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ABSTRACT 

Bulk molecular hydrogen is studied at low temperature in a variety of regimes, with 

the goal of determining possible physical conditions compatible with the observation of 

superflow. Using state-of-the-art quantum Monte Carlo methods, we focus our theoreti­

cal investigation on physical mechanisms that may overcome the barriers to the existence 

of a superfluid phase - namely, crystallization (hence particle localization). Several sys­

tems are studied toward this end, including /?-H2 films adsorbed upon the exterior surface 

of fullerenes, /?-H2 and o-D2 films adsorbed upon krypton pre-plated graphite, and p-H2 

intercalated within a strictly 2D crystal of impurities. It is found that reduction of dimen­

sionality and incommensuration are insufficient to suppress crystallization and stabilize a 

liquid phase of para-hydrogen at low temperature. Interesting physics is found for the case 

of p-H2 intercalated within the 2D crystal of impurities, where reduction of dimensional­

ity coupled with a periodic background potential leads to a novel phase of solid molec­

ular hydrogen with significant quantum derealization and particle exchanges; however, 

no superfluid or "supersolid" phases exist in the thermodynamic limit, as the equilibrium 

configuration of /?-H2 here is a commensurate, non-superfluid crystal (i.e. no vacancies 

nor interstitials). Finally, we study the effect of disorder and find that it leads to enhanced 

quantum localization and abrupt attenuation of quantum exchanges, rendering the system 

more classical. Altogether, significant doubt is cast upon the notion that bulk molecular 

hydrogen can become a superfluid, absent a direct mechanism weakening particle inter­

actions. 
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Chapter 1 

Introduction 

In this chapter, we will outline the history of the general research area, provide motivation 

for our current studies, and broadly outline the results obtained. 

1.1 Early History 

The field of low-temperature science was born in earnest in 19081, when Heike Kamer-

lingh Onnes, building off of the work of James Dewar, first liquified 4He. 

In 19372, Kapitsa [1], and independently Allen and Misener [2], discovered that bulk 

liquid helium-4 undergoes a superfluid transition (inferred by a fluid-fluid transition from 

a viscous to an inviscid state - for example, determined by experiments showing that 

helium could flow through narrow channels without any measurable drop in pressure) at 

2.177 K. Fritz London very quickly investigated this remarkable result [3], and proposed 

that the phase transition in liquid helium might be related to Bose-Einstein condensation 

(BEC), until then viewed almost as a mathematical abstraction. 

Within months of these advances, Laszio Tisza introduced the phenomenological two-

fluid model [4] which explained the above results simultaneously with the seemingly dis­

cordant findings of other groups [5]. 
1 Also, Lev Landau, 1962 Nobel Laureate in Physics for his theory describing the properties of superfluid 

helium-4, was born in this year. 
2Robert C. Richardson, 1996 Nobel Laureate in Physics for his discovery of superfluid 3He, was born 

that year. 
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In Tisza's two-fluid model, helium-4, below its transition temperature, T\, mathemat­

ically contains two components - one is viscous, termed the normal component, and the 

other is inviscid, termed the superfluid component (which is irrotational, carries no en­

tropy, nor contributes to the heat capacity of the liquid). As the temperature is lowered 

below T\, the ratio of the superfluid to normal component increases; this feature of the 

theory also provided a framework to partially understand the early torsional oscillator re­

sults of Andronikashvilii a decade later, who measured the temperature dependence of 

the moment of inertia of a torsion cell filled with helium, and found that the moment of 

inertia decreased continuously upon cooling the cell [6]. 

Landau later expanded upon Tisza's work, and introduced a quasiparticle model to 

better explain some of the features of superfluid helium, including the behavior of the 

specific heat as a function of temperature [7]. His proposed roton excitation picture, 

quantitatively confirmed in experiments a decade later [8], provided a theoretical founda­

tion for the two-fluid model, and permitted a direct calculation of the superfluid density 

(with the obtained values confirmed in later experiments). 

In the last three-quarters of a century, an enormous body of literature has been devoted 

to the plethora of interesting properties of superfluids, such as extremely high thermal 

conductivity [9], and novel film flow [10]. Intervening discoveries related to the field 

also include the theory of superconductivity [11], and the formation of Bose-Einstein 

condensates using ultra-cold gases [12]. Yet, aside from 4He, the only other system to be 

experimentally observed in a bulk superfluid state is another isotope of helium, (wherein 

fermionic 3He particles pair up to form composite bosons). 

1.2 Superfluidity and Bose-Einstein Condensation 

Today, we still define superfluidity (SF) as a phase of matter with the macroscopic prop­

erty of zero viscosity - a pure superfluid flows without resistance. In analogy with super­

conductors, a superfluid set in motion (below a certain critical velocity) around a closed 

loop would flow continuously without friction for as long as it was kept below the transi­

tion temperature. 

Bose-Einstein condensation (BEC) occurs when a system composed of bosons, which 
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are integer spin particles, congregate into the same single-particle quantum state. Quali­

tatively, BEC can be said to occur when the thermal wavelength of a particle of mass m, 

at temperature T, A = h/y/mT, is of the order of the average interparticle distance. As 

an example, a system of non-interacting bosons (referred to as a free Bose gas), with the 

parameters corresponding to those for bulk 3D 4He, has a BEC critical temperature of 

approximately 3 K, reasonably close to the superfluid transition temperature for 4He. 

The connection between SF and BEC, however, is not one-to-one. A free Bose gas, 

which undergoes BEC, is not a superfluid - interactions must be switched on in order to 

induce SF [13]. 

Similarly, experimental and theoretical studies of 2D helium-4 films reveal superflow, 

but the macroscopic occupation of a single-momentum state (BEC) cannot occur in fewer 

than three dimensions at finite temperature [13, 14, 15]. 

BEC and superfluidity in 3D, for translationally invariant systems, are associated with 

off-diagonal long-range order signified by a finite asymptotic value of the one-body den­

sity matrix. The one-body density matrix for 2D superfluid films, on the other hand, 

cannot asymptote to a finite value; specifically, the decay of the one-body density matrix, 

instead of being exponential as in the case of normal fluids and solids, follows a power 

law, with such a decay indicative of what is termed 'off-diagonal guasMong-range order'. 

Such 2D physics is explained by the theory of Kosterlitz and Thouless (KT) [16, 17]. 

1.3 Superfluid Hydrogen 

Our microscopic understanding of superfluidity could be significantly enhanced by the 

discovery of another bulk superfluid system. It is agreed upon that the critical ingredients 

include a low mass m, and a relatively weak interparticle interaction e. These considera­

tions are together encapsulated by the dimensionless de Boer parameter [18], 

A A h 
A = - = , u / 2 0.1) 

where a is the characteristic scale of confinement, and a is the characteristic potential en­

ergy (generally defined in terms of a potential-well depth). When Lambda >1 , quantum 
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effects play a dominant role; when A <1, quantum effects are small, including macro­

scopic quantum behavior such as BEC and SF. 

The square of A gives a measure of the ratio of the particle's zero-point energy when 

trapped in a box of linear size a to its potential energy in a well of depth e. Decreasing m 

or a enhances the kinetic energy, while decreasing e decreases the potential energy. 

It is natural to thus seek out Bose many-body systems comprised of particles for 

which A is large. Aside from spin-polarized atomic hydrogen3, the highest value is 

that for helium, where 4He has A=2.677. The next largest values correspond not to 

atoms, but to hydrogenic molecules; A=1.719 for para-hydrogen (p-H2), and A=1.246 

for o/t&o-deuterium (o-D2); see section 2.6 for a related discussion. For all other atoms 

and molecules, A rapidly decays to values well below 1. 

The candidate system to explore would therefore appear to be molecular hydrogen, 

/?-H2 in particular. But, thus far, the push to observe superfluidity in molecular hydrogen 

has not met with success in the bulk. 

The difficulty in experimentally observing a superfluid phase of (especially bulk) p-

H2 stems from the crystallization of the system at a temperature Tc m 14 K, significantly 

higher than that (T « 6 K) at which phenomena such as Bose-Einstein condensation 

(BEC) and, possibly, superfluidity (SF), may be expected to occur in the liquid phase 

[20] in 3D. Crystallization takes place because of the depth of the attractive well of the 

interaction potential between two hydrogen molecules, approximately three times that 

between two helium atoms. 

The physical property of SF is microscopically underlain by quantum exchange cy­

cles involving macroscopic numbers of identical particles. Since quantum exchanges 

are, in general, greatly suppressed in the crystal phase, due to particle localization, it is 

widely accepted that the observation of SF for /?-H2 hinges on the stabilization of a low-

temperature liquid phase. Several attempts have been made [21, 22, 23, 24] to supercool 

bulk liquid /?-H2, but the experimental hurdles have thus far made it unfeasible to reach a 

temperature in the range where SF might be observed. 

For non-bulk systems, computer simulations have yielded evidence of superfluid be-

3which is unstable against recombination - i.e. formation of hydrogen molecules, with an attendant 

release of energy, renders possible experimental observation of BEC only in highly-controlled settings [19] 
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havior in very small p-H2 clusters [25, 26, 27, 28], and claims have been made of its 

actual experimental observation [29]. Considerable effort has also been devoted, in re­

cent times, to the theoretical characterization of superfluid properties of solvating p-H2 

clusters around linear molecules, such as OCS [30, 31]. However, in Chapter 3, we show 

results for a system with a geometry which interpolates between that of such clusters and 

planar surfaces by investigating theoretically the properties of p-H2 adsorbed on the exte­

rior surface of comparatively large fullerene molecules. The physics of /?-H2 is found to 

be strongly two-dimensional, with /?-H2 always forming a solid; the attractive well depth 

of the fullerene molecule significantly enhances particle localization as well, further in­

hibiting quantum effects necessary for the observation of superfluidity. 

Several other experimental avenues aimed at suppressing crystallization have been 

explored as well, including reduction of dimensionality. For example, the phase diagram 

and structure of thin p-K2 films adsorbed on graphite and similar substrates have been 

studied extensively using various techniques [32, 33, 34, 35, 36, 37]. One of the most 

remarkable aspects [36] is that the melting temperature Tm of a solid /?-H2 monolayer can 

be significantly less than bulkp-H2. 

There appears to be a limit, however, to what can be achieved by reduction of dimen­

sionality alone. A theoretical study of the phase diagram of/?-H2 in two dimensions [38] 

has shown that the equilibrium phase of the system at low T is a triangular crystal, with no 

evidence of even a metastable liquid phase at lower density. Indeed, the system remains 

solid all the way to the spinodal density. The melting temperature Tm of the equilibrium 

crystal is 6.8 K, i.e., approximately half that of bulk /?-H2 but still significantly higher 

than the temperature at which the system, if it remained a liquid, would turn superfluid, 

which is estimated to be roughly 2 K. 

Later theoretical studies of /?-H2 adsorbed onto weakly attractive substrates predicted 

only a very slight reduction of Tm with respect to the purely 2D case, due to an enhance­

ment of the kinetic energy arising from zero-point motion in the direction perpendicular 

to the substrate (for example, in the case of lithium [39], arguably one of the weakest 

substrates existing, a reduction of merely 0.3 K was observed). This suggests that mere 

reduction of dimensionality is not sufficient to stabilize a fluid phase of/?-H2 down to low 

enough a temperature for superfluidity to be observed. 
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In a recent neutron scattering investigation of o-D2 films adsorbed on a krypton pre-

plated graphite substrate [40], evidence of a stable "liquid-like" phase of o-D2 down to 

T ~ 1.5 K was reported (termed a "domain-wall" fluid by the authors). This result is 

obviously of great interest, as it appeared that the substrate considered in this work may 

indeed provide an avenue to the observation of the long sought superfluid phase of molec­

ular hydrogen, given the low temperature down to which a liquid-like phase may exist, in 

analogy with grain-boundary superfluidity in solid helium [41]. 

Motivated by this experiment, we have undertaken a theoretical study of the low tem­

perature phase diagram of p-U-2 and o-D2 films adsorbed on such a substrate, the results 

of which can be found in Chapter 4. In terms of superfluid properties, we summarize our 

findings by reporting that the null result is observed - particle localization is still far too 

pronounced, especially along the domain walls. 

1.4 Supersolidity 

Solid order may not, however, be entirely incompatible with superflow. So-called "su-

persolids", characterized by crystalline order and superfluidity, have been theorized and 

studied for more than 50 years [42, 43, 44, 45, 46, 47]. 

Like a superfluid, a supersolid should exhibit dissipationless mass flow through its 

(crystalline) structure. For a cartoon description of how this mass current could be mani­

fested, liquid helium in a pipe would flow from one end of a supersolid plug (of arbitrary 

length) and emerge unimpeded from the other end, with unchanged momentum; in con­

trast, a regular solid helium plug would be impermeable to flow [48]. The effect could 

also be established using traditional torsional oscillator experiments by observing non-

classical rotational inertia (NCRI), with the superfluid fraction of the solid decoupling 

from any (slow) induced rotation. In both examples, one would need to confirm that the 

helium sample (or plug, in the former case) has uniformly solidified, with no percolating 

liquid channels capable of supporting liquid superflow. 

Since defect-free crystals are incompatible with superfluidity [49], theories of super-

solidity demand that the low-temperature crystal be incommensurate. As a consequence 

of their quantum behavior, point defects such as vacancies and interstitials can Bose con-
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dense at low temperature, giving rise to superfluid properties. 

An investigation of point-defects in solid 4He reveals that a uniform gas of defects is 

thermodynamically unstable against separation into a vacancy-rich phase, and a perfectly 

crystalline vacancy-free phase, with the vacancies forming clusters at all concentrations 

[50]. This line of investigation was later expanded to other systems with quenched dis­

order, such as extended defects, in 4He [41], revealing that some forms of incommen-

suration can lead to a metastable quantum phase supporting simultaneous diagonal and 

off-diagonal long-range order. In [51], it was shown that extended defects in 4He of the 

form of screw dislocations could support the formation of a bosonic Luttinger liquid with 

the property of quasi-one dimensional superflow. Similar simulations performed for/7-H2 

yielded that the resulting dislocation core is insulating, precluding similar properties for 

molecular hydrogen in this geometry. 

In quasi two dimensions, an interesting question is whether by "fine tuning" of a 

substrate, collective quantum many-body phenomena could become observable, in some 

thermodynamically stable low-temperature solid phase, with defects at equilibrium. 

In 1997, Gordillo and Ceperley [52] (GC) proposed that a significant lowering of the 

equilibrium density of 2D p-H2, and the ensuing stabilization of a low temperature "liq­

uid" phase, could be achieved by embedding a p-H2 fluid in a regular crystal of identical 

scatterers (e.g., foreign atoms or molecules), incommensurate with the equilibrium crystal 

structure of pure 2D/?-H2. Path Integral Monte Carlo (PIMC) simulations of such a model 

system yielded some evidence of a possible superfluid transition at T ~ 1 K. However, 

the size of the simulated system was very small (of order of 10p-H2 molecules). A subse­

quent PIMC study, comprising up to ten times as many particles, suggested that the p-H2 

actually forms a solid, and that the observation of a finite superfluid density is merely a 

finite-size effect (in that the system size utilized in the simulation could not convey the 

phase representative of the thermodynamic limit) [53]. 

A source of controversy for Ref. [53] is related to the inefficiency of explicitly sam­

pling long permutations using PIMC, and that this inefficiency, which can manifest itself 

strongly in larger systems, could lead to artificial suppression of permutations, and thus 

generate false negatives for superfluid properties. In other words, the ergodicity problem 

associated with the intrinsic sampling inefficiency PIMC suffers from in this regard ren-
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ders it difficult to decipher whether the vanishing of the superfluid signal for large systems 

is representative of the thermodynamic limit, or a symptom of the algorithmic limitations. 

In Chapter 5, we report the results of a theoretical study which seeks to clarify this 

point of contention by repeating the simulations of Ref. [52] and Ref. [53] using an im­

provement of standard PIMC, the novel continuous-space worm algorithm (WA), which 

does not suffer from severe inefficiencies in the generation of permutation cycles. 

1.5 Summary of Original Research 

Altogether, the research represented by this thesis is a contribution to our physical under­

standing of 2D superfluid films, and the behavior, in particular, of 2D p-H2 at low temper­

ature. We have employed state-of-the-art computational techniques to uncover and clarify 

novel physics, with the following specific primary aims, as they relate to superfluid 2D 

films of molecular hydrogen: 

1. to investigate the role of dimensionality in the quantum many-body properties of 

bosons. 

2. to explore the role of incommensuration in the stabilization of liquids to low tem­

perature. 

3. to clarify the relationship between superflow and solid order in 2D. 

4. to study the effect of introducing disorder on local and global properties of quantum 

films. 

These points are addressed as follows. 

1.5.1 Adsorption of /;ara-Hydrogen on Fullerenes 

Points 1 and 2 are first addressed by studying the adsorption of p-H2 on the surface of 

fullerenes at T=0 K. Two models are adopted; the first treats each fullerene as a smooth 

spherical surface, interacting with p-H2 with roughly the strength of a single plane of 
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graphite. Strong particle localization is observed, with the p-H2 found to approximately 

recreate their 2D equilibrium configuration (a triangular lattice). 

A second model, incorporating the corrugated structure of the fullerenes, is then stud­

ied in the hopes of introducing incommensuration (i.e. preventing the /?-H2 from forming 

their preferred structure by imposing a competing order). The equilibrium configuration 

of hydrogen in this case is, however, commensurate with the carbon-ring adsorption sites 

on the surface of the fullerene, with severe particle localization experienced by p-H2. 

The p-B.2 is found to in general be compressible, with p-U2 again attempting to recreate 

their equilibrium 2D configurations on the fullerene surface as the chemical potential is 

increased. 

Being solids with a high degree of particle localization, these systems are thus not 

candidates for the observation of the superfluid phase of p-H2. Secondary information 

gleaned is related to the structural and energetic properties of adsorbed p-H2 on fullerenes, 

of some relevance to the field of hydrogen fuel storage. 

This research was published in 

Joseph Turnbull and Massimo Boninsegni. Physical Review B 71, 205421 (2005). 

Reprinted in Virtual Journal of Nanoscale Science and Technology 11, 23 (2005). 

1.5.2 Molecular hydrogen isotopes adsorbed on krypton-preplated 

graphite 

Points 1 and 2 are again our focus here. We confirm that reduction of dimensionality 

alone is insufficient to extend the fluid state of j?-H2 to a low enough temperature for 

superfluidity to be observed. This is accomplished by studying the adsorption of p-H2 on 

a graphite substrate preplated by a single atomic monolayer of Krypton atoms, which are 

commensurate with the underlying graphite, inspired by [40]. The idea is to adsorb /?-H2 

upon a surface similar to graphite, but more weakly interacting. 

We find that there are two stable phases of p-H2, both solid; one is a monolayer com­

mensurate with the Kr layer, while the other is an incommensurate monolayer, compress­

ible within a small range of coverages. Quantum exchanges of hydrogen molecules are 
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suppressed in this system; altogether, our findings are similar to what is seen for p-H2 on 

bare graphite. 

A closely related system is next studied to probe a potential mechanism for inducing 

incommensuration. The krypton monolayer preplating the graphite substrate is instead 

compressed, following from additional structural information provided by the lead author 

of [40]. In reference [40], it is reported that/?-H2 with coverage above 1/2 filling adsorbed 

upon such a geometry displays fluid-like properties down to T=1.5 K. The hypothesis 

is that a particular range of densities of /?-H2 are accommodated by the formation of 

commensurate regions separated by heavy domain walls, and that the position of these 

domain walls is fluid. 

Using an exact ground state technique, for both p-H2 and o-D2, we find that a solid 

monolayer commensurate with the Kr layer is thermodynamically stable, and, in both 

cases, is the coverage corresponding to the minimum energy per particle. For o-D2, we 

also find that there are two distinct compressible incommensurate solid regions, with the 

denser region, IC-II, corresponding to regions of commensuration separated by domain 

walls. Investigation of this coverage region at finite temperature, using the worm algo­

rithm, down to T=0.25 K, yields no evidence of superfluidity, consistent with our obser­

vation of a high degree of localization of o-D2 molecules. No quantum exchanges are 

found to take place, though they are sampled efficiently. 

Though our simulations are not inconsistent with the "domain-wall fluid" interpreta­

tion offered by Wiechert et al., this mechanism is not found to support superfluidity of 

either hydrogen isotope. Our interpretation is that, while incommensuration is achieved 

in the sense that the number of particles is greater than the number of adsorption sites on 

one sublattice of the substrate, particles along the domain walls are still roughly localized 

around the minima of the potential (by partially occupying the second of two sublattices), 

reducing zero-point motion sufficiently to suppress quantum many-body effects. 

This research was published in 

Joseph Turnbull and Massimo Boninsegni. Physical Review B 76, 104524 (2007). 

Joseph Turnbull and Massimo Boninsegni. Journal of Low Temperature Physics 140, 269 

(2005). 
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1.5.3 Supersolid hydrogen in two dimensions: incommensuration and 

disorder 

Here we address points 1 through 4 in one systematic investigation inspired by ref. [52]. 

We first embed /?-H2 in a regular crystal of identical scatterers, incommensurate with the 

equilibrium crystal structure of pure 2D p-H2, and study this system as a function of 

density, temperature, and impurity distribution. 

For smaller systems with periodic arrays of impurities, we find that the equilibrium 

phase of p-H2 is an arrangement roughly coextensive (a kagome tiling) with the impurity 

background, with the apparent presence of a ~ 10% concentration of interstitials. We 

obtain a finite superfluid signal, thus observing an apparent coexistence of diagonal long-

range order and off-diagonal quasi-long-range order, making the system consistent with 

definitions of a "supersolid". 

In order to confirm that this system, in the thermodynamic limit, indeed supports 

superflow in £>-H2, we next study the structural properties of a much larger manifestation 

of the system, containing hundreds of impurities and p-H2 molecules. The/?-H2 is found 

to form a perfect crystal with a large unit cell (having non-trivial structure), devoid of 

interstitials. Such a phase is most likely insulating [49]. Thus, we conclude that the above-

reported superfluid properties are finite-size artifacts, and that p-H2 in this geometry is a 

regular quantum solid in the thermodynamic limit. Increasing the coverage does not lead 

to the formation of an interstitial-rich phase, but rather to the coexistence of different 

commensurate phases, separated by domain walls. 

The second part to this investigation focuses on the role of disorder, where our aim is 

to determine whether the above perfectly crystalline equilibrium phase could be weakly 

disrupted by the introduction of disorder, which could introduce a finite density of inter­

stitials at equilibrium, and lead to long-range superfluid coherence. Disorder is known to 

cause localization, with the ensuing disappearance of SF in a system of hard core bosons 

[54]. However, recent numerical work has yielded evidence of a possible "superfluid 

glassy" phase of condensed helium, characterized by simultaneous broken translational 

invariance (and therefore nonzero shear modulus) and SF, with no diagonal long-range 

order [55]. It is conceivable that a similar phase of p-H2 could arise in disorder. 
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For sufficiently strong disorder, even though we observe exchanges of small groups 

of molecules, they have a local character, i.e., long permutation cycles spanning the en­

tire system do not occur; as a result, a finite superfluid signal never materializes in the 

low temperature limit even for relatively small systems. We observe a glassy phase, but 

we also clearly observe that p-R2 molecules locally attempt to recreate the triangular lat­

tice structure associated with bulk 2D p-R2 at equilibrium [38], only interrupted by the 

underlying impurity matrix. 

For weak disorder, starting from a minor random displacement of the background 

impurities found to not disrupt the perfect crystalline state of p-H2, the magnitude of 

the random displacements is increased to the point where the crystal structure of /?-H2 is 

disrupted and interstitials form part of the equilibrium phase, and all trace of off-diagonal 

quasi-long-range order is destroyed. 

A manuscript of this research has been submitted for publication to Physical Review 

B(seeArXiv:0807.2210). 

Altogether, we find strong evidence suggesting that reduction of dimensionality, in-

commensuration, and imposed disorder, alone or in conjunction, cannot stabilize a super-

fluid or supersolid state of bulk 2D /?-H2. The prognosis for observing superfluidity in 

bulk 2D p-H2 thus appears to be poor. Absent some mechanism to directly renormalize 

(weaken) P-H2-P-H2 interactions, the propensity of bulk/?-H2 to crystallize rules out the 

observation of bulk hydrogenic superfluidity even in 2D. 
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Chapter 2 

Physical Model, Methodology, and 

Simulation 

In this chapter, the approach used to study the systems of interest is developed. We begin 

by stating the general form of the systems under investigation (i.e. defining the many-

body Hamiltonian), and then framing the precise problem for which solutions are sought. 

Our procedures for constructing exact solutions to these problems are then explained; this 

entails a brief discussion of the general path integral formalism, as well as a description 

of one zero-temperature incarnation of the formalism (path-integral ground-state algo­

rithm) and a recently developed extended configuration space method (the worm algo­

rithm) for continuous Bose systems at finite-temperature. Included is a discussion of the 

configuration space sampling techniques, as well as the procedures used for calculating 

observables. 

In later sections, we discuss technical details related to error estimation, the forms of 

the intermolecular potentials assumed, as well as a selection of other topics pertinent to 

our simulations. 

2.1 Formalism 

For a quantum-mechanical system of N particles in thermal equilibrium at temperature 

T, we wish to obtain thermal averages for physical observables which are diagonal in the 
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coordinate representation as 

where the sum is taken over all s configurations, /3 = 1/T, e~PEs is proportional to 

the probability of the system occupying state s, and O(s) is the value of the physical 

observable O for state s [56]. Here, we define a state to be one of an infinite number 

of unique definite-energy many-body wavefunctions, \I/jg(ri, r2,..., r/v), where r, are the 

positions of the N particles comprising the system. 

The wavefunctions tyE are quantum-mechanical objects satisfying the many-body 

Schrodinger equation for our system 

N 1 
-h2 Y^ TT-^I^E + V(ri, r2,..., rN)VE = EVE (2.2) 

fc=i Zmk 

where h is Dirac's constant (in the units used herein, this constant is given by 7.64 x 10~12 

K s), rrii is the mass of particle i, and V(r1; r2,..., rN) is the total potential energy associ­

ated with the configuration of iV particles at positions (r1; r2,..., rN), with V depending 

only upon the position of all particles. We also note that, in this thesis, all energies have 

been divided by Boltzmann's constant, kB, (thus energies will have units of kelvins, K). 

If ^E is normalized such that 

[dr1dr2...drN\VE(rur2,...,rN)\2= [ dP{rur2,...,rN) = N (2.3) 

we can associate dP with a probability density. In general, W is unknown. 

For the sake of notational convenience, we will introduce the short-hand notation 

R = ri, r2,..., TJV as a collective coordinate of the N particles. It is convenient also to 

rewrite (2.2) in a more compact form as H^E{R)=E^E(R), where 

^ - S ! E ^ r f ( R ) (2.4) 
fe=l * 

is referred to as the Hamiltonian operator, which is a sum of a kinetic energy operator H0 

and a potential energy operator V. For an arbitrary function F, we next make use of the 

formal relation F(H)^E(R) = F(E)^E(R), to define the density matrix 
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E 

>E(R')*E(R) 

=YJmR,y~0iI^E{R) 

= (R\e-W 
*) 

(2.5) 

where we have taken F=F(H)=e ^H [56]. Using the above formalism, one can now 

rewrite (2.1) as 

,c)_Y.Ez-pEJdRO{R) \*E(R)\2 

EE^EJdR\^E(R)\2 

= JdRO(R)p(R,R,f3) ( 2 6 ) 

JdRp(R,R,P) 

=^JdRO(R)p(R,H!,P) 

where Z denotes the canonical partition function, Z=J dR p(R,R',/3). While simply 

offering a reformulation of the original expression for thermal averages of observables, 

the density matrix formalism naturally lends itself to an elegant method of solution which 

computer simulations can tackle without recourse to approximation. 

Upon applying the operator d/dfl to (2.5), one obtains 

dp{R^'>P) = - £ e"^ E n(R')*E(R) = ~Hp(R, R', (3) (2.7) 

which is Bloch's equation, and we are reminded that H=HQ+V. In the high-temperature 

limit 0 -> 0, we have p(R, R',P)=J2E^E(R')^E(R) [56]. Thus, by the completeness 

property of the eigensolutions to (2.2), we must have that p(R, R', 0) is independent of V 

for any iV-particle system; if we know the solution for one V, we know that it will be a 

solution for any other V in the limit of low /3. This is an intuitive result, as at very high 

temperatures, any system will behave as a non-interacting gas. We will use this property 

to construct an initial condition for Bloch's equation. 

In general, we know neither {^E(R)} nor p(R, R, /?) for our given H. The simplest 

case for which an exact analytical calculation of the density matrix is known is for a 
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system of free particles. For one particle in D-dimensions, a direct solution of (2.2) and 

some algebra yields 

exp 
P/(r,r',/3) = 

m(r—r')2 

2ft2/3 
(2.8) 

(2Trh2f3m-1)D/2 

For a system of iV distinguishable non-interacting particles, one obtains a simple decou­

pling, which leads to the solutions of (2.2) given by an N term product of (2.8) [56]. The 

free particle density matrix for the entire system is thus given by 

pF(r,r',P) = H 
N exp 

m i ( r i - r i ) 2 

2ft2/? 
(2.9) 

t£ (2nVf3m7l)D/2 

As P —»0, we know from the above that the value of the free-particle density matrix 

must coincide with the value of the general density matrix, i.e. p(R, R1, 0) = PF(R, R'I 0) 

[56]. This is our sought initial condition. 

Upon integrating both sides of (2.7) from 0 to f3, we obtain 

ft ~ 
p(R,R',p)=pF(R,R',0)- dTHp(R,R',T) (2.10) 

which we then use to construct a formal expansion for the density matrix in powers of 

(3 by feeding (2.10) iteratively into itself. Upon the evaluation of the resulting nested 

multidimensional integrals, we obtain 

p(R, Rf, p) = T {—^j Pf(R, R', 0) = e-PHpF(R, R', 0) (2.11) 
„ n! 

n=0 

which is a formal, though not yet useful, expression for the density matrix [56]. In order 

to make the evaluation of (2.11) tractable, we make use of the formal identity 

e-^=[e~^)M (2.12) 

where [3=MT. We refer to r in this context as imaginary time, since the exponential in 

(2.12) has the same mathematical structure as the quantum-mechanical imaginary-time 

evolution operator. Replacing the corresponding term in (2.5) with the expression in 

(2.12), we obtain 
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p(R,R,P) = (R e-rHe-rH...e-TH 

M times 

R 
(2.13) 

= / dRidR2 • • • dRM-i p{R, R1,r)p(R1, R2, T) • • • p(RM-i,R, r) 

Upon fixing /3, one can see, in the limit of large M and small r, we have that p(R, R', r) 

approaches the free-particle limit of the density matrix given by (2.9), and one obtains, to 

p{R, R\ T) « pF(R, # , r)e-TV(R) (2.14) 

which is exact for any finite (5 only in the limit r —> 0 (i.e. M -^ oo); we will use 

this approximation explicitly in the following section. Following from reference [57], 

upon taking this limit and expressing (2.6) in terms of (2.14), one can recover an exact 

expression for expectation values of diagonal operators within this formalism as 

/ M ( r ) Q ( f l ( r ) ) e - W 
{ }~ /Di?(r)e-« { ^ 

where the functional integrals are performed over all continuous many-particle config­

urations R(T) constrained by R((3)=R(0) (@ periodicity) where 0 < r < (5 (this is in 

contrast with classical mechanics, where the system follows only one specific R{r) - the 

one corresponding to a stationary action [56]) and where the Euclidean action functional 

S[R{T)} is given by 

SWr)\= /*{££(£) 'Wr))} (2.16) 
where the integrand is the total energy associated to each point along the path, an object 

which resembles the classical Lagrangian, but differs by the sign of the second term. 

An important detail not yet discussed is related to quantum statistics. Namely, in our 

preceding analysis, we have implicitly assumed that the particles are distinguishable (in 

the sense that one could label a particle at some generalized set of coordinates t, and 

track its evolution through coordinate space, as one can do in classical mechanics). For 

the quantum systems we study here, the indistinguishable character of particles must be 
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taken into account in order to properly capture the physics we are interested in, and this 

necessitates that our many-body wavefunction for the TV identical particles exhibits well 

defined properties under the coordinate permutation of any two particles. 

Because the many-body wavefunction \^{R\, T?2, • • • , -Rjv)|2 is physically associated 

with a probability density of positions of identical particles, \& must necessarily change 

only by a phase factor upon particle permutation (the configuration in which any two 

particles are permuted must in no way be physically different than the system prior to the 

permutation). This requirement is inherited by the formalism by requiring that 

W(Ri,-R2,• • • ,Ri,• • • ,Rj,• • • , R N ) = v^iRi,R2,• • • ,Rj,• • • ,Ri,-•• ,RN) (2.17) 

where 77 is a complex number with magnitude one [56], which in principle could be any 

number of the form e%e (in the case of two-dimensional quasiparticle excitations called 

anyons, any complex phase is indeed possible), the spin statistics theorem [58] instead 

provides the restriction that r]=±l. Particles for which r]=l are called bosons, and have 

integer spin, while particles for which 77=-1 are called fermions, and have half-integer 

spin. 

This (anti) symmetry property is expressed by the density matrix as well (which is 

nothing but a bilinear combination of products involving these many-particle wavefunc-

tions), and for a system of identical particles undergoing P permutations, we must have 

that, 

p(R,PR',p)^r]
pp(R,R\(5) (2.18) 

and our thermal averages must be summed over all possible permutations of the TV parti­

cles. While in the case of fermions, the anti-symmetry property spawns an entire class of 

(in general, intractable by Monte Carlo methods - the problem arises from averaging of 

equal magnitude contributions of positive and negative sign for the thermal expectation 

values, with these sign differences arising via particle permutations; the signal becomes 

swamped by statistical noise) difficulties because of the nature of the numerical proce­

dure employed in the calculation of thermal averages (a discussion of which is outside 

the scope of this thesis), the symmetry property for bosonic systems can be incorporated 
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without difficulty or the introduction of systematic errors [56]. It is reiterated that an ac­

curate generation and accounting of such permutations is necessary in order to properly 

capture the physical properties (such as superfluidity) we are interested in. 

2.2 Path Integral Monte Carlo 

As a direct analytical calculation of (2.15) is out of the question for systems with non-

trivial Hamiltonians, we will use an M-discretized form of (2.15) in our calculations, 

making R(r) discontinuous, and using some approximation of the density matrix. 

Direct interpolative quadrature at this level is out of the question, as the immense mul­

tidimensional character of the problem (D x N x M, for a D-dimensional system of N 

particles with M discretization points of (5) makes such an approach scale unfavorably. 

Indeed, the large number of coupled degrees of freedom inherent to the problem renders 

viable only one approach, Monte Carlo integration. The sampling of the vast configu­

ration space is then performed stochastically. This path integral Monte Carlo (PIMC) 

prescription can be very robust, offering the ability to obtain results at arbitrary precision 

by increasing M. 

We proceed, for convenience, by denoting by X = {R0, R\,- • • , RM-I,RM} the 

many-particle path consisting of the full set of configurations Ri across the M imaginary 

time intervals. In this notation, we can write thermal expectation values in the compact 

form 

fdXO(X)P(X) 
{0) K sixnx] (2-19> 

where we must impose the /3-periodicity and particle-permutation constraints, given by 

P(RM)=RO,
 a nd where P{X), the exponential of the discretized Euclidean action (which 

has the mathematical structure of a probability distribution) [56], is given by 

A f - l 

P(X) = e~uW Yl Pf{Rh Ri+l)r) (2.20) 
i=0 

where we have some freedom in our choice of U, being constrained only by the require­

ment of recovering the exact thermal expectation value given by (2.15) in the limit as 
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T —> 0. For the purposes of this discussion, we can use the form of U suggested by 

equation (2.14), namely 

M - l 

J=0 

which satisfies the constraints imposed above. We note that in our calculations we adopt a 

different form ofU(X), which permits the use of fewer M steps ("slices") in imaginary-

time to achieve the same accuracy, the expression for which can be found in reference 

[59]. 

The core PIMC procedure is then to accumulate statistics for the computation of (2.19) 

by generating a large number of independent (uncorrected) many-particle paths {X{} ran­

domly drawn from the distribution P{X), averaging the obtained O for each independent 

path [56]. An example configuration of one many-particle path is shown in Figure 2.1. 

2.2.1 Path Sampling 

How does one go about generating the set of many-particle paths {X0, Xi,...}? A partic­

ularly efficient method is to employ the Metropolis algorithm, in which a Markov chain 

is used to generate a random walk through path space. A transition rule T(X —> X') 

depending only on the initial state X guides this random walk, with a goal of sampling 

paths with a probability proportional to P(X) in such a way that the random walk is er-

godic (i.e. that all configurations are equally accessible in the infinite-sampling limit). We 

can guarantee ergodicity as well as the convergence to P(X) by imposing the following 

detailed balance condition 

P(X)T(X -* X') = P(X')T(X' - • X) (2.22) 

in which T(X —> X') is expressed as product of two terms 

T(X -* X') = Y(X -» X')A{X -> X') (2.23) 

where Y(X —» X') is the sampling distribution determining how transitions between 

state X and X' are sampled [56], while A(X —> X') is the acceptance probability for the 
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Figure 2.1: An example configuration of N=5 particles at T=\ K. Each dot denotes a 

single imaginary-time bead, of which there are M=80 for every particle. The spread of 

each particle gives a rough measure of the quantum zero point motion. Distance between 

tics is 1 A. 
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particular attempted transition. To ensure that our A(X —> X') satisfies detailed balance 

for any Y(X —> X'), we must have that 

which permits us to select an arbitrary form for Y, and in practice we will choose a form 

which leads to efficient sampling. 

Beginning from an Xt many-particle configuration in path space, the very general 

sampling prescription is as follows. We construct a new trial path Xj by sampling up­

dates to the positions of one or more particles over some number of imaginary-time slices 

according to T(Xt —> Xj). For this trial update, we then compute the acceptance proba­

bility A(Xi —>• Xj), and draw a uniform [0,1) random number a. If A(Xi —> Xj) < a, 

we reject the move and sample a different trial update starting anew from Xi. If A(X{ —>• 

Xj) > a, then we accept the trial update, setting Xi+1=Xj [56]. 

A set of efficient update procedures defining Y are essentially accepted as standard 

for conventional PIMC; see for example References [60, 61]. In this work, while making 

some use of the traditional trial update forms, we employ a variation of PIMC with an 

extended configuration space and an expanded suite of general trial updates. We will 

focus on this novel approach in the next section. 

2.3 Extended Configuration Space: Worm Algorithm 

In conventional PIMC, the entire configurational space is represented by a collection of 

closed (/^-periodic) paths, each path associated with one particle. These closed world-

line configurations, being diagonal, contribute to the partition function, so we refer to the 

space occupied by all such configurations as the Z-sector. 

2.3.1 Motivation 

A serious flaw with conventional PIMC is that it suffers from an exponential decrease in 

efficiency when sampling long permutation cycles (quantum exchanges) for an increase 

of particles iV and/or imaginary-time slices M. This inefficiency comes about because 
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permutational cycles involving groups of particles are sampled directly by cutting and 

reconnecting pairs (or triplets, etc) of world-lines in such a way that permutations occur 

while remaining in the Z-sector. For weakly interacting particles, this procedure gives 

reasonable sampling efficiency. However, for particles interacting via a potential with 

a repulsive core (a feature of any realistic potential describing the interaction between 

atoms or molecules), the reconstruction of world-line segments inevitably will involve 

bringing two particles within their hard-core distance, with an associated increase of the 

potential energy. Permutations in such a scenario will thus suffer a low acceptance rate, 

with the problem being particularly serious when more than two particles are involved in 

a permutational exchange. 

This problem is a critical issue in the simulation of systems for which the observa­

tion of phenomena such as Bose-Einstein condensation and superfluidity are sought, as 

quantum exchanges underpin these effects - in particular quantum exchanges involving 

large numbers of particles. Even a two to three order magnitude increase in computa­

tional power enjoyed over the last two decades has not permitted systems with greater 

than 64 particles to be probed in relation to the superfluid properties. The difficulty is 

compounded by the fact that, in such PIMC simulations, the absence of permutational 

exchange cycles can reflect either a real physical effect or an inefficiency in the path 

sampling routine - this assessment can be impossible to perform with confidence. 

A recent reformulation of PIMC, called the worm algorithm (WA) has been found 

which completely overcomes these problems. Borne of conceptually similar techniques 

used in quantum lattice models, the WA generates all possible many-particle permuta­

tions through a sequence of local single-particle updates. The updates - called "swaps" 

- take place for configurations sampled outside the Z-sector, and do not require any two 

particles involved in a permutation to be brought within the hard-core radius of their in­

teratomic potential. As no potential energy penalty is involved, this update can enjoy a 

very high acceptance rate. The structure of the updates, as we shall see, also permits us to 

sample only two-particle permutations, since arbitrarily long permutation cycles can be 

constructed through a sequence of these two-particle exchanges. 

The continuous-space worm algorithm, first described in References [62,63], operates 

in an extended configuration space which includes the Z-sector as a subspace, as well as 
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configurations with open world-lines, called "worms". These worm configurations are 

not diagonal, thus do not contribute to the partition function; however, they contribute 

to a similar object called the one-particle Matsubara Green function, which in second 

quantized Matsubara representation is given by, 

G(r,r) = (r{brl+r(r) SJ,(r = 0)}) (2.25) 

where T is the time-ordering operator, —J3/2 < r < (3/2, br(r) is the Bose particle 

annihilation operator, and b\{r) is the Bose particle creation operator. The zero-time limit 

of (2.25) is the one-body density matrix, n(r). If G(r, T) and n(r) decay exponentially in 

r, we note that the system is necessarily not superfluid. Like the energy, the temperature 

dependence of G(r, r) can be used also to infer if one is probing the system's ground-

state. 

Configurations including worms occupy what is referred to as the G-sector, with the 

ends of a worm, which for historical reasons are referred to as Ira (the head), and Masha 

(the tail), sampled as to permit traversals in space and imaginary-time. 

To go from a configuration in the Z-sector to a configuration in the G-sector, one 

must sample and then accept an opening of a closed world-line. Similarly, to go back 

from a configuration in the G-sector to a configuration in the Z-sector, one must sample 

and then accept a closing of the worm. The worm algorithm can be constructed in either 

the canonical or the grand-canonical ensemble, the latter introducing particle number 

fluctuations through the creation and annihilation of worms. In our implementation, Z-

sector configurations are constrained in particle number TV" (i.e. canonical simulations), 

and all G-sector configurations have a single worm, plus N — 1 closed world-lines. 

2.3.2 Worm Sampling 

This section follows from References [62, 63]. In the following, we label the imaginary-

time coordinate with the index i (which ranges from "bead" 0 to M — 1), and the particles 

with an index k. Consider a many-particle configuration X, which in general can include 

a worm, assigned a statistical weight W(X, r)e~u(x\ where 
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M - l 

W(X,T) = f ] Pf(Ri,Ri+i,T) (2.26) 

where pj is defined by (2.9), and we note that W(X, r) must coincide with (2.20). 

We sample this configuration space using the following suite of elementary ergodic 

updates, divided into three classes: 

1. Open/close updates (complementary pair) 

2. Advance/recede updates (complementary pair) 

3. Particle swap (self-complementary) 

Starting from a state in the random walk through configuration space for which the 

many-particle path X\ is in the Z-sector, we can sample an open update for the random 

world-line associated with particle k by attempting to remove its beads with indices (M — 

7) < i < M — 1 (7 chosen at random, subject to the constraint 2 < 7 < 7max < M, with 

Imax chosen to optimize the sampling efficiency). We associate Ira with the bead at index 

M — 7 and Masha with the bead at index M — \ (the last bead, which we will assume 

is the position of Masha in all following discussions). Our acceptance probability for the 

new G-sector configuration X2 given by 

A>Pen = min <{ 1, —j- — 7T-V \ (2.21) 
CeU(X1)-U(X2) 

"' /O/^Ira^Masha, ( 7 - 1)T) 

where the arbitrary constant C can be used to control the relative proportion of time spent 

in the G and Z sectors. 

Similarly, when starting from a configuration in the G sector such that the number 

of imaginary-time slices between Ira and Masha is C, — 1, with 1 < ( < 7max, we can 

produce a trial update consisting of the creation of £ — 1 intermediate beads connecting the 

worm ends (thereby rendering the configuration diagonal) by sampling directly from the 

product of C free-particle propagators, n£=i P/(r»-i)rii r ) - I n order for the open/close 

complementary pair to satisfy detailed balance, the probability of accepting the close 

move must be given by 
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f eu(x1yu(x2) \ 
Adose = min <̂  1, P/(rira, rMasha, (7 - 1)T) > (2.28) 

with the configuration returning to the Z-sector if the attempt is accepted. 

Instead of closing the worm, a pair of G-sector trial updates can be attempted in which 

the head, Ira, can move forward or backward in imaginary-time. Let i be the current 

position of Ira, where 0 < i < M — 1. In an attempted advance move of the worm, we 

generate a random number 7 subject to^<M — 1 — i which determines the number 

of new imaginary-time beads we will generate according to the product of 7 free-particle 

propagators 117= 1 P/(ri-i> r«>r)- F° r a recede move, we draw a random integer number 

C < M — i — 1, and starting from bead Ira, we eliminate ( imaginary-time beads. The 

acceptance probabilities for advance and recede moves are both given by the expression, 

Advance = Aecede = min { l , e ^ i ) " ^ ) } ( 2 . 2 9 ) 

except in two cases where Ira and Masha are adjacent; if lra=0, no recede move may be 

attempted, and if Ira= M — 2, no advance move may be attempted. 

The remaining move in our suite of G-sector updates is swap, which involves the 

permutation of particles. Consider all closed world-lines intersecting imaginary-time 

slice (j + m) and select one of them, which we will call G, with probability TQ = 

Q j 1 E i Pf(rA,i, rc,i+m, mr) where 

@j = Yl Pf(rA^ ri,i+m, mr) (2.30) 

which is rejected as a trial move if the world-line selected contains Masha at some 

time slice w such that i < w < i + m. A set of random trial positions given by 

{rA,i+ii ••••> rA,i+m-i} is generated precisely the same way as in the close move described 

previously, while the set of imaginary-time slices {rc,i+i, • ••,rc,i+m-\} a r e erased (in 

analogy with open moves). The entire swap move is then accepted with probability 

Aswap = m i n { l , e ^ ) - ^ ' ) e V e c } 

If the swap is accepted, Ira is shifted from TAJ. to rc,i, while world-line A reconnects 

with world-line G, implying a relabeling as illustrated in figure 2.2. 

26 



Before AC permutation After AC permutation 

Figure 2.2: Swap move between world-lines A and C between imaginary-time slices i 

and i + m, as described in the text. World-line B is a spectator for this swap process. 

2.3.3 The Return on Investment 

Upon the development of the worm algorithm, several showcase systems were imme­

diately studied, including liquid 4He in both two and three dimensions [62, 63], with 

systems encompassing thousands of bosons (two orders of magnitude greater than system 

sizes capable of being accurately studied using traditional PIMC), as well as simulations 

performed to elucidate the role of vacancies and extended defects in solid 4He, for systems 

with tens of thousands of bosons [41, 50, 51, 55]. 

Numerical results with unsurpassed accuracy have been reported in the above studies, 

as well as results describing phenomena beyond the reach of earlier QMC approaches. 

The extension of the configuration space to the G-sector also permits the explicit and 

exact computation of imaginary-time off-diagonal correlations not available to any other 

continuous-space QMC technique. 

2.3.4 Physical Estimators 

This section is derived from References [56, 61, 62, 63]. 
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Using efficient schemes to sample the phase-space of quantum many-body systems 

forms the backbone of our simulations. What we are ultimately interested in, however, 

is the computation of physical observables, such as those encapsulating energetic and 

structural information, as well as imaginary-time correlations and estimates of quantities 

such as the superfluid density. 

We calculate structural information such as pair-correlation functions, denoted by 

g(r), which measure the relative probability of finding two particles at a distance r from 

each other, using standard histogramming. A related quantity, the static structure factor 

S(q) (which can be accessed directly in experiments using neutron or x-ray scattering, and 

thus has utility in direct comparisons), can then be obtained as the Fourier transform of 

g(r). These spatial correlation functions provide important information related to thermal 

and quantum phase transitions. 

In order to estimate the total energy, we take advantage of the thermodynamic identity 

(E) = -
~Z~dp 

(2.31) 

with the partition function Z for N particles in D dimensions with each world-line 

consisting of M imaginary-time slices expressed in path integral notation as 

Z 
1 

M dR0--- dR M-l 

(4TT\T)DNM/2 

-M-l N ^ _ r i + 1 

exp E E ^ x r -
. i = 0 k=l 

exp 

M - l 

-r £ V(Rk) 
2 = 0 

(2.32) 

which becomes exact in the limit as M 
h2 

oo if we use the expression for U in (2.20) 

2 . By plugging (2.32) into (2.31), we can compute energies given by (2.21). Here, A 

per particle e(N)=K(N)+V(N) using the resulting estimator given by 

e(N) = 
(E) D_ 

2T 

((r{ i+in+(v) (2.33) 

— has units of inverse temperature, the third term in the above 
N 2r 4AT2 ' TV 

Recalling that r = -^ 

expression can be readily identified as the thermal average of the potential energy V per 

particle, with the remaining two terms being necessarily associated with the kinetic energy 
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K per particle. The first term herein is the classical kinetic energy, and the second term 

corresponds to the average square displacement that a particle's beads in imaginary-time 

experience from the center of mass of the particle, which gives a measure of the particle's 

zero point motion (a reflection of the Heisenberg uncertainty principle). As required, 

when we take limAf— 1 of (2.33), the expression for K reduces to its classical value. 

In order to obtain dependable results, in particular for the energy, one must perform a 

series of independent simulations varying only by the number of slices, M, and extrapo­

late from these estimates the M —» oo limit (i.e. r —»• 0), typically by fitting the results 

by an expression of the form J(T) = cx + c2r
A. 

Another quantity we are interested in is the superfluid density, a property experimen­

tally characterized in terms of the response of a system to the movement of its boundaries. 

Assume we have a cylinder filled with a liquid cooled to some very low temperature. If a 

rotation of the cylinder about its axis is induced, a normal fluid will be dragged along with 

the surface of the container, regardless of the speed of rotation. A superfluid, however, 

will remain at rest if the container rotates slower than some critical velocity. Following 

from Reference [61], the effective moment of inertia (i.e. the work needed to induce an 

infinitesimally slow rotation) is given by 

dF 
dw2 

_d(Cz) 
w=0 (2.34) 

w=0 dw 

where F is the free energy, and Cz, the total angular momentum operator in the axial 

direction (z) of the cylinder, is given by 

c-=intwk
 (Z35) 

where 9k is the angle of the kth particle of mass m in cylindrical coordinates. The ratio of 

(2.34) to the classical moment of inertia, Ic, is defined as the normal density pn, and any­

thing remaining is the superfluid density ps (where ps + pn=p, the total density), defined 

as 

L = En = i _ 1l (2.36) 
h P P 

and following from the derivation given in Reference [61], one can express 
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Ps 2m tAl) 
- = „ w (2-37) 

where we have defined the projected area 

A = - 2_^ Rk,i x Rk,i+i (2.38) 

where, for a rotation about z, we have taken only the z component of A. 

In our simulations, however, we probe these properties using computationally man­

ageable system sizes coupled with periodic boundary conditions, so expressions such as 

(2.37) are of no direct utility. 

Consider a modification of our geometry outlined above; instead of one cylinder, we 

will consider two concentric cylinders with radii Rc and Rc + d, where d -C Rc. This 

toroidal geometry is topologically equivalent to the imposition of periodic boundary con­

ditions. The classical moment of inertia in this case will be given by mNR2
c, and the 

area can be written as WRc/2, where W is called the "winding number". The winding 

number is defined as the total flux of paths winding around the torus multiplied by the 

circumference of the torus. Using these values in equation (2.37), we obtain 

P* = J^!L (239) 
p 2\(3ND { > 

where the winding number is formally defined as 

N <* rdRk{T) 

dr 
(2.40) 

If no world-lines wrap around the periodic boundary, W, and thus ps, will be zero. 

This makes it clear that the sampling of long particle permutation cycles are critical for 

capturing superfluid properties. 

One final observable we will discuss in this section is the one-body density matrix, 

defined formally in second-quantized form as n(r, r') = (^{r)ijj{r') \, where ^^(r)-0(r) 

is the local density operator, $(r) is a particle creation operator, and i[)(r) is a particle 

annihilation operator. In terms of our density matrix formalism, we can express the one-

body density matrix as 
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n(ru r[) =— / dr2dr3 • • • drN x 
z J (2.41) 
p(ri,r2,r3, • • • ,rjv; r[,r2,r3, • • • , rN;(3) 

for an isotropic system of volume T. It should be clear that this quantity cannot be 

calculated using configurations in the Z-sector. Although in traditional PIMC there have 

been techniques developed to manually open world-lines to compute this quantity [61] 

with some success, in using the worm algorithm we avoid these manipulations completely 

and accumulate accurate statistics for the one-body density matrix almost automatically 

by virtue of our sampling in an extended configuration space. 

One customarily writes the one-body density matrix in a form averaged over all angles 

Cl, given by 

n(r) = - 4 - f dn f dr' n(r', r' + r) (2.42) 

where we note that the Fourier transform of this object is the momentum distribution, 

which is experimentally accessible. One can in fact extract the condensate fraction (which 

will be non-zero for superfluids if D > 3) from (2.42) by first calculating 

n o = ^ 2 / dr n ( r ) ( 2 - 4 3 ) 

and then taking limr 

2.4 Path Integral Ground State 

Accurate ground state (T=0) expectation values for quantum many-body systems can 

also be computed by means of quantum Monte Carlo simulations. In this work, the 

method utilized is the Variational Path Integral (VPI) method, which is an extension 

to zero temperature of traditional PIMC [56]. 

VPI (also referred to as Path Integral Ground State, PIGS [64]) is a projection tech­

nique, which filters out the exact ground state wave function out of an initial trial state. 
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2.4.1 Ground State Projection Methods 

Again consider a system of N identical particles of mass m, with the quantum-mechanical 

Hamiltonian H of the system again given by 

h2 

H = HQ + V = -—y£vl + V(R). (2.44) 
k=i 

The exact ground state wave function &o(R) can be formally obtained from an initial 

trial wave function WT(i?) as 

$oOR) oc lim I dR'G{R,R\(3)^T(R') (2.45) 

where G(R,R',(3) — (R exp — TH R'\ is referred to as the imaginary-time prop­

agator, with f3 appearing as an effective inverse temperature in analogy with the finite 

temperature density matrix (though, here it plays the role of a projection time, given the 

analogy of the projection operator with a quantum evolution operator in imaginary time). 

For a given H, G is generally not known analytically. Just as in PIMC however, using 

one of several schemes, it is possible to obtain approximations for G whose accuracy 

increases as j3 —• oo. Suppose G0(R, R', 0) is one such approximation. Making use of 

the formal identity exp -pH = exp -TH 
M 

, with (3 = Mr, one can express G as 

G(R,R',(3) 

dRidRz • • • dRM~iGo(R, Ri, T)GQ(RI, R2, r) • • • GQ(RM-I, R , T) 
(2.46) 

The above approximate expression becomes exact only in the limit where M —» 00 

and r —> 0 such that f3 —> 00. In a numerical calculation, however, one by necessity 

works with finite values, so r, the 'timestep', must be chosen to be small enough that our 

replacement of G by Go entails an insignificant loss of accuracy; likewise M, the number 

of 'slices' which the imaginary time interval, /3, is broken up into, must be chosen to be 

sufficiently large such that the Mr = j3 —» 00 limit can be approached to the desired 

precision. 
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The form of G0 used determines the efficiency of the numerical calculation. The 

simplest form it can take on is the primitive approximation 

G0(R,R\r) = pF(R, R',r) e - i l ^ H ^ ' ) ] + 0 ( r 3 ) } ( 2 4 7 ) 

N 
r* - r ,M2 

k) 
4(3T 

(2.48) PF(R,R>,r) = (47Tf3r)-:iN/2l[eW 

fc=i 

where pF is the exact propagator for a system of N non-interacting particles. 

We have so far succeeded in turning an intractable integral, (2.45) (since we do not 

know G), into a multi-dimensional integral which, in principle, can be solved. 

2.4.2 Implementation: Monte Carlo 

How does one go about calculating the above multi-dimensional integrals? Just as in the 

techniques outlined in previous sections, a Monte Carlo procedure is the natural approach, 

since it scales optimally in many dimensions (in comparison with other numerical inte­

gration schemes). The specific technique we use to do this is termed Variational Path 

Integral (VPI), also known as Path Integral for the Ground State (PIGS). The procedure 

works as follows: One samples a large set {Xq}, q = 1,2,..., Q, of discretized many-

particle paths X = R0Ri...RM, where Rj = rjirj2...rjN represents the positions of all 

iV particles in the system at the jth "slice" in imaginary time. These paths are sampled 

based on the probability density 

V(X) cc ^T(RO)^T(RM) \ J ] Go (Rj, Rj+i, r) (2.49) 
<- j=o J 

where tyT(R) is our trial wave function for the many-body system. One can show [61] 

that, for any choice of \&T, in the limit as LT —> oo and r —> 0, RM/2 is sampled from 

the square of the exact ground state wave function ®(R). This allows one to calculate the 

ground state expectation value of any observable O diagonal in the coordinate represen­

tation as a simple statistical average 

1 Q 

(6)K-Y,0{#M/2) (2.50) 
V 9=1 
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The ground state energy can be evaluated using the convenient "mixed estimator", 

which yields an unbiased estimate: 

W^W C2.J0 

Expressions of the form (2.50) can be rendered arbitrarily accurate by letting Q —> oo 

(i.e. by sampling a large set of configurations). 

For a particular choice of r, since the projection time j3 = Mr is necessarily finite, 

simulations must be performed for increasing M, until one finds that estimates of the 

observables have converged, within statistical errors. 

One must also extrapolate estimates obtained for different r, in order to infer results 

in the r —>• 0 limit. A more accurate form of G (such as that thoroughly discussed in 

Ref. [65], accurate to T 4 ) , or a more accurate trial wave function \&T allows one to obtain 

convergence with larger r and/or fewer slices M, but, at least in principle, the extrapolated 

results ought to be independent of the choices of G and \PT. 

In summary, with sufficient computer time and proper calibration of r and M, one can 

generate estimates of physical observables that are exact (errors being only statistical). 

Individual simulations involve generating the set {Xq} using a random walk through 

path space. Though the paths could be updated by sampling changes in position for one 

bead at a time, we can increase computational efficiency by sampling a variety of trial 

moves involving more than one bead. The implementation includes trial moves involving 

rigid displacements of an entire particle path {displace type moves), and multilevel sam­

pling updates (see, for instance, Ref. [61]), which are divided into "wiggles" of central 

path portions (i.e., updates not including an endpoint, namely j=0 or j=M), and "wag" 

updates involving path endpoints (which involve tyT in the acceptance test, as do the 

displace moves). 

The suite of trial updates may also be expanded to include sampling procedures similar 

to those used in Section 2.3.2 for the worm algorithm, which would potentially provide 

efficiency benefits. 

It should be noted that, unlike in PIMC, permutations need not be explicitly sampled 

with their own set of trial moves; since the paths are open, the algorithm allows ample 
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opportunity for all configuration updates corresponding to permutations to be efficiently 

sampled. Thus, though permutations are in a sense explicitly included in the sampling, 

there is no direct measure of their frequency available. 

Despite the lack of permutation statistics, it is possible - for systems lacking transla-

tional invariance - to compute the superfluid density using an extrapolation to (3 —> oo 

of the fractional winding number, though there are some ambiguities involved in this 

process. One procedure is outlined in Reference [66]. 

The trial wave function utilized in these simulations is of the Jastrow type, which for 

a system of N identical pair-wise interacting particles has the form: 

N 

*T(ri,r2,...rJV) = J J e - ^ r « ) (2.52) 
i<j 

which fulfills the symmetry requirement of a many-boson wave function. The pseudo-

potential u is chosen to be of some simple form (usually a Pade approximation of the 

form (a + b r n ) / ( l + c rm), with parameters obtained empirically, by minimizing the 

energy expectation value computed in separate variational calculations). 

The greatest utility of the algorithm is that one can obtain accurate structural and 

energetic properties of many-body systems at T=0 with great efficiency (whereas, with 

the worm algorithm and PIMC, one must perform a series of more expensive simulations 

at different low temperatures and then extrapolate properties to the ground state). 

2.5 Computational Details 

In this section, we will discuss technical details related to error estimation, the forms of 

the intermolecular potentials assumed, as well as a selection of other topics pertinent to 

our simulations. 

2.5.1 Boundary Conditions 

For bulk simulations, our aim is to predict the properties of systems with order ~ 1023 

atoms or molecules, i.e. effectively the thermodynamic limit. Such a number of particles 
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is many orders of magnitude beyond the capability of today's most powerful computers 

(and will likely remain inaccessible for the foreseeable future, short of a dramatic innova­

tion in computing architecture). So it is necessary for us to utilize methods which allow 

simulations of much smaller systems to capture our properties of interest, or, at worst, 

methods to extrapolate to the thermodynamic limit on the basis of results calculated using 

a series of different system sizes. 

The standard technique to reduce these finite-size effects is to introduce periodic 

boundary conditions, which eliminate the spurious influence of artificial surfaces. We do 

this the standard way, by using a rectangular (or box, in 3D) simulation cell, and imple­

menting the minimum image convention. Our interaction potentials, given by expressions 

like (2.57) and (2.58), are short range, and we apply a truncation at some value rc < L/2, 

where L is the minimum dimension of the box (in the case of long-range interactions, 

like in coulombic or gravitational problems, we would need to implement Ewald sums, 

see Reference [67]). We then typically smooth the potential v and its derivative to zero at 

rc via the following modification, 

{ v(r) — a — b(r — rc), r < rc 
(2.53) 

0 otherwise 

where a = v(rc), and b = ^v(r)\rc. Corrections to the calculated potential energies due 

to truncation and smoothing can be estimated using g(r) and our original v(r), where we 

either set g(r) = 1 (its asymptotic value) beyond the cutoff (which works well for liquids 

or gases), or perform a more involved fitting procedure, such one based on the Percus-

Yevick approximation - see Ref. [67]. The influence of these approximations is small, 

and is reduced as the system size increases. 

In all simulations performed for the research presented in thesis, we work in periodic 

boundary conditions, and, for simulations of the bulk, we use the suite of procedures out­

lined above. For simulations of finite systems (for example, pinned clusters), we simply 

set the box to be large enough that the periodic boundary conditions have no influence, 

and we do not perform truncation nor smoothing. 
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2.5.2 Estimates for Statistical Errors 

For the thermal average of a physical observable O, calculated as a mean of its values over 

a large set of t many-particle paths Xj generated by our sampling procedure, we have 

[6)^-tY,6(Xt). (2.54) 

where we collect data after determining that the system has relaxed to its equilibrium 

configuration from the initial configuration used as input. 

In order for our measurement to be meaningful, however, we must provide an associ­

ated statistical error. If we assume that the calculation of O takes place for values of Xj 

such that the measurements are independent and normally distributed, we can estimate 

the uncertainty of < O > as 

However, we sample states via a Markov chain in which one state is generated starting 

from the previous state, and so on. Sequential states in this random walk are thus corre­

lated, and we underestimate the statistical error by using (2.55). One must find a way to 

perform the average over uncorrelated configurations. 

The common approach is to split the simulation up into a number of equal blocks con­

taining a large number (thousands) of sequential configurations (the number of sequential 

configurations divided by the number of particles is defined as the number of sweeps), 

over which partial averages for each block are calculated and stored. One then constructs 

bins with a fixed number of data blocks in each, and obtains the error as the standard 

deviation (variance) of the resulting histogram. 

For any given set of data blocks, one performs this procedure by increasing the bin 

size (reducing the number of bins) until the estimates of the error converge (so long as the 

number of bins is not too small, typically no fewer than 20 bins). If convergence is not 

observed, then one must gather more statistics by generating additional data blocks via 

the usual sampling procedures as before. 
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This blocking and binning procedure will not change the calculated mean, but the 

results for the errors will better reflect the true statistical uncertainty. 

To give one a sense of the numbers involved in these simulations, a typical run (a 

given Hamiltonian with one specific particle density at one temperature) may require the 

collection of anywhere between only fifty up to tens of thousands of data blocks composed 

of usually 1000 sweeps each. Some fraction of these data blocks will be discarded to 

eliminate configurations not representative of the equilibrium state (one determines this 

number by probing the convergence of the mean itself for different discard numbers), 

and, in general, the remaining blocks will be distributed into, for example, equal bins 

containing 5,10, and 20 data points, with the resulting error from each binning compared 

to determine if the error has converged. 

2.5.3 Interparticle Potentials 

With the procedures outlined in the above sections, one seemingly has everything neces­

sary to simulate systems of bosonic particles in such a way that arbitrary accuracy can 

be obtained (which is true - for any input Hamiltonian, the methods can generate results 

which can be made arbitrarily accurate, i.e. there are no uncontrolled approximations). 

There is a wrinkle in the works, however, related to the description of interactions 

between particles. We make several approximations here which warrant some discussion 

and justification. 

First, we will treat atoms like 4He and molecules like p-H2 as elementary bosons, i.e. 

almost ignoring their composite form by conflating the electronic and nuclear structure, 

treating each as a neutral particle with no direct treatment of the substructure. This is 

consistent with working within the Born-Oppenheimer approximation; the electrons adapt 

instantly to changes in the configuration of nuclei, justified by their much lower mass. 

We have considered only potentials which are central, meaning that the interaction 

only depends upon relative distances. In the case of modeling complex molecules, such an 

approach cannot be justified, and at a minimum, one cannot neglect relative orientations 

and thus must take into account angular dependencies. Some success can be achieved 

by treating extended molecules as collections of centrally-interacting atoms with some 
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additional model for the chemical bonds between them (for example, this framework 

can be used for modeling some molecular liquids). For the work we are interested in 

(simulations of 4He and molecular hydrogen), the anisotropics involved are weak, and the 

approximation of using central potentials is adequate. 

In general, central interparticle potentials can be expressed as sums of terms involving 

clusters of particles, 

V{rur2, • • • ,rN) = ^vf{rurj) + J^ vi?k(.r»ri>r*) + ' ' ' <2-56) 
i<j i<j<k 

where v^ is the part of the interaction involving all pairs of particles, v^ involves all 

triplets, etc. In most cases, v^ is by far the dominant part of the interaction, and as a 

good approximation, we can consider the potential to be only a sum of these pair-wise 

terms. 

In cases such as molecular hydrogen, where three-body effects cannot be entirely 

neglected, we can incorporate some of their effects indirectly into an effective two-body 

potential. We will discuss this later in this subsection. 

The particles we deal with in our simulations are electrically neutral, and according 

to classical mechanics, the only force between them should be gravitational (which is 

negligibly small), as electrostatic forces should be zero. To see this, consider two neutral 

particles at a large (much greater than their radii) separation r. If the distribution of 

electric charge around each particle remains rigid and spherically symmetric, then the 

coulombic attraction and repulsion forces between the respective electrons and nuclei 

will cancel to zero. 

While it is clear that the system could reduce its total energy by having the particles 

induce in each other mutual dipole moments, one can argue on symmetry grounds that, 

outside of some external perturbation (such as an imposed external field), this event would 

never occur (i.e. the particles would remain in a state of unstable equilibrium, like a ball 

at the crest of a hill). In quantum mechanics, however, instantaneous fluctuations in 

the electron density break this symmetry, and indeed allow an electrostatic dipole to be 

induced. 

It can be shown that the electrostatic field generated by a single electrostatic dipole 
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is proportional to 1/r3, which leads to a dipole attraction (also referred to as London 

attraction, dispersion, and Van der Waals attraction) proportional to 1/r6, which is the 

dominant force at large distance. 

At short distances, another quantum effect becomes important - the Pauli exclusion 

principle. Though we do not model the electrons directly, we must take into consideration 

their fermionic character as the composite atoms or molecules are brought close together. 

If their relative distance is short enough to cause an overlap of atomic or molecular orbitals 

for electrons in both particles (if we were to model them explicitly), there will be a large 

energetic cost associated with the promotion of electrons to higher energy levels (since 

the exclusion principle prevents more than two electrons, one spin up and one spin down, 

from occupying any given energy level). 

Though there are (very expensive) post-Hartree-Fock ab initio methods to treat these 

electronic effects, and indeed generate entire intermolecular or interatomic potentials, 

very accurately (though still within the Born-Oppenheimer approximation) - see Ref. [68, 

69] - it is sufficient, for the properties we are interested in, to simply model this effect with 

some effective hard-core repulsion. A function with the form of an exponential in powers 

of r has some theoretical justifications, but, for reasons of computational efficiency, one 

generally models repulsion instead using a term proportional to 1/r12. 

The result of this line of reasoning is the Lennard-Jones (LJ) potential, used ex­

tensively in molecular dynamics (MD) simulations, as well as for QMC simulations of 

bosons. The LJ potential has the form 

where e is the well-depth of the potential (setting a characteristic energy) and a is the 

hard-core radius (setting a characteristic length-scale). The LJ potential is empirical in 

that these two parameters are adjusted as to best reproduce particular experimental results. 

For/?-H2, the values of the parameters are a=2. 96 A ande=34.16K. 

In our simulations of molecular hydrogen, we make use of an enhanced LJ-type po­

tential to model the p-H2-p-H2 and o-D2-<?-D2 intermolecular interactions, namely, the 

Silvera-Goldman (SG) pair potential [70] given by 
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vsc(r) j—ax—^/x 
+ ^V*D ^Y>8 /T>9 fylO 

F(x) (2.58) 

where rr = r/rm and F(x) = e ^Dlx^> ^ fovx<D and 1 otherwise. The parameters 

used in (2.58) are defined in Table 2.1. 

Parameter 

I'm 

D 

A 

a 

7 

Value 

6.444 

8.248 

1.713 

1.5671 

0.00993 

Parameter 

0> 
c8 

c9 

Cio 

e 

Value 

12.14 

215.2 

143.1 

4813.9 

315774.661 

Table 2.1: Parameters for the Silvera-Goldman potential given by (2.58). All parameters 

are dimensionless, except for e (given in K) and rm (given in A). 

The first term in (2.58) models the Pauli repulsion between electrons, and the terms 

in square brackets with even inverse powers of x incorporate the long-range attraction 

due to the induced dipoles, and F(x) damps the power-law terms at short distances. The 

term Cg/x9 effectively incorporates three-body Axilrod-Teller effects (which arise from a 

third-order perturbation correction to the dispersion forces [71]). Though this latter term 

obviously is not equivalent to a full incorporation of three-body interactions, three-body 

corrections of this form have been found empirically in simulations of fluids to capture a 

great deal of the physics missing when only two-body terms are explicitly present [72]. 

The quality of the potential required depends upon what information one is trying 

to obtain. Often, qualitative features can be reliably extracted by using, for example, 

square-well potentials, or even hard or soft sphere interactions. In our studies, we are 

not interested primarily in obtaining very accurate energies - our goal is to capture broad 

phase character, explore the role of geometry, and obtain accurate quantum many-body 

statistics. To this end, we use the most accurate potentials available, such as (2.58), which 

can be rendered with reasonable computational effort. It is not expected that refinements 

here would fundamentally change the observed physics (at most, we would expect an 

effective shift in temperature for the properties we are interested in). 
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2.6 A Note on Molecular Hydrogen 

As outlined in Chapter 1, a useful quantity for determining how important quantum ef­

fects are is the de Boer parameter A, which is proportional to the ratio of the de Broglie 

wavelength of the particles, X-h/p, to their hard-core radius, a. When A >1, quantum 

effects play a dominant role; when A <1, quantum effects are small, and one can preclude 

macroscopic quantum behavior such as BEC and SF. 

After the two stable isotopes of helium, the stable baryonic particles with the highest 

value of A are molecular hydrogens, which have comparable mass to helium, but interact 

more strongly. The two hydrogenic composite bosons are H2 (molecular hydrogen) and 

D2 (molecular deuterium, which has twice the mass of H2 and roughly an equal mass 

to 4He), which can interact almost like rare gases, or like molecular species with strong 

angular anisotropies. 

H2, composed of two electrons and two protons, can exist in two distinct states: 

• ortho-hydrogen: the nuclear spins of the protons are aligned, leading to nuclear 

spin 1=1. Odd-integer values of the rotational quantum number J are allowed. 

Ortho-hydrogen molecules have a highly anisotropic charge distribution, and spin-

orbit coupling may need to be accounted for. 

• para-hydrogen: the nuclear spins of the protons are anti-aligned, leading to nuclear 

spin 1=0. By the symmetry requirements of the nuclear wave function, only even-

integer values of the rotational quantum number J are allowed. Para-hydrogen 

molecules have a nearly isotropic charge distribution. 

D2, composed of two electrons, two neutrons, and two protons, similarly exists in two 

states. Within the nucleon, two boson pairs (one neutron plus one proton) form, and a 

symmetry requirement for the total nucleon wave function is imposed: 

• ortho-deuterium: Nuclear spin states of 1=0 and 1=2 are allowed, with only even-

integer values of the rotational quantum number J permitted. Ortho-hydrogen 

molecules have a nearly isotropic charge distribution. 
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• para-deuterium: Only nuclear spin state I=\ is possible, with only odd-integer 

values of the rotational quantum number J permitted. Ortho-hydrogen molecules 

have a highly anisotropic charge distribution. 

At room temperature, H2 gas in equilibrium is composed of 25.1% para and 74.9% 

ortho states; as T approaches 0 K, entropy effects (based on the degeneracy of rotational 

levels) diminish and the higher-energy ortho-hydrogen state is disfavored, with a 100% 

occupation of the para-hydrogen state below T ~20 K [73]. 

Likewise, at room temperature, D2 gas in equilibrium has relative abundances of 

33.3% para and 66.7% ortho states [73]; as T approaches 0 K, entropy effects dimin­

ish and the much higher-energy para-deuterium state, as well as the slightly higher en­

ergy ortho state with 1=2, are disfavored, and we observe 100% occupation of the ortho-

deuterium state with 1=0 below T ~20 K. [73] 

We further note that the energy required to promote p-H2 (o-D2) from its rotational 

ground-state to its first rotational excited state is roughly 170 K (86 K); thus, only J=0 

rotational states are occupied at low temperature. [73] 

We will thus treat molecular hydrogen isotopes at low temperature as being solely 

composed of either p-H2 or o-D2, both cases in the rotational ground state. 
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Chapter 3 

Adsorption of para-hydrogen on 

fullerenes 

3.1 Introduction 

Low temperature adsorption of highly quantal fluids, such as helium or para-hydrogen 

(p-H2) on the outer surface of a fullerene ("buckyball") can provide insight into physical 

properties of a quantum many-body system confined to spatial regions of nanometer ex­

tent. As the diameter of the fullerene is increased, the properties of the adsorbate ought to 

interpolate between those of a cluster with a solvated impurity, and those of an adsorbed 

film on a planar substrate.1 

We consider adsorption of p-H2 on a single fullerene Q, with 1=20, 36, 60 and 80. All 

of these molecules are strong adsorbers, and very nearly spherical. Background for this 

study is provided by the wealth of theoretical [39, 52, 74, 75, 76, 77] and experimental 

[32, 34, 35, 36, 78, 79, 80] work, spanning over two decades, aimed at investigating the 

properties of adsorbed p-H2 films on various substrates. This work is also inspired by 

recent theoretical results on adsorption of helium on buckyballs [81, 82]. A considerable 

'A version of this chapter has been published in: 

Joseph Turnbull and Massimo Boninsegni. Physical Review B 71, 205421 (2005). 

Reprinted in Virtual Journal of Nanoscale Science and Technology 11, 23 (2005). 
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effort has also been devoted to the theoretical characterization of superfluid properties of 

solvating p-H2 clusters around linear molecules, such as OCS [30, 31]. 

The study of hydrogen adsorption on nanocarbons falls within the same general re­

search theme, but is also motivated by possible practical applications; an important ex­

ample is hydrogen storage, for fueling purposes. So far, research along these lines has 

mostly focused on nanotubes [83, 84, 85, 86, 87], but it seems worthwhile to extend the 

investigation, possibly providing useful quantitative information on adsorption on other 

nanostructures, including fullerenes. 

In this chapter, energetic and structural properties of a monolayer of /?-H2 molecules 

adsorbed on a Q fullerene are investigated theoretically, by means of ground state Quan­

tum Monte Carlo simulations (PIGS), as outlined in chapter 2. In order to provide a 

reasonable, quantitative account of the corrugation of the surface of the fullerene, we 

explicitly modeled in our study each individual carbon (C) atom. For comparison, how­

ever, we have also performed calculations with a simpler model, describing fullerenes as 

smooth spherical surfaces, interacting with /?-H2 molecules via an angle-averaged poten­

tial. 

Only one adsorbed layer is found to be thermodynamically stable on these small 

nanocarbons. On a corrugated substrate, a commensurate solid layer is observed at equi­

librium; as the chemical potential is increased, /?-H2 is compressed discontinuously to an 

incommensurate solid layer on C20, C36 and C6o- We could not find, within the statistical 

uncertainties of our calculation, evidence of an incommensurate layer on Cgo-

The difference in compression between commensurate and incommensurate layers, as 

measured by the effective /?-H2 coverage, is approximately 216% for C20, and decreases 

to ~ 25% for C60. 

Obviously, on a smooth fullerene, there is no distinction between commensurate and 

incommensurate layers. In the absence of corrugation, energetics of the adsorbed layer 

are determined primarily by the interactions among p-H2 molecules. The ground state 

of p-H2 in two dimensions (2D) is a solid, with molecules forming a triangular lattice 

[38, 52]. Our results indicate that/?-H2 molecules attempt to reproduce the same triangular 

arrangement as on an infinite plane, even when confined to moving on a spherical surface 

of radius as small as a few A. 
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Evidence of quantum exchange is absent in these systems, i.e., no evidence suggesting 

possible superfluid behavior is gathered in this work. 

The remainder of this chapter is organized as follows: Sec. 3.2 offers a description 

of the model used for our system of interest, including a discussion of the potentials used 

and the justifications for underlying assumptions. Sec. 3.3 involves a brief discussion 

of the computational technique and specific details of its implementation, in addition to 

details of calibration and optimization. The results are presented in Sec. 3.4; finally, Sec. 

3.5 is a summary of the findings and our concluding remarks. 

3.2 Model 

We consider a system of N /?-H2 molecules, in the presence of a single Q molecule. 

The latter is assumed fixed in space, owing to its relatively large mass; the center of the 

molecule is taken as the origin of a Cartesian coordinate frame. The I individual C atoms 

are fixed at positions {Rfc}, k=\,2,...,l. All of the atoms and molecules are regarded as 

point particles. The model quantum many-body Hamiltonian is therefore the following: 

h 2 N N I 

Here, m is the mass of ap-H2 molecule, r^ = |r-j — ij-|, {r^} (with j=l,2,...,N) are 

the positions of the p-H2 molecules, V is the potential describing the interaction between 

any two of them, and U represents the interaction of a p-H2 molecule with a C atom. 

The interaction V is the Silvera-Goldman potential described in Chapter 2, while the 

interaction of a/?-H2 molecule and a C atom is modeled using a standard 6-12 Lennard-

Jones (LJ) potential, with e = 32.05 K and a = 3.179 A (see, for instance, Ref. [87]). 

The model (3.1) already contains important physical simplifications, such as the ne­

glect of zero-point motion of C atoms, as well as the restrictions to additive pairwise 

interactions (to the exclusion of, for example, three-body terms), all taken to be central, 

and the use of the highly simplified LJ interaction. On the other hand, (3.1) is the simplest 

microscopic model that explicitly takes into account the corrugation of the surface of the 

buckyball. 
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A further simplification can be introduced by replacing the third term in (3.1) with 

J2i U{i"i), where U is the following, spherically symmetric external potential (see Ref. 

[81] for details): 

U(r,R) 
en I a12 

Rr 5 
ae 

2 

( r - R ) 1 0 (r + R) 
1 1 

10 

(3.2) 
(r-R)4 (r + R)4JJ 

Here, n = ATTO a2, a being the radius of the fullerene and 6 being the areal density 

of C atom on its surface; e and a are the parameters of the LJ potential V introduced for 

the fully corrugated model. By using (3.2), one is describing the fullerene as a smooth 

spherical shell, i.e., corrugation is neglected. This approximation substantially simplifies 

the calculation; it has been adopted in recent studies of helium adsorption on buckyballs 

[81, 82]. 

As mentioned above, in this work we have performed calculations based on the full 

model (3.1), as well as using the effective potential (3.2); results obtained in the two ways 

are compared in Sec. 3.4. 

3.3 Computational Method 

In this section, the method utilized is Variational Path Integral (VPI), as described in 

chapter 2, section 2.4. The trial wave function utilized is of the Jastrow type: 

^T(rur2,...rN) = ( f | ] ] e - ( l r - - R k l ) | x 
M = l fc=l ' 

JJe-tt(r«>) (3.3) 

which fulfills the symmetry requirement of a many-boson wave function. In the case 

of the spherically averaged model, 1=1 and Ri=0. The pseudo-potentials w and u were 

chosen as follows: 
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w(r) — — and u(r) = — (3.4) 

where x = 2 for the spherically averaged potential, and x — 5 for the corrugated case. 

The values of the parameters a — 80 Ax, 7 = 750 A5 and x were obtained empirically, by 

minimizing the energy expectation value computed in separate variational calculations. 

Using the given \PT, we observe convergence of the ground state energy estimates with 

a projection time Lr = 0.250 K_1, with T = T0 — 1/640 K_1. Estimates for all quantities 

quoted in this study were obtained using r = r0, even though convergence of the estimates 

for structural quantities can be typically observed with values of r significantly greater 

than T0 (for an equal projection time). 

VPI calculations for a range of p-H2 coverages were carried out for each of C20, 

C36, C60, and Cgo (we refer here to the near spherical isomers of each). We use an ini­

tial configuration of para-hydrogen molecules surrounding the fullerene at a distance of 

approximately twice the Q radius (i.e., making sure that no p-H2 start off within the 

buckyball). Because of the strongly attractive character of the Q, for a small enough 

number of surrounding hydrogen molecules the system remains spatially confined (i.e., 

p-H2 molecules do not evaporate). Thus, even though periodic boundary conditions are 

used in the simulation, they have no effect, so long as a sufficiently large simulation cell 

is used. 

The systematic errors of our calculation are attributable to the finite projection time 

LT and the finite time step r. Based on comparisons of results obtained from simulations 

with different values of L and r, we estimate our combined systematic error on the total 

energy per p-H2 molecule to be of the order of 0.6 K or less. 

3.4 Results 

Physical quantities of interest include the ground state energy per p-H2 molecule e(N) 

and the radial p-U2 density p(r) about the fullerene, as a function of the total number TV 

of molecules. Results for e(N) for all fullerenes considered in this study are shown in 

Figs. 3.1 through 3.4. 
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Let us consider first the case of C2o (shown in Fig. 3.1), as it allows us to illustrate 

some of the general features seen on other fullerenes as well. Filled circles represent 

the energy estimates yielded by the fully corrugated model (3.1), whereas filled squares 

represent estimates obtained using the spherically averaged potential U described in Sec. 

3.2. Solid lines are polynomial fits to the numerical data. Also shown in the inset is 

the number of adsorbed molecules N versus the chemical potential /x (in K). This is 

obtained by first fitting the results for e(N), then minimizing the grand canonical potential 

4>(N) = N(e(N) — n) with respect to N, for different values of JJL. The chemical potential 

of bulk solid /?-H2 at zero temperature, computed by Quantum Monte Carlo using the 

Silvera-Goldman potential, is /i0 = —88 K (from Ref. [88]), and that is where all of the 

N(n) curves end. 

There are some qualitative similarities, but also important differences (mainly at low 

N) between the results yielded by the two models utilized. In the large-AT limit, both 

models yield essentially the same energy estimates, as corrugation becomes unimportant 

for thick adsorbed films. This is the case on all fullerenes. 

Both e(N) curves display a single minimum at a specific number Ne of p-H2 molecules. 

The minimum corresponds to the mathematical condition e(Ne) — /J,(Ne), and physically 

to the formation of a stable /?-H2 layer. On the corrugated C20, a stable layer occurs for a 

number Ne = Nc = 12, significantly smaller than that (Ne = Ns = 22) obtained on a 

smooth fullerene. 

Moreover, the energy per molecule ec{Nc) for the corrugated model is approxi­

mately 10% lower than that on a smooth substrate (es(Ns)), i.e., the corrugated model 

yields stronger /?-H2 binding. Qualitatively similar results are observed on all fullerenes; 

however, the difference between Nc and Ns is seen to decrease with the radius of the 

fullerene, whereas the difference between the minimum energy values in the two models 

is ~ 10% for all fullerenes. 

Corrugation introduces the conceptual distinction between a layer that is commensu­

rate with the substrate (i.e., the outer surface of the fullerene), and one that is incommen­

surate with it. In a commensurate layer, each /?-H2 molecule sits right on top of the center 

of one of the hexagonal (or, pentagonal) faces of the polyhedron formed by C atoms. For 

example, C20 has the shape of a dodecahedron, i.e. it has 12 pentagonal faces, corre-
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Figure 3.1: Energy per/?-H2 molecule e(N) computed by VPI, as a function of the num­

ber of molecules adsorbed on a C2o fullerene. Filled squares: results obtained with the 

angularly averaged potential (3.2). Filled circles: results obtained by explicitly modeling 

all carbon atoms in the fullerene. Solid lines are polynomial fits to the VPI data. Inset 

shows the number of particles N plotted as a function of the chemical potential ji, for the 

fully corrugated model. The chemical potential of bulk solid p-H2 is —88 K, and that is 

where the N(ji) curve ends. 
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Figure 3.2: Same as Fig. 3.1, but for a C36 fullerene. The commensurate layer has 

Nc = 20 p-H2 molecules and is compressible, as evidenced by the finite slope of the 

curve N(fi) for 20 < N < 28. 
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Figure 3.3: Same as Fig. 3.1, but for a Ceo fullerene. 

sponding to as many adsorption sites for/?-H2 molecules. In an incommensurate layer, on 

the other hand, the arrangement of p-H2 molecules is mostly determined by their mutual 

interactions; the fullerene, in this case, merely provides a background attractive potential 

and a curved geometry. 

On all fullerenes studied here, using the corrugated model, the equilibrium adsorbed 

/?-H2 layer is found to be commensurate. On a corrugated substrate, one normally sees a 

transition from a commensurate to an incommensurate layer, as the chemical potential is 

increased from its equilibrium value [76]. No such transition can be observed on a smooth 

substrate, for which commensuration is undefined. This is indeed what we generally 

observe on the various fullerenes that we have considered. Details, however, differ for the 

different systems. 

On C2o, the number of adsorbed /?-H2 molecules remains constant as the chemical 

potential is increased (i.e., no compression of the commensurate layer is observed), until 
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Figure 3.4: Same as Fig. 3.1, but for a C8o fullerene. 

it jumps discontinuously from Nc = 12 to Nj = 22 (see Fig. 3.1). This signals the 

(abrupt) appearance of an incommensurate layer. The number Ni of molecules in such an 

incommensurate layer is the same as in the equilibrium layer on a smooth C2o; this leads 

us to surmise that the physics of the incommensurate layer on the corrugated fullerene 

and that of the equilibrium layer on the smooth fullerene are essentially the same. Thus, 

the main effect of the neglect of corrugation associated with the spherically averaged 

potential model, is the absence of the commensurate layer. We come back to this point 

later, when discussing density profiles. 

The incommensurate layer that forms on a C2o fullerene is compressible, i.e., the 

number of adsorbed molecules is seen to increase monotonically with \±, up to N ~ 28; 

no second layer formation is seen before // reaches the value (fi0) corresponding bulk p-

H 2 , above which thicker adsorbed films are thermodynamically unstable. In fact, on none 

of the fullerenes considered here, do we find more than one stable adsorbed layer. 

On C36, our results indicate that the commensurate layer is compressible; here too, 

however, a discontinuous transition occurs to an incommensurate layer, also compressible 
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Q 
C20 

C36 

CQQ 

C80 

a 

2.00 

2.75 

3.55 

4.11 

Nc 

12 

20 

32 

42 

&c 

0.2387 

0.2105 

0.2021 

0.1979 

Nj 

22 

28 

40 

-

Oi 

0.4377 

0.2946 

0.2526 

-

Ns 

22 

30 

40 

45 

Os 

0.4377 

0.3157 

0.2526 

0.2120 

Table 3.1: Effective /?-H2 monolayer coverages for both the corrugated and uncorrugated 

models of the fullerenes. For the model including corrugation, Nc and Nj mark the num­

ber of /?-H2 molecules in the adsorbed layer at commensuration and incommensuration, 

respectively, with coverages 9c and 6j (in A - 2) . The number Ns marks the number of 

/?-H2 molecules in the adsorbed layer on a smooth fullerene, 9S being the corresponding 

coverage. The radius a of each fullerene (in A) is also given. 

and again physically similar to the one that forms on a smooth fullerene. 

The same physical behavior to that observed on C20 is seen on C6o and C8o, with an 

incompressible commensurate layer. On C8o, though, we fail to observe an incommen­

surate layer; it should also be noticed that, on this system, it is Nc = 42 and Ns = 45, 

i.e., there is a much smaller relative difference between Nc and Ns than on the other 

fullerenes. 

Our results are summarized in Table 3.1, where the numbers are listed of p-H2 molecules 

Nc and Ni in the commensurate and incommensurate layers adsorbed on a corrugated 

fullerene, as well as Ns for a smooth fullerene. Also shown are the values of the effective 

coverage (2D density) 

N 

4iva2 

where, again, a is the radius of the fullerene. The effect of the curvature of the substrate 

can be quantitatively established by comparing these values of 0 to the equilibrium cov­

erage of p-H2 on a graphite substrate [76], estimated at 0.070 A~2. It should be noted that 

this definition of 9 is used to compare the coverage as a function of the surface area of the 

substrate. A definition of the coverage incorporating the distance at which the p-H2 sit 

above the fullerenes is given below (the two definitions would be equivalent for a planar 
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Figure 3.5: Radial density profiles of ap-H2 layer adsorbed on Q. Solid lines: profiles 

obtained for the smooth fullerene model. Dotted lines: profiles of commensurate layers 

on corrugated model. Dashed lines: profiles of incommensurate layers on corrugated 

models. Density is given in A - 3 , whereas the distance r from the center of the fullerene 

is given in A. 

substrate, a distinction only arising with the introduction of non-zero curvature). 

Structural information about these systems is offered by the radial density profiles 

p(r) of p-H2 on each of the four Q for the two models, all shown in Fig. 3.5. Solid lines 

denote the radial profiles on a smooth fullerene, while dotted and dashed lines denote 

radial density profiles in the corrugated model at commensuration and incommensuration, 

respectively. These results are qualitatively the same for each fullerene. The peak of the 

profile is shifted away from the center of the fullerene, as the system makes a transition 

from a commensurate to an incommensurate layer, which is not physically unexpected. 

No evidence is seen of second layer formation, on any of the fullerenes studied here, for 

values of the chemical potential for which the adsorbed film is thermodynamically stable 
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(i.e., p < p0). 

On comparing the density profile for the incommensurate layer on a corrugated fullerene 

(dashed lines) with that for a smooth fullerene (solid lines), one observes a further shift 

to the right for the case of a spherically averaged potential. Perhaps more interestingly, 

the incommensurate layer on a corrugated fullerene features a greater spatial width, with 

respect to that on a smooth fullerene (particularly on C2o and C36). Otherwise, these lay­

ers seem physically similar; for example, one can compute an effective 2D density #e// 

(different than the coverage 9 discussed above) defined as 

"•» = i£j (3-6) 

where ap is the position of the peak of p(r). The values obtained for the two layers 

are very close. In the case of a smooth fullerene, as one goes from C2o to Cgo, Qeff 

approaches from below the value 0.067 A - 2 , namely the equilibrium density of p-H2 

in 2D [38]. This suggests that the physics of the incommensurate layer (and that on 

a smooth fullerene) is determined primarily by the interaction among p-H2 molecules, 

which attempt to replicate, on a curved surface, the same arrangement as they do in 2D. 

One further thing to note is that the width of the adsorbed p-H2 layer on these systems 

is of the order of 1 A, very close to that of an adsorbed monolayer film on graphite [76]. 

As pointed out in chapter 2, the computational method adopted here does not allow 

one to make a direct estimation of the p-H2 molecule exchange frequency, unlike its 

finite temperature counterpart (Path Integral Monte Carlo). Nevertheless, from visual 

inspection of many-particle configurations generated in the Monte Carlo simulation, we 

observe high localization of paths associated to different molecules, which is substantial 

evidence that many-particle permutations are absent in this system. This high degree of 

localization is evident in both the commensurate and in the incommensurate adsorbed 

layers. 
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3.5 Conclusions 

Using a numerically exact ground state Quantum Monte Carlo method, we studied p-H2 

adsorption on the outer surface of near-spherical fullerenes. We performed calculations 

based on a simple model, in which all carbon atoms are included explicitly, i.e., corruga­

tion of the surface of the fullerene is captured. 

A single solid layer of /?-H2 is found to be thermodynamically stable on the fullerenes 

studied in this work. We find that the equilibrium adsorbed layer is commensurate with 

the corrugated surface of the fullerene. Such a layer is found to be compressible on one of 

the fullerenes (namely, C36, for which a finite density of interstitials is accepted), incom­

pressible on the others. On increasing the chemical potential, a discontinuous transition 

is observed to an incommensurate layer on all fullerenes, except for the largest one con­

sidered here (C80). 

The physics of the incommensurate layer is driven primarily by the interaction among 

p-H2 molecules, which attempt to reproduce the same triangular arrangement as on an 

infinite plane, even when confined to moving on a spherical surface of radius as small as 

a few A. Indeed, the incommensurate layer is very similar to that found using a simpler 

model of the system, describing the fullerene as a smooth spherical substrate. This simpler 

model yields results for the energetics and structure of the incommensurate layer in good 

quantitative agreement with those provided by the fully corrugated model; obviously, 

however, it is necessary to include corrugation in order to reproduce the commensurate 

layer. An interesting question that arises is whether a commensurate layer of helium may 

exist on these molecules; the theoretical studies performed so far have made use of a 

spherically averaged potential to describe the fullerenes [81]. 

Being solids with a high degree of particle localization, these p-H2 systems do not 

appear as likely candidates for the observation of the elusive superfluid phase of para-

hydrogen, for example, as defined by a decoupling of the hydrogen layer to an externally 

induced rotation of the fullerene. 

In conclusion, this chapter has provided preliminary information on the structure and 

energetics of hydrogen films adsorbed to the exterior of buckyballs, though much remains 

to be answered. The experimental tests of several of the stated predictions could be carried 
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out, for example, by measuring the mass of adsorbed hydrogen on Q by examination of 

excitation spectra in a dipole trap [89, 90, 91]. 
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Chapter 4 

Molecular hydrogen isotopes adsorbed 

on krypton-preplated graphite 

4.1 Introduction 

In the recent neutron scattering investigation of o-D2 films adsorbed on a krypton pre-

plated graphite substrate [40] (a substrate of interest in the study of quantum films for 

decades [92]) mentioned in chapter 1, evidence of a stable "liquid-like" phase of o-D2 

down to T ~ 1.5 K was reported. Motivated by this experiment, we have undertaken a 

theoretical study of the low temperature phase diagram of p-H2 and o-D2 films adsorbed 

on such a substrate; the results of the study have been distilled to form this chapter. 1 

In a 2005 study [93], we determined that/?-H2 adsorbed upon a substrate consisting of 

graphite preplated with a commensurate monolayer of krypton forms two thermodynami-

cally stable monolayer phases at low T, both solid; one is commensurate with the krypton 

layer, the other incommensurate. Shown in Figure 4.1 is the energy per particle e(N) 

obtained as a function of coverage for this system, with the first minimum corresponding 

to the equilibrium commensurate coverage of jo-H2 with density #0=0.0636 A - 2 , and the 

1A version of this chapter has been published in: 

Joseph Turnbull and Massimo Boninsegni. Physical Review B 76, 104524 (2007). 

Joseph Turnbull and Massimo Boninsegni. Journal of Low Temperature Physics 140, 269 (2005). 
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Figure 4.1: Energy perp-H2 molecule e(JV) (in K) computed by PIGS, as a function of 

the coverage 0 (in A~2). 

second local minimum corresponding to the incommensurate coverage of p-H2 with den­

sity #1=0.0716 A - 2 , compressible up to #2=0.0769 A - 2 . No evidence was observed of a 

liquid phase at T = 0 for these or any intermediate coverages, and quantum exchanges 

of /?-H2 were found to be greatly suppressed. Quantum zero-point motion in the direction 

perpendicular to the substrate was found to be less significant than that observed for/?-H2 

adsorbed on lithium [39], from which one can conclude that this mechanism ought not 

yield a significant reduction in the melting temperature. In that study, while the Kr layer 

was modeled explicitly, the underlying graphite substrate was assumed smooth. 

In this chapter, we again explore this system, but with two important modifications 

with respect to Ref. [93], namely a) we assume this time a compressed krypton layer pre-

plating the graphite, i.e., incommensurate with the underlying substrate lattice structure, 

and b) we explicitly model corrugation of the underlying graphite substrate, in some of 

our simulations. Furthermore, in order to allow for a direct comparison with Ref. [40], 

we study adsorption of bothp-H^ and o-D2. 
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Energetic, structural and superfluid properties are investigated using Path Integral 

ground state (PIGS) Monte Carlo simulations (see Chapter 2, Section 2.4), as well as 

the continuous-space worm algorithm [62, 63] (see Section 2.3) for simulations at finite 

temperature. 

The main results of this chapter are the following: 

1. No evidence is observed of a thermodynamically stable liquid phase for o-D2 or 

p-H2. In all cases, equilibrium phases are solid monolayers, commensurate with 

the underlying krypton plating, with coverage (i.e., 2D density) #o=0.07253 A - 2 

for both isotopes. 

2. An o-D2 monolayer composed of commensurate domains separated by domain 

walls is found to be thermodynamically stable, compressible in a relatively small 

range of coverages. 

3. Quantum exchanges of p-H2 or o-D2 molecules are essentially absent in the T —> 0 

limit; consistently, no evidence of a finite superfluid response of either isotope is 

ever observed. 

4. Our results are consistent with the presence of a "domain-wall fluid", as suggested 

in Ref. [40]. Though no dynamical information can be reliably extracted using the 

QMC techniques employed here, visual inspection of instantaneous configurations 

generated by our sampling procedure suggests that such a domain-wall fluid indeed 

forms; however, such a fluid does not support SF of either hydrogen isotope even 

at T=0. The hydrogen molecules are highly localized, with even those molecules 

making up the domain wall being localized by virtue of sitting at a potential mini­

mum of the substrate. 

The remainder of this chapter is organized as follows: Sec. 4.2 offers a description of 

the model used for our system of interest, including a discussion of the potentials and the 

justifications for the main underlying assumptions. Sec. 4.3 involves a brief discussion of 

the computational techniques and specific details of implementation, in addition to details 

of calibration and optimization. The results are presented in Sec. 4.4; finally, Sec. 4.5 is 

a summary of the findings and our concluding remarks. 
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4.2 Model 

We consider a system of TV hydrogen molecules sitting above a substrate consisting of a 

single atomic layer of krypton, below which is a graphite substrate. The Kr layer consists 

of (L) point-like atoms, pinned at fixed positions R& (k — 1,2, ...,L) (an assumption 

justified by their relatively large mass). They are arranged in a perfectly two-dimensional 

triangular lattice, with a spacing [40] of 3.99 A and sit at a height of 3.46 A over the top 

layer of C atoms of the graphite substrate; this latter distance corresponds to the energetic 

minimum of the most accurate Kr-graphite potential available [94, 95], if graphite is 

regarded as smooth. 

If a smooth graphite substrate is assumed, the model quantum many-body Hamilto-

nian is therefore as follows: 

j = l i<j i=\ fc=l i = l 

Here, zt is the height of the ith hydrogen molecule above the graphite surface. V 

is the potential describing the interaction between any two hydrogen molecules, and U 

represents the interaction of a hydrogen molecule with a Kr atom. Finally, U represents 

the interaction of a hydrogen molecule with the smooth graphite substrate. 

The interaction V is described by the Silvera-Goldman potential [96], given in Section 

2.5.3. 

The interaction of a hydrogen molecule and a Kr atom is modeled using a standard 

6-12 Lennard-Jones (LJ) potential; we make use of the Lorentz-Berthelot mixing rule 

[97, 98], yielding e = 75.6 K and a — 3.3 A, for our purposes consistent with current 

state-of-the-art potential energy surfaces (for example, numerical agreement is within ss 

5% for the well depth) [99]. The Kr atomic monolayer is uniform, with each Kr atom 

kept fixed in its lattice position for the duration of the simulation. 

We use a simple "3-9" potential to describe the interaction of hydrogen molecules 

with the smooth graphite substrate [100], i.e., 

4C3 C 
&<«> = 275W " ? ( 4 ' " 
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where (7=7913.24 A3 K and D=25939 K are parameters derived from the original p-H.2-

C Lennard-Jones parameters [87] (a — 3.18 A, e = 32.05 K) and the density of carbon 

atoms in graphite (p = 0.114 A"3). 

The assumption built in (4.1) of a smooth graphite substrate seems justified, on ac­

count of the relatively large (~ 6 A) distance between the hydrogen molecules and the 

substrate, due to the presence of the Kr layer. Nevertheless, corrugation may be impor­

tant in this problem, given that the Kr layer is not registered with the underlying graphite 

substrate. Therefore, in order to gauge the effect of substrate corrugation, we performed a 

number of simulations with an explicitly modeled top layer of C atoms, placing a smooth 

graphite slab underneath. For these simulations, the pair-wise interaction between a hy­

drogen molecule and a C atom was taken to be the same LJ potential utilized to infer the 

"3-9" interaction of hydrogen molecules with a smooth substrate. 

The results obtained using this composite substrate indicate no qualitative change in 

the physical character of the system as a result of introducing the smooth plane approx­

imation for graphite. Quantitatively, the potential energy per particle, for example, was 

found to be ~2 K lower when assuming explicit corrugation of the graphite substrate, a 

difference of less than 1%. Henceforth, therefore, we shall confine our discussion to the 

case of a smooth graphite substrate, i.e., model (4.1). 

A slice of the effective potential energy surface for molecular hydrogen resting at its 

average height above the substrate is shown in Figure 4.2; included are the interactions 

with both the Kr monolayer and the graphite slab. There are two energetically degenerate 

sublattices of preferential adsorption sites for this geometry - these are denoted sublattice 

A and sublattice B 

The model (4.1) clearly contains important physical simplifications, such as the use of 

the highly simplified LJ and "3-9" potentials. Nonetheless, it seems a reasonable starting 

point, and even quantitatively we expect it to capture the bulk of the physical picture. 

4.3 Computational Method 

For this chapter, one method utilized is Path Integral ground state (PIGS), described in 

Chapter 2, Section 2.4. Some of the technical details of the calculation performed in this 
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Figure 4.2: Potential energy surface, at the vertical equilibrium distance of molecular 

hydrogen, as a function of position. The two energetically degenerate sublattices of pref­

erential adsorption sites, A and B, are shown. A commensurate coverage is defined as the 

occupation of one entire sublattice (also termed " | filling"). 

work (mainly, the short imaginary time propagator) are the same as in Ref. [101]. 

The trial wave function utilized is of the Jastrow type: 

* r ( r i , r 2 , . . . r ^ = (f[e-^A x (f[e-^A 

x (j][je-«(l'^l)j (4.2) 
^ i = l fc=l ' 

with pseudo-potentials w (p-H2-graphite and o-D2), u (p-H2-Kr and o-D2-Kr), and v 

(p-H2-/?-H2 and o-D2-o-D2) chosen as follows: 

w(r) = ~T J
 u(r) = ~r and v(r) — — (4.3) 

The values of the parameters a = 30 A3, 7 = 250 A5 and \i = 750 A5 were obtained 

empirically, by minimizing the energy expectation value computed in separate variational 

calculations. Using the trial wavefunction as defined above, we observe convergence of 

the ground state energy estimates with a projection time 0.250 K_1, using a time step 

r = (i//2560) K~\ where v = 1 for/?-H2 and v = 2 for o-D2. 
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Finite-temperature results were obtained making use of the worm algorithm (WA), 

described in Chapter 2 Section 2.3 and in references [62, 63]. The only input parameter 

to the WA, as for any finite temperature method, is the microscopic model (4.1). Just 

as in ground state simulations, an optimal value rw of the imaginary time step must be 

determined, for accurate and unbiased estimates of the observables to be obtained; for 

this system, satisfactory results are yielded by the choice TW — (W320) K_1. 

Calculations for a range of j»-H2 and o-D2 coverages were carried out, starting from an 

initial configuration of molecules sitting atop the Kr layer. The simulation cell consists of 

a 12 x 14 triangular lattice of Kr atoms with 3.99 A nearest neighbor spacing (resulting in a 

simulation box of dimension 47.880 A x 48.3762 A) [40]. Periodic boundary conditions 

are used in the three directions, but the simulation cell is chosen sufficiently large in the z 

direction that they have no effect vertically, because of the strongly attractive character of 

the composite substrate (i.e., p-H2 and o-D2 molecules do not evaporate). It is important 

to note that to capture the features observed experimentally in Ref. [40] requires that 

a large number of particles be simulated (the simulation cell must be large enough to 

support at least two crystalline domains). 

The systematic errors of our calculation are attributable to finite projection time (for 

the T=0 PIGS calculations) and the finite time step r (for both PIGS and the WA). Based 

on comparisons of results obtained from simulations with different values of projection 

time and/or time step, we estimate our combined systematic error on the total energy per 

p-H.2 molecule to be of the order of 0.7 K or less (corresponding to less than 0.5%). The 

simultaneous use of a ground state and a finite temperature method allows us to obtain an 

independent check of our calculations in the T —> 0 limit, where the two methods must 

yield the same results, within statistical uncertainties. 

4.4 Results 

Physical quantities of primary interest, for both p-H2 and o-D2, include the energy per 

molecule, e(6), and the superfluid fraction, ps. PIGS (T=0) was used to compute e(6) as a 

function of the coverage (two-dimensional density), 9, from 0=0.06735 A~2 to 0=0.09498 

A~2. For a subset of these coverages, the worm algorithm (WA) was employed to yield 
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Figure 4.3: Energy per molecule e(0) (in K) for /?-H2 (o), shifted by — 50 K for clarity, and 

c-D2 (•) computed by PIGS (T=0), as a function of the coverage 0 (in A - 2) . Inset: e(0) 

calculated using WA for o-D2 is shown with • for 0=0.08389 A"2 and V for 0=0.07253 

A - 2 , values marked with • on the T=0 o-D2 curve. 

finite temperature estimates for all of the above physical quantities, for a set of tempera­

tures between T=5 K and T=0.25 K. 

The results for e(0) are shown in Figure 4.3; note that e(0) for/?-H2 has been shifted 

by —50 K for clarity. In the case of p-H2, the main feature is an energetic minimum 

at 0=0.07253 A - 2 , corresponding to the formation of a thermodynamically stable solid 

layer, that is commensurate with the underlying krypton lattice. This coverage is ap­

proximately 8% greater than the equilibrium density of p-R2 in strictly 2D [38]. Within 

the precision of the calculation, e(6) is numerically consistent with the absence of other 

thermodynamically stable coverages, in the range explored in this work. 

For o-D2, we find that there is an energetic minimum at 0=0.07253 A - 2 , again cor­

responding to a commensurate solid film. In addition, one finds two coverage ranges, 

separated by a cusp, where 0e(0), shown in Figure 4.4, has a positive second deriva-
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tive (meaning that these configurations satisfy the condition of positive compressibility, 

d[ijd9=d2[9e(9)]/d92 > 0, and are thus thermodynamically stable); we will call the first 

of these IC-I, and the second IC-II. IC-I extends from 0=0.07598 A"2 to 0=0.08030 A~2, 

while IC-II extends from 0=0.08030 A"2 to 0=0.08635 A"2. The much richer behavior 

of e(0) in the case of o-D2, is a direct consequence of the greater mass, and reduced 

zero-point motion, of this isotope; as a result, the potential energy plays a greater role 

in shaping the physical properties. Phases of intermediate coverages found for o-D2 are 

apparently "washed out" by zero-point motion in the case of/?-H2. While this result is 

surprising, similar anomalous behavior is noted in related studies [73, 102]. 

Of particular interest for the present analysis is IC-II, where the o-D2 is found to form 

a structure best characterized as being composed of several crystalline domains com-

mensurately occupying one of the two triangular sublattices available. Between these 

commensurate domains are regions of high o-D2 density - domain walls. Molecules that 
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are part of these domain walls have a decreased average interparticle distance. One may 

expect that such o-D2, having the same zero-point motion as o-D2 in the commensurate 

domains, would have a greater likelihood of quantum exchange, in particular if there is 

domain-wall disorder. Indeed, IC-II includes precisely the coverages reported in the ex­

periments of Ref. [40] to exhibit anomalous fluid-like signatures down to T=1.5 K, well 

below the expected freezing point. 

In order to provide accurate permutation statistics and superfluid density estimates, 

additional simulations were carried out for several coverages at finite temperature using 

the worm algorithm. Figure 4.3, inset, shows the energy values obtained in the range of 

temperature 0.25 K < T < 5 K, for 0=0.07253 A~2 and 0=0.08389 A~2. 

Shown in Figure 4.5 are vertical density profiles, p(z), for 0=0.07253 A~2 and 0=0.08389 

A ' 2 at T=l K. One can see that the vertical extent of the o-D2 film is slightly enhanced 

for increased coverages. 

While dynamical information cannot be extracted using the computational techniques 

employed here, one does have access to real-space instantaneous configurations of the 

system, from which one can extract qualitative insight, and potentially use to preclude 

particular system behaviors. Such representative many-particle configurations are shown 

in Figures 4.6, 4.7, 4.8 for o-D2 and p-H2 with 0=0.07253 A"2 at T = 0, and for o-D2 

with 0=0.08389 A~2 at T=0.5 K. In each, we find a high degree of particle localization, 

even along the domain walls observed in 4.8. No single configuration observed was found 

to be inconsistent with the instantaneous configurations one would necessarily observe in 

a domain-wall fluid, while the spatial configuration of domain-walls was not fixed as the 

system evolved in Monte Carlo time (which, we must again stress, cannot be used directly 

to infer anything about the real-time dynamics). 

Finally, consistent with the high degree of o-D2 localization observed, permutations 

are found to not take place at any temperature for any coverage examined, and, accord­

ingly, the finite temperature estimator for the superfluid density consistently yields a value 

of ps=0. In light of the absence of structural and energetic differences found between T=0 

and T=0.25 K, it is unlikely that novel phases of o-D2 (namely, phases with a finite su­

perfluid density) remain unexplored at intermediate temperatures. 
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Figure 4.6: Snapshots of typical configurations of p-H2 molecules, with #=0.07253 A - 2 at 

T=0 K, adsorbed to the graphite/compressed Kr substrate. The positions of all molecules 

at each one of the imaginary time slices are shown as discrete paths. Distances are ex­
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Figure 4.7: Snapshots of typical configurations of o-D2 molecules, with #=0.07253 A - 2 at 
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4.5 Discussion 

Using numerically exact ground state Quantum Monte Carlo (PIGS) and finite-temperature 

path integral Monte Carlo (worm algorithm) methods, we studied p-H2 and o-D2 adsorp­

tion onto a graphite substrate preplated with a compressed krypton monolayer. We per­

formed calculations based a simple model, in which graphite corrugation is ignored, the 

Kr atoms in the spacer layer are assumed static and point-like, and p-H2(o-D2)-substrate 

interactions are given by Lennard-Jones type potentials. 

Using an exact ground state technique, for both p-H2 and o-D2, we find that a solid 

monolayer commensurate with the Kr layer is thermodynamically stable, and, in both 

cases, is the coverage corresponding to the minimum energy per particle. For <?-D2, we 

also find that there are two distinct compressible incommensurate solid regions, with the 

denser region, IC-II, corresponding to regions of commensuration separated by domain 

walls. Investigation of this coverage region at finite temperature, using the worm algo­

rithm, down to T=0.25 K, yields no evidence of superfluidity, consistent with our obser­

vation of a high degree of localization of o-D2 molecules, in particular those molecules 

along the domain-walls. No non-identity permutations are found to take place, though 

they are sampled efficiently. 

Though our simulations support the notion of a "domain-wall fluid", this mechanism 

is found not to support superfluidity of either hydrogen isotope. 

There are obviously several sources of uncertainty in this calculation which need to 

be discussed. The potentials used to describe the interactions between the p-H2 and the 

substrate are very rough; this does not seem too important an issue, as far as the interaction 

of p-H2 molecules with graphite is concerned, given the relatively large average distance 

at which molecules sit, supported by calculations using explicit corrugation of the graphite 

substrate. On the other hand, a more realistic interaction potential between /?-H2 and 

krypton may quantitatively alter the energetics shown here. Despite these issues, and 

other simplifications, it does not seem likely that the qualitative structural information will 

change. Thus, we conclude this system is not a good candidate for further consideration 

in the search for superfluid o-D2 or/?-H2. 

The results shown here strengthen the case that frustration arising from incommensu-
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ration does not lead to the formation of a stable superfluid phase of molecular hydrogen at 

low T. The problem here seems to be that the corrugation of the substrate, while inducing 

incommensuration, also promotes particle localization. 
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Chapter 5 

Para-hydrogen in two dimensions: 

incommensuration and disorder 

5.1 Introduction 

We remind the reader of the 1997 study by Gordillo and Ceperley [52] (GC) outlined 

in the introduction, where it was proposed that a significant lowering of the equilibrium 

density of 2D p-H2, and the ensuing stabilization of a low temperature "liquid" phase, 

could be achieved by embedding a /?-H2 fluid in a regular crystal of identical scatterers 

(e.g., foreign atoms or molecules), incommensurate with the equilibrium crystal structure 

of pure 2D p-H2. Path Integral Monte Carlo (PIMC) simulations of such a model system 

yielded some evidence of a possible superfluid transition at T ~ 1 K. However, the size 

of the simulated system was very small (of order of 10 /7-H2 molecules). A subsequent 

PIMC study, comprising up to ten times as many particles, strongly suggests that a) the 

equilibrium phase of p-H2 in such a setting is not liquid, but instead exhibits long range 

crystalline order, and b) the observation of superfluidity in Ref. [52] is merely a finite-size 

effect. 

In this chapter1, we report first the results of a theoretical study which seeks to clarify 

the physics of this system by repeating the simulations of Ref. [52] and Ref. [53], using 
iA version of this chapter has been submitted for publication. 

Joseph Turnbull and Massimo Boninsegni. Physical Review B (2008). See ArXiv:0807.2210 
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the worm algorithm. In our simulations for the smallest system size, we obtain a finite 

superfluid signal in agreement with both previous studies; however, the finite superfluid 

signal persists for somewhat larger systems, in contrast with Ref. [53]. We augment 

these results by studying the structural properties of a much larger manifestation of the 

system, containing hundreds of impurities andp-H2 molecules. Evidence is obtained that 

the p-H2 forms a perfect crystal with a large unit cell (having non-trivial structure), devoid 

of interstitials. Such a phase, masked before by the smaller system sizes (for which the 

obtained structure is artificially frustrated), is necessarily insulating. Thus, we conclude 

that the observed superfluid properties in small systems are finite-size artifacts, and that 

p-B.2 in this geometry is a regular quantum solid in the thermodynamic limit. 

We next explore the behavior of p-R2 in a 2D and disordered environment. Our aim 

is to determine whether a non-crystalline equilibrium phase, displaying long-range su­

perfluid coherence, may arise as a result of the frustration of solid long-range order in­

duced by the random potential. That disorder should promote SF is certainly not obvious, 

and may even be counter-intuitive. In fact, disorder is known to promote localization, 

with the ensuing disappearance of SF in a system of hard core bosons [54]. However, 

recent numerical work has yielded evidence of a possible "superfluid glassy" phase of 

condensed helium, characterized by simultaneous broken translational invariance (and 

therefore nonzero shear modulus) and SF, with no diagonal long-range order [55]. It is 

conceivable that a similar phase of p-H2 could arise in disorder. 

Specifically, we simulate a fluid of p-H2 molecules moving in 2D in the presence of a 

static potential generated by a random distribution of identical impurities, averaging the 

results over several independent realizations of the external potential. We have assumed 

a specific simple model potential, so as to describe the interaction between each scatterer 

and the p-H2 molecules, and varied the overall strength of the disordering potential by 

changing the density of impurities. The main result of this study is a null one, i.e., even 

though we observe exchanges of small groups of molecules, they have a local character, 

i.e., long permutation cycles spanning the entire system do not occur; as a result, a finite 

superfluid signal never materializes in the low temperature and thermodynamic limits. We 

observe a glassy phase, with broken translational invariance, but we also clearly observe 

that p-H-2 molecules locally recreate the triangular lattice structure associated with bulk 
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2D p-H2, interrupted by the underlying impurity matrix. 

Based on this finding, as well as on the null results yielded by various simulation 

works carried out over the past few years, we propose that a superfluid phase of 2D p-

H2 will not be observed, in the absence of some indirect physical mechanism capable of 

renormalizing (weakening) the effective interaction among molecules. 

The remainder of this chapter is organized as follows: Sec. 5.2 offers a description of 

the model used for our systems of interest, including a discussion of the potentials and the 

justifications for the main underlying assumptions. Sec. 5.3 involves a brief discussion of 

the computational techniques and specific details of implementation, in addition to details 

of calibration and optimization. The results are presented in Sections 5.4, 5.5, and 5.6; 

finally, Sec. 5.7 is a summary of the findings and our concluding remarks. 

5.2 Model 

We consider a system of N hydrogen molecules (composite bosons) in the para nuclear 

spin state, intercalated within a strictly 2D array of identical impurities, the entire system 

enclosed within a simulation cell of sides Lx and Ly (A=LX x Ly), with periodic boundary 

conditions in both directions. All of the (M) impurities and hydrogen molecules are 

regarded as point particles, with impurities fixed in space at positions R&,' k = 1,..., M. 

The model quantum many-body Hamiltonian is therefore as follows: 

h2
 N N M 

A = - ^ E v . 2 + E ^ ' ) + E E ^ - ^ i ) (5.D 
i = l i<j i=l fc=l 

Here, m is the mass of a hydrogen molecule, {r^} (with j=\,2,...,N) are the positions 

of the hydrogen molecules, and r^ = | r j—r j \. V is the potential describing the interaction 

between any two hydrogen molecules, and U represents the interaction of a hydrogen 

molecule with an impurity. All pair potentials are assumed to depend only on relative 

distances. 

The interaction V is described by the Silvera-Goldman potential described in chapter 

2. The interaction of a hydrogen molecule with each impurity scatterer is modeled using 
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a standard 6-12 Lennard-Jones (LJ) potential, with parameters e = 9.54 K and a = 3.75 

A [52]. 

In addition to restricting the dimensionality of the system to d=2, the model (5.1), 

which is identical to that assumed in Ref. [52] and Ref. [53], clearly contains important 

physical simplifications, such as the restriction to additive pairwise interactions (to the 

exclusion of, for example, three-body terms), all taken to be central, and the use of the 

highly simplified LJ potential. As in previous studies [53], however, we are primarily 

interested in examining the fundamental physics contained in a general many-body prob­

lem described by a Hamiltonian such as (5.1), rather than making quantitative predictions 

about an actual experimental system (though it should be noted that an experimental re­

alization may be feasible [103, 104]). 

5.3 Computational Details 

In this study, finite-temperature results were obtained making use of the continuous-space 

worm algorithm, described in Section 2.3, and in References [62] and [63]. 

As usual, the only input in the simulations are the Hamiltonian and the temperature. 

As in Chapters 3 and 4, the calculation has associated to it a finite time step error, which 

can be made sufficiently small by taking the time step short enough; for all of the system 

sizes explored, it was found that convergence of the energy estimate is achieved (within 

statistical uncertainty) using a value of the time step rw — 1/640 K_1. Convergence 

for properties such as the superfluid density is reached using a much longer time-step, 

and this property has been taken advantage of where indicated. Based on comparisons 

of results obtained from simulations with different values of the time step, we estimate 

our systematic error on the total energy per /?-H2 molecule (the observable that is most 

sensitive to time-step error) to be of the order of 0.1 K or less (of order 0.6%). 

5.3.1 Simulations 

All of the simulation results presented below are obtained starting from an initial con­

figuration of hydrogen molecules randomly dispersed within the impurity array. We have 
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studied the physical behavior of the system at sufficiently low temperature, with the aim of 

extrapolating the results to the T=0 limit. Specifically, the lowest temperature for which 

estimates were obtained is 3.125 x 10 2 K. 

Calculations for a range of jp-H2 coverages were carried out for T = {4.0, 2.0,1.0,0.500, 

0.250,0.125, 0.0625,0.03125} K, starting from an initial configuration of hydrogen molecules 

randomly dispersed within the impurity crystal. Three system sizes were examined, with 

the simulation cell containing triangular lattices composed of 2x2 (20x 17.32 A2), 4x4 

(40x34.64 A2), and 5x6 (50x51.96 A2) impurity atoms with 10.0 A nearest neighbor 

spacing. For each lattice size, a/?-H2 coverage 9 — N/A =0.0381 A - 2 was examined 

(corresponding to A^=13, 53, and 99/7-H2 molecules respectively); for the 5x6 lattice, a 

range of coverages between 0.030 A - 2 < 9 < 0.045 A~2 was explored as well to confirm, 

using the worm algorithm, the equilibrium p-H2 density. These results are discussed in 

section 5.4. 

In order to assess the robustness of our predictions in the thermodynamic limit, we 

have also performed simulations for a lOx 12 (lOOx 103.92 A2) lattice of impurities, at 

T=4 K and T=0.25 K (the latter using a 4 x larger time step). We use these results largely 

to infer structural properties. These results are also discussed in section 5.4. 

Our simulations for a disordered environment are carried out with two different cells. 

The first is a 30x30 A2 square cell, wherein we arrange M=12, 16, and 20 impurities 

(corresponding to impurity densities Q=0.0133 A - 2 , 0.01778 A - 2 , and 0.0222 A - 2 re­

spectively) in a completely random fashion. The second cell, with dimensions 40x34.64 

A2, contains M=16 randomly placed impurities (corresponding to fi=0.01155 A - 2 ) . For 

each impurity density, eight different realizations are considered (i.e., different random 

positions of the impurities). These results are discussed in section 5.5. 

In a slightly different arrangement, we have considered a 40x34.64 A2 cell, in which 

we first arranged M=16 impurities on a regular triangular lattice (details are given be­

low), and then applied to each impurity are random displacements D0,i G(0.0,1.0) A, 

A).5,2 €(0.5,2.0) A, D0i2 G(0.0,2.0) A, and D1)2 G(l.0,2.0) A. Eight such "nearly-

periodic" impurity matrices were realized in each case (32 total). For each realization, 

calculations for a range of />H2 coverages were carried out for selected coverages. These 

results are discussed in section 5.6. 
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For each realization of a disordering potential, as well as for every regular arrangement 

of scatterers, we performed calculations for a range of /?-H2 coverages, at low tempera­

ture (as low as 0.03 K), in all cases starting from an initial configuration of hydrogen 

molecules randomly dispersed within the impurity crystal. For each impurity matrix, en­

ergetic and structural properties are studied; in general, these remain unchanged below 

T=2 K. Moreover, the superfluid properties of the system are investigated through the 

direct computation of the superfluid density, as well as of the one-body density matrix, 

both computed as a function of temperature. 

In all energy calculations, estimates of the contribution to the potential energy aris­

ing from particles (and their periodic images) beyond the interaction cutoff radii, rc — 

{8.2,14.2,16.5, 22.0,48.5} A (in ascending order of system size), are added to the re­

sults. 

5.4 Results: /?-H2 intercalated within a periodic 2D im­

purity matrix 

In order to obtain the ground state equation of state of the system, we have computed the 

energy per particle e as a function of coverage 9, extrapolating the results to the T —> 0 

limit. Our results (Fig. 5.1) are identical, within statistical uncertainties, to those of Ref. 

[53]. In particular, no significant dependence of the energy upon temperature is observed 

for T below 2 K, and even the dependence on the size of the system (for all but the 

smallest one considered) is within, or very close to, statistical error. Our results are also 

in qualitative agreement with those of Ref. [52], although estimates offered therein are 

shifted upwardly by as much as a few K (the reasons for this discrepancy remain unclear, 

as merely finite size corrections can not account for the difference). 

The equilibrium 2D density 6e is 0.0381 A - 2 , which, as we shall show below, corre­

sponds to a commensurate superstructure formed by the p-H2 molecules. Furthermore, 

a stability analysis of the data for e(9) (shown in the inset of Fig. 5.1, upon applying 

the process described in Chapter 4) indicates that doping above 6e will not result in a 

homogeneous phase, but rather in the coexistence of two (commensurate) phases. 
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Figure 5.1: Energy per /?-H2 molecule for a regular crystalline arrangement of impurities, 

at the equilibrium coverage #e=0.0381 A~2 as a function of the temperature, for different 

system sizes. Different symbols show estimates for lattices of 4 (circles), 16 (squares) 

and 30 (diamonds) impurities. Inset shows the energy per molecule computed at T=l K 

as a function of the coverage 0, obtained for a system of 30 impurities. 
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Figure 5.2: The superfluid density, ps, for the 2x2 system (•) , and the 4x4 system (•). 

Lines are guides to the eye. 
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Figure 5.3 shows a snapshot of the /?-H2 world lines for a system with equilibrium 

/?-H2 coverage #=0.0381 A"2 at T = 0.25 K. The positions of all /?-H2 molecules at each 

one of the imaginary-time slices are shown as discrete paths, while the fixed impurities are 

shown as solid circles; it appears that the /?-H2 arrange themselves on a kagome lattice, 

with an additional number of p-H2 molecules corresponding to an interstitial density of 

~10%. The spread of the imaginary-time path for each /?-H2 molecule gives a measure 

of the zero-point motion. 

The results for the superfluid density (see Figure 5.2) in the 4x4 system, which are in 

agreement with the results obtained for the 2x2 system, naively may seem to indicate a 

convergence to ps(T = 0)=0.25 ± 0.02. In order to provide an estimate of the transition 

temperature, Tc using these preliminary results, we first attempt to correct for finite-size 

effects by using the Kosterlitz-Thouless recursion relations to determine the maximum 

separation distance between vortex pairs, d, and the vortex core energy, E, which lead to 

an optimal fit of our ps(T) data for a given linear system dimension L, and then extrapo­

late the numerical expression obtained for ps{T) in the L —> oo limit. 

This KTRG process [105] involves solving the recursion relations 

dps(T,x) 
dx 

dx 

mkbT 

=2£(T,x)-

C2(T,x)p2(T,x) (5.2) 

*H2 ^ £(T,x)p(T,x) (5.3) 
mkbT 

with initial conditions ps(T,x = 0)=9ps(T = 0), £(T,x = 0) = e~ftE, with integra­

tion from x=0 to x=ln(^), where m is the mass and 8 is the density of p-H2, and £ is 

proportional to the vortex fugacity. The numerical integration was performed using an 

adaptive-stepsize method of Runge-Kutta type [106]. From this analysis, we obtain opti­

mal values £7=1.51 db 0.04 K and d=4.6 ± 0.1 A, which result in a transition temperature 

of Tc=0.29 ± 0.07 K. However, as will be shown below, such a scaling analysis is not 

necessarily robust. 

Analysis of the one-body density matrix also reveals a rapid exponential decay out 

to 4.5 A, followed by a Kosterlitz-Thouless power-law decay, indicative of off-diagonal 

quasi-long-range order. 
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Figure 5.3: Snapshot of a typical configuration of p-H2 molecules at T = 0.25 K for 

#=0.0381 A"2 on the 4x4 system, intercalated within the periodic 2D fixed impurity 

matrix with density fi=0.01155 A"2. The positions of all p-H2 molecules at each one of 

the imaginary time slices are shown as discrete paths, while impurities are shown as solid 

circles. All distances are expressed in A. 

84 



However, upon increasing the system size to the 5 x 6 cell, the finite superfluid signal 

goes down to a mere 5%, vanishing altogether for the lOx 12 cell; concurrently, the one-

body density matrix displays a clear exponential decay with distance, when evaluated 

for these larger size systems. This behavior persists at and below T=0.25 K. It should be 

noted that the change of behavior observed on extending the system size is not attributable 

to some loss of efficiency of the simulation method in sampling long permutations of 

p-H2 molecules. While this would be certainly an issue with conventional PIMC, the 

continuous-space Worm Algorithm does not suffer from any such system size limitation, 

as shown by a number of calculations carried out over the past few years, e.g., for extended 

defects in solid helium, including several thousand particles [107,108]. 

For the 10x12 lattice of impurities at T=4 K, we also confirm an equilibrium cov­

erage of 6>e=0.0385 A - 2 (corresponding to 400/?-H2 molecules, precisely 3 + | times the 

impurity density). Shown in Figure 5.4 is a snapshot of the /?-H2 world lines for the 

noted conditions - the positions of all p-H2 molecules at each one of the imaginary-time 

slices are shown as discrete paths, while the fixed impurities are shown as solid circles. 

The spread of the imaginary-time path for each />H2 molecule gives a measure of their 

quantum derealization (zero-point motion). One can immediately identify a trihexag-

onal tiling of p-H2 corresponding to a kagome lattice commensurate with, and having 

three times the density of the impurity background (i.e. three /?-H2 per centroid of every 

nearest-neighbor impurity triplet). Superimposed over this structure is an additional 1/3 

coverage of p-H2 molecules arranged on a triangular lattice; sites of this triangular lattice 

correspond to regions of the total structure having four p-H2 molecules per centroid of 

nearest-neighbor impurity triplets (schematically shown in inset of Fig. 5.4). As men­

tioned above it is found, using the procedure described in Ref. [109], that this phase is 

incompressible. 

Fundamental theoretical arguments [49], as well as simulation of hard core bosons 

on the triangular lattice [110] (with which the commensurate phase of p-H2 described 

above bears significant similarities and seems a close physical realization) strongly sug­

gest that the commensurate phase of p-H2 found here is not supersolid. Accurate scaling 

of numerical results obtained for systems of sufficiently different and large sizes is of 

paramount importance in the presence of an underlying crystal, with the ensuing loss of 
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translational invariance, in order to afford a reliable extrapolation of the physical behavior 

characterizing the thermodynamic limit. 

The system of interest here offers a chief example of the importance of this aspect. A 

large size is simply required in order for the actual, non-trivial equilibrium structure of 

the system to be possible. Our analysis reveals that p-H2 forms a commensurate crystal 

phase with no interstitials or defects. Such a phase, masked for smaller system sizes (for 

which, while the obtained structure is artificially frustrated, remnants of the crystalline 

phase are noticeable only a posteriori), is insulating, with explicit calculations of the 

superfluid density lending confirmation. Thus, in agreement with Ref. [53], we conclude 

that all previously reported superfluid properties are finite-size artifacts, and that £>-H2 in 

this geometry is necessarily a regular quantum solid in the thermodynamic limit. 

This does not mean that exchanges of /?-H2 molecules do not take place; however, 

they are largely local in character; long cycles spanning the whole system - necessary for 

a finite superfluid response - are exponentially suppressed in the thermodynamic limit. 
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Figure 5.4: Snapshot of a typical configuration of p-H2 molecules at low T at 8 = 0e, 

intercalated within the periodic 2D fixed impurity matrix (described in the text). The 

positions of all p-H2 molecules at each one of the imaginary time slices are shown as 

discrete paths, while impurities are shown as solid circles. All distances are in A. Inset 

shows a schematic representation of the ensuing phase, inferred from a visual inspection 

of configurations. Large circles represent impurities, whereas smaller circles are /?-H2 

molecules. Red circles are p-H2 molecules forming the 1/3 commensurate triangular 

phase, which can occupy either one of two equivalent lattices (different color shades). 
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5.5 Results: p-H2 intercalated within a random 2D im­

purity matrix 

We now turn to describing the results obtained for completely random placement of scat-

terers. For each of the eight independent realizations of a random distribution of scatterers 

at a given density, we compute the ground state equilibrium p-H2 coverage 6C; in general, 

the value of 0C depends on the specific impurity realization, particularly for smaller sys­

tem sizes. It is found to fluctuate typically within ~10% from one realization to another. 

This gives an idea of the local density fluctuations that occur in the thermodynamic limit, 

as a result of the inhomogeneity of the system. 

The extrapolated ground state energy per particle, e(N), for a disordered arrangement 

of impurities, roughly interpolates between that for bulk 2D p-H2 (see, for instance, Ref. 

[38]) and the energy for p-H2 in the presence of periodic impurity arrays of the same 

density [53] as should be expected. 

Fig. 5.5 shows a snapshot of the/?-H2 world lines for a system at the equilibrium cov­

erage 6e P» 0.052 A - 2 , for a specific realization of the disorder with an impurity density 

fl = 0.0133 A - 2 (the temperature is T = 0.5 K). By visual inspection, we can clearly 

establish that the p-H2 molecules attempt to recreate the triangular lattice associated with 

bulk 2D p-R2 [38] interrupted by the underlying impurity matrix. This is consistently ob­

served for all realizations of the disorder, at all impurity densities. Moreover, the observed 

little or no overlap among quantum-mechanical derealization "clouds" of the different 

molecules are consistent with quantum exchanges being suppressed in this system. 

The above findings are confirmed by an examination of the/?-H2 pair correlation func­

tion, shown in Figure 5.6 for disordered matrices of different impurity densities. Also 

shown for comparison is the pair correlation function for bulk 2D /?-H2 at the equilibrium 

coverage (6>=0.056 A - 2 , from Ref. [38]), as well as for the case of a regular impurity ma­

trix of density Q=0.01155 A~2. The progressive loss of structure at long distance, as the 

concentration of impurities is increased, is obvious; in contrast, the short-range features 

of the pair correlation function are essentially unaffected, largely reproducing those of the 

pair correlation function for bulk 2D /?-H2. 

Analysis of the one-body density matrix reveals a rapid exponential decay, with no 
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Figure 5.5: Snapshot of a typical configuration of p-U2 molecules at T= 0.5 K for 9=9e, 

intercalated within the 2D matrix of randomly placed impurities with 0=0.0133 A - 2 . 

The positions of all /?-H2 molecules at each one of the imaginary time slices are shown as 

discrete paths, while impurities are shown as solid circles. All distances are expressed in 

A. 
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Figure 5.6: Ground state /?-H2 pair correlation functions (g(r)) for equilibrium p-R2 cov­

erage. All functions have been uniformly displaced upwards by their y-intercept to ease 

comparison. Results a through d refer to randomly placed impurities with decreasing 

density (from 0=0.022 (a) to 0.01155 id) A - 2) . Also shown for comparison are g(r) for 

bulk 2D p-B.2 (e), as well as for the case of a triangular impurity lattice (/), with impurity 

density 0=0.01155 A-2. 
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signature of a Kosterlitz-Thouless power-law decay. For each realization, we calculate 

a superfluid density of precisely zero, with quantum exchanges between p-H2 molecules 

being strongly suppressed with respect to the systems with periodic impurity matrices; 

system-spanning permutations, necessary for the system to feature a finite superfluid re­

sponse, are never generated. All evidence points to this system being a "Bose glass", 

devoid of both solid order and off-diagonal quasi-long-range order. Clearly, no enhance­

ment of Bose statistics is brought about by disorder. In order to gain additional insight 

into the effect of disorder, we next study a physical arrangement of impurities that inter­

polates between the regular periodic array of Section 5.4 and the disordered configuration 

of Section 5.5. 

5.6 Results: /?-H2 intercalated within a nearly-periodic 

2D impurity matrix 

For the case where impurities are located at positions obtained applying random displace­

ments D 1 2 to regular triangular lattice sites (see Sec. 5.3.1), we find on average a 13% 

enhancement of the equilibrium p-H2 coverage obtained in Section 5.4. 

Structurally, one may infer from the pair correlation function (f) in Figure 5.6 that 

the p-H2 is in a liquid-like or glassy state. Shown in Figure 5.7 is a typical world-line 

snapshot at T=0.5 K. Upon examination of many such "snapshots", we confirm that the 

(very limited) interparticle overlap observed in Figure 5.7 is the norm. 

An accumulation of statistics indicate an enormous suppression of quantum exchanges, 

almost entirely absent. In every disordered impurity realization examined, the superfluid 

fraction ps is found to be exactly zero. The structure and lack of superflow exhibited when 

L>i;2 random displacements are applied, are also observed for Do.5,2 and D0^ random dis­

placements, with no significant physical changes observed in these three cases across all 

realizations. Altogether, these degrees of disorder imparted to the system are sufficient 

to induce strong particle localization, and eliminate even the local exchanges found for 

periodic arrays of impurities in smaller systems, as is the case for the systems studied in 

Section 4.4. 
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Figure 5.7: Snapshot of a typical configuration of /?-H2 molecules at T = 0.5 K for 9=9e, 

intercalated within the aperiodic 2D fixed impurity matrix with density fi=0.01155 A - 2 . 

The positions of all p-H2 molecules at each one of the imaginary time slices are shown as 

discrete paths, while impurities are shown as solid circles. All distances are expressed in 

A. 
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Upon reducing the magnitude of the impurity displacements to D0)1 A, we find signif­

icant variation from one realization to the next, with between a 0% and 4% enhancement 

of the equilibrium />-H2 coverage with respect to the system having a periodic array of 

impurities (corresponding to at most 2 additional interstitial particles). 

In realizations for which the particle density is unchanged, the same insulating phase 

found in Section 5.4 is recovered, albeit with a very slight broadening of g(r). 

In the realizations where additional molecules happen to be introduced (for example, 

in realizations where three impurities that are part of one nearest-neighbor triplet are 

displaced radially outward from their centroid by order 1.0 A), ps is zero for all T, and 

the broadening of g(r) with respect to that of Section 5.4 is more significant. 

These results are adequate to conclude that the introduction of disorder which is strong 

enough to introduce additional particles into the p-H2 crystal leads to acute particle lo­

calization and a suppression of exchanges; disorder weak enough to not change the equi­

librium coverage does not cause a perturbation in the necessarily insulating /?-H2 crystal 

structure. 

5.7 Conclusions 

Using numerically exact finite-temperature path integral Monte Carlo (worm algorithm) 

methods, we studied purely 2D p-B.2 intercalated within an array of impurities. We per­

formed calculations based on a simple model, in which the impurities are assumed static 

and point-like, and p-H2-impurity interactions are given by a Lennard-Jones potential. 

For /?-H2 intercalated within a periodic array of scatterers, the explicitly observed 

crystalline structure of hydrogen allows us to conclude with confidence that the results 

seen for the largest system sizes are indicative of the physics in the thermodynamic limit, 

and not a manifestation of algorithmic deficiency. The finite superfluid response observed 

in earlier simulations [52] of small systems (where the crystal structure could not be 

exactly realized) are thus attributable to finite-size effects. 

From our simulations of p-H2 in the presence of disordered arrays of impurities, we 

conclude that the introduction of such disorder enhances localization of p-H2 molecules, 

suppressing quantum exchanges. Though disorder can give rise to a glassy phase, ex-
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change frequencies are suppressed with respect to the exchange statistics observed in the 

systems with periodic arrays of impurities, in agreement with the conventional view of 

disorder-induced (Anderson) localization in strongly-interacting Bose systems. 

Our primary conclusion is that p-H2 intercalated within a 2D periodic or aperiodic 

array of impurities is not a candidate for the observation of superfluidity. 
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Chapter 6 

Summary and Conclusions 

We have studied quasi-2D molecular hydrogen at low temperature in a variety of regimes, 

with the goal of obtaining physical conditions compatible with the observation of hydro-

genic superflow. Using state-of-the-art quantum Monte Carlo methods, we attempted to 

overcome the barriers to the observation of superfluid hydrogen - namely, crystallization 

and particle localization - by inducing a reduction of dimensionality, as well as inducing 

incommensuration. 

Several systems are studied toward this end, including £>-H2 films adsorbed to fullerenes, 

/7-H2 and o-D2 films adsorbed upon krypton pre-plated graphite, as well as p-H2 interca­

lated within a strictly 2D crystal of impurities. We confirmed that reduction of dimen­

sionality alone is insufficient to promote superflow, and that incommensuration can even 

enhance particle localization. 

For our studies of the adsorption of p-H2 on the surface of fullerenes at T=0, two mod­

els were adopted; the first treated each fullerene as a smooth spherical surface, interacting 

with p-H2 with roughly the strength of a single plane of graphite. Strong particle local­

ization was observed, with the p-H2 found to approximately recreate their 2D equilibrium 

configuration (a triangular lattice). 

A second model, incorporating the corrugated structure of the fullerenes, was then 

studied in the hopes of introducing incommensuration (i.e. disrupting the p-H2 from 

roughly reproducing their 2D equilibrium triangular lattice structure). The equilibrium 

configuration of hydrogen in this case was, however, commensurate with the carbon-ring 
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adsorption sites on the surface of the fullerene, with severe particle localization expe­

rienced by p-H2. The p-H2 was found to in general be compressible, with /?-H2 again 

attempting to recreate their equilibrium 2D configurations on the fullerene surface as the 

chemical potential is increased. 

Being solids with a high degree of particle localization, these systems are thus not 

candidates for the observation of the superfluid phase of p-H2. Secondary informa­

tion gleaned was related to the structural and energetic properties of adsorbed p-H2 on 

fullerenes, of some relevance to the field of hydrogen fuel storage. 

In our studies of p-R2 and o-D2 films adsorbed to the surface of krypton pre-plated 

graphite, inspired by [40], we also confirmed that reduction of dimensionality alone is 

insufficient to extend the fluid state of p-H2 to a low enough temperature for superfluidity 

to be observed. The first goal was to study the adsorption of /?-H2 upon a surface similar 

to graphite, but more weakly interacting. 

We found that there are two stable phases of p-H2, both solid; one is a monolayer 

commensurate with the Kr layer, while the other is an incommensurate monolayer, com­

pressible within a small range of coverages. Quantum exchanges of hydrogen molecules 

are suppressed in this system; altogether, our findings are similar to what is seen for /?-H2 

on bare graphite. 

A closely related system was then studied to probe a potential mechanism for in­

ducing incommensuration. The krypton monolayer preplating the graphite substrate was 

instead compressed, following from additional structural information provided by one of 

the authors in [40]. In reference [40], it was reported that o-D2 with coverage above 1/2 

filling adsorbed upon such a geometry displays fluid-like properties down to T=1.5 K. 

The hypothesis was that a particular range of densities of o-D2 are accommodated by 

the formation of commensurate regions separated by heavy domain walls, and that the 

position of these domain walls is fluid. 

Using an exact ground state technique, for both p-H2 and o-D2, we found that a solid 

monolayer commensurate with the krypton layer is thermodynamically stable, and, in 

both cases, is the coverage corresponding to the minimum energy per particle. For o-

D2, we also found that there are two distinct compressible incommensurate solid regions, 

with the denser region, IC-II, corresponding to regions of commensuration separated by 
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domain walls. Investigation of this coverage region at finite temperature, using the worm 

algorithm, down to T=0.25 K, yielded no evidence of superfluidity, consistent with our 

observation of a high degree of localization of o-D2 molecules. No quantum exchanges, 

and by extension permutations, are found to take place, though they are sampled effi­

ciently. 

Though our simulations support a "domain-wall fluid" interpretation offered by Wiechert 

et al, this mechanism was not found to support superfluidity of either hydrogen isotope. 

Our interpretation is that, while incommensuration is achieved in the sense that the num­

ber of particles is greater than the number of adsorption sites on one sublattice of the 

substrate, particles along the domain walls are still roughly localized around the minima 

of the potential, reducing zero-point motion sufficiently to suppress quantum many-body 

effects. 

Following from the earlier work in [52], we next studied /?-H2 in a strictly 2D lattice 

of impurities, and probed this system as a function of density, temperature, and impu­

rity distribution. In our preliminary results on small systems we found that reduction 

of dimensionality coupled with a particular form of incommensuration (where the equi­

librium coverage of /?-H2 appeared to include a large, finite density of interstitials) lead 

to a novel state of molecular hydrogen supporting a finite superfluid density, simultane­

ously possessing diagonal long-range order and off-diagonal quasi-long-range order. The 

equilibrium phase of p-H2 for small systems appeared to be an arrangement roughly co­

extensive (a kagome tiling) with the impurity background, with the apparent presence of 

a 10% concentration of interstitials. 

In order to qualify the claim that this system, in the thermodynamic limit, supports 

superflow of /?-H2, we next attempted to confirm the above structural properties for a 

much larger manifestation of the system, containing hundreds of impurities and /?-H2 

molecules. Strong evidence is obtained that the p-H2 forms a perfect crystal with a large 

unit cell (having non-trivial structure), devoid of interstitials. Such a phase, masked earlier 

by the small system size (for which the equilibrium structure is artificially frustrated), is 

necessarily insulating [49]. Thus, we are forced to conclude that the reported superfluid 

properties are finite-size artifacts, and that p-H2 in this geometry is a regular quantum 

solid in the thermodynamic limit. 
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The second part to this investigation focused on the role of disorder, where our aim 

was to determine whether the above perfectly crystalline equilibrium phase could be 

weakly disrupted by the introduction of disorder, which could introduce true interstitials 

at equilibrium, and lead to long-range superfluid coherence. Though disorder is known 

to cause localization in general, it is also conceivable that a phase of p-H2 similar to the 

"superglass" phase reported in Reference [55] could arise in disorder. 

For sufficiently strong disorder, even though we observed exchanges of small groups 

of molecules, they had a local character, i.e., long permutation cycles spanning the entire 

system did not occur; as a result, a finite superfluid signal never materialized in the low 

temperature limit even for relatively small systems. We observed a glassy phase, but 

we also clearly observed that /?-H2 molecules locally attempted to recreate the triangular 

lattice structure associated with bulk 2D /?-H2 at equilibrium [38], only interrupted by the 

underlying impurity matrix. 

For weak disorder, a minor random displacement of the background impurities was 

found to not disrupt the crystalline state of p-H2; as the magnitude of the random displace­

ments was increased to the point where the crystal structure of p-H2 was disrupted and 

interstitials form part of the equilibrium phase, all trace of off-diagonal quasi-long-range 

order was destroyed. 

Altogether, we found strong evidence suggesting that reduction of dimensionality, in-

commensuration, and imposed disorder, even in conjunction, cannot stabilize a superfluid 

or supersolid state of bulk 2D /?-H2. The prognosis, it seems, for observing superfluidity 

of p-H2 in 2D films, is not an optimistic one. Though it is possible that incommensura-

tion may permit an enhancement of disorder and even the formation of a fluid-like state, 

as shown in chapter 4, it is doubtful that this particular flavor of disorder can ever en­

hance particle exchange, and indeed here appears to instead suppress it as well. Based 

on this collection of null results, we conclude that a superfluid phase of 2D p-H2 is not 

likely to be observed, in the absence of some indirect physical mechanism capable of 

renormalizing (weakening) the effective interaction among molecules. We leave open the 

remote theoretical possibility that one could carefully craft a "substrate" supporting a fi­

nite density of interstitials or extended defects (which persist in the thermodynamic limit) 

as part of the low-temperature equilibrium phase of solid 2D /?-H2, leading to a potential 
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bulk supersolid state of molecular hydrogen, albeit in an artificial and highly controlled 

setting. 

Barring such a mechanism, superfluid behavior in P-H2 may be observed experimen­

tally in finite size systems only, e.g., clusters [28, 111]. 
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