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Abstract: Energy optimization in buildings by controlling the Heating Ventilation and Air
Conditioning (HVAC) system is being researched extensively. In this paper, a model-free actor-critic
Reinforcement Learning (RL) controller is designed using a variant of artificial recurrent neural
networks called Long-Short-Term Memory (LSTM) networks. Optimization of thermal comfort
alongside energy consumption is the goal in tuning this RL controller. The test platform, our office
space, is designed using SketchUp. Using OpenStudio, the HVAC system is installed in the office.
The control schemes (ideal thermal comfort, a traditional control and the RL control) are implemented
in MATLAB. Using the Building Control Virtual Test Bed (BCVTB), the control of the thermostat
schedule during each sample time is implemented for the office in EnergyPlus alongside local
weather data. Results from training and validation indicate that the RL controller improves thermal
comfort by an average of 15% and energy efficiency by an average of 2.5% as compared to other
strategies mentioned.

Keywords: HVAC; reinforcement learning; artificial neural networks

1. Introduction

1.1. Motivation and Background

According to the U.S. Energy Information Administration, the average energy consumed in
the buildings sector for residential and commercial users accounts for 20.1% of global energy
consumption worldwide. This energy demand is projected to increase by 1.5–2.1% annually between
2014 and 2040 [1]. In the United States, energy consumption from residential and commercial buildings
was close to 41% of the total U.S. energy consumption in 2015, or around 39 quadrillion BTU [2].
Of this amount, the buildings’ Heating, Ventilation and Air Conditioning (HVAC) systems can account
for up to 50% of total building energy demand [2,3]. In the hopes of moving toward a greener, more
energy-efficient future, a significant improvement in energy efficiency is needed to achieve this goal.
Control of building HVAC systems can lead us one step closer to that goal.

Despite the advances in research on HVAC control algorithms, most field equipment is controlled
using classical methods that include hysteresis/on/off and Proportional Integral and Derivative
(PID) controllers. These classical methods have been investigated extensively in HVAC lower-loop
controls [4–6], such as room temperature control [7–9] and supply air temperature control [10–12].
Despite their popularity, these classical methods do not perform optimally. The high thermal inertia
of buildings induces large time delays in the building dynamics, which cannot be handled efficiently
by the simple on/off controllers. PID controllers offer an improvement in this respect. However, due
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to the high non-linearity in building dynamics coupled with uncertainties such as weather, energy
pricing, etc., these PID controllers require extensive re-tuning or auto-tuning capabilities [13], which
increases the difficulty and complexity of the control problem.

Due to these challenging aspects of HVAC control, various advanced control methods have been
investigated, ranging from gain-scheduling [14], non-linear/robust model predictive control [15–18]
to optimal control [19–23]. Between these methods, the quality of control performance relies heavily
on accurate process identification and modelling. However, large variations exist with building
design, zone layout, long-term dynamics and wide ranging operating conditions. In addition, large
disturbance effects from external weather, occupancy schedule changes and varying energy prices
make process identification a very challenging problem. This complexity requires one to have expert
knowledge in both the underlying systems and controls.

In this work, we introduce novel control algorithms from a branch of machine learning
called reinforcement learning. From a controls perspective, reinforcement learning algorithms
can be considered as direct adaptive optimal control [24]. Like optimal control, reinforcement
learning algorithms minimize the cumulative sum of costs over a time horizon. Unlike traditional
optimal control, reinforcement learning algorithms can learn optimal control actions directly
through trial-and-error interactions with the plant, without explicit identification of the plant model.
By parametrizing the policy and value functions of reinforcement learning algorithms with artificial
neural networks, the reinforcement learning controllers can learn to adapt to time-varying and
non-linear system dynamics.

In our current approach, the impetus is thermostat control. Instead of traditional on/off heating/
cooling control, reinforcement learning is utilized to set this schedule to obtain improved Predicted
Mean Vote (PMV)-based thermal comfort at an optimal energy expenditure. Hence, a thermostat
schedule is computed using an RL controller.

1.2. Previous Work

The various advantages of reinforcement learning methods have prompted some research
directions [25–27] in applying it to HVAC control. For example, Gregor. P et al. [28,29] investigated
the use of Q-learning for optimizing thermal energy storage systems in a building. They developed a
building simulation platform utilizing MATLAB and EnergyPlus and investigated the use of the tabular
Q-learning algorithm. They found encouraging signs of the Q-learning controller learning a desirable
load distribution strategy to minimize energy and cost. However, they were concerned with the
sample efficiency of the method as compared to a Model-Predictive Controller (MPC). Artificial neural
network-based Q-learning was also investigated, but they did not observe improved performance.
However, it did improve the sample efficiency compared to the tabular case.

Despite the promising results seen in their work, there were several disadvantages in using the
tabular Q-learning method for the HVAC system control problem. Firstly, the Q-learning algorithm
requires that the control action space be discretized, and this loses the precise control advantage that a
continuous control output algorithm can achieve. Secondly, since tabular Q-learning merely updates
Q-value estimates within a finite-sized look-up table, the set of state space representation is limited by
the size of the table and is again also discrete. This also reduces the algorithm’s ability to generalize to
new, unseen state spaces. Thirdly, the Q-learning algorithm implemented assumed state observations
to have Markov properties. However, this Markov assumption of full state observation is not applicable
in the HVAC control problem, as state observations are both inherently noisy, as well as having high
temporal correlations (for example, the indoor zone temperature and outdoor temperature). Lastly, the
Q-learning algorithm is deterministic and cannot consider any inherent stochasticity introduced by the
external variables, such as weather, occupancy and energy prices.

In our work, we show an improved algorithm and approach that attempt to alleviate all of the
issues listed above. Specifically, we introduce two core novelties in our approach:
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1. The use of a model-free, actor-critic method that allows for a stochastic policy and continuous
controller output. The use of a critic as a variance-reducing baseline also improves upon the
sample efficiency.

2. The use of state-of-the-art recurrent neural networks [30,31] for both policy and value
representation, which allows for inferring hidden states on noisy observations and incorporating
temporal information in state observations

For simulation, we utilize the Building Controls Virtual Test Bed (BCVTB) co-simulation, with
the controller implementation in MATLAB and EnergyPlus for building simulation. We simulated an
isolated single thermal zone with a simple Variable Air Volume (VAV) HVAC loop, consisting of heating/
cooling elements and air blower fans. Low level control is implemented internally within EnergyPlus.

In Section 2, we will provide an overview of the building co-simulation platform developed.
In Section 3, we will provide an overview of reinforcement learning, as well as an overview of
the algorithms utilized. In Section 4, we will provide an overview of recurrent neural networks
and specifically the Long-Short-Term-Memory (LSTM) variant. In Section 5, we will provide a
detailed overview of the experimental setup. Lastly, Section 6 present results and discussions on
the experimental simulation runs utilizing the platform.

2. Platform Setup

Figure 1 shows a conceptual flow diagram of our building simulation and control platform.

Figure 1. A conceptual flow diagram showing the entire simulation platform design process, including
the building design step, as well as the control simulation platform step.

Figure 2 shows the control platform developed. A custom Building Controls Virtual Test Bed
(BCVTB) co-simulation allows for communication between building simulation in EnergyPlus and the
controller module in MATLAB. An optimization variable module is added to receive raw data from
EnergyPlus and computes the optimization cost. In the figure, blue bars are for splitting output vector
streams into individual multi-line vector streams, which can then be plotted in the various plotters
implemented.

The optimization variable module implemented in MATLAB 2016 uses the Predicted Mean Vote
(PMV) [32], which is the thermal comfort measure, and the energy consumed during the sample time
to calculate cost. Both PMV and energy values are provided by EnergyPlus to MATLAB via BCVTB.

Additionally, run-time plotters are included in the platform to allow real-time monitoring of
the co-simulation ecosystem. The plotters visualize the optimization cost, EnergyPlus outputs and
thermostat schedule, as well as controller output. This enabled easier troubleshooting of the platform
during initial stages of implementation.
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Figure 2. An overview of the BCVTB building simulation setup. It shows three modules
(optimization variable, EnergyPlus and controller) alongside various ancillary plotting, time-keeping
functionalities. In the figure, blue bars are for splitting output vector streams into multi-line data
streams for plotting and data saving uses.

2.1. EnergyPlus

The building simulation is run in EnergyPlus 8.5, using an IDF format files. The process for
modelling the building into an IDF starts with the detailed 3D modelling of the building or zone of
interest. In this platform, the office space within the Donadeo Innovation Centre for Engineering
(ICE) at the University of Alberta has been considered. The thermal zone with attributes representing
neighbouring thermal zones is shown in Figure 3.

Figure 3. 3D model of our simulated office building zone in SketchUp. Zone 1 is the simulated zone,
with Zones 2–5 acting as adjacent, ideal air zones.
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During the building design process, using OpenStudio 2.1.0, we also utilized SketchUp 2016 with
OpenStudio to specify the space’s internal HVAC loop, an isolated single thermal zone with a simple
Variable Air Volume (VAV) HVAC loop, consisting of heating/cooling elements, air blower fans and a
generic thermostat. See Figure 4.

Figure 4. Layout of the simple Variable Air Volume (VAV) HVAC Loop implemented within our room
zone simulation. This was a plug-and-use (VAV) module available when designing the building in
SketchUp.

2.2. BCVTB

The BCVTB 1.60 co-simulation environment is a Java-based interface to allow for the exchange of
data between MATLAB and EnergyPlus. Using the components specifying data flow, plotters, counters
and timers, the handshake between EnergyPlus and MATLAB on a sample time basis is implemented.
It also allows for initialization and time-out conditions to be specified for the experiment. It allows
through the external variable interface in EnergyPlus both higher level (thermostat schedule control)
and also access to low level control loops (actuator controls).

3. Deep Reinforcement Learning

3.1. Introduction

Reinforcement Learning (RL) is a computation approach for sequential decision making
under uncertainty. Figure 5 shows the interaction between the agent and an environment: at each
time step, the agent takes an action and receives a state observation and scalar reward signal from the
environment, which is unknown. An RL algorithm tries to maximize the agent’s total accumulated
reward, given a previously unknown environment, through a trial-and-error learning process.

The description of the general reinforcement learning setup is inherently very general and thus
can be applied to a wide range of applications, ranging from robotics [33], game playing [34] to
inventory management [35].

3.2. Markov Decision Processes and Value Functions

The Markov Decision Process (MDP) mathematically formalizes the agent-environment
interactions. It has the following core components:



Processes 2017, 5, 46 6 of 18

• s ∈ S: state space, the set of all possible states of the environment.
• a ∈ A: action space, the set of all possible actions, from which the agent selects one at every

time step.
• r ∈ R: reward, a scalar reward emitted by the environment at every time step.
• π(a | s): policy, which maps from state observation s to action a. Typically, stochastic policies are

used; however, deterministic policies can also be specified.
• P(s′, r|s, a): transition probability distribution, which specifies the one-step dynamics of the

environment, the probability that the environment will emit reward r and transition to subsequent
state s′ from being in state s and having taken action a.

Figure 5. A figure showing the various components in a reinforcement learning problem setting.
The dashed vertical line indicates a transition in discrete time/sequence. This diagram shows a full
transition in states and reward from one time step to the next.

The goal of the RL agent is to learn an optimal policy that maximizes the expected sum of rewards,
also called returns, Gt, shown in Equation (1).

Gt
.
= rt+1 + rt+2 + rt+3 + . . . + r∞ (1)

In general, it is common to apply a discounting factor to the returns, called the discount rate γ,
0 ≤ γ ≤ 1. It acts to determine the present value of the rewards. The smaller the γ, the less future
rewards matter, and vice versa. In addition, it acts to threshold the returns to a finite, bounded value.
With discounting, the total returns are shown in Equation (2).

Gt
.
= rt+1 + γrt+2 + γ2rt+3 + . . . =

∞

∑
k=0

γkrt+k+1 (2)

Value functions are important parts of many RL algorithms. In essence, they estimate the expected
total returns starting from some state. Two core value functions are present in RL, the first one being
the state-value function, vπ(s). This function Equation (3) estimates the expected total returns Gt,
starting from a certain state s, and following policy π.

.vπ(s) .
= Eπ

[
Gt | s

]
= Eπ

[
∞

∑
k=0

γkrt+k+1 | s

]
(3)

The other value function of interest is called the action-value function, qπ(s, a) Equation (4).
Similar to the state-value function above, the action-value function estimates the expected total returns
Gt starting from some state s and taking an action a following some policy π.

qπ(s, a) .
= Eπ

[
Gt|s, a

]
= Eπ

[
∞

∑
k=0

γkrt+k+1|s, a

]
(4)
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Many popular RL algorithms rely heavily on the above value functions, which are estimated
from experience. Their usefulness lies in that once the optimal value functions, v∗π or q∗π , have been
obtained from sufficient experience, the optimal policy, π∗, can be found by repeatedly applying the
value function for every state and taking the greedy action that leads to the state with the highest
value estimate. One example of such an algorithm is Q-learning, which utilizes a parameterized
action-value function qπ(s, a) to learn the optimal action-value function.

3.3. Policy Gradient

One class of reinforcement learning methods deals exclusively within the parameterized
policy space. Specifically, a differentiable parameterized model, such as a neural network model
with parameters θ ∈ Rd, is used to represent a stochastic policy. This direct policy parameterization
allows us to convert the RL problem into that of an optimization problem; namely, maximizing the
objective function J(θ), the total returns, under the policy πθ given in Equation (5).

max
θ

J(θ) = E
(
Gt|πθ

)
(5)

The policy gradient method offers several advantages over value-based methods, improving
in areas such as stability, direct optimization, etc. There exist multiple ways to estimate the policy
gradient, from finite difference methods [36] to likelihood ratio methods [37]. We focus on the latter
method, specifically the REINFORCE policy gradient [38]. The likelihood ratio method’s advantages
are faster convergence rates, and this nullified the need for generating random perturbations in policy
parameters, which can lead to instability.

The REINFORCE [38] policy gradient provides an unbiased estimate of the gradient of the policy
with respect to the objective function J(θ) given in Equation (6).

5θ J(θ) = Eπ

[
T−1

∑
t=0
5θ log π(at|st, θ)

T−1

∑
t′=t

rt′

]
(6)

One point with the REINFORCE policy gradient is that it has high variance, as it is using the
actual returns rt′ as a component of the gradient estimate. It can be shown that subtracting the
returns rt′ by an arbitrary baseline term, b(st) ∈ R, can significantly reduce the variance in gradient
estimates [39]. It can also be shown that the baseline introduces no bias in the gradient estimate [39],
i.e., Eπ [5θ log(at′ |st′ , θ)b(st)] = 0. Thus, by choosing our baseline carefully, one can significantly
reduce the variance and, thus, the sample complexity in our gradient estimates. Thus, the general
policy gradient estimate with an arbitrary baseline function is provided in Equation (7).

5θ J(θ) = Eπ

[
T−1

∑
t=0
5θ log π(at|st, θ)

(
T−1

∑
t′=t

rt′ − b(st)

)]
(7)

3.4. Actor-Critic Methods

Actor-critic methods are based mainly on the policy gradient with variance-reducing baseline
derivation obtained in Equation (7). A more general representation is to call the term on the right-hand
side of Equation (7) the advantage estimator, At. The various different actor-critic methods thus differ
in how they approximate the advantage estimator. Thus, in actor-critic methods, the actor term refers
to a parameterized policy, and the critic term refers to some parameterized advantage estimate.

In our work, we introduce a Monte Carlo actor-critic algorithm that utilizes a state-value function,
vπ(s), as the critic. The policy gradient estimate is shown in Equation (8).

5θ J(θ) = Eπ

[
T−1

∑
t=0
5θ log π(at|st, θ)

(
T−1

∑
t′=t

rt′ − vπ(st)

)]
(8)
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The algorithm is updated off-line using the collection of experiences obtained on-line with fixed
parameters. Due to the inherent noise and high sequential nature of the HVAC thermostat-schedule
problem, we opt to utilize recurrent neural networks for parametrizing both the policy and critic.
We utilize recurrent neural networks termed Long-Short-Term-Memory networks to address the
issue of noise and the partial observability of states. Since LSTMs maintain a hidden state during
computation, this hidden state is able to incorporate historical data to infer the true state of the system,
from observing a history of noisy, the partially-observed state observation data.

The pseudo-code for our algorithm is given below:

Algorithm 1 Monte Carlo on policy actor-critic.

Require: Initialize policy π with parameters θπ and value critic vπ with parameters θv

1: for each episode do
2: Get initial state s
3: Initialize storage buffer S, A, R, S′

4: for i = 1, 2, 3...N steps do
5: Sample action with policy: a ∼ πθ(s)
6: Run action through environment, obtain reward and post state: r, s′ ← ENV(s, a)
7: Collect and store: S, A, R, S′ ← s, a, r, s′

8: s← s′

9: end for
10: Compute discount returns: V̂ = ∑N−1

l=0 γlrt+l

11: Update θv to minimize ∑N
n=1 ‖vπ(sn)− V̂n‖2

12: With learning rate α, update policy: θπ ← θπ + α∇θ log π(A|S)vπ(S)
13: end for

4. Recurrent Neural Networks

Artificial neural networks, specifically the recent branch termed as deep learning, have gained an
unprecedented revived interest and attention in the past decade from both academia and industry. They
have achieved the state-of-the-art in many fields, ranging from computer vision [40], natural language
processing [41] to niche applications, such as self-driving cars [42]. For datasets with a sequential
nature, such as for natural language processing, Recurrent Neural Networks (RNN) have been applied
successfully due to their capacity to model highly non-linear data, increasing the availability of
datasets and power computers. Despite traditional recurrent neural network’s inability to handle
long sequences of data, a new class of network architectures with learnable gates has been shown to
effectively alleviate this problem. The most popular of these variant is the long-short-term-memory
network architecture.

4.1. Vanilla Recurrent Neural Network

Artificial neural networks are a class of non-linear function approximations. They are composed
of nested affine transforms followed by a non-linear activation transform. Given an input x and layer
input weight matrix Win, we first apply an affine transform and then compute g(x), a non-linear
activation transform, over the affine transform output. The computation is shown in Equation (9).

f (x; w, b) = g(Winx + b) (9)

Since RNN works on sequential data, it has an explicit hidden state, ht, that is recursively
carried forward and updated as each element of the sequential data is passed through the recurrent
neural network. To facilitate this, an additional recurrent weight, Wrec, is need for this computation step.
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For a given sequential data from t = 1 to t = T, the update Equation (10) is applied for a hidden layer
recurrent neural network.

at = Wxt + Uht−1 + b (10)

ht = g(at) (11)

Two points of importance are noted from the computation steps above:

• The same layer weights W and U are re-used for each step of computation throughout the
sequential data

• An RNN is similar to a deep feedforward neural network when unrolled through time. The depth
will be of the length of the sequential data, and for each layer, the weights are the same

4.2. Vanishing and Exploding Gradient Problem

The back-propagation of error signals through the RNN is similar to that of a feed-forward neural
network. Starting from the error output, we go backwards and apply the chain rule to compute the
gradient of each layer’s parameters using gradients coming from the next layer. For RNN, this is called
Back-Propagation Through Time (BPTT). Due to the fact that the same layer weights are re-used for
each item in the sequential data, when the computation is unrolled through time, the network can be
viewed as a very deep feed-forward network in the time dimension, with shared weights at all layers.
Figure 6 shows a diagram of an unrolled RNN over three computation steps.

Figure 6. The RNN here has been unrolled for three time steps for some arbitrary sequential data. At
every time step, the RNN’s output is computed, as well as the hidden state is passed forward through
time. During back-propagation, the gradients flow back in two paths; first from error outputs at every
time step ∂Et

∂ht
, as well as the gradient back-flow through time through the recurrent states, ∂ht+1

∂ht
.

The BPTT algorithm computes the gradient of the total loss, E across the entire sequence. Since the
RNN’s parameters are re-used for each element in the input sequential data, the total loss gradient is
the sum of the loss gradient for each sequence of time, given in Equation (12).

∂E
∂θ

= ∑
1≤t≤T

∂Et

∂θ
(12)

We can further expand the right-hand side to include two gradient components, first the gradient
from the loss at each time step, as well as the recurrent gradient flow back, provided in Equation (13).

∂Et

∂θ
= ∑

1≤t≤T

(
∂Et

∂ht

∂ht

∂hk

∂hk
∂θ

)
(13)
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In particular, when we focus on the temporal gradient flow-back component, ∂ht
∂hk

, we can see that
it is a product of the same gradient starting from time t and extending until the end of the sequence k,
as shown in Equation (14).

∂ht

hk
= ∏

t≥i>k

∂hi
∂hi−1

= ∏
t≥i>k

UTdiag
(

g′(hi−1)
)

(14)

4.3. Long-Short-Term-Memory Recurrent Neural Network

One popular method to alleviate the above-mentioned vanishing gradient problem is LSTM [30,31]
networks. LSTM is a special variant of recurrent neural networks that improves upon the traditional
RNN in the following ways:

• Learnable gates that modulate the flow of information.
• A persistent cell state that has minimal interactions, providing an easy path for gradient flow

during back-propagation.

A total of three gates is utilized within an LSTM; these are the input gate it, Equation (16), forget
gate ft, Equation (15) and output gate, ot Equation (17). To allow for the gates to modulate the flow
of information, as well as be differentiable, sigmoid/logistic function σ is used to threshold the gate
outputs to between [0,1].

ft = σ(W f xt + U f ht−1 + b f ) (15)

it = σ(Wixt + Uiht−1 + bi) (16)

ot = σ(Woxt + Uoht−1 + bo) (17)

ct = ft � ct−1 + it � tanh(Wcxt + Ucht−1 + bc) (18)

ht = ot � σ(ct) (19)

Once the gates are computed, the cell state ct is updated by Equation (18) in two parts. The first
component is a dot product between the previous cell state ct−1 and the forget gate ft. This modulates
how much of the cell state information from the previous time step should be kept. The second part is
a dot product between the current cell state computation and the input gate it. This modulates how
much of the current information should be allowed into ct. Once the cell state has been updated, the
hidden output ht is modulated by the output gate ot via another dot product Equation (19). Figure 7
provides a visualization of the LSTM equations.

Figure 7. A visual diagram of the LSTM architecture, showing the input, forget and output gates, as
well as the cell state computation and updates.
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5. Setup

For comparative study, we implemented an actor-critic-based RL controller applied to the building
HVAC control and compared its performance against three baselines.

5.1. Simulation Setup and Parameters

We utilized our simulation platform setup for the experimental case study. The simulation
was conducted over a period of seven days, two days for training the RL controller and five
days for validation testing. We utilized our simulation platform setup for the experimental case
study. The simulation was conducted over a period of seven days, two days for training the RL
controller and five days for validation testing. We selected this simulation window to ensure no large
variations (example: ±10% of 26.53 ◦C for ambient temperature) in external variables, such as ambient
temperature, cloud cover and solar irradiance, between the training set and validation set. A single
room zone (Zone 1) with window access is investigated in our simulation. This single zone has thermal
contributions from surrounding ideal air zones (Zones 2–5). The simulation sampling time is 5 min.
The occupancy considers three people in an office setting, measured as a percentage. Table 1 provides
detailed information.

Table 1. This table provides the daily occupancy schedule for a typical work day on an hourly-basis.
Values reported in fractions. This occupancy schedule was used in our simulation.

Hours Office Occupancy Equipment Active Schedule

01:00 a.m. 0 0
02:00 a.m. 0 0
03:00 a.m. 0 0
04:00 a.m. 0 0
05:00 a.m. 0 0
06:00 a.m. 0 0
07:00 a.m. 0.5 1
08:00 a.m. 1.0 1
09:00 a.m. 1.0 1
10:00 a.m. 1.0 1
11:00 a.m. 1.0 1
12:00 p.m. 0.5 1
01:00 p.m. 1.0 1
02:00 p.m. 1.0 1
03:00 p.m. 1.0 1
04:00 p.m. 1.0 1
05:00 p.m. 0.5 1
06:00 p.m. 0.1 1
07:00 p.m. 0 0
08:00 p.m. 0 0
09:00 p.m. 0 0
10:00 p.m. 0 0
11:00 p.m. 0 0
12:00 a.m. 0 0

For training of the reinforcement learning controller, we utilized two days of simulation data
to train the policy and critic LSTM networks in our RL controller. After the training, we tested the
performance of the controller against benchmarks in the five-day simulation.

5.2. Reinforcement Learning Controller Design

The reinforcement learning controller is composed of two LSTM networks, one for the actor and
one for the critic.
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The state observations, which are provided at every control time step to the RL agent, are chosen
to be both informative and easy to access. Specifically, the state observations are composed of the
outdoor temperature Ta (◦C), indoor temperature Tr (◦C), the energy demand from the last time step
Qcool (W/h) and solar irradiance Qsol (W/m2). The controller outputs over a discrete control action set
of size 26, from 20 ◦C to 25 ◦C with 0.2 ◦C resolution. This control output is then interpreted as the
room cooling temperature set point Tc, which will be passed onto the simulation platform.

Figure 8 shows the RL controller architecture setup. We see that the discrete control action output
is computed by the actor, given the state observation. The critic, a state-value function vπ , computes a
single scalar value representing the state-value of a particular state. This scalar value is used as the
baseline in the critic’s policy gradient update.

Figure 8. A high-level block diagram of the actor-critic reinforcement learning architecture is shown.
This shows the general flow of state observations and reward signals between the algorithm and
the environment, the critic’s update and its value estimate, which is used by the policy in it’s policy
gradient updates.

5.3. Optimization Cost Function Structure

The optimization cost function (also referred to as the reward function) design is of great
importance in the reinforcement learning problem setup, as an ill-defined cost function can lead
to unexpected and undesirable controller performance.

In our study, we would like the controller to achieve thermal comfort while maintaining a
certain level of energy efficiency. It is hoped that by relaxing the thermal comfort threshold (τ), the RL
controller can achieve energy savings while still ensuring a tolerable level of thermal comfort. To obtain
a numerical value for thermal comfort, the Predicted Mean Vote (PMV) developed by P.O.Fanger [32]
was used. The PMV calculation takes many factors into account, ranging from air temperature, relative
humidity, clothing insulation and metabolic rate. The PMV calculation represents the thermal comfort
within a scale from hot[+3] to cold[−3]. Usually, thermal comfort values of between ±0.5 and ±1.0 are
considered acceptable. In our setup, the simulation platform computes the PMV values internally in
EnergyPlus.

The total cost, C, which is computed at every control step, is composed of a weighted sum of the
two objectives, PMV (thermal comfort) and energy demand, given in Equation (20).

C =
t=T

∑
t=0

(α · PMVcost + (1− α) ·Qcool) (20)

The α in the equation is a weighting that balances the contribution from the two component costs,
PMV cost (PMVcost) in Equation (21) and energy (Qcool). In our experiment, we set α at 0.5. In addition,
PMVcost and Qcool are normalized to be between [0,1].
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PMVcost =


0 for |PMV| ≤ τ

|PMV|
3 for τ ≤ |PMV| ≤ 3

|PMV| − τ for 3 < |PMV|
(21)

The PMVcost is computed to have zero effect on the total cost if it is below the PMV threshold, τ.
Note that since PMV values typically range between ±5, we take the PMV’s absolute value when
computing its cost contribution.

The energy demand Qcool is obtained raw from the our simulation tool and is also normalized.

6. Results and Discussion

6.1. Baseline Setup

For comprehensive comparison, two different control baselines were setup to evaluate the
effectiveness of the reinforcement learning controller. These baselines vary in the various aspects of
the controller performance.

The first baseline is called the ideal PMV baseline, Bideal . This baseline maintains the ideal PMV
without regard for the energy usage required to maintain this precise PMV requirement. This is given
in Equation (22).

Bideal =

{
Th = 21
Tc = 23

(22)

where Tc is the cooling set point (◦C) and Th is the heating set point (◦C).
Secondly, a variable control Bvariable was implemented. This baseline contains some basic

temperature-tracking capabilities. Specifically, it tracks the external temperature and sets Tc according
to the following equation if it is within 20 and 25 ◦C. Since the simulation runs are conducted in the
summer month of July, room heating is never required as external temperatures range well above
20 ◦C. Due to this factor, heating set point Th is set constant at 16 ◦C for our baseline setup. Note that
Th can be set up in a similar fashion to Tc for simulation through colder months when room heating
is needed.

Bvariable =


Th = 16
Tc = 20 for Tr < 20
Tc = Tr for 20 ≤ Tr ≤ 25
Tc = 25 for Tr > 25

(23)

where Tr is the room temperature (◦C).

6.2. RL Training Phase

The RL controller was trained using two days of simulation data with a sampling time of 5 min.
Figure 9 shows the RL controller’s trajectories across each iteration of training. It can be observed
that initially, the controller’s output contains large variation, as clearly observed in the cooling rate
Qcool . With each training iteration, the controller outputs stabilize, until they stabilize to the optimal
controller output with low overall cost.

Table 2 provides the metrics associated with the tuning exercise. As described in the optimization
cost function in Equation (20), the metrics involving both thermal comfort Equation (21) and energy
consumption are provided. With a blind start initially, the iterations continue to improve both measures,
limited by the inertia of the building profile. On obtaining a negligible gradient in metrics between
consecutive iterations, the procedure is halted.
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Table 2. RL training results.

Iteration Number PMV Total (Unitless) Energy Total (W) Standard Deviation (Qcool W/h)

1 216.70 16,717 3580
2 113.50 18,079 3480
3 105.60 18,251 3500
4 262.00 15,398 3070
5 132.12 17,698 3450
6 211.30 16,300 3240
7 211.50 16,310 3240
8 211.30 16,298 3228

Figure 9. Simulation results plots for the RL controller at various iterations of training. Plots are shown
for both objective variables (Qcool and PMV), as well as additional simulation data, such as ambient
temperature and solar irradiance.

Between the iterations, the aggression of the RL controller is tuned based on PMV and energy
consumption metrics. This is evident from the steady decline in the standard deviation measure of
cooling rate Qcool , observed in Table 2. However, owing to the stochastic nature in which the neural
networks are trained, there is a possible situation where the minimization goal is not met. In such a
scenario, as observed in Table 3, Row 4, though an improved energy efficiency is evident, it greatly
increases the PMV measure, indicating very poor thermal comfort. In such a scenario, the anomaly is
discarded, and the next iteration is initialized with the previous valid iteration’s outcome.

Table 3. Training comparison.

Control Type PMV (Unitless) Energy Total (W)

Ideal PMV 190.00 16,676
Variable Control 250.00 15,467

RL Control 211.3 16,298

A benchmarking of the performance of controllers under uniform environmental conditions is
carried out. The experiments are performed using the Bideal and Bvariable control structures.

Bideal is a control that can offer an improved thermal comfort resulting from higher energy
consumption. With the threshold provided in Equation (21), (τ = 0.75), the average value of the
PMV, calculated in Equation (24), for the Bideal case (0.66) can be relaxed further for improving energy
efficiency without sacrificing the thermal comfort. A visualization is provided in Figure 10.
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τ =
PMVTotal

No.o f Day× No.o f Samples/day
(24)

This measure for the Bvariable case is 0.87. However, the RL controller achieves an average PMV
of 0.73. This also improves the energy utilization by 2.27.

Figure 10. Simulation results plots for comparison between Bideal , Bvariable and the RL controller over
two days. Plots are shown for both objective variables (Qcool and PMV), as well as additional simulation
data, such as ambient temperature and solar irradiance.

The iterative tuning of the RL controller is performed on identical datasets. In order to evaluate the
effectiveness of the RL controller, a five-day window, with weather data pertaining to five contiguous
days, is utilized. These five days are not contiguous with respect to the training days; however, they
are from the same season as the training data (summer), with slow-varying cloud cover and ambient
temperature. The weather pattern provides cloud cover on Days 4 and 5, as observed in Figure 11
from the low solar irradiance and ambient temperature conditions. It is observed that the RL controller
positions the cooling setpoint (Tc) slightly above the Bideal controller. As observed from the cooling
rate in Figure 11, it is evident that this enables a slightly lower cooling of the office thermal zone while
leading to improved energy efficiency at the cost of acceptable thermal comfort loss. The average
thermal comfort of the Bideal is 0.708 and that of variable control is 0.917. The RL controller has an
average thermal comfort of 0.775, improving the thermal comfort by 15.5% over the Bvariable and
driving down energy by 5.03% as compared to the Bideal controller.

Table 4 shows the numerical comparison between the RL controller and the two baselines. Due to
the large variation in weather across the five-day validation phase, we can observe a more pronounced
improvement from the RL controller. Compared to the ideal PMV baseline, the RL controller was
able to achieve 2.12 kW of energy rate savings. Compared to the variable control baseline, the RL
controller was able to maintain a 102 lower PMV total, which consumes only 1.44 kW more power.
Similar to what is observed with the results from the training phase, the RL controller is able to sit
at the sweet spot, where some slight thermal comfort is sacrificed for improvements in overall less
HVAC power consumption.

Table 4. Validation comparison over 5 simulation days.

Control Type PMV Total (Unitless) Energy Total (W)

Ideal PMV 510 42,094
Variable Control 660 38,536

RL Control 558 39,978
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Figure 11. Simulation results plots for comparison between Bideal , Bvariable and the RL controller over
the five-day validation runs. Plots are shown for both objective variables (Qcool and PMV), as well as
additional simulation data, such as ambient temperature and solar irradiance.

7. Conclusions

A thermal zone of the office space has been designed. A platform for closed-loop simulation of
HVAC systems has been created. Based on the influence of weather data on the building dynamics,
uncertainties were introduced into the building model. A model-free reinforcement learning-based
thermostat schedule controller has been developed using the novel long-short-term memory recurrent
neural network, by closed-loop control of the HVAC system for two days. Using the simulation
platform, we experiment on the Bideal and Bvariable strategies. A five-day validation experiment is
carried out with weather data from outside the training window. It is observed that during both
training and validation, the RL controller was able to maintain the average PMV within an admissible
range while saving energy compared to the Bideal case. It provides the possibility to implement
customized control for building HVAC control with minimal human intervention. Using the definition
of the optimization cost, it will be possible to manipulate the goals of the RL controller towards
improving the energy efficiency or thermal comfort.

To expand further upon the current simulation setup of a single zone, future research will be
on developing RL thermostat schedule control across multiple non-ideal zones interacting with each
other. In addition, integration with real building management systems (via Modbus or Lontalk) on the
real-time building thermostat schedule will also be investigated.
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BCVTB Building Controls Virtual Test Bed
BPTT Back-Propagation Through Time
HVAC Heating Ventilation and Air Conditioning
LSTM Long-Short-Term Memory
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PMV Predicted Mean Vote
RL Reinforcement Learning
RNN Recurrent Neural Network
TD Temporal Difference
VAV Variable Air Volume
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