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Abstract

High resolution spatial numerical models of metallurgical properties constrained

by geological controls and more extensively measured grade and geomechanical

properties constitute an important part of geometallurgy. The spatial model-

ing of metallurgical rock properties has unique challenges. Metallurgical prop-

erties of interest may average nonlinearly, and the nonlinear behaviour may

be unquantified due to substantial costs associated with sample collection and

testing. The large scale of the samples presents an additional challenge in the

modeling of these variables as the support volume for metallurgical properties

may be 1-2 orders of magnitude larger than typical metal assays. Practical

challenges including the highly multivariate nature of geometallurgical data

sets, undersampling and complex optimization requirements complicate the

problem.

Addressing these challenges requires an integrated statistical approach. In

this thesis, a consistent framework for quantifying and modeling the nonlinear

behaviour of metallurgical rock properties is introduced. This integrated ap-

proach is composed of three parts: a nonlinear modeling and inference strat-

egy, a multivariate downscaling algorithm, and an integrated geostatistical

approach to multivariate modeling of metallurgical properties.

The first contribution of this thesis is a novel semi-parametric Bayesian

updating algorithm which has been developed to infer nonlinear behaviour

given multiscale measurements of metallurgical rock properties and related

linear properties. This approach may be applied to fit a power law which is

demonstrated to be a flexible model for nonlinear modeling.

The second contribution addresses the challenge of highly multiscale data

by the development of a direct sequential simulation method for the down-
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scaling of metallurgical rock properties given highly multivariate information.

The stochastic downscaling procedure developed is exact and respects intrinsic

constraints, such as requirements for non-negativity.

The third contribution is the development of a consistent framework for

geostatistical modeling of metallurgical variables in the presence of constraints,

nonlinear variables, multiscale data, missing data, and complex relationships.

This approach, and a number of the algorithms developed in this thesis are ap-

plied in a geometallurgical case study of a South American copper-molybdenum

porphyry deposit. The thesis statement: an integrated statistical approach for

the multivariate spatial modeling of metallurgical rock properties will lead to

better mine and mill operation strategies to maximize mine value. Develop-

ments in this thesis facilitate the integrated approach which is applied to the

case study demonstrating the value of this integrated statistical framework.
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Chapter 1

Introduction

1.1 Problem setting and background

The last century has seen an increased focus on the mining of massive, low

grade ore deposits. Increased metal demand and improved geologic under-

standing, spatial modeling, and mining and metallurgical advancements have

made the exploitation of these low grade ores possible. With all mineral de-

posits, and particularly for low grade ores, the efficient planning and optimal

design of mines and metallurgical plants is necessary to maximize metal re-

covery and mine economics. Metallurgical properties such as throughput are

as important as grades to mine economics for these deposits. Geometallurgy

is being put forward as an integrated approach that will improve mine and

mill efficiency and increase mine value. Geometallurgy is a recently used term

that refers to the characterization and understanding of the relationship of

mineralogy and mineral textures to processing attributes (Lund et al., 2014),

the characterization of metallurgical properties at a fine scale (Kuhar et al.,

2011), and the spatial distribution and scaling of rock and metallurgical prop-

erties (Boisvert et al., 2013; Keeney and Walters, 2011). In this thesis, the

focus is on the spatial modeling of metallurgical properties for variability and

uncertainty quantification. The unifying vision of geometallurgy supported in

this thesis is to integrate knowledge about the rock, deposit, process and mine

value creation (Figure 1.1). The ideas of geometallurgy are not new, but in-

creased knowledge of geological, mining, metallurgical and modeling processes
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combined with decreasing average ore grades make this approach particularly

attractive now.

Rock

100 m 

Deposit Process Value

?

Geometallurgy

Figure 1.1: Cartoon with the geometallurgy vision proposed for this thesis.

Traditionally, research and work in these areas have been largely distinct.

Microscopic rock properties are characterized by mineralogists. An emphasis

is placed on understanding mineral associations and the scale of valuable min-

erals. Spatial modeling of the deposit is undertaken by geostatisticians and

geologists who quantify the mineral resource in the deposit. Estimates and

the quantification of uncertainty in metal grades and tonnages are empha-

sized. The processing plant for the concentration and extraction of valuable

minerals is designed and operated by metallurgists. The plant is designed to

optimize metal recovery based on a composite sample deemed representative

of the mineral deposit. Value creation by mining and ore/waste classification

is undertaken by mining engineers. The emphasis is on maximizing resource

recovery and minimizing the cost of mining.

The geometallurgy vision supported in this research is to integrate these

areas; an understanding of mineralogy and the variability of the deposit would

be used to improve process design and operation. Metallurgical properties

would be spatially modeled in the deposit and used for mine and mill planning

and design. The mine would be designed to maximize mill throughput and

ore optimally classified according to its metallurgical properties for multiple

processing routes. Optimal campaigning and blending strategies would be used

to maximize mine value accounting for the uncertainty in our understanding

of the deposit. The vision of geometallurgy is compelling, but there are many

engineering challenges to be addressed. In this thesis, the emphasis is on
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challenges associated with the multivariate spatial modeling of metallurgical

properties.

1.1.1 Metallurgical processes and properties

Mineral processing and metallurgical processes cover a very large range of

operations from size reduction and liberation (comminution), mineral con-

centration, extraction and recovery. Although the unit operations used in

metallurgical processes are diverse, there are a number of common process

categories. Consider an open pit mine where ore is mechanically extracted

and transported to the mill. A significant challenge is the separation of ore

components by liberating and concentrating the valuable minerals, such as a

copper bearing chalcopyrite ore, and converting them to a useful metallic form.

One of the most common methods for this is to comminute the run-of-mine

ore, concentrate the valuable particles using a concentration operation such

as froth flotation, and convert the minerals using an aqueous chemical (hy-

drometallurgical), heat (pyrometallurgical) or electric (electrometallurgical)

process.

These processes are expensive and energy intensive. Comminution in par-

ticular is the single largest energy consumer in almost all mining operations,

with energy requirements on the order of 36% of all energy used by copper and

gold mines in Australia (Ballantyne et al., 2012). The high energy usage of

comminution represents a substantial operating cost. Maximizing ore through-

put at minimal cost is critical for a low grade, high tonnage mine. Mineral

concentration operations, including froth flotation, have a direct impact on

metal recovery, as material not recovered in mineral processing operations will

be treated as waste. The recovery in metallurgical processes, reagent usages

for chemical processes and energy requirements for heat and electricity are also

important factors.

These common processes point to some important metallurgical properties

for economic characterization of a mineral ore. Energy requirements, through-

put, flotation recovery, and reagent usage are all metallurgical properties which

should be quantified. For the high resolution statistical approach proposed in
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this thesis, these properties are modeled spatially at a high resolution to opti-

mize the mining and processing operations.

1.1.2 The place of spatial models

Spatial models of rock properties are required for the evaluation of mineral de-

posits. These models are constructed with the goal of accurately quantifying

spatial variability and joint uncertainty in rock properties conditional to avail-

able data. Spatial models are then used for the establishment of ore/waste

boundaries, resource and reserve estimates, and mine planning. Limited drill

hole data and a lack of knowledge about underlying geological phenomena

make the construction of these models challenging. Uncertainty stemming

from limited data about the subsurface is modeled and accounted for to make

the best decisions under uncertainty.

Spatial models are commonly constructed of metal grades for mine plan-

ning, but these are not used as extensively in the subsequent design and opti-

mization of mineral processing and extractive metallurgy plants. The design

and performance of these plants is a function of a large number of metallur-

gical rock properties including comminution, flotation, and leaching indices.

Spatial models used for mine design rarely include models for these metallur-

gical variables for a number of reasons. The tests and labwork required are

expensive and, in many cases, require large volumes of rock from limited core

samples. In addition, modeling process driven metallurgical properties such as

the Bond mill work index and flotation recovery from intrinsic rock properties

such as metal assays is complicated by multivariate, nonlinear relationships.

These relationships are often not fully understood, and there are limited data

available to infer them. Although the problem is complex, there is significant

motivation to model these properties.

Unquantified variability in metallurgical properties is often compensated

for by incorporating large engineering safety factors into mineral processing

and extractive metallurgy operations. The current practice of over design,

excessive material re-handling and blending, and human dynamic response

factors is not optimal. Spatial models of metallurgical rock properties could
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be used to improve mill design and operation by designing the mill to handle

the expected range in properties, rather than designing the mill around a single

homogeneous composite of the expected ore feed. The mine plan could also be

designed to support mill requirements and increase ore throughput and metal

recovery. The value in building spatial models is apparent, but there are a

number of challenges which are the focus of this thesis.

Relating process driven metallurgical properties to geological rock proper-

ties is challenging. The metallurgical properties of interest are influenced both

by process conditions and the intrinsic geological rock properties. The rela-

tionship is dependent on a large number of factors, so an empirical regression

model is often developed to estimate the metallurgical response from intrinsic

geologic rock properties. Although there is uncertainty in the metallurgical

response, this is not often captured in the regression model. With a large

number of rock properties available and relatively sparse metallurgical mea-

surements, there is the danger of model overfitting and issues of scale. The

metallurgical rock properties are undersampled relative to grade variables and

sampled on supports which may differ by 1-2 orders of magnitude. Regular-

izing the geologic rock properties to the scale of the metallurgical properties

may not be possible; the selective mining unit size may be smaller than the

scale of metallurgical measurements.

The spatial modeling of metallurgical variables also has issues relating to

the establishment of a representative distribution, the highly multivariate na-

ture of the problem, missing data values due to undersampling and difficul-

ties applying a linear geostatistics methodology. Due to the time, expense

and scale associated with metallurgical tests, samples may be preferentially

taken in areas of the deposit likely to be classified as ore in the mine plan.

An unbiased estimate of the statistical distribution of these properties is re-

quired for modeling, so the preferential sampling must be accounted for. For

the complete geometallurgical characterization of a deposit, many variables

are important including assays, grinding indices, recoveries, specific gravity

and geotechnical properties. Geostatistical techniques which will reproduce

multivariate relationships in the data including multivariate transforms and
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colocated cosimulation algorithms require complete data sets without missing

values. Data imputation may be required in this case. Spatial modeling and

geostatistical techniques which respect the nonadditivity are also required; lin-

ear geostatistics frameworks such as kriging cannot be applied to nonadditive

metallurgical variables. Assuming a linear average would bias the resulting

models.

Methods for the scaling and mixing of metallurgical properties are required

to use the spatial models for improved mine and mill design and operation.

The point scale geostatistical models must be blocked up to a selective mining

unit scale, and these mining units combined to determine the blended response

in the mill. For metallurgical variables which average nonlinearly, an averag-

ing schema is required which relates a linearly scaling variable such as grade

or ore type proportion to the metallurgical variable of interest. Metallurgi-

cal variables which average nonlinearly are referred to as nonlinear variables

throughout this thesis; however, it is emphasized that the variables themselves

are not nonlinear, averages of these variables are nonlinear. These averaging

schema must be determined experimentally. Limited samples mean that there

is substantial uncertainty and the mixed response of metallurgical properties

should be evaluated probabilistically.

The goal of addressing these challenges is to improve mine planning and

mill design and operation. This may include the creation of optimal blending

or optimal campaigning strategies for specific high value ore types. If multiple

processing paths are available, the ore should be optimally typed to maximize

the net present value of the mine. All of the plans and designs must account

for the uncertain, multivariate metallurgical rock properties.

1.2 Thesis statement

To address these challenges, an integrated statistical approach for the spa-

tial modeling of metallurgical rock properties is proposed in this thesis. The

proposed approach provides a framework for addressing the problems of 1) in-

ferring and modeling nonlinear behaviour and mixing laws for metallurgical
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variables, 2) the downscaling of large scale metallurgical samples, 3) the spa-

tial modeling of metallurgical properties, and 4) challenges in the selection of

multivariate modeling workflows for uncertainty evaluation with metallurgical

properties. The thesis statement:

An integrated statistical approach for the multivariate spatial modeling of met-

allurgical rock properties which accurately quantifies the joint uncertainty in

grade, geotechnical and metallurgical properties will lead to more effective mine

and mill operation strategies.

The integrated statistical approach is composed of approaches for the spa-

tial modeling of nonlinear metallurgical variables, large scale metallurgical

samples and multivariate approaches for geostatistical modeling. The nonlin-

ear behaviour of metallurgical variables with limited data is inferred using a

semiparameteric Bayesian updating approach with nonlinear regression. Using

models of the nonlinear behaviour, the metallurgical variables are re-expressed

as linear variables which can be modeled using standard geostatistical algo-

rithms, and back-transformed after modeling. Large scale metallurgical sam-

ples are first re-expressed as linear variables, then downscaled using direct

sequential simulation with a stable downscaled histogram. These approaches

are integrated with multivariate decorrelation and cosimulation algorithms for

jointly realizing grade and metallurgical properties in the deposit.

1.3 Thesis outline

Chapter 2 reviews relevant literature and establishes the geometallurgical mod-

eling prerequisites for this thesis. The focus is on techniques which form the

basis for methods developed in this thesis, and geostatistical concepts that are

used throughout. Chapter 3 introduces a consistent methodology for modeling

nonlinear metallurgical rock properties, and several methods for inferring the

mixing laws given varying degrees of information. A novel algorithm using

semiparametric Bayesian updating to infer nonlinear behaviour given multi-

scale metallurgical data is developed. Chapter 4 focuses on the downscaling
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of large scale metallurgical properties for scale consistent spatial modeling.

An algorithm for stochastic downscaling using direct sequential simulation is

developed with a focus on practical considerations given the challenging con-

strained, nonlinear, and multiscale problems. Chapter 5 addresses practical

challenges for the construction and application of high resolution geometal-

lurgical spatial models for improved mine planning and process operation.

Chapter 6 applies a multivariate geostatistical workflow using metallurgical

variables to a copper porphyry case study. Conclusions, limitations and fu-

ture work are reviewed in chapter 7.

Each of the methods developed in this thesis are numerically and compu-

tationally intensive, requiring specialized software for practical application. A

substantial contribution of this thesis is the development of numerical model-

ing software which implements the algorithms developed here. Computation-

ally intensive algorithms are implemented in modern Fortran, and wrapped in

Python for integration into geostatistical workflows.
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Chapter 2

Geometallurgical modeling
prerequisites

In chapter 1, geometallurgy was broadly defined to be the integration of data

from numerous sources about the rock, deposit, process, and mining. In this

thesis, this inclusive vision of geometallurgy is adopted from a spatial numer-

ical modeling perspective. The regionalized variable framework of classical

geostatistics is used as the foundation for spatial modeling of geometallurgical

properties which quantify grade, metallurgical and geotechnical information.

These spatial models form the basis of applications for mine value creation.

This chapter begins with a brief overview of the regionalized variable frame-

work for geostatistics and defines notation used throughout this thesis. The

focus then shifts to specific methodologies which are used, and which form the

basis for new modeling algorithms and strategies developed. These method-

ologies are placed within the context of practical methods to build a spatial

model of geometallurgical properties given the challenging multivariate, non-

linear, and multiscale nature of the problem. Techniques introduced here are

developed and integrated into geostatistical workflows for the construction of

high resolution geometallurgical models in chapter 5. Alternative techniques

for spatial model construction are also discussed in chapter 5 in the context

of workflow selection.
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2.1 Regionalized variables and the geostatistical frame-
work

With the goal of building spatial models of geometallurgical properties, the

classical geostatistics framework is adopted. Geostatistics is a branch of ap-

plied statistics characterized by “the statistical study of natural phenomena”

(Journel and Huijbregts, 1978). Specifically, the results of deterministic natu-

ral processes, such as the copper grade in a deposit, are numerically modeled

by the application of probabilistic methods. A probabilistic model is adopted

due to a lack of information about the deterministic processes and a lack of

knowledge about the governing spatial law of the end result. This lack of in-

formation, and the engineering requirement to make the best decisions under

uncertainty, motivate the adoption of the probabilistic approach of geostatis-

tics.

The probabilistic statistical methods used are diverse including linear es-

timators (e.g., kriging), stochastic evaluation of conditional propabilites (e.g.,

sequential Gaussian simulation, Bayesian updating) and the application of

spatial covariances (e.g., scaling laws) among others. In the context of geomet-

allurgy, the focus of these methods is the spatial modeling of rock properties

(grades, metallurgical and geomechanical properties) which are considered to

be regionalized random variables. In this thesis, properties refers to the mea-

sured and modeled rock attributes, while variables refers to rock properties

treated from a statistical perspective.

2.1.1 Rock properties as regionalized variables

The regionalized variable framework in this thesis is developed considering

multiple data types, multiple data scales, and multiple realizations of the

data. Rock properties may be continuous, categorical or mixed continuous-

categorical variables. In this thesis, continuous variables including grades,

work indices and geotechnical measurements are primarily the properties of

interest. Categorical variables, including rock types and lithologies, and mixed
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continuous-categorical variables, such as the degree and type of alteration may

also be modeled.

Consider K data types, including grade, geotechnical and metallurgical

properties enumerated as k = 1, . . . , K. These data have an associated scale

v, where v belongs to a set of discrete scales including the composite scale

and larger metallurgical sample scale. Data events are considered to have a

discrete scale v as data of a similar type are often collected on, or composited

to, a common scale. Grade measurements may be composited to a bench scale

of 15 m while metallurgical samples are often measured on 30 m intervals of

core. The scale v is included to indicate the type of scale where many types

are possible including:

v =

 vc composite scale
vm metallurgical test scale
vgm geomechanical scale

(2.1)

Regionalized data events of type k are associated with a sample location vector

ui with sample locations indexed as i = 1, . . . , nk. Under a multiple imputa-

tion workflow, L realizations of the data are indexed as l = 1, . . . , L. A random

variable is denoted by the uppercase Z where the lowercase z denotes an out-

come of this random variable. Outcomes include both measured and modeled

values of the random variable. The random variables are regionalized, and

restricted to be within a domain A. Data events are denoted:

zlk(ui; v), i = 1, . . . , nk, k = 1, . . . , K, l = 1, . . . , L

Unless realizations of the data or unknown locations are being used, equa-

tions in this thesis omit the data realization index l to simplify the notation.

Using these data, stochastic and deterministic spatial models of the deposit

are constructed. These models require statistical characterization and pa-

rameterization of the regionalized random variables for use with geostatistical

models.

2.1.2 Parameterization of geostatistical models

A prerequisite for geostatistical modeling is the establishment of representa-

tive statistical relationships. This includes univariate statistics (the histogram
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including the mean and variance), bivariate spatial statistics in the form of

covariance functions or variograms, and multivariate statistics including cor-

relation matrices. Statistics are calculated within a domain assuming second-

order stationarity (Chilès and Delfiner, 2009). Two principal relationships are

implied by second-order stationarity; the expected value of a random variable

at a constant scale is the variable’s mean which is constant within the domain:

E{Zk(u); v} = mk(v), k = 1, . . . , K,u ∈ A

where E is the expected value operator and m denotes the mean. Additionally,

the covariance Ck(h; v) within the domain follows a covariance function for a

separation vector h:

E{[Zk(u; v)−mk(v)][Zk(u+ h; v)−mk(v)]} = Ck(h; v), k = 1, . . . , K,u ∈ A

For a standardized variable with unit variance, the correlation function ρ(h; v)

is used in place of the covariance function. There is no requirement for the

spatial covariance to be evaluated on data of the same scale. Multiscale co-

variances, referred to as average covariances, are numerically calculated using

a discrete approximation. The discretization level is typically the smaller of

the two scales, or a pseudo-point scale. The average covariance is calculated:

Ck(ui,uj; vi, vj) =
1

ndisc(i)ndisc(j)

ndisc(i)∑
α=1

ndisc(j)∑
β=1

Ck(uα,uβ; vdisc)

Alternatively, average covariances may be calculated with the analytical solu-

tion (sextuple volume integral) of the prior equation (Journel and Huijbregts,

1978). The semivariogram γ(h; v), hereafter referred to as the variogram, is the

most common statistic used to infer the covariance function. The variogram

is defined:

γk(h; v) =
1

2
E{[Zk(u; v)− Zk(u+ h; v)]2}, k = 1, . . . , K,u ∈ A

Under the assumption of second-order stationarity the variogram and covari-

ance are related by the variance σ2
k(v):

γk(h; v) = σ2
k(v)− Ck(h; v), k = 1, . . . , K
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The decision of stationarity is a choice required to draw conclusions from

limited data, and is explicitly made as soon as any statistics are calculated and

modeled. Inference of these statistics is complicated by preferential sampling

in the mining industry. This is a result of the sampling goal being to identify

ore bodies and delineate ore-waste contacts, not to draw representative samples

from a population.

In the case of preferential sampling and in the presence of spatial continu-

ity, a declustering technique is required to infer a representative distribution

(Deutsch, 1989; Journel, 1983). The cumulative distribution function F of

each property is inferred in the presence of clustered samples:

Fk(zk(v)), k = 1, . . . , K

In the absence of spatial continuity, all samples are independent and there

is no need for declustering (Bourgault, 1997). The physical and chemically

driven metallurgical properties that are being modeled are taken from a natural

deposit, so will exhibit a degree of spatial correlation. In the situation where

the full range of variability has been sampled, but areas of the deposit have

been preferentially sampled, a polygonal, cell or kriging based declustering

method could be used (Bourgault, 1997; Kovitz and Christakos, 2004; Olea,

2007). If the data collected on the metallurgical variable of interest are very

limited, but extensive secondary data such as metal assays are available, then

declustering with secondary data could be considered (Deutsch et al., 1999;

Pyrcz and Deutsch, 2002).

2.1.3 Theory of geostatistical estimation and simulation

Numerical models of a mineral deposit can be broadly classified as determinis-

tic, where there is a single model of the deposit, or stochastic, where there are

multiple realizations of the deposit. From a statistical perspective, these cor-

respond to estimated (deterministic) and simulated (stochastic) models of the

deposit. The model purpose and study aims will dictate whether the model

constructed will be deterministic with a single best estimate or stochastic with

multiple realizations of the domain. Modeling methods developed in this thesis
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use a stochastic approach for multiple realizations; however, the principles of

linear spatial estimation are ubiquitous even in the multiple realization context

and are therefore reviewed here.

If the goal of the study is to infer a single best estimate of a set of rock

properties over an entire domain for estimating ore tonnes, grade and for

resource classification, then a deterministic approach such as ordinary kriging

may be used as it provides a robust method for the spatial estimation of rock

properties in a geologic domain (Rossi and Deutsch, 2013). As the kriging

formalism forms the basis of many of the geostatistical techniques used in this

thesis, including the stochastic methodologies, consider the linear estimation

of z∗k at location u0 and scale v given a set of nearby, spatially correlated data

of the same data type k:

z∗k(u0; v)−mk(v) =

nk∑
i=1

λi(zk(ui; v)−mk(v)) (2.2)

where λi, i = 1, . . . , nk are estimation weights assigned to the nk sample loca-

tions with data of type k. The estimation variance σ2
k,E of this linear estimator

is calculated given the weights and covariances Ck(v) where Ci,j(v) is short-

hand for the covariance between two locations, ui and uj with scale v:

σ2
k,E(u0; v) = C0,0(v)− 2

nk∑
i=1

λiCi,0(v) +

nk∑
i=1

nk∑
j=1

λiλjCi,j(v) (2.3)

which is minimized by the simple kriging equations (alternatively referred to

as the normal equations):

nk∑
j=1

λjCi,j(v) = Ci,0(v), i = 1, . . . , nk

σ2
k,SK(u0; v) = C0,0(v)−

nk∑
i=1

λiCi,0(v)

(2.4)

Discussion and derivation of alternative kriging variants can be found in

any standard geostatistical text (Chilès and Delfiner, 2009; Goovaerts, 1997;

Journel and Huijbregts, 1978). Using variables in their original units, these

deterministic approaches require an assumption that the variable averages lin-

early. Nonlinear estimation algorithms, including disjunctive, lognormal and
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indicator kriging have been shown by Moyeed and Papritz (2002) to not per-

form better than linear techniques comparing the bias, relative mean squared

error and other metrics of estimates. Moreover, the so-called nonlinear esti-

mation algorithms are still aimed at variables that average linearly. For this

reason, deterministic approaches, while applicable for linear variables where

a single best estimate is required, should be avoided for metallurgical and

geomechanical variables that do not average linearly.

For most geometallurgical applications the joint uncertainty of many vari-

ables is important, and there is uncertainty in model parameters. In these

cases a stochastic approach using Monte Carlo simulation should be applied.

This approach would be preferred for many applications including choosing

an appropriate drill hole spacing and assessing plant and mine performance

based on multiple rock, metallurgical and geomechanical properties. Stochas-

tic methods are used as they can jointly model the spatial and multivariate

uncertainty (Pyrcz and Deutsch, 2014; Rossi and Deutsch, 2013). Simula-

tion makes no averaging assumption; all averaging is deferred until the end of

the modeling workflow where point scale simulated values are averaged up to

larger scales relevant for the mining operation. If the nonlinear behaviour of

the metallurgical variables of interest is understood, nonlinear averaging can

be applied at this point. Multiple high resolution realizations of the deposit

are constructed which can then be post-processed for summary statistics and

through a transfer function such as mining simulation for quantifying uncer-

tainty in key parameters such as the uncertainty in mill throughput and head

grade throughout the mines life. Techniques developed in this thesis are in the

domain of the stochastic approach to deposit modeling. If required, realized

values can be averaged across realizations for a single deterministic estimate

at each location.

Sequential Gaussian simulation techniques which rely on the recursive de-

composition of the multivariate Gaussian probability distribution are the most

widely used stochastic modeling algorithms for continuous variables. The al-

gorithm is reviewed here, although the interested reader is referred to any

standard geostatistical text for a more detailed exposition. All data values,
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zlk(ui; v), i = 1, . . . , k = 1, . . . , K, nk, l = 1, . . . , L are transformed to Gaussian

units, typically with the use of a normal score transform (also referred to as

a probit or quantile function; Bliss, 1934; Deutsch and Journel, 1998). The

Gaussian data are enumerated:

ylk(ui; v), i = 1, . . . , nk, k = 1, . . . , K, l = 1, . . . , L

Importantly, the data are assumed to be multivariate Gaussian after univariate

transform. A number of check statistics for possible multivariate Gaussianity

may be checked, however the verification of true multivariate Gaussianity is

not possible without multiple realizations of the data which are not available

for these physically sampled measurements. With the assumption of multi-

variate Gaussianity, model locations are visited sequentially and the normal

equations (simple kriging) are applied to calculate the mean and variance as

per Equations 2.2–2.4. A random residual R(u0) is sampled from a Gaussian

distribution with a mean of zero and variance equal to the estimation (kriging)

variance. The result is a set of simulated values with the correct variance and

conditional covariances. This is added to the estimate:

y∗s(u0; v) = y∗(u0; v) +R(u0)

The simulation proceeds sequentially visiting each model location in turn. This

process is repeated for each realization, for each variable, and for all locations

within the stationary modeling domain A:

{ylk(ui; v), i = 1, . . . , nA, l = 1, . . . , L, k = 1, . . . , K,u ∈ A}

Data are back-transformed to original units, and upscaled to larger support

volumes relevant for mining as required. This Gaussian approach is the pri-

mary algorithm for stochastic simulation of the deposit, and the primary ap-

proach used for modeling within this thesis. Alternative methods to the se-

quential approach include spectral methods (Fourier simulation) and turning

bands (Journel and Huijbregts, 1978).

There are a number of problems with the sequential Gaussian simulation

approach, principally the requirements for multivariate Gaussianity and max-

imum entropy leading to disconnected, destructured extreme values (Oz et al.,
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2003). Multivariate Gaussianity can be enforced with a multivariate trans-

fom; however, the property of maximum entropy is central to the use of the

Gaussian distribution. Alternatives to the Gaussian approach, such as the

multiple-point statistics approach advocated by Mariethoz and Caers (2014),

require extensive training image construction. Limited sample data and the

challenging geological, metallurgical and geotechnical nature of the problem

limit the present applicability of these methods for multivariate metallurgi-

cal modeling. Therefore, the widely used multivariate Gaussian approach for

stochastic modeling is adopted in this thesis.

2.1.4 Hierarchical modeling

Both deterministic and stochastic methods require the choice of a stationary

domain for modeling. As previously discussed in the calculation of represen-

tative statistics, stationarity is a choice made to pool data together for the

calculation of statistics and inference of properties. This includes all steps of

the modeling workflow from the establishment of histograms and variograms

to the simulation of metallurgical properties within the domain. It is rare

that a deposit would only have one domain; numerous geologic controls, rock

types, and intrusions are common. In these cases a hierarchical approach for

modeling is adopted.

The hierarchical approach for modeling is the choice to pool data into spe-

cific subsets (rock types or domains) for statistic calculation and modeling.

This may be deterministic using geologic knowledge to establish rock type

boundaries and domains, or stochastic using multiple realizations of the de-

posit. Each domain is modeled separately (or by treating data from a separate

domain as secondary data; McLennan, 2007) and the separate domain models

merged. These merged models composed of multiple domains form the basis

for model applications including mine planning and optimization.

Many techniques for domain modeling exist, including implicit modeling

with distance functions, truncated Gaussian simulation, indicator simulation

and multiple point geostatistics. The establishment of these domains, de-

terministically or stochastically, is the first step in the modeling process.

17



Techniques proposed and implemented in this thesis including semiparametric

Bayesian updating for nonlinear inference and direct sequential simulation for

downscaling operate within these stationary domains. All geostatistical and

statistical algorithms used in this thesis are only applicable within a domain

for which a decision of stationarity has been made, even if this limitation is

not explicitly noted for each technique.

2.2 Bayesian updating

The basis of the multiscale nonlinear inference algorithm proposed in this

thesis is Bayesian updating. Bayesian updating is the application of Bayesian

inference in which a posterior, or updated, distribution is inferred given prior,

likelihood and global distributions. The updated distribution is inferred using

Bayes’ law:

P (A|B) =
P (B|A)P (A)

P (B)

where P (A), P (B) are the global probabilities of events A and B, P (A|B)

is the probability of event A given event B and P (B|A) is the probability of

event B given event A. In the context of Bayesian updating for geostatistics, an

updated distribution P (A|B) is calculated given the prior distribution P (A),

the likelihood distribution P (B|A) and the global distribution P (B). This

requires an assumption of the relationship between events which is a primary

basis for the classification of a Bayesian updating algorithm as parametric or

non-parametric, not just the use of a parametric distribution.

Bayesian updating is commonly used in geostatistics (Deutsch and Zanon,

2004; Doyen and Pillet, 1996; Journel, 2002; Neufeld and Deutsch, 2004; Ren

and Deutsch, 2006) for the integration of integrating secondary data in an

estimate as an alternative to multivariate techniques such as cokriging. An

estimate is made using data of the same type (same property and support

volume) to establish the prior distribution. The likelihood distribution is es-

tablished using secondary data, such as a correlated variable. Under a Markov

assumption, Bayesian updating is applied on a colocated basis, where only
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secondary data at the point where the estimate is being made are used, not

nearby data.

2.2.1 Parametric Bayesian updating for geostatistics

Parametric Bayesian updating for geostatistics uses the multivariate Gaussian

distribution, ubiquitous in geostatistical analyses, to define the relationship

between the likelihood and prior distributions. Doyen et al. (1996), Deutsch

and Zanon (2004) and Neufeld and Deutsch (2004) applied Bayesian updating

assuming a bivariate Gaussian relationship between the likelihood and prior.

Notation similar to that used by Neufeld and Deutsch is adopted in this the-

sis. Consider a Gaussian likelihood distribution parameterized by a mean mL

and variance σ2
L. A correlated Gaussian prior distribution is parameterized by

mean mP and variance σ2
P . The updated Gaussian distribution is parameter-

ized by the updated mean, mU , and variance, σ2
U :

mU =
mLσ

2
P +mPσ

2
L

(1− σ2
L)(σ

2
P − 1) + 1

σ2
U =

σ2
Pσ

2
L

(1− σ2
L)(σ

2
P − 1) + 1

(2.5)

The derivation of Bayesian updating for a bivariate Gaussian distribution

can be found in any of the previously mentioned references on parametric

Bayesian updating. For the common geostatistical approach of secondary

data information with parametric Bayesian updating, the likelihood distribu-

tion quantifies the relationship between the primary and secondary variables.

That is, given a colocated secondary value at a location being estimated, the

likelihood distribution is the conditional probability distribution of the primary

given the secondary variable. The prior distribution is established by kriging

(normal equations) with nearby primary data. The updated distribution which

merges these distributions is a function of the global distribution (the standard

normal distribution), the likelihood and prior distributions. Note also that the

updating equations are non-convex, and it is therefore possible to infer a mean

higher than both the likelihood and prior means, and vice-versa.

Parametric Bayesian updating is one method for combining data from mul-
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tiple sources, but there are others including colocated cokriging and (full)

cokriging. Parametric Bayesian updating is considered easier to implement

(Doyen and Pillet, 1996) and does not require modeling numerous cross var-

iograms as required by cokriging variants. These advantages are offset by

the requirement of a strong assumption of the distribution shape (bivariate

Gaussianity) and potentially problematic variogram reproduction and vari-

ance inflation (Neufeld and Deutsch, 2004). Variance inflation here refers to

the generation of realizations which have a variance significantly higher than

the input data variance (variogram sill).

2.2.2 Non-parametric Bayesian updating for geostatistics

The multivariate Gaussianity assumption made by parametric Bayesian up-

dating was modified by Neufeld and Deutsch (2006) with the proposal of non-

parametric Bayesian updating. As discussed, parametric Bayesian updating

explicitly assumes a bivariate Gaussian relationship between the likelihood

and prior distributions. In non-parametric Bayesian updating, no assumption

of multivariate Gaussianity is made. In place of the multivariate Gaussian

assumption, the prior and likelihood distributions are assumed to either be

1) independent sources of information adopting an independence model, or

2) conditionally independent adopting a permanence of ratios model (Journel,

2002).

Non-parametric Bayesian updating discretizes the updating procedure, cal-

culating the updated probabilities for discrete probability intervals. These in-

tervals are analogous to bins used in the calculation of a histogram, although

the choice of discretization interval is based on computational time, not data

density.

Assuming independence between the likelihood P (A|B) and prior distribu-

tions P (A|C), updated probabilities are calculated:

PI(A|B,C) =
P (A|B)P (A|C)

P (A)

The assumption of independence is likely unrealistic, as a relationship between

A and B, and between A and C implies a relationship between B and C. Of
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course, there is no requirement that this relationship be causative. The al-

ternative approach assuming conditional independence between the likelihood

and prior distributions (Journel, 2002) and using the permanence of ratios

equation:

PPR(A|B,C) =

1− P (A)

P (A)(
1− P (A)

P (A)

)
+

(
1− P (A|B)

P (A|B)

)(
1− P (A|C)

P (A|C)

) (2.6)

After probability combination, restandardization is required to ensure that

the updated probabilities sum to one. As noted by Neufeld and Deutsch

(2004), using the permanence of ratios approach does not magnify very low

or very high probabilities as much as the independence approach. In addition

to traditional modeling scenarios as a replacement for colocated cokriging,

both parametric and nonparametric Bayesian updating have been applied for

missing data imputation under a multiple imputation framework.

2.3 Missing data and the multiple imputation frame-
work

Many multivariate techniques including decorrelation and multivariate trans-

formation methods require completely equal sampling of the multivariate data.

Frequently, the sampling of multiple metallurgical properties is unequal; that

is, not all properties are measured at all data locations. Expensive metallur-

gical tests may only be performed on samples which are likely to be classified

as ore, not lower grade samples. Newer metallurgical testing methods may

not be available on legacy data collected earlier in the mine life. This un-

equal sampling is a significant problem for geostatistical modeling techniques

that require equal sampling. Excluding all unequally sampled data locations

from the modeling workflow would result in a substantial loss of information

and may result in a bias for values which are not missing at random (En-

ders, 2010). Applying a regression technique to fill the missing data would

artificially reduce the spatial and multivariate variability. As such, the multi-

ple imputation framework for geologic data proposed by Barnett and Deutsch
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(2015) is adopted. This technique replaces the missing values with stochas-

tically imputed values which honor the multivariate and spatial distributions

of the data. This multiple imputation approach is applied in this thesis for

multiscale data imputation, and as such is reviewed here.

The multiple imputation framework adopts the geostatistical simulation

paradigm of multiple model realizations and applies this to the data. Prac-

tically, a different set of imputed data will be used for each realization. The

missing data are stochastically simulated conditional to all available colocated

and spatially correlated samples resulting in a set of equally sampled data

sets with the correct spatial and multivariate distributions. This requires the

modeling of the conditional distribution of missing data given sampled data

and drawing from this distribution. Methods for the establishment of this dis-

tribution available for the multiple imputation of missing data include both

parametric (Gaussian) and non-parametric methods (Barnett and Deutsch,

2015). The parametric imputation framework applies the Bayesian updating

approach discussed earlier using available colocated secondary values to param-

eterize a conditional multivariate Gaussian distribution. The non-parametric

imputation framework applies kernel density estimation with an adapted Gibbs

sampler to construct the conditional distribution. Once the conditional distri-

bution is established either parametrically or non-parametrically, the missing

value is drawn randomly from the conditional distribution.

In a case study conducted by Barnett and Deutsch, non-parametric mul-

tiple imputation was demonstrated to be the most effective at integrating

complex multivariate features for spatial and colocated information. The non-

parametric approach for multiple imputation is reviewed here following the

development of Barnett and Deutsch. Consider the imputation of a missing

value of type k = p at location u0. As with the Gaussian simulation algo-

rithms, all variables Zk(v), k = 1, . . . , K are normal score transformed using

the univariate cumulative distribution function to Yk(v), k = 1, . . . , K. A

Gaussian mean and variance for the missing value yp(u0; v) is inferred using
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the normal equations and all locally available primary data.

ȳp(u0; v) =
nα∑
α=1

λYp,αY (uα; v)

σ2
p(u0; v) = 1−

nα∑
α=1

λYp,αρ(u0 − uα; v)

f(yp(u0; v)|Yp(uα; v), α = 1, . . . , nα) ∼ N(ȳp(u0; v), σ
2
p(u0; v))

(2.7)

Secondary information is integrated using multivariate kernel density estima-

tion with a correlated Gaussian kernel. In the method proposed by Barnett

and Deutsch, a Gibbs sampler approach is used so that all K − 1 secondary

variables are available at u0. The conditional distribution inferred using kernel

density estimation given all available secondary data at this colocated location:

f(yp(u0; v)|Yk(u0; v),k = 1, . . . , K, k 6= p) ∼
1

∆

∫
Nh(yp(u0; v), yk(u0; v), k = 1, . . . , K, k 6= p)dyp(u0; v)

(2.8)

where ∆ is a normalizing constant, Nh is the bandwidth smoothed multivariate

normal distribution and the integral is numerically evaluated using discrete

integration. These two conditional distributions for yp(u0) are merged using

Bayesian updating, which is the evaluation of the definition of a conditional

probability distribution:

f(yp(u0; v)|Yp(uα; v), Yk(u0)) =
f(yp(u0; v)|Yp(uα; v))f(yp(u0; v)|Yk(u0; v))

f(yp; v)
,

k = 1, . . . , K, k 6= p, α = 1, . . . , nα

(2.9)

This merged distribution is sampled using Monte Carlo simulation to draw a

realization ylp(u0; v). This procedure is applied to all missing data locations

for each realization. The result is a set of L realizations of the data. For

the stochastic modeling approach adopted, each realization of the block model

uses a different realization of the data. The direct sequential simulation down-

scaling approach developed in this thesis is related to the multiple imputation

workflow; multiple realizations of the small scale values are constructed.
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2.4 Direct sequential simulation

The use of direct sequential simulation for stochastic downscaling is proposed

in this thesis. Direct sequential simulation is a modification of sequential Gaus-

sian simulation in which values are simulated in original units, instead of their

Gaussian transform. Under the simple kriging principle, the spatial covariance

of a variable is reproduced if the sampled distribution has the correct mean

and variance (Deutsch, 2000; Gómez-Hernández et al., 2005; Oz et al., 2003;

Soares, 2001). Direct sequential simulation forms the core of the downscaling

algorithm developed in this thesis, so is briefly reviewed here.

2.4.1 Algorithm for direct sequential simulation

Direct sequential simulation is developed using notation and logical develop-

ment similar to that used by Deutsch (2000). Consider a standardized random

variable, Yk(u; v), k = p such that:

yp(u; v) =
zp(u; v)−mp(v)

σp(v)

After standardization, the correlation function ρ(h; v) is used in place of the

covariance function for Yp(u; v), the mean is zero, and variance one. Direct

sequential simulation of Yp(u; v) proceeds in much the same manner as se-

quential Gaussian simulation. Given standardized data of the same type and

scale, yp(ui; v), i = 1, . . . , np, and (typically gridded) locations to be simulated

within the domain at the same scale, uj, j = 1, . . . , nA, the algorithm proceeds

for each realization l = 1, . . . , L:

1. Visit simulation locations uj, j = 1, . . . , nA in a random order where the

current location being simulated is indicated by j = sim and locations

previously simulation are indicated j = 1, . . . , sim− 1:

2. Construct the conditional distribution F (yp(usim; v)|yp(ui; v), yp(uj; v), i =

1, . . . , np, j = 1, . . . , sim−1). This distribution is conditional to both pre-

viously simulated values and data.

3. Realize a value ylp(usim; v) from the conditional distribution.
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4. Continue visiting simulation locations and repeat for all realizations l =

1, . . . , L.

Recall that sequential Gaussian simulation is equivalent to the recursive

decomposition and sampling of the multivariate Gaussian distribution. Sim-

ilarly, direct sequential simulation is equivalent to sampling from the data

conditional distribution:

F (yp(uj; v), j = 1, . . . , nA|yp(ui; v), i = 1, . . . , np)

where the conditional density function of each sampled distribution is the

product:

f(yp(usim; v)|yp(ui; v), yp(uj; v), i = 1, . . . , np, j = 1, . . . , sim− 1) =
sim−1∏
J=1

f(yp(usim; v)|yp(ui; v), yp(uj; v), i = 1, . . . , j = 1, . . . , J)
(2.10)

This leverages the simple kriging principle which is the generalization of the

multivariate Gaussian assumption in simple kriging for any parametric dis-

tribution which is defined by two parameters: a mean and homoscedastic

variance.

2.4.2 The simple kriging principle

Two parameters are required according to the simple kriging principle: a con-

ditional mean and homoscedastic conditional variance. The conditional mean

is calculated (Deutsch, 2000):

E{yp(usim; v)|yp(ui; v), yp(uj; v),i = 1, . . . , np, j = 1, . . . , sim− 1} =
np∑
i=1

λiyp(ui; v) +
sim−1∑
j=1

λjyp(uj; v)
(2.11)

The homoscedastic conditional variance is calculated:

Var{yp(usim; v)|yp(ui; v), yp(uj; v), i = 1, . . . , np, j = 1, . . . , sim− 1} =

1−
np∑
i=1

λiρ(ui − usim; v)−
sim−1∑
j=1

λjρ(uj − usim; v)
(2.12)

where the simple kriging equations are used for the weights (Equation 2.4).

If the variables are Gaussian, this is equivalent to sequential Gaussian sim-

ulation and all probability density functions must be Gaussian. Even if the
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distributions are not Gaussian, as in the case of direct sequential simulation,

the covariance between the simulated location, and previously simulated loca-

tions and data values is correct (Deutsch, 2000). The correct sampling mean

and variance are therefore known; however, the correct shape of the sampling

distribution is unknown except in the Gaussian case. There have been many

proposed methods for this; these are discussed further in chapter 4 in the

context of the downscaling algorithm.

2.5 Multivariate geostatistical modeling

A number of geostatistical algorithms including kriging, sequential Gaussian

simulation, Bayesian updating and direct sequential simulation have been re-

viewed, but these form only a small subset of algorithms used in a multivariate

geostatistical model, such as the model constructed in chapter 6. One of the

primary contributions of this thesis is the synthesis of many geostatistical al-

gorithms into a consistent workflow for the multivariate spatial modeling of

grade, metallurgical and geotechnical properties. The goal of this section is

not to provide a laundry-list of algorithms used in the construction of a mul-

tivariate geostatistical model, but instead to focus on a few key geostatistical

algorithms used throughout this thesis. These core algorithms include the

bootstrap, intrinsic supersecondary cokriging and decorrelation algorithms.

Bootstrap algorithms are used for the inference of uncertainty in statistics

given limited data and no theoretical sampling distribution. Intrinsic super-

secondary cokriging and decorrelation algorithms are two alternative classes of

methods for modeling multivariate relationships. Cokriging constructs a mul-

tivariate model considering the correlations, while decorrelation algorithms

remove the correlations prior to constructing the model and re-introduce the

correlations after modeling.

2.5.1 Bootstrap algorithms

Bootstrap algorithms are robust techniques for calculating uncertainty in pop-

ulation statistics by resampling with replacement of sample values (Efron,
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1982). At the core of bootstrap algorithms is the assumption that the rela-

tionship of samples to the population may be modeled by the relationship of

resampled values to the samples. Random samples of the sample values are in-

dependently drawn with replacement and the statistic of interest calculated on

these random drawings. Uncertainty is inferred using these values. The boot-

strap is used when the distribution of the true samples is unknown, preventing

inference of uncertainty directly. As the true distribution of values is typically

unknown for grade, metallurgical and geotechnical properties, the bootstrap

may be used to infer uncertainty in key statistics such as the histogram.

The spatial bootstrap (Pyrcz et al., 2006) is an extension of the bootstrap

for calculation of the uncertainty in spatially correlated statistics. Rather

than drawing from the sample values independently, correlated samples are

drawn by simulation. For highly correlated samples, such as samples along

a length of core, drawing independently would substantially underestimate

the uncertainty in the statistic of interest. Consider the quantification of

uncertainty in the mean of the experimental cumulative distribution function

Fk(zk; v) for the random variable Zk(v) using LU simulation. The covariance

matrix Ck(v) is the square matrix of spatial covariances Ck(uα −uβ; v) where

α, β = 1, . . . , nk and nk is the total number of samples available in the domain

of the random variable Zk. The matrix is decomposed to symmetric lower

triangular and upper triangular matrices using a Cholesky decomposition:

Ck(v) = Lk(v)Uk(v)

L realizations of an independent standard normal random vector ωl, l = 1, . . . , L

with length nk are generated. These standard normal vectors may be corre-

lated using the lower triangular matrix from the Cholesky decomposition:

yl
k(v) = Lk(v)ω

l, l = 1, . . . , L

Using the standard normal distribution, G, to calculate probabilities associ-

ated with these correlated values, rank transformed realizations of the samples

may be realized using the inverse of the experimental cumulative distribution

function F−1
k (zk; v):

zlk(v) = F−1
k (G(yl

k(v)); v)
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Using the L vectors of resampled values zlk(v), the uncertainty in the mean can

be calculated. Furthermore, uncertain histograms F l
k(zk; v) may be inferred

directly using the resampled values. In the models of uncertainty of metal-

lurgical properties constructed in this thesis, the spatial bootstrap is used to

quantify uncertainty directly.

2.5.2 Intrinsic supersecondary cokriging

There are many methods for jointly modeling the uncertainty in multiple vari-

ables including cokriging, colocated cokriging and the intrinsic framework.

The intrinsic supersecondary approach (Babak and Deutsch, 2009b) is one

approach for the joint modeling of a highly multivariate problem which en-

forces the bivariate correlations between variables in the final models. The

intrinsic supersecondary model assumes that the spatial correlations among

the secondary variables are proportional to the primary variable spatial corre-

lation. Consider designating a normal score transformed random variable as

the primary variable where k = p, Yp(vc), and all variables are at a consis-

tent scale vc. All other variables are designated secondary variables, Yk(vc),

k = 1, . . . , K, k 6= p. Using similar notation as Babak and Deutsch (2009b),

the merged secondary (supersecondary, s) variable Ys(vc) is calculated using

multiple linear regression of the colocated secondary variables on the primary

variable:

K,k 6=p∑
k=1

τkρk,j(vc) = ρk,kp(vc), j = 1, . . . , K, j 6= kp

Ys(v) =

∑K,k 6=p
k=1 τkYk(vc)

ρs(vc)
, ρs(vc) =

[K,k 6=p∑
k=1

τkρk,kp(vc)

] 1
2

(2.13)

The intrinsic supersecondary cokriging system uses the supersecondary

variable with the intrinsic model to calculate weights for each variable. This

system of equations is most easily understood using matrix notation. Let R be

the square matrix of spatial correlations ρ(uα −uβ; vc) where α, β = 1, . . . , nα

and r be the vector of spatial correlations ρ(uα−u0; vc) where α, β = 1, . . . , nα.

The system of equations to be solved for the weight vectors is then:
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 R ρsR ρsr
ρsR R r
ρsr r 1

 λYk

λYs

λYs,0

 =

 r
ρsr
ρs

 , k = kp (2.14)

The conditional mean and variance are calculated using a linear estimator

with the merged secondary variables:

ȳk(u0; vc) =
nα∑
α=1

λYk,αY (uα; vc) + λYs,0Ys(u0; vc) +
nα∑
α=1

λYs,αY (uα; vc)

σ2
k(u0; vc) = 1−

nα∑
α=1

λYk,αρ(u0 − uα; vc)− λYs,0ρs +
nα∑
α=1

λYs,αρsρ(u0 − uα; vc)

(2.15)

Assuming a positive definite correlation matrix and licit variogram model,

the resulting intrinsic matrices will always be positive definite without mod-

eling a linear model of coregionalization. This Markov assumption can be

applied to any number of collocated samples and is appropriate for highly mul-

tivariate problems. Although multivariate relationships are controlled through

the correlations after multiple univariate Gaussian transformation, there is no

explicit control on the multivariate density with the supersecondary approach.

The variables are assumed to be multivariate Gaussian after univariate trans-

formation to Gaussian units. This is a common approach in multivariate geo-

statistical algorithms but unsuitable for very complex relationships (Barnett

and Deutsch, 2015). In these cases, decorrelation algorithms may be used to

independently model variables before re-introducing the complex relationships.

2.5.3 Decorrelation algorithms

Decorrelation methods including principal component analysis (PCA), mini-

mum/maximum autocorrelation factors (MAF), the stepwise conditional trans-

form (SCT) and the projection pursuit multivariate transform (PPMT) are a

class of methods to multivariate transformation methods to model multivari-

ate data using univariate techniques after decorrelation (Davis and Greenes,

1983; Vargas-Guzmán and Dimitrakopoulos, 2003). The rotated, linear com-

binations of the variables are uncorrelated for h = 0 for both PCA and MAF.

For MAF the variables are also uncorrelated for h = d, where d is a separation
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vector chosen for spatial decorrelation. The variables are then modeled inde-

pendently and merged after modeling reversing the decorrelation procedure.

Careful checking of the resulting spatial covariances is required to ensure that

the original spatial covariances are preserved throughout this transformation.

Where there are numerous complex relationships, a multivariate transfor-

mation approach such as the PPMT (Barnett et al., 2014b) or SCT approach

is advocated (Leuangthong and Deutsch, 2003). These multivariate transfor-

mation methods enforce multivariate normality in the transformed variables

so that modeling under a multivariate normal assumption can be assumed

and the modeled variables back-transformed with the multivariate transform

to respect the original complex behaviour. A related class of transforms for

removing complex behaviour for modeling are compositional transforms.

Compositional transforms, such as log ratios, can be applied to enforce

additivity constraints that would not otherwise be enforced in the simulation

workflow (Aitchison, 1982; Pawlowsky-Glahn and Olea, 2004). Compositional

variables are modeled on the constrained hyper-plane and back transformed

at the end of the modeling workflow to recover the original variables with the

constraints applied. For full chemical compositional analyses this approach

is particularly attractive. Size distributions present a unique challenge for

modeling (Desbarats and Dimitrakopoulos, 2000). One approach for modeling

size distributions is parameterization of the size distributions and modeling of

the parameters. Other approaches such as the modeling of the distributions

directly using a lookup table approach have also been developed. Both compo-

sitional transforms and the modeling of size distributions should be considered

for geometallurgical workflows exhibiting these features. Algorithm selection

is discussed further in chapter 5, where the focus is on workflows for geomet-

allurgical modeling.

Many statistical and geostatistical algorithms have been introduced in this

chapter. These algorithms form the basis for the nonlinear inference algorithms

(chapter 3) and downscaling algorithms (chapter 4) developed in this thesis.

These also form the basis for the proposed geometallurgical modeling work-
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flows (chapter 5) and geometallurgical mineral deposit spatial characterization

case study (chapter 6).
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Chapter 3

Nonlinearity and mixing laws
for metallurgical properties

Metallurgical properties encompass a wide range of properties relevant for

mineral and metallurgical processing of metal ores. Examples include the

Bond mill work index, froth flotation floatability and leaching rates. These

properties often exhibit an intrinsically nonlinear averaging behaviour. Under-

standing and modeling this nonlinear behaviour is necessary for scaling and

blending. Block models are constructed at a scale relevant for mining, but

these models must be upscaled and blocks with different properties blended

to understand how the material will move through the mill. The statistical

inference and modeling of nonlinear metallurgical properties is the focus of

this chapter.

Modeling the behaviour of mixtures of nonlinear metallurgical properties is

of questionable importance if the mill is fed on a truck-by-truck basis, rather

than from a blended stockpile. The importance of quantifying ore mixture

properties in this case is evaluated using a small simulation study to demon-

strate that even in a typical batch feeding case, a large amount of mixing

occurs within the mill. After establishing the importance of evaluating mix-

ture properties, a number of nonlinear and linear metallurgical properties are

reviewed and potential reasons for the intrinsic nonlinearity in a number of

metallurgical properties discussed.

To efficiently model nonlinear behaviour in metallurgical properties, a power

transform re-expression framework is developed in the context of statistical re-
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expression and previous research on the properties of mixtures. Alternative

models for data-rich scenarios, and the numerical usage of the power transform

are reviewed.

At the core of this chapter is the inference of nonlinear behaviour with

varying amounts of data and varying degrees of experimental capacity. In the

ideal scenario, the direct experimental evaluation of mixtures is carried out

using ore blends in the lab. Inference in this case is straight forward using a

regression model. Fitting the nonlinear behaviour in this case is demonstrated

using experimental results from the literature. If there is no experimental ca-

pacity to directly evaluate the mixture, it was hypothesized that it may be

possible to infer the nonlinear behaviour in a metallurgical variable using a

correlated linear variable at the same scale. Using a Monte Carlo simulation

study, this is demonstrated to be unreasonable and problems with the assump-

tion of nonlinear behaviour on the basis of single-scale data highlighted.

The chapter concludes with nonlinear inference given multiscale measure-

ments and multiscale correlated bivariate data. The multiscale scenario is

common in a mining context; metallurgical samples are commonly measured

on very large supports of up to 30 m, and assays taken on much smaller

supports of 1 m or less. A semiparametric Bayesian updating algorithm for

inferring nonlinear behaviour in this case is developed. Considerations for

the application of the Bayesian updating algorithm including bandwidth se-

lection for kernel density estimation, quantification of bivariate information,

and regression attenuation are also documented.

3.1 Mixing in mineral processing equipment

Quantifying the nature of mixtures and the behaviour of geometallurgical prop-

erties in mixtures is central to this thesis. As such, the expected degree of mix-

ing in mineral processing operations is briefly analyzed. Consider run-of-mine

ore being fed into the mill. Two extreme scenarios for mill feed are sketched

in Figure 3.1. In a batched mill feed, material is fed in sequentially with no
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blending. The opposite case is a perfectly mixed ore feed after a blending

operation.

Ore Type 1

Ore Type 2 Batch Model
2 1 2 1

1 and 2

Perfect Mixing Model

Figure 3.1: Sketch of two ore types being mined and fed into the mill in two
different configurations: by batches sequentially or perfectly mixed after blending.

Consider the comminution of these ore feeds from the mine. In the case

of a perfectly mixed ore feed, the properties of the ore mixture must be the

relevant properties for the mill. When material is fed in batches, and in situa-

tions falling on the spectrum between these options, the properties of interest

are unclear. If downstream operations in the mill act as plug-flow vessels with

little to no mixing, properties of the individual ore types will dominate. As

the ore is increasingly blended, properties of the mixture are increasingly rel-

evant. With few exceptions, the first downstream processing step for ore is a

comminution circuit, so expected blending behaviour in typical comminution

circuits is considered here. The scale of mixing is important in these cases and

is investigated with a small simulation study.

In a typical comminution process, ore is fed into a crusher, followed by a

grinding circuit with post-classification (Napier-Munn and Wills, 2011). The

grinding circuit will typically have at least one grinding operation with post-

classification, and may have many more. The crushing operation will act as

a plug-flow vessel where material fed into the vessel (the crusher here) leaves

in the order it arrives (King, 2012). After crushing, consider a ball mill oper-

ating with post-classification (Figure 3.2). A set of typical parameters for a

high throughput ball mill are considered (Table 3.1). Ball mills are among the

most widely used grinding mills, so are used here. Alternatives including au-

togenous, semi-autogenous and rod mills are expected to behave comparably

if operated in a recirculation mode with post-classification.
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Feed F

Recycle C
Product P

Ball Mill M

Figure 3.2: Sketch of ball mill configuration with post-classification. This flow
diagram could represent either a grated ball mill with a discharge classifier, or an
open ball mill with a post-classification.

Table 3.1: Ball mill parameters for a large, high throughput ball mill with post-
classification.

Parameter Value

Mill interior diameter 7 m
Mill length to diameter ratio 1.5
Charge volume fraction 0.45
Void volume fraction (of charge) 0.40
Slurry volume fraction (of void) 0.95
Slurry density 2.6 t/m3

Pulp density 0.75
Steady state mass of solids in mill 135 t
Mill feed rate 1600 t/h
Recirculating load 400% (4800 t/h recycled)

Using these parameters and modeling the ball mill as a perfectly mixed ves-

sel, a number of scenarios are considered. The goal of this modeling exercise is

to evaluate the minimum amount of mixing that would reasonably be expected

in a standard ball mill. This provides a measure of the importance of using the

bulk mixed properties instead of the individual ore properties. The ball mill is

treated as a single perfectly mixed vessel which is a reasonable model (King,

2012), although other models such as three-zoned mixing behaviour could be

considered. Second-order effects including mill holdback are neglected in this

analysis. Modeling the ball mill as a perfectly mixed vessel operating under

steady state leads to the following mass balance equations, established with

respect to the system as a whole and with respect to the ball mill:

∂F

∂t
=

∂P

∂t
∂M

∂t
=

∂F

∂t
+

∂C

∂t
= 4

∂F

∂t

(3.1)
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where the masses of the feed F , product P , recycle C and ball mill M are

denoted. Time is denoted by t. This system was solved numerically using a

finite difference method with 1 second time steps. Two scenarios corresponding

to batch feeding of the mill are considered. In the first scenario, the mill feed

is shocked with a second ore type. In the second scenario, a plug of material

corresponding to one 400 tonne truck load is fed into the mill.

3.1.1 Effect of a mill feed shock

Consider a batch feeding operation where the mill feed is shocked and transi-

tions entirely from one ore type to a second ore type. This corresponds to the

case of sequential trucks loading a surge bin, or switching feed stockpiles. The

mill feed for this scenario is shown in Figure 3.3. At t=30 minutes, the feed

switches entirely from the blue ore type 1 to green ore type 2.
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Figure 3.3: Composition of the mill feed where material is fed at a constant rate
of 1600 tonnes per hour. At t=30 minutes, the feed switches from the blue ore type
1 to green ore type 2. This corresponds with a batch model of feeding the mill.

The composition of the product (Figure 3.4) changes exponentially. The

amount of blue ore type 1 decreases exponentially and green ore type 2 in-

creases exponentially after t=30 minutes. Due to the high recirculating load

and large mass of ore contained in the ball mill, the product still contains 10%

blue ore type 1 at t=45 minutes, 15 minutes after the shock. This indicates a

substantial amount of mixing even under batch feeding conditions.
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Figure 3.4: Composition of the product from the mill in Figure 3.4. Just past 30
minutes, the second ore type appears in the product assuming a well mixed mill.
The amount of blue ore type 1 decreases exponentially with time.

3.1.2 Effect of a mill feed plug

Now consider a 400 tonne plug of ore fed into the mill corresponding to one

truck load. The mill feed is shown in Figure 3.5. As the mill is processing

1600 tonnes per hour, the 400 tonne plug corresponds to a 15 minute mill feed

period.
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Figure 3.5: Composition of the mill feed where material is fed at a constant rate of
1600 tonnes per hour with multiple batches. At t=20 minutes, a plug of 400 tonnes
of ore type 1 corresponding to one truck load are fed into the mill over 15 minutes
before switching to ore type 2 at t=35 minutes. Red ore type 3 is fed into the mill
first to visually separate the ore types in the product.

The composition of the mill product for this scenario, and the percent blue
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(ore type 1) are shown in Figures 3.6 and 3.7. A high degree of mixing, with

a peak concentration of 90% blue ore type, is observed for this scenario.
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Figure 3.6: Composition of the mill product corresponding to the feed in Figure
3.5. Under the specified operating conditions, the mixing is substantive enough that
the green ore type 2 (last material fed into the mill) and red ore type 3 (first material
fed into the mill) are mixed.
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Figure 3.7: Percent blue (ore type 1, second ore type fed into the mill) within the
this system as a function of time. The maximum percent of blue ore type contained
within the product just exceeds 90% at t=35 minutes.

These scenarios indicate the high degree of mixing which occurs in early

stage mineral processing operations. This high degree of mixing is supportive

of common practice in metallurgical sampling to test a composite sample,

rather than test individual ore types. Composite sample testing is useful to

approximate the behaviour of blends in the mill with limited experimental work

and sample collection. Additional comminution steps, such as a second milling
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stage will further increase the degree of mixing among multiple ore types. The

advantage of limiting experimental work and sample collection comes with a

drawback of limited information on the nature of the mixing behaviour. Given

high density sampling and testing, decisions about the degree of blending

desired and optimal mining strategies to achieve the blending goal can be

made.

The goal of optimizing mining strategies and the high degree of mixing

expected emphasizes the importance of high resolution models of metallurgical

properties. A high resolution spatial model of the metallurgical properties of

the ore, combined with knowledge of the blending behaviour can be used to

optimize and control the degree of blending. Consider the case where blending

multiple ore types increases mill energy requirements (Yan and Eaton, 1994).

As demonstrated by the small simulation study, the separation of ore types

on a truck-by-truck basis in this case is insufficient to avoid the antagonistic

blending behaviour. Further segregation would be required to avoid excessive

blending in the mill. These decisions can only be made with both a high

resolution spatial model and understanding of the behaviour of metallurgical

properties of blends.

3.2 Nonlinearity and linearity in metallurgical variables

Only recently has substantial research in the area of understanding the mix-

ing behaviour of mineral processing variables been published. This is perhaps

unsurprising given the high degree of mixing within mineral processing oper-

ations. The Bond mill work index and froth floatability have been recently

investigated and the experimental mixing behaviour documented (Conteras,

2013; Van Tonder et al., 2010; Yan and Eaton, 1994). There are no theoret-

ical mixing and scaling laws available for these variables; instead an empiri-

cal relationship is developed based on the bench scale testing of mixtures of

multiple ore types. The resulting empirical models are generally not linear

mass or volume fraction weighted averages. The nonlinear behaviour of most

metallurgical variables must be measured experimentally; complicated physi-
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cal and chemical interactions make the establishment of a mixing relationship

purely from theory difficult. Experimental results for the Bond mill work index

and froth flotation grade (the grade of the flotation concentrate) are reviewed

here. The strong nonlinearity of these experimental results motivates variable

re-expression so that mixture behaviour through scaling and blending can be

quantified.

The most widely used test for grindability in mineral processing mills is

the Bond mill work index. The Bond mill work index (Bond, 1952) gives the

work input required in kWh/t to grind a particle from a theoretical infinite

size (practically a very large size) to a point where 80% of the product passes

100 microns. Many variations on the Bond equation have been proposed that

improve the correlation between calculated energy requirements and observed

plant work requirements (Morrell, 2008; Napier-Munn and Wills, 2011); how-

ever, the standard Bond mill work index remains widely used.

Yan and Eaton (1994) measured the Bond mill work index of blends of

a more energy intensive ore (Mickey Doolan) and a less energy intensive ore

(Vivians). They observed that the Bond mill work index of mixtures was not

the volume average of the pure Bond work indices but was biased towards

the more energy intensive ore (Figure 3.8). This behaviour was attributed to

hold up of the more energy intensive ore which meant that the breakage more

closely followed the behaviour of the Mickey Doolan ore.
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Figure 3.8: Bond mill work index for blends of two ores. Redrawn from Yan and
Eaton (1994).
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Froth flotation is a common strategy for the concentration of liberated

minerals after comminution. The process is operated to maximize both metal

recovery into the froth and the grade of the froth. Van Tonder et al. (2010)

measured froth flotation recovery and grade using blends of four platinum ores.

Three of these ores behaved similarly before blending while the Salene ore was a

very poor floating ore. The effect of blending Salene ore with Townlands ore on

grade (Figure 3.9) is reprinted from Van Tonder et al. The effect of blending on

froth flotation grade is quite nonlinear and is fit well by a polynomial fit. Van

Tonder et al. speculate that underlying physical/chemical interactions between

the ores such as froth stabilization or destabilization as well as the combination

of multiple grade-recovery curves are responsible for the nonlinearity in froth

flotation parameters observed for blends. Froth destabilization can occur in

the presence of extremely hydrophobic particles which may dewet and initiate

bubble coalescence (Johansson and Pugh, 1992; Wang et al., 1999).
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Figure 3.9: Flotation grade for mixtures of Salene and Townlands ores. Redrawn
from Van Tonder et al. (2010).

Not all geotechnical and metallurgical variables are nonlinear and, impor-

tantly, a nonlinear relationship between variables does not imply that the vari-

ables themselves average nonlinearly (e.g., the relationship between a circle’s

area and radius is quadratic although both area and radius are linear vari-

ables). A widely used linear geotechnical/metallurgical property is the rock

quality designation (RQD) which is a measure of the degree of fracturing in a
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rock sample. Rock quality is described to be excellent (RQD=90-100%), good

(75-90%), fair (50-75%), poor (25-50%) or very poor (0-25%) on the basis of

measured RQD. RQD is defined to be (Deere and Deere, 1988; Palmstrom,

2005):

RQD =

∑
Length of core pieces > 10 cm long

Length of core sample

If RQD is being measured on very small core lengths then edge effects will

play a large role in the resulting measurements. As such, the recommenda-

tion by Deere and Deere (1988) is to use the actual length of core runs when

measuring RQD. Due to the small size of jointing (10 cm) used as the basis

for RQD classification, these edge effects will be minimal for typical measure-

ment lengths of 1.5 m. Under these conditions, RQD is a dimensionless linear

measurement. Although RQD is linear, it is also a directional variable and

as such care should be taken when modeling if drilling, and subsequent RQD

measurements, are in multiple orientations.

3.3 Power transform re-expression framework

The nonlinearity of many metallurgical properties motivates a consistent method

which accounts for the nonlinearity for spatial modeling. For modeling the

nonlinear variables, a re-expression framework which will allow the use of

linear averaging techniques is used. There are two primary goals associated

with variable re-expression: data understanding and permitting the usage of

available statistical techniques (Tukey, 1977). The requirements of additiv-

ity, homogeneity of error variance and symmetry of errors are all prevalent

in traditional statistical and geostatistical analyses. In the context of scaling

and blending metallurgical variables, the goal of variable re-expression is to

linearize the variable of interest permitting the use of linear weighted averages.

3.3.1 Power transformation family

The power transformation family is a widely used and flexible re-expression

framework. Consider re-expression of the random variable Z to Y . Tukey
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(1957; 1977) defines a power transformation family with the general form:

y = (z + c)ω

where ω is the power of the transformation. The value c is a constant, often

0, which can be used to enforce z + c ≥ 0 ∀z for variables that can be

negative and are bounded. For the special case of ω = 0, Tukey defines the

transformation to be the logarithm leading to the expression:

y =

{
(z + c)ω ω 6= 0
log(z + c) ω = 0

(3.2)

The usage of the logarithm for ω = 0 is a choice in Tukey’s power family

and results in smoothly varying graphs with ω. The classic depiction of the

power transforms from Tukey (1977) is recreated in Figure 3.10. For p < 0 the

negative of the re-expression is commonly used so that the transform is rank

preserving.
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Figure 3.10: Plot of common power transforms recreated from Tukey (1977). Note
that a linear transform of the labeled plots is actually plotted as in Tukey’s original
figure (eg: −1 + x in place of x).

There have been a number of modifications made to the original Tukey

transformation. The most notable change was by Box and Cox (1964) who

modified the family slightly to account for the requirement of the choice of
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the logarithm where ω = 0, and preserve the rank ordering of the transformed

variable for ω < 0 within the transform itself. The Box-Cox transformation:

y =

{
(z + c)ω − 1

ω
ω 6= 0

log(z + c) ω = 0
(3.3)

With the Box-Cox transformation, the case of ω = 0 is the limiting case as

ω → 0:

lim
ω→0

(z + c)ω − 1

ω
= lim

ω→0
(z + c)ω log(z + c) = log(z + c)

This property, and the rank preserving nature of the transform for ω < 0 has

led to the widespread usage of the Box-Cox transform. The equations of the

lines plotted in Figure 3.10 are the Box-Cox transformations with a linear shift

(additive constant for convenient visualization).

Other variations for negative variables including signed transformations

have been proposed and are reviewed by Sakia (1992). Most metallurgical

variables of interest are strictly positive or can be made positive using a con-

stant c in the transformation expression so these techniques are not reviewed

here.

3.3.2 Mixing frameworks

The power law transform can be related to mixing frameworks for a set of

specific cases. Consider a binary mixture of two materials A and B with

physical properties za and zb. If the property mixes linearly and the materials

are sufficiently well mixed, then the property of a mixture of the materials,

zavg, is a linear average weighted by the proportions, pa and pb:

zavg = paza + pbzb = paza + (1− pa)zb

Korvin (1982) considered binary mixtures of two materials, but with no re-

quirement that the property average linearly. Instead of the requirement for

linearity, if the property obeys eight physical constraints the binary mixture

must follow an equation with the form:

zavg =

{
[paz

ω
a + pbz

ω
b ]

1/ω = [paz
ω
a + (1− pa)z

ω
b ]

1/ω ω 6= 0

zpaa zpbb = zpaa z
(1−pa)
b ω = 0

(3.4)
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where ω is a finite power of the mixture rule. This equation is the linear average

for ω = 1, the harmonic average for ω = −1 and the geometric average for

ω = 0.

Of the eight requirements for a mixture to follow the general mixture rule

exactly, there are four of these properties which are generally applicable to

mixtures of physical properties. These include reflexivity, idempotency, homo-

geneity with respect to the proportions and bi-symmetry. Reflexivity requires

that a mixture of two materials with identical properties will have a mixed

property equal to the identical materials. Idempotency requires that mixing

a material with zero amount of a second material has no effect. Homogeneity

with respect to the proportions requires that the properties of a mixture do

not depend on the amount mixed, only on the ratio of the materials composing

the mixture. Bi-symmetry requires that mixtures of mixtures are symmetric,

for example in the ternary system with materials A, B and C, the proper-

ties of the mixture would be the same for (A + B) + C, B + (A + C) and

A+ (B + C). We consider these four properties to be generally applicable to

the metallurgical variables of interest.

Other properties outlined by Korvin which do not necessarily apply to all

mixtures of metallurgical properties include monoticity with respect to pro-

portions, and monotonicity with respect to the properties; internity and ho-

mogeneity with respect the physical properties are also required for Korvin’s

law to apply. Monotonicity with respect to proportions and physical prop-

erties require a monotonic mixture model. Homogeneity with respect to the

physical properties requires that the mixture law be linear with respect to the

magnitude of the physical properties, that is, a mixture where za = 10 and

zb = 20 would have a zavg exactly 10 times larger than a mixture where za = 1

and zb = 2. Finally, internity requires that the properties of a mixture always

lie between the properties of the pure component.

The framework proposed in this thesis is to re-express a nonlinear metal-

lurgical variable Zk, k = p in terms of a linear variable, Yp. This is done using

a re-expression function:

Yp = φ(Zp)
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The linear variable Yp can be averaged, scaled and estimated using standard

linear weighted averages: ȳ =
∑

i λiyi. The average nonlinear metallurgical

variable is calculated by inverting the nonlinear transform function:

z̄ = φ−1(ȳ)

This use of a power transform for the re-expression function φ is supported by

the work of Korvin (1982), although other forms could be used.

Korvin (1982) has demonstrated that the general mixing rule (Eq. 3.4)

is the correct nonlinear mixing rule to use for mixtures that follow a set of

physical requirements. This mixing rule can be shown to be a weighted lin-

ear average of a set of variables re-expressed using Tukey’s power transform

(1957). Consider starting with Tukey’s power transform equation (Eq. 3.2).

A weighted linear average of a set of variables (letting c = 0) using Tukey’s

transform is:

wavg =


n∑

i=1

λiz
ω
i ω 6= 0

n∑
i=1

λi log(zi) ω = 0
(3.5)

where λi, i = 1, . . . , n are the weights. This equation can be written as:
zωavg =

n∑
i=1

λiz
ω
i ω 6= 0

log(zavg) =
n∑

i=1

λi log(zi), zavg =
n∏

i=1

zλi
i ω = 0

which is the general mixing rule (Eq. 3.4) when n = 2. This supports the

usage of the power transform or Box-Cox transform for the physically based

metallurgical variables. Equation 3.5 can be used as a general weighted aver-

age equation. The weights used, generally volume or mass proportions, should

be consistent with how the mixing law was established. This average is equiva-

lent to the generalized weighted means for the evaluation of mechanical prop-

erties of composites (Ji et al., 2004) and the power averages described by

Jensen (1998).

3.3.3 Alternative models for mixtures

For specific classes of mixtures, the mixing framework of Korvin (1982) can

be used to fit a model to the mixture property. Alternatively, a polynomial
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fit may be used to generally fit properties which do not meet the power law

requirements, and for properties with experimental data to support an alter-

native fit. In these cases, a simple polynomial fit may be used (Cornell, 2011;

Scheffé, 1958). The canonical polynomials proposed by Scheffé are flexible

polynomials over a simplex. For a mixture of n components with proportions

pi, i = 1, . . . , n, the first and second degree polynomials are:
z̄ =

n∑
i=1

βipi degree = 1

z̄ =
n∑

i=1

βipi +
n∑

1≤i<j

βijpipj degree = 2

Many alternative models have been formulated including the polynomial forms

of Becker (1968) and ratio forms described by Snee (1973). These polynomial

forms present an alternative to the power models which are focused on in

this thesis, and are useful when the property is not monotonic. The power

transform models discussed here are useful for their simplicity and, for binary

mixtures, unique inversion to a linear variable.

3.3.4 Numerical application of the variable re-expression

Using the developed re-expression functions, variables can be scaled and blended.

Both of these applications involve similar mathematical concepts, so blending

is considered here with a synthetic case to demonstrate the application of the

re-expression framework.

Consider the calculation of a blended Bond mill work index given two

equal sized rock volumes (p1 = p2 = 0.5) with Bond mill work indices of

zp(u1; v) = 11.0 and zp(u2; v) = 13.5 kWh/t. The ores are from the same

region as the tested Vivians and Mickey Doolan ores. Using the re-expression

framework the Bond mill work index of the blend can be calculated (using a

fit power of 5.558, discussed further when fitting models):

z̄p(u12; 2v) =
[
p1zp(u1; v)

5.558 + p2zp(u2; v)
5.558

]1/5.558
=

[
0.5 · 11.05.558 + 0.5 · 13.55.558

]1/5.558
= 12.5
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This small example demonstrates the application of the mixing law for simple

binary relationships. For the quaternary froth flotation grade relationship, the

composition of each sample cannot be determined uniquely without additional

information. In this case, knowing what geologic area the sample came from

could reduce the space of possible compositions. Solving for the composition

exactly will not be possible in all cases; in this case a stochastic mixing frame-

work in which the composition is drawn randomly from possible compositions

could be used.

3.4 Direct experimental evaluation of mixtures

Direct evaluation of mixture behaviour by experimental testing of blends is the

ideal scenario for inferring mixture behaviour; ore with measured properties

is blended and the properties of the blend measured. These blends are of

known composition and, if desired, even the degree of mixing in the blended

material can be controlled. These cases correspond to the previously shown

experimental results of Yan and Eaton (1994) and Van Tonder et al. (2010).

3.4.1 Experimental design for mixture evaluation

There are a number of methods for the design of experiments with mixtures

and modeling the results; the interested reader is referred to Cornell (2011).

Many of the experimental design frameworks for mixtures require that the

response is a function only of the proportion of the components mixed, and

not on the amounts. This is equivalent to Korvin’s homogeneity with respect

to proportions requirement. Classical experimental methods with mixtures

also require knowledge of the pure components of the mixture. In the case of

metallurgical variables, pure rock types would be required. If the individual

components are known, a standard simplex lattice design can be used.

Alternatively, blends of known composition and known properties can be

evaluated directly and the mixed response measured. Regression can then be

applied to directly fit the nonlinear behaviour. Both of these techniques for

the experimental evaluation of mixtures are applied in this thesis.
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3.4.2 Direct modeling of experimentally evaluated mixtures

The application of the metallurgical re-expression framework requires fitting

the re-expression function φ(Zp). This is demonstrated with both the Bond

mill work index and froth flotation grade examples introduced earlier. The

Bond mill work index tests of Yan and Eaton (1994) were reviewed earlier

(Figure 3.8). In these tests, hard Vivians ore was blended with Mickey Doolan

ore in various proportions and the Bond mill work index of the blend mea-

sured. This data was fit using the power transform framework with nonlinear

regression; the equation for this fit, where p is the volume fraction of Vivians

ore, is:

Bond mill work index of blend =
(
p6.65.558 + (1− p)145.558

)1/5.558
Since there are only two components (Vivians and Mickey Doolan), the blended

value is only a function of the Bond mill work indices of the two pure com-

ponents and the power. The power in the fit (5.558) is high indicating that

mixtures will favour the higher value. An exponent this high is more likely

when the variance of the values is small, as is the case for the Bond mill work

index values. The resulting fit is plotted in Figure 3.11 and a cross plot of the

blended response using the power fit and experimentally measured Bond mill

work index is shown in Figure 3.12.

The froth flotation study of Van Tonder et al. (2010) measuring froth grade

was also fit using the power transform model. The four platinum ores used in

the study: Salene (x1), Waterval UG2 (x2), Paardekraal (x3) and Townlands

(x4) were blended using a simplex lattice mixture design. Experimental data

from the experiments were not directly available, so the accurate (R2
adj = 0.94)

polynomial fit by Van Tonder et al. was used to back out the experimental

froth flotation grade zavg:

zavg = 20.36x1 + 53.19x2 + 71.81x3 + 67.01x4 − 31.92x1x2−

35.59x1x3 − 36.1x1x4 + 284.6x1x3x4 + 234.76x2x3x4

where monomial coefficients (20.36, 53.19,. . . ), are the pure component froth

flotation grades. These pure component froth flotation grades were used with

49



0.0 0.2 0.4 0.6 0.8 1.0

Volume fraction Vivians in blend

6

8

10

12

14

B
o
n
d
 w

o
rk

 i
n
d
e
x
 (

kW
h
/t

)

Linear

Observed

Power law fit, p=5.558

Figure 3.11: Plot of Bond mill work index for blends using the power law fit to
data from Yan and Eaton (1994)).
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Figure 3.12: Cross plot of the estimated Bond mill work index for blends versus
the experimentally measured Bond mill work index from Yan and Eaton (1994)).

the same 35 simplex design samples from Van Tonder et al. to fit the power

law. The power fit (0.125) is low indicating that grades of mixtures will favour

the lower value. A binary plot of the froth flotation grade for the low grade

Salene and high grade Townlands ores is shown in Figure 3.13.

The visible nonlinearity in the flotation grade for blends of the very dis-

50



0.0 0.2 0.4 0.6 0.8 1.0

Proportion of Salene ore in binary mixture of Salene-Townlands

10

20

30

40

50

60

70

80

Fl
o
ta

ti
o
n
 g

ra
d
e
 (

p
p
m

)

Power law fit, p=0.125

Points from Van Tonder et al. (2010)

Figure 3.13: Plot of froth flotation grade for blends of the dissimilar Salene and
Townlands ore using the power law fit to data from Van Tonder et al. (2010)).

similar Salene and Townlands ore is seen in blends of similar materials such

as the Paardekraal and Townlands ores (Figure 3.14).
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Figure 3.14: Plot of froth flotation grade for blends of the similar Paardekraal and
Townlands ores using the power law fit to data from Van Tonder et al. (2010)).

The power law fits the data well for binary mixtures, but is bounded by the

pure component grades, so does not fit data where ternary interactions resulted
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in higher flotation grades than the individual components. This is reflected in

a cross plot of the experimental and estimated blend values (Figure 3.15).
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Figure 3.15: Cross plot of the estimated froth flotation grade for blends versus
the experimentally measured froth flotation grade from Van Tonder et al. (2010)).

Two cases involving experimental results on the blending of ores have been

considered. For the binary mixture of ores tested by Yan and Eaton, a power

law re-expression accurately models the blending behaviour of the Bond mill

work index. The quaternary mixture investigated by Van Tonder et al. ex-

hibits significant ternary interactions between ores causing deviations from the

requirements for a well-fitting power law as described by Korvin. In this case,

an alternative re-expression such as a Scheffé polynomial is reasonable. Both

of these cases are highly desirable from a re-expression perspective; blends

of known composition have been tested and the nonlinear behaviour may be

modeled directly. When only limited sample and experimental capacity are

available, direct observation and modeling of metallurgical variables may not

be possible or economically feasible.
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3.5 Indirect nonlinear inference in the absence of direct
experimental evaluation

If the direct experimental evaluation of mixtures is not possible due to limited

sample for testing, experimental cost or constraints on sample conditions, then

in specific cases the behaviour of the mixture may be evaluated indirectly.

Three cases are considered for indirect inference in this thesis: inference in

the presence of a 1) multiscale measurements of the metallurgical variable,

2) single-scale correlated bivariate measurements and 3) multiscale correlated

bivariate measurements. When a bivariate distribution is leveraged, the dis-

tribution may be known theoretically, or observed experimentally, such as a

relationship between iron content and grindability. The central idea of the

bivariate indirect inference methods evaluated is that using a relationship be-

tween a nonlinear variable and linear variable it may be possible to infer the

nature of the nonlinear variable through the bivariate distribution between the

two.

In the case where measurements are only available on a single scale, nonlin-

ear inference is demonstrated to be impractical even with a very large amount

of data. This is demonstrated using a Monte Carlo simulation experiment

which compares the bivariate distribution of the linear and nonlinear proper-

ties with a synthetic bivariate drawn from two linear properties.

3.5.1 Single-scale correlated bivariate inference

Consider the case of two variables, a nonlinear metallurgical property Zm such

as the Bond mill work index and an additive property Zg such as a metal grade.

These variables are measured on a single scale v and correlated at this scale.

The proposed approach for indirect mixing law determination is to infer the

form of the mixing law using the conditional distribution of {Zm(v)|Zg(v) =

zg}. In the absence of experimental data, it was hypothesized that it is possible

to leverage correlated linear variables using conditional probabilities to infer

the mixing behaviour between the linear and nonlinear variable.

The proposed approach for nonlinear inference given a single-scale corre-
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lated bivariate distribution is to compare the conditional distribution

{Zm(v)|Zg(v) = zg} with a conditional distribution drawn from a bivariate

with the same correlation and univariate distributions drawn from linear sam-

ples which are rank transformed to have the same univariate distributions. The

hypothesis is that a difference in the conditional percentiles and conditional

expectations between these distributions will be observable in this situation.

This would then be used to guide the inference of nonlinearity.

Consider calculating the correlation ρ(Zm(v), Zg(v)) and targetting this

correlation for a univariate transformed bivariate normal distribution. This

process is completed iteratively by drawing samples from a bivariate normal

(BVN) distribution with correlation ρ(BVN) and rank transforming to have

univariate distributions F (Zm(v)) and F (Zg(v)). This rank transform is anal-

ogous to the familiar normal score transformation. The correlation is chosen

such that the univariate transformed distribution has the same correlation

as the experimentally determined bivariate Zm(v), Zg(v) distribution. Condi-

tional expectations and percentiles are calculated for this bivariate distribu-

tion. These univariate transformed bivariate normal variables correspond to

linear variables with the same univariate distribution and correlation as the

nonlinear-linear relationship, but not the exact same bivariate distribution. A

flowchart of this approach is shown in Figure 3.16.

Following the procedure outlined in Figure 3.16, spatially correlated ran-

dom variables Zm(vs) and Zg(vs) were simulated using colocated sequential

Gaussian simulation on a line. 50,000 samples spaced 1 m apart (i.e. vs = 1 m)

were simulated with a spherical variogram (range = 20 m) and correlation of

0.6. The linear grade variable Zg(vs) was transformed to a moderately skewed

lognormal distribution and the metallurgical variable Zm(vs) was shifted and

scaled to a non-standard normal distribution. The variables were upscaled

to scale v = 10 m. The power law re-expression fit to data from Yan and

Eaton (1994) was used for the metallurgical variable Zm. Linear averaging

was used for the grade variable Zg. A section of the simulated data is shown

in Figure 3.17. Histograms and scatterplots are shown in Figure 3.18.

The bivariate normal correlation was iteratively determined by testing a
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Simulate correlated
normal variables: Y(g), Y(m)

at scale v(s)

Rank transform normal Y(g)
 to lognormal Z(g)

Rank transform normal Y(m)
 to normal or binary Z(m)

Upscale Z(g) linearly
 to scale v

Grade
Variable

Upscale Z(m) with power
 to scale v

Metallurgical
Variable

Cross plot
upscaled variables
and calculate corr.

Determine a corresponding
bivariate normal corr.

Compute conditional expectation
and conditional percentiles of {Z(m)|Z(g)=z}

at scale V

Sample a bivariate normal distribution
with estimated corr.

Compute conditional expectation
and conditional percentiles of {Z(m)|Z(g)=z}

using bivariate normal samples
with est. corr.

Rank transform these samples
to Z(g) and Z(m) at scale V.

Calculate a corr. coefficient
and compare to known corr.

Iterate on est. corr.

Plot conditional expectations
and percentiles on cross plot

(Nonlinear)

(Linear)

Compare conditional
distributions - is there a difference?

Figure 3.16: Flowchart of the Monte Carlo simulation study which was completed
to examine if it is possible to determine the nature of nonlinear averaging using the
single-scale bivariate distribution between a nonlinear and linear variable.

range of bivariate normal correlations and univariate transforming the simu-

lated values to Y (v) and Z(v) distributions. A plot of the univariate trans-

formed correlation against the bivariate normal correlation used is shown in

Figure 3.19

For the desired correlation of 0.648 in YV , ZV units, the bivariate standard

normal correlation of 0.758 was determined. Using this correlation, the ex-

pected value of the univariate transforms and 10% and 90% percentiles were

calculated for the conditional distribution {ZV |YV = y}. These were also
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Figure 3.17: Simulated and upscaled Y and Z variables at scales vs and v. The
Zm(v) values are not at the linear average of the simulated Zm(vs) values, but are
higher due to the power law average favouring high values.

calculated for the original upscaled distributions. The results are plotted in

Figure 3.20.

From this plot, no substantial difference can be see between the trans-

formed bivariate standard normal values and the nonlinearly upscaled values.

The same experiment was repeated for different power values (instead of the

calculated 5.558 fit to the data from Yan and Eaton). The results when using

a power of 0.5 instead of 5.558 are shown in Figure 3.21. As before, there is

no discernible difference in the conditional distributions.

The more extreme case of a binary distributed small scale metallurgical

variable was also tested in a Monte Carlo simulation study. The same proce-

dure outlined in Figure 3.16 was used. A very small random component was

added to the simulated binary variables so that the normal score (rank) trans-

56



Figure 3.18: Histograms and scatterplots of the variables at scale v and upscaled
variables at scale V .

formation would be unique. A number of the simulated variables are shown

in Figure 3.22. Histograms and cross plots are shown in Figure 3.23.

The correlation was iteratively fit using the same procedure as before, and

the conditional distributions calculated and plotted (Figure 3.24). There are

differences between the linear and experimental conditional distributions visi-

ble in Figure 3.24, so linear averaging of the small scale metallurgical variable

(i.e., p = 1.0) was also tested to determine if this was an artefact of simulation,

or indicative of a substantial difference. The results are plotted in Figure 3.25.
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Figure 3.19: Correlation of univariate transforms of a standard bivariate normally
distributed variable with specified correlation. The correlation in YV , ZV units is
lower, which follows from the heteroscedasticity and nonlinearity visible observed in
the bivariate for these variables.

Figure 3.20: Percentiles and conditional expectation using the univariate trans-
formed bivariate standard normal values (blue, linear) and upscaled values (red).

Based on the conditional distributions for linear averaging, no discernible dif-

ferent between the linear and nonlinear conditional distributions is visible in

Figure 3.24.
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Figure 3.21: Percentiles and conditional expectation using the univariate trans-
formed bivariate standard normal values (blue, linear) and upscaled values (red)
where p = 0.5.

Figure 3.22: Simulated and upscaled Y and Z variables at scales v and V . The
ZV values fall on distinct lines due to the nature of upscaling; as 10 small scale Zv

values were combined to form the larger V scale the upscaled values must equal one
of 11 values.
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Figure 3.23: Histograms and scatterplots of the variables at scale v and upscaled
variables at scale V with a binary Z.
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Figure 3.24: Percentiles and conditional expectation using the univariate trans-
formed bivariate standard normal values (blue, linear) and upscaled values (red) for
a binary distributed Z.

Figure 3.25: Percentiles and conditional expectation using the univariate trans-
formed bivariate standard normal values (blue, linear) and upscaled values (red) for
a binary distributed Z which was linearly upscaled.
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3.5.2 Problems with the assumption of nonlinear behaviour

The challenges in assuming that nonlinear behaviour can be inferred solely

on the basis of a single-scale bivariate distribution are more evident when

the bivariate Gaussian distribution is considered as an example. Consider

contouring the bivariate normal distribution. The probability density function

f of the bivariate standard normal distribution with random variables X and

Y (each variable has a mean of 0 and standard deviation of 1) with correlation

ρ:

f(x, y) =
1

2π
√

1− ρ2
exp

(
−x2 − 2ρxy + y2

2(1− ρ2)

)
The marginal distributions of the bivariate standard normal distribution are

exactly standard normal. Constant density contours are commonly used to

show the shape of the bivariate distributions in a 2D plot. These contours

can also be used to check the normality of a purported normal distribution

(Deutsch and Deutsch, 2011). For a correlation coefficient of ρ = 0.6, the

constant density contours for 25%, 50% and 90% are shown along with the

marginal standard normal distributions in Figure 3.26.
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Figure 3.26: Constant density contours (25%, 50% and 90%) of the bivariate stan-
dard normal distribution. Histograms of the marginal standard univariate normal
distributions are also shown.

62



The shape of conditional distributions f(Y |X = x) can be illustrated using

percentiles (here the 10%, 25%, 50% (median), 75% and 90% percentiles)

and the conditional mean E{Y |X = x} (Figure 3.27). As the multivariate

normal distribution is linear and homoscedastic, these conditional statistics

are linear. The bivariate standard normal distribution is considered, so the

slope of these lines is equal to the correlation coefficient. Note that the median

(50% percentile) is equal to the mean as the distributions are symmetric.
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Figure 3.27: Percentiles of the conditional distributions (dashed lines, 10%, 25%,
50%, 75% and 90%) and the conditional mean E{Y |X = x} (solid line) of the
bivariate standard normal distribution. Constant density contours are shown in the
background.

The properties of linearity and homoscedasticity of the multivariate nor-

mal distribution are illustrated in these figures, and are widely leveraged in

geostatistics. Univariate transformations of these variables are now considered

to demonstrate that although the underlying distribution may be multivari-

ate normal, multivariate distributions of simply transformed variables may

be nonlinear and heteroscedastic. This does not imply nonadditivity of the

variables, and is purely a function of the univariate transformations applied.

A common bivariate relationship examined is the relationship between a

grade variable, chosen to be the X variable here, and a metallurgical variable

(Y for this example). Grade variables often appear lognormal while many

metallurgical variables, such as the Bond mill work index, may appear more
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symmetric. X was transformed to be lognormal as:

Xln N = exp(α + βX)

where X was originally a standard normal variable. The probability distribu-

tion function of XlnN is then:

f(x) =
1

xβ
√
2π

exp

(
−(ln(x)− α)2

2β2

)
For this example, α = 0.3 and β = 1.0 were used. The random variable Y

was transformed to be normally distributed with mean µ = 10 and standard

deviation σ = 1.35. The probability density function of the normal distribution

parameterized by µ and σ, N(µ, σ) is:

f(y) =
1

σ
√
2π

exp

(
−(y − µ)2

2σ2

)
Contours of the bivariate distribution after these univariate transformations

are shown in Figure 3.28. The conditional distribution statistics of {Y |X = x}

(Figure 3.29) show significant nonlinearity, although are homoscedastic as Y

is normally distributed. This nonlinearity of the conditional statistics is not

in itself sufficient evidence of nonlinear averaging behaviour, but instead may

solely reflect differences in the univariate distributions.
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Figure 3.28: Constant density contours (25%, 50% and 90%) of a bivariate
lognormal-normal distribution obtained by univariate transformations of a bivari-
ate standard normal distribution. Histograms of the marginal distributions are also
shown.

0 2 4 6 8 10 12

X (lognormal)

6

7

8

9

10

11

12

13

14

Y
 (

n
o
rm

a
l)

Figure 3.29: Percentiles of the conditional distributions (dashed lines, 10%, 25%,
50%, 75% and 90% ) and the conditional mean E{Y |X = x} (solid line) of the
lognormal-normal distribution. Contours of the bivariate distribution are shown in
the background.
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3.6 Nonlinear inference with multiscale data

Single-scale correlated bivariate inference was demonstrated to be impractical,

even with a highly correlated synthetic data set. Given sufficient multiscale,

highly correlated data, it is demonstrated here to be possible to infer the

nonlinear behaviour.

Consider the straight forward problem of estimating the nonlinear be-

haviour of a metallurgical random variable Zk, k = p given multiscale mea-

surements for the variable. Bulk measurements on volumes V are available

as well as n constituent samples at scale v per bulk sample where V = nv.

Consider re-expressing the nonlinear variable Zp as a linear variable Y using

a power law transform. A power law transformation is a flexible re-expression

framework for monotonic variables, as demonstrated earlier in this thesis.

In addition, an assumption is made that the error on the bulk samples

is additive. This assumption is reasonable, and the correct re-expression is

unknown at this point in any case. The form of this assumption of an additive,

random error on the bulk sample measurements z(ui;V ) is expressed:

zp(ui;V ) = zp(ui;V )′ + εp(ui;V ), i = 1, . . . , n

where zp(ui;V )′ is the true value, and εp(ui;V ) is the error associated with

the measurement at the scale V. Therefore, linearly re-expressing as:

yp(ui;V ) = (zp(ui;V ))ω = (zp(ui;V )′ + εp(ui;V ))ω, i = 1, . . . , n

and using a least squares regression method would introduce a bias. Instead of

using a linear model, a nonlinear regression model is adopted to minimize the

bias and maximize the covariance between the estimates and truth. The mean

squared error criteria, which minimizes the variance of the estimator plus the

bias squared is reasonable and used here.

This framework is demonstrated using data from Yan and Eaton (1994). A

correlated Gaussian variable is simulated at the small scale v using sequential

Gaussian simulation. This variable is normal score transformed to a linear

volume fraction variable with a nominally uniform distribution between 0 and 1
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(corresponding to the volume fraction of Vivian’s ore). This variable can be

converted to zp(v) values and upscaled to zp(V ) values using experimental

data from Yan and Eaton (Figure 3.30). Simulation study parameters are

summarized in Table 3.2.

Table 3.2: Monte Carlo simulation study parameters for multiscale nonlinear in-
ference.

Parameter Value

Base nonlinear power for averaging 5.558
Gaussian variogram model 0.2 + 0.8Sph(a = 25 m)
Number of simulated small scale values 2500
Number of small scale values in large composite 5
Small scale value distribution Uniform(6.6,14)

Figure 3.30: Synthetic multiscale samples of the Bond mill work index.

The relationship can be recovered using nonlinear least squares regression.

The widely applied Levenberg-Marquardt algorithm (Marquardt, 1963) is ef-

fective for parameter inference problems such as the recovery of the nonlinear

mixing law. The Levenberg-Marquardt algorithm is a hybrid algorithm using

both the Gauss-Newton and gradient descent minimization algorithms. The

nonlinear least squares problem is formulated as an objective function:

O(p) =
n∑

i=1

[
zp(ui;V )−

n∑
j=1

λjzp(uj; v)
ω

]2
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where λj are the weights, equivalent to the volume fractions, of zp(uj; v) in

the large scale composite samples zp(ui;V ). The functional form presented is

valid for ω 6= 0 to simplify notation; however, the numerical implementation

of this objective function includes the case where ω = 0. For iteration t, given

a relaxation parameter β, the Levenberg-Marquardt algorithm for this single

parameter optimization problem is summarized as:

ωt = ωt−1 + δt

J =

d
n∑

j=1

λjz(uj; v)
ωt

dωt

δt+1 = J

[
z(ui;V )−

n∑
j=1

λjz(uj; v)
ωt

]
/
(
J2 + βJ2

) (3.6)

The Jacobian J is typically numerically approximated. The relaxation parame-

ter is commonly determined using heuristics within the Levenberg-Marquardt

implementation to balance slow convergence with robustness (Moré, 1978).

The iterative algorithm is terminated after either a maximum number of iter-

ations or once the objective function changes less than a provided threshold.

For the simple example considered, where no error is associated with the mea-

surements the mixing law is efficiently recovered using the nonlinear regression

approach (Figure 3.31).

Figure 3.31: Cross plot of true large scale samples against fit large scale values
using a power law fit with nonlinear regression.
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This is the ideal case, analogous to the situation where multiple ore types

are blended in known proportions and the responses measured. No measure-

ment error was considered for this case, so the power law used was recovered

exactly. In the case of no measurement error, the power fit to the Bond mill

work index tests (5.56), was exactly recovered.

3.7 Measurement error and regression attenuation

Regression attenuation, also referred to as dilution, is the reduction in signal

strength due to measurement error (Spearman, 1904). In the context of ge-

ometallurgy, attenuation is the reduction in predictive power and ability to

construct accurate models in the presence of measurement error. This loss

in accuracy accompanies a loss of precision in the estimates. Here, accuracy

refers to estimates which reflect the true values and precision to the confidence

interval ascribed to these estimates. Attenuation due to measurement error

will affect all association measurements including covariances and regressions.

The effect of attenuation for the nonlinear regression algorithms may result in

a bias in models, and loss of accuracy, in the presence of measurement error

or the usage of an imperfectly correlated secondary variable.

In the nonlinear regression model adopted for fitting power law models

to multiscale samples, error is assumed to be concentrated on the large scale

response measurements rather than the small scale predictor measurements.

For a linear model under this assumption, and for error that is both unbiased

and homoscedastic, explicitly accounting for attenuation due to measurement

error is generally not required (Carroll et al., 2006). As demonstrated by Car-

roll et al., for a linear model with response measurement error, the variance

of the fits will be increased, but will not be biased. This is not necessarily the

case for nonlinear models. Error on the predictor variables, even if unbiased,

homoscedastic and normally distributed, will attenuate both linear and non-

linear models. The effects of measurement error on the nonlinear model are

investigated to identify potential sources of bias in the resulting models.
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3.7.1 Potential attenuation due to measurement error

Consider adding an unbiased, homoscedastic measurement error with a stan-

dard deviation of 0.5 to the large scale samples: εp(ui;V ) ∼ N(0, 0.5) (cor-

responding to an approximately 5% error). The same nonlinear regression

procedure was used to fit these large scale measurements with error to test the

unbiasedness of the least squares nonlinear regressor (Figure 3.32). The slope

of regression between the measured Zp(V ) with error, and the fit Zp(V ) is plot-

ted; the slope of regression is approximately 1 with a value of 1.01 indicating

that the fit has no conditional bias.

Figure 3.32: Cross plot of large scale samples with measurement error against
fit large scale values using a power law fit with nonlinear regression. The slope of
regression is overlaid in red.

The power fit to the samples with error is 4.16, lower than the original

power of 5.56 indicating a potential bias in the power fit with respect to the

true samples. In Figure 3.33, the same error term was also added to each of

the small scale measurements (the predictor variables). The fit model is still

conditionally unbiased with respect to the measured values in this case and is

biased with respect to the true values.
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Figure 3.33: Cross plot of large scale samples with measurement error against fit
large scale values using a power law fit with nonlinear regression applied to small
scale values with measurement errors. The slope of regression is overlaid in red.

The regression model formulated in Equation 3.6 does not explicitly in-

corporate an error term where measurement errors may differ from sample

to sample, but the same power attenuation is observed. If measurement er-

rors differ from sample to sample, this error term could be incorporated as

described in the original algorithm exposition (Marquardt, 1963). Even incor-

porating a measurement error term for the predictor, the problem of bias and

model attenuation must still be addressed.
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3.7.2 Theoretical framework for attenuation

Spearman (1904) documented a systematic reduction in the magnitude of cal-

culated correlation coefficients when the correlation coefficients were inferred

using data with sample error. This systematic reduction, termed correlation

attenuation (also referred to as regression dilution), was observed even for an

unbiased error. Critically for this thesis, this bias also occurs for linear mod-

els with predictor error, and may occur for nonlinear models with predictor

or response error (Carroll et al., 2006; Frost and Thompson, 2000). Spear-

man proposed disattenuation of the attenuated correlation coefficient using

the error associated with the samples. The linear model for correlation dis-

attenuation, and equivalently linear regression disattenuation, with unbiased

measurement error is derived here, as it forms the theoretical basis for the

power law disattenuation model proposed in this thesis.

Disattenuation of correlation coefficients is derived using the mathematical

framework of Spearman (1904). Consider inferring the correlation coefficient

between two random variables X and Y . Consider independent, additive,

normally distributed errors on both X and Y . Pairs of measurements of these

random variables are therefore:

x∗
i = xi + εxi

, y∗i = yi + εyi , i = 1, . . . , n

The experimental correlation coefficient is calculated on the random variables

measured with error X∗ and Y ∗:

Corr{X∗, Y ∗} =
Cov{X∗, Y ∗}√

Var{X∗}Var{Y ∗}
(3.7)

Expanding the denominator, applying the assumption of independence be-

tween errors, and using the strong assumption of independence of the errors

and their random variables:

Corr{X∗, Y ∗} =
Cov{X + εX , Y + εY }√

(Var{X}+ Var{εX})(Var{Y }+ Var{εY })

= Corr{X,Y }
√

Var{X}Var{Y }√
(Var{X}+ Var{εX})(Var{Y }+ Var{εY })

(3.8)
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Disattenuation of the correlation under these assumptions therefore requires

accurately measuring the true variance of the random variables and error com-

ponents:

Corr{X,Y } = Corr{X∗, Y ∗}
√

(Var{X}+ Var{εX})(Var{Y }+ Var{εY })√
Var{X}Var{Y }

(3.9)

Disattenuation in the linear regression case is similar, (Carroll et al., 2006;

Frost and Thompson, 2000). In the linear regression case, only measurement

error in the predictor variables will result in a bias. The bias will result in

an attenuated slope, with a magnitude closer to zero. Measurement error in

the response variable will not result in a bias in the linear regression case.

Carroll et al. claim that in the case of linear regression, an unbiased and

homoscedastic error will increase the variance of the fit, but not introduce a

bias. This is demonstrated with a simulation study. The additional claim

is made that unbiased, homoscedastic errors on both linear and nonlinear

regressors will increase the variability in fit parameters.

This increase in variability has a substantial effect on the nonlinear power

law fits applied in this thesis. When nonlinear regression is used in these cases,

error in the response variable may bias the regression. As demonstrated earlier

with the power law, error in the predictor or response variable may attenuate

the power fit. Carroll et al. attribute bias due to response error in nonlinear

models to the increased variance biasing the Taylor approximation used by the

nonlinear regressor and demonstrate this effect numerically for an exponential

model. Numerical disattenuation of the power law models fit is considered

here.

3.7.3 Attenuation of power law models

Using the Monte Carlo parameters defined earlier (Table 3.2), a set of real-

izations was constructed for varying degrees of response variable (large scale

sample) and predictor variable (small scale sample) errors. This scenario was

applied for a range of underlying power law models, from 1 (linear) to highly

nonlinear cases with powers of -2 and 5. For this Monte Carlo experiment, 100
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Figure 3.34: Power fit to data with a true underlying power of 1 (linear), with
error in the response variable for varying degrees of error.

realizations of each scenario were generated and fit. The average power fit for

each scenario was calculated.

Fit powers for the case where the true underlying model was 1 (linear)

and the only error was in the response variable is shown in Figure 3.34. As

expected for this linear case with response variable error, no bias is observed

for any of the degrees of error, although the precision decreases substantially

with increasing error. Results for the highly nonlinear case with a power of

5 are shown in Figure 3.35. No bias is observed in the results over the 100

realizations. Results were similar for all other powers tested; adding error to

the large scale response variable in the case of the power law model does not

introduce a bias to fit.

The case of predictor variable measurement error was also tested. As ex-

pected, substantial error introduced a bias, even in the linear case (Figure

3.36). As the nonlinearity of the power law model fit increased, the bias

also increased (Figures 3.37, 3.38). In both of the nonlinear cases, increasing

amounts of error substantially attenuated the power fit, driving it towards

the linear case. If there is substantial measurement error in the predictor, or

small scale, measurements when inferring mixing behaviour, then the nonlinear

model fit will be biased with respect to the true values.
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Figure 3.35: Power fit to data with a true underlying power of 5 (highly nonlinear)
with error in the response variable for varying degrees of error.
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Figure 3.36: Power fit to data with a true underlying power of 1 (linear), with
error in the predictor variable for varying degrees of error.

This bias introduces the possibility for regression disattenuation. If the

measurement error is known, and quantified, then a similar Monte Carlo ex-

periment could be conducted to understand the degree to which the measure-

ment error attenuates the nonlinear model. Using this data, disattenuation

could be applied to more accurately infer the underlying power without bias.

The disattenuation procedure is demonstrated using the parameters from this

Monte Carlo simulation study. The average powers fit, as a function of the
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Figure 3.37: Power fit to data with a true underlying power of 5 (highly nonlinear),
with error in the predictor variable for varying degrees of error.
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Figure 3.38: Power fit to data with a true underlying power of -2 (highly nonlin-
ear), with error in the predictor variable for varying degrees of error.

underlying power and measurement error on the small scale measurements can

be summarized in a nomograph (Figure 3.39). Given the measurement error,

and biased fit of the power, a disattenuated power can be inferred. The degree

to which the disattenuated power differs is a function of both the measurement

error, and the degree of nonlinearity of the model.

Central to any discussion of regression disattenuation is the requirement to

justify the need for disattenuation, particularly when the attenuated regres-
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Figure 3.39: Nomograph of true underlying power as a function of the average
power fit and error in small scale measured values.

sors are conditionally unbiased with respect to the measured values. If the

regression is to be applied to values with the same experimental error, then

using a disattenuated regressor could conditionally bias estimates. If, on the

other hand, the regression is to be applied to values which are considered to

have no error, then a disattenuated regressor is required to avoid biasing the

results.

In the context of geometallurgical modeling, mixing behaviour is primarily

quantified for the purposes of 1) modeling nonlinear metallurgical variables

with linear frameworks and 2) modeling the behaviour of blends. This model-

ing will take the form of conditional geostatistical realizations of the deposit.

Critically, these realizations are individually assumed to be without measure-

ment error. Measurement error is incorporated into the uncertainty observed

when considering all realizations together, which constitute the geometallur-

gical model. Therefore, for the purposes of geometallurgical modeling, the

power law models of nonlinear behaviour should be disattenuated where mea-

surement error can be quantified.
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As demonstrated here, multiscale measurements may be used for fitting

and inferring mixing laws of metallurgical variables. Single scale measurements

are insufficient to infer the mixing law, even given a highly correlated linear

variable. The hybrid of these situations are large scale measurements of the

metallurgical variable along with small scale measurements of a correlated

linear variable. A multiscale semiparametric Bayesian updating algorithm

was developed to fit mixing models for this situation.

3.8 Multiscale correlated bivariate inference

The related, but more challenging, problem is the inference of nonlinear be-

haviour in a metallurgical random variable Zp given bulk measurements for

the variable and correlated, fine scale, constituent grades. This problem is ad-

dressed with a semiparametric Bayesian updating algorithm. Recall the semi-

parametric Bayesian updating algorithm used by Barnett and Deutsch (2015)

for multiple imputation of missing data which was reviewed earlier. The case

of missing data is analogous to this situation, although data are considered

missing everywhere and the bivariate distribution is considered known, not

strictly the conditional distributions. Bulk measurements of the metallurgical

variable on volumes V are available as well as grade variable measurements on

n constituent samples at scale v per bulk sample where V = nv. As before,

consider re-expressing the nonlinear variable Zp as a linear variable Yp using a

power law transform.

The semiparametric Bayesian updating algorithm may be implemented us-

ing a normal score framework, in which all calculations are done after normal

score transformation and back-transformed after, or using a multigaussian

kriging approach. Both approaches lead to the same end result so the choice is

primarily driven by the available information. If bivariate samples of the met-

allurgical variable Zp(v) and linear variable Xp(v) are available at the small

scale, then the normal score approach is computationally faster. If no small

scale samples are available, and therefore the small scale bivariate distribution

has been inferred by downscaling, then the multigaussian approach is simpler
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to implement. The semiparametric Bayesian updating algorithm for both ap-

proaches is shown considering each data collection scenario. The normal score

transformation approach is summarized in Figure 3.40 and the multigaussian

kriging approach in Figure 3.41.

Decision of normal score approach

Univariate normal score transform
Z(v) and X(v) samples

For each realization:

Discretize the standard normal
global distribution

Infer the likelihood distribution
using kernel density estimation

with colocated secondary

Combine the likelihood and prior
distributions using Bayesian updating

For each composite location
visited in a random order:

Infer the prior distribution
using previously simulated values

with normal equations

Discretize the prior distribution

Integrate the updated distribution
for the cumulative distribution

Draw a random sample
from the CDF

Back-transform all simulated
values to original units

Figure 3.40: Flowchart of the semiparametric Bayesian updating algorithm using
the normal score transformation approach where a number of small bivariate samples
are available.
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Decision of multigaussian approach

Discretized, downscaled Z(v),X(v)
bivariate distribution

For each realization:

Discretize the marginal Z(v)
 for the global distribution

Infer the likelihood distribution
using downscaled bivariate
with colocated secondary

Combine the likelihood and prior
distributions using Bayesian updating

For each composite location
visited in a random order:

Infer the prior distribution
using normal score transformed

previously simulated values
with multigaussian kriging

Discretize quantiles and back-transform
the prior distribution values

Interpolate prior distribution
probabilities on same discretization

Integrate the updated distribution
for the cumulative distribution

Draw a random sample
from the CDF

Back-transform simulated
value to original units

Figure 3.41: Flowchart of the semiparametric Bayesian updating algorithm using
the multigaussian kriging approach where the small scale bivariate distribution is
inferred by downscaling.
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In the normal score approach, the bivariate distribution of F (Z(v), X(v))

is normal score transformed and fit using kernel density estimation. This small

scale bivariate distribution is required for inferring the likelihood distributions.

If samples of F (Z(v), X(v)) have not been directly sampled, then downscaling

the bivariate distribution F (Z(V ), X(V )) may be required and the multigaus-

sian approach may be used directly. At this stage, it is assumed that samples

of F (Z(v), X(v)) are available, or have been downscaled.

For each large scale composite sample available, multiple realizations of

the small composite values are constructed. Multiple realizations are gen-

erated so that samples of the updated distributions can be fit, not the dis-

tributions themselves. This leverages the Monte Carlo simulation paradigm

used throughout geostatistics, and this thesis. A random path through the

small scale X(v) samples contained in the composites is generated for each

realization.

For each location along the random path, the likelihood distribution is in-

ferred nonparametrically using kernel density estimation of the normal score

transformed bivariate distribution of F (Z(v), X(v)). The likelihood distribu-

tion for location uJ , where locations uj, j = 1, . . . , J − 1 have been previously

simulated, for realization l using the kernel density estimate (Eq. 2.8) is there-

fore:

f(ylp(uJ ; v)|x(uJ)) =

1

∆

∫
Nh(yp(uJ ; v), x(uJ ; v), k = 1, . . . , K, k 6= p)dyp(uJ ; v)

(3.10)

The prior distribution is estimated parametrically using multigaussian kriging

(the normal equations) of the previously simulated values. This is the direct

application of the normal equations (Eq. 2.2-2.4):

J−1∑
j=1

λjρi,j(v) = ρi,J(v), i = 1, . . . , J − 1

σ2
k,SK(uJ ; v) = ρJ,J(v)−

J−1∑
i=1

λiρi,J(v)

y∗p(uJ ; v) =
J∑

i=1

λiyk(ui; v)

(3.11)
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The estimated prior probability distribution is discretized, and combined with

the likelihood distribution using the nonparametric Bayesian updating equa-

tions under a permanence of ratios model (Eq. 2.6). The updated probability

distribution is integrated for the cumulative distribution, and a realized value

is drawn with Monte Carlo simulation. After simulation, all values are back-

transformed to original units and simultaneously fit using nonlinear regression.

This procedure is identical to the previously demonstrated nonlinear regression

method for multiscale samples.

3.8.1 Demonstration of the algorithm

A synthetic example was constructed to demonstrate the semiparametric Bayesian

updating algorithm for nonlinear inference using the normal score approach.

The synthetic example was constructed by sequential Gaussian simulation of

values for a nonlinear metallurgical variable Z and correlated linear variable

X at a small scale v. The simulation study parameters are summarized in

Table 3.3.

Table 3.3: Monte Carlo simulation study parameters used to demonstrate semi-
parametric Bayesian updating for nonlinear inference.

Parameter Value

Base nonlinear power for averaging 2.5
Correlation at v in Gaussian units 0.80
Gaussian unit variogram model 0.2 + 0.8Sph(a = 25 m)
Number of simulated small scale values 2500
Number of small scale values in large composite 5
Zv distribution Uniform(6.6,14)
Xv distribution Uniform(0.0,5.0)

Bivariate samples of the simulated values at scale v are shown in Figure

3.42. The high correlation between the variables can be observed in this bivari-

ate scatterplot. A portion of the 1-dimensional simulated values and upscaled

samples of the nonlinear variable Z is shown in Figure 3.43.

The bivariate samples at v were fit using kernel density estimation with

a correlated Gaussian kernel. The kernel bandwidth (0.07) was selected by
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Figure 3.42: Bivariate samples of the simulated data values at v.
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Figure 3.43: Portion of the nonlinear data simulated at scale v and for Z, upscaled
to scale V .

choosing the smallest bandwidth which in the author’s opinion did not overfit

the data. The subjective choice of the kernel density estimation bandwidth

selection is discussed later in this thesis. The estimated bivariate probability

distribution contours calculated using a 100x100 discretization are shown in

Figure 3.44.

Using the selected Gaussian kernel function, the conditional probability
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Figure 3.44: Kernel density estimation contours fit to bivariate samples of the
simulated data values at v.
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Figure 3.45: Conditional probability distribution function evaluated at xv = 2.5.

distribution F (Zv|xv = x) may be queried for any xv. An example conditional

probability distribution where xv = 2.5 is shown in Figure 3.45.

The synthetic samples of Xv and ZV were used with a semiparametric

Bayesian updating workflow to infer the nonlinear behaviour. For this demon-

stration of the workflow, values of Zv corresponding to the large ZV samples

are known. These samples were not used directly for fitting the nonlinear

behaviour, as this would degenerate the case study to a multiscale inference

problem previously demonstrated. The bivariate probability density function
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Figure 3.46: Global probability distribution function for Bayesian updating. Nor-
mal score units are used, so the global distribution is the standard normal distribu-
tion.

f(Xv, Zv) is required for the Bayesian updating workflow, so the kernel density

estimation of the probability function fit to the samples was used. If bivari-

ate samples were not available, distribution scaling (discussed in the scaling

portion of this thesis) could alternatively be used.

Following the semiparametric Bayesian updating workflow, samples of ZV

and composite Xv samples were normal score transformed. The global distri-

bution of the normal score transformed ZV values is therefore the standard

normal distribution shown in Figure 3.46.

Consider inferring the prior probability distribution in the algorithm. This

prior probability distribution is inferred by multigaussian kriging of previously

simulated Zv samples within the ZV composite. If no samples have been previ-

ously simulated, the prior degenerates to the global distribution (the standard

normal distribution). Consider that previously simulated values are available,

and the kriging mean and standard deviation are 1.1 and 0.6, respectively.

The prior probability distribution function is therefore given by the normal

distribution with a mean of 1.1 and standard deviation of 0.6, as shown in

Figure 3.47.

Under a Markov assumption, collocated secondary values of Xv at the
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Figure 3.47: The prior probability distribution is the normal distribution with the
mean and variance given by multigaussian kriging of previously simulated values.
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Figure 3.48: The likelihood distribution is evaluated using kernel density estima-
tion with the secondary variable at the location being simulated under a Markov
assumption.

location being simulated are used to infer the likelihood distribution. For this

example, this is evaluated using kernel density estimation (as demonstrated

previously in Figure 3.45). A sample likelihood distribution with a normal

score xv = −0.3 is shown in Figure 3.48.

These probability distributions are merged using the nonparametric Bayesian
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Figure 3.49: The updated probability distribution function is calculated using
semiparametric Bayesian updating.

updating equations. The updated probability distribution is shown in Figure

3.49.

This updated probability distribution is integrated to a cumulative proba-

bility distribution function and sampled for a simulated value. The simulation

algorithm then proceeds, and this procedure is repeated for each location for

each realization required. Integrating to a cumulative probability distribution

function is not strictly necessary to sample the distribution; an alternative

algorithm such as rejection sampling could be used instead.

Once L realizations of Z l
v have been constructed and back-transformed to

original units, the nonlinear regression procedure used for multiscale inference

may be directly applied. For this small example, a power of 3.8 was fit using

nonlinear regression.

3.9 Parameters, the information effect and implemen-
tation for semiparametric Bayesian updating

A number of key areas with the application of semiparametric Bayesian updat-

ing are addressed using a series of Monte Carlo simulation experiments. The

selection, and sensitivity, of a bandwidth for kernel density estimation is ap-
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proached comparing the results of a large range of bandwidths. The selection

of a variogram for the multigaussian kriging step is also introduced. Finally,

the information contained in a secondary variable for inferring the nonlinearity

and potential issues with nonlinear attenuation are considered in the context

of challenges with measurement error previously discussed.

3.9.1 Kernel density estimation bandwidth selection

The general kernel density estimation criteria for bandwidth selection is the

minimization of the expected mean integrated squared error (MISE) given

the selection of a bandwidth H:

MISE(H) = E

{∫
[f ∗

H(x)− f(x)]2 dx

}
where f ∗

H(x) is the multivariate kernel density estimate at the multivariate

vector x and f(x) is the unknown, true multivariate distribution. For practi-

cal evaluation, this criteria is revised to consider an asymptotic or numerical

approximation. Assuming a multivariate Gaussian distribution as the true

underlying multivariate distribution, the optimal bandwidth for a multivari-

ate Gaussian kernel is given by Silverman (1986). The square-root bandwidth

used for the Gaussian kernel for dimension i for n samples, fit to d dimensions,

with a sample standard deviation of σi is:

√
Hi =

(
4

2 + d

) 1
4+d

σin
−1
4+d

Using the example demonstration of the nonlinear inference algorithm under

these assumptions, the optimal square-root bandwidth is therefore 0.073. This

rule of thumb, and the sensitivity of the bandwidth for the kernel density esti-

mation was investigated using the previously demonstrated example, varying

the bandwidth used. For each bandwidth tested, 10 synthetic realizations of

the data were constructed and fit using the semiparametric Bayesian updating

approach. The results are plotted in Figure 3.50.

Using too small of a bandwidth results in substantial instability in the like-

lihood distributions and problematic results for numerical solutions. Based on
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Figure 3.50: Mean squared error of power law fit to data as a function of the
bandwidth used for kernel density estimation.

the results of this small test of bandwidth, for practical application of the semi-

parametric Bayesian updating approach there is a large range of acceptable

bandwidths. Using the criteria of Silverman with a correlated multivariate

Gaussian kernel works well.

3.9.2 Variogram inference for multigaussian kriging

The spatial covariance is required for the multigaussian kriging step for infer-

ring the prior distribution. Using a variogram to infer the covariance requires

a variogram at scale v for the normal score transform of Z. This is most

easily accomplished by downscaling the variogram. Scaling algorithms for the

variogram, and other statistics, are discussed in chapter 4.

3.9.3 The information effect

Central to the semiparametric Bayesian updating workflow is the assumption

that there is a related linear variable at scale v which is related to the metallur-

gical variable at v. The limiting case of this assumption is a perfectly unrelated

variable, in which case it is impossible to infer any nonlinear behaviour, or a

perfectly correlated variable which reduces the multiscale sampling case. We

are interested in quantifying our position on the spectrum of no information to

perfect information for the expected nonlinear relationship. The correlation,
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which is a linear measure of the relationship, is therefore not used to measure

this information.

Instead, the relative information about Zv given Xv is quantified using the

mutual information and uncertainty coefficient. The mutual information is a

measure of the relative information with the units of nats (the base of the

natural logarithm), and the uncertainty coefficient is the dimensionless mea-

sures of the reduction in uncertainty in Zv given Xv. The mutual information

I(X;Z) of Z and X is (Cover and Thomas, 2012):

I(X;Z) = H(X)−H(X|Z)

= −
∫
x

f(x)ln(f(x))dx−
∫
x

∫
z

f(x, z)ln

(
f(z)

f(x, z)

)
dxdz

(3.12)

where H(X) is the entropy of X and H(X|Z) is the conditional entropy of

X,Z. The normalized mutual information is the uncertainty coefficient, de-

fined as:

U(X;Z) =
I(X;Z)

H(X)

The uncertainty coefficient, U , is 1 when X exactly determines Z, and 0 when

X and Z are perfectly unrelated. For the purposes of generally quantifying the

relative information contained in bivariate distributions, using the normalized

uncertainty coefficient in place of the mutual information is reasonable. Three

examples of contoured bivariate distributions, fit with kernel density estima-

tion with a bandwidth determined by Silverman’s rule, are shown in Figures

3.51–3.53. The weak relationship between X and Z in Figure 3.51 corresponds

with an uncertainty coefficient of 0.109. The strong relationship in Figure 3.53

has an uncertainty coefficient of 0.234.

The simulation study which has been used to demonstrate bandwidth selec-

tion and the semiparametric Bayesian updating workflow was repeated using

bivariate distributions with a range of uncertainty coefficients from very weakly

related, to strongly related. The mean squared error of the power law fit is

plotted for these scenarios (Figure 3.54). Multiple realizations were computed

and fit for each scenario, each time using a different synthetic data set. As

expected, an increasing uncertainty coefficient decreases the mean squared er-

90



0 1 2 3 4 5

Correlated linear variable

6

7

8

9

10

11

12

13

14

B
o
n
d
 m

ill
 w

o
rk

 i
n
d
e
x
 a

t 
th

e
 s

m
a
ll 

sc
a
le

 v

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030

0.00035

R
e
la

ti
v
e
 K

e
rn

e
l 
D

e
n
si

ty

Figure 3.51: Contoured bivariate distribution with an uncertainty coefficient of
0.109.
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Figure 3.52: Contoured bivariate distribution with an uncertainty coefficient of
0.140.

ror of the fit. The limiting case of this relationship, where the uncertainty

coefficient is 1 and X = Z reduces the multiscale regression approach.

3.9.4 Application with no small scale samples

As part of this thesis, a large South American copper-molybdenum porphyry

deposit was modeled. Modeling of this deposit is the focus of chapter 6;

however, a portion of the data is used here to show potential application of
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Figure 3.53: Contoured bivariate distribution with an uncertainty coefficient of
0.234.
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Figure 3.54: Mean squared error of power law fit to data as a function of the
uncertainty coefficient of the small scale bivariate distribution.

the nonlinear re-expression framework. Iron grade, available at a composited

scale of 15 m and Bond mill work index, available on nominally 30 m samples

are available. A cross plot of iron grades, upscaled to the 30 m are cross plotted

against Bond mill work index, and the bivariate distribution fit, in Figure 3.55.

The variables are moderately correlated, with a correlation coefficient of 0.5.

This correlation coefficient was too low to fit a reasonable re-expression, but

92



0 1 2 3 4 5

Iron Grade (%)

12

14

16

18

20

22

B
o
n
d
 M

ill
 W

o
rk

 I
n
d
e
x

0.00

0.03

0.06

0.09

0.12

0.15

0.18

0.21

0.24

0.27

Figure 3.55: Kernel density estimation of bivariate distribution between Bond
mill work index at original 30 m scale and upscaled iron grade. Individual bivariate
samples are overlaid on the distribution.

the procedure for fitting the re-expression framework is demonstrated here for

future use.

Statistics including the variogram, univariate histogram and bivariate dis-

tribution of the Bond mill work index are required at the 15 m scale. Downscal-

ing statistics, and data, is the focus of chapter 4 so the reader is referred there

for additional details. An assumption of either linearity, or a re-expression is

required. As no data are available on any nonlinearity in the Bond mill work

index for this deposit, linearity was assumed for statistic downscaling. This

could be adjusted iteratively using the results of the nonlinear regression. The

standardized variogram of the Bond mill work index was modeled at the 30 m

scale, and downscaled using the variogram scaling laws to 15 m (Figure 3.56).

Due to a large amount of short-range variability, the downscaled Bond mill

work index has a variance 1.4 times as large as the original variance.

The univariate histogram of Bond mill work index was downscaled using

the discrete Gaussian model (DGM) with a mosaic correction (Figure 3.57).

The mosaic model was chosen as the distribution is not very close to zero

which would have supported the usage of an indirect lognormal correction as

93



0 100 200 300 400 500 600

Lag Distance

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

γ   
Major at 30m

Minor at 30m

Major at 15m

Minor at 15m

0 50 100 150 200 250

Lag Distance

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

γ   

Vertical at 30m

Vertical at 15m

Figure 3.56: Standardized Bond mill work index variograms (experimental and
modeled) at 30 m, and downscaled variograms with the new downscaled sill of 1.4
(relative to the standardized sill of 1).
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Figure 3.57: Downscaled cumulative distribution function of Bond mill work index
using the discrete Gaussian model (DGM) with a mosaic correction, and original
experimental cumulative distribution at 30 m.

in the case of the bitumen grades. This downscaled distribution has the correct

variance matching the downscaled variogram.

The bivariate distribution was downscaled using a product of ratios ap-

proach. Univariate distributions which form the target for the downscaling

are shown in Figure 3.58. After the iterative downscaling of the bivariate, the

marginals exactly match (Figure 3.59). The downscaled bivariate distribution

is shown in Figure 3.60.
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Figure 3.58: Univariate probability distributions for Bond mill work index and
iron grade at a 15 m and 30 m scale.
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Figure 3.59: Marginal distributions of downscaled bivariate probability distri-
butions for Bond mill work index and iron grade at a 15 m scale which exactly
reproduce the target histograms.

The multigaussian approach for semiparametric Bayesian updating was

used with this bivariate distribution; however, due to the low correlation no

conclusions may be drawn on the nature of the nonlinear averaging of the

Bond mill work index. Cross plots of simulated results using the same random

number seed and powers of 0 and 3 are shown in Figures 3.61 and 3.62, respec-
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Figure 3.60: Downscaled bivariate distribution at 15 m using the product of ratios
method.
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Figure 3.61: Cross plot of upscaled, simulated Bond mill work index values using
ω = 0.0 and true values.

tively. The slope of regression, and mean squared error are almost identical

for these cases, so no conclusion on nonlinearity may be drawn.

3.10 Discussion of nonlinearity and mixing laws

This chapter has focused on the use and inference with nonlinear metallurgi-

cal properties for statistical modeling. The treatment of nonlinear variables

is based not on the development of statistical techniques which are aimed
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Figure 3.62: Cross plot of upscaled, simulated Bond mill work index values using
ω = 3.0 and true values.

at directly modeling nonlinear variables, but instead on the re-expression of

nonlinear properties as linear variables which may be modeled using current

statistical techniques. The ability to use current techniques is a substantial

benefit to the use of re-expression as there is a very large body of algorithms

and expert knowledge in the application of statistical and geostatistical mod-

els for linear variables. Three key developments of this chapter are discussed:

the importance of modeling nonlinear behaviour, the use of a power law re-

expression framework for fitting nonlinearity and methods to fit the nonlinear

behaviour given varying amounts of information.

3.10.1 The importance of modeling nonlinear behaviour

The importance of modeling nonlinearity is emphasized when the small simu-

lation study modeling expected mixing in a grinding stage, current practice in

mineral processing, and mineral processing literature are considered. A high

degree of mixing within the mill will occur even when material is batch fed on

a truck-by-truck basis. This high degree of mixing emphasizes the requirement

to quantify nonlinear mixing behaviour in metallurgical variables if possible

to avoid biasing the resulting decisions.

Furthermore, models of nonlinear behaviour are required for spatial model
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upscaling and blending. Upscaling from a point-scale model to a block-scale

model requires a method to correctly average properties which average nonlin-

early. Accurately determining the effect of blending multiple upscaled blocks

also requires a model of nonlinear averaging.

3.10.2 The power law re-expression framework

The power law re-expression framework is proposed as the primary technique

for nonlinear re-expression. The use of a power law model is supported both

by its flexibility for modeling and correctness for specific types of mixtures.

The theoretical correctness of the power law transform for specific types of

mixtures, documented by Korvin (1982), does not apply to all metallurgical

properties, but is applicable in certain cases. In many others, the power law

still fits the mixture well.

Alternative frameworks, such as the Scheffé canonical polynomials are also

reasonable possibilities for properties with more complex behaviour, such as

the antagonistic recovery observed in froth flotation recovery of certain blends.

3.10.3 Methods for nonlinear inference

The majority of this chapter has focused on methods to fit re-expression mod-

els with varying degrees of information encountered in geometallurgical mod-

eling. The ideal case, where direct experimental evaluation of mixtures is

possible, can be fit by direct nonlinear regression of experimental mixing re-

sults, as demonstrated for two different literature cases. Direct measurement

of the mixing phenomena and the development of a corresponding theory for

the reason behind nonlinear behaviour is preferable to the proposed indirect

methods, but this is no always possible. Restrictions on experimental work,

such as the very large volume of rock required for a Bond mill work index test,

high experimental cost, limited sample and legacy data may mean that this is

not always possible.

If the capacity to directly experiment with mixtures is not available, but

there are multiscale samples of the metallurgical variable then the nonlinearity

may be fit indirectly using the multiscale data with nonlinear regression. In
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the case where multiscale data are available, but there is measurement error

associated with the small scale measurements, the power law model fit will

be attenuated, and biased towards an approximately linear model. Given

sufficient information about the nature of the error, and provided the error is

unbiased and homoscedastic, the model may be disattenuated by construction

of a nomograph with Monte Carlo simulation. This is important where the

power law model is to be applied to measurements without error, such as the

results of a geostatistical simulation study.

Decreasing the amount of information available to the geomodeler further,

multiscale bivariate inference was considered for inferring the nonlinear be-

haviour given a large scale metallurgical variable, small scale linear variable

and the bivariate relationship between the variables at the small scale. Semi-

parametric Bayesian updating with nonlinear regression was proposed for this

case, and demonstrated using kernel density estimation to model samples from

the small scale bivariate relationship. In the course of developing the semi-

parametric Bayesian updating method, LU simulation with correlated bivari-

ate probabilities for the simulation of Z(v) values was tested, but found to be

highly dependent on the variogram used for simulation. The result of this de-

pendency was comparatively poor characterization of the nonlinear behaviour

relative to the proposed semiparametric Bayesian updating algorithm.

Methods for inferring nonlinear behaviour in metallurgical properties given

varying degrees of information are summarized in Table 3.4. As demonstrated

with the Bond mill work index earlier, a weak correlation, limited samples or

excessive measurement error may reduce the predictive power of the proposed

technique to the point where it is ineffective. In these cases, more data are re-

quired to reasonably infer nonlinearity in the metallurgical property. Further-

more, all inferred nonlinear behaviour should be reviewed for reasonableness

given the physical nature of the properties.
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Table 3.4: Summary of methods to infer nonlinear behaviour in metallurgical
properties given varying degrees of information.

Available Information Method

Measurements of blends of known
ore types

Direct nonlinear regression

Single-scale measurements of
metallurgical properties and
correlated secondary

More data are required

Multiscale measurements of
metallurgical properties

Nonlinear regression

Multiscale measurements of
metallurgical properties with known
error

Nonlinear regression with
correction for attenuation

Multiscale correlated bivariate mea-
surements

Semiparametric Bayesian updating
with nonlinear regression
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Chapter 4

Downscaling composite
metallurgical properties

Multiscale sampling schemes, such as the sampling of comminution properties

on 30 m intervals and assays on 1 m intervals, are common mining practices.

These practices are driven by testing requirements and high costs associated

with sample collection and experimental work. A typical comminution testing

suite requires a large amount of rock mass for testing so cannot be sampled on

high frequency intervals. Assays are cheaper, faster, and more critical for early

stage decision making, so are sampled at a high resolution. The practice of

multiscale sampling poses a substantial problem for geometallurgical modeling;

the majority of statistical and geostatistical algorithms have been developed

for linear, homotopically sampled data sets at a single scale. A multiple im-

putation procedure is proposed in this thesis for stochastically downscaling

metallurgical variables. The resulting homotopically sampled data sets can

then be used in a standard multivariate geostatistical modeling workflow.

In this chapter, multiscale sampling schemes are reviewed which further

emphasizes the requirement for techniques which can use multiscale data. In

the context of multiscale data, multiscale parameter inference techniques are

reviewed and developed in the context of multivariate, metallurgical data. The

scaling of variograms, correlations, and univariate and bivariate distributions

using geostatistical techniques are included.

At the core of this chapter is the development of multiscale direct sequential

simulation with intrinsic cokriging for stochastic downscaling of large samples.
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As direct sequential simulation is used, the downscaled samples are exact, but

there are challenges with histogram reproduction. The property of exactness is

a function of correctly implemented sequential simulation (Gómez-Hernández

et al., 2005), and the exact reproduction in original units of direct sequential

simulation. Techniques for correctly reproducing the histogram are reviewed

in this context. Implementation details of the algorithm, including dynamic

resimulation to respect variable constraints, such as positivity, are developed.

The algorithm is demonstrated, and alternative approaches to downscaling

and multiscale data integration are reviewed.

4.1 Multiscale sampling schemes

In addition to the expense of many metallurgical tests limiting the number of

samples tested, large masses of rock are typically required for testing. Sample

requirements for rotary breakage tests to quantify the autogeneous and semi-

autogeneous breakage parameters A and b require a minimum of 100 kg of

sample from core (JKTech, 2015). Ball mill tests require a minimum of 10 kg

of sample. Flotation tests require between 1 and 10 kg depending on the test-

ing mode. These correspond to very large core lengths and are substantially

more than the nominal 0.1 kg of sample required for most assays.

Multiscale sampling schemes are not unique to metallurgical sampling; seis-

mic data is often collected in addition to petrophysical measurements on wells.

Three-dimensional seismic is at a substantially lower resolution relative to

high resolution lithology, porosity and permeability measurements. Micro-

measurements, such as microresistivity, as collected in oilsands deposits, add

an additional scale. Although not the focus of this thesis, the downscaling

techniques developed could be applied in a petroleum context as well.

The multiple data scales of interest in a typical metallurgical sampling

scheme are few; measurements are likely to be collected on a minimum of

10 cm of core in the case of high resolution assays and up to 30 m of core

for comminution tests. For modeling of open pit deposits, standard prac-

tice is to composite high resolution measurements to nominal bench, or half-
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bench, scales of 10–15 m. The changes of support for the mining applications

of interest are therefore much less than comparable petroleum applications

where seismic measurements may only be available on a nominal resolution of

10x10x10 m3.

For spatial modeling using standard geostatistical algorithms, the large

scale samples would ideally be downscaled to the modeling scale. This per-

mits usage of the full suite of multivariate techniques requiring homotopic,

single-scale sampling. With the addition of a nonlinear transform as described

in chapter 3 linear techniques could be used as well. Downscaling the large

scale measurements require parameters to be inferred at the small scale. Mul-

tiscale parameter inference is discussed in this context.

4.2 Multiscale parameter inference

Statistics inferred for all regionalized variables of interest in a geometallurgical

study, including variograms, correlations and distributions, are relevant for

a single scale of interest. If parameters may not be directly inferred on a

different scale of interest, such as by upscaling the data and re-calculating

the statistics, then parameter scaling is required. Scaling of the variogram,

correlations, and univariate and bivariate histograms are discussed here in the

context of downscaling.

The scaling of parameters is demonstrated and evaluated using drilling from

an oil sands mining operation in Alberta, Canada. Measurements of bitumen

grade and fines content (<45 microns) are available on 3 m intervals over a

24 square kilometer area. Bitumen grades were arithmetically upscaled to 9 m

composites, and the correlated fines content were left at 3 m intervals. The

degree of scale change (3x in this case) is therefore comparable to downscaling

a metallurgical sample on 30 m of core to 10–15 m bench scale composites.

Bitumen grade is an ideal candidate for evaluating parameter downscaling

(and later in this chapter, data downscaling) as it averages linearly, and mea-

surements are available on a fine scale so that downscaled statistics may be

evaluated against known statistics. This is not a typical use case of parame-
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ter downscaling; downscaling is not required if small scale measurements are

available, but is illustrative for the purposes of this thesis. A plan view of the

drill collar locations is shown in Figure 4.1.
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Figure 4.1: Plan view of collar locations for oil sands drilling. All drilling is vertical
to an average depth of 80 m below the surface.

4.2.1 Variogram scaling

Variogram scaling is required for spatial inference, and for probability distri-

bution and correlation scaling. Consider a variogram model of the random

variable Zk(u; v1) at scale v1 adopting a linear model of regionalization:

γk(h; v1) = C0
k(v1) +

nst∑
i=1

Ci
k(v1)Γ

i(v1)

where C0 is the nugget effect, Ci are variance contributions, nst is the num-

ber of variogram structures and Γi are the variogram structures defined by a

rotation (3 angles assuming a 3D model) and variogram ranges (3 orthogonal

ranges aij, j = 1, . . . , 3). The variogram is to be scaled to scale v2. For vari-

ogram scaling, the widely referenced scaling laws (Chilès and Delfiner, 2009;

Oz et al., 2002), or an alternative approach such as the direct scaling method
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of Babak et al. (2013) may be used. The variogram scaling laws are used here

as the scale changes, and therefore the degree of variogram shape changes, are

not very large. Using the variogram scaling laws, variance contributions are

scaled from v1 to v2 as:

C0
k(v2) = C0

k(v1)
‖v1‖
‖v2‖

Ci
k(v2) = Ci

k(v1)
1− Γ̄i(v2, v2)

1− Γ̄i(v1, v1)
, i = 1, ..., nst

Γ̄i(v, v) =
1

‖v‖2
∫
v1

∫
v2

Γi
p(v1 − v2)dv1dv2 ≈ Γ̄i(v, v) =

1

n2
disc

ndisc∑
i=1

ndisc∑
j=1

Γi
p(ui − uj)

where ‖x‖ denotes the magnitude of the volume x, |x| is the parallel length of

the variogram scale along the range direction, and p denotes the pseudo-point

scale variogram. This variogram is typically the variogram at the smaller of

the two scales, although a nominal point scale may be used instead provided

a correct discretization is used. The pseudo-point scale ranges are calculated

using the variogram range scaling law:

aij(v2) = aij(v1)− |v1|+ |v2| , i = 1, ..., nst, j = 1, . . . , 3

The average variograms are calculated using a discrete approximation with

ndisc points. The sill (variance), of the scaled variogram using the scaled

variance contributions is then:

σ2
k(v2) = C0

k(v2) +
nst∑
i=1

Ci
k(v2)

These variogram scaling laws assume constant shape, which holds for relatively

small scale changes, but there will be substantial deviations for very large scale

changes (Babak et al., 2013). Scale changes relevant for metallurgical samples,

such as the downscaling of a 30 m comminution sample to 15 m bench-scale

samples are comparatively small and the assumption of constant variogram

shape is reasonable in most cases. If these criteria are not met, then the direct

scaling approach of Babak et al. (2013) may be employed to account for the

change of variogram shape.

For the oil sands example, variograms of bitumen grade at 9 m were calcu-

lated and modeled. As expected for this stratigraphic deposit, the horizontal
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directions are much more continuous relative to the layered vertical directions.

In addition, substantial zonal anisotropy is observed for an azimuth of 45 de-

grees. Experimental variograms and modeled variograms are shown in Figure

4.2.

0 500 1000 1500 2000 2500

Lag Distance (m)

0

5

10

15

20

25

30

V
a
ri

o
g
ra

m

Major at 9m

Minor at 9m

Sill at 9m

0 5 10 15 20 25 30 35 40

Lag Distance (m)

0

5

10

15

20

25

30

V
a
ri

o
g
ra

m

Vertical at 9m

Sill at 9m

Figure 4.2: Modeled bitumen variograms at the 9 m scale. The major direction of
continuity is 45 degrees East of North, minor is 135 degrees East of North and the
vertical direction is perfectly vertical for this deposit.

The variogram model is expressed using variogram shorthand where Sph

denotes the spherical variogram model, the major direction is oriented at an

azimuth of 45 degrees, the minor at an azimuth of 135 degrees and the vertical

direction is exactly vertical with a 90 degree dip.

γBit(h; 9m) = 2.81Sphamajor=41.7
aminor=41.7
avert=26.9

+ 7.38Sphamajor=1132.0
aminor=1486.4
avert=26.9

+ 12.1Sphamajor=29945.8
aminor=4558.7
avert=26.9

Applying the variogram scaling laws, the scaled variogram is now:

γBit(h; 3m) = 3.41Sphamajor=41.7
aminor=41.7
avert=20.9

+ 8.96Sphamajor=1132.0
aminor=1486.4
avert=20.9

+ 14.7Sphamajor=29945.8
aminor=4558.7
avert=20.9

This scaled variogram is plotted along with the true experimental variogram

points and sill in Figure 4.3. The downscaled variogram is in good agreement

with the experimental variogram points in the horizontal direction, but devi-

ates from the vertical variogram slightly. The impact of this deviation will be

examined when downscaling the bitumen grades.
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Figure 4.3: Downscaled bitumen variograms at the 3 m scale. Known variogram
points at the 3 m scale are shown for comparison and evaluation of the downscaling
procedure.

4.2.2 Correlation scaling

As the correlation is the standardized cross covariance at a lag distance of 0,

applying the variogram scaling laws shows that the correlation must change

with scale (Oz and Deutsch, 2002). The variogram scaling laws are applied

where the covariance of interest is Ck,k′ instead of Ck. The covariance at lag

distance 0 is the sill of the scaled cross variogram. The correlation coefficient

of variable k to k′ at scale v2 is therefore:

ρk,k′(v2) =
C0

k,k′(v2) +
∑nst

i=1C
i
k,k′(v2)

σk(v2)σk′(v2)

Continuing with the oil sands deposit, the correlation between fines and bitu-

men is downscaled. The calculation of the cross variogram for downscaling is

problematic from a practical perspective; there are three composite fines mea-

surements within the 9 m large scale bitumen measurements being evaluated.

In addition to software limitations, there is the practical challenge of difficult

to model directions if variograms are calculated using the offset pairs directly.

This challenge is addressed by upscaling the fines measurements at the 3 m

scale to the 9 m scale, calculating the cross variogram and downscaling. The

upscaling procedure is exact and permits the calculation of variograms at the

scale of interest. Calculated and modeled cross variograms are shown in Figure
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4.4 at the 9 m scale.

γBit,Fines(h; 9m) = −17.0Sphamajor=299.3
aminor=299.3
avert=26.7

−33.0Sphamajor=2500.0
aminor=2173.0
avert=26.7

−26.6Sphamajor=40000.0
aminor=7425.1
avert=26.7
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Figure 4.4: Modeled cross bitumen-fines variograms at the 9 m scale.

Using the same variogram scaling laws, the cross bitumen-fines variograms

at 9 m may be downscaled (Figure 4.5). Note that in addition to the change

in variance contributions, the vertical ranges also change.

γBit,Fines(h; 3m) = −20.7Sphamajor=299.3
aminor=299.3
avert=20.7

−40.1Sphamajor=2500.0
aminor=2173.0
avert=20.7

−32.3Sphamajor=40000.0
aminor=7425.1
avert=20.7
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Figure 4.5: Downscaled cross bitumen-fines variograms at the 3 m scale.

The correlation coefficient is therefore calculated:

ρBit,Fines(9m) =
C0

Bit,Fines(9m) +
∑nst

i=1C
i
Bit,Fines(9m)

σBit(9m)σFines(9m)
= −0.842
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4.2.3 Univariate distribution scaling

Using the variance (sill) of the downscaled variogram, the histogram may be

downscaled. The three primary algorithms for histogram scaling are the affine

(linear) correction, indirect lognormal and discrete Gaussian model. Of these

algorithms, the discrete Gaussian model is the most flexible for a range of

distribution shapes. Under an isofactorial model with the assumption of sta-

tionarity, the discrete Gaussian model may be used to transform the histogram

from one scale to another (Chilès and Delfiner, 2009; Wackernagel, 2003). Pri-

marily, the diffusion model is adopted for the transform; however, the mosaic

and barycentric are alternatives (Machuca-Mory et al., 2008). Following the

derivation of Machuca-Mory et al., consider the normal score transformation

(Gaussian anamorphosis) of the variable to be downscaled at the original scale:

zk (ui; v1) = ϕ (yk (ui; v1) ; v1) = F (zk (ui; v1))
−1 ◦G (yk (ui; v1)) , i = 1, ..., nk

where y denotes the Gaussian transformed variable, G is the standard normal

distribution and F is the cumulative distribution function of the original vari-

able. The anamorphosis is fit with orthonomal Hermite polynomials H such

that:

H0(y) = 1, H1(y) = −y,Hq+1(y) = − y√
q + 1

Hp(y)−
√

q

q + 1
Hq−1(y)

ϕ(y; v1) =

Q→∞∑
q=0

ϕq(v1)Hq(y), ϕq(v1) = E {ϕ (Y (x; v1))Hq (Y (x))}

The new distribution is calculated under the assumption of either a diffusion,

mosaic or barycentric model. Typically for upscaling the diffusion model is

adopted. A limited number of Hermite polynomials is used such as Q = 100.

The diffusion model assumes a Gaussian process for the variable of interest

(Machuca-Mory et al., 2008). Under the diffusion model, the coefficients are

adjusted:

Diffusion model: ϕ(y; v2) =

Q∑
q=0

ϕq(v1)r
qHq(y), σ

2
k(v2) =

Q∑
q=0

ϕq(v1)
2r2q

where the constant r is the change of support coefficient solved using the

second term.
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Under a mosaic model, the variable is assumed to follow a dead leaves

model, (Bordenave et al., 2006; Machuca-Mory et al., 2008). That is, the

variable is composed of equal size domains which are sequentially placed in a

Poisson process. Under the mosaic model:

Mosaic model: ϕ(y; v2) =

Q∑
q=0

ϕq(v1)rHq(y), σ
2
k(v2) =

Q∑
q=0

ϕq(v1)
2r2

The barycentric model, used by Machuca-Mory et al. (2008), is a linear

combination of the mosaic and diffusion models. The ratio of the variogram

to the madogram (which is the expected value of squared absolute values) is

used to determine the linear weight assigned to each model.

Alternative models to the discrete Gaussian model for histogram scaling

include the affine (linear) and indirect lognormal corrections. The affine cor-

rection is unreasonable as the histogram shape does not change according to

central limit theorem. The indirect lognormal correction is the correct change

of shape model for a lognormal distribution, but requires iterative correction

to avoid biasing the mean in all other cases (Zagayevskiy and Deutsch, 2011).

For highly skewed variables which are approximately lognormal, the indirect

lognormal correction is reasonable.

As the discrete Gaussian model is flexible for many variogram shapes, it

is adopted in this thesis for most downscaling applications. The choice of a

diffusion, mosaic or barycentric model is required for the discrete Gaussian

model. The diffusion model is the most widely used for upscaling, and the

only model implemented in most software packages (commercial or academic).

When applied to downscaling histograms, the power q, which is the order of

the Hermite polynomial in the diffusion model, results in extreme numerical

instability where Q is large. This instability is observed when the mosaic and

diffusion models are used to downscale the bitumen histogram in the oilsands

example (Figure 4.6).

The large instability in the diffusion model results in a downscaled his-

togram which is not a licit cumulative distribution. This instability supports

the use of the mosaic model for downscaling. The instability is intuitively

understood when the weight (r) applied to higher order Hermite polynomials
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Figure 4.6: Downscaled bitumen histograms using the discrete Gaussian model
with the mosaic and diffusion models at the 3 m scale.

(i.e.: for q large) is greater than the weight applied to low order polynomials.

Furthermore, the relationships between the polynomials are complex which

magnifies small numerical errors when computing the coefficients.

The downscaled mosaic model histogram is close to the true histogram,

although is unbounded; bitumen grades below 0% have a non-zero probability

under the downscaled histogram. This requires adjusting the downscaled his-

togram to meet the constraints. One approach for this adjustment would be

to reset all negative grades to zero at the cost of a small bias in the resulting

relationship. However, for highly skewed variables near a constraint, such as

bitumen grade, an alternative correction could be applied.

As the bitumen grade is approximately lognormal, the indirect lognormal

correction may be applied as an alternative to the discrete Gaussian model

with the diffusion correction. The downscaled histogram is extremely close to

the true histogram, and does not require adjustment to account for negative

grades as the distribution is bounded by zero (Figure 4.7).

For downscaling an arbitrary distribution, the mosaic model is recom-

mended due to its numerical stability and flexibility. For skewed, bounded

distributions such as bitumen grade, the indirect lognormal correction may

be applied for downscaling. These corrections apply to scaling the univariate
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Figure 4.7: Downscaled bivariate probability distribution of fines and bitumen
grade at the 3 m scale with pairs of bitumen and fines grades (at the original 3 m
scale) plotted.

histogram, but no analogous corrections are available for bivariate and higher

order distribution.

4.2.4 Bivariate distribution scaling

Under an intrinsic assumption, scaling of the bivariate distribution is not ex-

plicitly required for downscaling a metallurgical variable of interest. Only

the univariate distribution must be downscaled in these cases. However, ap-

proaches such as the semiparametric Bayesian updating approach for nonlin-

ear inference proposed in chapter 3 require a complete model of the bivariate

distribution at the scale of interest. In these cases, scaling the bivariate dis-

tribution is required. Using the multivariate Gaussian distribution would be

inappropriate in these cases; the distributions are complex and often incor-

porate constraints such as non-negativity. Scaling the bivariate (or a higher

order) distribution is required in these cases.

Leuangthong et al. (2005) suggest an iterative approach to scale a mul-

tivariate distribution to exactly match the univariate distributions. The it-

erative procedure suggested by Leuangthong et al. is proposed in the con-

text of direct sequential simulation using a cokriging system for integrating

block data. In this thesis, this procedure for multivariate scaling is adapted
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for multivariate distribution scaling. Consider scaling a bivariate distribution

of variables k and k′ with a probability density function fk,k′(zk, zk′ ; v1) to

the downscaled distribution fk,k′(zk, zk′ ; v2). Using the univariate distribution

scaling approaches described earlier, or known measurements, the univariate

marginal distributions at scale v2 are known: fk(zk; v2) and fk′(zk′ ; v2). The

downscaling is iterative for steps p = 1, . . . , P which are carried out until the

marginals of the downscaled bivariate distribution f
(p)
k,k′(zk, zk′ ; v2) match the

known downscaled marginal distributions within a set tolerance. The iterative

procedure adapted from Leuangthong et al.:

1. The starting condition (p = 0) for the iterative procedure is to set the

downscaled bivariate distribution to the original distribution: f
(0)
k,k′(zk, zk′ ; v2) =

fk,k′(zk, zk′ ; v1)

2. For p = 1, . . . , P iterations, where P is determined by a tolerance on the

difference between the marginal distributions:

(a) Update the downscaled bivariate distribution using the product of

the ratios of the marginal distributions:

f
(p)
k,k′(zk, zk′ ; v2) = f

(p−1)
k,k′ (zk, zk′ ; v2)

∏K
k=1

fk(zk; v2)

fp−1
k (zk; v2)

(b) Compare the marginal distributions of the updated distribution for

tolerance: if fp
k (zk; v2)− fk(zk; v2) < tol ∀ K then finished

Using the downscaled bitumen grade distribution, and known small scale

fines distribution the bivariate distribution is downscaled. This is not required

for the intrinsic approach to downscaling proposed in this thesis, but would be

required for the nonlinear inference algorithm proposed in chapter 3. Consider

the univariate probability density functions for bitumen and fines (Figure 4.8)

at the 9 m and 3 m scale. The 3 m bitumen measurements have been down-

scaled with a lognormal distribution, and the fines measurements at 3 m are

considered known.

The bivariate distribution at the 9 m scale fit is with kernel density estima-

tion using a Gaussian kernel, and the previously described rules for bandwidth
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Figure 4.8: Downscaled bitumen histograms using the indirect lognormal correc-
tion at the 3 m scale.

selection. Values are calculated on a discrete grid at a 100x100 discretization.

The bivariate probability distribution at the 9 m scale is plotted in Figure 4.9.

Using the adapted procedure for multivariate distribution scaling, and the

target univariate histograms at 3 m, the bivariate distribution is downscaled to

the 3 m scale. This downscaled bivariate distribution is plotted in Figure 4.10.

Marginal distributions calculated from this downscaled bivariate distribution

exactly match the target distribution (Figure 4.11).

To check bivariate distribution at the small scale, the known 3 m scale

pairs of bitumen and fines grades are scatter plotted on to the bivariate den-

sity distribution in Figure 4.12. The points show good agreement with the

downscaled distribution.

The approach proposed by Leuangthong et al. (2005) and adapted here

for multivariate distribution scaling is severely limited by the curse of dimen-

sionality. This nonparameteric approach to distribution scaling requires dis-

cretizing the distributions, and even at a discretization level of 100 steps per

variable quickly becomes unmanageable. This is true for most nonparamet-
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Figure 4.9: Bivariate probability distribution of fines and bitumen grade at the
9 m scale fit with kernel density estimation using a Gaussian kernel.
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Figure 4.10: Downscaled bivariate probability distribution of fines and bitumen
grade at the 3 m scale.
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Figure 4.11: Marginal distributions calculated from the bivariate probability dis-
tribution of fines and bitumen grade which exactly match the targeted downscaled
univariate distributions.
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Figure 4.12: Downscaled bitumen histograms using the indirect lognormal correc-
tion at the 3 m scale.
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ric techniques including kernel density estimation which is used to infer the

multivariate distribution for discretization in the first step. This technique is

therefore only applicable for few dimensions due to the curse of dimensionality.

4.3 Multiscale direct intrinsic sequential simulation

Downscaling of statistical parameters including the variogram, correlations,

and univariate and bivariate distributions have been discussed with the goal

of downscaling metallurgical measurements. Downscaling of large scale met-

allurgical measurements is proposed as the vast majority of (geo)statistical

techniques require data at a common measurement scale in addition to re-

quirements for stationarity, and commonly linearity. Upscaling all measure-

ments to the largest data scale and modeling at a very large scale, such as

30 m blocks, is unreasonable when the scales of interest for mining equipment

selectivity and resource classification are on a smaller scale. Downscaling large

scale measurements to a smaller scale of interest would permit the usage of sta-

tistical techniques which require data at a common scale and high resolution

modeling.

Philosophically, the downscaling approach proposed here adopts the mul-

tiple realization paradigm using multiple imputation in which there is no sin-

gle true data set, but multiple data sets which have the correct statistical

properties. This naturally fits with the simulation approach for geostatistical

modeling in which multiple realizations of the deposit are constructed and ana-

lyzed. This downscaling procedure cannot be completed arbitrarily; as shown

with the statistical scaling of parameters and observed during compositing,

the properties will change with scale. Using the bitumen grade as an example,

it would be innappropriate to arbitrarily downscale a 9 m measurement of

bitumen grade of 9% to 3 m measurements of {9%,9%,9%} or {0%,9%,18%}

without a statistical basis. Furthermore, correlated fine scale measurements

could be used to improve the downscaling procedure.

With the statistical property scaling laws in mind, five required properties

of a downscaling algorithm are proposed. These properties are:

117



1. Realized data values should have the correct spatial structure. The vari-

ogram of small scale values should accurately reproduce the downscaled

variogram.

2. Realized data values should reproduce the correct small scale distribu-

tion. The histogram of downscaled values should accurately reproduce

the downscaled probability distribution.

3. When upscaled, realized data values should exactly reproduce the large

scale data. That is, the average of the small scale realized data values

should exactly equal the large scale data value.

4. Realized data values should satisfy hard constraints, such as non-negativity.

5. Realized data values should have the correct multivariate structure. Down-

scaled correlations should be reproduced by the realized data.

These requirements motivate the use of direct sequential simulation, which

by construction reproduces the variogram, is exact, may use multivariate data

and with the appropriate selection of local histograms reproduces the uni-

variate distribution. Using a Gaussian approach, such as sequential Gaussian

simulation, would correctly reproduce the spatial structure and univariate dis-

tribution, but simulated small values would not average exactly to the true

large scale values.

4.3.1 Direct sequential simulation

Direct sequential simulation is not typically used in geostatistical modeling.

The reason for this is primarily due to problems inferring the local histogram

which should be used to correctly reproduce the global histogram, and more

challenging integration of multivariate data compared to Gaussian techniques.

Compared to Gaussian algorithms, the primary advantage of direct sequential

simulation is exactitude when using block data in original units. This exacti-

tude is a property of correctly implemented sequential simulation (Gómez-Hernández

et al., 2005), however is predicated on the correct choice of a search neighbour-

hood. If a search neighbourhood is chosen incorrectly, and simulated values
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within the block data are excluded then exactness is not guaranteed. For

typical modeling applications, particularly in a mining context, this is not an

advantage as no block data are available. For the specific purpose of stochas-

tically downscaling data where large scale measurements are available, the use

of direct sequential simulation is supported. Here, two key areas of direct se-

quential simulation critical to its use as a downscaling technique are discussed:

exactitude of simulation and histogram reproduction.

4.3.2 Exactitude of simulation

As shown by Ren (2007), the direct kriging or direct sequential simulation of

discrete composite volumes within a large volume using the large scale value

will exactly reproduce the large value. For a detailed derivation, the inter-

ested reader is referred to Ren; however, as the exactitude of direct sequential

simulation is central to the downscaling proposal in this thesis, a small demon-

stration follows. Consider the direct sequential simulation of three values of

type k = p at locations {u1,u2,u3} with scale vc within a large scale composite

centered at u2 with scale vm. This situation is sketched in Figure 4.13.

Figure 4.13: Sketch of a large scale composite composed of three smaller volumes.

The requirement for exactitude is that the simulated values at scale vc

average exactly to the large scale value at vm, that is:

zp(u2; vm) =
1

3

3∑
i=1

z∗p(ui; vc) (4.1)

Consider that two of the three values, z∗p(u1; vc) and z∗p(u2; vc) have already

been simulated. Therefore, the requirement for exactitude may then be ex-
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pressed as:

z∗p(u3; vc) = 3zp(u2; vm)− z∗p(u1; vc)− z∗p(u2; vc) (4.2)

This requirement is fullfilled by direct sequential simulation. The linear system

of equations for the final location u3 are:

[C1,1(vc) + C1,2(vc) + C1,2(vc, vm)]λ1 = C1,3(vc)

[C2,1(vc) + C2,2(vc) + C2,2(vc, vm)]λ2 = C2,3(vc)

[C2,1(vm, vc) + C2,2(vm, vc) + C2,2(vm)]λ3 = C2,3(vm, vc)

(4.3)

where the average covariances are calculated:

Ci,2(vc, vm) = C2,i(vm, vc) =
1

3

3∑
α=1

Cα,i(vc)

C2,2(vm) =
1

9

3∑
α=1

3∑
β=1

Cα,β(vc)

(4.4)

Substituting Equation 4.4 into 4.3 and solving yields weights of λ1 = −1, λ2 =

−1, and λ3 = 3 which results in a simple kriging mean given by Equation 4.2,

and a simple kriging variance of zero. Therefore, direct sequential simulation

of the small scale values in this example is exact. This solution generalizes,

and does not require contiguous volumes, only that the subvolumes exactly

compose the large scale volume. Note also that the sequential aspect of this

simulation is central to this property. Simultaneous simulation approaches,

such as Fourier methods used in Gaussian simulation cannot be used with this

approach.

4.3.3 Histogram reproduction

The challenge of histogram reproduction with direct sequential simulation has

been researched extensively and a number of algorithms proposed (Caers, 2000;

Oz et al., 2003; Robertson et al., 2006; Soares, 2001). Caers proposed the tar-

getting of the global distribution by minimizing the deviation from the local

conditional probabilities. The objective function can take the form of an ab-

solute value (that is, L1 regularization) or squared differenced (L2 regulariza-

tion). In addition to the proposal of an optimization approach for targetting
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the global distribution, Caers emphasizes the requirement for consistency be-

tween the variogram and histogram. The example provided is that a variogram

which is hyper-continuous near the origin (such as the Gaussian variogram)

directly conflicts with a long-tailed histogram as isolated zones of high values

are not consistent.

Soares (2001) uses a local portion of the global distribution near to the

simple kriging estimate to establish the distribution. A Gaussian transforma-

tion to define the sampling intervals can be used with this approach; however,

bias correction is required as the Gaussian transform is nonlinear. The re-

lated proposal of Oz and Deutsch (2003) applies a Gaussian transform with

a lookup table. Shapes of the conditional distributions are established using

the global normal score transform to Gaussian values resulting in a table of

unique conditional distributions corresponding to discretized conditional mean

and variance values.

Robertson et al. (2006) compared the proposed histogram reproduction

algorithms of Caers (2000; L1 and L2 regularizers) and Oz (2003). In the case

study conducted, Robertson found little difference in the results, with similar

histogram and variogram reproduction across all correction algorithms. Using

a histogram reproduction correction is required for direct sequential simula-

tion; however, the choice of correction algorithm was not the most critical

aspect of the simulation approaches. In this thesis, the approach of Oz and

Deutsch (2003) is adopted as it is computationally efficient and simple to im-

plement numerically.

4.3.4 Theoretical development

Consider a large scale metallurgical variable of interest, Zp, such as a work

index, that we are interested in downscaling. The random variable is region-

alized as Zp(u; vm) within a deemed stationary domain. Measurements are

available at ui, i = 1, . . . , np. Regionalized secondary variables, such as metal

assays, are also available at a composite scale as Zk(u; vc), k = k′, . . . , K. The

goal is to downscale measurements of the variable of interest at the metallur-

gical sample scale vm to the composite scale vc conditional to the secondary
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values, that is, l = 1, . . . , L realizations are desired which satisfy the previously

described constraints:

{zlp(uj; vc)|zp(ui; vm), zk(uj; vc)}, i = 1, . . . , nk, j = 1, . . . , nk′ ,

k = k′, . . . , K, l = 1, . . . , L

Adopting the local conditional distribution lookup table approach of Oz et al.

(2003), the direct sequential simulation algorithm proposed in this thesis is

first summarized:

1. Calculate a set of local conditional distribution lookup tables using the

method of Oz et al. (2003)

2. For each downscaled data realization, l = 1, . . . , L:

(a) Queue the simulation locations using a random ordering, uj, j =

1, . . . , nk

(b) Visit the next location in the queue, usim

(c) Search for nearby data and previously simulated locations. These

are data events ej enumerated j = 1, . . . , nkrige

(d) Set up and solve the simple intrinsic cokriging system of equations

Cλ = R

(e) Calculate the standardized estimate and variance, y∗p and σ2
p

(f) Unstandardize the estimate and variance and lookup the correspond-

ing local conditional distribution shape

(g) Draw a simulated small scale value using Monte Carlo simulation

from the local conditional distribution, zsim

(h) If this value violates a hard boundary constraint, such as a negative

value, then reject the simulated values and add these locations back

into the simulation queue

(i) Standardize the simulated small scale value, ysim

(j) Move to the next location in the queue until we have reached the

end
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(k) Unstandardize all simulated values and move to the next data real-

ization

For the direct sequential simulation implementation in this thesis, all vari-

ables are standardized to have zero mean, and standard deviation of one at the

composite scale vc. Standardization is used to simplify setting up of the sim-

ple kriging equations within the program, but is not mathematically required.

The standardized variables, denoted here with y are:

yp(ui; vm) =
zp(ui; vm)−mp(vc)

σp(vc)
, i = 1, . . . , np

yk(uj; vc) =
zk(uj; vc)−mk(vc)

σk(vc)
, j = 1, . . . , nk′ , k = k′, . . . , K

Simple intrinsic cokriging is adopted as the multivariate model for down-

scaling. This does not require calculating and downscaling a full linear model

of coregionalization provided that the downscaled correlation matrix is positive

definite. The simple intrinsic cokriging equations are established considering

each datum and previously simulated value as a data event ej where each data

event has a data type k, support volume (vm or vc here), standardized value y

and location u. The simple intrinsic cokriging equations can then be expressed

as:

Cλ = R,C =

C̄(u1,u1) C̄(u1,u2) . . .
C̄(u2,u1) C̄(u2,u2) . . .

...
...

. . .

 , λ =

λ1

λ2
...

 ,R =

C̄(u1,usim)
C̄(u2,usim)

...


with estimation weights denoted by λ and where the standardized average

covariances between data events are calculated:

C̄(ui,uj) = ρ (ei, ej; vi, vj) (1− γ̄p (ui − uj; vi, vj))

γ̄p (ui − uj; vi, vj) =
1

ndisc(i)ndisc(j)

ndisc(i)∑
α=1

ndisc(j)∑
β=1

γp (uα − uβ; vc)

where ρ is the correlation coefficient between the two data event types which

has been previously inferred by downscaling of the cross variogram, and the

variogram used in the calculation of the average variogram is the standard-

ized, downscaled variogram for the variable of interest, Zp(u; vc). That is,

the variogram used is the small scale variogram, or a variogram at a smaller
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scale provided the average variogram values are calculated with an appropri-

ate discretization. The average variogram is calculated such that discretized

subvolumes of vc within vm are used. Therefore, if vm is a 15 m core length,

and vc is a 5 m core length, a discretization level of {i = 3, j = 1} would be

used in the calculation of the average variogram. The standardized estimate

mean and variance are calculated with the solved kriging weights:

y∗p (usim; vc) =

nkrige∑
j=1

λjyj

σ2
p (usim; vc) = 1−

nkrige∑
j=1

λjC̄(uj,usim)

As direct sequential simulation is used to exactly reproduce the large scale

data (Ren, 2007), the local conditional distribution given the estimated local

mean and variance is required. To establish the shape of the conditional dis-

tribution, the Gaussian transform lookup table approach of Oz et al. (2003) is

used. Any of the histogram corrections previously described could be applied,

but this approach was found to work well and be computationally efficient

even for large data sets, such as the oil sands test case. Once the correspond-

ing local distribution with the correct mean and variance are looked up, the

simulated value is drawn from the distribution.

4.3.5 Constraints and dynamic resimulation

Using this method with carefully discretized large scale data will result in re-

alizations of small scale values which average exactly to the large scale values

and have the correct covariance structure. Careful discretization is empha-

sized as the average covariances are numerically approximated, not evaluated

analytically. In the case of the oil sands example, in which the large 9 m sam-

ples are composed of three 3 m samples, the discretization of the 9 m should

exactly match the locations of the 3 m samples it is composed of for exactness

in the resulting simulations. If the discretization does not match exactly, then

data will not be exactly reproduced due to numerical errors in the calculation

of average covariances.
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As simulation progresses and a large composite sample is filled in with

simulated small scale samples, the kriging variance will decrease until the

last piece to be simulated has a kriging variance of zero. However, there is no

guarantee that the estimated mean or simulated value will satisfy any physical

constraints, such as the requirement for non-negativity. This is not acceptable

from a physical or practical standpoint, and setting the simulated value to

zero would result in data sets which when upscaled did not exactly reproduce

the large values introducing a bias.

The approach taken was to reject any set of simulated values which did not

meet imposed physical constraints and draw new values. The rejected set of

simulated values includes all realized values within the large scale sample which

is being downscaled; not just the negative value itself. During the execution

of the simulation algorithm, when imputing a volume results in a negative

simulated value all previously simulated values coming from the large scale

measurement are rejected and the locations pushed to the simulation queue.

This dynamic resimulation method is similar to rejection sampling for Monte

Carlo simulation from a distribution. This maintains the sequential nature

of the simulation algorithm, but requires slightly more computational time if

many values are rejected.

The ad hoc nature of the rejection sampling correction for downscaling is

reasonable as it results in distributions which satisfy the physical constraints

on the problem, and there is no usable method to determine the shape of a

joint conditional distribution without adopting a parametric (Gaussian in this

case) framework. The quantile transformation procedure used for Gaussian

simulation is nonlinear, and any back-transformed realizations are not required

to reproduce the input data on average. In practice, the issue of negative

simulated values is uncommon as the conditional variance of a distribution

near a constraint, such as zero for a positively constrained grade, is extremely

small even if the global distribution of the variable has a high variance due to

the proportional effect. This issue is most likely to occur if the histogram was

downscaled using an unreasonable change of support method. Furthermore,
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many metallurgical variables of interest, such as the Bond mill work index,

have distributions which are not near a constraint.

4.3.6 Implementation

The described downscaling procedure using direct sequential simulation with

intrinsic cokriging for downscaling was implemented for heterotopically sam-

pled values with arbitrary scales in a Fortran program datascale. The imple-

mentation is as previously described where standardized data values are ex-

pected for all variables. This implementation permits the usage of any number

of heterotopically sampled, multiscale variables. Every measurement, or data

event, is associated to a scale and variable type, so scales may also differ within

variable types. This flexibility means that no assumptions are made regarding

discretization so this must be explicitly inputted by the user.

The dynamic resimulation queue is capped at a finite number of steps,

after which values will be set to a constraint. In practice, if an appropriate

change of support model is used for the histogram then few resimulation steps

are required. If an inappropriate change of support correction is used, and

the conditional variance is high near a constraint, then numerous resimulation

steps will be required.

4.4 Demonstration of downscaling algorithm

As with statistical parameter downscaling, the downscaling algorithm is demon-

strated using the oil sands data for which the true values are known so the

results can be evaluated. The downscaling procedure was implemented us-

ing the program datascale with standardized fines (at 3 m), bitumen grade (at

9 m), the downscaled bitumen grade variogram, correlation coefficient and his-

togram using the indirect lognormal correction. The downscaled realizations

were evaluated against the previously described criteria.

The primary criterion established for downscaling is that the downscaled

values be exact. A downscaled realization of bitumen grade at 3 m was aver-

aged up to 9 m and plotted against the input 9 m grade (Figure 4.14). Using
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the direct sequential simulation approach, the large scale measurements are

exactly reproduced.
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Figure 4.14: Reproduction of large scale bitumen grades at 9 m used to condition
the downscaling. The large scale values are exactly reproduced.

Global histogram reproduction was evaluated considering both the true his-

togram at 3 m (which would typically be unknown) and the input downscaled

histogram (Figure 4.15). Histogram reproduction is very close to the true his-

togram, and the constraint for positivity is satisfied. The lowest simulated

bitumen grade is 0%.

Bivariate reproduction of the bitumen-fines relationship at the 3 m scale is

evaluated by plotting the realized pairs with the downscaled bivariate distribu-

tion (Figure 4.16). The realized values have a slightly lower correlation (-0.79)

compared to the true measurements (-0.84), but the simulated relationship is

reasonable.

Reproduction of the spatial variability is evaluated by comparing the true

experimental variogram points at 3 m (which would typically be unknown)

with variograms calculated on the downscaled values (Figure 4.17). Variogram

reproduction is nearly exact, likely due to the high degree of conditioning.

All criteria laid out for downscaling are satisfied using the proposed direct

sequential simulation with intrinsic cokriging approach. Realizations are exact,

have the correct multivariate structure, histogram and spatial variability. In
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Figure 4.15: Univariate histogram reproduction of the input indirect lognormal
scaled histogram at 3 m and the true histogram at 3 m. Histogram reproduction is
very close for the simulated realization.
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Figure 4.16: Downscaled bivariate distribution reproduction of the downscaled
values at 3 m. The realized values have a slightly larger scatter (and corresponding
lower correlation of 0.79) compared to the true bivariate distribution.

addition to these criteria, the effect of simulation order was investigated for this

highly skewed data set to evaluate the resimulation approach (Figure 4.18). A

slight bias in the final step of simulation, for which the kriging variance is zero,
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Figure 4.17: Downscaled variogram reproduction at the 3 m scale and experimen-
tal points from the true variogram.

is observed in the histograms. For the 3rd 3 m volume simulated within the

9 m volume, the probability of simulating a bitumen grade of 0% is very low.

As multiple realizations, each of which have a different simulation path, are

used for this stochastic approach this is unlikely to present a practical issue

with modeling, but should be considered for highly skewed variables which are

near a constraint, such as grade variables.
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Figure 4.18: Histograms of 3 m scale values simulated 1st, 2nd and 3rd within the
9 m composite. Histograms are very close, although the 3rd simulated value has a
lower chance to simulate a value very near to zero.
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4.5 Discussion of downscaling

The downscaling procedure proposed, direct sequential simulation with intrin-

sic cokriging with dynamic resimulation, has been demonstrated in an atypical

use case where the true small scale values are known. The resulting single-scale,

homotopically sampled stochastic data sets may be used in further modeling

operations such as intrinsic supersecondary colocated sequential Gaussian sim-

ulation, as will be demonstrated in the case study. Alternative frameworks for

multiscale data integration, and downscaling, have been proposed by a num-

ber of researchers. These techniques are briefly reviewed, however the focus of

this discussion is on the integration of downscaling into a simulation modeling

workflow discussed.

4.5.1 Requirement for downscaling for multiscale data

Multiscale data presents a challenge for geostatistical modeling; the majority

of modeling techniques have been developed for data at a consistent scale.

For modeling techniques which do not explicitly require data at a single scale,

available software is often limited to a single scale by design.

Using stochastic downsclaing, multiple non-unique realizations of the data

are generated. These multiple data realizations are at a single scale, and

suitable for a stochastic modeling workflow. However, as these realizations are

non-unique, they are not suitable for deterministic modeling such as a kriging

based estimation workflow.

4.5.2 Alternative algorithms for multiscale data

Multiscale data are very common in petroleum applications with the collection

of seismic, well test, micro-resistivity and other measurements. As a result

much of the research into multiscale data integration and downscaling has been

for these applications. In addition to the work of Oz (2003) and Ren (2007),

which forms the basis for the direct sequential simulation approach proposed

in this thesis, a selection of alternative multiscale modeling and downscaling

techniques are reviewed here.
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Pardo-Igúzquiza et al. (2006) applied cokriging for image sharpening of

remote sensing images. The approach requires modeling of a linear model of

coregionalization as no Markov or intrinsic assumption is made for the vari-

ograms. This approach is deterministic, so necessarily will not reproduce the

spatial structure and is not suitable for data downscaling for further modeling.

Similarly, Goovaerts (2010) proposed a block kriging formalism for integrating

multiscale data. This approach, also deterministic, is appropriate for estima-

tion with multiscale data but not suitable for stochastic downscaling.

Jha et al. (2013) applied multiple point statistics using the direct sampling

approach for downscaling climate models. This approach is very powerful

making no assumptions of linearity or Gaussianity, but has the very strong

requirement of a training image. As it is very unlikely that a geologically

realistic training image is available for metallurgical properties, this approach

has limited applicability for downscaling metallurgical measurements. Allard

and Bourotte (2014) proposed a stochastic approach for disaggregating rainfall

measurements. The sequential simulation method proposed is powerful if an

empirical model of the generating process is available for fitting; however, this

is unlikely to be available for metallurgical measurements.

Tran et al. (1999) combined block kriging and Bayesian updating for down-

scaling coarse block models of permeability to high resolution models. This is

an efficient approach for a single variable of interest, but not straight forward to

apply with multivariate data where the multiscale multivariate distributions,

or an assumption of independence, is required to formulate the conditional

distributions. Of the reviewed multiscale data integration approaches, this

approach is the strongest alternative for downscaling large scale metallurgical

measurements. Given a sufficient multivariate model for secondary measure-

ments, this could be used as an alternative to the direct sequential simulation

approach proposed.

4.5.3 Integration into a classical simulation workflow

The small demonstrative case study presented considered the downscaling of

bitumen grades from a larger 9 m scale to the original 3 m scale that the data
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were collected on. This is not a typical use case for the downscaling approach,

but valuable as it permits the evaluation of the downscaling algorithm where

the statistics of the true small scale values are known. Variogram and his-

togram reproduction at the small scale using this approach are reasonable.

Due to the use of the resimulation step in the downscaling algorithm, no nega-

tive grades were simulated and simulated values average exactly to the original

large scale values.

Using simple intrinsic cokriging, direct sequential simulation may be used to

construct multiple downscaled realizations of the data suitable for integration

into a traditional geostatistical simulation workflow. In a classical simulation

workflow, multiple realizations of a model are built using a single data set.

These realizations are then jointly processed for uncertainty assessment. Mul-

tivariate techniques such as sequential Gaussian simulation using colocated

cokriging or intrinsic supersecondary cokriging require data to be at a consis-

tent scale. Using the downscaling approach proposed in this thesis, multiple

stochastic realizations of the data would be constructed. The placement of di-

rect sequential simulation within a simulation workflow is highlighted in Figure

4.19.

As shown by the flow chart, integrating large scale metallurgical proper-

ties into a geostatistical workflow requires substantially more modeling effort;

the variogram, histogram and correlation coefficients must be downscaled be-

fore imputing multiple data sets. The potential value for this effort is large.

Realizations of metallurgical variables such as mill throughput at the scale

of interest provide the information to quantify uncertainty in metallurgical

properties as a function of grade.

In addition to the use of this downscaling technique for large scale metallur-

gical properties, other applications are possible. The use of a direct sequential

simulation with intrinsic cokriging and dynamic resimulation is generally ap-

plicable to downscaling properties with the requirements discussed here. For

data which are not vertically composited, as drill hole typically data are, ad-

ditional care is required to correctly discretize the data and ensure that search

neighbourhood includes all relevant data (Gómez-Hernández et al., 2005).
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Figure 4.19: Integration of the downscaling workflow into a traditional geostatis-
tical simulation workflow.
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Chapter 5

Challenges for the spatial
modeling of metallurgical
properties

Challenges related to nonlinearity and multiple data scales for geometallurgical

modeling have been addressed in chapters 3 and 4 of this thesis. The focus has

been on the development of novel techniques and creative application of exist-

ing methodologies for the modeling of nonlinear variables and the downscaling

of large scale metallurgical samples. In this chapter, the focus is not on the

development of new techniques to address specific geometallurgical modeling

challenges, but instead on the synthesis of existing spatial modeling methods

into a cohesive workflow for geometallurgical modeling which is practical for

engineering usage.

In addition to the selection and application of workflow techniques, a num-

ber of practical challenges for geometallurgical modeling including the infer-

ence and management of uncertainty in statistical parameters, the use of hi-

erarchical transformation workflows, and the application of geometallurgical

models for decision making are addressed.

5.1 Workflow selection

All geometallurgical modeling workflows are driven by specific study require-

ments, but there are common study goals and approaches. The quantification

of uncertainty, decision of data collection rates, and optimal sequencing are
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all common study goals. In these cases, many variables including grades, and

metallurgical and geotechnical properties are often of interest driving the use

of a multivariate workflow. Complex relationships, the previously discussed is-

sues of nonlinearity and multiple scales, and a range of geologic conditions pose

modeling challenges which require special care. Given the range of conditions

encountered, there have been a number of approaches taken for high-resolution

modeling of geometallurgical properties.

5.1.1 Literature proposed approaches

Powell (2013) emphasizes the requirement for high-fidelity models for pro-

cess optimization on geometallurgical properties. Smoothly estimated kriged

models are insufficient for optimizing mineral processing operations for a het-

erogeneous orebody. A model with too-low variability will understate the local

variation in properties which should be considered in the design and opera-

tion of the mine and mill. In addition to estimates with too-low variability,

kriging may introduce a bias for variables that do not average linearly, such

as metallurgical properties (Coward et al., 2009; Lozano and Bennett, 2003).

Kriging techniques classified as nonlinear methods including lognormal krig-

ing, disjunctive kriging and indicator kriging were investigated by Moyeed and

Papritz (2002) and found to perform relatively poorly for the estimation of

skewed variables.

Numerous authors including Carrasco et al. (2008), Newton and Graham

(2011), van den Boogaart et al. (2013), Boisvert et al. (2013) and others

have proposed geostatistical simulation for modeling metallurgical properties

as no requirement is placed on linear averaging. Simulation approaches also

correctly model the joint uncertainty between variables at the cost of increased

computational time compared to typical estimation algorithms such as ordi-

nary kriging or multigaussian kriging. In the Olympic Dam expansion study

by Boisvert et al. (2013), principal component analysis was used to generate

uncorrelated variables which were simulated over the domain using sequential

Gaussian simulation with a subsequent regression fit to predict plant perfor-

mance. Redundant and unrelated variables were first eliminated to avoid over
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fitting. A two stage regression model for predicting plant performance was

used in which the variables were merged into supersecondary variables and

then a linear regression model used to predict plant performance.

A number of researchers have proposed the establishment of geometal-

lurgical domains within which metallurgical properties are estimated using a

separate transfer function (Everett and Howard, 2011; Keeney and Walters,

2011; Newton and Graham, 2011). Domains are established on geological and

metallurgical information, and the expected time during a mine’s life when the

rock will be mined. Within these domains variables are estimated or simulated

using classical statistical and geostatistical algorithms such as multivariate re-

gression and Gaussian simulation.

Modeling approaches advocated and used in this thesis are in the domain

of stochastic simulation (discussed in chapter 2). These are the only methods

which can correctly model the joint multivariate uncertainty in the rock prop-

erties of interest. The decision of model purpose and study aims will dictate

the selection of variables to model, the domains to model and the required

resolution of the model. Increased understanding of the spatial variability of

metallurgical properties will lead to better decisions for mine planning and

mill operation. This motivates high-resolution models of all relevant metal-

lurgical properties, in addition to the grades and geomechanical properties re-

quired for mine planning. Optimization strategies, such as the optimization of

production planning (Dimitrakopoulos and Jewbali, 2013), to maximize mill

throughput and grades recovered require high-resolution models of multiple

relevant variables including grades and metallurgical properties to accurately

model the interactions among the numerous variables.

5.1.2 Domain definition and categorical variable modeling

All statistical techniques discussed in this thesis require a decision of sta-

tionarity. This decision of stationarity is typically applied to data within a

geologically homogeneous domain. In the context of spatial modeling, station-

arity is the decision of “geological homogeneity” for a rock unit (McLennan,

2007). Rock units are typically geologic, such as the selection of highly al-
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tered porphyry quartz as a domain, and host granodiorite as a second domain.

This decision permits the calculation of statistical values, such as histograms

and variograms, and the spatial modeling of rock properties. The decision

of stationarity requires balancing the number of domains with a mineral de-

posit’s inherent geologic complexity. Modeling too few domains unacceptably

pools differing rock types together, while too many domains is unreasonable

for modeling where statistics and domain boundaries must be inferred (McLen-

nan, 2007). The decision of the number, and type, of domains is subjective

and requires geological and statistical input. The selection and modeling of

stationary domains is discussed further in the case study in chapter 6.

Once rock units have been selected as stationary domains, domains must

be spatially modeled and boundaries defined. Techniques for domain bound-

ary modeling may be broadly classified as deterministic, such as manual and

implicit modeling techniques, or stochastic such as indicator simulation and

multiple point statistics. The choice of a deterministic or stochastic technique

is driven both by how well defined the geologic structure is, and the extent

to which a rock type impacts the resulting model. In petroleum applications

where the distribution of highly impermeable rock units is typically the most

important, and the distribution of permeabilities within these rock units sec-

ondary, stochastic approaches are frequently used. For mining applications

where the distribution of grades and metallurgical properties is of upmost

importance, deterministic approaches are commonly used.

Both approaches require the scale of the categorical variable of interest

(such as rock type) to be at the modeling scale. Measurements of categorical

variables are typically on a fine resolution as logged by the site geologist. Up-

scaling a categorical variable forms large compositional variables (Pawlowsky-

Glahn and Olea, 2004) which cannot be modeled with standard categorical

modeling techniques. Current practice in geostatistical modeling is to select

the majority category as representative for the upscaled variable. This practice

is adopted here, but could constitute an area for future work.

Using the categorical variables upscaled to the scale of interest, the choice

of a stochastic or deterministic categorical variable modeling method is re-
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quired. As with the choice of continuous variable modeling techniques, this

choice is driven by the geology of the deposit and study goals. For a deposit

with high frequency categorical variable changes where the properties of inter-

est are strongly a function of the rock type, such as for a petroleum reservoir,

then a stochastic technique is used. In many mining applications where the

properties of interest are not driven purely by the rock type and particularly

for large-scale massive deposits such as porphyry deposits, deterministic tech-

niques are preferred. Widely used stochastic and deterministic categorical

variable modeling techniques are briefly reviewed here, as they are a key part

in all modeling workflows.

Deterministic techniques include manual definition, indicator kriging (Jour-

nel and Huijbregts, 1978), signed distance functions (Deutsch and Wilde, 2013;

Silva and Deutsch, 2013) and boundary methods (McLennan, 2007; Pawlowsky

et al., 1993; Srivastava, 2005). Manual definition of rock types is typically car-

ried out by geologists who use expert judgement and available drilling data

to manually define a 3D wireframe. Indicator kriging adopts the kriging for-

malism for binary-recoded categorical variables. This permits the usage of

different variograms for each category. Signed distance functions calculate the

signed distance of a location to each category, and are then modeled using in-

verse distance or kriging based techniques. Boundary methods, which model

the boundary rather than the rock mass itself may be mixed with any of the

previously discussed techniques, and may even be used in stochastic modeling

if each boundary is allowed to flex.

Stochastic techniques for categorical variable modeling include sequential

indicator simulation (Alabert, 1987; Deutsch, 2006; Journel and Isaaks, 1984),

truncated Gaussian and plurigaussian simulation (Armstrong et al., 2011; Galli

et al., 1994; Matheron et al., 1987) and multiple point statistics (Guardiano

and Srivastava, 1993; Mariethoz and Caers, 2014; Strebelle, 2002). Sequential

indicator simulation adopts the sequential simulation algorithm with indicator

kriging as the internal estimator. Unlike sequential Gaussian simulation, which

is the recursive decomposition of the multivariate Gaussian distribution, there

is no statistical formalism for the choice of sequential indicator simulation,
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but it has been demonstrated to work well and allows the easy incorpora-

tion of secondary variables and trends. Truncated Gaussian and plurigaussian

techniques recode the categorical variable as a continuous variable permitting

the usage of any of the continuous stochastic techniques, such as sequential

Gaussian simulation. These techniques have been demonstrated to work par-

ticularly well for naturally ordered categorical variables, such as a set of facies

consisting of sand, shaly-sand, and shale. Multiple point statistics, which may

also be used for continuous variables, use a training image with the correct

spatial distribution of categories for simulation with the application of Baye’s

law.

As discussed, the choice of either a deterministic or stochastic technique

is driven by the geology and study goals. Within either the deterministic

or stochastic classes, the specific method for categorical variable modeling

is selected on the basis of the strengths and weaknesses of each approach.

In chapter 6, the modeling of a copper-porphyry deposit including technique

selection is discussed as an example of these choices. Within the modeled

domains, continuous variables in this thesis are modeled stochastically after a

set of multivariate transformations.

5.2 Sequential multivariate transformations

Adopting the stochastic simulation approach for geometallurgical spatial mod-

eling of continuous variables, there are still a large number of methodology

decisions to be made. Consider constructing a spatial geometallurgical model

given heterotopic, multiscale, nonlinear, correlated multivariate data. Addi-

tional constraints on the final spatial model, such as positivity and compo-

sitional constraints complicate the choice of methodology. In order to meet

model requirements using stochastic simulation, and maximize usage of the

data, there are two evident modeling approaches. The first approach is to

explicitly enforce all required constraints in the construction of the model.

The second approach is to construct the model without explicitly enforcing

constraints, and check the resulting model to see if it has the required proper-
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ties. In this thesis, the first approach is the primary approach adopted where

required constraints are explicitly built into the modeling approach.

The generalized stochastic simulation workflow for explicitly enforcing model

constraints is shown in Figure 5.1. Consistent with the rest of this thesis, these

steps follow domain definition and the decision of stationarity and are therefore

applied separately for each domain. The proposed workflow may be viewed

as a data transformation workflow, for which the goal is to generate multiple

homotopic, single-scale, univariate Gaussian data which are either correlated,

or decorrelated. Of the multiple transformation steps shown in Figure 5.1,

only a number of these steps may be required for the deposit of interest and

study goals.

The first data transformation step is the application of compositional trans-

forms (Aitchison, 1982; Pawlowsky-Glahn and Olea, 2004). Compositional

variables are typically linear variables in which the sum of the variables must

equal a constraint. These types of variables are typically whole rock analyses

where the sum of all measured components must equal 100% for a sample.

Consider K compositional variables. The multivariate scatterplot of the data

must lie on the hyperplane for which the sum is 100%, and therefore only have

K − 1 degrees of freedom, so the data can be transformed to K − 1 variables.

There are a number of additional practical considerations which have been dis-

cussed by Pawlowsky-Glahn and Olea (2004); the interested reader is referred

for additional information.

As described in chapter 3, nonlinear variables may be transformed through

the use of a linearizing transform such as a power law model for modeling.

The nonlinear transform requires a model of the nonlinearity, so may require

additional experimental measurements or a highly correlated component mea-

surement for usage. If nonlinearity may not be inferred due to limited ex-

perimental information, then linearity is commonly assumed and all averaging

is deferred as late into the modeling process as possible following stochastic

simulation which makes no averaging assumption.

After linearizing, large scale metallurgical measurements may be down-

scaled to a consistent modeling scale such as a bench or half-bench scale as
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Heterotopic, multiscale, nonlinear,
correlated multivariate data

Compositional transform

Nonlinear transform

Downscaling

Univariate normal
score transform

Missing data imputation

Multiple homotopic, single-scale,
univariate Gaussian, correlated

multivariate data

Multivariate decorrelation
transform

Correlated multivariate
simulation workflow

Spatial decorrelation
transform

Multiple homotopic, single-scale,
multivariate Gaussian, decorrelated

multivariate data

Independent multivariate
simulation workflow

Reverse transformations

Model application

Figure 5.1: Generalized data transformation workflow for the spatial modeling of
heterotopic, multiscale, nonlinear, correlated multivariate data.
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described in chapter 4. After the application of compositional and nonlin-

ear transforms, and downscaling of large scale measurements, the transformed

data are heterotopic, single-scale, linear, correlated multivariate data. As

downscaling is non-unique, the data are also multiple with L different data sets.

For the application of Gaussian techniques, including missing data imputation

and Gaussian simulation, the data are univariate normal score transformed.

Missing data are imputed using either a parametric or non-parametric im-

putation strategy (Barnett and Deutsch, 2015). As with the downscaling pro-

cedure, imputed values are non-unique and there are L distinct data sets. After

data imputation, the multiple data sets are homotopic, single-scale, linear, cor-

related multivariate data. Under an assumption of multivariate Gaussianity,

correlated multivariate techniques such as colocated cosimulation or super-

secondary colocated cosimulation may be applied to construct L realizations,

where each realization uses a distinct data set.

If the assumption of multivariate Gaussianity is unreasonable due to multi-

variate constraints, nonlinear features and heteroscedasticity, then a decorre-

lation transform may be applied. Decorrelation transforms, including the pro-

jection pursuit multivariate transform (Barnett et al., 2014b) and the stepwise

conditional transform (Leuangthong and Deutsch, 2003) transform the com-

plex, correlated multivariate data to multivariate Gaussian data which are

decorrelated for h = 0. With the addition of a spatial decorrelation trans-

form, such as minimum/maximum autocorrelation factors (Larsen, 2002), the

data are additionally decorrelated for h = ∆, where ∆ is chosen as a lag of

interest. Using the decorrelation approach, univariate simulation approaches

such as sequential Gaussian simulation may be applied independently for each

transformed variable to construct L realizations.

After L spatial models are constructed of the transformed variables, each

transformation including decorrelation, normal score, nonlinear and compo-

sitional transforms are inverted in reverse order. The resulting models may

be checked and verified, which will be discussed in greater detail in the case

study, and the models used for the study goals.
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5.3 Parameter inference and uncertainty

Geostatistical modeling parameters such as univariate histograms, multivariate

correlation matrices and spatial covariance functions are inferred on limited

spatially correlated data. As the spatial correlation of data is uncertain, the

inference of reasonable parameter uncertainty is challenging.

5.3.1 Variogram uncertainty

The variogram is a central parameter for many geostatistical workflows. Var-

iogram models must be fit to experimental variograms to ensure positive defi-

niteness of calculated covariance matrices and permit calculation at distances

with no experimental data. There is substantial uncertainty in the modeled

variogram as it is fit to limited experimental data. The uncertainty in this

model should be addressed. A number of methods for determining this uncer-

tainty have been proposed over the years, but these methods are rarely applied

and information on variogram uncertainty is not used in the modeling process.

The majority of proposed approaches for the calculation of variogram un-

certainty are similar. Pardo-Igúzquiza and Dowd (2001) calculated the variance-

covariance matrix of the experimental variogram using fourth-order moments.

These moments were used to determine the variance-covariance matrix of the

modeled variogram parameters using generalized least squares with the as-

sumption that the variogram parameters were normally distributed. Marchant

and Lark (2004) also documented the determination of the variance-covariance

matrix of variogram model parameter estimates and iterative estimation of the

variogram model parameters using the fourth order moment approach.

Ortiz and Deutsch (2002) calculated the fourth-order moments of the ex-

perimental variograms to determine the variance of each experimental point.

Under a multivariate Gaussian assumption the uncertainty in each variogram

point is known. The validity of this approach was demonstrated considering

a local simulation and global simulation approach. This approach results in

the uncertainty in each variogram point, but not a joint uncertainty in the
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modeled variogram. The selection of extreme cases which honour this point

uncertainty was proposed.

Koushavand et al. (2008) used the fourth-order moments with the as-

sumption that each lag parameter was gamma-distributed to model variogram

uncertainty. A global simulation approach using LU simulation to generate

unconditional simulations of experimental variograms was also used. These

methods produced comparable results when tested in a small case study.

These approaches result in theoretically correct distributions for the uncer-

tainty in variogram model parameters under a multivariate normal distribution

assumption. The assumption of multivariate normality, uniquitous in much of

geostatistics, may be appropriate for variogram uncertainty determination in

specific cases, but is unlikely to be for parameters near constraints. If a var-

iogram shape is assumed, the information matrix on the variogram model

parameters calculated from the fourth order moments fully parameterizes the

joint distribution of the model parameters if the distribution is multivariate

normal. Unfortunately, inferring the information matrix is numerically unsta-

ble in the common case of very limited experimental data in a 3D deposit.

Constraints imposed on the variogram parameters, such as the requirement

for positive structure ranges and contributions further complicate the problem

and render the multivariate normal error assumption for parameters invalid in

practical cases.

There are a number of theoretical and implementation challenges for the

application of the information matrix approach in a realistic 3D setting with

few data. Variogram ranges and structure contributions are constrained to be

positive, and the structure contributions have a sum constraint. For parame-

ters such as the nugget effect which may be very close to zero, the multivariate

normal approximation for uncertainty becomes intractable. This problem is

exacerbated when the parameter uncertainty is very high due to limited cal-

culation points and many parameters.

There is also substantial numerical instability in both estimating and in-

verting the Jacobian matrix. The partial derivatives range from zero for mod-

ifying the range on a direction perpendicular to the experimental lag to very

144



large values for the structure contributions. Fixing the variogram model angles

at a slight offset to the experimental directions reduces the problem slightly,

but not enough to allow stable estimation of the Jacobian in cases tested. For

these reasons, the simulation approaches to variogram uncertainty of Ortiz

and Deutsch (2002) and Koushavand et al. (2008) are recommended. These

approaches consider the joint uncertainty in experimental lags and will always

result in positive, licit variogram values.

5.3.2 Mean uncertainty

Uncertainty in the probability distribution of a variable, particularly in the

distribution of the mean, is an important parameter in a geostatistical work-

flow. This applies for grade variables as well as metallurgical variables, such

as grinding indices where a higher than expected average power requirement

will lead to poor plant performance and throughput. Many techniques have

been developed and applied for the incorporation of mean (and distribution)

uncertainty in geostatistical workflows including the bootstrap, conditional

finite-domain and global kriging.

The bootstrap, and more generally from a spatial modeling perspective, the

spatial bootstrap (Deutsch, 2004; Efron, 1979; Pyrcz et al., 2006) are statistical

resampling techniques which can be used to resample a distribution for mean

uncertainty. By resampling the distribution of a variable within a stationary

domain, multiple possible realizations of the histogram and mean may be

constructed. The spatial bootstrap is widely used for mean uncertainty due to

its robustness and ease of implementation, but does not account for domain

extents in the quantification of uncertainty.

The conditional finite-domain (Babak and Deutsch, 2009a) is an alterna-

tive to the bootstrap for quantifying mean uncertainty. By simulating under

rotations and translations of the sampling configuration within a stationary

domain, multiple realizations of the mean may be generated. The conditional

finite-domain approach is not as widely used as the spatial bootstrap due to

complexity of implementation and the requirement for many sampling config-

urations for stable results.

145



Global kriging my also be used to quantify uncertainty in the mean (Deutsch

and Deutsch, 2010). Under the strong assumption of stationarity, the kriging

system is solved using the average covariance of the sampled data locations

to the entire stationary domain. The average covariance is typically inferred

using Monte Carlo integration due to complex domain shapes. Global krig-

ing effectively accounts for data conditioning to the domain, but does not

incorporate the shape of the distribution for assessment of uncertainty.

The bootstrap, conditional finite-domain and global kriging approaches

may be used to quantify uncertainty, but there is still the requirement to

enforce the calculated mean uncertainty on simulated realizations. Relying

on ergodic fluctuations from simulation is an unreliable method for enforcing

mean uncertainty. The two primary options for integrating mean uncertainty

are post processing (Journel and Xu, 1994), or transforming pre-simulation

subject to the sampled distribution (Barnett et al., 2014a).

Post-processing matches quantiles from the simulated realizations with the

expected distribution from one of the three techniques described using a proce-

dure analogous to the normal score transform. This guarantees that the final

distributions exactly match the calculated mean uncertainty, but artificially

alters covariances between simulated locations. In the pre-simulation approach

data are normal score transformed using different uncertain distributions for

each realization. This does not modify covariances between simulated loca-

tions, but does not guarantee that realizations will reproduce the input mean

uncertainty. The decision of mean uncertainty quantification method, and

method for targetting the mean uncertainty will depend on the specific study

goals.

5.4 Large scale uncertainty inference

The emphasis in this thesis has been on methodologies for spatial modeling

with metallurgical variables and the selection of these methodologies. Rel-

atively little discussion has been given to applications of the spatial model

constructed. In this section, the very common engineering application of the

146



Figure 5.2: Sketch of global uncertainty and the probability to be within a per-
centage of the mean as a function of the number of data collected. Adapted from
Khan et al. (2014).

spatial models for large scale uncertainty inference is discussed. Large scale

uncertainty inference is the quantification of uncertainty on a scale much larger

than typical models constructed on a selective mining unit basis.

Models of large scale uncertainty are typically used in the decision of drilling

and sample collection requirements in the early stages of mineral deposit as-

sessment. Of interest is uncertainty in key parameters, such as global resource

tonnage or the probability to be within a specified percentage of the mean.

These metrics are useful in the decision of an acceptable number of data to

collect. The goal is a quantitative measurement of these uncertainties as a

function of data collection (Figure 5.2).

Consider the typical sequence of events in the exploration and assessment

of a mineral deposit. Initially, few data are available and the deposit is primar-

ily modeled conceptually based on geologic knowledge and limited sampling.

Quantitative assessment of uncertainty using geostatistical methods is imprac-

tical at this stage as there are too few data to quantify the spatial distribution

or statistical distributions of measurements. A weights of evidence approach

may be applied at this very early stage (Agterberg and Bonham-Carter, 1990;

Agterberg et al., 1990; Cheng, 2015).

As more samples are collected, uncertainty in key large scale parameters

may be quantified. This is commonly accomplished using a resimulation ap-
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proach (Khan et al., 2014). Collecting more data yields diminishing returns

for global resource assessment, and is primarily of interest for local uncertainty

quantification and the delineation of ore/waste boundaries.

5.4.1 Measurement of data spacing

Many decisions on the number of data to collect are based on an average drill

hole spacing, not the total number of drill holes. Drill hole spacing is typically

defined to be the distance between neighbouring drill holes if drilling is on a

rectangular grid. Practically, drilling is rarely on a rectangular grid as the

goal is to delineate ore/waste boundaries and maximize drill rig utility, not

collect a statistically representative sample. In order to compare the existing

drill spacing with potential scenarios for drill spacing, measurements of data

spacing are required.

In two dimensions, such as cases where vertical drilling is employed over

an area, data spacing may be evaluated by calculating the equivalent spacing

given a circle containing a constant number of data, N (Wilde, 2010).

Data Spacing =

√
π(rN + rN+1)

2N

This is schematically shown in Figure 5.3. Using N data, where N is typically

10-20 samples, the average radius of circles just containing the N and N + 1

nearest data to the location for which the data spacing is being calculated are

used. If this process is repeated for every cell in a map over a 2D area with

a set of samples (Figure 5.4), the result is a map of the data spacing (Figure

5.5).

In three dimensions, the logical extension is from a circle to disc or sphere.

Using the equivalent radius method with a constant number of samples with

either of these shapes yields sub-optimal results. An alternative approach was

developed for quantification of data spacing in 3D. Consider generating a set

of synthetic drill holes perpendicular to the plane of major continuitity (Figure

5.6a), a common approach to drilling a mineral deposit. These synthetic drill

holes are on a rectangular grid with drill hole spacing x. These drill holes are

intersected with an ellipsoid as shown in Figure 5.6b. The length of drilling
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Figure 5.3: Sketch of constant number of data method for data spacing calculation
in 2D. Circles with radii equal to the distance to the Nth nearest data, and N +1th
nearest data are calculated and used in the data spacing calculation.

Figure 5.4: Synthetic data locations used to demonstrate data spacing calculation
in 2D.

intersecting the ellipsoid is calculated for many drill hole spacings, and many

offsets relative to the ellipsoid. The drill hole spacing, or data spacing, may

then be plotted as a function of the drill hole length intersecting the ellipsoid

(Figure 5.6c). For a location of interest in the deposit, the drill hole or data

spacing may be calculated by using the same ellipsoid and calculating the

length of drilling within the ellipsoid.

5.4.2 Workflow for uncertainty assessment

Using knowledge of the current data spacing and uncertainty (quantified through

simulation), alternative data spacings may be evaluated. A general workflow

for uncertainty assessment is the resimulation workflow (Boucher et al., 2005;
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Figure 5.5: Results of the data spacing calculation for the synthetic case shown in
Figure 5.4.

Figure 5.6: Data spacing calculation in 3D. Multiple synthetic drilling configura-
tions are used to construct a plot of the equivalent data spacing as a function of the
data length found within an ellipsoid oriented along the major plane of drilling.
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Check simulated realizations
and process for value of interest
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realization using a
sampling scenario
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with parameter uncertainty

Process all resimulated realizations
for uncertainty in the value of interest
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sampling scenarios

Summarize by plotting uncertainty
as a function of data spacing

Figure 5.7: Resimulation workflow for calculating uncertainty as a function of data
spacing.

Deutsch et al., 1999; Wilde, 2010; Wilde and Deutsch, 2013), which is sum-

marized in Figure 5.7. The basis for the resimulation workflow is to calculate

the variability associated with realizations of the domain of interest given un-

certain parameters and variable drill spacings.

The assessment of uncertainty relies on knowing the “true” distribution of

values. As the truth is unknown, a synthetic true distribution is generated to
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have the correct spatial distribution of values conditional to currently available

data. The P50 (median) realization is typically selected as a base case for

the resampling procedure, but any realization (or a set of realizations) could

alternatively be chosen. The basis for the selection of the P50 realization

is that it is a moderate realization, not that it is more theoretically correct

relative to other realizations.

The selected realization is synthetically sampled for a number of drill spac-

ings, similar to the approach for 3D data spacing calculation, and the sim-

ulation procedure repeated. The result is uncertainty as a function of data

spacing (Figure 5.2). Many factors influence the relationship between data

spacing and uncertainty. Decreasing the data spacing (increasing the num-

ber of data collected) will decrease uncertainty. An increased range of spatial

correlation (variogram range) will typically increase large scale uncertainty,

but decrease local uncertainty. An increased domain size relative to the same

sampling pattern will typically increase uncertainty.

The quantification of uncertainty as a function of data spacing has been

discussed as an example application of high resolution spatial geometallurgical

models. There are many other applications which are not discussed in detail

here including simulated mining, resource/reserve definition and optimizing

blending strategies. Models for these applications can effectively be built using

the data transformation workflow presented (Figure 5.1). In the following

chapter, a multivariate spatial model is built for a large copper-molybdenum

porphyry deposit and simulated mining presented as an example application.

5.5 Discussion

This chapter has focused on the integration of spatial modeling workflows

for a consistent multivariate modeling approach and the application of these

workflows for value generation in a mine. The classical example of the quan-

tification of uncertainty as a function of data collection or drill hole spacing

was used as an example application of the techniques presented here. These

models of uncertainty may be directly used to make decisions about the re-
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quirement for additional data collection or the possibility to scale back on the

amount of data collected to save substantial amounts on drilling costs. Mak-

ing this decision requires a model which accurately quantifies the uncertainty;

the simulation based workflows presented here may be used to generate these

models.

Additional value generating applications of these models are possible, and

are discussed further in chapter 6. A key application of high resolution spatial

models of metallurgical properties is the evaluation of the potential variation

in properties using a mine plan. Using the proposed mine plan, the daily

variability in feed to the mill may be calculated and uncertainty quantified

leading to better mill operation strategies. The mine plan could be refined

to better manage feed variability for the mill. This application, and other

applications are discussed for a copper-molybdenum porphyry case study.

153



Chapter 6

Case study: South American
copper porphyry deposit

The geometallurgical mineral deposit characterization approach outlined in

chapter 5 was applied for the spatial modeling of a large tonnage South Amer-

ican copper-molybdenum porphyry deposit. For this large tonnage deposit,

quantifying mill throughput is critical. The optimal open pit mining opera-

tion would maximize both mill throughput and metal recovered. Therefore,

a spatial model of geometallurgical properties including grinding indices and

rock properties as well as copper and molybdenum grades is required. In this

chapter, a multivariate spatial model of the porphyry deposit is constructed

using supplied exploration data, validated and applied for quantifying uncer-

tainty in expected daily mill properties.

6.1 Background

A major mining corporation provided 18.5 km of drilling for this study. The

drilling data provided includes logs of lithology (13 distinct lithologies) and al-

teration (8 distinct alterations) where each alteration is classified by intensity

as weak, medium or high (for a total of 24 alteration classifications). Assays

of copper, molybdenum, silver, iron, sulfur, acid soluble copper and cyanide

soluble copper were supplied on 2 m intervals. Interval data with rock qual-

ity designations (RQD), core recovery, point load test strength and fracture

frequencies were also supplied. Metallurgical data in the form of comminu-

tion and whole rock analyses on nominally 30 m intervals were supplied. The
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13 comminution indices include Bond mill work indices and semi-autogenous

grinding (SAG) mill indices. Both the ball and SAG mill indices are relevant

to the study as a mineral processing plant utilizing both mill types is planned.

Whole rock chemical analysis including assays on 68 different elements is avail-

able on the same intervals as the comminution indices. The data were divided

into two types: fine scale assay data and large scale comminution and whole

rock analysis data.

Averaging all data up to the 30 m scale of the comminution measurements

would be impractical and result in an unacceptable loss of information. In-

stead, data available on 2 m intervals were composited to 15 m lengths (bench

scale compositing) and modeled separately from the 30 m intervals for the first

part of this study. To demonstrate the application of downscaling, the critical

semi-autogenous grinding index Axb was downscaled to the 15 m lengths and

modeled at this scale. Only exploration diamond drilling is available for this

deposit. Supplied drilling is spaced approximately 100 m apart with a -70◦ in-

clination at a bearing of 270◦. An oblique view of the data configuration is

shown in Figure 6.1. Locations for the 15 m composited samples are shown in

the figure.

6.2 Model purpose and study aims

A high resolution geometallurgical model of critical comminution indices, geotech-

nical measurements and metal grades is required to make optimal decisions

for this deposit. Drilling data including logs of lithology, alteration, assays of

copper, molybdenum and silver (along with other elements), and comminution

tests of the semi-autogenous grinding mill indices (such as Axb) and Bond mill

work indices were used. Using geostatistical methods described in this thesis,

a stochastic, multivariate model of all rock, geotechnical and geometallurgical

properties of interest was constructed.

There are numerous applications of the high resolution multivariate model.

For this thesis, two applications are considered. The first application is the

quantification of uncertainty in the optimal ultimate pit using the Lerchs-
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Figure 6.1: Oblique view of drill hole sampling locations with the 15 m composites
locations.

Grossmann algorithm (Dimitrakopoulos, 1998; Lerchs and Grossmann, 1964).

The Lerchs-Grossmann algorithm belongs to a set of graph theory algorithms

for calculating the smallest maximum valued closure of a directed acyclic graph

(Deutsch and Deutsch, 2013). In a mining context, given a block model with

assigned economic values and a set of geotechnical constraints on pit slopes,

the blocks which should be mined for optimal mine value are calculated. Due

to the long periods of mining, changes in commodity prices and processing

costs and continuous collection of information, the optimal pit calculated by

Lerchs-Grossmann is unlikely to be the true ultimate pit, but is a reasonable

approximation. For the purposes of this thesis, a synthetic economic model

was created which included costs for crushing and grinding as a function of

grinding indices and density, and prices for the final concentrate as a function

of both copper and molybdenum grade.
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The second application is the approximation of expected feed variability

to the mill. Using a portion of the optimal pit from the Lerchs-Grossmann

analysis, mining and classification of material as ore or waste, and subsequent

routing to the mill for grinding may be approximated. Variation, and uncer-

tainty, in the expected feed to the mill may then be calculated. In keeping

with the ultimate pit analysis and stochastic methodologies employed in this

thesis, the simulated mining adopts the modern geostatistical view of “all re-

alizations all the time”. All realizations constructed of the pit were processed

using this procedure.

6.3 Modeling workflow

Stochastic simulation was chosen as the primary approach for modeling as it

places no requirements on variable linearity and effectively quantifies the joint

uncertainty among variables. A supersecondary approach was implemented

here with sequential Gaussian simulation. This method requires homotopic

sampling of all variables, so this approach was augmented with data imputa-

tion (Barnett and Deutsch 2014) to realize complete homotopic data sets. The

supersecondary workflow that followed from incorporating data imputation is

outlined in Figure 6.2. This workflow is generally applicable for multivari-

ate modeling of continuous variables in the presence of missing data; however,

additional considerations such as compositional variables would alter the work-

flow for different deposits. Details of the workflow follow.

Representative histograms were established for each of the variables by

declustering, and the multivariate data univariate normal score transformed

using the representative distributions. A sample correlation matrix for the nor-

mal score data was inferred, in addition to univariate variograms for each vari-

able. This workflow requires a multivariate Gaussian assumption; data are as-

sumed to be multivariate Gaussian after transformation. There are commonly

violations of multivariate normality after the standard univariate normal score

quantile to quantile transformation. Proceeding with the multivariate Gaus-

sian assumption, simulating and checking the results is a reasonable approach.
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Establish representative
histograms

Normal score transform variables

Calculate and model
variograms on normal

scored data

Calculate the correlation
matrix

Back-transform realizations
to original units

Impute missing values
using Bayesian updating

Krige the domain
for kriging variances

Global kriging for
mean uncertainty

Simulate realizations using
intrinsic super secondary

sequential Gaussian simulation

Iteratively correct realizations
to exactly N(0,1)

Iteratively correct realizations
to have a given global mean

Discretize potential means
for each realization

Calculate large scale correlations
for mean correlation

Generate experimental design
for correlated means

Check realizations

Figure 6.2: Flowchart of high-resolution supersecondary modeling methodology.

Methods involving the multivariate transformation to a multivariate Gaussian

distribution such as the stepwise conditional transform and projection pursuit

multivariate transform could be implemented as an alternative approach.

Missing data were imputed using the non-parametric multiple imputation

approach of Barnett and Deutsch. Using the imputed data sets, sequential

Gaussian simulation under an intrinsic supersecondary variable approach was

applied for simulation with the program usgsim (Manchuk and Deutsch 2012).
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The entire gridded volume was simulated, not just the grid cells located within

the implicitly modeled domains. This was carried out to avoid boundary effect

issues on the edges of the domain. A different data realization from data

imputation was used for each realization. The simulated model over the entire

volume was then clipped within the domain. For many variables, the variogram

range was large relative to the size of the domain. This, combined with the

blending of multiple variograms from the use of the supersecondary approach

resulted in realizations with variances lower than 1. Back-transforming these

Gaussian realizations to the original units and using these realizations would

result in biases in the final models. For this reason, the simulated realizations

were iteratively corrected to be exactly standard normal.

The iterative correction of each variable was done by kriging the domain

in normal score units and using the kriging variances to weight the itera-

tive normal score correction of each realization. Global kriging was used to

avoid any search artifacts in the kriging variance from a limited search. Using

the kriging variances to weight the iterative normal score correction enforces

precise local data reproduction, since the kriging variance for nearby cells is

approximately zero. The result of this iterative correction is a suite of exactly

standard normal realizations which can be back-transformed to original units

(grades).

The back-transformed realizations will match the declustered histograms by

construction; however, there is no variation in global statistics such as the mean

of the realizations. The estimate of the global mean within each domain is

uncertain and this uncertainty should be reflected in the simulated realizations.

Uncertainty in the mean for each variable was determined by global kriging of

the domain with the data. The distribution of possible mean values from the

calculation of the global kriging variance was discretized and evenly spaced

quantiles corresponding to mean values taken from this distribution. This

assumes that the distribution of mean values is Gaussian, which is a very

reasonable assumption from central limit theorem.

The multivariate relationship of the mean grades must be accounted for

when correcting the realizations to have the correct mean uncertainty distribu-
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tions. Using perfectly correlated quantiles would result in final uncertainties

which were much too high and assuming uncorrelated means would under-

state the global mean uncertainty. Large scale correlations between variables

were determined by averaging each data value with a large number of nearest

neighbours using a moving window approach. As these calculated correlations

are on a much larger scale, they approximate the true global mean correla-

tions. Latin hypercube sampling was used to generate an experimental design

used with the quantiles to sample the multivariate mean uncertainty correctly.

This approach results in the correct global mean uncertainty with the cor-

rect correlations across realizations on average and, therefore, the correct final

multivariate mean uncertainty distributions. Global means were considered

uncorrelated across domains as there was no geologic reason to support the

use of correlated means.

6.3.1 Nonlinearity and multiple data scales

No explicit correction for nonlinear metallurgical variables is made in this

workflow. This is due to limited information; no experimental data on nonlin-

earity was available for the metallurgical variables and the correlations between

large scale metallurgical variables to small scale linear variables were too low

to accurately infer a nonlinear relationship as shown in chapter 3. Simulation

was used which makes no averaging assumption; however, all block averaging

to larger scales assumes linearity. For nonlinear variables, this will introduce

a bias into the large scale estimates which may not be quantified without

additional experimental measurements to infer nonlinearity. If additional ex-

perimental data are collected, or additional measurements which support a

strong multiscale relationship are made, then the nonlinear modeling strate-

gies discussed in chapter 3 may be applied.

In addition, the multiple data scales are not explicitly addressed in this

workflow. Recall the two primary scales of data: small scale assay measure-

ments which are composited to the bench (15 m) scale, and large scale metal-

lurgical measurements on 30 m intervals. In the presented workflow, data are

required to be at a single scale. Therefore, in the absence of a downscaling
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procedure the two data scales are modeled separately, and the assumption is

made that the change in variance is minimal between the scales. The workflow

was carried out with this assumption, and additionally using the downscaling

developments in chapter 4 for the critical Axb parameter. The impact of the

downscaling may then be observed in the simulated mining section of the case

study.

6.3.2 Multivariate stochastic methodologies

The intrinsic supersecondary model was chosen as the multivariate stochastic

simulation method for this case study. Under the intrinsic model, covariances

are assumed to be scaled variograms rather than requiring an explicit model of

coregionalization such as the linear model of coregionalization. Adopting the

intrinsic supersecondary approach also makes the strong assumption of multi-

variate normality. Using a test of bivariate normality (Deutsch and Deutsch,

2011), the bivariate distributions between the assay variables were checked.

Of the 45 scatterplots, 9 failed the test for bivariate normality. This is a

substantial percentage which deviated from the assumption of normality, so

alternative methods including multivariate transformations were examined as

alternative modeling strategies.

Early tests with multivariate transformations effectively removed all non-

normal features of the bivariate relationships, but simulated realizations had

poor variogram reproduction and transformed variables had very limited spa-

tial continuity. The intrinsic supersecondary methodology was adopted in

place of the multivariate transforms for this reason, and cross plots after sim-

ulation checked. Future research in the area of multivariate transforms could

be employed to improve variogram reproduction and permit the usage of mul-

tivariate transforms.

6.3.3 Mixed continuous, categorical variables

The supplied alterations and extent of alteration may be viewed as a mixed

continuous, categorical variable. Alterations were supplied as alteration type,

such as potassic-feldspar alteration, classified as weakly, moderately or in-
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tensely altered. These mixed continuous, categorical alterations were used for

domain definition as grades and metallurgical properties corresponded very

strongly with degree and type of alteration for this porphyry deposit. High

degrees of alteration, particularly potassic-feldspar, and to a lesser extent

potassic-biotite, were a strong indicator of high copper and molybdenum min-

eralization. These rules were used in domain definition for grouping dissimilar

lithologies which shared a high degree of alteration.

6.4 Parameter and data definition

Geometallurgical modeling domains (rock types) were established using a mul-

tiple signed distance function approach. These modeling domains were used in

the choice of stationary statistics including variable distributions, multivariate

relationships and variograms. The multiple lithologies and alterations supplied

with degree of alteration are too numerous to model separately. Modeling do-

mains were established by grouping lithologies and alterations using a defined

set of domain definition rules. The domain definition rules include:

1. Rock types to be grouped together should be geologically linked or similar

2. Rock types to be grouped together should be statistically similar

3. Rock types to be grouped together should be spatially similar; the data

types would ideally occur close to each other in the deposit and drill hole

logs

4. Rock types with a very low prevalence over the deposit should be con-

sidered as candidates for grouping with other rock types

5. Finely layered rock types should be considered as candidates for grouping

with other rock types to account for our ability to discriminate when

estimating with limited data

6. Each domain should have enough data to reasonably estimate modeling

statistics including statistical distributions and variograms
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Figure 6.3: Oblique view of domain associated with highly altered, high grade
region and immediately surrounding host rock. The view is clipped to only show
the high grade domain.

Multiple category signed distance functions were used for domain modeling

over the area of interest using a servosystem correction to enforce reproduction

of the global proportions (Silva and Deutsch, 2013). Modeled blocks were 15 m

x 15 m x 15 m corresponding to approximately 8600 tonnes on average. The

domain model was further refined by clipping the model to any points greater

than 300 m from the nearest drill hole sample. Three domains were modeled.

This avoids emphasizing our ability to model these exactly, but these rock

domains could be refined further with additional geologic knowledge. The

largest and economically most important domain modeled (approximately 50%

of the deposit) is shown in Figure 6.3. This domain will be used to show

statistics and statistic reproduction for the modeling workflow.

Within each domain, representative distributions of each variable were es-

timated by declustering. Cell declustering was chosen as it is a common best-

practice technique and simple to apply to any three dimensional data set.
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Figure 6.4: Scatterplot matrix of the normal score transformed assay scale mea-
surements.

Declustering was applied to all variables and the bivariate relationships exam-

ined. A matrix of the normal score transformed bivariate scatterplots of data

composited to 15 m for the domain of interest is shown in Figure 6.4. Many of

the variables are uncorrelated, but there are some strong relationships among

copper, molybdenum and silver. As expected, RQD and fracture frequency

are also highly correlated.

Using the declustered distributions as representative histograms, variables

were normal score transformed. The correlation matrix and normal score var-

iograms were calculated. Missing data are imputed using nearby data of the

missing type and other correlated variables. These imputed data sets are

stochastic, and a different data set is used for every simulation (Barnett and

Deutsch, 2015). The imputed variables have the correct histograms and spatial

correlations for simulation. Data values were imputed using Bayesian updat-

ing with the correlation matrix calculated using the heterotopic data values.

Although there is no requirement that the heterotopic correlations be posi-
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Figure 6.5: Correlated global means for copper and molybdenum drawn with Latin
hypercube sampling with a global correlation of 0.22.

tive definite, the correlation matrices in these cases were positive definite and

could be used without projection to a nearby positive definite correlation ma-

trix. The implementation of Barnett and Deutsch was used with the normal

score transformed data values to generate data realizations for each simulation.

6.5 Model execution and checking

The modeling workflow was executed and post-processed to enforce correctly

correlated global means with uncertainty. An example of the correlated nor-

mal score global means for copper and molybdenum is shown in Figure 6.5.

The samples were drawn with correlated Latin hypercube sampling for ap-

proximately uniform sampling across the constructed realizations.

Final realizations were clipped to not extrapolate far away from available

drilling or substantially below the bottom of drill holes. Smooth e-type mod-

els were constructed by averaging all realizations on a block-by-block basis.

The simulated realizations were assembled and visualized in 3D and with a

number of cross sections as an initial check of the model. An oblique view

of simulated Bond mill work indices for the domain of interest is shown in

Figure 6.6. The simulated distribution of hard and soft rock is reasonable.

Cross sections of a sample realization and the e-type mean for the normal
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Figure 6.6: Oblique view of normal score Bond mill work index realization.

score transformed copper grade are shown in Figure 6.7. As hard boundaries

were considered for the simulations, and the mean grades and hardness vary

significantly among the rock types, the domain boundaries are visible in both

the simulated realizations and e-type means.

The models are visually reasonable given knowledge of the deposit, but

there are many statistics which could be checked. With the histogram trans-

formation workflow adopted, histograms of the simulated realizations should

exactly match the shape of the reference distribution and have global means

which follow the expected global mean variance. This is observed for all vari-

ables; histogram reproduction for copper grade is shown in Figure 6.8 as an

example. The reference histogram in red is exactly in the center of the simu-

lated realizations.

The reproduction of the bivariate distributions was also assessed. Here,

bivariate scatterplots for a sample realization are shown in Figure 6.9 for the

composited variables. The overall relationships are similar to the original

scatterplots in Figure 6.4, but there are some notable differences. The wedge

shaped distribution between copper and molybdenum grades and the strong
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Figure 6.7: Plan view (upper) and cross section (lower) of a sample realization
(left) and e-type mean (right) for normal score transform copper.

Figure 6.8: Histogram reproduction for normal score transform copper for the
domain of interest. The correct histogram (the univariate normal distribution) is
overlaid on the multiple black histograms of the realizations as a red line.

relationship between RQD and fracture frequency are not exactly reproduced,

although the correlations are correct. This is due to the use of the supersec-

ondary method for simulation; these relationships are not explicitly controlled.

Other bivariate relationships are well reproduced. Methods such as the step-
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Figure 6.9: Bivariate reproduction matrix for the domain of interest. A random
sample of 2500 simulated blocks was used for this matrix.

wise conditional transform or projection pursuit multivariate transform could

be used as alternatives which explicitly control the bivariate relationship.

Variogram reproduction was assessed in both normal score and original

units. Variogram reproduction in normal score units for copper and the bond

mill work index in normal score units is shown in Figure 6.10. Short range

variogram reproduction is reasonable although the simulated long range struc-

ture is too continuous for copper compared to the true variogram. This is

attributed to the blending of multiple variograms when using a multivariate

methodology which assumes an intrinsic cross variogram, not an explicit model

of coregionalization. Other model checks including correlation coefficient cal-

culation and ensuring exact data reproduction were also conducted. Data were

exactly reproduced and, due to the nature of the supersecondary simulation

method, correlation reproduction was within 1%.
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Figure 6.10: Variogram reproduction for copper and the bond mill work index for
the domain of interest. The normal score variogram model is shown in red as well
as 20 variograms from the transformed realizations.

6.6 Model post-processing and application

Using the verified models, a number of applications were considered to quantify

uncertainty relevant for mine and mill operation. Using the Lerchs-Grossmann
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Figure 6.11: Multiple realizations of the ultimate pit applied to different realiza-
tions (grey). The 50% probability contour to be contained within the ultimate pit
is also shown (bold black). These realizations are overlaid on a slice through the
center of the deposit of the deviation from the global mean of the semi-autogenous
grinding index Axb. The model is trimmed by an average Axb, as this material
would not be processed.

algorithm and a simplified economic model which penalizes low-throughput

ore corresponding to low Axb values and high Bond mill work indices, the

ultimate pit was estimated for 20 realizations. A number of these pits are

shown in Figure 6.11. Using these pits, the probability that a block would

be optimally mined in 50% of the pits was contoured to provide a simplified

measure of the optimal pit on average. A realization of the deviation of the

semi-autogenous grinding property Axb from the global mean is shown here as

well. This analysis can be used to quantify the uncertainty in the tonnage of

the deposit, and expected variability in all properties including metallurgical

properties such as Axb.

Within the ultimate pits, substantial regions of high Axb corresponding to

less energy intensive ore and low Axb (more energy intensive ore) are observed.

The temporal variation in Axb was examined as a second application which

analyzed an intermediate pit expansion over a period of 300 operating days.

Using a planned extraction sequence applied to 20 high-resolution realizations,

the average daily Axb was calculated for each day of the intermediate mine

plan, for each of the realizations (Figure 6.12). The expected deviation from

the average Axb provides a measure of the throughput which can be achieved

and power requirements. Using all realizations simultaneously, the daily ex-

pected Axb can be calculated (indicated on the figure) as well as the expected

80% probability interval (indicated on the figure). This analysis indicates that
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Figure 6.12: Average deviation of the daily expected Axb from the global mean
based on the simulated mining of 20 realizations (light grey lines). The 10th and
90th percentiles (black lines) and daily expected value (red line) are overlaid.

there is substantial uncertainty in the daily characteristics of ore processed

by the mill, and that the Axb of the ore will vary substantially on a daily

timescale.

This model of Axb was constructed under the assumption of linear averag-

ing due to limited experimental data and a lack of highly correlated secondary

small scale measurements, and additionally using the 30 m measurements of

Axb, not measurements on a 15 m scale. Under an assumption of linearity,

the Axb parameter may be downscaled to the 15 m scale using the procedure

proposed in chapter 4.

6.6.1 Comparison with downscaling

The daily uncertainty in Axb modeled using the comminution variables at the

original 30 m scale was compared with Axb downscaled using the procedure

proposed in chapter 4. Experimental and modeled variograms of the origi-

nal 30 m measurements of Axb are shown in Figure 6.13. The standardized

correlogram was used in place of the traditional experimental variogram for

variogram inference due to the highly skewed Axb distribution with values

from 20 to over 200.

Assuming linearity, as there was not enough experimental evidence to infer
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Figure 6.13: Experimental and modeled variograms of 30 m measurements of Axb.
The correlogram was used to infer the variogram.
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Figure 6.14: Downscaled variograms of the Axb at 15 m. Downscaling resulting
in an increase in variance of 30%.

a nonlinear averaging schema, the variogram was downscaled using the down-

scaling laws (Figure 6.14). The downscaled variogram resulted in an increase

in variance of 30% from the 30 m measurements to 15 m measurements due to

the short range of the vertical variogram. This is a substantial increase in vari-

ance, and is expected to substantially increase the observed average deviation

of daily Axb feed compared to Figure 6.12.

The univariate distribution of Axb (histogram) was downscaled adopting

the discrete Gaussian model with the mosaic model (Figure 6.15), as the distri-

bution of Axb is skewed, but not near a constraint. The downscaled histogram

is stable and reproduces the increase in variance of 30%.
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Figure 6.15: Downscaled 15 m histogram of Axb using the discrete Gaussian model
with a mosaic model.

Using the direct sequential simulation procedure illustrated in chapter 4,

measurements of Axb were stochastically downscaled. As the Axb measure-

ments are not near a constraint, only limited resimulation was required for the

downscaled measurements to meet the required conditions. The downscaled

Axb realizations were used in the simulation workflow and the simulated min-

ing procedure repeated for the same area. The resulting realizations of Axb,

shown in Figure 6.16, show the effect of the substantially increased variance.

Trends from the 30 m calculation are still visible in the 15 m plot, although

the exact conditioning near data, such as at approximately 27 days is reduced

due to the stochastic approach to downscaling.

Without measurements of Axb on 15 m intervals, and without operational

data to reconcile the models, the variance increase resulting from the use of

downscaled Axb data realizations may not be validated. In addition, potential

nonlinearity in Axb has not been modeled, and the variogram downscaling

approach which supports the 30% increase in variance assumes linearity. If

the Axb parameter is highly nonlinear, then the results would be expected

to change. However, the downscaling methodology presented in chapter 4

is a statistically consistent methodology for modeling multiscale metallurgi-

cal measurements, and has been demonstrated in cases such as the oil sands

bitumen grade example to be a reasonable model for multiscale modeling.

173



Figure 6.16: Average deviation of the daily expected Axb from the global mean
based on the simulated mining of 20 realizations (light grey lines). The 10th and
90th percentiles (black lines) and daily expected value (red line) are overlaid using
the 15 m downscaled data.

Therefore, even in the absence of validation data for this deposit, the increase

in variance is supported by the Axb variogram and should be used for planning

instead of the original variance at 15 m.

6.7 Discussion

A comprehensive methodology for geometallurgical mineral deposit characteri-

zation has been presented and applied to a South American copper-molybdenum

porphyry deposit. Multivariate geostatistical simulation using an intrinsic su-

persecondary approach was used to create high-resolution realizations of the

deposit which can be used to quantify the uncertainty and optimize mining

and processing decisions. Stochastic data imputation was applied to impute

missing values and allow for the application of full multivariate techniques.

Using stochastic data imputation and a simulation workflow imposes no re-

quirements for linearity on the variables during modeling. All averaging oper-

ations are deferred until the end of modeling where the nonlinear behaviour of

variables can be explicitly accounted for. In addition to these techniques, there

are a number of methodologies including compositional data analysis and size

distribution modeling which are very relevant for geometallurgical modeling,
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but were not reviewed as these features were not measured in the case study

deposit.

The multivariate supersecondary approach used has a number of limita-

tions, primarily in the handling of multivariate data which are not multi-

variate normal after univariate Gaussian transformations. In the case study

presented, these deviations were relatively few. For mineral deposits with sub-

stantive deviations from multivariate normality, multivariate normal transfor-

mations such as the stepwise conditional transform (Leuangthong et al. 2006)

or projection pursuit multivariate transform (Barnett and Deutsch 2012) could

be applied. These transformed variables may be decorrelated using an algo-

rithm such as min/max autocorrelation factors (Switzer and Green 1984).

The advantage of these approaches over the supersecondary approach applied

is better reproduction of the multivariate histogram and constraints among

variables. The primary disadvantage is the increased model complexity and

increased challenges with input model statistic reproduction associated with

a large chained transformation workflow.

Using this workflow, two applications were demonstrated in quantifying

the uncertainty in the optimal ultimate pit, and estimating the uncertainty in

the metallurgical properties of ore fed into the mill on a daily basis. These ap-

plications demonstrate the value in the high-resolution geometallurgical mod-

eling approach. Multiple realizations which correctly reproduce the spatial

and multivariate relationships among variables are required for both of these

applications.

Applying the downscaling procedure for the Axb samples, which are criti-

cal to predicting ore throughput in semi-autogenous grinding, the variance of

Axb increased by 30%. This large increase in variance resulted in a substan-

tially high daily mill feed variability relative to calculations done using the

same procedure, but with 30 m samples. Without data at 15 m, the proposed

increase in variance for daily throughput cannot be validated for this deposit.

However, the downscaling approach proposed is a statistically consistent ap-

proach which has been validated on other data sets, such as the oil sands
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data shown here. Use of the downscaling approach is therefore supported for

planning with the increased deposit variability.

Due to limited data, nonlinearity in metallurgical variables was not explic-

itly accounted for in this case study. The weakly correlated small scale samples

were not enough to infer nonlinearity for this deposit using the semiparamet-

ric Bayesian updating approach proposed in this thesis (chapter 3). Adopting

the sequential Gaussian simulation approach defers averaging for the nonlin-

ear variables; however, upscaling the realized models requires an assumption

of linearity. As additional data are collected for this exploration project, the

nonlinearity could be modeled and the spatial model presented refined with

the addition of a nonlinear transform step.

The comprehensive multivariate spatial modeling methodology applied in

this case study demonstrates the value of the proposed integrated approach.

Only two applications, optimum pit uncertainty calculation and expected daily

variability in mill feed, were demonstrated in this case study, yet they clearly

demonstrate the value inherent in a complete geometallurgical approach. Ex-

pected throughput, approximated using grinding indices, can be accounted for

when calculating uncertainty in the ultimate pit. The expected daily vari-

ability in daily ore grinding indices can be accounted for when designing the

mill and during short and long term mine planning. Many other applications

including data spacing analysis and resource/reserve definition are possible.
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Chapter 7

Conclusions

This final chapter summarizes, discusses the limitations of, and proposes fu-

ture work for the developments in this thesis. This thesis makes three primary

contributions to the field of multivariate spatial modeling of geometallurgi-

cal properties. Techniques are developed in this thesis for the inference and

modeling of nonlinear variables, the downscaling of large scale metallurgical

composites are integrating these steps into data transformation workflows. The

transformation workflows developed incorporate a series of transforms designed

to remove compositional, nonlinear, missing data and multiscale challenges as-

sociated with metallurgical data. These contributions were motivated by the

case study of a large copper-molybdenum porphyry deposit. Each of these

three contributions are briefly reviewed here.

7.1 Nonlinear re-expression

Many metallurgical variables, such as the Bond mill work index and froth

flotation recoveries average nonlinearly. This nonlinear behaviour is due to

complex chemical-physical interactions, such as ore holdback in a ball mill

or froth destablization. Even when ore is fed to the comminution circuit in

400 tonne batches, a very large amount of mixing occurs in a mineral process-

ing circuit emphasizing the importance of modeling nonlinear relationships to

avoid a bias in predicted behaviours.

The heart of the proposed methodology for nonlinear modeling is to re-

express nonlinear metallurgical variables as linear variables which may be
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blended, scaled and modeled using available linear techniques. After modeling,

the re-expressed variables may be back-transformed to the original metallurgi-

cal values. The power law transform used throughout this thesis is a very flex-

ible re-expression framework, suitable when relationships are monotonic and

supported if the metallurgical property meets a set of physical requirements as

discussed in chapter 3. If the metallurgical property exhibits substantial syn-

ergistic or antagonistic behaviour resulting in a non-monotonic relationship,

then alternate re-expression frameworks such as Scheffé polynomials may be

used instead. Nonlinear re-expression laws are most easily fit when direct

experimental results of blended ores are available, but it may be possible to

fit the nonlinearity in specific circumstances where direct evaluation is not

available.

In the absence of direct experimental evaluation, multiscale measurements

are required. Single scale measurements do not provide enough evidence for a

nonlinear relationship, as demonstrated with a Monte Carlo simulation study.

Given sufficient multiscale measurements of the variable of interest, nonlinear

regression may be used to fit the relationship. The effect of measurement error

on nonlinear regression was demonstrated to be problematic, particularly for

highly nonlinear variables. If the measurement error is known, then it was

demonstrated to be possible to remove attenuation in the model fit with error

using a simulation study.

Alternatively, using multiscale measurements where a highly related small

scale linear variable and large scale metallurgical variable are available, it may

be possible to infer the nonlinearity. The proposed approach is to apply semi-

parametric Bayesian updating with nonlinear regression in these cases. This

technique leverages the relationship between the correlated small scale linear

variable and the large scale metallurgical variable. Semiparametric Bayesian

updating uses the nonparametric fit to the bivariate distribution between the

small scale variable and the large scale variable and the parametric normal

equations to infer conditional distributions. Using Monte Carlo simulation,

values are drawn from the updated distributions and fit with nonlinear regres-
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sion. The result is a flexible technique for multiscale nonlinear inference, but

with a number of limitations.

The primary limitation of the proposed semiparametric Bayesian updating

technique is the requirement for a very strong relationship to infer nonlinearity.

In the case of the Bond mill work index presented in chapter 3, the relationship

with iron content was not strong enough to reliably infer a nonlinear relation-

ship. This limitation is additionally increased by the requirement to downscale

required statistics including the variogram and bivariate distributions unless

sufficient small scale measurements are available. This is primarily a time-cost

for modeling, which is made relatively easier with semi-automatic fitting tools.

Future work in the area of nonlinear re-expression is two fold. The first area

of research would be extending methods for nonlinear inference with limited

data. Research in the field of small scale correspondence measurements (Kuhar

et al., 2011) is very promising for future research efforts in the inference of

nonlinear behaviour. Small scale correspondence measurements are effectively

multiscale measurements of the nonlinear variable where the error has been

quantified. The application of disattenuation strategies discussed in this thesis

are very promising for this area and would be a logical area of future work.

Related to this area of research is the use of a probabilistic re-expression

framework. Given sufficient measurements of nonlinear relationships, uncer-

tainty in the regression model could be accurately quantified and used. Possi-

ble methods for the probabilistic re-expression include transformations evalu-

ated using a probabilistic conditional distribution or multiple regression mod-

els. These probabilistic methods will require additional experimental data,

however, they could be very useful for accurately quantifying uncertain non-

linear relationships.

The second area of future nonlinear re-expression research is further investi-

gation of highly antagonistic and synergistic relationships. This is particularly

relevant for froth flotation where trace contaminants may substantially change

froth properties and recovery. In this thesis, the focus has been on capturing

all information on blending behaviour in a single re-expressed variable which

is attractive for spatial modeling, but situations such as these might be better
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served with the introduction of an auxiliary variable to represent the degree

of contamination.

7.2 Downscaling large scale metallurgical composites

Multiscale metallurgical measurements pose a spatial modeling challenge as

most geostatistical algorithms and implementations require data at a single

scale. The proposal in this thesis is to stochastically downscale large scale

metallurgical samples to the modeling scale. The downscaling procedure pro-

posed is direct sequential simulation with intrinsic cokriging and dynamic res-

imulation. Intrinsic cokriging leverages bivariate relationships with correlated

small scale variables, and dynamic resimulation ensures that constraints such

as non-negativity are met.

The intrinsic assumption is both a strength and limitation of the algorithm.

Adopting the intrinsic model is a strength as the number of cross variograms

which must be downscaled is reduced and there is no requirement for an ex-

plicit linear model of coregionalization. This is also a limitation, as the spatial

model of coregionalization used will be incorrect in cases where variograms

substantially differ for coregionalized variables. Similarly, the dynamic res-

imulation method effectively enforces constraints during simulations, but will

introduce an order-bias for variables near a constraint as demonstrated with

bitumen grades. This order-bias is unlikely to be a cause for concern across

all realizations together, but is an undesirable feature of the algorithm.

Future work in the area of downscaling large scale metallurgical compos-

ites will focus on streamlining the procedure. The stochastic downscaling

algorithm requires downscaling the variogram, histogram, and if using multi-

variate data, cross variograms. If there are numerous metallurgical variables of

interest to be downscaled, this poses a substantial barrier to practical usage.

This procedure could be streamlined with semi-automatic implementations

which are checked for internal consistency, such as positive-definiteness in the

downscaled correlation matrix. In addition, the iterative procedure adopted

for downscaling bivariate distributions was effective for the included exam-
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ples, but has no theoretical basis so requires further development and research

before widespread application.

7.3 Geometallurgical mineral deposit characterization

Specific challenges for spatial geometallurgical modeling of nonlinear and mul-

tiscale variables were covered in chapters 3 and 4, while chapter 5 focused on

the integration of these techniques into a general spatial modeling workflow

and the selection of techniques. The general data transformation workflow was

applied in chapter 6 for the spatial modeling of a large copper-molybdenum

porphyry deposit.

The data transformation workflow is subject to the standard geostatistical

limitations, principally the requirements for stationarity, assumptions of mul-

tivariate Gaussianity as a covariance model, and usage of two-point statistics.

Within these limitations, it is possible to check and verify models with cross

validation, production data and conformance to modeling assumptions. This

minimum criteria approach which was applied in the case study can be used

in the decision to rely on a model.

The integration of parameter uncertainty, including histogram, correlation,

and variogram uncertainty, is an area of future research with substantial po-

tential for geometallurgical mineral deposit characterization. Further research

into the selection of methods for integrating parameter uncertainty, and crit-

ically evaluating the effect of parameter certainty inclusion is required. This

is a general problem applicable to all areas of geostatistical research, but is

particularly relevant for the spatial modeling of metallurgical variables where

there is often very limited data.

7.4 Software

Software is important to geometallurgical modeling; it is the tool which enables

the construction of large 3D multivariate models which account for the many

challenges discussed. A number of specialized programs were developed as part

of this thesis for nonlinear modeling and multiscale modeling, and to facilitate
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the construction of these models. Major software developed as part of this

thesis are listed here and are available from the author.

• Python package for implementing the integrated workflow, pygeostat,

which is a mixed fortran-python package for integrating geostatistical

software with python, paraview, GSLIB and scripting workflows together

in an easy to use, parallel framework. Nonlinear inference and statis-

tics downscaling are bundled with this package which is compatible with

Python 3.4 and higher.

• Nonlinear fitting package, spbusim, which performs semiparametric Bayesian

updating for fitting with any nonlinear regression software for nonlinear

inference.

• Downscaling software, datascale and an updated version of histscale for

downscaling histograms and data using the workflow in chapter 4.

7.5 Final comments

Recall the thesis statement proposed in chapter 1: An integrated statistical

approach for the multivariate spatial modeling of metallurgical rock properties

which accurately quantifies the joint uncertainty in grade, geotechnical and

metallurgical properties will lead to more effective mine and mill operation

strategies.

In this thesis, an integrated data transformation workflow was proposed for

the multivariate spatial modeling of metallurgical rock properties with geosta-

tistical techniques. The integrated approach, applied to a copper-molybdenum

porphyry deposit, is viable for many applications including data spacing anal-

ysis, quantification of uncertainty in the ultimate pit and simulated mining

operations for expected mill feed variability. Two key challenges of metal-

lurgical variable modeling were addressed: modeling nonlinear metallurgical

variables and the integration of multiscale data. The third contribution, the

integration of these strategies for a comprehensive geometallurgical spatial

modeling workflow, completes this thesis.
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A re-expression framework, permitting the modeling and usage of nonlin-

ear metallurgical variables and a novel semiparametric Bayesian updating ap-

proach for nonlinear inference were developed. The nonlinear inference method

was demonstrated to be reasonable for highly related multiscale samples, but

requires a strong relationship. A multivariate direct sequential simulation

with intrinsic cokriging and dynamic resimulation technique was developed for

downscaling large scale metallurgical samples. The proposed stochastic tech-

nique for downscaling is exact, multivariate and meets sample constraints per-

mitting the usage of standard geostatistical techniques and software with the

downscaled measurements. The integrated approach, and specific methodogies

for nonlinear and multiscale samples quantify joint uncertainty in geometal-

lurgical properties which may be used for effective mine and mill operation

planning.
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