2

. (2.23)

The mean estimator is also unbiased and its variance (equal to its MSE) is given as,

E[(µ̂mean − µ)2] =
σ2

n
. (2.24)

We fix the location parameter of the GGD µ = 1 and give 1/σ2 values between

0 dB and 14 dB. The MSEs of the estimators are obtained by using Monte Carlo

simulation. The number of trials used for estimating the MSEs in Fig. 2.1 is five

million.

Fig. 2.1 compares the MSE of the new ML estimator with the CRLB. When

n = 20, the MSE of the ML estimator has a small disadvantage of about 0.26 dB
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over the CRLB; when n = 50, the gap between the MSE of the ML estimator and the

CRLB decreases to about 0.1 dB; When n = 100, the gap further decreases to about

0.05 dB and the two curves for the ML estimator and the CRLB are graphically

coincident. Note that as n increases, the MSE of the ML estimator becomes closer

to the CRLB. The ML estimator is asymptotically efficient for p = 4 [7].

Fig. 2.1 also shows the MSEs of the MNS estimator and the mean estimator.

For n = 20, the MSE loss of the MNS estimator relative to the ML estimator is 0.065

dB, and the MSE loss of the mean estimator relative to the ML estimator is 1.11

dB. When n = 50 and n = 100, the MSE gaps between the ML estimator and the

MNS estimator decrease to 0.033 dB and 0.018 dB, respectively, while the MSE gaps

between the ML estimator and the mean estimator increase to 1.26 dB and 1.31 dB,

respectively. Obviously the mean estimator gives increasingly worse performance as

the sample size n increases. As n tends to ∞, the theoretical MSE gap between the

ML estimator and the mean estimator is equal to 12
(
Γ(3/4)
Γ(1/4)

)2
≈ 1.3708 dB. It is also

concluded that as the sample size n increases, the MNS estimator gives increasingly

better performance. However, it remains a fact that the ML estimator is exact and

the MNS estimator is approximate.

2.3.3 Summary

Heretofore, explicit solutions for the ML estimator of the location parameter of the

GGD were only known for values of parameter, p = 1, p = 2, and p = ∞. For

p = 1 the GGD becomes the Laplace distribution, and the sample median is the ML

estimator. For p = 2 the GGD becomes the Gaussian distribution, and the sample

mean is the ML estimator. For p = ∞, the GGD becomes the uniform distribution,

and the extreme two-sample midpoint is the ML estimator. An explicit solution for

the case of p = 4 was derived in this section. Reporting an explicit form for the ML

estimator for p = 4 is an incremental contribution.

The MSE of the ML estimator for p = 4 was compared to the CRLB. The ML

estimator has practical value as it attains the CRLB at moderate sample size. The

MSE was also compared to the MSE of the mean estimator and it was found that

the ML estimator greatly outperforms the mean estimator. The ML estimator has

slight advantage compared to the MNS estimator.
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2.4 NL-estimator

A new unbiased estimator, named as the NL-estimator3, is proposed in this section

for p ∈ [2,∞).4

2.4.1 NL-estimator

Let X1, X2, ..., Xn be independent and identically distributed (i.i.d.) random sam-

ples from a GGD with parameters (µ, p, σ2). The ML estimation equation is given

in (2.4), which is,
n∑

i=1

sgn(xi − µ)|xi − µ|p−1 = 0. (2.4)

In seeking an improved estimator for the GGD, we note that when p = ∞ the

GGD becomes the uniform distribution and the ML estimator is the midpoint of the

first and last order statistics. For other values of p, this estimator is wasteful of the

other samples as it discards them. This thinking leads us to assume an estimator

structure which starts by computing the midpoint of the ith and (n − i + 1)th

order statistics, and then combines these midpoint estimators by some weighting

(reliability) scheme.

Some variables are now defined that are needed in the sequel. Define new random

variables {Zi}ni=1 as the order statistics corresponding to {Xi}ni=1, where Z1 ≤ Z2 ≤
... ≤ Zn. The midpoint µ̂i and the range Ri of the sample pair (zi, zn−i+1) are

respectively given as,

µ̂i =
zn−i+1 + zi

2
(2.25)

Ri = zn−i+1 − zi. (2.26)

Heuristically, noting that the argument of the exponential function in the PDF

in (1.1) involves a power function of x, we apply a power weighting of the range of

the ith ranked midpoint estimator, and select as an estimator design,

µ̂ =

n
2∑

i=1

αi · µ̂i (2.27a)

αi =
Ri

m∑n
2
j=1Rj

m
, i = 1, 2, ...,

n

2
(2.27b)

where the sample size n is assumed to be even. The estimator structure in (2.27)

admits a degree of freedom through the choice of m. Simulations show m = p− 2 is

3The name, NL-estimator was used in [11] to distinguish the L-estimator which is a linear
combination of order statistics.

4The work in this section has been published in part in IEEE Communications Letters [11].
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a good choice. Simulation results show that in the case when p is non-integer, the

new estimator (2.27) with m = p − 2 still gives excellent performance. Therefore

the new estimator (2.27) can be used for p ∈ [2,∞).

In contrast to L-estimators which are linear combinations of the order statistics

[23], this novel estimator forms a weighted non-linear sum of the order statistics; we

shall call this estimator the NL-estimator.

The NL-estimator is compatible with known superior estimators. Note that the

GGD with p = 2 yields the Gaussian distribution. For p = 2,

αi =
2

n
, i = 2, ...,

n

2
(2.28)

µ̂NL =
1

n

n∑
i=1

zi (2.29)

and the NL-estimator simplifies to the mean estimator, which is the ML estimator

for the Gaussian distribution.

When p = ∞, the GGD yields the uniform distribution, and as a result,

lim
p→∞

α1 = lim
p→∞

(zn − z1)
p−2∑n

2
i=1 (zn−i+1 − zi)

p−2
= 1 (2.30)

lim
p→∞

αi = 0, i = 2, ...,
n

2
(2.31)

lim
p→∞

µ̂NL =
(zn + z1)

2
= midrange. (2.32)

The unbiased ML estimator for the midpoint of the uniform distribution is the

midrange estimator given in (2.32) [16].

Finally the NL-estimator can be adjusted for the case when the sample size is

odd, by discarding the sample median. Our simulations indicate that negligible

effect on the estimator performance results from doing so. The final, simple form of
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the new estimator is then given as,

µ̂NL =

ne
2∑

i=1

αi · µ̂i (2.33)

αi =
Ri

p−2∑ne
2
j=1Rj

p−2
(2.34)

µ̂i =
zi + zn−i+1

2
(2.35)

Ri = zn−i+1 − zi (2.36)

ne =

{
n, n even

n− 1, n odd
. (2.37)

The statistic µ̂i is proved to be an unbiased estimator for the location parameter.

Proof. Let X1, X2, ..., Xn be i.i.d. random samples from a GGD. Let Z1 ≤ Z2 ≤
... ≤ Zn be the corresponding order statistics of X1, X2, ..., Xn. Let f(·) and F (·)
denote the PDF and the cumulative distribution function (CDF) of each sample,

respectively. The PDF of Zi is given by [16, p. 254],

fZi(z) =
n!

(i− 1)!(n− i)!
[F (z)]i−1[1− F (z)]n−if(z) (2.38)

where the factorial of a non-negative integer n is denoted as n!. The midpoint

estimator µ̂i is given in (2.25) and the expectation of µ̂i is given as,

E(µ̂i) =
E(zn−i+1) + E(zi)

2
. (2.39)

Using (2.38), the expectations of zn−i+1 and zi are respectively derived as

E(zn−i+1)=

∫ ∞

−∞
z · fZn−i+1(z)dz

=

∫ ∞

−∞
z · c · [F (z)]n−i[1− F (z)]i−1f(z)dz

=

∫ 1

0
F−1(1− v) · c · vi−1(1− v)n−idv (2.40a)

E(zi) =

∫ ∞

−∞
z · fZi(z)dz

=

∫ ∞

−∞
z · c · [F (z)]i−1[1− F (z)]n−if(z)dz

=

∫ 1

0
F−1(w) · c · wi−1(1− w)n−idw (2.40b)
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where F−1(·) is the inverse function of F (·) and

c =
n!

(n− i)!(i− 1)!
(2.41)

v = 1− F (z) (2.42)

w = F (z). (2.43)

The inverse function of F (·) exists because the PDF f(·) satisfies f(x) > 0 for all

x ∈ (−∞,∞).

Note that the PDF f(·) of the GGD is symmetric about µ. Thus for arbitrary

y ∈ (0, 1),

F−1(1− y) + F−1(y) = 2 · µ (2.44)

where µ is the location parameter of the GGD.

Substituting (2.40) and (2.44) into (2.39), we obtain

E(µ̂i) =
E(zn−i+1) + E(zi)

2

=

∫ 1

0

F−1(y) + F−1(1− y)

2
· c · yi−1(1− y)n−idy

= µ ·
∫ 1

0
c · yi−1(1− y)n−idy

= µ (2.45)

where we use the equation,

1 =

∫ ∞

−∞
fZi(z)dz =

∫ 1

0
c · yi−1(1− y)n−idy (2.46)

and the proof is complete.

The statistics µ̂i are unbiased estimators and the equation
∑n

2
i=1 αi = 1 yield

that the NL-estimator is unbiased.

2.4.2 Numerical results and discussion

In this subsection, numerical results are given to show the performance of the pro-

posed NL-estimator.

We compare the NL-estimator with the ML estimator and the mean estimator.

All these estimators are unbiased. Note that since the estimators are unbiased,

the MSE is equal to the estimator variance and no residual bias is included in

the MSE. The MSE estimated by Monte Carlo simulation is used to evaluate their

performances. We set the location parameter µ = 1 and give 1
σ2 values between 0

dB and 10 dB.

Fig. 2.2 compares the MSEs of the NL-estimator, the ML estimator, the mean

estimator and the median estimator with p = 4. When n = 50, there is a 1.27
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Figure 2.2: The MSEs of the NL-estimaotr, the ML estimator, the mean estimator
and the median estimator with p = 4.
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Figure 2.3: The MSEs of the NL-estimator, the ML estimator and the mean esti-
mator with p = 10.
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Figure 2.4: The MSEs of the NL-estimator, the ML estimator and the mean esti-
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dB performance gap between the mean estimator and the ML estimator, whereas

the loss of the NL-estimator relative to the ML estimator is only 0.002 dB. When

n = 200, the gap between the mean estimator and the ML estimator increases to

about 1.34 dB. However, the gap between the NL-estimator and the ML estimator

decreases to about 0.0001 dB and the two curves for the MSE are graphically coin-

cident. The NL-estimator is better than the mean estimator, and for all practical

purposes, attains the performance of the ML estimator.

Also shown in Fig. 2.2 is the performance of the median estimator. Recall that

the median estimator is optimal for p = 1, and the mean estimator is optimal for

p = 2. We infer that the median estimator will become increasingly inferior to the

mean estimator as p increases to larger values from p = 2. This behaviour is seen

in Fig. 2.2.

Fig. 2.3 compares the MSEs of the NL-estimator, the ML estimator and the

mean estimator with p = 10. In this simulation, we examine the performance of

the NL-estimator in the case of a large shape parameter. For n = 50 and n = 200,

the performance gap between the mean estimator and the ML estimator is about

4.43 dB and 4.88 dB, respectively. The gap between the NL-estimator and the ML

estimator is much smaller. It is about 0.006 dB and 0.0003 dB, respectively. In

the case of large p, the mean estimator gives decreasing performance compared to

p = 4, but the NL-estimator still works excellently.

Fig. 2.4 compares the MSEs of the NL-estimator, the ML estimator and the

mean estimator with p = 6.6. We set p = 6.6 to show the performance of the NL-

estimator in the case of a non-integer shape parameter. For n = 50 and n = 200,

the performance gap between the mean estimator and the ML estimator is 2.96 dB

and 3.18 dB, respectively, whereas the gap between the NL-estimator estimator and

the ML estimator is 0.004 dB and 0.0002 dB, respectively. The NL-estimator keeps

its advantage over the mean estimator even in the case of non-integer p.

In the rest of this subsection, we will compare the performance of the NL-

estimator with the MNS estimator. When the shape parameter is assumed to be

known, it means that the shape parameter is estimated exactly. However, it is com-

mon that the estimated scale parameter pe has a small deviation from the true value.

If a small deviation results in serious performance degradation, the NL-estimator

can not be a robust and applicable estimator.

Fig. 2.5 is the MSEs of the NL-estimator and the MNS estimator when the

estimated shape parameter pe has different deviations from the true value. In Fig.

2.5 the true value is p = 5.4. The estimated shape parameter pe takes values from

4.4 to 6.4. The NL-estimator and the MNS estimator use the estimated value

pe to estimate the location parameter µ. The maximum deviation from the true

value p = 5.4 is 1 in Fig. 2.5. From the figure, the NL-estimator has an obvious
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Figure 2.5: The MSEs of the NL-estimator and the MNS estimator when the esti-
mated parameter pe has different deviations from the true value p = 5.4.

advantage over the MNS estimator, no matter whether pe takes the true value of

the shape parameter or not. When pe = p = 5.4, the performance distance between

the MNS estimator and the NL-estimator is about 0.1 dB. When pe takes values

on the positive side of 5.4, both estimators has degradating performance and as the

deviation increases, the performance degradation is accelerated. The MNS estimator

has a faster speed of degradation. When pe takes values on the negative side of 5.4,

an interesting thing is both estimators have sightly better MSE performance at first.

Then as the deviation increases, the performance degradation increases and both

estimators give worse MSE performance compared with the case of pe = p = 5.4.

Fig. 2.5 shows that the NL-estimator has its advantage over the MNS estimator

in terms of MSE performance. Also the NL-estimator is robust to estimate the

location parameter when the estimated pe is not exactly equal to the true value

of the shape parameter p. A small deviation from the true value doesn’t result in

serious performance degradation.

2.4.3 Generalized NL-estimator

In this subsection, we will give a generalized NL-estimator.
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A location-scale family is a class of distributions that parametrized by a location

parameter µ and the PDF in this class have the form

fµ(x) = f(x− µ). (2.47)

Let X1, X2, X3, ..., Xn be i.i.d. samples from a symmetric distribution whose PDF

fµ(x) belongs to a location-scale family. Examples of such distributions include the

GGD and the Cauchy distribution. Let Z1 ≤ Z2 ≤ ... ≤ Zn be the order statistics

of X1, X2, ..., Xn.

According to the ML principle, one can have

n∑
i=1

∂

∂µ
ln fµ(xi|µ) = 0. (2.48)

We want to find approximate solutions of (2.48). The generalized NL-estimator is

given as following to solve this problem.

Define two functions g(·) and h(·). The function g(·) is defined as,

g(xi − u) =
∂

∂µ
ln fµ(xi|µ). (2.49)

The function h(·) is defined as,

h(t) =
∂

∂t
g(t). (2.50)

The approximate solution µ̂ of (2.48) is given in this form:

µi =
zi + zn−i+1

2
, i = 1, 2, ..., n/2 (2.51)

µ̂ =

n/2∑
i=1

ciµi (2.52)

where ci are the coefficients.

The coefficients ci can be found in this way:

di =
zn−i+1 − zi

2
(2.53)

ci =
h(di)∑n/2
i=1 h(di)

, i = 1, 2, ..., n/2. (2.54)

The eqs. (2.51 - 2.54) are the generalized NL-estimator.

Case 1: GGD.

The ML equation for the location parameter µ is

n∑
i=1

sgn(xi − µ)|xi − µ|p−1 = 0. (2.55)
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So the function g(·) (defined in (2.49)) is given as,

g(x) = sgn(x)|x|p−1. (2.56)

The function h(·) ( defined in (2.50) ) is given as,

h(t) =
∂

∂t
g(t) = (p− 1)tp−2. (2.57)

Since

di =
zn−i+1 − zi

2
≥ 0 (2.58)

the coefficients ci are given as,

ci =
h(di)∑n/2
i=1 h(di)

=
dp−2
i∑n/2

i=1 d
p−2
i

. (2.59)

The result is identical with what we have got in Subsection 2.4.1.

Case 2: Cauchy distribution.

The generalized NL-estimator can be applied to the Cauchy distribution as well.

Here is the generalized NL-estimator for the Cauchy distribution.

The PDF of the Cauchy distribution with location parameter µ and scale pa-

rameter λ is given as,

fµ(x) =
1

πλ{1 + [(x− µ)/λ]2}
. (2.60)

According to the ML principle, the ML estimation equation is given as,

n∑
i=1

2(xi − µ)

λ2 + (xi − µ)2
= 0. (2.61)

From (2.49), g(·) is given as,

g(x) =
2x

λ2 + x2
(2.62)

From (2.50), h(·) is given as,

h(t) =
∂

∂t
g(t) =

2(λ2 − t2)

(λ2 + t2)2
. (2.63)

Therefore putting (2.62) and (2.63) into eqs. (2.51 - 2.54), we can get the NL-

estimator for the Cauchy distribution.

It is obvious that when di > λ, the corresponding coefficient ci is negative.

It is consistent with the fact that some of weighting factors are negative in [24].

Simulations show that the generalized NL-estimator has much better performance

than the highly efficient L-estimator proposed in [24].
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2.4.4 Summary

A new unbiased estimator has been proposed for p ∈ [2,∞). It was named the NL-

estimator. The performances of the NL-estimator, the mean estimator and the ML

estimator have been compared. The NL-estimator is superior to the mean estimator,

and increasingly so as the shape parameter p is increasingly far from 2. The MSE of

the new estimator is almost identical as the MSE of the ML estimator with negligible

practical performance loss. The NL-estimator is superior to the MNS estimator as

well. When the estimated shape parameter has a small deviation from the true

value, the NL-estimator has small performance degradation.
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2.5 Approximate ML estimator for p = 5

In this section, a closed-form approximate ML estimator for the location parameter

of the GGD with p = 5 is derived.5

2.5.1 Approximate ML estimator for p = 5

Let X1, X2, ..., Xn be independent and identically distributed (i.i.d.) random sam-

ples from a GGD with location parameter µ, shape parameter p and the variance

σ2. Define a vector X̄ = [X1, X2, ..., Xn]. The ML estimation equation was given in

(2.4), which is,
n∑

i=1

sgn(xi − µ)|xi − µ|p−1 = 0 (2.4)

When p = 5, the ML estimation equation becomes,

n∑
i=1

sgn(xi − µ)(xi − µ)4 = 0 (2.64)

where sgn denotes the signum function given as [14].

According to the ML principle, the solution of (2.4) is the ML estimator for

the location parameter µ. Unfortunately, eq. (2.4) is a transcendental equation

due to the signum function and there is no exact closed-form solution. Therefore,

approximation is required to eliminate the effect of the signum function to reach a

closed-form estimator.

Noting that the PDF of the GGD is symmetric about the location parameter µ,

it is intuitive to try the approximation,

µ ≈ median(xi) (2.65)

where the median is defined as the middle order statistic if the sample size n is

odd, and the average of the middle two order statistics if the sample size n is even.

The order statistics of {Xi}ni=1 are defined as {Zi}ni=1, where Z1 ≤ Z2 ≤ ... ≤ Zn.

Therefore,

median(xi) =


zn+1

2
, n = 2k + 1

zn
2
+zn

2 +1

2 , n = 2k

. (2.66)

Using this assumption in the signum function in (2.4), one obtains

n∑
i=1

sgn(xi −median(xi))(xi − µ)4 = 0. (2.67)

5The work in this section has been published in IEEE Signal Processing Letters [13].
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Expanding (2.67), the new ML estimation equation is given as,

n∑
i=n

2
+1

(zi − µ)4 −

n
2∑

i=1

(zi − µ)4 = 0 (2.68)

if n is even, and
n∑

i=n+1
2

+1

(zi − µ)4 −

n−1
2∑

i=1

(zi − µ)4 = 0 (2.69)

if n is odd.

Note that in (2.69), the sample median Zn+1
2

is ignored since sgn(0) = 0. This

indicates that when n is odd, the samples can be preprocessed by discarding the

sample median and the sample size is always kept even. Therefore, the odd case is

not considered in the sequel.

Eq. (2.68) is expanded into its standard polynomial form,

4 · (
n∑

i=n
2
+1

zi −

n
2∑

j=1

zj) · µ3 − 6 · (
n∑

i=n
2
+1

z2i −

n
2∑

j=1

z2j ) · µ2+

4 · (
n∑

i=n
2
+1

z3i −

n
2∑

j=1

z3j ) · µ− (

n∑
i=n

2
+1

z4i −

n
2∑

j=1

z4j ) = 0

(2.70)

where the coefficient of µ4 is zero. Comparing (2.70) with the monic cubic equation,

µ3 + a · µ2 + b · µ+ c = 0, the coefficients of each term are respectively,

a =

−3 · (
n∑

i=n
2
+1

z2i −
n
2∑

j=1
z2j )

2 · (
n∑

i=n
2
+1

zi −
n
2∑

j=1
zj)

(2.71)

b =

(
n∑

i=n
2
+1

z3i −
n
2∑

j=1
z3j )

(
n∑

i=n
2
+1

zi −
n
2∑

j=1
zj)

(2.72)

c =

−(
n∑

i=n
2
+1

z4i −
n
2∑

j=1
z4j )

4 · (
n∑

i=n
2
+1

zi −
n
2∑

j=1
zj)

. (2.73)

We will use the cubic formula [20] to find the roots of the cubic equation (2.70).
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Five ancillary variables are defined to express the roots of (2.70),

t1 =
(3b− a2)

3
(2.74a)

t2 =
2a3 − 9ab+ 27c

27
(2.74b)

∆ = −4t31 − 27t22 (2.74c)

A =
3

√
−27

2
t2 +

3

2

√
−3∆ (2.74d)

B =
−3t1
A

(2.74e)

where ∆ is the discriminant. For a cubic equation with real coefficients, if ∆ > 0,

the equation has three distinct real roots; if ∆ < 0, the equation has one real root

and two complex conjugate roots; if ∆ = 0, the equation has a double real root and

a simple real root, or a triple real root [19].

The roots of a cubic equation are given by [20, p. 23],

r1 =
1

3
(A+B − a) (2.75a)

r2 =
1

3
(ρA+ ρ2B − a) (2.75b)

r3 =
1

3
(ρ2A+ ρB − a) (2.75c)

where ρ = −1
2 + 1

2

√
−3 = e2πi/3. Note that whatever value the discriminant ∆

takes, r1 is always real. This root is chosen as the approximate ML estimator for

the location parameter; that is

µappr =
1

3
(A+B − a) (2.76)

where A, B and a have been defined above. Simulations in Section 2.5.2 will show

that the approximate ML estimator (2.76) is superior to all known closed-form

estimators for p = 5.

2.5.2 Numerical results and discussion

In this subsection, simulation results are presented to show the performance of

the new approximate ML estimator. The approximate ML estimator is compared

with the mean estimator, the NL-estimator, the MNS estimator and the numerical

ML estimator using Newton’s method [22] through the mean square error (MSE)

estimated by Monto Carlo simulation. The number of trials used in the Monton

Carlo simulation is 2.5 × 107. The Cramér Rao lower bound (CRLB) obtained in

Section 2.2 is also plotted in the figures. The signal-to-noise ratio (SNR) is defined

as,

SNR =
µ2

σ2
. (2.77)
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Figure 2.6: The MSEs of the new approximate ML estimator, the NL-estimator,
the mean estimator, the numerical ML estimator and the MNS estimator together
with the CRLB for n = 20.
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In all the figures, the location parameter µ is fixed at µ = 1.

In making comparisons between the estimators, the following context is impor-

tant. The mean estimator, the NL-estimator, the new approximate ML estimator

and the numerical estimator using Newton’s method do not require knowledge of σ2,

while the MNS estimator does. The only estimator which does not require knowl-

edge of σ2 and performs worse than the MNS estimator, is the mean estimator.

All the other estimators considered here perform better than the MNS estimator

without requiring knowledge of σ2. Therefore, compared to other estimators, the

MNS estimator has higher complexity and poorer performance except for the mean

estimator.

Fig. 2.6 and Fig. 2.7 show the MSEs of the new approximate ML estimator, the

NL-estimator, the mean estimator and the MNS estimator. The mean estimator

gives the worst performance for both n = 20 and n = 50. The new approximate

ML estimator gives better MSE performance compared to the NL estimator and

the MNS estimator. For n = 20 and n = 50, the approximate estimator has an

advantage of 0.014 dB and 0.0025 dB over the NL-estimator and has an advantage

of 0.19 dB and 0.1 dB over the MNS estimator.

Fig. 2.6 and Fig. 2.7 also show the MSE of the numerical ML estimator and

the CRLB. The numerical ML estimator is calculated using Newton’s method. For

n = 20 and n = 50, its MSE gains relative to the new approximate estimator are

only 7 × 10−4 dB and 5 × 10−5 dB, respectively. The gap between the numerical

ML estimator and the CRLB is 0.45 dB for n = 20 and decreases to 0.17 dB when

the number of samples increases to n = 50.

Fig. 2.8 gives the MSEs of the new approximate estimator and the CRLB when

the sample size n increases from 4 to 200 for several values of SNR. One can see

that the SNR gap between the MSE of the new estimator and CRLB is very small,

and decreases as the number of samples increases. The simulation results indicate

that the MSE of the new estimator attains the CRLB, for all practical purposes, for

n ≥ 20. For all values of SNR between -5 dB and 15 dB, the greatest MSE of the

new estimator is only 1.5 times the CRLB. For n = 4, n= 20, n = 50, n = 100 and

n = 200, the corresponding gaps are 1.72 dB, 0.45 dB, 0.17 dB, 0.088 dB and 0.045

dB, respectively.

2.5.3 Summary

A novel closed-form approximate ML estimator for the location parameter of the

GGD when the shape parameter p = 5 was derived in this section. The approximate

ML estimator gives the best MSE performance compared to previous estimators

while having comparable complexity.
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Chapter 3

Asymptotic performance
analysis of an optimal detector
in generalized Gaussian noise

3.1 Optimal detector

The baseband system model is shown in Fig. 3.1 [25]. The binary symbol d takes

values +1 or −1 with equal probabilities and modulates an arbitrary time-limited

pulse shape s(t). The signal d · s(t) is transmitted over a distortionless channel

with additive generalized Gaussian noise and then the signal x(t) = d · s(t)+n(t) is

received. Before the received signal x(t) is processed by the detector, x(t) is filtered

by an ideal low-pass filter to remove the out-of-band noise.

The pulse shape s(t) is assumed to be

s(t) =

{
> 0, for all t ∈ [0, T ]

0, otherwise
. (3.1)

There is no loss of generality in assuming (3.1) if n(t) is white or strictly white noise

since if s(t) < 0 in some regions of [0, T ], x(t) can be preprocessed by multiplying

s(t) by −1 in these regions. Also the pulse shape s(t) is assumed to be band-limited

to B Hz. Strictly speaking, band-limited signals cannot be time-limited. However

in practice, the energy of a signal is considered to be within a frequency range of

B ≫ 1/T [25]. The waveform of s(t) is known at the receiver side. The two-sided

power spectral density of generalized Gaussian noise is assumed to be N0/2.

In the discrete-time case, the detector samples the signal r(t) at a rate of 2B per

second, giving M = 2BT noisy samples when a symbol d is transmitted; they are

ri = d · si + ni, i = 1, 2, . . . ,M. (3.2)

The M samples at this sampling rate can be considered to be uncorrelated if the

noise is white and independent if the noise is strictly white [26, p. 385]. Since
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Figure 3.1: Block diagram of the system model.

s(t) > 0 for t ∈ [0, T ], si are positive. The ni in (3.2) are generalized Gaussian

noise samples with zero mean, and variance σ2 = N0B. The PDF of the generalized

Gaussian samples is given in Chapter 1,

f(x) =
1

2Γ(1 + 1/p)α
exp

{
−
(
|x− µ|

α

)p}
(1.1a)

α =

[
σ2Γ(1/p)

Γ(3/p)

] 1
2

(1.1b)

where p is the shape parameter. When p = 1, generalized Gaussian noise becomes

Laplace noise. When p = 2, generalized Gaussian noise becomes Gaussian noise.

The detection problem can be modeled as the following hypothesis test,

H0 : ri = −si + ni (3.4)

H1 : ri = si + ni (3.5)

i = 1, . . . ,M. (3.6)

Define r̄ = (r1, r2, . . . , rM ). The log-likelihood ratio is

l = ln
f(r̄|H1)

f(r̄|H0)

=

M∑
i=1

[
−|ri − si|p

αp
+

|ri + si|p

αp

]
(3.7)

=
M∑
i=1

1

αp
yi (3.8)

where the variables yi are defined as,

yi = −|ri − si|p + |ri + si|p. (3.9)

The log-likelihood ratio test (LRT) is

l =
M∑
i=1

1

αp
yi

H1

≷
H0

ln
Pr(d = −1)

Pr(d = +1)
= τ (3.10)
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where τ is the threshold. Since we have assumed the binary symbol d takes values

+1 or −1 with equal probabilities,

Pr(d = −1) = Pr(d = +1) =
1

2
(3.11)

the threshold τ is equal to 0. The optimal discrete-time detector (3.10) decides

d = +1 if l > 0 and decides d = −1 if l < 0. The detector equally likely decides

d = +1 or d = −1 when l = 0.

In the special case of the Laplace distribution, namely p = 1, by defining gi(t)

as,

gi(t) =
1

α
(−|t− si|+ |t+ si|) (3.12)

=



2si
α , if t ≥ si

2t
α , if− si < t < si

−2si
α , if t ≤ −si

(3.13)

where si > 0, the LRT is given in [27],

l =

M∑
i=1

1

α
(−|ri − si|+ |ri + si|) (3.14)

=

M∑
i=1

gi(ri)
H1

≷
H0

0. (3.15)

In the special case of the Gaussian distribution, namely p =2, the LRT is,

l =

M∑
i=1

4risi
α2

H1

≷
H0

0. (3.16)

The simplified LRT is,

l =
M∑
i=1

risi
H1

≷
H0

0. (3.17)

Eqs. (3.17) and (3.14) show that the matched-filter detector is optimal for detection

in additive white Gaussian noise and suboptimal in additive white Laplace noise.

In the rest of this chapter, the asymptotic performance of the optimal detection

structure will be analyzed in the presence of bandlimited white generalized Gaussian

noise by using the Gaussian approximation method.

3.2 Gaussian approximation

In non-Gaussian detection, performance analysis for the detector is frequently a

complicated mathematical problem. In many cases, if the sample size is sufficiently
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large, a central limit theorem (CLT) [26, p. 278] is used to approximate the dis-

tribution function of the test statistic [28]. The invocation of a CLT is justified

by positing that the samples are independent. More generally, one could use a less

restrictive posit that the samples may be independent or dependent1, but satisfy a

CLT. Then, when the sample size M is sufficiently large, the test statistic l of the

optimal detector approaches a Gaussian distribution with mean µ and variance σ2.

Provided that the mean µ and the variance σ2 for d = +1 are known, the Gaussian

approximation for the bit error rate (BER) of the optimal detector in generalized

Gaussian noise is given as,

Pe = Q(
µ− τ

σ
) = Q(

µ

σ
) (3.18)

where Q(·) denotes the Q-function which is defined in [31] as,

Q(x) =
1√
2π

∫ ∞

x
exp

(
−z2

2

)
dz. (3.19)

We will only consider independent samples in the sequel, but point out that the

dependent sample case can also be treated similarly with more cumbersome and

lengthy mathematics.

3.3 Asymptotic performance analysis

It is a mathematically cumbersome problem to derive a closed-form expression for µ

and σ2 for arbitrary p > 0. In this section, the shape parameter p takes integer values

and the Gaussian approximation for the BER of the optimal detector in generalized

Gaussian noise is derived for the case where the sample size M approaches infinity.

When d = +1 is transmitted and M → ∞, the mean of the test statistic l is

determined as,

µ = E(l) = E

(
lim

M→∞

M∑
i=1

1

αp
yi

)

= lim
M→∞

M∑
i=1

E(
1

αp
yi) (3.20)

where yi = −|ri − si|p + |ri + si|p, and ri are i.i.d. generalized Gaussian random

variables with mean µr = si, variance σ2
r and shape parameter p. Similarly, the

1Note that just as CLTs exist for independent samples, CLTs also exist for dependent samples.
In the case of dependent samples, different requirements on the correlation or dependency between
the samples are needed. However, all the conditions reflect the basic intuition that one expects a
CLT to hold for dependent random samples, if the samples behave more like independent samples
the further the samples are separated [29], [30].
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variance of the test statistic l is given by,

σ2 = V ar(l) = lim
M→∞

M∑
i=1

V ar(
1

αp
yi)

= lim
M→∞

M∑
i=1

E

[
(
1

αp
yi)

2

]
−
[
E(

1

αp
yi)

]2
. (3.21)

Case 1: p is even.

When p is even, 1
αp yi and ( 1

αp yi)
2 can be rearranged as,

1

αp
yi =

p−1∑
j=0

(
p

j

)(
ri − si

α

)j (2 · si
α

)p−j

(3.22)

(
1

αp
yi)

2 =

p−1∑
m=0

p−1∑
n=0

(
p

m

)(
p

n

)(
ri − si

α

)m+n(2 · si
α

)2p−m−n

(3.23)

where
(
p
j

)
denotes the binomial coefficient. By using the kth moment of the stan-

dardized generalized Gaussian variable available in Section 1.2, one can obtain the

expectations of 1
αp yi and ( 1

αp yi)
2.

The expectation of 1
αp yi is given as,

E

(
1

αp
yi

)
=

p−1∑
j=0,j even

Γ( j+1
p )

Γ(1/p)

(
p

j

)
(
2si
α

)p−j (3.24)

where
(
p
j

)
denotes the binomial coefficient. The expectation of ( 1

αp yi)
2 is given as,

E

[
(
1

αp
yi)

2

]
=

p−1∑
m=0

p−1∑
n=0

m+n even

Γ(m+n+1
p )

Γ(1/p)

(
p

m

)(
p

n

)
(
2si
α

)2p−m−n. (3.25)

Eqs. (3.24) and (3.25) show that the expectation and the variance of 1
αp yi are

polynomials of the form,

c1
s2i
α2

+ c2
s4i
α4

+ c3
s6i
α6

+ . . . . (3.26)

Note that when M → ∞, since

σ2 = N0B = N0 ·
M

2T
(3.27)

one can obtain for an integer n > 2,

lim
M→∞

M∑
i=1

sni
αn

= lim
M→∞

M∑
i=1

(
T

M

)n
2
−1( 2Γ(3/p)

N0Γ(1/p)

)n
2

· T

M
sni

= lim
M→∞

M∑
i=1

(
T

M

)n
2
−1( 2Γ(3/p)

N0Γ(1/p)

)n
2

·
∫ T

0
s(t)ndt → 0. (3.28)
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Using (3.26) and (3.28), the mean and the variance of the test statistic l from (3.20)

and (3.21) can be rearranged into,

µ ≈ lim
M→∞

M∑
i=1

cµ
s2i
α2

= lim
M→∞

M∑
i=1

Γ(1− 1/p)

Γ(1/p)
· p(p− 1)

2
·
(
2si
α

)2

= lim
M→∞

M∑
i=1

Γ(2− 1/p)

Γ(1/p)
· p

2

2
· 4s2i

(M2T ) ·N0 · Γ(1/p)
Γ(3/p)

=
Γ(2− 1/p)Γ(3/p)

Γ(1/p)2
· p2 · 4Es

N0
(3.29)

σ2 ≈ lim
M→∞

M∑
i=1

cσ
s2i
α2

= lim
M→∞

M∑
i=1

Γ(2− 1/p)

Γ(1/p)

(
p

p− 1

)(
p

p− 1

)(
2si
α

)2

=
Γ(2− 1/p)Γ(3/p)

Γ(1/p)2
· p2 · 8Es

N0
(3.30)

where Es =
∫ T
0 |s(t)|2dt.

Case 2: p is odd.

The expectation of 1
αp yi is given in (3.31) and the expectation of ( 1

αp yi)
2 is given

in (3.32),

E(
1

αp
yi) =

p−1∑
j=0

(
p
j

)
2Γ(1/p)

(
2si
α

)p−j

{
[1 + (−1)j ]Γ(

j + 1

p
)− 2(−1)jΓ

[
j + 1

p
, (
2si
α

)p
]}

−
Γ(p+1

p )− Γ
[
p+1
p , (2siα )p

]
Γ(1/p)

(3.31)

E

[
(
1

αp
yi)

2

]
=

2p−1∑
j=0

(
2p

j

)
1 + (−1)j

2Γ(1/p)
Γ(

j + 1

p
)(
2si
α

)2p−j + 2
Γ(2p+1

p )

Γ(1/p)

+

p∑
j=0

(
p

j

)
(−1)p+j

Γ(1/p)
(
2si
α

)p−j

{
[1− (−1)p+j ] · Γ(p+ j + 1

p
)− 2Γ

[
p+ j + 1

p
, (
2si
α

)p
]}

(3.32)
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where Γ(·, ·) denotes the incomplete gamma function, which is defined in [20] as,

Γ(a, x) =

∫ ∞

x
ta−1 exp(−t)dt. (3.33)

The derivation of (3.31) and (3.32) are given as following.

Let f(·) be the PDF of the GGD. One can get the following three integrals in

Appendix A.1,∫ −si

−∞

(
x− si
α

)k

f(x)dx =
(−1)k

2Γ(1/p)
Γ

[(
k + 1

p

)
,

(
2si
α

)p]
(3.34)

∫ si

−si

(
x− si
α

)k

f(x)dx =
(−1)k

2Γ(1/p)

{
Γ(

k + 1

p
)− Γ

[(
k + 1

p

)
,

(
2si
α

)p]}
(3.35)

∫ ∞

si

(
x− si
α

)k

f(x)dx =
1

2Γ(1/p)
Γ

(
k + 1

p

)
(3.36)

where k is an integer.

When p is odd, the expectation of 1
αp yi is

E(
1

αp
yi) =

∫ −si

−∞

yi
αp

fdri +

∫ si

−si

yi
αp

fdri +

∫ ∞

si

yi
αp

fdri. (3.37)

Using the integrals (3.34), (3.35) and (3.36), one can obtain (3.31) from (3.37).

Then, ( 1
αp yi)

2 can be written as,

(
1

αp
yi)

2 = 2

(
ri − si

α

)2p

+

2p−1∑
j=0

(
2p

j

)(
ri − si

α

)2p−j

−
∣∣r2i − s2i

∣∣p
α2p

. (3.38)

Using the kth moment of the standardized generalized Gaussian variable, one can

get

E

2(ri − si
α

)2p

+

2p−1∑
j=0

(
2p

j

)(
ri − si

α

)2p−j


=

2p−1∑
j=0

(
2p

j

)
1 + (−1)j

2Γ(1/p)
Γ(

j + 1

p
)(
2si
α

)2p−j + 2
Γ(2p+1

p )

Γ(1/p)
. (3.39)

Using the integrals (3.34), (3.35) and (3.36), one can get,

E

(
−
∣∣r2i − s2i

∣∣p
α2p

)

=

p∑
j=0

(
p

j

)
(−1)p+j

Γ(1/p)
(
2si
α

)p−j

{
[1− (−1)p+j ] · Γ(p+ j + 1

p
)− 2Γ

[
p+ j + 1

p
, (
2si
α

)p
]}

.

(3.40)
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Eq. (3.32) is the summation of (3.39) and (3.40).

The Taylor series expansions of (3.31) and (3.32) around the point si
α = 0 are

given as,

E(
1

αp
yi) = cµ(

si
α
)2 + o

(
(
si
α
)2
)

(3.41)

E

[
(
1

αp
yi)

2

]
= cσ(

si
α
)2 + o

(
(
si
α
)2
)

(3.42)

where o(·) is little o notation [32] and where cµ and cσ are the corresponding coef-

ficients. The constants cµ and cσ are given as,

cµ = 2p2 · Γ(2− 1/p)

Γ(1/p)
(3.43)

cσ = 4p2 · Γ(2− 1/p)

Γ(1/p)
. (3.44)

Therefore, the mean and the variance of the test statistic l with odd p have the

same structure as the mean and the variance for the even case; they are,

µ ≈ lim
M→∞

M∑
i=1

cµ
s2i
α2

=
Γ(2− 1/p)Γ(3/p)

Γ(1/p)2
· p2 · 4Es

N0
(3.45)

σ2 ≈ lim
M→∞

M∑
i=1

cσ
s2i
α2

=
Γ(2− 1/p)Γ(3/p)

Γ(1/p)2
· p2 · 8Es

N0
. (3.46)

Combining case 1 and case 2 together, one can obtain that when p is an integer,

the asymptotic BER of the optimal detector in generalized Gaussian noise is given

as,

Pe,GA = Q(
µ

σ
) = Q

(√
Γ(2− 1/p)Γ(3/p)

Γ(1/p)2
· p2 · 2Es

N0

)
. (3.47)

When the shape parameter p increases to a certain value, the test statistic l

may not satisfy the CLT. It is a complicate mathematical problem. In underwater

acoustic communications, the shape parameter of generalized Gaussian noise typi-

cally ranges from 1.4 to 6 [33]. Simulations in next section will test the asymptotic

BER (3.47) for p ∈ [1, 6]. The range of p in (3.47) can be investigated in the future.

3.4 Numerical results and discussion

In this subsection, simulations are performed to verify the theoretical analysis. The

example pulse shape s(t) is a half-sine pulse and the time duration T is π seconds.
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Figure 3.2: The detector performance when p is an integer.

The pulse samples si are given as,

si = sin(
π

M
i), i = 1, . . . ,M. (3.48)

The power spectral density is N0
2 = 1

2 . Fig. 3.2 shows the behavior of the optimal

detector when p is an integer, p = 1, 2, 3, 4, 5 and 6. When p is 2, 3, 4, 5 or 6, the

detector attains the asymptotic BER for about 128 samples or less. Fig. 3.3 shows

that (3.47) can also be applied to the non-integer p case. So one can broaden the

scope of (3.47) from integer cases to non-integer cases. Once again, the asymptotic

BER is achieved for about 128 samples or fewer. Both Fig. 3.2 and Fig. 3.3 show

that when the shape parameter p is near 1, the detector slowly converges to its

performance asymptote.

3.5 Summary

In this chapter, an optimal detector for generalized Gaussian noise was derived. A

central limit theorem was invoked when the number of samples is sufficiently large,

and then based on the Gaussian approximation method, a closed-form expression

for the asymptotic performance of the detector was derived when the shape param-
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Figure 3.3: The detector performance when p is a non-integer.
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eter p is an integer. Numerical results validated the expression for the asymptotic

performance for p ∈ [1, 6].
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Chapter 4

Conclusions

4.1 Conclusions

In this thesis, estimators for the location parameter of the GGD and an optimal

detector for generalized Gaussian noise were investigated. Highlights of the research

results can be summarized as:

• Maximum likelihood estimation of the GGD was discussed. A closed-form

expression for the Cramér Rao lower bound was derived.

• There were only three values of p for which the exact ML estimator is known

in an explicit form. The proposed exact ML estimator for p = 4 increases the

number up to 4.

• The unbiased NL-estimator could be applied for p ∈ [2,∞). The MSE of the

NL-estimator is superior to the mean estimator and the MNS estimator. In

terms of robustness, the NL-estimator is better than the MNS estimator as

well. The generalized NL-estimator was given.

• The approximate ML estimator for p = 5 is the best closed-form estimator

known for p = 5.

• An optimal detector for generalized Gaussian distributed noise was derived.

The asymptotic BER performance of the detector was analysed theoretically

by using the Gaussian approximation method. A closed-form expression for

the asymptotic BER performance was obtained for p ∈ [1, 6] and validated by

numerical examples.

4.2 Future research directions

The research work in this thesis provides some new results of estimation and de-

tection of the GGD. The methodology and techniques used in this thesis also give
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insights into possible future research directions in this area. Based on results from

this thesis, some possible future research directions are recommended below.

• In Section 2.2, the closed-form expression for the CRLB was obtained. Howev-

er, the CRLB cannot hold for the uniform distribution. One potential research

direction is to investigate the domain of p in the CRLB expression (2.17).

• In Section 2.4, the generalized NL-estimator was introduced, and simulations

showed that it could be applied to both the GGD and the Cauchy distribution.

It will be an interesting topic to investigate other distributions on which the

generalized NL-estimator can be used.

• In applications, the sample size is not possible to be infinite. In Chapter 3, only

the asymptotic BER performance of the optimal detector was investigated.

One can continue to study the BER performance of the detector with a given

sample size.
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Appendix A

Asymptotic performance
analysis of an optimal detector
in generalized Gaussian noise

A.1 Derivation of Eqs. (3.34 - 3.36)

The derivation of Eqs. (3.34 - 3.36) are given as following.∫ −µ

−∞

(
x− µ

α

)k 1

2Γ(1 + 1/p)α
exp

{
−
(
|x− µ|

α

)p}
dx

=

∫ − 2µ
α

−∞
zk

1

2Γ(1 + 1/p)
exp(−|z|p)dz

=

∫ ∞

2µ
α

(−1)ktk
1

2Γ(1 + 1/p)
exp(−tp)dt

=
(−1)k

2Γ(1 + 1/p)

∫ ∞

( 2µ
α )

p

s
k+1
p

−1
exp(−s)

p
ds

=
(−1)k

2Γ(1/p)
Γ

[(
k + 1

p

)
,

(
2µ

α

)p]
(3.34)
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∫ ∞

µ

(
x− µ

α

)k 1

2Γ(1 + 1/p)α
exp

{
−
(
|x− µ|

α

)p}
dx

=
1

2Γ(1 + 1/p)

∫ ∞

0
zk exp(−|z|p)dz

=
1

2Γ(1 + 1/p)

1

p
Γ

(
k + 1

p

)

=
1

2Γ(1/p)
Γ

(
k + 1

p

)
(3.35)

∫ µ

−µ

(
x− µ

α

)k 1

2Γ(1 + 1/p)α
exp

{
−
(
|x− µ|

α

)p}
dx

=
1

2Γ(1 + 1/p)

∫ 0

− 2µ
α

zk exp(−|z|p)dz

=
1

2Γ(1 + 1/p)

[∫ 0

−∞
zk exp(−|z|p)dz −

∫ − 2µ
α

−∞
zk exp(−|z|p)dz

]

=
(−1)k

2Γ(1/p)

{
Γ

(
k + 1

p

)
− Γ

[(
k + 1

p

)
,

(
2µ

α

)p]}
(3.36)

where µ > 0 and α > 0.
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