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output:
rempl(): vector containing resample times
return val: number of resample times

int jik:mlnl
int k_min, k_max;

DD arg:

bD b0, b1,b2;
DD det;

DD delta_theta;

DD

tmpl,tmp2, tmp3;

delta_theta=((DD)2*(DD)PI)/{(DD)npr;
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LA
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*/

calculate determinant
exit if determinant is zero
calculate coefficients

1f((det=(t2-t1)*(t3-£1)"(t3-t2))==(DD)O)

crash(*Determinant zero in resample_data().*);

tmpl=kps/det;
bO=tmplwel* (£3*(t1-t3)+{(DD)2*t2*%(t2-t1))});

bl=
b2=

//

tmpl*((tl*tl)~-((DD)2*t2*t2)+(t3*L3)});
tmpl*(-tl+(2*t2)-t3);

calculate k_min (must be greater than or equal to tmpl)

if (delta_theta==(DD)0)

crash(*delta_theta zero in determine_resample_times®);

tmpl=kps/((DD)2*delta_theta);
k_min=(int)ceil ((DD)tmpl);

/*

wh

*/

calculate k_max (must be legs than tmpl)
if k_max is not greater than k_min, exit with error meesage

tmpl *= (DD)3;
k_max=(int) flooxr { (DD} tmpl);
1£((DD)k _max==tmpl) k_max-=(int)l;
1f(k_max<=k_min)

/'

LA

*/

crash(®k_max not greater than k_min in determine_resample_timee");

determine number of resample times
zero the elements of rsmpl|)

nz (int) (k_max-k_min+(ini,;1);
for(m=0;men;me+) |

)
//

rempl {m].data=(DD)0;
rempl {m).time=(DD)0;

calculate the resample times

if(b21=(DD)0) {

}

tmpl=(DD)1/((DD)2"b2);
tmp2=(DD)4*b2;
tmp3=bl*bl;

for (k=k_min; k<=k_max;Kk++) {
arg=(DD)sqrt ((DD) (tmp2* ( ((DD) k*delta_theta)-b0)+tmpl));
i1f(arg==(DD)0)
crash(*Negative square root argument in determine_resample_times()®);
J=k-k_min;
rampl{j).time=tmpl*(arg-bl);

else (

for{k=k_min;k<zk_max;k++) {
J=k-k_min;
rempl{j}.time=(((DD)k*delta_theta)-b0)/bl;
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}
}
return ny
}
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8.2 Sample Initialization File

[resampling) 7 7
OrderTrackingMethod=Computed

InterpolationMethodsBlockCubic « computed method only »
SamplesPerRevolution=12 < samples nesded to avolid aliasing »
FilteringUsed=No <« lowpass filtering to eliminate high orders =
FilterInterpolationsNo = improve(?) filters by sdjusting for rpm =

Imachine signal coefficiente)
KeyphasorsPerRevolution=1 < number of keyphasor pulses per revolution =
AO=0 =« radiang »

Al=0 « radiane/sec >

A2=1.0472 < radisns/sec/gec »

A3=0 = radians/eec/sec =

Ad=0

Amplitudezl = baseé signal amplitude =

NoiseAmplitude=0.0 < random noige in traneducer eignal =

[fourier analysig]
BlockSize=512 = number of elements in data block =
Window=Hanning =« window applied to data prior to FFT =

[etartup]
StartTime=35 = gimulation start time in seconds =

[sampling]

SampleRate=z260 < Hz =

RpmofFirecSpectra=400 =< rpm at which sampling is first triggered =
RpmOfLastSpectras1099 < no sampling triggered after this speed >
RpmBetweensSpectra=100 < rpm between gampling triggers =
KeyPhagorNoige=0.0 = random error in timing of kephagor esignal =
KeyPhagorgSampleRate=50000 < Hz =

JitterAmplitude=0.0 = random nolse in rpm, clageical method =

[a/d converter] < not in use yet =
UseADC=No < simulate prescence of ADC =

MaxVolte=5 < maximum volts readable by ADC »
MinVoltg==5 = minimum veolts readable by ADC =
WordLength=8 « A/D converter output word size in bits »

Gain=1 =« to fill range of ADC =

[output)
OutputFormat=Magnitude =< output data format, magnitude of real and imag »
GraphicsEnabled=No <« do or don’'t draw the spectra on-screen »
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On the possible future role of artificial mathematical constructs:

‘So you see,” said Slartibartfast, slowly stirring his artificially constructed coffee, and
thereby also stirring the whirlpool interfaces between real and unreal numbers, between
the interactive perceptions of mind and Universe, and thus generating the restructured
matrices of implicitly enfolded subjectivity which allowed his ship to reshape W# very
concept of time and space. ‘how it is.’

‘Yes,’ said Arthur.

‘Yes,’ said Ford.

‘What do I do,’ said Arthur, ‘this piece of chicken?’

Slartibartfast glanced at him gravely.

‘Toy with it,” he said, ‘toy with it.”

He demonstrated with his own piece.

Arthur did so, and felt the slight tingle of a mathematical funmm trough the
chxcken leg as lt mcwed fcur-dlrmnsmnally through what Slartilé it hael assmied him

‘I don’t like this wine very much,’ said Arthur sniffing it.

‘Well send it back. It’s all part of the mathematics of it.’

Arthur did so. He didn’t like the topography of the waiter’s smile, bt We'd never liked
graphs anyway.

‘Where are we going?’ said Ford.

‘Back to the Room of Informational Illusions,’ said Slartibartfast, rising and patting his
mouth with a mathematical representation of a paper napkin, ‘for the second half.’

Excerpted from
Life, the universe and everything
by Douglas Adams
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Abstract

Vibration analysis of rotating machinery is an important part of industrial predictive
maintenance programs. With it, wear and defects in moving parts can be discove.ed and

One method of vibration analysis is known as order tracking. This is a frequency analysis
method that uses multiples of the running speed (orders), instead of absolute frequencies
(Hertz), as the frequency base. Order tracking is useful for machine condition monitoring
because it can easily identify speed-related vibration, such as shaft defects and bearing

sampled at constant increments of shaft angle. Conventional order tracking methods use
specialized analog hardware to sample at a rate proportional to the shaft speed. A newer,
computed order tracking method has been introduced which samples at a constant rate
(i.e., uniform Ar) and then uses software to resample the data at constant angular
increments.

This study examines which factors and assumptions inherent in the new order tracking
method have the greatest effects on accuracy. Both classical and computed methods have
been evaluated and compared using a digital simulation. It was found that the method is
extremely sensitive to the timing accuracy of keyphasor pulses, and improvements in
spectral accuracy would result if cubic spline interpolation were implemented instead of
linear interpolation.



Table of Contents

L. Introduction ........ccccieivvininraresiecesesnnancescasesens 1
2.Background & Theory ......cccccicvencencrensncasacensannee 3
2.1. Purposes of Vibration Analysis .........cc.ooiiiiiiiiiiiiiiiiiinn.s. 3
2.2. Contemporary Analysis Methods .............ccoviiiiiiiiiininnnnnnn. 4
2.2.1. The Keyphasor ........cciviiiiiinniinieinieinnrionernnraneennns 4
222, Tlme—DnmamAnalymsanlbranonData i rarraeaanas 5
2.2.2.1. Vibration Severity 6

2.2.2.2. Lissajous Measures
2.2.2.3. Average Shaft Centerline Position 8
2.2.3. Frequency-Domain Analysis of Vibration Data .................. 9
2.2.3.1. Common Bearing Defect Signature Patterns 10
2.2.3.2. Single Spectrum 10
2.2.3.3. Stacked Spectra, Cascade or Waterfall Plot 11
2.2.3.4. Bode Plots 13
2.2.3.5. Periodic averaging 14
2.2.3.6. Order Tracking 14
R 11T+ O | :
2.3.1. Fast Fourier Transform ............c.cciiviviiiiivcinennnienn... 16
23.2. TradmcnalMamsng)rdchrackmg S ¥
2.3.3. Hewlett Packard Method of Computed Order Traclv;,mg ceeenn.. 18
2.3.4. Bruel & Kjaer Method of Computed Order Tracking ........... 23
3. Equipment & Procedures .........ccecevevevcerenccccncess 24
3L EQUIPIMENT ..iuuuiiniaiianniranisanussesseasnnssssnsssesiecsnensanes 24
3.2, UseofPubhshedAlgonthms&Data eerereereriseriiaes L
3.2.1. Hewlett Packard Method of Computed Order Track,mg ceeeieas 24
3.2.2. Digital Filter Coefficients ..............ccoiivvivviniiierenner... 25
3.2.3. Block Cubic Interpolation ...........ccovviiiiniiiicninnaennns 25
3.2.4. Fast Fourier Transform ............ccooviiiiiiiiiiiiineninn.. 25
33.Procedure  .....oiiiiiiiiiiiiiii e N
4.Results&Discussmn P .



43 Comparisonof Methods  ...........ccoviiiiiiiiiiiineniiinieeinenss 29
44, FactorsAffectmgAccuracyuftheHPMemnd M )
4.4.1. Effects of the Keyphasor .............cccveiviiiiiiiirinaeee... 31
4.4.1.1. Keyphasor Timing Accuracy & Rcsnlunun 31

4.4.1.2. Using Multiple Keyphasor Pulses per Revolution 32

4.4.1.3. Keyphasor Noise 35

442 Effectsof Filtering  ........coiiviiiviiiiiinirnniasiniacasseese 36
4.4.2.1. Digital Filtering 36

4.4.2.1.1. Filter Design 37

4.4.2.2. Interpolated Digital Filtering 38

4.4.3. Effects of Rotation Speed & Acceleration ...................... 41
4.4.3.1. Assumption of Consistent Shaft Angle 41

4.4.3.2. Misrepresentation of Frequency Content 42

4.4.3.3. Attenuation of High Orders 43

4.4.3.4. Varying Acceleration 44

4.4.4. Effects of Interpolation Method ................cooovivevene.. 46
4.4.4.1. Linear Interpolation 48

4.4.4.2, Quadratic Interpolation 50

4.4.4.3. Piecewise Cubic Interpolation 52

4.4.4.4. Blockwise Cubic Spline Interpolation 54

4.4.4.5, Interpolation Summary 56

4.4.5. Considerations Regarding Noise .............ccoovvivvvevnnnn.. 57
4.4.5.1. Sources of Noise 58

4.4.5.2. Effects of Noise on Accuracy of the HP Method 58

4.4.5.3. Effects of Noise on Choice of Interpolation Method 60

4.4.6. Effecis of Data Block Size .............ccovviiviiiiinvinnnns., 60

5. Summary & Conclusions .......c..ccceceeeeecrsnsnssancnonas 62
6. Recommendations for Future Development ................ 64
7. Bibliography .....cccceiviiecerecicerscasnsscsccccscncnsees 68
8. ApPendiceS ......ciriirerintnscnscccscescrscscenascssnsenss 67
8.1. Fundamental cOde ........cciiiiiiiiiiiniioniniiiienionennnniienenns 67

8.1.1. Main program ........c.ciiiiiiiiiiiiiiiiiiiietiiiiiaaaraannnss 67



8.1.2. Hewlett Packard Method of Computed Order Tracking

8.1.3. Subroutine for Resampling Data

R OF P R & P R R E & % E B B R F B E R B E Y EEEE BN

R R RN NN

73



List of Tables

Table 1:  Similarity COmMPAariSOn ........c.evvviiiiiiierinnerinie iecnnnnss

Table 2:  Amplitude Comparison of Interpolation Methods .................. 52

Table 3:  Spectral Comparison of Interpolation Methods .......... . 52



List of Figures & Diagrams

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure §:
Figure 6:
Figure 7:
Figure 8:
Figure 9:
Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:

Figure 22:

Diagram of rotating machine ..............cooiviiiiiiiiiin e 4
Nlustration of keyphasor transducer mounting ...................... 5
Example of Lissajous plot ........ccooiiiiiiiniiiiiiiiiin e, 7
Dustration of XY vibration sensors ...............ccoovvviiiiiin... 7
Example of average shaftcenterlineplot ........................... 8
Example of single spectrum presentation ...............c.oenein.nn. 10
Simulation of runup analyzed using traditional techniques ......... 11
Example of Bentley Nevada format for Bode plot ....... e, 12
Simulation of runup analyzed using order tracking techniques ..... 14
Equipment used for traditional order tracking ..................... 16
Equipment used for HP's computed order tracking ................ 17
Flowchart of computed order tracking algorithm .................. 19
Example of resampled signal ................ccoiiiiiiiiiiiiiii 20
Flowchait of simulation program ..............ccoviiiiiiiiniienn. 25
Flowchart of simulation procedure .................ccovviiiiinnn. 26
Comparison of classical order tracking to other methods .......... 29
Effects of keyphasor resolution .................ccoiiiiiiiiiiii, 30
Effect of using multiple keyphasors with linear acceleration ........ 32

Effect of using multiple keyphasors with nonlinear acceleration .... 33

Effect of adding random error to keyphasor signal ................. 34
Digital filter frequency response for 700 rpm trigger speed ........ 36
Family of digital filter coefficientcurves ...............covvvunnenn. 37



Figure 23:
Figure 24:
Figure 25:
Figure 26:
Figure 27:
Figure 28:
Figure 29:
Figure 30:
Figure 31:
Figure 32:
Figure 33:
Figure 34:
Figure 35:
Figure 36:
Figure 37:
Figure 38:

Removal of high orders using digital filtering .............c.00000.. 38

Detailed examination of filtereffects ................cvvvveenene... 38

Piecewise cubic interpolation spectrum at low and high speeds .... 50
Detail of blockwise cubic interpolation neat 1000 rpm ............. 51
Spectrum from block cubic interpolation at low and high speeds ... 51
Effects of quantization and digital word length .................... 54

Spectrum showing effects of randomnoise .................ceeeees 55



Symbols, Nomenclature & Abbreviations

a, curve fit coefficients
b, curve fit coefficients
AD angular separation of keyphasor pulses
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sampling frequency

function of frequency

function of time

an integer
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e g >
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=g

RSSO A T

[n] bibliographical reference
1x, 2x,... one times the shaft speed, two times the shaft speed, etc.

ADC analog to digital converter
B&K Bruel & Kjaer

coT computed order tracking
DFT discrete Fourier transform
Eqn. Equation

FFT fast Fourier transform

Fig. Figure

HP Hewlett Packard

Hz Hertz, cycles per second
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1

Introduction
In industry, the cost of operating rotating machinery increases dramatically

machinery condition to predict when service is due. One common approach is
to use vibration analysis because it can provide extensive insight, is
nonintrusive, and can be done while the machinery is operating [9]. This
vibration analysis can be done in either the time or frequency domain.

Time domain analysis can indicate the motion of particular machine elements
beneath the transducer, or overall vibration levels. Frequency domain analysis
can reveal what frequencies are contained in the vibration signal. From this, it

vibration. This information can be used to help plan repairs.

A special case of frequency analysis is called order tracking, and uses multiples
of the running speed (called orders) instead of absolute frequency units (like
Hertz) as a frequency base. This can be helpful because many vibrations in
rotating machinery are usually directly related to the rotation of the main shaft.

Historically, order tracking has been performed using analog equipment to
directly sample the vibration signals of rotating machinery at constant
increments of the shaft angle [13]. The associated cost and complexity remain
the major stumbling blocks that prevent the widespread use of this technique.
This analog approach is also error prone; the equipment used for analog order
tracking is known to have problems following changing shaft speeds [16].

In 1989, Hewlett Packard (HP) introduced a computational method for
performing order tracking analysis that reduced the dependency on specialized
equipment and claimed to give accuracy superior to analog methods [14].
Soon after, Bruel & Kjaer (B&K) introduced a different computational method
of achieving essentially the same result, making the same claims as HP
regarding superiority over analog approaches [20]. HP uses a method of
resampling by interpolation filtering, while B&K uses a method of resampling
by decimation and interpolation.

Some information has been published regarding how computed order tracking
(COT) works [7, 12, 13 & 14] and why it is better than analog methods, but
no literature exists to explain how the assumptions and approximations
inherent in these methods affect accuracy. This study examines the HP method
of COT in detail to determine which factors affect its accuracy. Details
regarding the precise nature of the B&K method appeared too late to be
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included. Future development may see this method added to the simulation and
compared to others quantitatively.

With the anticipation of a real-time implementation of this method, it is
necessary to find which factors greatly affect accuracy to ensure that
computational power is not wasted. The computational process must keep

components can be distinguished in the presence of stronger ones. By
determining the most important accuracy factors, minimum hardware
requirements may be determined. In addition to the hardware requirements,
this study indicates which software approaches are most likely to yield the best
results.

To learn how the HP method works, a full numerical simulation was created
and implemented using a digital computer, By using a simulation, all factors
can be held constant except those of interest, allowing determination of the
factors that have the greatest effects on accuracy. Incorporating a simulated
signal ensures that the raw signal data is identical for every r2st.
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Background & Theory
Purposes of Vibration Analysis

The purpose of industrial maintenance is to keep production machinery
operating effectively and reliably at the lowest possible cost. When a machine
unexpectedly breaks down, the owner loses money in two ways: production
(i.e. revenue) is lost, and money is spent on the necessary repairs. Such
emergency repairs are usually more expensive than if the same repair had been
planned.

For these reasons, most industries plan their maintenance. Preventive
maintenance is a simple approach that schedules repairs based on the history of
equipment failure and machine manufacturers’ recommendations. This system
is straightforward but not optimal. Often, money is wasted when parts are
replaced unnecessarily, and there is no guarantee that a part will last until its
replacement date. When a part fails before its scheduled replacement, the event
being avoided (an unexpected breakdown) occurs.

A better method involves monitoring machine condition and scheduling repairs
Jjust before failure. This would allow the owner to get full money’s worth from
parts purchased, and to avoid machine failure. Accurate determination of
machine condition can also reduce downtime by allowing maintenance to be
scheduled and by providing longer intervals between servicing. This is an
approach known as predictive maintenance.

Vibration analysis of rotadng machinery can be an important part of industrial
predictive maintenance programs, since it allows the condition of operating
machinery to be monitored without shutdown or disassembly of the machine. It
is possible to assess machine condition by monitoring vibration levels because
the moving parts in any machine cause vibrations and as these parts wear, their
vibration levels increase. Figure 1 shows typical running problems with
common machine elements and usual transducer placement. The vibration data
is used to decide what, if anything, is wrong with the machine. If excessive
wear is detected, the machine can be removed from service before it fails. Such
analysis can ensure safer operation of the machinery by not allowing
wear-induced catastrophic failure to occur, and make operation less costly by
allowing better management of the repair project.

Simple approaches to vibration analysis measure total vibration levels; when
the level becomes excessive, the machine is removed from service. Often,
however, critical small components such as bearings or gear teeth fail before

3
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2.2

2.2.1

total vibration levels become excessive, and extensive damage occurs before
the problem is recognized.

Vibration

Vibration o on
sensor on baaring
Unbalanced housing bearing
or damaged '
shaft |
PR

\ \ Resonating

? ~ housing
Worn L-Wom gears \ Unbalanced

bearings rotor

» Figure 1: Diagram of rotating machine

In normal practice, some combination of the two methods (preventive and
predictive) is used. Those machines that are critical to production, pose safety
risks, or are very expensive to repair are maintained using predictive techniques
such as vibration analysis. The inexpensive and noncritical machinery, often
called balance-of-plant machinery, are maintained using preventive methods.

Contemporary Analysis Methods

While the simplest and least expensive form of vibration monitoring uses
subjective tests (the human senses), more specific and repeatable information
can be obtained using objective tests (measurements). The most common
measurements are made in either the time or frequency domain.

The Keyphasor
A common component of most analysis methods is that of a keyphasor. It is

defined as a once-per-shaft-revolution event used to measure shaft speed and
as a reference for measuring vibration phase angle. The term keyphasor was

4
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2.2.2

coined by Bentley Nevada [2]. The keyphasor transducer is typically a
proximity probe, optical pickup or magnetic pickup.

Vibrations in a machine can have a certain phase relationship, i.e. a difference
in start time of the vibration cycle of each component. To give a common
reference point, one position on a rotating shaft of the machine is chosen. All
other vibration components are timed according to the repeated passage of this
point. The most common reference is a shaft key because it is usually
accessible and gives a strong signal, as shown in Figure 2. Thus, because the
measurement is taken from a shaft key and because it is the primary phase
marker, the signal is called the keyphasor.

Keyphasor
Signal

—— Proximity probe

—— Bearing housing

Main shaft
Shaft key

some filtering may be applied. Either one or two vibration signals and a
tachometer (keyphasor) signal may be used and analyzed using either analog or
digital instrumentation. Some common methods of presenting the data are
discussed below. '
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Vibration Severity

Vibration severity measurements are a method of comparing the magnitude of
a given vibration to a predetermined allowable limit [9]. One approach is to
rectify the output of a vibration transducer and obtain a Root-Mean-Square
(RMS) value of the signal. This provides a coarsc measurement of how bad the
vibrations (and therefore wear) are in a given machine. The machine is
rernnved frorﬂ service and ﬂ:pajred when the vnbraﬁcns reach t,h: presct limit.
usua]ly prescﬂted in some saﬁ of n'cnd graph usu&lly shcmng an increase in
vibration severity over time.

Vibration severity measurements have two drawbacks. First, they do not
suggest the source of the vibrations, so specific repairs are hard to plan.
Second, critical small parts such as gear tecth or bearings may fail without
severely raising vibration levels because their contribution to the total vibration
level is small After these companents fail the resu]ting damage to mher

v1bratmr1 hrmt is reachecl, A better rnemud wc:.;ld detect these failures befgre
more serious damage occurs.

Lissajous Measures

More commonly known by the Bentley Nevada term orbit plots [2], these XY
graphs show the path of the shaft center during one rotation, as in Figure 3. An
orbit can be observed on an oscilloscope (an analog device) or a digital
analyzer. Other names for this presentation of data are precessional motion,
orbital motion, or Lissajous presentation [6, 8].

Whether the display is analog or digital, Lissajous measures use two
transducers at right angles to each other and a keyphasor sensor, as shown in
Figure 4. Usually used for such operations as shaft balancing, Lissajous
measures can also give a reasonable indication of bearing wear.

An addltmna] use of this type nf measur:ment 1f sevcral bearmgs are

observe the mode shape of the shaft vibration.
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2.2.2.3 Average Shaft Centerline Position

Presented using polar axes, these plots show the average shaft center position
over the course of a run-up or rundown, as illustrated in Figure 5. Although
they use the same sensor array as for Lissajous plots and show the same kind
of data, they do so over a longer term. These plots can show the speeds at
which vibration amplitudes are most severe, and to some extent, when the
mode shapes of the vibrations change.

Bentley Nevada refers to these presentations by the general term polar plots,
and defines them as,

Polar coordinate representation of the locus of the 1X (or
2X....) shaft vibration vecror at a specific lateral shaft location
with shaft rotative speed as a parameter. The polar plot is
generated by in-phase and quadrature signals, usually during
machine startup or coastdown. [2]

In this situation, the 1x (or 2x,...) vibration components from the raw data
signal are found using specialized digital filters.

» Figure 5: Exaiﬁ;jleiof”avcrége shaft centerline pc:sitioﬁ graph
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2.23.1

Frequency-Domain Analysis of Vibration Data

The basis of frequency-domain analysis is the Fast Fourier Transform or FFT.
The FFT is a numerical technique used to calculate the frequency content of
discrete time-domain data. Analog time-domain data is converted to a digital
format by sampling the data at constant time intervals, At. This analog data is
normally passed through an analog filter prior to sampling to prevent aliasing,
as will be explained in Section 2.4.2, Fast Fourier Transform.

Frequency-domain analysis shows frequency components of the vibration
signal, helping pinpoint the causes of vibrations. Signature patterns in the
spectra may identify common machine faults, discussed further in
Section 2.3.2.1.1, Common Bvaring Defect Signature Patterns. Some common
methods of presenting this specival information are outlined in the sections that
follow.

Common Bearing Defect Signature Patterns

It is important to recognize that bearing defect frequencies of any type indicate
a problem by their presence as much as by their magnitude. These frequencies
simply should not exist in the spectra; if they do, there is a problem.

Defective rolling-element bearings generate two main types of frequencies:
natural frequencies of bearing components and rotational defect frequencies.
Natural frequencies of bearing components are excited when the rolling
elements strike defects in the inner or outer races. These frequencies are a
function of the bearing geometry, and are independent of running speed.

Equations have been developed [3] that relate specific bearing defects to
specific rotational defect frequencies. The interesting feature of this type of
vibration for order tracking analysis is that they are all a function of rotational
speed. These defects can occur on any part of the bearing assembly (inner race,
outer race, rolling elements or cage) and there are equations for each. Some
publications exist [3] which have tabulated these defect frequencies for various
makes and models of bearings.

Some of the main features of the signature frequencies are these:

a. bearing defect frequencies are one of only a few order-based
phenomena which occur at non-integer (asynchronous) orders

b. the amplitude of the outer race defect frequency is higher than the
inner race frequency because the transducer is closer to the outer
race

9
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c. defects appear first on the races (generating the main spectral
peaks) then on the rolling elements and the cage, causing smaller
sidebands to appear around the main peaks.

In the numerous examples used by Berry [3], the defect frequencies are usually
less than 10 orders, so the somewhat arbitrary choice of a 0-6 order range for
this study is probably valid.

2.23.2 Single Spectrum

A spectrum usually shows frequency on the independent axis and amplitude on
the dependent axis, as shown in Figure 6. Since the FFT output is complex, the
amplitude is found by calculating the vector length of the real and imaginary
components. A single spectrum is used for machines running at a fixed speed,
or for close examination of the frequency content of a signal.

—
L i
R

YT SR OU—

0.01

Amplitude

0.0001 e

Frequency (Hz)

> Figure 6: Example of single spectrum presentation

2.2.3.3 Stacked Spectra, Cascade or Waterfall Plot

It is common to analyze rotating machinery by performing vibration analysis
while the machine is speeding up or slowing down. When the machine starts
from rest and accelerates smoothly while vibration signals are monitored, the
process is called a runup. When the machine starts from a higher speed and

10
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decelerates, the process is called a coastdown or rundown. Performing
vibration analysis during a runup or rundown can reveal problems that might
not appear if the machine operated at steady state. Runups and rundowns are
especially useful when combined with order tracking analysis, as order-based
phenomena become readily apparent (as in Figure 9). For machine runups and
rundowns, it is useful to compare the spectra obtained at various machine
running speeds. To this end, individual spectra are often stacked in one plot,
allowing any patterns within the spectra to become more easily discernible.

frequency-domain techniques. As the machine passes a certain threshold of
speed (a trigger speed), a block of time-domain vibration samples is taken and
an FFT of those samples is calculated. In this plot, the triggers started at
100 rpm and occurred every hundred rpm up to and including 1000 rpm. The
machine had three shaft-related vibrations at 1x, 2.5x and 4x the shaft speed,
and a fixed-frequency component at 55 Hz. In Figure 7, notice the
corresponding three oblique patterns of peaks and the one vertical pattern.

» Figure 7: Simulation of runup analyzed using traditional techniques

11
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This type of data presentation displays information about shaft-related
frequencies, but not well. The peak pattern for any high orders would be hard
to distinguish as the slope would be too flat, and there would not be enough
peaks. If the sample rate was changed to show high orders well, distinction
(resolution) between the low orders would be lost.

Bentley Nevada [2] distinguishes a cascade plot from a waterfall plot; the
cascade plot compares the information using rpm on one axis, while the
waterfall plot uses time. Occasionally, one axis will be skewed to give the plot
an isometric appearance; this modified plot is called a raster plot.

Bode Piots

The classical Bode plot is a special case of the single spectrum presentation
that shows two graphs at once. One shows amplitude vs. frequency, and the
other shows phase vs. frequency, yielding insight into phase relationships
between frequency components.

Bentley Nevada's interpretation of the Bode plot is quite different (see
Figure 8) ; according to them, itis a

90

Phase lag

(¥ \a

Amplitude (1x)
O o N W

Spced (rpm)

» Figure 8: Exsmple of Bentley Nevada fenﬁat for Bode plot
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2.2.3.6

graph in Cartesian format representing the 1X vibration vector
response as a function of shaft rotative speed. One Y axis
represents 1X amplitude, a second Y axis represents phase lag
angle, and a common X axis represents shaft rotative speed.
Sometimes called an imbalance response plot. Also used for 2X,
3X,... vibration response vectors. [2]

Bentley Nevada uses their version of Bode Plots for balancing rotating
machinery. A Bode plot gives a complete snapshot of the rotor response. The
phase angle plot shows the position and relationship of the rotor's heavy spot
(where too much weight exists) and its high spot (where weight must be
added). The amplitude plot shows the resonance frequency(ies) and
amplitude(s).

Periodic averaging

cycle period is identified (usually one rotation of the shaft) and then the
recorded data signal is resampled a predetermined number of times per
revolution. When data from several periods are obtained they are averaged to
produce one average period. An FFT of this data produces an order spectrum.

Aside from concerns regarding frequency resolution, the primary disadvantage
of this method is the loss of all non-order data. Any time-dependent data is
assumed to be random, and is removed by the averaging process; other than
such “random noise”, all that remains in the spectrum is order-related data.

Order Tracking

Vibrations directly related to shaft speed are said to occur at certain orders.
Vibrations from the blades of a 12-blade fan, for example, would be expected
to occur at a frequency of 12 orders. Other machine elements have their own
signature frequencies, usually related directly to the shaft speed. In discussing
analysis of gearbox vibrations, Tan and Mathew [16] note that when speed
varies, a time base is inadequate for describing the periodicity of vibration, but
they recognize that it is possible to describe the vibration as “a periodic
function of the shaft angular position”. This is the basis for order tracking
analysis.

Figure 9 shows the same run-up as shown in the frequency domain earlier, but
performed by order tracking analysis. Order related vibrations are easily

13
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distinguished as vertical patterns of peaks; note that all orders have equal
frequency resolution. Notice also that the fixed-frequency component ceases to
be a straight pattern of peaks, and so the fixed-frequency vibration information
is not obvious. Thus, order tracking does not replace other methods, but adds
another way to look at vibration data.

ks

> ?1gure 9: Simulation of runup analyzed using order tracking techniques
Order tracking is a frequency-domain approach, but it relates vibration
amplitudes to orders instead of absolute frequencies. In this way, bearing
faults, gear tooth wear and other vibrations associated with the running speed
are easily identified.

This change of units is accomplished by understanding a property of the
Fourier transform equations, [18]

H() = j :'_ h(1)e™dy

ho)=["_ Hpe™df
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If the quantity ¢ in the above equations is measured in seconds, then the
quantity f will have the units of cycles per second (Hz), but these equations are
not restricted to these units. If A(r) is a function of revolutions, then H(f) will
have the units of cycles per revolutions. The umts of frequ:ncy measured in
cycles per revolution are called orders. To summarize: in traditional frequency
analysis, data are transformed from the time domain into the frequency domain;
in order tracking analysis, data are transformed from the angle domain into the
order domain.

Fast Fourler Transform

The basis of frequency-domain analysis is the Discrete Fourier Transform or
DFT. The DFT is a numerical technique used to calculate the frequency
content of discretely sampled time-domain data. A more computationally
efficient form of the DFT is the Fast Fourier Transform, or FFT.

Real vibration signals usually contain a very wide bandwidth; that is,
frequencies in the signal can range from zero to very high frequencies. In
vibration analysis, the user specifies the highest frequency of interest, and
employs an analog lowpass filter to remove all higher ones. This highest
frequency is known as the cutoff frequency, f,. When sampling a signal at
constant intervals, there is a limit on the maximum length of the sample
interval, determined by the Nyquist critical frequency. The Nyquist critical
frequency is twice f,, the highest frequency in the signal. This limit ensures that
at least two samples of each cycle of the highest frequency are taken. The
sampling rate, f,, is set at more than twice the highest frequency, ensuring that
it will be sampled at least twice per cycle, i.e.

f:22fc

If the signal is sampled slower than this limit, a phenomenon known as aliasing
occurs, Aliasing results in high frequencies “folding back™ and appearing as
lower frequencies in the signal. Once a signal has been aliased by discrete
sampling, there is little that can be done to detect the aliasing or remove it. The
solution is the prevention of aliasing, accomplished by analog lowpass filtering
of the signal as mentioned above and sampling faster than the Nyquist limit.

The FFT generates a discrete frequency spectrum. If a periodic signal like a
sine wave is sampled so that an integer number of periods fill the data block,
then the FFT will produce a spectrum with amplitudes of zero for all
frequencies except the frequency of the sine wave. However, obtaining an
integer number of periods of a vibration signal rarely occurs. If a non-integer

15
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» Figure 10: Equipment used for traditional ordgr tracking

number of periods is sampled, energy is spread across the spectrum around the
main peak. This is a phenomenon known as /eakage, and can be seen in
Figure 6, where the central peaks are broadened instead of being thin spectral
lines.

Leakage can be reduced by applying a data window to the data block prior to
calculation of the FFT. Most data windows modify the data block so that it
starts and ends with small amplitude signals. The data window known as a
Hanning window [21] was used throughout this study. This window has the
form

x(0)

L1 os 2Rt
2 2 Tc 0=tsT.

where T, is the total length of the data block and ¢ is any given time within the
data block.

Traditional Means of Order Tracking

Traditional order tracking attempts to directly sample the analog signal at
constant A@ using extra analog instrumentation, namely a ratio synthesizer and
an anti-aliasing tracking filter, as shown in Figure 10. A frequency counter may
also be included to monitor the shaft speed.

Hatatmg Machine

Frequency matin Cunthaclse Analog
Counter Ratio Synthesizer — Tracking Filter

i T L

Sample Filtered

Rate Vibration

Control Signal
I , N T

Signal Analyzer
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The ratio synthesizer generates a signai proportional to the shaft speed of the
machine. This output is used to control the sampling rate of the vibration signal
and the cutoff frequency of the analog tracking filter, which is a lowpass filter
with an adjustable pass band. An FFT is calculated using the data sampled at
constant A@ (angle domain samples) and the resulting spectrum is an order

Hewlett Packard Method of Computed Order Tracking

Before the computational methods were introduced, order tracking analysis
was performed using specialized analog hardware (illustrated in Figure 10) to
change the sampling rate in real time. This method attempted to directly take
samples at constant A@ increments.

Hewlett Packard introduced a digital method which can computationally
resample a constant Ar signal to provide the desired constant A@ data, based
on a keyphasor signal. This method is called Computed Order Tracking
(COT). In contrast to the traditional method, COT is almost fully digital.
Shown in Figure 11, The vibration signal passes through a fixed frequency
lowpass filter, and is sampled at constant increments of time, Ar.

Rotating Machine

Vibration
Signal

Fixed-Frequency
Lowpass Filter

Keyphasor Signal

T
Filtered

_ + oy

Signal Analyzer

> Flgure 1: gquipment used for HP’s computed order trackmé )
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To this point, the method resembles traditional frequency analysis more than
order tracking. However, once the signal has been sampled, it is resampled by
software using the tachometer (or keyphasor) signal to extract signal
amplitudes at constant A6. In Figure 11, the item labeled “signal analyzer”
represents whatever device is used for data acquisition and signal processing.
This could be a specialized piece of equipment or a high speed digital computer
with data acquisition hardware.

The analog lowpass filter is often built in to the signal analyzer or data
acquisition system, and is inexpensive. In addition, it is likely to do a better job
of filtering at its cutoff frequency than a tracking filter set at the same cutoff
frequency. This is because the design of a variable (tracking) filter requires that
compromises be made which reduce the effectiveness of the filter at a specific
frequency in order to improve its performance at some other frequency. The
goal is to achieve consistent filter performance across the range of adjustment.
In contrast, a single-frequency filter can be optimized to perform extremely
well at one particular frequency.

The process of computed order tracking is illustrated in Figure 12, although
some detail has been omitted for clarity.

From the signal point of view, Figure 13 shows an arbitrary simple vibration
signal containing only order data and delimited by three keyphasor pulses.
Once the signal has been digitized by sampling at constant Az, these data are
resampled at constant increments of shaft angle. The timing of the resample
points is based on the duration between keyphasor pulses.

For example, assume that it is desired to resample these data at six points per
revolution. In Figure 13, the resamples are shown without error. Notice that
the resamples fall on the same place on each wave (i.e. peak, trough)
independent of where the actual time-based samples were taken. It will be
shown that the better these values can be interpolated, the better the results
will be.

When resampling occurs, two distinctly separate estimation processes occur.

The first is the correct placement of the resamples on the independent (time)

axis. This is the process of determining the resample times. The second is the

correct placement of the resamples on the dependent (amplitude) axis. This is

the interpolation process. Determining the precise resample times is critical for

the interpolation process — without precision here, the interpolation process
" has no hope of consistent accuracy.

18
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store third KP pulse
arrival time
filter new data __
The heart of the HP
l method for COT
determine . - |Data interpolation is
resampletimes | [ - ©  |done during resampling
ot cata
resample data
store resampled data
in FFT data block
data block full? Y»o@
No
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shift data
{243 data to t1-12 data

» Figure 12: Flowchart of computed order tracking algorithm

19



Erik Stampe Munck Computed Order Tracking

Time

» Figure 13: Example of resampled signal

For computed order tracking, the resample times are computed assuming a
constant angular acceleration with time, ¢, so the shaft angle, ®, can be
described by the quadratic equation:

Eqn. 1: (1) =bo + b t+bat?

which, if solved for ¢ becomes,

Eqn. 2: t=5};;[,/£2(¢-bo)+b% ~bi]

The values of the coefficients by, b, and b, are found by fitting the keyphasor
arrival times, which occur at known shaft angle increments’,

() =0
Eqn. 3: O(12) = AD
O(13) =240

! if the keyphasor is a once-per-shaft-revolution event, then the angular

separation between keyphasors, A®, is known to be 21 radians.
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Eqn. 6:

Eqn. 9:

to Eqn. 1, yielding
0 14 t% bo |
AD 16,8 {6
| 20 162 || b

which is then solved for {b},

= hA

det ——([t3(t1 = t3) + 2t2(r2 = 1,)]

bo
- %ﬁ ~2+13)
bz = %g[—h +20 - 1]

det=(t2=1t1)(ts=11)(ts ~12)

Since the data are resampled after the arrival of each new keyphasor pulse, but
the last three keyphasor pulses are used, the resample times are calculated only
over the center half of the interval (¢,..t;) to avoid overlap. Thus a limit is
imposed on &,
Ad 3A0
2 sd< )
For discrete resampling, it can further be specified that

& =kAB

where A@ is the desired angular spacing between resamples. Substituting this
equation into Eqn. 6 yields values for k (a positive integer),

AD ., 3A®
246 <k<"p¢

So finally, the equation for finding the resample times (Eqn. 2) becomes

ticky, == [,/4b;(l;A6 l:n;.)a-b2 —b.] kpositive integer

Once the resample times are calculated, the amplitude of the signal at those
times is calculated by interpolating between the sampled data using any
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appropriate method. HP uses only linear interpolation; it will be shown that this
simplification can cause inaccuracies. Other methods will be discussed in
Section 4, Results & Discussion.

After the amplitudes are found, the resampled data are transformed from the
angle domain to the order domain by means of a Fast Fourier Transform
(FFT), complete with the application of data windows.

Bruel & Kjaer Method of Computed Order Tracking

The comoutational order tracking method proposed by B&K [20] uses the
same inputs as the HP method but uses a different algorithm, based on high
speed digital techniques called decimation and interpolation, to extract the
speed-normalized data. Detail regarding the precise nature of the B&K method
appeared too late to be incorporated in the simulation. Future development
may add this method to the simulation and quantitatively compare it to others.
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3.1

3.2

3i2i1

Equipment & Procedures

An original computer simulation was created to examine computed order
tracking (COT) and compare it to other methods. By using a total simulation
to test and compare the different methods, it was possible to ensure that only
the factors of interest were changed from one test to the next. An apparatus for
physical experimentation would not be expected to provide such repeatable
raw data.

In addition, it is generally less expensive and time-consuming to alter
simulation software than it would be to make similar changes to hardware.
Another advantage of using a computer simulation is the ability to obtain the
exactly correct results. Because all variables are known, a method that can find
the exactly correct signal amplitude for a given point in time can be developed.
The results from this exact method can be used as a base to compare all other
results.

Equipment

The analyses done in this paper were performed using an original numerical
simulation written using the C language and run on a personal computer.
Elements in the simulation included the rotating machine, transducers,
amplifier, analog-to-digital converter, and the processing algorithms. Both
commercial and custom software were used to analyze and present results.

Some algorithms and data used in the simulation were created by others and
used with only small changes. The details of these are discussed below.

Hewlett Packard Method of Computed Order Tracking

To create a fair and accurate representation of the HP method of computed
order tracking, it was necessary to follow the original algorithm as closely as
possible. Potter of HP had patented the method, so the patent [12] was
obtained and used as a blueprint for writing that portion of the simulation. The
code is shown in the appendix. Unfortunately, Potter did not include details of
his linear interpolation filter because, as he explains,

.. there are innumerable ways of interpolating digitized
waveforms that are well known to those skilled in the
interpolating art, [so] a specified interpolation process is not
described here. Obviously, among other things the choice of a
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specific interpolation process to be used in an actual
embodiment of the invention will depend upon economics and
the level of interpolation sophistication necessary. [12]

Thus it was necessary to use methods of filtering and interpolating the data
which may or may not be the same as the actual methods.

Digital Filter Coefficients
Whers digital ﬁ]l:ers were used the cnefﬁclents were calculated using

specfy filter charactensncs frum Wthh 11: gen:rates an apprcpnan: set of
coefficients. This method allows better use of more complicated filter design
techniques than manual calculation. The specifics of the digital filters are
described in Section 4.3.2.1, Digital Filtering.

Block Cubic Interpolation

Two different methods of performing a cubic polynomial interpolation were
tried. One method used a large block of raw data to generate spline coefficients
[19], while the other used four raw data points at a time in a basic polynomial
approach. The code for the four-points method was original. The spline
method is described in more detail in Section 4.3.4, Effects of Interpolation
Method.

Fast Fourier Transform

In the interests of speed, accuracy and reliability, published code for the Fast
Fourier Transform was used for that portion of the simulation. This code was
obtained from Numerical Recipes in C [18). Minor modifications made the
code compatible with the compiler used.

Procedure

In its simplest form, the simulation algorithm operates as illustrated in
Figure 14. The code for this program is given in the appendix. Initialization
(input) files controlled the simulation program to ensure that only the desired
settings changed. Because all input and output are done with text files, the
program results are almost self documenting, especially if related input and
output files are stored in one location and given similar names.

For the majority of the tests, the reference signal consists of a vibration signal
consisting of three components at orders 1.0, 2.5 and 4.0 and of amplitudes
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1.0, 0.5 and 0.5, respectively (units of amplitude are arbitrary). The machine is
defined to begin at rest and accelerate at a rate of 10 rpm/second with one
keyphasor pulse per revolution. The sampling rate for the vibration signal is set
at 250 Hz to avoid aliasing at 1000+ rpm, the highest analyzed shaft speed.

The analog-to-digital converter (ADC) has double precision.

Initialize
variables
with values
from input

Start Program

compute spead

Begin loop when

trigger speed
reached

i

Execute prasesslﬁg
maethod to fill data
block

1

Apply data windows
and caleulata FFT

Siare results in
Output Files  j¢— output files

v

Restart loop for next i}

» Figure 14: Flowchart of simulation program

The simulation tracked the shaft speed of the machine by monitoring the time
between consecutive keyphasor pulses. Sampling the vibration signal started
once the shaft speed matched or exceeded the target speed. The process was
suspended immediately after 512 data points were acquired and an FFT was
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calculated on the block of data. The data block was chosen to be 512 points in
size to achieve a compromise between storage requirements and processing
time on one hand and frequency resolution on the other. The processing
sequence resumed after the machine speed passed through the next target,

To make a test or comparison, the procedure illustrated in Figure 15 was used.

Prepare input file as a
control case

Store resuits of
control case in Run Simulation
output files
r )/
Change one part of
input file as test case

Store results of tast
Run Simulation -‘( case in output files O
ﬁmpare control case
K to test case

» Figure 15: Flowchart of simulation procedure
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4.1

4.2

Results & Discussion

Spectral information for machine run-ups is presented here using
two-dimensional semilog plots. The vertical axis displays vibration magnitude
on a log scale with arbitrary units and the horizontal axis displays orders.

Processing Methods

Three methods of order tracking analysis were modeled in the simulation:
exact, classical and computed. The definition of these terms, as used in this
study, are given below:

The exact method is an antificial but useful creation. Because all variables are
known within the simulation, it is possible to create a method which samples
the transducer signal at precisely the right times to obtain exactly constant A@
samples. Spectra thus generated are used as a base for comparison (see Section
4.2, Similarity Factor). '

The classical method is an approximation of the analog method of order
tracking as described in Section 2.6.3, Traditional Means of Order Tracking.
This method uses a variable sampling rate which is changed when each
keyphasor arrives and is held constant until the next keyphasor arrives.

The computed method is a reconstruction of the computed order tracking

Computed Order Tracking.
Similarity Factor

‘When discussing accuracy of the methods, it is nscessary to compare the test
results to a standard. This raises two questions: “How should the results be
compared?” and ““What should be used as the standard?”

Many critical machine components such as bearings and gears generate small
vibration amplitudes. These usually occur in the presence of large amplitude
vibrations caused by normal operation of the machine. For example, a fan
might have a high amplitude peak at the blade passing frequency, and a
significantly smaller peak from a critically worn bearing. Vibrations from the
blade passing frequency are normal and acceptable, but the small vibration
from the bearing is the information of interest. Thus, when comparing factors
that affect accuracy, one must equally consider effects on both large and small

27



Erik Stampe Munck Computed Order Tracking

4.3

element bearmg vibration sngnatur:s The presence c:f mlhng elcmgnt bearmg
defect frequencies of any amplitude indicate a problem. If these appear,

. especially if accompanied by harmonics, or sidebands, the bearings should be

replaced as soon as possible.

To compare two spectra, a similarity factor has been defined. This number can
range from zero (completely dissimilar) to one (identical). It is computed by
averaging the magnitude of fractional deviations of each data point in one
spectrum from its counterpart in the other, and subtracting this average from
unity, so:

where /; is the larger and s; is the smaller

This approach was chosen because it gives roughly the same weight to the
small amplitudes as the large amplitudes in the spectra. In cases where the
larger was exactly zero (and therefore the smaller is zero also, since the spectra
contain only positive values) the two points were defined to be exactly similar.

The standard chosen for comparison is the spectrum produced by sampling the
signal at exactly the right shaft angles (the “exact method”) unless noted
otherwise.

Comparison of Methods
Both the appmximaticn nf thg classical method and the computsi:d order

as shown in Fxgure 16. Althcmgh the mgnal sont;a.lns t.hr:: frequ:ncms, even the
exact solution shows three wide triangular peaks, instead of three thin spectral
lines. This occurs because the data block contains a non-integer number of
shaft cycles (i.e., 512 samples / 12 samples per revolution = 42.7 revolutions).
When this happens, the FFT adds extra frequencies to the spectrum because of
a perceived discontinuity in the signal. Data windows (described in detail in
Section 2.3.1, Fast Fourier Transform), which have been applied to all
methods, reduce this effect but do not eliminate it completely.

The answer to the question, “How well does COT work compared to the
classical method?” depends on the quality of analog instrumentation used for
the classical method (and higher quality is usually more expensive).
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A major limitation of the classical method is reported to be tracking error in
the ratio synthesizer, causing error in determination of rotation speed [13]. For
example, if a £5% error in determination of rotation speed is introduced to the
classical method, a higher noise floor results. With all other parameters the
same, the computed method produces cleaner spectra.

The approximation of the classical method assumes a linear increase in shaft
angle with time, which results in occasional errors in the number of samples
taken per revolution, causing some harmonic peaks to appear in the spectra.

In Figure 16, the three main peaks of the computed method are shaped more
like the exact solution (similarity 0.551) than are the irregular peaks of the
classical method (similarity 0.189). Also worth noting is the difference in the
level and consistency of the noise floors. The noise floor in the computed
method is much lower and flatter than the classical method.

The remainder of this study will focus on the HP method.
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4.4.1.1

» Figure 17: Effects of keyphasor resolution

Factors Aftecting Accuracy of the HP Method
Effects of the Keyphasor
Keyphasor Timing Accuracy & Resolution

The entire method of COT hinges on the accuracy of the resampling process.
The resampling process is based on obtaining the times at which the keyphasor
passes a certain point. The more accurate these times are, the more accurate
the resampled data. The more accurate the resampled data, the more accurate
the resulting spectra.

As illustrated in Figure 11, both the vibration signal and the keyphasor signal
are discretely sampled. The rate at which the keyphasor signal is sampled
determines the resolution of the keyphasor pulse arrival times. In other words,
all keyphasor pulse arrival times will be integer multiples of the keyphasor
channel sampling interval, At. The faster this sampling rate, the smaller this At
becomes, resulting in better keyphasor timing resolution. This helps reduce
rates are compared. Figure 17 shows that an order of magnitude improvement
in the keyphasor sampling resolution produces roughly an order of magnitude
improvement in the noise level.

gy
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4.4.1.2

Special note should be made of the lowest keyphasor sampling rate, 250 Hz,
the same sampling rate used for the vibration signal. Although this is an
adequate sampling rate for the vibration signal (i.e. it is above the Nyquist
limit), it is woefully inadequate for the keyphasor signal. The large multiple
side peaks in the spectra would mask any bearing defect frequencies.

Common two channel data acquisition hardware often uses the same sampling
rate for both channels. In that case, the choice of sampling raie must be
determined by the requirements for keyphasor resolution. Although this
increases the data storage requirements, it also improves the interpolation
accuracy, discussed in Section 4.3.4, Effects of Interpolation Method.

Using Muitiple Keyphasor Pulses per Revolution

Although one keyphasor per revolution is the most common, it is possible that
more pulses per revolution may be available. (However, one thing must be
remembered: computed order tracking assumes an equal angular separation
between keyphasor pulses.) There is a practical limit on the number of
keyphasor pulses per revolution. As mentioned in Section 2.6.4, Hewlett
Packard Method of Computed Order Tracking, data between the most recent
three keyphasors is used for resampling, and only those raw data in the center
half of that time interval are used (to prevent overlap). Thus it is possible that if
there are too many pulses, no raw data signals will fall into this interval.

Furthermore, the three most recent keyphasor pulses span a certain range of
shaft angle. If there are more keyphasor pulses than resamples per revolution,
then no resample times may fall in the center half of the interval. The method
could be refined to handle these circumstances, but the real need is
questionable, in light of the following findings.

A low sampling rate (250Hz) for the keyphasor pulses was used in these tests
to obtain a visible difference between the spectra. This low sampling rate is
responsible for the high noise floors in Figures 18 and 19. When that difference
emerged, it revealed that more keyphasor pulses per revolution are not
necessarily a good thing. Table 1 details the difference between the spectra
shown in Figures 18 and 19.
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Table 1: Similarity comparison
Similarity
constant nonconstant
acceleration | acceleration
1 keyphasor 0.0721 0.0328
3 keyphasors 0.0767 0.0306

It is believed that more keyphasors cause higher distortion because any error in
the determination of their arrival times is compounded by the (iterative)
resampling calculations. These problems are exacerbated when the shaft speed
changes in a nonlinear fashion. The effects of varying acceleration are
discussed in Section 4.4.3.4, Varying Acceleration.
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» Figure 18: Effect of using multiple keyphasors with linear acceir;mm;n )
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» Figure 19; Effect of using multiple keyphascfé with nonlinear accelcration

Keyphasor Noise

In this test, the keyphasor signal was sampled at 250 Hz; when the keyphasor
pulses arrived, a random error was added to the arrival times. Two tests were
run, as shown in Figure 20. The first had low noise: the random error was
between £1% of At. The second had high noise: random error between £50%
of At. The spectral noise floor is generally high because of the low keyphasor
signal sampling rate.

The results of these tests show a high noise floor (due mostly to the low
keyphasor sampling rate) which increases only marginally when the keyphasor
noise is increased to 50%.

It is somewhat surprising that the effects are not more drastic. In every other
keyphasor test, any reduction of keyphasor precision resulted in a dramatic

speed was so low that the resample times happened to be very close to the
correct placement. If the acceleration was greater or not constant, maybe the
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4.4.2

4.4.2.1
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Etfects of Filtering
Digital Filtering

When digitizing physical processes, the vibration signal is filtered by an analog
lowpass filter to avoid aliasing and then is sampled at constant At. The required
cutnff frequency far this filter is faund by cnnsideﬁng the rzsampling rate and

(1 . the hlghcst order at thc hxgh;est spccd)

Near this maximum speed, the sampling rate is very close to the resampling
rate and so the analog filter is not only removing unwanted high frequencies,
but also unwanted high orders. However, at lower speeds the vibrations
t:ccurﬁng at the same unwamsd high on:l:rs are nut manifesting themse,lves as

'l'hese hlgh Grders must snll be remcved 50 thcy do not corrupt the specﬂ'a

Since these high orders passed through the analog filter, they now exist in
digital form within the sampled signal, and must be removed by some form of
digital filtering. These orders have not been aliased, since they exist in the
constant Ar signal. Should this signal be resampled without digital filtering,
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these high orders will be aliased into the angle domain (the constant A® data)
The data were sampled at equally spaced time intervals, so our digital filter
must operate using frequencies, not orders, even though high orders are being
removed. The cutoff frequency of the required digital filter is found by
multiplying the cutoff order by the machine’s speed. It is primarily the cutoff
frequency that determines the filter coefficients.

If analyzing a machine running at constant speed, the cutoff frequency (and
therefore the filter coefficients) would not change, and only one set would be
needed. During a run-up and rundown, however, the cutoff frequency
continually changes, requiring the filter coefficients to be different for every
data point. One set of coefficients may be used for each trigger speed if the
machine is not accelerating too fast, but this may lead to some attenuation of
desired high orders (i.e. those just below the correct cutoff frequency).

Filter Design

All the spectra in this study use a frequency range of 0 to 6 orders, obtained by
resampling the data 12 times per revolution. Thus, the desired cutoff
frequency, f,, is 6 orders. At 100 rpm, the time based equivalent of 6 orders is

So for 100 rpm, the cutoff frequency is 10 Hz and the sampling rate is 250 Hz.
Thus, the cutoff for the initial filter is ideally

10Hz
ff' 350 Hz =0.04f,

The cutoff frequencies for filters at other trigger speeds were found in the same
fashion. After trying different methods, a two band Parks-McClellan design
method was chosen to generate 21 coefficients for a nonrecursive finite
impulse response filter. The response for the 700 rpm filter is shown in
Figure 21.

effons a much 1mprcved fi]tsr shape wuuld result Improvements o t.hese
filters would include a reduction in the pass band ripple and an increase in the
difference between the pass band amplitude and stop band amplitude
(attenuation). However, this shape and those for other trigger speeds will
suffice for the purposes of this study.



Erik Stampe Munck Computed Order Tracking

4.4.2.2

10 [
0 PN\ N N
) N \
10 F SR . -

Magnitude (dB)
8

60 | |

0 10 20 30 40 SO 60 70 80 90 100 110 120
Frequency (Hz)

> Figure 21: Digital tilier frequency response for 700 rpm trigger speed

Interpolated Digital Filtering

When analyzing a machine running at constant speed, the cutoff frequency
would not change, and only one set of filter coefficients would be required.
During a run-up and rundown, however, the cutoff frequency continually
changes, requiring the filter coefficients to be different for every data point.

Defining a set of digital filter coefficients for every data point is not a practical
approach, but it can be approximated by interpolating a new set of filter
coefficients from the existing sets. Figure 22 shows that the sets of filter
coefficients form a family of curves. Knowing the arrival times of the
keyphasor pulses, we can find the precise machine speed at each data point and
interpolate an appropriate set of filter coefficients for that data point. This may
be the approach used by HP, as indicated by this discussion of their
interpolation filter, '

To improve speed, the actual filter is implemented as a look-up
table in memory, which leads to some round-off errors yielding
the desired 80 dB dynamic range. [7]

36



Erik Stampe Munck Computed Order Tracking

> Fxgure 227Farmly of dlgital filter coefficient curves
To test the effects of using digital filtering when resampling the data, a

this vibration component is too high for the resampling rate; without digital
filtering, this component is expected to be aliased or folded back around
6 orders and appear as a peak at 5 orders. The expected effect does occur, as
shown in Figure 23. Digital filtering is implemented to rerove such data and
produce a spectrum as if the 7 order vibration had never been included in the
signal. Random noise in the amount of 1% has also been added to this signal to
better model a real world situation.

Figure 24 shows a close-up of the aliased peak at 5 orders. The peak is
removed by both the fixed filter and interpolated filter methods (which were
tried independentiy), but the interpolated method produces consistently lower
noise amplitudes. The similarity factors for the interpolated filter method is
0.178, as compared to 0.171 for the fixed filter method, an improvement
of 4.3%.
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» Figure 24: Detailed examination of filter effects
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4.4.3.1

Etfects of Rotation Speed & Acceleration

Tan and Mathew [16] report on some limitations of order tracking analysis
relating to shaft speed. They mention that “the effectiveness of order tracking
analysis decreases when the rotational speed changes rapidly”. Because they
make references to “conventional order tracking instrumentation”, they are
probably discussing limitations of the classical method, not computed order
tracking. This is not to say that COT is immune to rapid changes in rotation
speed, but it seems to be less affected than the classical method.

Assumption of Consistent Shaft Angle

Like the vibration signal, the keyphasor signal is sampled at constant time
intervals. This gives fixed precision in the measurement of the keyphasor pulse
arrival times. In the resampling algorithm, a certain shaft angle (zero radians
for one keyphasor) is assumed at the keyphasor pulse arrival time. As the
machine accelerates, this assumption becomes less valid. The effects are
illustrated in Figure 25.

1g

o

0.001

0.0001 j/—- L W ,

mw A L'} SN ) oY T
0 1 2 3 4 5 6

quuené (Orders)

mf
&
B

Amplitude

» Figure 25: Increased rotation specd decreases kéjphasar accm:acy

Physically, the keyphasor passes the sensor, causing it to generate a signal. By
the time the acquisition hardware recognizes, samples the signal and records an
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» Figure 26: Spectrum at 400 rpm during high acceleration

arrival time, the keyphasor has moved to a different angle. Thus, the keyphasor
timing precision continually becomes less valid.

The result is a decreased accuracy in measuring the keyphasor pulse arrival
times. As discussed earlier in Section 4.4.1, Effects of the Keyphasor, this
results in an overall decrease in spectral accuracy. The spectra begin with low
noise levels for low trigger speeds and end with high noise levels at higher
trigger speeds, as shown in Figure 25,

Misrepresentation of Frequency Content

Generating a spectrum by means of an FFT requires a fixed number of data
samples (this study used 512). Obtaining data at constant A@ increments to
obtain a fixed number of samples requires that the machine execute a fixed
number of revolutions, regardless of the trigger speed.

If the rotation acceleration is too extreme, the last samples in the set are taken
at a significantly different speed from the first ones. Thus, the spectra obtained
may not be an accurate snapshot of vibrations present at the trigger speed.
Notice the fixed filter curve in Figure 26; using a filter designed for 400 rpm on
a signal which accelerates to nearly 500 rpm severely distorts the spectrum.
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Taking this one step further, if the rotation acceleration is even more extreme,
the next trigger speed may be reached before enough samples have been taken
for the spectrum of the last trigger speed. This will cause large problems
besides those already mentioned; since the method does not store the used ra v

method could be modified to allow for this occurrence.
Attenuation of High Orders

If rotation speed is significantly different at the end of a data block as
compared to the beginning, and if only one fixed-frequency digital filter is used
for each data block, then the desired high orders contained in the last samples
of the block will be removed. Over the length of the data block, the
contribution from these high orders decreases as rotation speed increases and
the signal outgrows the fixed-frequency filter. The resulting spectra do not
show an absence of these high orders, but an attenuation of them; the resulting
spectra will show the amplitude of those high orders to be lower than they
really are.

Although this phenomenon can be predicted and envisioned, an example
showing the occurrence could not be produced. The parameters of the test
would probably have to be changed so drastically that the resulting spectrum
would bear no resemblance to the comparison base.

Varying Acceleration

The HP method assumes a constant acceleration between keyphasor pulses.
When this assumption is not valid, the interpolation times are less accurate.
This causes two problems. First, the resamples are not taken at constant A6, so
peaks in the spectra may not occur at the right orders. Secondly, when the
resample times are in error, the resample amplitudes will be inconsistent,
causing a higher spectral noise floor.

Because constant acceleration does not occur in the real world, two things
were done to intentionally violate the assumption. The first was to introduce a
linear acceleration change over the course of the runup. However, the resample
times are determined by fitting a quadratic curve to the keyphasor pulse arrival
times to obtain a curve of shaft angle vs. time. Within the time span of three
keyphasor pulses, this assumption provides good results even if the

realistic, the results were virtually unaffected and so they are not shown.

41



Erik Stampe Munck Computed Order Tracking

The second change was to introduce a moderate sinusoidal fluctuation in the
rotation speed, intended to represent a varying change in acceleration. The
results of this effect are discussed below.

The spectrum resulting from this nonlinear acceleration shown in Figure 27 has
a similarity of 0.168. Notice the wide, irregularly shaped peaks and higher
noise floor, all resulting from violation of the constant acceleration assumption,
All tests were done with a very fast (50 kHz) keyphasor sample rate. When the
keyphasor sample rate is lowered, extreme deterioration of the spectra can be
expected, as discussed in Section 4.4.1.1, Effects of Keyphasor Timing
Accuracy and Resolution.

At lower rotational speeds, the results are even more dramatic, as shown in
Figure 28. Because the time interval between successive keyphasor pulses is
longer at lower speeds, the same fractional error in the resample times
manifests itself as a larger absolute time error, result resulting in wider, more
irregular peaks. These will hide or imitate bearing defect frequency patterns,
especially where smaller sidebands are expected to appear.

It is possible that using more keyphasor pulses per revolution would improve
the method’s accuracy during varying acceleration. However, as discussed
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earlier (in Section 4.4.1.2. Using Multiple Keyphasor Pulses per Revolution),
more keyphasors can also mean more noise in the spectrum.
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» Figure 28: Spectrum at 400 rpm during nonlinear acceleration

Effects of interpolation Method

Just as the accuracy of the keyphasor pulse arrival time determines the
accuracy of the resample time, the accuracy of the interpolation method
determines the accuracy of the resample amplitude. Typically, the best results
for the least computational effort are desired to make the most of available
computing resources. First, second and third order polynomial interpolation
schemes were tried; however, it must be remembered that the vibration signals
are produced by cyclical phenomena, and thus by nature the real function is
sinusoidal, not polynomial. Therefore, these interpolation methods inherently
incorporate error in the method. Higher order polynomial interpolations were
not tried, as they were thought to be dissimilar to the inherent sinusoidal
functions. '

It will be shown that even at the minimum sampling rate, cubic interpolation
can be very accurate. In fact, HP claims high accuracy using a linear
interpolation filter.
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Sinusoidal interpolation approaches were not tried because they require prior
knowledge of all the frequencies in the signal. Regression techniques were not
tried because the interpolation curve must pass through the data points (it is
assumed that, after filtering, the original data points are no longer
approximate), and a regression curve would not.

Four polynomial interpolation methods were tried. The first three (linear,
quadratic, piecewise cubic) fit unique polynomials to the minimum required
data points around the interpolation point. The fourth method (blockwise
cubic) uses all available raw data points to ensure that the first and second
derivatives of the interpolated curve are continuous over the entire data set,
thus creating the smoothest possible cubic interpolation curve through the
data.

These interpoiation schemes all make the fundamental assumption that the data
were produced by a smooth function; interpolation across a discontinuity rarely
produces an accurate value. In reality this is a good assumption, since
machinery vibrations are caused by the physical movement of objects, the paths
scratches can produce extremely sharp changes in the vibration signal which
may look like discontinuities but are truly continuous. Furthermore, such rapid
changes represent a combination of very high frequencies, and some of these
are removed by the lowpass filtering (the filtering process helps to smooth out
the signal before the data are even sampled).

At the extreme end of the test run, data are acquired starting at 1000 rpm and
ending at a higher speed after 512 data points are acquired. At 12 points per
revolution, this means roughly 50 shaft revolutions elapse after the machine
reaches 1000 rpm. To push the limits of these interpolations, the sampling rate
in the interpolation tests was lowered to 210 Hz.

Similar analyses were performed for each interpolation method discussed
below. The first figure in each section (Figures 29, 31, 33 and 35) shows the
actual results of an interpolation across the same data points. The second
figure in each section (Figures 30, 32, 34 and 36) shows the spectra obtained
at the start and end of each runup compared to each other and to the exact
solution.

For each interpolation method, the spectra obtained at 1000 rpm contain false
peaks. Since these peaks disappear when a higher sampling rate is used, they
are known to be caused by the low (210 Hz) sample rate. The resulting
interpolation error manifests itself as high orders, which alias about 6 orders
and fold back into the spectra.
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It is important to remember that greater accuracy is obtained when the
sampling rate is high compared to the resampling rate. The interpolation tends
to become less exact when the sampling rate and the resampling rate are close
to the same.

For example, if the sample rate is such that 120 samples are taken per
revolution and the resample rate is 12 samples per revolution, then there will
be 5 data points on each side of every resample point. Because the resamples
are equally spaced, this means that those raw samples are more closely packed
around the resamples. This will tend to give better results than if the there were
12 samples per revolution, where there would be only 1 data points on each
side of (and further away from) every resample point.

Linear Interpolation

Because HP uses a linear interpolation filter for resampling the data, linear
interpolation was the first method tried. This technique uses the raw data
points on ecither side of the interpolation point, and then calculates the
amplitude of the mterpalauan point using a lever rule. Due to the s;mplxcny of
the calculations, this is the only method tried for which double precision
calculation is not strictly required.

When the transducer data are highly oversampled, (e.g., low speeds at the
beginning of the run-up) linear interpolation is accurate because the data are so
close together. As the sampling rate approaches the Nyquist criterion, (e.g.,
high speeds at the end of a run-up) the data are not as highly oversampled. In
the example illustrated by Figure 29 (at roughly 1000 Tpm, near the Nyquist
limit), linear interpolation yields a value of -0.425, which is 11.1% greater than
-0.478, the exact value. In these cases, higher order polynomial interpolation
routines tend to provide better results because they approximate the shape of
the real curve from which the data originated.

HP recommends using a sampling rate at least twice that suggested by the
Nyquist criterion. The sampling rate at 400 rpm meets this recommendation;
the sampling rate at 1000 rpm does not — it is essentially at the Nyquist limit.
Notice the improved spectrum at 400 rpm in Figure 30.
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4.4.4.2 Quadratic Interpolation

The method used here for performing quadratic interpolation is perhaps
unusual. For a polynomial interpolation scheme using the minimum number of
points, polynomials of odd orders allow equal numbers of original data points
on either side of the interpolation point. Polynomials of even orders (such as
quadratic interpolation) do not. For a quadratic interpolation, should the two
data points before the interpolation point and the one after be used, or vice
versa? Both ways give different values for the amplitude of the interpolated
data point. Figure 30 illustrates the same example used for the discussion of
linear interpolation, showing that the decision is not trivial. The exact
amplitude, -0.478, lies between -0.392 and -0.589, the two quadratic results.
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» Figure 31: Detail of quadratic interpolation near 1000 rpm

To achieve a final result, three steps are taken. First, a quadratic curve is fitted
to the two data points before the interpolation time and the one after. A second
quadratic curve is fitted to the one data point before and the two after. Finally,
the amplitudes of the resulting interpolations are averaged to produce the final
result. In the above case, this method results in a final result of -0.490, which is
only 2.5% less than -0.478, the exact answer.

In Figure 32, the 400 rpm spectrum has a similarity of 0.36 while the similarity
for the 1000 rpm spectrum is 0.24, a 33% deterioration over the course of the
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runup. This method of quadratic interpolation yields spectra very close
(similarity differs by less than 10%) to the piecewise cubic interpolation
method, discussed next. This is not surprising, since both methods use the
same data points.

0.1 E
0.01
g i =.
'g. i v
L] g';.. h b
O.MI ii. #i“’g a
: Cof
0.0001 H+
lE-ms Al - el 7,,. Y AP . — X "77”7 Aol
0 1 2 3 4 5 6

Frequency (Orders)

» Figure 32: Spectrum from quadratic interpolation at lc;\\: and high speeds
4.4.43 Piecewise Cubic interpolation

The simplest method of programming a cubic interpolation is to use two raw
data points before the interpolation point and two data points after, and fit a
cubic curve to those four points. In other words, we start with the equation for
the interpolating polynomial

y=a) +ax +asx® +a.x?

and four data points (i.e. pairs of x; and y,), with which we generate four
independent equations. Standard techniques were used to solve this system for
the coefficients {a}, which were used to find y (the signal amplitude) at any
given x (resample time). Optimized techniques for these calculations have been
published [18], but in the interests of coding simplicity, the standard solutions
were implemented in the simulation program.
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As shown in Figure 33, use of the same data points as the linear interpolation
example yields an interpolated result of -0.473, compared to -0.478, the exact
value. This is a difference of only -1.2%.
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> Fxgure 33: Dctml nf plecemse cubn: mt:rpx)laﬂon near 1000 rpm

This piecewise use of the data is extremely sensitive to the precision of the
calculated coefficients, and accuracy suffers accordingly. In the next section, a
blockwise cubic spline method is employed to overcome this problem.

In figure 34, the 400 rpm spectrum has a similarity of 0.33 while the similarity
for the 1000 rpm spectrum is 0.24, a 27% decrease. Notice the equivalence of
the quadratic and piece cubic interpolation method; at 1000 rpm, the similarity
factor is 0.24 for both.
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4.4.4.4
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» Figure 34: Piecewise cubic interpolation spectrum at low and high speeds

Blockwise Cubic Spline Interpolation

A more sophisticated method of cubic interpolation considers a larger block of
raw data (in this method, all raw data between ¢, and #,) and fits a series of
cubic splines to that data [19]. Any interpolation points within that data block
can then be found without having to recalculate the splines.

This routine generally produces better results than the piecewise cubic
approach because the first and second derivatives of the interpolated curve are
continuous, producing a smooth curve through all the data points. In the
example illustrated in Figure 35, the interpolated value is -0.4778, which is less
than 0.1% greater than -0.4782, the exact value. Notice how closely the
interpolated curve follows the actual signal.

In Figure 36, the 400 rpm spectrum has a similarity of 0.56 (the highest yet)
while the similarity for the 1000 rpm spectrum is 0.32 (the highest at
1000 rpm). This represents a 43% decrease in similarity over the course of the
runup.
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4.44.5

Interpolation Summary

In the interpolation example, all methods produced an interpolated value
different from the exact value, as detailed in Table 2. This was expected
because the true function is sinusoidal, not polynomial. Within this analysis, the
higher order polynomials produce more accurate results. Of the two cubic
methods, the block cubic method is more accurate than the piecewise cubic
method, also as expected because of the smoother curve generated by the
block cubic method and the reduced sensitivity to precision in calculation,

Table 2: Amplitude Comparison of Interpolation Methods

Interpolation | Interpolated Exact Error
Method | Value Value (%)
Linear 04247 04782  -11.19
Quadratic |  0.4900 0.4782 2.47

Piece Cubic |  0.4727 0.4782 -1.15

Block Cubic |  0.4778 04782  -0.08

Table 3 quantitatively compares Figures 30, 32, 34 and 36. Although the block
cubic routine shows the highest deterioration of similarity, -42,.86%, it remains
the most similar (similarity 0.32) spectrum at 1000 rpm. Although the linear
method seems to improve over the course of the runup, it suffers from
chronically poor similarity (similarity 0.16 to 0.18). Visual examination of the
linear interpolation spectra in Figure 30 shows that any improvement exists in
the similarity factor only. Notice the equivalence of the quadratic and piece
cubic interpolation methods: at 1000 rpm, the similarity factor is 0.24 for both.

Table 3: Spectral Comparison of Interpolation Methods

Interpolation [  Similarity ﬁl{ar;g; -
Method 400 rpm 1000rpm | (%)

Linear 0.16 018 12.50

Piece Cubic | 0.3 0.24 -21.21
BlockCubic | 056 032 -42.86

Precision in calculation is critical for all but the linear interpolation method. It
is important to recognize that in practice, the raw data have only a few reliable
significant figures. Thus, single precision is normally sufficient for storage of
the data. Double precision, when required, is used for calculation of the
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44.5

4.4.5.1

interpolation (coefficients, etc.). The quadratic and cubic approaches require
double precision for variables (roughly 15 significant digits); single precision
(roughly 7 significant digits) is inadequate. The linear interpolation method is
relatively insensitive to this change. When conserving computing resources,
this is a strong argument for using linear interpolation in preference to the
higher-order methods.

Considerations Regarding Noise

Noise is any component of an electronic signal which does not represent the
variable intended to be measured [2]. Random noise in the time signal results in
lower dynamic range and also raises the noise floor in the spectrum, masking
any orders with such low magnitudes. As discussed previously, orders with low
magnitude can be very important. To reduce noise, its source must be
considered; noise from some sources can be reduced, while noise from others
cannot.

Error in the interpolation of resampled data will generate more noise at higher
machine speeds because the data points are further apart in the angle domain,
Recognition of this fact can lead to minimum sample rate guidelines to keep
interpolation accurate. Also, it may be possible to use a different, more capable
interpolation routine that is less sensitive to high speed.

Sources of Noise

There are numerous possible sources of noise, but they can be divided into two
types: internal and external. External noise can come from stray electrical
sources, poor ground connections, faulty transducer mounting, bad calibration
and analog-to-digital (ADC) quantization and word length. Internal noise can
result from such things as roundoff error in calculations due to the available
precision of variables and processor word length and error in calculation due to
the calculation method chosen.

The approach taken to eliminate noise depends on its source. External noise
sources are almost entirely dependent upon the specific circumstances of the
vibration test and must be treated in the field by the user. Intemal sources of
noise are designed into the method and must be treated by the designer. This
study suggests that, given enough processing power, computed order tracking
could virtually eliminate internal noise.
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4.4.5.2 Effects of Noise on Accuracy of the HP Method

Noise in the data manifests itself in the spectra as a uniform increase in the
noise floor. Figure 38 shows a spectral comparison between methods with
various amounts of random internal noise added to the vibration signal.
Figure 37 shows a spectral comparison where different analog-to-digital
converters (ADC) were modeled to introduce external noise. The effects are
identical in form to Figure 38. Thus it is shown that once noise is introduced, it
is difficult to tell by examination of the spectra where it originated.

Frequency (Orders)

» Figure 37: Effects of quantization and digital word length
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4.4.5.3
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» Figure 38: Spectrum showing effects of random noise

Effects of Noise on Choice of Interpolation Method

Starting with a noisy raw signal, each interpolation method was used for
resampling. No method appeared to lower the noise floor better than another.
The higher order interpolations produced spectra with lower noise at high shaft
speeds, but this also happened when the signal contained no noise (see
Figures 30, 32, 34, 36, and Table 3), making it difficult to draw a definitive
conclusion.

Effects of Data Block Size

The vast majority of FFT routines require specific quantities of input data
points; usually, these quantities are results of 2V (i.e., 256, 512, 1024,...).
Highly efficient FFT routines can be written for data block sizes which have
this property because of inherent symmetries in the FFT method. The number
of data points used depends on the results desired. Increasing the number of
data points results in higher frequency resolution; it also increases calculation
time. Although a high frequency resolution is desirable, a long calculation time
is unacceptable for real-time implementation of the method.
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In this study, a data block size of 512 was used to reach a compromise
between storage requirements and processing time on one hand and frequency
resolution on the other.

When using order tracking analysis, another consideration comes into play.
Sampling for order tracking requires that a fixed number of data points be
taken per revolution (this study used 12 resample points per revolution). Thus,
for a larger data block, more shaft revolutions are required. In a runup, the
machine speed increases during the sampling process. If a large data block size
is chosen, the method will have to wait through more shaft revolutions, and the
data at the end of the block may be taken at a considerably higher speed than
the first data points. The resulting spectrum may not be truly representative of
the vibrations at the trigger speed. For example, a spectrum labeled 100 rpm
but containing data sampled from 100 rpm to 250 rpm may not be an accurate
representation of the vibration frequencies and amplitudes at 100 rpm.

have been acquired for the last one. This effect has already been discussed in
Section 4.3.3.2, Misrepresentation of Frequency Content.
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5

Summary & Conclusions

Computed order tracking has recently been introduced to aid in the vibration
analysis of rotating machinery. This procedure requires simpler and lower cost
equipment than that associated with traditional analog equipment. This new
computational approach has not been previously examined to determine which
inherent factors and assumptions have the greatest effects on accuracy. This
study was executed to examine these issues. To carry this out, a digital
simulation was performed that includes modeling the rotating machine,
transducers, hardware and processing algorithm. Use of a total simulation
prevented any external effects from influencing the tests, as would be expected
with a physical apparatus. In addition, this simulation was able to determine the
exact results, which were used as a base for comparison.

To test the effects of various factors, a control case was run, then one variable
was changed and another test was run, The spectral results from these tests
were compared using a newly developed similarity factor, which could range
from zero (completely dissimilar) to one (identical).

Most problems with spectral accuracy are directly attributable to techniques
incorporated within the method. Thus, with better software (and perhaps more
computational power) COT can become increasingly more accurate.

In all tests performed, use of higher sampling rates on keyphasor and data
signals resulted in improved accuracy. With raw data points closer together,
the amplitude of the interpolated data will be more accurate. Recognizing that
an excessive sample rate wastes computer resources by storing large quantities
of raw data, it is important to note that increases in the sample rate above the
Nyquist limit improve similarity. The best sample rate strikes a balance
between data storage demands and accuracy.

speetral accura:y resulted fmm the i lmprnvements in precismn of measurmg the
keyphasor pulse arrival time. If a data acquisition system is used which requires
that both keyphasor and transducer channels use the same sample rate, then a
sampling rate which produces good keyphasor timing accuracy should be
chosen, as long as it is above the Nyquist limit for the transducer signal. This
may require that much more transducer data be taken than is needed to ensure
good keyphasor pulse timings.

Use of higher order interpolation also improved accuracy. Implementing a

cubic spline interpolation instead of a linear interpolation reduced background
noise by approximately on order of magnitude and improved similarity by
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250% from 0.16 to 0.56. Potter didn't include details of his interpolation filter,
but suggests that amplitude accuracy of 0.08% is theoretically attainable using
linear interpolation filtering and 2x oversampling. These accuracy levels are
comparable to this study’s results from cubic spline interpolation,

Results of using interpolated digital filtering show it to compare favorably to
fixed-coefficient digital filtering, especially during extreme rates of rotation
acceleration. Caution must be used, however, since the filter interpolation
depends on the accuracy of timing the keyphasor pulse arrival times.
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Recommendations for Future Development

Having developed a flexible testing platform for the completed COT analysis, a
similar study could be carried out on the B&K method with the purpose of
comparing it to both the classical method and to HP’s method.

Potter describes the use of an interpolation filter to performi COT. It would be
interesting to learn about this type of filtering and incorporate the interpolation
filter in the simulation to examine its strengths and weaknesses.

Digital filtering was added to this study to complete the simulation, but
particular attention was not paid to designing a high performance filter.
Determination of the minimum or optimal digital filter requirements for COT
would provide valuable information.

For the simulation, more attention was paid to faithful modeling of the
methods than to computational speed or efficiency. To move from testing by
simulation to testing actual machines would require implementing the findings
of this study and optimizing the computational techniques. If fast computing
hardware is available, a real-time implementation could be developed and
tested.
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8 Appendices
8.1 Fundamental code
8.1.1 Main program
// begin main program
int main (int argc, char *argv{])
{
// declare pointers and other variables

CMPLX FFTData[FFTMAX]); /* ptr to array of fft input data */
DD DeltaT; /* used for Classical method */

DD Jitter; /* uged for Clasgical method */

DD Rpm; /* rotational speed %/

DD t1=(DD)0;

DD t2=(DD)0;

DD RpmTrig=(DD)0; /* speed to start taking data ¥/

int i=(int)0; /* counter */

/i

** clear the ecreen

** open data files

** get time now for run ID number
** initialize variables

** can make this interactive later
*/

_clearscreen(_GCLEARSCREEN) ;
_displaycurseor (_GCURSOROFF) ;

if((data_fp=fopen (OUT], *wt*))==NULL) crash{*File problems*);
file_write(99, (DD) 0, (DD)O, (DD)0);
if((fftnev_fp=fopen (OUTZ, *wt*))==NULL) crash(*File problems®);

ini(INI);

// initialize variables
KPDiff=(DD)2/(KFSampleRate);

_Bettextposition(19,0);
if (ResampleMethod==COMPUTED_ORDER_TRACKING) {
if(FilteringUsed)
printf(*Filtering ie in use.\n");
elee
printf(*Filtering is not in use.\n");

)

// do until runup ig complete
for (RpmTrig=RpmInit; RpmTrig<=RpmMax;RpmTrig += DeltaRpm) {
1f(IfPrn) (
_eettextpositien(l,0);
printf(*starting a main loop \n");

// reset variables )
for{i=0;1<FFTMAX;i++) FFTData[i).real=FFTData[i].imag=(DD)0;

// c€hoose the method of obtaining data for spectral analysis
gwitch(RegampleMethed)
cage COMPUTED_ORDER_TRACKING:
if(FilteringUsed) LoadFilters(FLT);
tlskeyphasor_sgignal (TimeNow) ;
do {
do {
increment_time();
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t2=keyphasor_signal (TimeNow) ;

while((t2-tl)<KPDiff);
Rpm=determine_rotational_speed(t2-tl,KeyPhasorSep, rpm);
it(1fPrn) {

settextposition(2,0);

printf(°rpm = 85,11f\tTime= %5.11f\n*,Rpm, TimeNow) ;
)
ti=t2;

)} while(Rpm<RpmTrig);

HP_method (TimeNow, FFTData,BlockSize);

break;
cage EXACT_ORDER_TRACKING:
tl=keyphasor_signal (TimeNow);
do {
do {
increment_time();
t2=keyphasor_gignal (TimeNow) ;

while((t2-t1)<KPDiff);
Rpm=determine_rotational_speed(t2-tl,KeyPhasorSep, rpm);
if(1£Prn) {

_settextposition(2,0);

printf(*rpm = %5,11f\tTime= %5.11f\n",Rpm, TimeNow) ;
}
tlst2;

} while(Rpm<RpmTrig);

exact_method (FFTData,RpmTrig);

break;
cage CLASSICAL_ORDER_TRACKING:

i=0;

DeltaT=(DD)1/SampleRate;

tl=keyphasor_signal (TimeNow) ;

do {

do {

// increment_time
TimeNow+=DeltaT;
t2=keyphasor_signal (TimeNow) ;

}
while((t2-t1)<KPDiff);
Rpm=determine_rotational_speed(t2-t1,KeyPhagorSep, rpm);
1£(1fPrn) (

_settextposition(2,0);

printf("rpm = $5,11f\tTime= %5.11f\n",Rpm, TimeNow};
)
tl=t2;

} while(Rpm<=RpmTrig):

// at trigger speed

// print trigger speed to file

fprintf(fftnew_fp, *$17.121f*, (DD)Rpm) ;

do {
// set sample rate
DeltaT=(DD) 60/ (Rpm* (DD) SamplesPerRev) ;
SampleRate=(DD)1/DeltaT;

do {
// increment time
TimeNow+=DeltaT;

// take a sample
FFTData(i).real=transducer_signal (TimeNow, TRUE) ;
14=21;

1f(i>=BlockSize) break;

// new keyphasor pulse arrive?
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}
/i
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*/

t2=keyphasor_signal (TimeNow) ;
}
while{(t2~-£l)<KPDLiff),

// got new KP pulge, determine gample rate
if(i<Bloeksg8izae) (
Rpm=determine_rotational_speed(t2-tl,KeyFPhasorSep, rpm);

// module to generate error in Rpm measurement
do ( Jitter=rand(); ) while ((Jitter<0){|(Jitter=RAND_MAX));
Jitter=(DD)JitterAmpl~ (((DD}Jitter/ (DD)RAND_MAX)=-(DD)0,5),

// add error to Rpm
Rpm+=Jitter*Rpm;

if(IfPrn) {
pettextpoeition(2,0);
printf(*rpm=%5,11f\tTime=%5.11f\tRate=%5.11f\n"*, -
Rpm, TimeNow, SampleRate) ;

}
tl=t2;

}
while(i<BlockSize):
break:
cage BORING_CASCADE_PLOT:
tlzkeyphasor_gignal (TimeNow) ;
de {
do {
increment_time();

while((t2-tl)<KPFDiff);

Rpm=determine_rotational_speed(t2-tl,KeyPhagorSep, rpm);

1E(IfPrn)

_Bettextposition(2,0);

princf(*rpm = %5.11f\tTime= %5.11f\n*,Rpm, TimeNow);

) 1Y
tl=t2;

} while (Rpm==RpmTrig):

for(i=0;i<BlockSize;i++) {
FFTData[l).real=transducer
increment_time();

gignal (TimeNow, TRUE) ;

}
break;
default:
crash(*Invalid analysig method in main().*);
break;

apply a window to the data

gave gample data

call FFT routine - resulte returned in FFTData

gcale FFTData

convert FFT data into the degired format (magnitude,real&imag,etc)
display FFT results

get next desired rotational epeed

if(1fpen) (

}

_mettextposition(l,0);

printf(*Finished sampling a complete block.\n®);
settextposition(l,0);

princf{*Applying window to sample data. \n®);

if (apply_window(Window, FFTData, BlockSize) 1=0)
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}
/ﬂ

LR
-

wh

*/

cragsh(*Problems in apply_window{().®);

if(1fpPrn) |
_settextposition(l1,0);
printf(*Performing FFT \n®);

ffe((((DD *)FFTData)-1), (TWO_BYTE)BlockSize, (TWO_BYTE)1);

for(i=0;i<BlockSize;i++) {
FFTData|i).real=(DD)2*FFTData[i}.real/(DD)BlockSize;
FFTData{i].imag=(DD)2*FFTData[i].imag/(DD)BlockSize;

)

1f(1fPrn) (
-settextposition(1,0);
printf(*Converting FFT results \n®');

convert_fft_results(FFTData,BlockSize,DisplayFormat) ;

1f(IfPrn) (
.settextposition(1,0);
printf(*saving results to a file. \n*);

if(FirstTime) {(
// fprintf({fftnew_£fp,*$17.121f*,{DD)0);
for(i=0;i<(BlockSize/2);i++)
i f (ResampleMethod==BORING_CASCADE_PLOT}
printf(fftnew_fp,",%17.121€f", ((DD)i*(DD)SampleRate/ (DD)BlocksSize));
else
printf(fftnew_fp,*,%17.121f", ((DD)i*~
(DD) Sampl esPerRev/(DD)BlockSize));
fprintf(fftnew_fp,*\n*);
)]

1f (ResampleMethod! =CLASSICAL_ORDER_TRACKING)
fprintf(ffenew_fp, *$17.121f¢, (DD)Rpm) ;
for(i=0;4<(BlockSize/2);i++)
fprintf(fftnew_fp,*,%17.121f*, (DD)2* (DD) FFTData[i].real);
fprintf(fftnew_£fp, *\n*);

1t (11fPrn) (

if(display_results(FFTData,BlockSize, FirstTime, MAGNITUDE) ! = (TWO_BYTE) 0)
crash(*Couldn’t plot.*);

}

else {
Bettextposition(l1,0);
printf(*About to start another main loop \n®);

}

FirstTime=FALSE;

close all output files
return screen to normal
end main program for computed order tracking

1f(1fPrn) (

~Settextposition(1,0);
printf(*Freeing memory and closing files. \n°®);

fcloseall();

fflugh(stdin);

_setvideomode (_DEFAULTMODE) ;
return 0;

65



Erik Stampe Munck Computed Order Trleklng

8.1.2 Hewlett Packard Method of Computed Order Tracking

int HP_method (DD tl, CMPLX *fft_data, int blocksize)
{

extern BOOL FilteringUsed;
extern BOOL IfPrn;

extern DD KeyPhasorSep;
extern DD KPDiff;

extern DD TimeNow;

extern int SamplesPerRev;

DD KP[KPMAX];
DD t£2=(DD)0;
DD t3=(DD)0;

int i=(int)0;

int 1l1=(int)0;

int 12=(int)o0;

int 13=(int)0;

int j={(int)o0;

int kp_pulses_needed=(int)0;
int n=(int)0;

int points_stored=(int)0;

struct SAMPLE raw{RAWMAX];
// struct SAMPLE *raw;
struct SAMPLE resampled|[RSMPLSIZE]:

// intialize variables
i=3=0;
KP[0)=keyphasor_signal (TimeNow); /* KP|{0)=tl; doesn’'t work */
kp_pulses_needed=(int)ceil (( (DD)blocksize* (DD)2*(DD)PI)/((DD)SamplesPerRev"-
(DD) KeyPhasorSep) ) +(int)4;
if (kp_pulses_needed>KPMAX)
crash{*Too many keyphasor pulses needed in HP_method().*)
for(i=0;i<RAWMAX;i++) {(
raw(i).data=raw(i].time=(DD)O;
1£(i<RSMPLSIZE) resampled(i].data=resampled[i]}.time=(DD)0;
}

// record start of block and KP pulse
file_write(4,TimeNow-0.0000001,0,0);
file_write(2,tl1,0,0);

// acquire raw data
for(i=1;i<kp_pulses_needed;i++) {(
KP{i)=KP{i-1};
// record KP pulse
file write(2,KP[i-1]),0,0);
while(KP[i}-KP[i- 1]<KPDiff) {
raw[]j).data=transducer_signal (TimeNow, TRUE) ;
raw{j).time=TimeNow;
J+=1;
if (j>=RAWMAX)
crash(*Not enough room in raw(]) in HP_method{().°*);
KP[i}=keyphasor_eignal (TimeNow) ;
increment_time();

)

// filter raw data
if(FilteringUsed) FilterRawData(raw,KP,j,i);

// begin resampling
t1=KP[1);

t2=KP{2);

11=0;

12=0;

J=0;
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// find the raw|) index that corresponds to the second KP pulse

while(12==0) {

End:

if(raw[j).time>=t2) 12=3;

J+=1;
1 f(1>RAWMAX) crash{°Not enough room in raw([] in HP_method().");

)
13=42;

3=0;
for(i=3;ickp_pulses_needed;i++) (
t3=KP([1);

// find the raw() index that corresponds to the next KP pulse
while(i3==12) (

if(raw([j).time>=t3) 13=3;

J+=1;

1 £ (J>RAWMAX) crash(*Not enough room in raw|[] in HP_method().*);

// resample the data within three contiguous data points
n=regample_data(tl,t2,t3,raw+il, resampled,i3-il+1, SamplesPerRev);

// copy resampled data points into finished data block
for(3=0;3<n;j++) {
ffr_datalpoints_stored).real=resampled(j].data;
// record resampled data point
file_write(3,resampled|(j).time, resampled(j].data,0);
1£(1fPrn) {
.settextposition(18,0);
printf(*Data block percent full: %5.11f\n°"-~
. (DD)points_stored/ (DD)blocksize* (DD)100);
)
pointe_etored += 1;
if(points_stored»=zblocksize) goto End;

)

// shift data to next keyphasor pulse in the sequence
tl=t2;
t2=t3;
11=12;
12=13;

// record end of data block .
file_write(5, TimeNow+0.0000001,0,0);
// free(raw);

return 0;

8.1.3 Subroutine for Resampling Data

int
npr)

resample_data(DD t1,DD t2,DD t3,struct SAMPLE *raw,struct SAMPLE *rempl,int nraw,int

/t

** input:

** tl,t2,t3: arrival times of three contiguous KP pulses
** raw: traneducer output, sampled at constant delta_t
** regmpl: resampled data

** nraw: number of points in raw|)

** npr: desired number of resamples per shaft revelution
W

** output:

** none

*/

extern int InterpMethod;
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extern DD KeyPhasorSep;
DD *X,*Y;

DD *b,*c, *qd;

int i,n;

// determine resample times
n=ResampleTimes(tl,t2,t3, npr,KeyPhasorSep, rampl);

// resample the data
switch(InterpMethod) {

case LINEAR:
Linearinterp({raw, rsmpl,nraw.,nj;
break;
case QUADRATIC:
Quadraticlnterp(raw, rempl,nraw,n)j;
break:;
case PIECECUBIC:
PleceWiseCubic(raw, rempl,nraw,nj;
break;
case BLOCKCUBIC:
1f((X=(DD *)calloc(nraw,eizecf (DD)))==NULL}
crash(*Couldn’'t allocate memory fer X[] in resample_data().*};
1f((Y=(DD *)crallocinraw,eizeocf (DD)))==NULL)
crash('Couldn’'t allocate memory for Y|] in resample_data().*);
if((b=(DD *)ecalloc(nraw,sizecf (DD)))==NULL)
crash(*Couldn’t allocate memory for b|] in resample_data().");
if({c=(DD *)calloc(nraw,sizeof (DD)))==NULL)
crash("Couldn’'t allocate memory for c{] in resample_data().");
1f((d=(DD *)calloc(nraw,sizecf (DD)))==NULL)
cragh{"Couldn’'t allocate memory for d|) in resample_data().*®);

for(i=0;i<nraw;i++) {
X[i)srawl[i].time;
Y(i)=zraw[i].data;
}

Spline(X,Y,nraw.b,c,d);

for(i=0:i<n;i++)
rempl(i}.data=8plineEval (X,Y,nraw,b,c, 4, rempl{i].time);

free(X);
free(Y);
free(b);
free(c);
free(d);
break;
default:
crash(*Illegal resample method in resample_data().*®);
break;
}
// end function resample data
return n;
)
8.1.4 Subroutine for Determining Resample Times
int ResampleTimes(DD t1,DD t2,DD t3,int npr,DD kps,ecruct SAMPLE rempl(])
/t
** input:
"W

LA
L2
*N

tl,t2,t3: arrival times of three contiguous KP pulses
npr: desired number of resample timee per revoluticn

kps: keyphasor separation in radians (angle through which
shaft will rotate between keyphasor pulsaes)



