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Abstract 
 
Understanding the mechanisms that control the rate and trajectory of primary 

succession can lead to insights for ecosystem rehabilitation. Proposed 

mechanisms include life history traits and nutrient limitation. To explore how 

these mechanisms can drive successional dynamics, I devised a stoichiometric 

ecosystem-level model that considered the role of nitrogen and phosphorus 

limitation in plant primary succession in conjunction with life history traits. This 

model was applied to the plant community on Mount St. Helens to check the 

validity of the mechanisms. The results show the competitive hierarchy of plants 

at the local scale can be explained by nutrient limitation and plant stoichiometry. 

At regional scales, life history traits interact with local processes to shape 

community structure and successional dynamics. At all scales, the presence of 

Lupinus lepidus, a nitrogen-fixer, significantly altered community dynamics and 

succession. This study suggests that primary succession can be examined within 

the framework of ecological stoichiometry. 
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Chapter 1 
 
Introduction 
 
 Ecosystems are subject to natural and anthropogenic disturbances that 
can severely alter their functioning and composition (Walker & del Moral 2003). 
In some cases, the disturbance is so severe that even the soil itself is removed or 
buried under a new, barren substrate. These disturbed ecosystems are 
subsequently colonized by pioneering species that can best cope in these new 
conditions. The pioneers along with abiotic factors alter the environment and 
may allow new species to arrive in the ecosystem. These new species may 
subsequently displace the pioneers, alter the environment themselves and 
perhaps allow additional species to enter the ecosystem. This phenomenon of a 
changing composition of the ecological community is known as ecological 
succession. 
 The concept of ecological succession predates the science of ecology by 
nearly a half-century, if not more (Clements 1916, Walker & del Moral 2003, 
Egerton 2009). It is one of the most investigated natural phenomena in ecology, 
with a simple Web of Science search turning up 4819 papers on the subject 
(March 14th, 2009). Its study requires knowledge of fields such as soil science, 
biogeochemistry, biochemistry, physiology, population, community and 
ecosystem ecology and evolutionary biology (Walker & del Moral 2003). It was 
noted over forty years ago that understanding ecological succession could lead 
man to end his conflict with nature (Odum 1969). Modern researchers are 
applying knowledge gleamed from successional studies to help restore 
ecosystems damaged by human activities (Walker et al. 2007).  
 Hence, it is peculiar that a monograph on primary succession has been 
published only six years ago on the subject (Walker & del Moral 2003). Yet 
understanding primary succession, which is the transition between a barren 
substrate to an established ecological community, is vital to our efforts to 
reclaim the barren roads, mines and man-made deserts for future generations 
(Walker & del Moral 2003). 
 Thankfully, much progress on primary succession has recently occurred 
due to researchers turning the tragic disaster of the eruption of Mount St. Helens 
into our best case study of primary succession (Dale et al. 2005). Large strides 
have been made in identifying potential mechanisms of primary succession 
(Wood & del Moral 1987, del Moral & Bliss 1993, Chapin et al. 1994, del Moral 
et al. 2005). Nonetheless, the importance of these mechanisms has been difficult 
to ascertain due to limitations in time, in manpower, in financial resources and in 
experimental methods.  
 One way to approach this problem is to develop mathematical models 
that isolate potential mechanisms and to see if those mechanisms are capable of 
creating the patterns seen in nature (Haefner 2005). These mechanistic models 
have been applied to single populations and a predator-prey system on Mount St. 
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Helens (Bishop 1996, Fagan & Bishop 2000, Fagan et al. 2005), but none have 
been tried at the community or ecosystem level. The only model to explicitly 
consider succession on Mount St. Helens was phenomenological model that had 
poor predictive power (Childress et al. 1998).  
 In this introduction, I will attempt to give the necessary background on 
successional theory, on the empirical research accomplished on Mount St. 
Helens and on community and ecosystem models for reader comprehension. I 
follow these ‘introductions’ with a conceptual ecosystem model for primary 
succession on Mount St. Helens that ties all three elements together into a 
unified whole. Finally, I lay out the contents of the main chapters of the thesis, 
indicating which parts of the conceptual model are being explored. 
  
1.1 An Introduction to Ecological Succession  
 
1.1.1 Controversies Over Definition  
 
 The description of ecological succession above seems to lead to a simple 
definition of the phenomenon. One can easily see what ecological succession is; 
one may deduce that the definition must flow from what is observed to be the 
case. However, just because one can see something does not mean one can 
define it in a simple way (Wittgenstein 1969). Therefore how to define 
ecological succession is fraught with dangers, but one must have some definition 
in order to use the concept and communicate about it with others. 
 If one gathered all the definitions that have been proposed for ecological 
succession, one would find that they are grouped into two broad categories: ones 
that imply that succession is directional and goes towards a climax (Clements 
1916, Odum 1969, Ricklefs & Miller 2000, Chapin et al. 2002) and those who 
claim that succession is simply any change in community composition (Gleason 
1917, 1926, 1927, Cooper 1926, Tansley 1935, Whittaker 1975, Walker & del 
Moral 2003). The climax of ecological succession is a permanent biological 
community (i.e. it will not be replaced by another community) that has reached 
equilibrium with all other factors (Tansley 1935). The difference between the 
two viewpoints is neither trivial nor semantic.  
 The first view treats ecological succession holistically, focusing on the 
community and the ecosystem as a whole (Walker & del Moral 2003). The 
community treated by the holists is composed of species that strongly interact 
with one another and are dependent for the functioning of the community 
(Clements 1916, Tansley 1935). This holism also places biotic interactions as the 
main drivers of succession, with abiotic factors acting as constraints on the rate 
and trajectory of succession (Clements 1916, Odum 1969). In its most extreme 
form, it treats whole communities as organisms and compares the development 
of the community through succession as equivalent to the development of an 
embryo to an adult organism (Clements 1916). 
 The alternative view looks at succession through the lens of 
reductionism: the whole can be understood from the sum of its parts (Walker & 
del Moral 2003).  Here, the parts are individual organisms, population and 
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species that are interacting with each other and their environment. The 
community, for the reductionists, is composed by species that may or may not 
interact with one another and are not necessarily dependent on each other for 
their survival (Gleason 1917, 1926, 1927, Whittaker 1975). Abiotic factors play 
a much larger role in this view for they can change the trajectories of succession 
by filtering out certain species from the process (Walker & del Moral 2003). 
Since abiotic factors can be distributed heterogeneously in space and time and in 
stochastic fashion, there need not be a single climax community in an area, but 
numerous climaxes or cyclical climaxes could occur (Whittaker 1975). In fact, 
some reductionists deny there are ecological communities that are assembled in 
non-random fashion (Gleason 1917, 1927). Such randomly assembled 
communities could be described as neutral within the framework developed by 
Hubbell (2001) if the species have no particular functional role. 
 The debates over which side is ultimately correct still rage on today 
(Walker & del Moral 2003), but an operational definition is clearly needed for 
this thesis. I will therefore use the reductionistic definition given by Walker & 
del Moral (2003) that ecological succession is the change in community 
composition over time. The main benefits to this definition are its simplicity and 
lack of directionality, which may not exist in primary succession (del Moral et 
al. 2005, del Moral 2007). It also allows us to focus on the mechanisms of 
succession without getting too caught up about where they necessarily lead. 
 
1.1.2 Mechanisms of (Primary) Succession 
 
 Over the years, numerous mechanisms for succession have been 
proposed (Tansley 1935, Connell & Slatyer 1977, Pickett et al. 1987, del Moral 
& Bliss 1993, Walker & del Moral 2003, del Moral et al. 2005). One can divide 
them by origin (abiotic or biotic), by place in community (autogenic or 
allogenic), by function (facilitation, inhibition or tolerance) or by occurrence 
during succession (nudation, migration, ecesis, competition, reaction in classic 
Clementsian terms) or all of the above (Clements 1916, Tansley 1935, Connell 
& Slatyer 1977, Pickett et al. 1987, Walker & del Moral 2003). Since succession 
is a temporal phenomenon, it is natural to consider the mechanisms and their 
associated processes from beginning to end. 
 Nudation is the disturbance that removes or alters the original community 
(Clements 1916, Pickett et al. 1987). If the disturbance leaves the soil, the seed 
bank and perhaps some organisms, then the community undergoes secondary 
succession (Whittaker 1975, Ricklefs & Miller 2000). If the soil is removed 
and/or bare substrate is exposed with no biological remnants, then one would see 
primary succession (Whittaker 1975, Ricklefs & Miller 2000). The disturbance 
is usually considered to be allogenic, which are processes external of the 
community in question, and abiotic, though biotic processes can cause 
disturbances (Walker & del Moral 2003). Examples of disturbance include 
hurricanes, floods, volcanic eruptions, landslides, herbivory, mines and roads 
(Walker & del Moral 2003). 
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 The disturbance is followed by the migration phase, which is associated 
with the dispersal of organisms and the initial physical amelioration the 
substrate, if needed (Walker & del Moral 2003, del Moral et al. 2005). In 
primary succession, physical amelioration by erosion, physical and chemical 
weathering, freeze-thaw cycles and nutrient deposition are key processes (del 
Moral & Bliss 1993, Walker & del Moral 2003, del Moral et al. 2005). Without 
them, there would be no ‘safe sites’ that could allow for organisms to establish 
on the substrate and succession could not proceed (Houle 1997, Jumponnen et al. 
1999). Dispersal of propagules to the newly disturbed site is dependent on the 
dispersal mechanisms of each organism, their isolation from the site and 
stochastic events (del Moral & Bliss 1993).  
 Following the migration phase is the ecesis, which is concerned with the 
establishment, growth and longevity of the colonizers from the migration phase 
(Walker & del Moral 2003). The pioneers will modify the substrate and their 
microenvironments at this stage, which is usually proscribed to the reaction 
phase (Walker & del Moral 2003). The main characteristic that is associated with 
establishment and vigorous growth of plants during primary succession is large 
seeds, which have the most difficulty in reaching the site during the migration 
phase (Wood & del Moral 1987, Wood & Morris 1990,Titus & del Moral 
1998a). Plant species can also benefit by associating with symbionts that can 
access limiting resources, but the symbionts can be parasitic or provide no 
benefit if nutrient levels are too low (Titus & del Moral 1998bc). 
 The competition period is no longer considered to only have competition 
occurring as it did for Clements (Clements 1916, Pickett et al. 1987, Walker & 
del Moral 2003). Instead, numerous biotic processes such as herbivory, 
allelopathy (inhibition of other organisms by release of chemicals by focal 
organisms) and disease combine with competition to determine which species 
will form the ‘mature’ community from the ‘immature’ community (Walker & 
del Moral 2003, del Moral et al. 2005). Some of these processes are associated 
with the idea of inhibition (Connell & Slatyer 1977). Species can inhibit other 
species from displacing them through resource competition or allelopathy 
(Connell & Slatyer 1977). 
 The final period of succession for a community is the reaction phase or 
the further development of the formerly disturbed site by the organisms (Walker 
& del Moral 2003). The processes that dominate this phase occur within the 
community (autogenic) and are biotic (Clements 1916, Tansley 1935, Pickett et 
al. 1987). The organisms modify the abiotic environment by adding organic 
material to the soil and by developing organic structures that can alter abiotic 
processes (Walker & del Moral 2003). These modifications can lead to new 
species being able to invade the current community, which is called facilitation 
(Connell & Slatyer 1977).  
 While this summary of mechanisms and processes is not exhaustive, it 
does touch upon all the main mechanisms currently under investigation by 
ecologists (Walker & del Moral 2003). Due to the endeavours of these 
ecologists, some details about the importance of each mechanism have been 
partially fleshed out in succession theory. 



 

5 

   
1.1.3 Notes on Current Successional Theory 

 
Successional theory is, since the reductionists have become the dominant 

force in ecological research, derived from observations and experiments that are 
then generalized in some form (Walker & del Moral 2003). Most of this theory is 
highly conceptual, is rarely given mathematical articulation, qualitative and may 
be community or ecosystem specific (Connell & Slatyer 1977, Pickett et al. 
1987, Walker & Chapin 1987, Matthews 1992, Callaway & Walker 1997). Still, 
this body of theory can point to mechanisms that should be further explored in 
primary succession. 

A general point in successional theory is that if succession is driven by 
facilitation, then succession will be fairly deterministic and predictable (Odum 
1969, Connell & Slatyer 1977, Pickett et al. 1987). Facilitation matters most in 
severe environments with high abiotic stress (Walker & Chapin 1987, Callaway 
& Walker 1999). Since severe environments increase the importance of 
facilitation and succession driven by facilitation is considered predictable, then it 
follows that succession in severe environments would be predictable. This 
reasoning would imply that primary succession, with its severe environmental 
stress, would be highly predictable. 

However, the successional theory that has been developed for primary 
succession suggests that it is highly unpredictable and perhaps stochastic (del 
Moral 1999, del Moral 2000, Walker & del Moral 2003). This suggestion is due 
to the idea that allogenic processes dominate in early succession and are highly 
variable over the landscape (Matthews 1992). This idea is well supported by the 
experimental literature (Houle 1997, Jumponnen et al. 1999). 

Both stochastic events and facilitation are predicted to play large roles in 
primary succession and both mechanisms have support in the literature (Walker 
& Chapin 1987, Callaway & Walker 1999). The inherent difficulty with the 
mechanisms is that they lead to different conclusions about the possibility of 
predicting primary succession. Reconciling these two mechanisms within a 
coherent framework remains an open problem for ecologists.   

One of the few mechanistic approaches to succession given mathematical 
articulation is Tilman’s resource-ratio hypothesis (Tilman 1985). The idea 
behind it is that over time, the relative resource supply will change and 
community composition will change for certain species will be competitively 
dominant only for some ranges of supply (Tilman 1985). Tilman proposed that 
this should occur for light and nitrogen, for nitrogen becomes more abundant as 
succession progresses and light becomes less abundant. Grassland experiments 
refuted this hypothesis for early colonizers were not competitively dominant for 
nitrogen, which goes against the predictions of the hypothesis (Tilman & Wedin 
1991b).  

Other theoretical predictions such as insect herbivory being less 
important than mammal herbivory during primary succession, seed arrival being 
critical during colonization then diminishing afterward, the presence of 
symbionts being critical throughout succession and competition being somewhat 
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unimportant have met with mixed results (Walker & Chapin 1987, Chapin et al. 
1994,Titus & del Moral 1998bc, Bishop 2002, Gill et al. 2006). These facts 
indicate that much work is left to do on the theoretical side of succession. 

 
1.2 An Introduction to Mount St. Helens 
 
1.2.1 The Eruption and the New Environment 
 

On May 18th 1980, the north-face of Mount St. Helens collapsed and a 
massive lateral eruption followed after two months of high geological activity 
(Swanson & Major 2005). The force of the blast, the debris avalanche, the 
mudflows and the pyroclastic flows the eruption unleashed devastated the old-
growth conifer forest that occupied most of the northern slope of Mount St. 
Helens (Swanson et al. 2005, Swanson & Major 2005). New surfaces were laid 
down and the hydrology was greatly perturbed, creating a new landscape 
(Swanson & Major 2005). In a flash of creative destruction the old world gave 
way to the birth of a new world, but the relics of the past still play an important 
role for the rebirth of the ecosystem. 
 In many locations, individuals survived the devastation due to being 
located south of the blast zone, to good fortune and the snowpack (del Moral 
1983, del Moral et al. 2005). In these locations, which are known as refugia, 
recovery was much quicker and species composition was and is different 
compared to more affected sites (del Moral et al. 2005). Where there is a lack of 
refugia, such as the Pumice Plain and the Plains of Abraham, the situation is 
much different. 
 The Pumice Plain was formed by the pyroclastic flows of the May 18th 
eruption and subsequent pyroclastic flows that expunged most organisms and 
created a new bare substrate. This substrate was poor in nitrogen, low in clay, 
lacked structure and had low water potentials at the surface (del Moral & 
Clampitt 1985, Reynolds & Bliss 1986, Wagner & Walker 1986, del Moral & 
Wood 1993). It was also fairly isolated from surviving vegetation, making an 
ideal location for the study of primary succession (del Moral et al. 2005).  
 
1.2.2 Previous Studies of Primary Succession on Mount St. Helens 
 
 Two major books (Keller 1986, Dale et al. 2005) and more than a 
hundred journal articles have been written on the ecological recovery on Mount 
St. Helens. The sheer amount of information involved makes any short summary 
woefully incomplete. My focus will be on articles that investigated processes 
and factors related to plant primary succession, with special attention paid to 
those that manipulate these processes. The processes are ordered by their 
occurrence in succession, which is outlined in section 1.1.2. 
 The earliest phase of plant primary succession involves the arrival of 
seeds from surrounding vegetation and the physical amelioration of the substrate 
(del Moral & Bliss 1993, Walker & del Moral 2003). Ever since the major 
eruption on Mount St. Helens, researchers have looked at plant cover and set up 
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seed traps to see which species are capable of reaching the disturbed habitats (del 
Moral 1983a, Wood & del Moral 1987, Wood & del Moral 1988, del Moral & 
Bliss 1993, del Moral & Wood 1993, Wood & del Moral 2000, del Moral et al. 
2005). Plants with small, wind-dispersed seeds such as asters like the invasive 
hairy cat’s ear (Hypochaeris radicata) are commonly found in the seed rain 
while species with larger seeds like the prairie lupine (Lupinus lepidus) are much 
rarer (del Moral et al. 2005).  
 This result would imply that many species without small, wind-dispersed 
seeds would suffer from dispersal limitation (del Moral et al. 2005). However, 
long distance dispersal events have occurred on the Pumice Plain for the prairie 
lupine, which has relatively large seeds that are explosively dehisced only a few 
meters (Bishop 2002). The long dispersal events have been attributed to snow 
melts and strong winds, which indicates that even large seeds can overcome 
dispersal limitation (Bishop 2002). Therefore, dispersal limitation is a limiting-
factor for some species, though it can be overcome on occasion. 
 The physical and chemical qualities of the substrate have been followed 
with great interest for nearly thirty years (e.g. del Moral & Clampitt 1985, 
Wagner & Walker 1986, Chapin & Bliss 1988, Halvorson et al. 1991ab, 
Halvorson & Smith 1995, Tsuyuzaki et al. 1997, Fagan et al. 2004, Halvorson et 
al. 2005, Gill et al. 2006, Titus 2008, Halvorson & Smith 2009). As the years 
have progressed, there has been some improvement in the physical landscape 
with erosion and weathering creating microsites more suitable for colonization 
(del Moral et al. 2005). Similarly, more organic material and nitrogen have 
accumulated within the soil, improving substrate fertility (Halvorson & Smith 
2009). Other properties of the soil such as pH, phosphorus and soil moisture 
content have not changed over time, though the values for these properties can 
vary up to two orders of magnitude (del Moral & Clampitt 1985, Wagner & 
Walker 1986, Chapin & Bliss 1989, Tsuyuzaki et al. 1997, Fagan et al. 2004, 
Titus 2008, Halvorson & Smith 2009). Despite this amelioration, much of the 
Pumice Plain and other primary successional landscapes contain sparse 
vegetation and few late successional species, indicating that more physical 
amelioration is required (del Moral et al. 2005, Titus 2008). 
 When the seeds arrive on the landscape, the question is no longer about 
dispersal, but rather about establishment, growth and survivorship. The 
environmental conditions most closely linked to seedling establishment and 
growth are soil moisture, substrate heterogeneity and nutrient availability (Wood 
& del Moral 1987, Chapin & Bliss 1989, Wood & Morris 1990, del Moral & 
Bliss 1993, Tsuyuzaki et al. 1997, Titus & del Moral 1998a). Species with life 
history traits such as high seed mass, high tolerance for water and nutrient stress 
and vigorous early growth were able succeed in the harsh conditions of the 
primary successional habitats (Wood & del Moral 1987, Chapin & Bliss 1989, 
Wood & Morris 1990, del Moral & Bliss 1993, Braatne & Bliss 1999). The lack 
of symbionts such as Frankia and mycorrhizae can reduce seedling growth and 
survival for certain species as they allow greater uptake of nutrients, though their 
presence is not always beneficial (Titus & del Moral 1998bc, Allen et al. 2005, 
Seeds & Bishop 2009). For many species, it is the lack of the necessary life 
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history traits or lack of symbionts that prevent them from colonizing, not 
dispersal limitation (Wood & Morris 1990, Tsuyuzaki et al. 1997, Seeds & 
Bishop 2009). 
 After the establishment of plant species, numerous processes including 
herbivory, disease and competition reduce or eliminate certain species from the 
community. Plant competition on Mount St. Helens seems to be driven by 
belowground competition as most plants receive full sunlight (Titus 2008). 
Experiments that added phosphorus and/or nitrogen altered community 
composition, suggesting that competition for these two resources could drive 
successional dynamics (Gill et al. 2006). Insect herbivores have also been 
altering community composition by voraciously consuming the nutrient-rich 
prairie lupine (Bishop 1996, Bishop 2002, Fagan et al. 2004, Bishop et al. 2005). 
These two processes are tightly linked by the facilitative effects of the prairie 
lupine (Morris & Wood 1989, Halvorson et al. 1991b, Halvorson et al. 1992, 
Gill et al. 2006). 
 The prairie lupine is capable of facilitating other species by providing 
nitrogen through its ability to fix nitrogen as a legume (Morris & Wood 1989). 
The lupine provides its greatest benefit to other plants when it dies and releases 
its nitrogen (Morris & Wood 1989, Halvorson et al. 1992, Halvorson et al. 2005, 
Halvorson & Smith 2009). Lupines can therefore allow nitrogen-limited species 
to colonize Mount St. Helens and can shift the competitive balance in the 
community, which can lead to alternative successional trajectories (del Moral & 
Rozzell 2005, Gill et al. 2006). Furthermore, increased herbivory may allow for 
more nitrogen cycling and less nitrogen-limitation, though too much herbivory 
could prevent lupines from colonizing nitrogen-poor areas (Bishop 2002, Bishop 
et al. 2005).  
 The running thread through all these steps  is that the nutrient supply and 
the ability of plants to access these nutrients are key in understanding the 
successional patterns seen on Mount St. Helens. This insight will lead us to 
consider models that link communities to ecosystems through nutrients in 
section 1.3, but first I will consider what modelling techniques have been tried 
already on Mount St. Helens. 
   
1.2.3 Previous Models for Mount St. Helens 
 
Considering the vast literature on primary succession in general and Mount St. 
Helens in particular, it comes as a surprise that so few models have been 
proposed for succession on Mount St. Helens (Childress et al. 1998, del Moral 
1999, del Moral & Jones 2002). Childress et al. (1998) used community 
composition data to create matrices of transition probabilities in order to see how 
well Markovian matrix models can predict primary succession. The results 
showed that the matrix models failed miserably at prediction except when 
allowed to change the transition matrix at each time step. This result led the 
authors to conclude that considerations of biotic and abiotic processes are needed 
to predict primary succession (Childress et al. 1998).   
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 The only other model that has been applied to plant succession is a 
stochastic simulation model called SIMCOM (del Moral 1999). The model 
simulates the colonization of model plots by using frequency data of plants from 
real plots. The probability that a species is selected to colonize a plot is based on 
the frequency data and the cover of each species in the model plot was randomly 
selected, though no mention is made of the random distribution the cover value 
was chosen from (del Moral 1999). While the results of the model seem in good 
agreement with the data and may support the idea that colonization is random in 
primary succession, the presentation of the model leaves many questions about 
the assumptions made to obtain these results (del Moral 1999). The modelling 
procedure used in del Moral & Jones (2002) was similar to SIMCOM. 
 Three other models concerning the population dynamics and spread of 
the prairie lupine represent the totality of the modelling efforts on the plant 
community of Mount St. Helens (Bishop 1996, Fagan & Bishop 2000, Fagan et 
al. 2005). All three suggest that the prairie lupine can be adversely impacted by 
herbivory and the latest two indicate that the herbivores could slow or stop the 
spread of the lupines (Bishop 1996, Fagan & Bishop 2000, Fagan et al. 2005). 
 Of course, modelling communities can be difficult if one follows the 
population dynamics and interactions of each individual species over space and 
time. One way of reducing the complexity involved is to focus on functional 
groups or groups of species with similar ecological roles or characteristics 
(Hooper & Vitousek 1997). The three main groups of species representative of 
the early colonizers on the Pumice Plain were nitrogen-fixing legumes, asters 
and grasses (del Moral & Clampitt 1985). For my work, I have chosen one 
species to represent each group in the model. The species chosen were species 
that have been present on the Pumice Plains since the earliest years of recovery. 
 
1.2.4 Species of Interest 
 
Lupinus lepidus var. lobbi: prairie lupine 
 

The prairie lupine was the first species to establish on Pumice Plain in 
1981 and managed to form colonies over an area of three kilometres squared 
(Fagan & Bishop 2000, Bishop 2002, Bishop et al. 2005). The lupine is a native, 
small (maximum radius of 45cm), wintergreen and prostate (maximum high 
15cm) nitrogen-fixing legume with a shallow tap root (Braatne & Bliss 1999, 
Bishop 2002). It has a short-life span with individuals rarely living past five 
years and can reach reproductive maturity in one growing season (Braatne & 
Bliss 1999, Bishop 2002). An individual plant can produce hundreds of seeds, 
which are dispersed short distances by explosive dehiscing of the fruit (Bishop 
2002). The seeds of the lupine are relatively short-lived and can remain in the 
seed bank for up to three years (Bishop 1996, Fagan et al. 2005). The population 
growth of the lupines was high early on during primary succession (λ=11.6), 
though this rate of reproduction has not been maintained (Fagan & Bishop 
2000). 
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The lupine is tolerant to low nutrient availability and adult lupines 
experience little stress from the low soil moisture found in the substrates during 
the summer droughts (Braatne & Chapin 1986, Braatne & Bliss 1999).  The 
seedlings, on the other hand, can be negatively affected by drought conditions 
(Braatne & Bliss 1999). The seedlings also experience high mortality within 
high-density patches of lupines, indicating the importance of intraspecific 
competition (Bishop 2002). The lupines suffer from insect herbivory, which is 
the main cause of lupine mortality (Bishop 1996, Fagan & Bishop 2000, Bishop 
2002, Bishop et al. 2005). There is evidence that the herbivores prefer lupines on 
the edge of the colonies, which may be related to differences in nutrient content 
compared to lupines in the core of the colonies (Bishop 2002, Fagan et al. 2004).  

The prairie lupine has done poorly in competition experiments in the 
alpine meadows of the Cascade Mountains and is considered to be a stress 
tolerator in the terms of Grime’s triangle (del Moral 1983bc, del Moral et al. 
1985). It prefers dry, disturbed habitats in full sunlight, making the Pumice Plain 
an ideal habitat for it (del Moral 1983c). There is some evidence that the prairie 
lupine reduces the water content of the soil, but it is not known if this will inhibit 
the establishment of other species (Titus 2008). Its potential for facilitative 
effects has already been considered in section 1.2.2.  
 
Hypochaeris radicata: hairy cat’s ear 
 
 Hypochaeris is an invasive perennial aster with origins in Morocco (Ortiz 
et al. 2008). Its growth form is a rosette with leaves of a maximum length of 
25cm and stems that can grow to 60cm tall (Turkington & Aarssen 1983). 
Hypochaeris’ roots are fibrous, though it also develops a deep taproot 
(Turkington & Aarssen 1983). During the winter months, it can persist either as 
an evergreen, die back to the basal rosette or act as a true hemicryptophyte (it 
dies back to perennating buds at ground level) depending on the temperature 
regime (Turkington & Aarssen 1983). Hypochaeris is able to go from newly 
germinated seedling to a reproductive state in two months, though they usually 
reproduce during the second growing season (Turkington & Aarssen 1983, Fone 
1989, Doi et al. 2006).  
 Hypochaeris can reproduce both vegetatively and sexually, though is 
self-incompatible for sexual reproduction (Turkington & Aarssen 1983, Pico et 
al. 2004, Ortiz et al. 2006). Vegetative reproduction occurs by the splitting of 
shoots and only occurs for large plants with more than two shoots (Doi et al. 
2006). The amount of seeds produced through sexual reproduction by a single 
individual can be in the thousands (Turkington & Aarssen 1983). Each seed has 
a feathery pappus that allows for long-distance wind dispersal (Turkington & 
Aarssen 1983, Soons et al. 2004). There is no evidence of seed dormancy for the 
species and seedlings have been known to emerge throughout the growing 
seasons (Doi et al. 2006). The longevity of the seeds within the seed bank is 
believed to be short with germination rates greatly decreasing over time 
(Turkington & Aarssen 1983). 
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 Hypochaeris is found in many climates, diverse substrates and soils with 
vastly differing chemical composition (Turkington & Aarssen 1983). It 
possesses some shade-tolerance, but grows best with ample access to light 
(Fenner 1978). Its deep taproot gives it some degree of drought-resistance, 
though to what extent has not been quantified (Turkington & Aarssen 1983). It is 
also believed that Hypochaeris is autotoxic and this autotoxicity results in a 
pattern of isolated individuals within grasslands (Turkington & Aarssen 1983). 
Hypochaeris is responsive to nutrient additions on Mount St. Helens, though it 
does not benefit from additional phosphorus due to its associations with 
mycorrhizea (Titus & del Moral 1998b, Gill et al. 2006). Sources of mortality on 
the Pumice Plain are not known, though there is some evidence of herbivory by 
mammals due to the high nutritional qualities of Hypochaeris (Turkington & 
Aarssen 1983).  
 Hypochaeris is believed to be a good competitor within grasslands and 
can competitively displace many species (Turkington & Aarssen 1983). Some of 
its competitive ability has been attributed to allelopathy, though the allelopathy 
has not been conclusively demonstrated  (Turkington & Aarssen 1983). Other 
researchers maintain, based on sowing experiments and population models, that 
Hypochaeris is not a competitive species sensu Grime’s triangle, but rather a 
fugitive species reliant on constant disturbance to remain in the plant community 
(de Kroon et al. 1987).  
 
Agrostis scabra: tickle grass  
 
 Agrostis is a native, perennial bunchgrass with a fibrous root system and 
is an early successional species found in alpine meadows, prairies and beaches 
across North America (Watson 1989, Tilman & Wedin 1991abc, Matthews 
1992b). It can grow as tall as 130cm, though it is usually 15 to 100cm in length 
(Matthews 1992b). It is hemicryptophyte and sometimes sheds it leaves and 
grows new ones during the growing season (Tilman & Wedin 1991c, Matthews 
1992b). Agrostis can produce tens of thousands of seeds and these seeds are 
dispersed by inflorescences that break off of the plant and are blown by the wind 
in a manner similar to tumbleweed (Watson 1989, Tilman & Wedin 1991, 
Matthews 1992b). Agrostis generally reproduces only sexually, though there is 
some evidence of vegetative reproduction (Matthews 1992b). 
 Agrostis is mildly drought-tolerant, shade-intolerant and is tolerant of 
acidic, contaminated and nutrient poor soils (Watson 1989, Matthew 1992, 
Archambault & Winterhalder 1995). While it can be grazed by herbivores, it is 
considered to be a poor source of protein and somewhat unpalatable (Matthews 
1992b). It also should be noted that Agrostis species are used on golf courses and 
can tolerate mowing (Watson 1989). There is some evidence that grazing may 
even be beneficial to Agrostis, hence herbivory-induced mortality seems unlikely 
(Matthews 1992b). 
 Agrostis is a poor competitor for light and nitrogen in grasslands (Tilman 
& Wedin 1991abc, Wedin & Tilman 1993). Its poor competitive ability for 
nitrogen may be linked to minimal investment in belowground biomass (Tilman 
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& Wedin 1991a). With its massive investment in reproduction and lack of 
competiveness, Agrostis fits very well within Grime’s triangle as a fugitive 
species (Archambault & Winterhalder 1995). On the Pumice Plain, there is 
evidence that Agrostis does worse in terms of biomass and cover when 
Hypochaeris is present in the community (Fagan et al. unpublished manuscript). 
This effect may be due to differences in competitive ability for nitrogen (Gill et 
al. 2006).  
  
Other functional groups not considered 
  
 Bryophytes, shrubs and trees were not considered for the purposes of this 
study. Trees have barely begun to colonize the Pumice Plain and their arrival 
will most likely occur during late primary succession, which is not considered 
here (Titus 2008). Certain parts of the Pumice Plain are being colonized by 
shrubs such as Salix and Alnus, but their cover and range is limited and their 
spread is much more recent (del Moral & Jones 2002). Bryophytes have 
drastically increased their cover in recent years on the Pumice Plain and there is 
some evidence they are facilitated by the prairie lupine (del Moral & Rozzell 
2005, Titus 2008). However, they were not present in any significant number till 
1992 and their overall impact on succession is still uncertain (del Moral & Jones 
2002, Titus 2008). Until more is known about the physiology of the bryophytes 
and how they compete with vascular plants, we can only speculate on their 
effects on the community. 
 
1.3 An Introduction to Stoichiometric Community/Ecosystem Models 
 
1.3.1 A Brief History of Community and Ecosystem Models 
 
 The development of mathematical models for ecology, be it at the 
population, community or ecosystem level is relatively recent (Kingsland 1995). 
The first scientist to attempt to comprehensively model nature at all scales was 
the chemist Alfred Lotka (1925). Lotka created the field of ecological 
stoichiometry, the study of the balance of energy and chemical substances in 
ecological interactions and processes (Sterner & Elser 2002), and made great 
strides in modelling population dynamics (Lotka 1925). He sought to unify all 
these fields under the rubric of physical biology, but ecologists subsequent to 
him branched off into two directions (Kingsland 1995). They either studied 
populations and communities, creating the fields of population and community 
ecology, or they studied ecosystems and founded ecosystem ecology (Kingsland 
1995). 
 Population and community ecologists such as Elton, MacArthur, 
Rosenzweig and Levins focused on pair-wise interactions between species such 
as competition and predation and took a bottom-up approach to ecology (Elton 
1927, Rosenzweig & MacArthur 1963, MacArthur & Levins 1967). Their 
models involved few species and a limited role for environmental conditions 
(e.g. Rosenzweig & MacArthur 1963). The discovery of chaotic dynamics in 
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simple population models by May lead to the realization that these models may 
not be able to predict the destinies of real communities, leading some to question 
the value of mathematical modelling in ecology (May 1974, Peters 1991). 
During the same period, ecosystem ecologists were having a similar crisis. 
 Ecosystem ecologists such as Lindeman and the Odum brothers focused 
on the flows of energy and material between trophic levels and the ecosystem by 
treating them as black boxes (Lindeman 1942, Odum 1953). This top-down view 
of ecology spawned compartmental models and lead to the development of 
systems ecology and many useful mathematical tools (Hagen 1992). The 
research program suffered major setbacks after their major project, the 
International Biology Program (1968-1974), failed to achieve its ambitious goals 
of revolutionizing ecology (Hagen 1992). The main flaw in the program was the 
reliance on systems theory, which could simply not keep up with the 
complexities of the models created to reflect ecosystem processes (Hagen 1992). 
 The successes and failures of these two approaches have led ecologists to 
seek ways of reunifying or at least reconnect the two branches of ecology by 
focusing on the common currencies of energy and elements (Sterner & Elser 
2002, Brown et al. 2004). The hope is to be able to scale up from individual cells 
to the biosphere and back down again, allowing us to examine ecological 
interactions across a variety of scales (Sterner & Elser 2002, Brown et al. 2004). 
This thesis will use the conceptual framework of ecological stoichiometry as laid 
out by Sterner & Elser (2002). Many other models have followed this framework 
and provide us with clues on how to investigate primary succession on Mount St. 
Helens. 
 
1.3.2 Stoichiometric Population, Community and Ecosystem Models 
 
 Stoichiometric models differentiate themselves from non-stoichiometric 
models by explicitly considering the balance of two or more chemical substances 
within the organisms or populations under study (Sterner & Elser 2002). For 
example, traditional trophic food chain models consider the transfer between and 
balance of carbon (biomass or energy) within each trophic level (e.g. 
Rosenzweig & MacArthur 1963, Hastings & Powell 1991, Jansen 2001). One 
can make such a trophic chain stoichiometric by considering amounts of two 
chemical substances, say carbon and phosphorus, within all trophic levels or by 
imposing stoichiometric constraints (e.g. Andersen et al. 2004, Cherif & Loreau 
2009). 
 The addition of stoichiometric elements to these models can alter model 
outcomes. Take the Rosenzweig-MacArthur predator-prey model as an example 
(Rosenzweig & MacArthur 1963). It was noted that if one increased the 
‘carrying capacity’ of the prey to a certain level, i.e. the prey was able to extract 
more energy from its environment, then the model predicted oscillations in prey 
and predator biomass (Rosenzweig & MacArthur 1963, Rosenzweig 1971). 
When stoichiometric constraints are added to the model by introduction of a 
limiting nutrient, two new behaviours occur: the oscillations can still occur, but 
require a much higher ‘carrying capacity’ than the non-stoichiometric model or 
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the predator could not survive if the prey was insufficiently nutritious in terms of 
the limiting nutrient (Andersen et al. 2004). 
 Numerous stoichiometric models have been constructed to analyze 
flexible stoichiometry and nutrient uptake in algae (Legovic & Cruzado 1997, 
Klausmeier et al. 2004, De Leenheer et al. 2006, Klausmeier et al. 2007), 
competition for limiting resources (Daufresne & Hedin 2005, Cherif & Loreau 
2007, Li & Smith 2007, Revilla & Weissing 2008, Grover 2009), trophic 
dynamics (Grover & Holt 1998, Grover 2002, Grover 2003, Andersen et al. 
2004, Grover 2004, Cherif & Loreau 2009), phytoplankton marine community 
composition and succession (Litchman et al. 2006) and ecosystem-level 
properties like nitrogen fixation and stoichiometry (Rastetter et al. 1997, 
Rastetter et al. 2001, Wang et al. 2007, Ballantyne et al. 2008, Houlton et al. 
2008). These studies have greatly extended previous theory in all these fields and 
have spurred experimentalists to test their predictions (Chrzanowski & Grover 
2008). One study that is particularly relevant to the plant community on Mount 
St. Helens is Daufresne & Hedin’s (2005) work on nutrient cycling by plants and 
resource competition. 
 Daufresne & Hedin’s model is an extension of the non-stoichiometric 
models of Tilman (1980, 1982) to include (fixed) stoichiometry and to allow 
nutrients within organic matter to be recycled back into the soil. Using classical 
methods of resource competition theory, the authors were able show that 
recycling could alter competitive outcomes between the plants (Daufresne & 
Hedin 2005). Plants may either promote coexistence by recycling relatively more 
of the nutrient that least limits them or promote exclusion by recycling relatively 
more of the nutrient that most limits them (Daufresne & Hedin 2005). They also 
demonstrated that within the regime where only with recycling could there be 
coexistence between the competitors, it was possible to have stable oscillations 
of the competitors’ biomass (Daufresne & Hedin 2005). They suggested that 
these oscillations might allow for more than two species to coexist on two 
limiting nutrients, thereby giving another mechanism to explain biodiversity 
(Daufresne & Hedin 2005). 
 The results from their study are highly relevant to Mount St. Helens, for 
the recycling of nitrogen by the prairie lupine can alter the trajectory of 
succession (del Moral & Rozzell 2005). In addition, the studies on trophic 
dynamics are also relevant for insect herbivores seem to prefer the more 
nutrient-rich lupines to other plant species (Fagan et al. 2004). Finally, studies 
have shown that different plants on Mount St. Helens are limited by different 
nutrients and this result may be due to their stoichiometry (Gill et al. 2006). 
Therefore, a modelling approach that includes stoichiometry would be most 
beneficial for understanding the mechanisms that drive primary succession on 
Mount St. Helens. 
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1.4 A Conceptual Ecosystem Model of Primary Succession on Mount St. 
Helens 
 
 To recapitulate, there is a lack of mechanistic models of primary 
succession and this deficit is negatively impacting the applicability of 
successional theory (section 1.1). Mount St. Helens provides a wonderful case 
study for primary succession and many mechanisms have been observed and 
experimented upon, but no attempt has been made to explore these mechanisms 
with models (section 1.2). Models that link community and ecosystem ecology 
through stoichiometry have given many new insights into both fields (section 
1.3). Since nutrient limitation is a key mechanism for primary succession on 
Mount St. Helens, a stoichiometric model of primary succession could provide 
new knowledge on the subject (section 1.3).  
 All models are abstractions of reality that focus on a few processes or 
variables while neglecting many more (Levins 1966). The more variables and 
parameters added to the model to capture ‘reality’, the less able one is to tease 
out what processes are most important in driving the behaviour of the model 
(Levins 1966). One can also greatly limit the scope of the model by tailoring it to 
only correspond to the system of study, which can give us useful quantitative 
predictions for the system, but the results would have no generality (Levins 
1966).  

Here, I propose a model that maximizes, in the terms of Levins (1966), 
generality and realism. The model is tailored to be general enough to apply to 
other primary successional habitats and tries to capture the mechanisms in 
operation. The main drawback is the predictions made are mostly qualitative 
(Levins 1966). Despite this, the results from this model will allow for greater 
understanding of primary succession, on Mount St. Helens or elsewhere. 

The conceptual ecosystem model for primary succession focuses on the 
interactions between the soil, the plants, the detritus and the over the landscape 
(Figure 1.1). The model can be extended to include other trophic levels as 
needed. 
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Figure 1.1: Coarse scale ecosystem model for primary succession. Nutrients flow 
(represented by thick one-headed arrows) from the soil (S) to the plant community (P) 
to the herbivores (H). Certain portions of plant and herbivore biomass will enter the 
detritus (D). Soil organisms and microorganisms utilize the nutrients in the detritus and 
eventually release them back into the soil, allowing plants to uptake them. Soil nutrients 
from one location can diffuse (represented by dotted double-headed arrows) to other 
locations on the landscape and herbivores as well as plants can disperse across the 
landscape to other habitats. The ellipsis represents numerous more habitats that are 
linked to habitat 1 and habitat 2 through diffusion and dispersal. 
 

At the landscape level, one could see differing habitats or physical 
features that support their own communities and ecological processes (Figure 
1.1). One habitat may be more fertile and support species of plants and animals 
that are less capable of tolerating a severe environment, while another may be 
devoid of a critical nutrient. Over time, the interactions between organisms and 
the abiotic environment on the infertile site may lead to an increase in the 
relative nutrient content in the soil, allowing species from the more fertile habitat 
to invade. This invasion would change the composition of the community and 
would be classified as succession.  
 The landscape level is a bit too coarse to achieve a fine understanding of 
how the mechanisms of nutrient limitation and nutrient cycling would bring 
about this successional change. One would need to descend to the finer scale of 
the local habitat and the physiology of the organisms to accomplish this goal 
(Figure 1.2). 
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Figure 1.2: Fine scale ecosystem model of primary succession. Here, the flows of 
nutrients are explicitly followed between and within the soil, the detritus, the plants and 
the herbivores. Each plant has a biomass, B, which is composed of by the stores of 
elemental nutrients Q. Plant available nutrients, R, and nutrients in the detritus, D, are 
located within the soil. The representation of the herbivores as a single compartment is 
simply to limit the amount of arrows on the diagram. 
 

The fine scale model allows consideration of plant and herbivore 
stoichiometry, the stoichiometry of the soil and the stoichiometry of the detritus. 
It can provide insights into the competitive abilities of plants based on their 
physiological characteristics. It can also result in the derivation biologically 
important values such as the minimum amount of nutrient a plant needs to 
survive in its environment.  

By combining the insights gained at the fine and coarse scales, many 
qualitative predictions can be made about the rates and trajectories of primary 
succession. For example, if one plant is vital for the acceleration of recovery of 
vascular plant cover, but is very limited in its dispersal, one may see a ‘travelling 
wave’ solution in the landscape with this vital plant at the edge of the wave and 
other species following it (Levine et al. 2006).  

Despite the numerous simplifications already made in creating this 
conceptual model, the model is still highly complex and many years would be 
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needed to fill out every aspect. In my thesis, I have managed to solve some of 
the questions this model proposes, but much is left to future work.  
 
1.5 Outline of Thesis  
 

With the introduction completed, I can now turn to body of the thesis. In 
Chapter 2, I study the fine scale ecosystem model with attention given only to 
the soil, detritus and plants by using ordinary differential equations. I 
demonstrate that the model equations give rise to a simple graphical 
representation and competitive relationships between plants can be easily 
described. I follow the general analysis of the model by parameterizing it with 
data collected on Mount St. Helens and from the literature. I test the models 
ability to predict competitive outcomes between the prairie lupine, the hairy cat’s 
ear and the tickle grass (Agrostis scabra) seen in experiments (e.g. Gill et al. 
2006) and to determine how stressful the nutrient conditions are on Mount St. 
Helens for plants. 
  In Chapter 3, I study the coarse scale model by considering the same 
species in Chapter 2 in a spatial environment. The mathematical model used is 
an individual-based model that keeps track of patch occupancy. Each plant’s 
ability to colonize a patch is dependent on the presence of other plants, the 
quality of the patch and the dispersal distance of its seeds. The model is 
simulated numerous times and over a variety of parameter ranges and initial 
conditions to see how succession over the landscape proceeds.  
 In Chapter 4, I synthesize the results from the previous two chapters and 
piece together the lessons learned for primary succession. I also consider what 
needs to be done in order to complete the conceptual framework laid out in 
Chapter 1. 
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Chapter 2 
 

A Stoichiometric Model for Plant Primary 
Succession on Mount St. Helens 
 
2.1 Introduction 
 
 The bare substrates that are left behind from large disturbances, such as a 
volcanic eruption or the retreat of a glacier, are usually poor in some elemental 
nutrients (Wood & del Moral 1987, Matthews 1992, Chapin et al. 1994, Walker 
& del Moral 2003, Vitousek 2004). The lack of fertile sites can inhibit plants 
from colonizing the landscape and can delay ecological recovery (del Moral & 
Bliss 1993, Walker & del Moral 2003). Species that can overcome low nutrient 
conditions and ameliorate substrate fertility, like nitrogen-fixers, can accelerate 
succession and ecosystem recovery through facilitation (Connell & Slatyer 1977, 
Pickett et al. 1987, Walker & Chapin 1987, Callaway & Walker 1997). 
Conversely, they also can arrest succession by inhibiting the establishment of 
other plant species through competition and other means (Pickett et al. 1987, 
Walker & Chapin 1987, Walker & Vitousek 1991, Chapin et al. 1994). 
 The outcome between the facilitative and inhibitory effects of early 
colonizers must be determined if the successional trajectories of the community 
is to be predicted (Connell & Slatyer 1977, Pickett et al. 1987). The insights 
gained from these studies can then be applied to ecological restoration, for 
managers would know to avoid early successional species that have net 
inhibitory effects on later successional species (Walker & del Moral 2003). 
 On Mount St. Helens, the current substrate laid down by the pyroclastic 
flows of the May 18th 1980 eruption and subsequent eruptions was, and is, poor 
in nitrogen (del Moral & Clampitt 1985, Halvorson et al. 1991a, Halvorson & 
Smith 1995, Fagan et al. 2004, Halvorson et al. 2005, Titus 2008, Halvorson & 
Smith 2009). One of the earliest colonizers of this substrate was a small, 
nitrogen-fixing legume called the prairie lupine (Lupinus lepidus; del Moral & 
Clampitt 1985, Halvorson et al. 1991b, Braatne & Bliss 1999, Bishop 2002). As 
a nitrogen-fixer, the lupine can create ‘islands’ of fertility in the barren landscape 
that can support nitrogen-limited organisms (Halvorson et al. 1991a, Halvorson 
et al. 1992, del Moral & Bliss 1993, Halvorson & Smith 1995, Tsuyuzaki et al. 
1997, del Moral & Rozzell 2005). However, these beneficial effects seem to be 
overshadowed by suppression of seed germination and other inhibitory effects 
found when the lupine is still alive (Morris & Wood 1989). The presence of 
these contradictory effects raises many questions. 
 What is, therefore, the net outcome of these facilitative and inhibitory 
effects of the lupine on subsequent colonizers of lupine-patches? Does the 
trajectory of succession change if lupines are present? Does an increase in local 
lupine mortality result in an increase of the facilitative effect? Some of these 
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questions have been addressed by observational and experimental studies, but 
the results are often contradictory (del Moral & Rozzell 2005, Titus 2008). 
 In this work, I hypothesize that the facilitation and inhibition of the 
various species in the plant community occurs through resource competition 
(Tilman 1980, 1982). The resources I focus on are the elemental nutrients, 
nitrogen and phosphorus, which have been shown to limit lupine and other 
colonists’ growth (Gill et al. 2006). The reasons for only considering nitrogen 
and phosphorus include the lack of light competition (Titus 2008), the lack of 
evidence for biologically significant differences in pH for barren and colonized 
areas on the Pumice Plain (Tsuyuzaki et al. 1997, Halvorson et al. 2005, Titus 
2008, Halvorson & Smith 2009, but see Ugolini & Dahlgren 2002) and the 
relative abundance of other nutrients in comparison to nitrogen and phosphorus 
(Wagner & Walker 1986, Gill et al. 2006, Titus 2008, Halvorson & Smith 2009). 
 There is some evidence for competition for water, though many species 
on Mount St. Helens are well adapted to drought conditions (Braatne & Chapin 
1986, Chapin & Bliss 1988, Chapin & Bliss 1989, Braatne & Bliss 1999, Titus 
2008). As no experiments have been done to see if increased soil water content 
will alter community composition over time, it remains an open question if 
competition for water structures communities. There could also be some 
allelopathy on Mount St. Helens as some species (e.g. Hypochaeris radicata) are 
believed to be allelopathic (Turkington & Aarssen 1983). While allelopathy is 
not considered in the main results, some consideration is given on how one could 
model allelopathy and resource competition within Appendix 2.C. 
 To test the hypothesis and to answer the questions above, I develop a 
general stoichiometric-explicit ecosystem model that follows flows of nutrients 
from and between the soil, the plants and the detritus. The properties of the 
general model such as the existence and the stability of steady states are 
analyzed mathematically. Many of these results can be expressed by using 
graphical techniques that were first derived for classical resource competition 
theory (Tilman 1980, 1982). I utilize these graphical methods to show the results 
of competition between species. 
 I follow my analysis of the general model by parameterizing it with field 
data collected at Mount St. Helens and other data found within the literature. I 
then utilize the techniques derived from the analysis of the general model to see 
whether or not Lupinus lepidus facilitates the colonization of the other species. 
Furthermore, I investigate the possibility that the presence of the lupines may 
change the competitive outcome between the other species, causing a change in 
successional trajectory. I also investigate whether increased lupine mortality 
increases or decreases its facilitative effects.  
 The main theoretical results of my chapter are the discovery of non-
equilibrium dynamics in the model caused by the presence of recycling and that 
traditional graphical analysis fails to predict competitive outcomes between 
species under certain parameter regimes (Figures 2.7, 2.8). Another key 
theoretical result is the discovery of areas of bistability where the community 
can be composed by one species or two other species (Figure 2.11, 2.12). 
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Overall, the combination of variable stoichiometry and nutrient recycling can 
lead to rich dynamics unseen when one or the other is not included. 
 When applied to the plant community on Mount St. Helens, the model 
successfully predicts the observed competitive hierarchy found in the plant 
community (Figure 2.11). Furthermore, the model supplies additional evidence 
that the overall effect of Lupinus on other species is facilitative and can be 
explained through nitrogen additions (Figure 2.14). The results suggest that 
stoichiometry combined with nutrient cycling and nutrient limitation can aid in 
predicting the qualitative behaviour of plant succession. 
  
2.2 Model Development & Parameterization 
 
 This section is divided into three parts. The first part (2.2.1) is the 
derivation of the mathematical model from a conceptual model of a plant-soil-
detritus ecosystem. The second part (2.2.2) lists and explains the assumptions 
needed to create the mathematical model. The assumptions listed are key to the 
functioning of the model and the effects of their violation are discussed within 
the discussion. The third and final part (2.2.3) explains how the model was 
parameterized from field data and the available literature. A helpful guide to the 
notation of this chapter is included in Appendix 2.A. 
 
2.2.1 Model Derivation  
 

Let us begin by describing a hypothetical ecosystem that has n plant 
species that can possibly be limited by m nutrients. I will keep track of the 
biomass of each species j in order to know if it will persist or not in the 
ecosystem and I denote this value by Bj. Since I am dealing with nutrients that 
can be limiting, I also need to follow the available amount of nutrient i in the 
soil, which will be the variable Ri. The amount of nutrient i within species j will 
determine whether or not that nutrient is limiting, though only if I compare its 
relative abundance with all other possible limiting nutrients. Therefore, I require 
the amount of nutrient i per unit of biomass of species j, which I express as Qij. 
Finally, I need to keep a tally of all the nutrients that are in the detritus, so for 
each nutrient i I have a detritus variable Di. Note that, by having just one detritus 
variable per nutrient i, I assume that the decomposition rate of the dead material 
is the same for all species, but there is no loss of generality by making this 
assumption (Daufresne & Hedin 2005). The flows of nutrients between the 
various compartments (detritus, available and plant) can be illustrated in a 
diagram (Figure 2.1): 
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Figure 2.1: Generalized flow diagram for an n plant species, m nutrient ecosystem. 
Each plant uptakes available nutrients, R, from the soil and brings the nutrients into its 
internal stores, Q. These internal stores provide material to create more plant biomass B. 
When plant biomass perishes, the nutrients within that biomass go into the detritus, D. 
The nutrients within the detritus are mineralized over time and go back into available 
nutrients. The ellipses indicated that there are numerous species between 1 and n and 
numerous nutrients between 1 and m. 
 
This diagram reveals a modelling challenge: for large n and m, the number of 
variables becomes unmanageable from a mathematical point of view. The 
number of variables is equal to n + 2m + nm, so if I have three plants and three 
nutrients, I will have 18 variables to consider. A commonly used assumption for 
simplification is constant yield (i.e. constant stoichiometry; Grover 1992). This 
assumption would mean that all the Qij variables would be constants. A veritable 
mountain of scientific research has been amassed on these constant yield models 
and their validity (e.g. Tilman 1980, 1982, Huisman & Weissing 1995, Grover 
1997, Huisman & Weissing 2001, Craine 2005, Daufresne & Hedin 2005, Miller 
et al. 2005, Wilson et al. 2007). Overall, constant yields models serve as good 
approximations of the more realistic models if the community is near steady 
state (Grover 1992). If I make this assumption, then the equations that would 
describe the dynamics of the model system are: 
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The above equations describe the rates of change of available nutrients, 

of plant biomass and of nutrients in the detritus. The equation dealing with the 
dynamics of available nutrients has three main components: the supply of 
available nutrients without plants, the uptake of available nutrient by plants and 
the addition of available nutrients from the mineralization of organic nutrients 
within the plant detritus. Supply without plants is determined by ai, the dilution 
rate of nutrient i, and by Si, the amount of nutrient i becoming available to plants 
from non-plant sources. Plant uptake of nutrient i is a function of plant j 
biomass, the growth function of plant j, Hj, and amount of nutrient i per unit 
biomass of plant j, qij. Total plant uptake is the sum of each plant species uptake. 
Gains from the mineralization of organic nutrients within the plant detritus 
depend on the mineralization rate, δi, and amount of organic nutrients within the 
plant detritus.  
 The dynamics of plant j biomass are simply a function of gross growth 
and mortality, mj. The dynamics of nutrients within the plant detritus are 
determined by how much nutrients within dead plant material is recycled in the 
ecosystem and how much is lost to mineralization. The portion of nutrient i from 
the dead material of plant j that is recycled is denoted by ζij. 
 The growth function Hj obeys Liebig’s law of the minimum, i.e. the 
nutrient that is least available relative to all others determines the growth rate of 
the plant. Within the growth function, there are functions describing the growth 
of the plant for each nutrient i and these are denoted by hij. The hij functions are 
considered to be strictly increasing functions with increasing available nutrient 
and have a constant maximum growth rate at infinite nutrient levels.  
 Others have analysed this model (Eq. 2.1) previously (Daufresne & 
Hedin 2005). The novel results from their analysis include changes in 
coexistence conditions at equilibrium due to the presence of recycling, the 
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possibility that species could gain competitive advantages by differential 
recycling and the existence of oscillatory dynamics produced by the addition of 
recycling under certain conditions (Daufresne & Hedin 2005). However, there 
are some shortcomings to using this model framework for natural ecosystems. 
 A major problem for the model is the estimation of parameters (Grover 
1997). The Monod function, the most used growth function that satisfies the 
properties of hij, has its parameters estimated through laboratory population 
growth data (Grover 1997). The estimates for the parameters can vary widely 
due to changes in environmental conditions and lead to inconclusive predictions 
of the model (Grover 1997) In addition, it is relatively rare to have appropriate 
data for natural plant communities as most researchers use measures such as 
relative cover rather than biomass (e.g. Wood & del Moral 1988).  
 A further complication involves the assumption of constant yield (Grover 
1997). The inclusion of a variable stoichiometry, which gives rise to a variable-
yield model with nutrient storage, can alter the predictions of the model (Grover 
1992, Grover 1997, Klausmeier et al. 2004, Revilla & Weissing 2008). For 
example, variable yield models decouple nutrient uptake from growth, so 
competitive ability is a function of uptake parameters and plant composition 
parameters, which can lead to alternative competitive hierarchy than those 
derived from fixed yield models (Grover 1997, Revilla & Weissing 2008).It is 
also more difficult (i.e. requires narrower parameter ranges) to have oscillations 
when organisms have nutrient storage versus when they do not (Revilla & 
Weissing 2008). Since plants due show variable stoichiometry (e.g. Sterner & 
Elser 2002), predictions from a fixed stoichiometry model may not apply to 
actual plant communities. 
 
2.2.1.1 Including Variable Internal Nutrients and Uptake Rates 
 
 To avoid these difficulties, I allow the stoichiometries to vary, which 
implies that the internal nutrient concentrations, Qij, can vary. In addition, I will 
also explore the possibility that uptake rates depend on the internal concentration 
of nutrients within the plant. There is evidence that plants uptake more nutrients 
when internal stores are deficient (e.g. Barber 1995) and this may alter model 
predictions. 
 Implementing these changes, the model equations become: 
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The equation governing the dynamics of the plant detritus remains the 
same as in Eq. 2.1 except qij, a constant, is replaced by Qij, a variable (see Table 
2.1 for list of variables and parameters). The biomass equation is also similar, 
but the growth function is now a function of Qij and has two new parameters: the 
maximum growth rate at infinite internal nutrients, µ∞,j, and the minimum 
amount of internal nutrients to maintain the plant, Qmin,ij. The new equation 
describing the dynamics of the internal nutrients has a concentration component 
and a dilution component. As plant j uptakes nutrient i, the amount of that 
nutrient per unit biomass within plant j increases (concentration). When plant j 
grows and adds more biomass, the amount of nutrients per unit biomass 
decreases (dilution).  

The uptake function itself has changed from Eq. 2.1. Here, it is composed 
of two functions hij(Ri), which is a strictly increasing function of Ri that is equal 
to zero at Ri =0 and equal to Vmax,ij as Ri approaches infinity,  and gij(Qij), which 
is a strictly decreasing function of Qij that is equal to one at Qij = Qmin,ij and is 
equal to zero at Qij = Qmax,ij with Qmax,ij <1. The two new parameters are the 
maximum uptake at infinite available nutrient and the maximum amount of 
nutrient i in plant j, respectively. The reason Qmax,ij must be less than one is that 
no plant is solely composed of any one element. The specific forms used when I 
parameterize the model with the Mount St. Helens data are: 
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These functional forms represent Michaelis-Menten kinetics for nutrient uptake 
with a half-saturation constant Kij and linearly decreasing function of internal 
nutrient concentration. The gij function attempts to incorporate into the model 
the fact that plants modify their nutrient uptake depending on their nutrient status 
(Barber 1995, Newberry et al. 1995). 
 
Table 2.1: List of variables and parameters with their units for the stoichiometric 
model (Eq.. 2.2) 
Variables Meaning Units 

R Plant available nutrients in soil 
solution 

mol nutrient/L 

Q Nutrient concentration within plant mol nutrient/mol C 
B Plant dry biomass mol C 

D Nutrients in the detritus mol nutrient 
Parameters Meaning Units 

Vmax Maximum uptake rate at infinite R mol N/(day x mol C) 
K Half-saturation constant mol nutrient/L 
µ Maximum growth rate at infinite Q 1/day 

Qmin 
Minimum nutrient concentration 
within plant 

mol nutrient/mol C 

Qmax 
Maximum nutrient concentration 
within plant 

mol nutrient/mol C 

m Mortality constant 1/day 

I Influx of plant available nutrients from 
non-plant sources 

mol N/(day x L) 

φ Efflux rate constant of plant available 
nutrients 

1/day 

ζ Proportion of dead plant material 
entering the detritus 

dimensionless 

δ Mineralization rate constant for 
nutrients in detritus 

1/day 

ω 

Conversion factor for nutrients 
entering the soil solution from the 
detritus. Takes into account soil 
moisture levels. 

1/L 
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The available nutrient equation has the same three elements as Eq. 2.1, 

but the supply without plants is written in different way and there is an 
additional parameter associated with the mineralization. The supply without 
plants is now defined by the influx of nutrient i from non-plant sources, Ii, and 
the efflux rate of nutrient i from the plant available nutrient compartment, φi. 
One can transform the supply rate in Eq. 2.1 into the form found in Eq. 2.2 by 
letting ai = φi and aiSi = Ii. The reason for using form found in Eq. 2.2 is due to 
using net mineralization rates that are in mol nutrient/time. The additional 
parameter in the mineralization, ω, is a conversion factor from mol nutrient to 
mol nutrient/L as available nutrients do not have the same units as the plant 
detritus. It should be noted that Ii is also dependent on water content and changes 
if ω changes. This relationship will be used during parameterization. 

The internal nutrient equation needs a slight modification when it is 
being used to describe a nitrogen-fixer for nitrogen-fixers can utilize 
atmospheric nitrogen for growth. In such a case, I need to add an additional term 
to the concentration component of the equation: 
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The fixation function, fij, is a strictly decreasing function of available 

nutrient for nitrogen-fixers reduce their fixation rates with increasing soil 
nitrogen (Lee et al. 2003). The maximum fixation rate occurs when no nutrient is 
present in the soil and approaches zero for infinite amount of available nutrient. 
For the purposes of the parameterized model, I note that lupines are known to 
maintain relatively constant nitrogen assimilation that is independent of soil 
nitrogen content (Gladstones et al. 1998, Lee et al. 2003). Therefore, the 
concentration component of the internal nutrient equation can be defined as a 
constant value. I assume this value is equal to Vmax,ij. 
 
2.2.2 Model Assumptions 

 
There are numerous assumptions made within this model concerning the 

variables and the parameters. This section delves into what assumptions were 
made and why they were taken. The consequences of violations of key 
assumptions are considered in the discussion.  
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Many key assumptions have been made about how nutrients are made 
available for plants within the soil. Here is a list of the major assumptions of the 
model: 

1. Plants can only obtain nutrients from the soil solution in inorganic 
forms. 

2. The nutrients within the soil solution are considered to be well-mixed, 
i.e. the plant available nutrient concentrations are identical everywhere 
in the area considered. 

3. Nutrients within the soil are primarily located in the first ten 
centimetres of the soil. 

4. The amount of water within the soil remains constant over time. 
5. Plants have a fixed shoot:root ratio in terms of allocation of biomass. 
6. Plants have a constant percentage of carbon within plant biomass. 
7. Plants have fixed nutrient uptake parameters. 
8. Plants suffer from continuous mortality during the growing season. 
9. Plants grow vegetatively and sexual reproduction is ignored.  
10. The detrital community converts the nutrients in dead plant material 

into plant available nutrients at a constant rate that is proportional to the 
total amount of dead plant material. 

11. Plants compete through the reduction of belowground resources. 
 
 

 The first assumption is common one for physiological models of plant 
growth (Nye & Tinker 1977, Barber 1995). This is why the units for plant 
available nutrients are listed with moles of nutrient per litre in Table 2.1. While 
it does occur that plants uptake organic nutrients (e.g. Schimel & Bennett 2004), 
no work has been to quantify how much would be taken up by the plants on 
Mount St. Helens.  

  The validity of the second assumption depends on the ionic forms of the 
nutrients, the elemental identity of the nutrient, soil properties and the amount of 
overlap in the rooting systems (Huston & DeAngelis 1994, Barber 1995). As 
phosphorus may only be well-mixed in regions close to the root systems, I 
consider a fairly small area for plant competition (1m2) in order to minimize the 
violation of the assumption.  

The third assumption is made based on the empirical results of others on 
Mount St. Helens (Halvorson et al. 2005, Halvorson & Smith 2009). For other 
primary successional habitats, the location of nutrients within the soil profile 
may differ and this assumption can easily be relaxed. 

 The fourth assumption is made for simplicity and analytical tractability 
for water levels in primary successional soils can vary drastically over time and 
space (del Moral & Bliss 1993). However, I do vary the amount of water within 
the soil within relevant ranges and factor the changes of this range into the 
results. 

Concerning the fifth assumption, experimental studies of the allocation to 
roots and to shoots for species on Mount St. Helens seem relatively constant 
after early growth (Halvorson et al. 1991b, Titus & del Moral 1998). However, it 
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is true that there can be large variations in allocation as seen in Lupinus and 
where data is available for allocation, it is factored into the model (see Table 2.B 
in Appendix 2.B). 

For the sixth assumption, experimental studies have noted that while 
there is some variation of carbon content within species, the variation is 
relatively small compared to variation in nitrogen and phosphorus (Halvorson et 
al. 1991b, Fagan et al. 2004, Gill et al. 2006). In addition, carbon should not be a 
limiting resource due to the lack of shading in plant communities on the volcano 
(Titus 2008).  

While the seventh assumption is not true, the model attempts to address 
this failing by allowing uptake to depend on the nutrient status of the plant, 
which seems to be a main mechanism in changing the uptake parameters 
(Newberry et al. 1995). Therefore, the parameters may be constant, but the 
uptake is not. 

The eight and ninth assumptions are made for simplicity and analytical 
tractability. With these assumptions, it is possible to ignore the stochasticity 
surrounding mortality events, the possibility of genetic differentiation within the 
species and life-history characteristics such as seed dispersal and seed size. 
Many of these assumptions are addressed in the next chapter of the thesis. 

The tenth assumption is a gross simplification of the complex community 
dynamics involved (e.g. Cherif & Loreau 2009) in the detrital community, but 
can serve as a first-order approximation that will be refined in future studies. For 
example, one can refine the model by considering when the detrital community 
releases nutrients to the plant available pool rather than take nutrients from that 
pool (e.g. Wang et al. 2007). Once again, the simplification is motivated by 
concerns about understanding model properties and mathematical tractability. 

The eleventh and final assumption indicates that factors such as 
allelopathy, competition for light and other potential mechanisms for 
competition are not considered here. Of these other factors, allelopathy seems 
the most likely to occur since Hypochaeris radicata may be allelopathic 
(Turkington & Aarssen 1983). I give a brief example of how to integrate 
allelopathy into the model and why there are no density-dependent terms in the 
model in Appendix 2.C. 
 
2.2.3 Model Parameterization 
 

Obtaining usable parameters values from the available data also involved 
making certain assumptions. For example, some values for nutrient uptake are in 
terms of fresh biomass and others are in dry biomass. Since the stoichiometry of 
plants is based on dry biomass, I need to convert nutrient uptake parameters into 
terms of dry biomass. Such a procedure is not trivial, as conversions are 
impacted by a variety of factors (Westlake 1963). Other parameters, such as the 
maximum growth rate at infinite internal nutrients or the influx of phosphorus 
must be estimated indirectly by using some assumptions. The steps taken for 
each parameter that needed some sort of conversion or indirect derivation is 
described in Appendix 2.B. 
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Much of the data on the parameters was presented in the form of point 
estimates, minimizing the amount of statistical work needed. I did need to 
estimate the phosphorus uptake parameters of Hypochaeris by utilizing a data set 
from Longeran & Asher (1967) and I used a non-linear regression to determine 
Vmax and K.  

It must be noted that not all parameters could be found for the species of 
interest. In many cases, I could only find measurements for related species. The 
lack of species-specific data is a common problem for ecologists and should not 
prevent us from making qualitative predictions if related species are similar in 
functional type. Hopefully models such as these will spur ecologists to obtain 
better physiological data on species so that more accurate model predictions can 
be made. 

With all these assumptions, simplifications and caveats, I managed to 
parameterize the model (Table 2.2). Certain parameters were left as free 
parameters due to a lack of data regarding their values. Other parameters have 
large ranges of values for estimates provided by various authors vary widely. 
Fortunately, the parameters that matter most in competitive ability are also the 
best known as will be seen in the results. 
 
Table 2.2: Values used and ranges of values for parameters in the model 
a) Lupinus lepidus physiological parameters 
Parameters Value Used* Range Source 
Vmax,NL 7.05 x 10-4 5.93-7.05 x 10-4 Halvorson et al. 

1992a 

Vmax,PL 2 x 10-3 1.5- 2 x 10-3 Esteban et al. 
2003b 

KNL 1.15 x 10-4 1.15-1.19 x 10-4 Dunabin et al. 
2002c 

KPL 1.57 x 10-5 1.57-1.67 x 10-5 Esteban et al. 
2003b 

Qmax,NL 0.04507 -- Fagan et al. 2004 

Qmax,PL 0.00187 -- Fagan et al. 2004 

Qmin,NL 0.02525 -- Fagan et al. 2004 

Qmin,PL 0.000816 -- Fagan et al. 2004 

µ∞,L 0.218 -- Halvorson et al. 
1991b 

mL -- 0.001-0.03 Braatne & Bliss 
1999, Bishop 
2002d 

* Value used means that these values were used for all figures were simulations were used. 
a Based on average nitrogen accumulation by Lupinus lepidus over whole growing season 
(hundred days). 
b Data from Lupinus albus.  
c Data from Lupinus angustifolius and Lupinus pilosus. 
d Value based on 30% yearly mortality if no growth occurs.  
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Table 2.2 continued 
b) Hypochaeris radicata physiological parameters  
Parameters Value Used Range Source 
Vmax,NH 0.1272 0.0707-0.1272 Van de Djik et al. 

1982 

Vmax,PH 3.48 x 10-4 -- Longeran & 
Asher 1967a 

KNH 7 x 10-6 0.7 – 1.9 x 10-5 Van de Djik et al. 
1982 

KPH 7.312 x 10-7 -- Longeran & 
Asher 1967a 

Qmax,NH 0.050934 -- Fagan et al. 
unpublished data 
set 

Qmax,PH 0.00170 -- Mamolos et al. 
1995b 

Qmin,NH 0.011548 -- Fagan et al.  
unpublished data 
set 

Qmin,PH 0.00113 -- Mamolos et al. 
1995b 

µ∞,H 0.3518 0.2527-0.3518 Fenner 1978, Van 
de Djik et al. 1982 

mH -- 0.001-0.03 Tsuyuzaki et al. 
1997c 

a Data from Hypochaeris glabra. Parameters are derived from fitting using non-linear least 
squares.  
b Assuming constant value for %C of 40.74.  
c Data for seedling mortality. No data for adult mortality. 
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Table 2.2 continued 
c) Agrostis Scabra physiological parameters 
Parameters Value Used Range Source 
Vmax,NA 0.01834 0.01605-0.01834 Rachmilevitch et 

al. 2006 

Vmax,PA 1.87 x 10-3 1.46-1.87 x 10-3 Newberry et al. 
1995a 

KNA 1.5 x 10-5 1.5 – 3.0 x 10-5 Barber 1995b 

KPA 3.7x10-6 1.47 – 3.7 x 10-6 Mouat 1983c  
Qmax,NA 0.03766 -- Bishop et al. 

unpublished data 
set 

Qmax,PA 0.003296 -- Newberry et al. 
1995a 

Qmin,NA 0.004499 -- Bishop et al. 
unpublished data 
set 

Qmin,PA 0.0004301 -- Newberry et al. 
1995a 

µ∞,A 0.140 0.120-0.140 Rachmilevitch et 
al. 2006 

mA -- 0.001-0.02 None 
a Data from Agrostis capillaris.  
b Data from non-Agrostis grass species such as Fescue.  
c Data from Agrostis tenuis. 
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Table 2.2: continued 
d) Nutrient and detritus dynamics parameters 
Parameters Value Used Range Source 
IN -- (5.95-10.2 x 10-4,  

4.03-31.1 x 10-6) 
x ω 

Halvorson & 
Smith 2009, Gill 
et al. 2006a 

IP -- 1.00-8.67 x 10-4
 x 

ω 
Halvorson & 
Smith 2009, 
Fagan et al. 2004b 

φN 1 10-12 - 1 Free Parameter 
φP 1 10-12 - 1 Free Parameter 
ζNL -- [0,1[ Free Parameter 
ζPL -- [0,1[ Free Parameter 
ζNH -- [0,1[ Free Parameter 
ζPH -- [0,1[ Free Parameter 
ζNA -- [0,1[ Free Parameter 
ζPA -- [0,1[ Free Parameter 
δN -- 10-12 -1 Free Parameter 
δP -- 10-12 -1 Free Parameter 
ω -- [0.04-0.5] Titus 2008 
a Data within parenthesis are in mol N/day and therefore need to be converted into mol N/(L x 
day), which is done by multiplying the values by the ω parameter. The first range is for data 
collected in 2005 by Halvorson & Smith (2009), the second for data collected in 2002 by Gill et 
al. (2006). 
b Data are in mol P/day and therefore need to be converted into mol P/(L x day), which is done 
by multiplying the values by the ω parameter. Range is based on data from Halvorson & Smith 
(2009) and from Fagan et al. (2004). 
 
2.3 Results 
 
The results are divided into two main sections, with the first section (3.2.1) 
dealing with the general model with non-specified functional forms and the 
second exploring the parameterized model (3.2.2). The general model section is 
structured by first checking important model properties (3.2.1.1) such as positive 
invariance and is followed by analysing the case of one, two or three or more 
species (3.2.1.2-3.2.1.4) competing for two nutrient resources. Using the tools 
developed from the general model section, I explore the behaviour of the 
parameterized model (3.2.2) to see if it matches qualitative predictions found on 
Mount St. Helens. 
 
2.3.1 General Model 
 
2.3.1.1 General Properties 
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 All mathematical models of biological phenomena need to be carefully 
specified in order to capture behaviour that is biologically relevant. In general, 
biological variables must remain within value ranges that are valid for real 
organisms, populations and ecosystems. For example, a model that allowed for 
negative biomass would not be biologically appropriate.  
 For the purposes of this model, it is required that all biological variables 
be positive if their initial values are positive for all time (i.e. positive invariance) 
and there must be an upper limit to the amount of nutrients within the system for 
all time (i.e. boundedness). Furthermore, certain variables need not only be 
positive, but also remain within a narrow range of values for all time. 
 In other words, it is required that Ri, Bj and Di must be non-negative for 
all nutrients i and all species j for all time if their initial values at time 0 are non-
negative. For Qij, it is required that its value remain between Qmin,ij and Qmax,ij for 
all nutrient i and all species j for all time if their initial values were initially 
between those values.   
 For boundedness, I must introduce a new quantity which represents the 
total amount of nutrient i within the ecosystem and label this quantity Ti. The 
total amount of nutrient i within the ecosystem is the sum of the amount nutrient 
i in the soil solution, the amount of nutrient i within all the plants and the amount 
of nutrient i within the plant detritus. The mathematical expression for Ti is: 

   

T
i
= k

Water Content

of Soil
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i
+ B

j
Q

ij
+ D

i
j=1

n

!                                         (2.5) 

 Within the boundedness condition, there is a new quantity Ti, which is 
simply the total amount of nutrient i within the ecosystem. As long as this 
variable is always less than some constant θ, then the total amount of nutrient i 
within the ecosystem is bounded. The boundedness of Ti subsequently implies 
the boundedness of the other variables since Qij are always positive and the 
product of BjQij must be finite if Ti is finite. Therefore, there would be upper 
limits to all the model variables. Such a result makes biological sense for no 
organism has infinite biomass nor does any ecosystem have infinite amount of 
nutrients. 
 The model presented in Eq. 2.2 is both positively invariant and bounded, 
making it suitable for the biological system of interest. The proofs of theses 
properties are in Appendix 2.E for the positive invariance and Appendix 2.F for 
the boundedness. Both proofs are suitable for a system with n plants and m 
resources. These results will be helpful for investigating characteristics of the 
one, two and three plant species case with two nutrients. 
 In addition, the above results imply that all solutions of the model will 
eventually be attracted to a global attractor (Zhao 2003, Theorem 1.1.3). A 
global attractor is a subset of the metric space to which any solution within the 
metric space will be attracted (Zhao 2003). Knowing what the global attractor of 
a model is greatly enhances one’s understanding of the model. For example, Li 
& Smith (2007) proved that for a single species with two nutrients with nutrient 
storage, but no recycling, that all solutions must converge to the plant steady 
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state if it exists. Therefore, the complete behaviour of the model is known and a 
definite statement can be made about possible outcomes. Such model predictions 
can then be definitively tested by experiments, as no other outcomes would be 
possible. 

 Without knowing the global attractor, the behaviour of the model can 
only be partially characterized through local stability analyses and numerical 
simulations, which may miss important properties of the model. Unfortunately, 
the identity of the global attractor for my model is not known.  Hopefully, my 
model may be of interest to those with greater understanding of mathematical 
analysis and they will be able to solve what I could not. 
 
2.3.1.2 One Species, Two Nutrients 
 
 Even when considering a simple ecosystem with only one species and 
two nutrients, there are seven coupled ordinary differential equations governing 
the dynamics of the nutrients and plant biomass: 
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One slight change in terms of notation from Eq. 2.2 is that since there is 

only one plant species within the ecosystem, the plant identity subscript is 
dropped. Furthermore, each variable has a number in the subscript indicating the 
identity of the nutrient, be it nutrient 1 or nutrient 2. 
 A simple ecosystem such as presented in Eq. 2.6 can only have two 
biologically relevant steady states. One steady state has no plant biomass, which 
will be labelled E0, and one steady state has positive plant biomass, E1. 
Furthermore, the E1 steady state can be further subdivided depending whether 
the plant is most limited by nutrient 1 at steady state ( 1

1
E ) or by nutrient 2 ( 1

2
E ). 

For my purposes, I will consider the case where nutrient 1 is most limiting, for 
the results apply to nutrient 2 by replacing 1 by 2 in the subscripts.  
 The values of the variables for each steady state are found in Table 2.3. 
Some of the values can be expressed with an implicit function of the variable in 
question. It is shown in Appendix 2.G that these values are unique. This result 
implies that the steady states are of biological interest and not a mathematical 
artefact of the model. 
 It is important to note that despite the appearance of ω within the 
denominator for the steady state value of B in E1, the value of B is independent 
of water content, except when water content is so large as to make Ii less than 
!
i
R
i

1  (Table 2.3). This fact is due to Ii being a linear function of ω, which means 
that a change in water content alters both Ii and ω in such a way that the value B 
at steady state remains the same unless Ii becomes too small and the numerator 
becomes negative. 
 The conditions for the existence of the steady states are simple. E0 always 
exists and E1 exists if and only if (assuming nutrient 1 is most limiting) the level 
of nutrients within the soil solution at the no plant steady state and therefore 
within the plant are sufficient to enable positive growth of the plant species. 
However, the condition for existence does not indicate whether or not the plant 
will establish, just that it can. To know if the plant will or will not establish, one 
must look at the stability conditions of the steady states. 
 The stability considered here is the local asymptotic stability of the 
steady state, which indicates whether or not solutions will return to the steady 
state if they are slightly perturbed. The local stability is derived by linearizing 
around the steady state, which generates a Jacobian matrix whose eigenvalues 
determine the local asymptotic stability. If all of the real parts of the eigenvalues 
of the Jacobian are negative, then the steady state is locally stable. Otherwise, 
the linearization does not indicate a return the steady state and the steady state 
may not be locally stable.  
 The main result is that if E1 exists, then E0 is unstable and E1 is locally 
stable and if E1 does not exist, then E0 is locally stable. Furthermore, if E1 exists, 
then it is locally stable. The Jacobian matrix and derivations for the stability 
conditions are located in Appendix 2.H. These results mean that if a plant is able 
to invade the no-plant steady state, then it will establish itself with positive 
biomass.  
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 It does not mean that all solutions of the model for given parameter 
values will tend towards either E0 or E1. To prove this, one needs to show that E0

 
is the global attractor when E1 does not exist and E1 is the global attractor when  
E1 does exist. Based on numerical results and proofs for similar (though not 
identical) models (e.g. Li & Smith 2007), I conjecture that E1 is the global 
attractor when it exists and E0 is the global attractor when E1 does not exist. A 
rigorous proof of this conjecture would guarantee that if a plant is able to invade 
the no-plant steady state, the ecosystem will go to a plant steady state. 
 While the previous results are heavily mathematical, they can be given a 
simple visual presentation using graphical techniques originally developed by 
Tilman (1980, 1982). Graphical representation takes place in the nutrient 1- 
nutrient 2 plane where the zero-net growth isocline of the species of interest and 
the supply point of the nutrients determine the conditions for existence of E1 
(Figure 2.2). 
  
 
Table 2.3: Steady states for the variables in Eq. 2.6. The superscript on the 
variables indicates the steady state from which the value is derived. The 
subscript on the variable indicates the nutrient. See Table 2.1 for descriptions of 
the variables. 
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 The zero-net growth isocline or ZNGI represents the level of nutrients at 
which gross growth is equal to mortality, once the internal plant nutrient 
concentration equilibrates with soil solution nutrients. When dealing with 
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essential nutrients like nitrogen and phosphorus, the ZNGI will be determined by 
the steady state value of that nutrient in soil solution when it is limiting, resulting 
in an L-shaped ZNGI (Figure 2.2). The steady state values for the soil nutrients 
derived from the model are equivalent to Tilman’s R*, which is the nutrient level 
at which plant growth stops (Tilman 1980). I use R* values  to  describe 
outcomes competition between plants for nutrients, though the model results are 
not reliant on classical resource competition theory. 
 Finding the R* values and hence the ZNGI is straightforward. First, one 
sets dB/dt to be equal to zero and it is assumed that only one nutrient is limiting. 
If it is assumed that nutrient 1 is limiting, then: 
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The next step is to set dQ1/dt equal to zero and to solve for

1
R

! , which gives you 
the value in right-hand column of Table 2.3 for R1. The procedure is similar to 
find *

2
R  and with both values one can construct the ZNGI. 

 The supply point of nutrients is the amount of nutrients at steady state 
with no plants. In the model, this supply point would be I

1
!
1
, I
2
!
2( )  in the 

nutrient 1-nutrient 2 plane (Figure 2.2). With knowledge of the supply point and 
the ZNGI, one can easily determine whether or not a particular plant species 
could establish in a particular environment. If the supply point is to the left 
and/or below the ZNGI, then net plant growth is negative in this environment 
and the plant cannot establish (Figure 2.2). If the supply point is above and to the 
right of the ZNGI, then the plant has positive net growth in the environment and 
can establish itself (Figure 2.2).  
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Figure 2.2: Graphical representation of the conditions of existence for E1 in the general 
model. The black dot represents a supply point that provides sufficient amount of 
nutrients in order to let E1 to exist. The pink dot represents a supply point that provides 
insufficient amount nutrients to allow E1 to exist, which means the no plant can persist. 
The zero-net growth isocline or ZNGI divides the nutrient 1-nutrient 2 plane into areas 
of sufficient and insufficient supply. The ZNGI is determined by the R* value of each 
nutrient for the species. 
 
 Furthermore, the graphical method allows one to find the values of R1 
and R2 at the steady state determined by the supply point. These values can be 
derived from the knowledge that at the steady state, the uptake of the nutrients 
by the plant must equal the supply. In addition, this point must lie on the ZNGI 
or there would be no steady state. Finally, it is known from the analysis of the 
model that only one set of values for R1 and R2 will satisfy the condition that 
uptake will equal supply. 
 An example is provided in Figure 2.3. The key to finding the steady state 
is to know the consumption vector c and the recycling vector r of the species 
along its ZNGI and the supply vector u for the nutrients. To find these vectors, 
one rewrites the equations for dR1/dt and dR2/dt in vector form: 
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One then evaluates the vector equation at steady state and sets all the variables to 
their values at E1: 
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The vector on the right hand side can be divided into three vectors, with the first 
describing the nutrient supply, the second describing nutrient uptake and the 
third describing nutrient recycling: 
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Figure 2.3: Using the graphical method to find E1. The steady state (the yellow dot) will 
be located where the supply vector u (the black arrow) will be equal to the consumption 
vector c (the yellow arrow).  The possible consumption vectors (the brown arrows) 
along the ZNGI (blue-green L-shaped line) change in magnitude and direction 
depending on location, which is different than in classical resource competition models. 
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I call these vectors as u, c and r: 
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When there is no recycling, r will be equal to zero and at E1, the consumption 
vector will have to cancel out the supply vector, which implies that c + u = 0 
(Eq. 2.7). Therefore, the point in the plane at which c + u = 0 is true will be E1. It 
should be noted that unlike classical resource competition models (e.g. Tilman 
1980), the slope and magnitude of the consumption vector can change along the 
ZNGI since c is dependent on internal nutrient concentrations (Figure 2.3). 
 The above formulation is only correct when there is no recycling. When 
there is recycling, the consumption vector must equal the magnitude of the sum 
of the supply vector with the recycling vector r. The addition of recycling 
changes the location of E1 such that the point in the nutrient 1-nutrient 2 plane 
must satisfy c + u + r = 0 or c + u’ = 0 where u’ = u + r (Eq. 2.7). Recycling 
also alters the location of the supply point, which may cause a shift in the 
nutrient that is most limiting (Figure 2.4). However, recycling does not change 
the conditions for stability or existence in the one-species case. It does, however, 
play a large role in the two species case. 
 
2.3.1.3 Two Species, Two Nutrients 
 

The behaviour of the model becomes more complex with the addition of 
an additional species. With two species and two nutrients, there can be as many 
as four steady states. These steady states are the no-plant steady state (E0), the 
plant x only steady state (Ex), the plant y only steady state (Ey) and the 
coexistence steady state (Exy). The existence of the no-plant and single plant 
steady states have already been derived in section 2.3.1.2: the no-plant steady 
state always exists and the single plant steady states exist if the R

i

*  for the 
species in question are less than R

i

0 . The existence of the coexistence steady 
state requires that at least one point in the nutrient 1-nutrient 2 plane must have 
zero net growth for both species. In graphical terms, the ZNGIs of plant x and 
plant y must intersect (Figure 2.5a).  

The crossing of the ZNGIs implies that at the coexistence steady state, 
the two species must be limited by different nutrients. If the two species were 
limited by the same nutrient and they did not share the same R* for that nutrient, 
then the species with the lowest R* will lower the nutrient in the soil solution to 
a level at which the other species cannot persist and no coexistence is possible. 
Without the crossing of the ZNGIs, one species will always be able to bring one 
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of the nutrients down to a level that the other species will experience negative 
growth at, which leads to the exclusion of the second species (Figure 2.5b).  

Another condition for the existence of the coexistence steady state is that 
the consumption of nutrients by the two species must be balanced by the supply 
of nutrients without plants plus the nutrients supplied by recycling. This 
condition can be translated mathematically into cxy + u + rxy = 0, where cxy = cx + 
cy and rxy = rx + ry (see Appendix 2.I for details).  

This condition limits the possible locations of the supply point in the R1-
R2 plane that can allow for coexistence as the combined consumption vector of 
species x and y can only take on certain values without the biomass of one of the 
species becoming negative. What values the slope of the supply vector can take, 
which implies the values of the supply point, is determined by the following 
formula (the derivation of this formula is in Appendix 2.I): 
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Figure 2.4: Impact of recycling on the one species, two nutrient case of the general 
model.  Adding recycling to the system translates the original supply point (gray dot), 
labelled E0 to denote the fact its value is determined by the no-plant steady state, to the 
right and upwards in nutrient 1-nutrient 2 space (black dot). The shifting of the supply 
point changes the slope of the supply vector at steady state from u (grey arrow) to u’ 
(black arrow). This change in the supply vector alters the slope of the consumption 
vector at steady state from c (brown arrow) to c’ (yellow arrow). The net result of this 
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translation is a change in the steady state values of E1 (yellow dot), which lies on the 
ZNGI (Z).  
 
 

 
 
Figure 2.5: Using graphical analysis to determine the competitive outcomes between 
two species for two limiting nutrients. The relative competitive abilities for each species 
for each nutrient are determined by the R* values, which define the ZNGIs (Zx, Zy.). (A) 
Plant y has a lower R* for both nutrient 1 and nutrient 2 and is able to always 
competitively exclude plant x, making coexistence impossible. (B) Plant y has a lower 
R* for nutrient 1 and plant x for nutrient 2, making coexistence possible within a range 
of (R0

1, R0
2) values. The area of possible coexistence is determined by the slopes of the 

consumption vectors (βx and βy) at steady state. Outside of this area, one species or the 
other will competitively exclude the other.   
 

Where βj is the slope of the net consumption vector of plant species j at 
steady state. The net consumption vector of species j is defined to be gross 
consumption of nutrients plus the amount of nutrients recycled by species j, so it 
is therefore equal to (cj + rj). The value of βj can be found from this simple 
expression: 
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The slope of the net consumption vector of plant j can then be interpreted 

to be equal to the ratio of nutrients lost during the recycling of dead matter of 
plant j at steady state (see Appendix 2.J for derivation of Eq. 2.9). This result 
indicates that the losses of nutrients by each plant during recycling dictate the 
possibility of coexistence between the two plants. 

The satisfaction of both conditions is needed to permit the existence of 
the coexistence steady state (Figure 2.5b). However, the satisfaction of these 
conditions does not guarantee the stability of the steady state, which is vital in 
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determining whether or not coexistence will occur. The derivations of the 
conditions for the stability of the various steady states for the two species, two 
nutrient case, when such conditions can be found analytically, are found in 
Appendix 2.K. 

The stability of the no-plant steady state depends, as in the single species 
case, on the existence of other steady states. If Ex and/or Ey exists, then the no-
plant steady state will be unstable. The stability of the single plant steady states, 
Ex and Ey, depends on the ability of the other species to support positive growth 
at the level of nutrients at the steady state. For example, Ex is only locally stable 
if plant y cannot maintain positive growth for the nutrient levels at the plant x 
only steady state: 
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The same condition applies when the steady state with only plant y. 

These conditions for the stability of the two single species steady states make 
sense when using graphical analysis (Figure 2.5). In Figure 2.5a, Ey is always 
locally stable, no matter which nutrient is most limiting to it, for plant x has 
negative net growth at those levels of nutrients. In addition, Ex is always locally 
unstable for plant y maintains positive growth at the level of nutrients 
determined by this steady state. Therefore, plant y will always dominate and 
exclude plant x in competition and no coexistence can occur. 

In Figure 2.5b, in certain areas of the nutrient 1-nutrient 2 space, Ey is 
locally stable and Ex is locally unstable and in others the situation is reversed. 
For example, in the area marked ‘y wins’ and Ex exists, plant x is most limited at 
steady state by nutrient 1. A monoculture of plant x can be invaded by plant y in 
this region of nutrient 1-nutrient 2 space as plant y would have positive growth at 
that level of nutrients. Plant y in this region of nutrient 1-nutrient 2 space will 
then bring the level of nutrient 1 below that needed for plant x, resulting in the 
exclusion of plant x. A similar situation occurs in the areas marked ‘x wins’ as 
plant x outcompetes plant y for nutrient 2, which is most limiting in that region 
of nutrient 1-nutrient 2 space. Within the areas of possible coexistence, both 
steady states may be stable or unstable, depending on the slopes of the 
consumption vectors. 

In classical resource competition theory, if each species consumes 
relatively more of the nutrient that it is the worst competitor for, then the two 
single species steady states are locally unstable and the coexistence steady state 
is stable (Tilman 1980). For the example in Figure 2.5, since plant y consumes 
relatively more of nutrient 2 and plant x consumes relatively more of nutrient 1 
at the coexistence steady state, then it should be stable according to classical 
theory. If the situation is reversed such that plant x consumes relatively more of 
nutrient 2 and plant y consumes relatively more of nutrient 1 at the coexistence 
steady state, then the coexistence steady state should be unstable and the two 
single species steady states would both be stable (Tilman 1980).  

The results of classical resource competition theory still hold if 
stoichiometry is included as long as there is no recycling and there is 
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conservation of mass in the system (Li & Smith 2007, Revilla & Weissing 
2008).  If recycling is ignored, similar predictions are found in this model as in 
the previous models even though there is no conservation of mass (Figure 2.6). 
When recycling is added, the predictions of the model become more 
complicated.  

Recycling can expand or contract the area of coexistence and the relative 
positions of the consumption vectors by modifying their slopes (e.g. Figure 
2.13). It has been shown previously in a resource competition model with fixed 
stoichiometry that recycling can make an unstable coexistence steady state stable 
or vice-versa (Daufresne & Hedin 2005). Furthermore, it was demonstrated that 
it is possible to induce limit cycles when the coexistence steady state can only 
stable when recycling is present (Daufresne & Hedin 2005). 

A key result from the stoichiometric model is that cycles can also occur 
under the same conditions as in Daufresne & Hedin (2005) (Figure 2.7a). The 
formation of cycles is dependent on the rate of mineralization, with no cycles or 
cycles with small magnitudes for faster mineralization and high amplitude cycles 
for slower mineralization (Figure 2.7b). If the mineralization becomes too slow, 
then the stabilizing effect of recycling is lost and competitive exclusion will 
occur (Figure 2.7c).  

The cycles are due to changes in the relative internal nutrient 
concentrations, with the most limiting nutrient becoming less limiting and the 
least limiting nutrient becoming more limiting. These changes can be dramatic 
enough to cause the flipping of limiting nutrients for each species over time 
(Figure 2.8). The switching alters the consumption patterns near the steady state, 
causing the solution to move away from the steady state even though it may be 
predicted to be locally stable through numerical local stability analysis as Figure 
2.7b is.  

Therefore, there are limitations to the predictions garnered from 
graphical analysis and local stability analysis for this model. These limitations 
are caused by allowing the uptake rates to be dependent on internal nutrient 
concentrations of the plant, which can result in consumption vectors near steady 
state to not go towards steady state, especially when there are delays caused by 
recycling. Still, the techniques do give insights on what may be expected from 
the model even if they do not always predict the correct outcome. 
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Figure 2.6: Predictions from graphical analysis of stoichiometric model with no 
recycling using ZNGIs (Zx and Zy) and slopes of the consumption vectors (βx and βy). a 
Graphical analysis predicts coexistence between plant y (blue) and plant x (red) between 
βx and βy  (lines are curved due to log-log scale). Numerical local stability analysis also 
predicts coexistence between the two species in that area. b Numerical simulation of 
model at the blue supply point in a, which shows coexistence between the two species. c 
Numerical simulation of model at red supply point in a, which also shows coexistence. 
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d Graphical analysis and numerical stability analysis predicts bistability in area between 
βx and βy. e & f Numerical simulation of model at blue supply point in d with different 
initial conditions. In the first case, plant x wins in competition and in the second, plant y 
wins in competition. 

 
 
Figure 2.7: The effects of the rate of mineralization on plant biomass dynamics when 
recycling is needed to allow coexistence. a With di = 0.15, plant biomass tends towards 
a stable steady state. b When di = 0.015, the steady state is no longer stable and the plant 
biomass for both species follow a limit cycle. Plant y (blue) is very close to going 
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extinct, hence these cycles demonstrate pseudo-exclusion. c When di = 0.0015, plant x 
(red) excludes plant y from the ecosystem.  
 

 
 
Figure 2.8: Evidence of switching of the limiting nutrient over time. Relative internal 
nutrient content is an index with values ranging from 0 to 1, with 0 being infinite 
internal nutrients and 1 being the minimum amount of nutrients possible (Qmin). The 
nutrient with the highest value is most limiting. Nutrient 2 (solid blue line) is usually 
most limiting for plant y, but nutrient 1 (dashed blue line) briefly becomes most limiting 
at periodic intervals. For plant x, nutrient 1 (dashed red line) is normally most limiting 
except for brief periods where nutrient 2 is most limiting (solid red). 
 

 
 
 
2.3.1.4 Three or More species, Two Nutrients 
 
 The case of three or more species competing for two essential limiting 
nutrients is somewhat similar to the previous cases. With only two essential 
nutrients, it is generally not possible for three species coexistence steady state to 
exist. This fact can be derived from the geometric properties of the zero-net 
growth isoclines.   
 Each isocline is composed of a vertical line and a horizontal line, which 
forms an L shape. Two isoclines form a coexistence steady state when the first 
isocline’s vertical line intersects with the second’s horizontal line or vice-versa. 
In order to have a third species at the steady state, it must intersect the steady 
state with either its vertical line or horizontal line. However, then this third 
species will then have at least one of its R* values identical to another species, 
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which means there is no coexistence steady state between the two species. 
Therefore, there is no coexistence between three species. 
 It may be possible for non-equilibrium coexistence between three or 
more species competing for two nutrients when recycling is present (Daufresne 
& Hedin 2005). However, such behaviour has not been observed during the 
exploration of the parameter space of this model.   
 As with the single and two species case, graphical analysis is useful in 
determining the outcomes of competition of three or more species (Figure 2.9). 
As with the two species case, the outcomes of competition are dependent on the 
slopes of the consumption vectors at the steady states (Figure 2.9). It also makes 
it straightforward to see which steady states are unstable even without 
considering the consumption vectors. For example, at the potential steady state 
of plant y and plant z, plant x will have positive growth, indicating that it must be 
unstable (Figure 2.9).   
 
 

 
 
Figure 2.9: An example of using graphical analysis for three species competing for two 
nutrients. Since the three isoclines (Zx, Zy, Zz) cannot intersect at the same point, there is 
no possibility for a steady state with all three species. In this example, there are three 
possible steady states that exhibit two-species coexisting, with two being stable due to 
the slopes of the consumption vectors (βx, βy, βz) at steady state (the red-blue dot and the 
red-green dot). The dashed lines defined by these slopes divide R1-R2 space into regions 
of single species dominance and two-species coexistence, with the location of the 
supply point determining the outcome of competition. 
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2.3.2 Parameterized Model 
 
 The theoretical models outlined above were parameterized with the data 
from Table 2.2. Based on these parameters, the competitive abilities of the three 
plants were measured by calculating their R* values, which serves as a proxy for 
competitive ability (Table 2.4). Since these values are sensitive to a number of 
parameters, the effects of the parameters on the R* values was investigated 
(Appendix 2.L).  
 Parameters that reduce R* values (increase competitive ability) when 
increasing are the nutrient uptake rates, the growth rate at infinite quota and the 
maximum internal nutrient concentration. Parameters that increase R* values 
when increasing are the half-saturation constants, the mortality rate and the 
minimum internal nutrient concentration. Due to a lack of estimates for the 
mortality rate constants, I analyze competitive ability assuming comparable 
mortality rates between species, with slightly higher rates for Lupinus due to 
herbivory. 
  
Table 2.4: Relative competitive abilities of Lupinus, Hypochaeris and Agrostis 
for nitrogen and phosphorus 
a) Assuming mL=0.003 and mH = mA = 0.00233 
 Lupinus Hypochaeris Agrostis 

R*N 0a 1.49-7.32 x 10-9 8.74 – 20.0 x 10-9
 
 

R*P 1.97 – 2.8 x 10-8 5.69 – 5.73 x 10-9 8.05 – 26.0 x 10-10 

a Lupinus can maintain positive growth with no nitrogen being supplied due to its nitrogen 
fixation. 
b) Assuming mL=0.03 and mH=mA=0.029 
 Lupinus Hypochaeris Agrostis 

R*N 0a 2.07-10.6 x 10-8 1.41 – 3.40 x 10-7
 
 

R*P 2.58-3.69 x 10-7 1.04 – 1.22 x 10-7 1.30 – 4.43 x 10-8 

a Lupinus can maintain positive growth with no nitrogen being supplied due to its nitrogen 
fixation. 
 
 The competitive ranking for Lupinus, Hypochaeris and Agrostis remain 
the same for low and high mortality rates (Table 2.4). For nitrogen, Lupinus is 
the best competitor, followed by Hypochaeris with Agrostis being the worst 
(Table 2.4). For phosphorus, the rankings are inverted with Agrostis being the 
superior competitor and Lupinus being the worst. There is no overlap between 
R* values for any of the species, signalling that if the assumption of similar 
mortality rates is true, than the competitive abilities between species are 
different.  
 Due to the rankings of competitive abilities, there are three possible two-
species coexistence steady states (Figure 2.10, see Appendix 2.D for parameter 
values for Figures). One of these steady states, the Agrostis-Lupinus steady state, 
will always be unstable in the presence of Hypochaeris, since Hypochaeris can 
maintain positive growth at the associated nutrient levels. If I ignore recycling, 
the Hypochaeris-Lupinus steady state is locally stable if it exists and the 
Agrostis-Hypochaeris steady state is unstable (Figure 2.11). In addition, the 
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empirically derived region of nutrient supply is located within both these 
regions, indicating large potential shifts in community composition depending 
on the local environment (Figure 2.11).  

Furthermore, there is an area within the parameter space where a stable 
Hypochaeris-Lupinus steady state overlaps with the unstable Agrostis-
Hypochaeris steady state (Figure 2.11). Numerical exploration of this parameter 
space indicates that the eventual outcome is either a community composed of 
Agrostis alone or composed of Hypochaeris and Lupinus (Figure 2.12). The 
outcome is dependent on the initial conditions, indicating that the region is 
bistable (Figure 2.12). 
 The nutrient supply levels are sufficient enough to support all three 
plants. Therefore, the model predicts that all three species should be capable of 
establishing on Mount St. Helens. Furthermore, the region of supply indicates 
that Hypochaeris should normally outcompete Agrostis though it will sometimes 
depend on chance (Figure 2.12). 
 Nutrient recycling can affect competitive outcomes between the species 
on Mount St. Helens (Figure 2.13). Nutrient recycling can allow coexistence 
between Agrostis and Hypochaeris as well as a reduction of the space of 
coexistence between Hypochaeris and Lupinus (Figure 2.13). However, this 
effect requires a high discrepancy between the recycling of phosphorus and 
nitrogen for both species, which may not be biologically reasonable. 
Furthermore, this effect requires relatively high levels of nitrogen within the soil, 
which may not always be present  (Figure 2.13) Another effect is that Lupinus 
adds more nitrogen than it uptakes from the environment at the steady states 
observed here, it can allow other species to establish at nutrient supply levels 
that they could not without Lupinus (Figure 2.13). Therefore, Lupinus can 
facilitate the establishment of species even in environments where there is nearly 
no nitrogen being supplied by any other source. In sum, nutrient recycling is 
important to consider in the structuring of the community. 
 In addition to facilitating establishment, Lupinus can also promote 
greater community biomass by supplying nitrogen to Agrostis and Hypochaeris 
(Figure 2.14a). While Hypochaeris and Agrostis can establish themselves in the 
environment with Hypochaeris eventually excluding Agrostis, there is little total 
community biomass (Figure 2.14a). With the addition of Lupinus, community 
biomass would be approximately nine times higher for the parameter values 
specified (Figure 2.14b). The beneficial effects of Lupinus decline as the 
environment becomes richer in nitrogen and Lupinus suffers from greater 
competition (Figure 2.15). 
 Increasing Lupinus mortality does not increase the biomass of other 
species (Figure 2.16a). Instead, increased mortality results in the exclusion of 
Lupinus and the elimination of any potential benefit from nitrogen-fixation 
(Figure 2.16a). Rather, the community as a whole seems to benefit from 
decreased Lupinus mortality, with greater biomass for Hypochaeris (Figure 
2.16b). It should be noted that the qualitative behaviour of the simulation results 
for Figures 2.14-2.16 generally hold for other parameter values than those used 
in the simulations. 



 

62 

 The model makes similar qualitative predictions to those found in field 
experiments on Mount St. Helens (e.g. Gill et al. 2006), though the simulation 
results are sensitive to the parameter values for the model is attempting to 
capture transient behaviour of the plant community. Simulating short-term 
nitrogen, phosphorus and both nutrient additions, I found that Hypochaeris is 
most responsive to nitrogen additions and phosphorus additions resulted in a 
mild increase to Lupinus biomass, in agreement with the experimental results 
(Figure 2.17a,b,c). The model also predicts that when both nutrients are added, 
Hypochaeris dominates the community, which is also seen in the experiment 
(Figure 2.17d). However, Lupinus did not decline as seen in the experiments, 
which may indicate that another process other than nutrient limitation is involved 
(Figure 2.17d). Overall, the community is limited by nitrogen and phosphorus, 
with phosphorus limiting Lupinus and nitrogen limiting the other species. 
 
 
 
 

 
 
Figure 2.10: Graphical representation of the relative competitive abilities of Agrostis, 
Hypochaeris and Lupinus. It is assumed that mL=0.003, mA=mH=0.00233. At each 
intersection of the ZNGIs, there is a potential coexistence steady state. The Agrostis-
Lupinus steady state is unstable in the presence of Hypochaeris as Hypochaeris can 
maintain positive growth at that nutrient level. The Agrostis-Hypochaeris and the 
Hypochaeris-Lupinus are both potentially stable.  
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Figure 2.11: Regions of coexistence for Agrostis, Hypochaeris and Lupinus with no 
recycling. Regions are defined by the slopes of the consumption vectors for Agrostis 
(βA), Hypochaeris (βH) and Lupinus (βL). The zero-net growth isoclines, Zj, are the same 
as Figure 2.10. The amount of water per m2 is assumed to be 3.75L or approximately 
3% of soil weight. The Hypochaeris-Lupinus steady state, indicated by where ZL and ZH 
cross, is stable for they both consume more of the nutrient that most limits them at 
steady state as seen from the slopes of the consumption vectors (black dashed line and 
green dashed line). The Agrostis-Hypochaeris steady state, indicated by where ZA and 
ZH cross, is always unstable as Hypochaeris consumes relatively more nitrogen and 
Agrostis consumes relatively more phosphorus as indicated by the slopes of the 
consumption vectors (black dashed-dotted line and cyan dashed-dotted line). Hence in 
the regions defined by their consumption vectors, there is bistability. The yellow box 
and the red box denote empirically measured supply rates from two different data sets 
(red box: Gill et al. 2006, yellow box: Halvorson & Smith 2009), assuming daily 
turnover. For all values in the red box and most values in the yellow box, the 
community is predicted to be dominated by Lupinus and Hypochaeris. For the lower 
values of phosphorus in the yellow box, there is some overlap between Agrostis-
Hypochaeris bistability and Hypochaeris-Lupinus coexistence regions, indicating that 
the community may be composed of Lupinus and Hypochaeris or by only Agrostis. 
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Figure 2.12: Plant biomass dynamics of Agrostis, Hypochaeris and Lupinus in the area 
of overlap defined in Figure 2.11. The mortality rates have been changed to mH = mA = 
0.02 and mL = 0.023 for better visualization of initial conditions. The area of overlap is 
the same even with the changes in mortality. Depending on the initial conditions, the 
community will go towards a a monoculture of Agrostis or b a community of 
Hypochaeris and Lupinus, which indicates bistability.  
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Figure 2.13: Regions of coexistence for Agrostis, Hypochaeris and Lupinus with 
recycling. The mortality rates and the water levels are the same as Figure 2.11. The 
recycling of nutrients switched the relative positions of the slopes of the consumption 
vectors for Hypochaeris  (black dashed and dashed dotted lines) and Agrostis (cyan 
dashed-dotted line), when assuming very large differences in the recycling of nitrogen 
and phosphorus (see Appendix 2.D for values). However, the slope of the consumption 
vector for Lupinus (green dashed line) drastically changes with even minor recycling, 
indicating that Lupinus gives more nitrogen to the soil than it uptakes. It also indicates 
that it could support other species at levels of poor supply of nitrogen. Effects on 
community composition due to recycling may be large or non-existent, depending on 
nitrogen supply. Within the yellow box (same box as in Figure 2.11), the community 
will be composed of Hypochaeris and Lupinus for high phosphorus and may be 
composed of either Agrostis or Hypochaeris for low phosphorus, with Hypochaeris 
dominating intermediate values. Community composition within the red box remains 
unaltered by recycling. 
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Figure 2.14: Dynamics of plant community biomass with and without Lupinus in the 
community within current levels of nutrient supply. It is assumed that mL=0.024, 
mA=0.02 and mH=0.02. Total plant community biomass (red dotted line) is 
approximately nine times higher b with Lupinus than a without and Hypochaeris 
biomass (black line) doubles in the presence of Lupinus. 



 

67 

 
 
Figure 2.15: Dynamics of plant community biomass with and without Lupinus in the 
community with approximately eight times the current levels of nitrogen supply. Total 
plant community biomass (red dotted line) is mildly higher b with Lupinus than a 
without and Hypochaeris biomass (black line) is little affected by the presence of 
Lupinus. 
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Figure 2.16: The effect of altering Lupinus mortality on plant community biomass. a 
Increasing Lupinus mortality to mL=0.03 results in the exclusion of Lupinus and a 
decrease in both total plant biomass and Hypochaeris biomass compared to Figure 
2.14b. b Decreasing Lupinus mortality to mL =0.018 results an increase in total plant 
biomass and a slight increase in Hypochaeris biomass compared to Figure 2.14b.  
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Figure 2.17: Simulation of the effects of short-term nitrogen and phosphorus additions 
on the dynamics of plant community biomass. a Control simulation shows Lupinus 
dominant with low levels of Hypochaeris and Agrostis. b Nitrogen addition simulation 
shows Hypochaeris becoming dominant with decline of Lupinus. c Phosphorus addition 
simulation shows increase in Lupinus biomass. d Nitrogen and phosphorus addition 
simulation show increase in Hypochaeris biomass with a slight increase in Lupinus 
biomass compared to a. Total plant biomass in order of highest to lowest is d>b>c>a, 
though b and c are very close in biomass. 
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2.4 Discussion 
 
 Developing a mechanistic underpinning to the study of plant primary 
succession is key for any potential application of its theory to ecological 
restoration (Walker & del Moral 2003). Various mechanisms and processes have 
been invoked in conceptual models for primary succession, such as competition, 
herbivory, dispersal ability and others (Pickett et al. 1987, Walker & Chapin 
1987). However, it is exceedingly rare that the mechanisms invoked are then 
explored within a mechanistic model to see if they can give rise to the patterns 
observed in nature (Chapter 1, Walker & del Moral 2003).  

In this chapter, I developed a mechanistic model (Figure 2.1, Eq. 2.2) to 
determine if nutrient limitation, nutrient cycling and ecological stoichiometry 
can explain some of the patterns observed in plant primary succession. The 
properties of the model were explored and it was discovered that many of the 
results can be expressed using graphical analysis developed by Tilman (1980) 
and extended by others (Daufrense & Hedin 2005, Figures 2.2-2.6). The results 
indicate that even with only two nutrients and two competitors, a variety of 
complex community dynamics such as population cycles can arise due to 
nutrient cycling (Figures 2.7-2.8).  

The model was then parameterized with data from Mount St. Helens to 
see if its predictions matched expectations found in the field observations and 
field experiments. The model successfully predicted that Lupinus is outcompeted 
for phosphorus and that Hypochaeris out competes Agrostis for nitrogen (Table 
2.4). The model also indicated that Lupinus has a net facilitative effect on other 
species on Mount St. Helens due to its capacity to add nitrogen into the nitrogen-
poor substrate (Figures 2.14-2.16). In addition, the model predicted the 
qualitative response of the plant community had in nutrient-addition experiments 
in the field (Figure 2.17). These results indicate that ecological stoichiometry, 
nutrient limitation and nutrient cycling can explain much of the observed 
patterns on Mount St. Helens for early plant primary succession.  
 
2.4.1 Comparisons with Previous Hypotheses 
 

One hypothesis that is widely held by ecologists on Mount St. Helens 
and is not supported by the model is that increased mortality of Lupinus should 
make nitrogen more available to other species and increase their growth within 
the immediate area (Bishop 2002). In fact, the model predicts that decreased 
Lupinus mortality would benefit other plants (Figure 2.16). The difference could 
be explained by two factors.  

First, inputs of nitrogen by Lupinus usually occur in the field when it dies 
for it releases little nitrogen when alive (Halvorson & Smith 2009). Furthermore, 
mortality normally occurs in large pulses (Braatne & Bliss 1999). A low 
mortality rate may mean very few dead Lupinus in an area and none of the 
nitrogen that has been fixed becoming available to other plants. Since the model 
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explored here assumes there is always some nitrogen entering the soil from 
Lupinus mortality due to averaging over the growing season, the negative effects 
of lower mortality could be masked. 

Second, Lupinus do not only add nitrogen to the soil when it dies, but 
carbon as well (Halvorson & Smith 2009). There is evidence that soil 
microorganisms on Mount St. Helens can be severely carbon-limited and such 
limitation would result in nitrogen-limitation since these organisms would not be 
in sufficient number to break down the organic nitrogen (Halvorson et al. 2005, 
Halvorson & Smith 2009). In the model, such a positive effect by Lupinus would 
increase the nitrogen input parameter, IN, and would result in higher plant 
biomass for other species (Figure 2.15). Therefore, a positive effect of higher 
Lupinus mortality may be ignored.  

Nevertheless, lower Lupinus mortality would mean that more nitrogen 
would be fixed. When Lupinus plants would perish, a larger amount of nitrogen 
would be added compared to a situation with nearly no Lupinus surviving to a 
large size when there is very high mortality (Bishop 2002). It seems likely that 
the model is capturing this aspect of Lupinus mortality and therefore does 
support some hypotheses made by others. 

One intriguing result from the model is the overlap areas of possible 
coexistence in Figure 2.11. Such an overlap indicates that all three species can 
potentially become dominant or at least be present in the community and 
presents a case for alternative successional trajectories. Depending on the initial 
conditions, the composition of the community is either a monoculture of 
Agrostis or an assemblage of Hypochaeris and Lupinus plants (Figure 2.12). 
Since initial conditions are dependent on variable abiotic and biotic factors such 
as substrate quality, moisture content, nutrient content, temperature, seed rain 
and nurse plants, it is appropriate to say the outcome will be partially stochastic.  

This result is in line with the view that early primary succession is 
dominated by stochastic events since highly variable abiotic factors will control 
establishment of species (Walker & Chapin 1987, Walker & del Moral 2003, del 
Moral et al. 2005). This view implies that early primary succession will therefore 
be highly unpredictable until conditions improve and biotic factors such as 
competition and predation become important (Matthews 1992, del Moral et al. 
2005). However, there is some predictability in the result, such as the fact that 
Lupinus would not dominate by itself and Agrostis and Hypochaeris cannot 
coexist without large differences in nutrient recycling that have not been 
observed. In addition, many of the other results successfully predicted the 
observed outcomes on Mount St. Helens, indicating that good predictions based 
from mechanistic modelling can be obtained even in stochastic environments.  

 
2.4.2 Validity of Assumptions 

 
The application of the model was only possible due to a number of 

simplifying assumptions (section 2.2.2). The most important assumptions were 
that the nutrients were well distributed within the soil and that water content was 
constant. Both of these assumptions are certainly violated on Mount St. Helens 
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since diffusion of mineral nutrients is highly dependent on water content and 
water content fluctuates wildly over time and space (Barber 1995, Titus 2008). 
When water content is very low, nutrients such as phosphorus will be highly 
localized and species located only a few centimetres away from one another 
could experience very different environments (Caldwell et al. 1987, Barber 
1995). By restricting the domain of interaction to only one squared meter, I 
hoped that the rooting systems of the plant species would overlap and thus 
remove some of the effects of spatial heterogeneity. Nevertheless, considering 
the spatial scales of nutrient movement is key in order to determine if 
competition will occur or not (Huston & DeAngelis 1994, Barber 1995). 

Furthermore, the water levels will also play a role in the mineralization of 
organic nutrients as saturated soils may lack sufficient oxygen for aerobic 
mineralization and drought can decrease decomposition rates of organic material 
(Barber 1995, Chapin et al. 2002). Because of this, my assumption that Ii scales 
linearly with the amount of water may not be valid and could result in different 
predictions. 

Other assumptions such as constant mortality rate, lack of sexual 
reproduction and limited spatial scale are all addressed in the subsequent chapter 
of the thesis for they are certainly unrealistic (e.g. Bishop 2002, Fagan et al. 
2005). The key point is that even with all these assumptions of potentially 
dubious value, the mechanisms of nutrient cycling, nutrient limitation and 
stoichiometry were able to qualitatively predict many features found in the plant 
community on Mount St. Helens. This result gives me hope that a mechanistic 
approach will be successful in developing predictions for primary succession. 

 
2.4.3 Final Remarks 

  
While this study is limited in scope with a focus only on the plant 

community at a local scale with only three functional groups represented, it 
clearly demonstrates the potential for ecological stoichiometry and nutrient 
limitation to give useful predictions on plant primary succession in particular and 
succession in general. Expansion of the scope of the model to create a more 
general primary for primary succession will be needed for creating a general 
theoretical framework. Refinement of the model for applications is also needed 
to include the fact that plants need to disperse and other life-history traits impact 
survival.  
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 Appendix 
 
2.A Table of Notation 
 
 Due to the complexity of the notation used in this chapter, I have 
provided a guide to the meaning of the various symbols strewn about the text 
that are not included in Table 2.2. 
 
Table 2.A Notational guide for the second chapter of the thesis 
 
Symbol Meaning 
i Place holder for a nutrient  
j Place holder for a plant species 
n Number of species in the model 
m Number of nutrients or resource in the model 
Qij Variable for plant species j and nutrient i 
E Steady state of the model 
E0 No-plant steady state for n species model 
E1 One plant steady state for one species model 
Ex One plant steady state for two species model 
Exy Two plant steady state for two species model 
0

1
R  Variable at no-plant steady state for n species model 
1

1
R  Variable at one plant steady state for one species model 

1

x
R  Variable at one plant steady state for two species model 

1

xy
R  Variable at two plant steady state for two species model 
J The Jacobian matrix 
cx The consumption vector of species x 
rx The recycling vector of species x 
u The supply vector of nutrients for the ecosystem 
βx Slope of consumption vector of species x 
 
 
 
2.B Calculations of Parameters 
 
 Within this section, I present the assumptions and calculations needed to 
derive the parameter values found in Table 2.2.  The parameters can be broken 
into two broad categories: biological parameters (Table 2.2a,b,c) and 
environmental parameters (Table 2.2d). I will accordingly treat them separately 
within this section for they require different assumptions and calculations for 
their derivations. 
 The biological parameters can be divided into kinetic parameters, plant 
stoichiometry and vegetative growth/mortality. The data for plant stoichiometry 
and vegetative growth are frequently presented in standardized forms (C:nutrient 
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ratios of dry weight and relative growth rates, respectively), kinetic uptake 
parameters can be expressed in terms of root length, root surface area, root dry 
weight, root fresh weight, total dry weight or total fresh weight (e.g. Van de Djik 
et al. 1982, Dunbabin et al. 2002, Esteban et al. 2003). For the model, I seek to 
convert the kinetic uptake parameters into moles of nutrient per mole of carbon 
per day. Due to this requirement, I cannot use the data in the literature involving 
root length and root surface area for relationships between these properties and 
root weight have not been worked out for the chosen species. I therefore rely on 
parameters that indicate the weight of the plant or the roots. 
 The conversion of the kinetic parameters also required making 
assumptions about the amount of carbon is in the plants’ dry biomass, the ratio 
of fresh weight to dry weight and the ratio of shoot biomass to root biomass. For 
plant carbon and shoot:root ratios, there is a great deal known for the species 
considered here (Table 2.A). The percentage of dry biomass in vascular plants 
can be very difficult to quantify (Westlake 1963). The only species with a 
percentage of dry weight calculated is Hypochaeris, though some information is 
known about the relative water content of Lupinus and Agrostis. The values 
range from ten to twenty percent, but a value of fifteen percent was chosen for 
all the species for simplicity. 
 
Table 2.B: Assumed values of physiological properties of the study species. 

  Lupinus lepidus 
Property Value Source 

% C 41.5 Halvorson et al. 1992 
Shoot:root (biomass) 1.52 (young) -7.3 

(adult) 
Halvorson et al. 1992 

% dry (biomass) 15 Braatne & Bliss 1999 
Hypochaeris radicata 

Property Value Source 
% C 40.74 Fagan et al. unpublished 

manuscript 
Shoot:root (biomass) 1.0 Titus & del Moral 1998 

% dry (biomass) 15 Van de Djik 1981b 
Agrostis scabra 

Property Value Source 
% C 41.56 Bishop et al. 

unpublished data set 
Shoot:root (biomass) 3.0 Tilman & Wedin 1991 

% dry (biomass) 15 None 
 
 Using the data within the table, one can now convert uptake kinetic 
parameters into a usable form. For example, the data obtained from Esteban et 
al. 2003 for Vmax,PL were initially in mol arsenate (an analog of P) per gram fresh 
weight of root per hour. The gram of fresh weight is equivalent to 0.15 grams of 
dry weight and a gram of dry root is equivalent to 0.120-0.397 grams of dry 
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plant biomass and hence I have 0.0181-0.0595 grams of dry plant biomass per 
fresh gram of root. Furthermore, I then need to convert it into grams of carbon, 
multiplying the above range by 0.415 and dividing the result by 12 to obtain the 
moles of carbon. Finally, I multiply the above values by 24 to convert the 
timescale into days. Similar conversions were done for the other Vmax 
parameters. 
 The only Vmax parameter not taken directly from a point estimate in the 
literature is Vmax,NL. Instead, I calculated it by considering the amount of nitrogen 
per gram of biomass accumulated by a single lupine over the growing season and 
dividing that amount by the number of days in the growing season. This estimate 
likely underestimates the maximum amount of nitrogen that a lupine is capable 
of assimilating in a day for I am using the average daily amount of nitrogen 
assimilated.  
 The other kinetic parameters, the half-saturation constants, needed no 
special conversions for they are already in a usable form. The only note 
concerning these parameters is that they are, except for KNH, drawn from related 
species and functional groups. 
 The stoichiometric parameters were generally available for the species 
used here, though phosphorus content of Agrostis scabra is not known and 
information from Agrostis capillaris was used instead. The values taken for Qmax 
and Qmin represented the maximum and minimum values found for those 
parameters in the available data. Therefore, there are no ranges associated with 
their values as measurement error is rarely reported for calculations of C:nutrient 
ratios. 
 The growth parameters used in the model cannot be measured directly, as 
it assumes the possibility of an infinite concentration of nutrients within the 
plants. Instead, one can use maximum relative growth rates (RGRs) of the plants 
to indirectly determine the parameter of interest. If I assume no mortality, I have 
the following formula relating the maximum RGR to the model parameters: 
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 The above derivation shows that the theoretical maximum growth rate of 
plant j is approximately the maximum RGR divided by one minus the largest 
value of the ratio between the minimum concentration and maximum 
concentration of a nutrient within plant j. As data is available for the RGRs and 
plant stoichiometry, the theoretical maximum growth rates are easily calculated 
with the formula and some scaling of the RGRs. 
 The mortality parameter is another parameter that cannot be directly 
measured in the field, for it encompasses all losses of plant material due to 
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herbivory, mortality, seasonal die back of aboveground parts and many others. In 
addition, plant mortality has varied dramatically from year to year on Mount St. 
Helens, which makes it difficult to assign simple constant value for mortality 
(Braatne & Bliss 1999, Bishop et al. 2005). Therefore, I utilize a large range of 
possible mortality rates for the model, though I generally set mortality rates to be 
similar between species, with Lupinus having slightly higher rates due to 
herbivory.   
 Environmental parameters, detritus parameters and recycling parameters 
are relatively sparse for Mount St. Helens. For the nitrogen input parameter, I 
used the rates of net nitrogen mineralization in barren soil found in 2002 and 
2005 (Gill et al. 2006, Halvorson & Smith 2009). These rates differ greatly and 
indicate the heterogeneity in nitrogen supply on Mount St. Helens. I derived the 
phosphorus input into the soil by assuming that only 0.5% of plant available 
phosphorus is in the soil solution at anytime and the turnover rate is 
approximately a day (Barber 1995). Both these parameters depend on the water 
content of the soil, which has a range determined by field data (Titus 2008). The 
loss rates of phosphorus and nitrogen within the soil solution are not known and 
are considered free parameters. However, it seems likely that mineral nitrogen 
and phosphorus have close daily turnover rates, so I show most of my results 
with the loss rates being equal to one. 
 The rate of mineralization of nitrogen and phosphorus from plant 
material is not known except for Lupinus leaf tissue (Gill et al. 2006), though the 
average nitrogen atom in dead plant material may take two years to become 
available again (W. Fagan, pers. comm.). Due to the paucity of data, these 
parameters are also treated as free parameters. 
 The parameters concerning the recycling of nutrients are also poorly 
understood. While it is believed that phosphorus and nitrogen are tightly cycled 
in terrestrial environments, immature terrestrial communities such as those on 
Mount St. Helens may experience higher degrees of nutrient loss due to lack of 
substrate (Chapin et al. 2002). With no data to work with, I allow these 
parameters to freely vary.  
 
2.C Considering Allelopathy and Density-Dependence in the Model 
 
 The above model formulations ignore the potential of allelopathy in 
controlling competitive interactions between plant species. This separation of 
resource competition from allelopathy has been questioned by researchers for 
allelopathic chemicals can alter nutrient supply and nutrient uptake (Inderjit & 
del Moral 1997). While these effects are certainly important in the structuring 
plant communities, no work has been done in investigating the potential for 
allelopathy on Mount St. Helens. Hence, it is not possible to specify specific 
functions or parameterize a model that takes into account both resource 
competition and allelopathy for this system.  
 Nevertheless, I can propose a general formulation of how one could fit 
allelopathy into the above modelling framework by looking at previous work on 
competition and allelopathy. Most models of competition and allelopathy 
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express competition with Lotka-Volterra equations and assume constitutive 
expression of the allelopathic chemical that depends solely on plant 
density/biomass (e.g. Dubey & Hussein 2000). A few models use resource 
competition and slightly more complicated expressions for the excretion of 
allelopathic chemicals (de Freitas & Fredrickson 1978, Grover 1997). There are 
no models that explicitly treat allelopathy and resource competition in a 
stoichiometric fashion.  
 In terms of modelling allelopathy in the system, I must consider its 
impacts on i) the plant’s stoichiometry, ii) the plant’s growth, iii) the plant’s 
ability to uptake nutrients and iv) the ability of the detritus to recycle nutrients. If 
I add in a variable Aj, which represents the concentration of the allelopathic 
chemical excreted by plant j in the soil, I can represent the impacts of allelopathy 
in a new model: 
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 The inclusion of allelopathy in the growth, uptake and recycling terms of 
the model may play an important role in determining competitive outcomes, 
especially if autoinhibition dominates (de Freitas & Fredrickson 1978). 
However, the role it plays will be determined by its functional relationship and 
that remains to be discovered. 
 Another factor I did not consider was density-dependence in the growth 
or the mortality terms of the model. This exclusion is due to the idea that if a 
mechanism is causing density-dependence, that mechanism should be explicitly 
considered in the mechanistic framework of resource competition. For example, 
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take the logistic equation as a model of density dependence for a plant that 
exhibits density-dependence: 
 

1
dB B

r B
dt K
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= #$ %
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 Where B is the biomass of the plant, K is the ‘carrying capacity’ and r is 
the ‘intrinsic growth rate’. How can one derive the carrying capacity and the 
intrinsic growth rate? One could be looking for the mechanisms that control 
growth in the plant population. Now imagine that the plant is limited by a single 
nutrient and the ecosystem within which it is in is closed to losses or gains of 
that nutrient. The plant uptakes the nutrient according to the law of mass action 
and loses the nutrient in proportion to its biomass. The lost nutrient is 
instantaneously recycled back into the soil nutrients. I could describe the 
situation with the following system of equations: 
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 As the system is closed, the total amount of nutrient in the system, S, is a 
constant that is equal to S = B + R. I can reduce the system of equations to one 
equation by replacing R by S-B in the second equation. The resulting equation is: 
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 I have derived the density-dependence involved in the population from a 
mechanistic basis of nutrient limitation. Similarly, the density-dependence that is 
shown in plant populations on Mount St. Helens ought to be derived from 
mechanisms such as nutrient limitation. 
  
  
2.D Parameter Values for Figures 
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 The parameter values chosen for the figures were picked to maximize 
graphical clarity and the results from these values are robust across the ranges 
shown in Table 2.2. Certain parameters are the same for all figures showing 
simulation results and are listed in Table 2.2 under value used. 

Other parameters, such as the stoichiometric parameters, have no ranges 
attached to them and are always the same. Some parameter values are also listed 
in the figure captions when they are relevant or can be read off the figure. The 
easiest way to give the information is to list each figure and indicate parameter 
values, if appropriate. 
 
Figure 2.6a,b and c: Plant y (blue lines) has the same parameters as Lupinus 
except VLN = 2.6 x 10-4 and plant x (red lines) has the same parameters as 
Hypochaeris. The mortality rate constants are 0.02 for both species. All the 
parameters involved in the recycling of nutrients are set to zero. The efflux of 
nutrients is set equal to one for both nutrients. 
Figure 2.6d,e and f: Plant y (blue lines) has the same parameters as 
Hypochaeris and plant x (red lines) has the same parameters as Agrostis. The 
mortality rates are 0.02 for both species. All other parameters are the same as the 
rest of Figure 2.6. 
Figure 2.7, 2.8: Plant y (blue lines) has the same parameters as Hypochaeris and 
plant x (red lines) has the same parameters as Agrostis. The mortality rates are 
0.02 for both species. For the recycling parameters, ω=0.2667 with ζ1x=ζ2y=0.1, 
ζ2x=ζ1y=0.653. The nutrient supply parameters are I1=1.5185e-4, I2=1.38e-5, 
φ1=φ2=1. 
Figures 2.11 to 2.13: See Table 2.2 and figure captions. 
Figure 2.13: Same as Figure 2.11 with ω=0.2667, ζNA=ζPH=0.1, ζPA=ζNA=0.8, 
ζNL= 0.001 and ζPL=0.001. 
Figure 2.14: See figure caption and ω=0.2667, ζNA=ζPH=0.1, ζPA=ζNA=0.1, 
ζNL=0.2, ζPL=0.1, IN=4.185e-5, IP=5.38e-5, φN=φP=1 and δN=δP=0.0015. 
Figure 2.15: Same as Figure 2.14 with IN=33.48e-5. 
Figure 2.16: Same as Figure 2.14 with different mortalities for Lupinus listed in 
caption. 
Figure 2.17: For a-d, see Table 2.2 with ω=0.2667, ζNA=ζPH=0.1, ζPA=ζNA=0.1, 
ζNL=0.2, ζPL=0.1, φN=φP=1, mL=0.023mH=0.005, mA=0.004 and δN=δP=0.0015. 
For a, IN=1.293e-5 and IP=2.5e-5. For b, IN=12.93e-5 and IP=2.5e-5. For c, 
IN=1.293e-5 and IP=5e-5. For d, IN=12.93e-5 and IP=5e-5. Nitrogen supply was 
increased by a factor of ten, but phosphorus only by a factor of two since Gill et 
al. 2006 most likely underestimated available soil phosphorus and most 
phosphorus was likely occluded (Gill et al. 2006, Halvorson & Smith 2009). 
 
2.E Positive Invariance of Model 
 
 In this section, I show for the general model (Eq. 2.2) that any solution 
that begins within boundaries specified by each species’ biology and ecosystem 
properties will remain within those boundaries. These conditions are that all soil 
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solution nutrients i, all plants’ biomass j and all detritus nutrients i are non-
negative for all time if the initial conditions are non-negative. For the internal 
nutrient concentrations for all nutrients i in all plants j, the value must remain 
within the minimum and maximum values defined by the parameters Qmin,ij and 
Qmax,ij. 

To verify that the model is in fact positively invariant, one must check 
the solutions at the boundary or boundaries to see if the solutions leave the area 
specified. I can do this by looking at the rate of change at the boundary. I check 
the boundaries for each variable one at the time and assume the other variables 
are within the ranges specified above. I start with the variables describing soil 
nutrients: 
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 At the boundary, the rate of change in soil nutrients increases indicating 
that Ri remains non-negative if it is initially non-negative. For the variables 
describing plant biomass: 
 
dBj

dt
Bj =0

= 0  

 
 At the boundary, the rate of change in plant biomass is zero, which it 
must as Bj=0 is a steady state. Therefore, plant biomass is always non-negative if 
it is initially non-negative. For the variables describing nutrients in the detritus: 
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 Similar to soil nutrients, the rate of change in nutrients in the detritus 
increases at the boundary. Therefore, Di will remain non-negative if it is initially 
non-negative. For the variables describing internal nutrient concentrations, there 
are two boundaries to consider: 
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 At the lower boundary, Qij = Qmin,ij, the rate of change in internal nutrient 
concentration is positive. At the upper boundary, Qij = Qmax,ij, the rate of change 
in internal nutrient concentration is negative. Therefore, internal nutrient 
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concentration remains within these boundaries if it is initially within the 
boundaries. Since each variable remains within the boundaries specified, then 
the model is positive invariant. 
 
2.F Upper Bounds to Model Solutions 
 
 In this section, I demonstrate that the solutions of the general model (Eq. 
2.2) must be bounded and no variable within the model can approach an infinite 
value. Biologically, this result implies that there will be no infinite populations 
of plants, which is important for biological realism. The simplest way of 
showing this to be true is to show that the total amount of any nutrient i will be 
bounded within the ecosystem. To start, I define the total amount of nutrient i as 
the sum of the nutrient i in soil solution, in all of the plants’ biomass and in the 
plant detritus: 
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 Where k is equal to the total amount of water in the ecosystem considered 
and is therefore equal to 1/ω. To be bounded, Ti must be less than some finite 
constant, which I will denote by θ, for all time. To show that this is the case, I 
will examine the rate of change of Ti and demonstrate that each component of Ti 
must be less than finite constant and thus Ti must be less than the sum of these 
finite constants. 
 To begin, it must be noted that Ri is always greater than zero, Qij must be 
greater than Qmin,ij and less than Qmax,ij and Bj and Di must always be equal or 
greater than zero from 2.E. Therefore, Ti will always be greater than zero and if 
the amount of nutrient i in plants is finite, then the biomass of all the plants must 
be finite since all Qij are always greater than zero. The second fact is important 
as I will now introduce a new variable, Uij, which is defined as the amount of 
nutrient i in plant j: 
 
ij ij jU Q B=  

 
 The use of this new variable helps in simplifying the derivation. The 
derivative of Uij with respect to time is: 
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 With this information, I can now take the derivative of the total amount 
of nutrient i within the ecosystem with respect to time: 
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 At this point, I introduce another simplification in order to remove the 
sum in the above equation. I will assume, without loss of generality, that mj and 
ζij are the same for all species j and I let Ui be equal to the sum of Uij for all j, 
giving: 
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 To show that Ti is bounded, I will introduce another quantity,

i
T , which is 

always larger than Ti and is bounded, hence Ti must be bounded as well. I define 
i
T  to be equal to:  
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Taking the derivative of 

i
T  with respect to time gives the following equation: 
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 Here, k, Ii, φi and m are all fixed positive constants. At this point, one can 
use the comparison theorem for one-dimensional ordinary differential equations 
to obtain an upper bound on 

i
T . I first present the following differential 

equation: 
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 The solution to Eq. 2.F.2 is always greater or equal to the solution Eq. 
2.F.1 by the comparison theorem. The solution to Eq. 2.F.2 is: 
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The solution to Eq. 2.F.1 must therefore be: 
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 Since the right-hand side is strictly decreasing with time and is finite, 
i
T must be bounded. Since we have proved that 

i
T  is bounded, then Ti, which is 

strictly less than 
i
T , must also be bounded. With Ti bounded, then all the other 

variables that make up Ti are bounded as well. Therefore, the solutions of the 
general model (Eq. 2.2) are bounded. 
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2.G Uniqueness of the Values of Implicitly Defined Variables at Steady States 
with One Species, Two Nutrients 
 
 In this section I show that for given parameters of the model, there will 
exist at most one positive value given steady state. The notation used here is the 
same as found in Eq. 2.6.  I begin by examining the implicit functions for 0

1
Q  

and 0

2
Q , which are defined in Table 2.3 as the steady state values of Q1 and Q2 at 

the no-plant steady state, for which the steady state always exists. 0

1
Q  must 

satisfy the following equation (assuming nutrient 1 is limiting): 
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 To show that some value of Q1 must satisfy this equation, I plug in Qmin,1 
and Qmax,1 for 0

1
Q  on the left hand side: 
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 At Qmin,1 and at Qmax,1, the left-hand side of the equation must be positive 
and negative, respectively. This indicates a switching of signs and therefore for 
some value of Q1 between Qmin,1 and Qmax,1, the above equation must pass 
through zero. However, this does not indicate that there is only one Q1 value that 
satisfies the equation. To show uniqueness, I note that both g1(Q1) 
and!µ
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)  are monotonically decreasing functions. 

 In a similar fashion I can show that 0

2
Q  exists and is unique when 

satisfying the following equation: 
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Plugging in Qmin,2 and Qmax,2 for 0

2
Q on the left-hand side of the equation gives 

us: 
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 One may ask why the second term of the left-hand side falls out in the 
expression with Qmin,2. If nutrient 1 is limiting, then Qmin,1/Q1 < Qmin,1/Q2. If Q2 is 
equal to Qmin,2, then Q1 must be equal to Qmin,1 if it is suppose to be limiting. 
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Therefore the second term must be equal to zero (technically, both nutrients 
would be limiting in this case). As I have the switching of signs and the 
monotonic properties of the functions as above, there is only one value of Q2 that 
resides in between Qmin,2 and Qmax,2 that satisfies the equality and it is defined as 
0

2
Q . Others have proven the above in a more general fashion without the 
assumption of one nutrient being limiting (Li & Smith 2007, Lemma 9). 
 The other case of an implicit formulation for variable is 1

2
Q . The most 

intuitive way to show the result is to start with the derivation for the formulation. 
The derivation begins with setting dR2/dt, dQ2/dt and dD2/dt all equal to zero for 
they must be if E1 is a steady state:  
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 I can quickly reduce these three equalities to two by substituting in the 
value of D1

2 for D2. I also can remove any mention of 1

1
Q  by noting that: 

 

µ! 1"
Q
min,1

Q
1

1

#

$%
&

'(
= m  

 
After the substitutions, I have:  
 

1 1 1 1 1 1

2 2 2 2 2 2 2 2 2

1 1 1

2 2 2 2 2

0 ( ) ( )

0 ( ) ( )

I R h R g Q B mB Q

h R g Q mQ

! " "#= $ $ +

= $
 

 
I can further simplify the first inequality by substituting m 1

2
Q  for h2( 1

2
R )g2( 1

2
Q ): 

 
1 1 1 1 1

2 2 2 2 2 2

1 1 1

2 2 2 2 2

1 1
1 2 2 2
2

2

0

(1 )

(1 )

I R mQ B mB Q

I R mQ B

I mQ B
R

! " "#

! # "

# "

!

= $ $ +

= $ $ $

$ $
% =

 

 
 This expression for 1

2
R  satisfies the condition that if E1 exists, then 

R
i

1
< I

i
!
i

for i = 1,2.  Substituting in the expression derived for 1

2
R  into the 

second equality, I know have:  
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1 12 2 2

2 2 2 2

2

(1 )
( ) 0

I mQ B
h g Q mQ

! "
#

$ %& &
& =' (

) *
 

 
 I know that the equality is violated at 1

2
Q  = Qmin,2 for dQ2/dt > 0 at Qmin,2 

from Appendix 2.E, which implies that: 
 

1

2 2 min,2

2 min,2

2

(1 )
0

I mQ B
h mQ

! "
#

$ %& &
& >' (' (

) *
 

 
 Similarly, I know the equality is violated at 1

2
Q  = Qmax,2 for dQ2/dt <0 at 

Qmax,2 from Appendix 2.E, which implies that: 
 
!mQ

max,2
< 0  

 
 Due to the switching of signs, I know that some value of Q2 between 
Qmin,2 and Qmax,2 must satisfy the equality and due to the monotonicity of the 
functions, I know only one value will satisfy this equality. Thus, I have shown 
the uniqueness of 1

2
Q  and by association, 1

2
R  and 1

2
D . 

 
2.H Jacobian Matrices and Derivation of Stability Criterion  
 
 With the values of the variables at steady state, I can investigate the local 
stability of this steady state and the conditions for its stability. To do this, I 
linearize the system of equations around the steady state of interest, which 
creates a Jacobian matrix. The signs of the eigenvalues of the Jacobian will 
determine whether the steady state is locally stable or unstable. 

 I begin with the single species case as defined by Eq. 2.6. I start by 
defining the Jacobian and I arrange it so that the order of the rows is dR1/dt, 
dQ1/dt, dD1/dt, dB/dt, dR2/dt, dQ2/dt and dD2/dt:  
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 The general Jacobian (notice that I have not entered in the steady state 
values for the variables) is block lower triangular: 
 

  

J =
D

1
0

L D
2

!

"
#
#

$

%
&
&

 

 
 This observation greatly simplifies the work needed to find the 
eigenvalues of J, for the eigenvalues of J are the eigenvalues of D1 and D2, 
which are lower dimension than J. It should be noted that when all the 
eigenvalues of J evaluated at the steady state have negative real parts, then the 
steady state will be locally stable. I shall therefore look only at D1 and D2 for the 
remainder of the analysis. I look at D1 and D2 evaluated at E0: 
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 The procedure for finding the eigenvalues is to take to the determinant of 
D1-Iλ, where λ is the eigenvalue and I is the identity matrix, and finding the 
eigenvalues that make the determinant equal to zero. Using this procedure, I 
found that the eigenvalues of D1 are j44, -δ1, 1

!"  and j22 and the eigenvalues of 
D2 are –δ2, 2

!"  and j66. All the eigenvalues except for j44 are always negative 
and therefore the stability of E0 depends on the sign of j44. Inspection of j44 at 
steady state shows that it is negative if the following is true: 
 

min,1

0

1

1
Q

m
Q

µ!

" #
> $% &

' (
              

 
 This condition for stability can be interpreted as follows: if the plant 
cannot maintain positive net growth at the internal nutrient content that is 
determined by the supply of nutrients (note the h1( 0

1
R ) term in the equation for 

0

1
Q  and that 0

1
R  is determined by the influx and efflux of plant available 

nutrient), then the plant will go extinct. I can rewrite the equation to come up 
with a value of 0

1
Q  at which this equilibrium becomes unstable: 

 

Q
1

0
<
µ

!
Q
min,1

µ
!
" m

                  

 
 When this condition is violated, then it is possible to have net positive 
growth at the given levels of nutrient supply and the plant will not go extinct. 
The breaking of this condition also leads to a biologically relevant E1 coming 
into existence for it did not exist if the condition remained unbroken.  
 For the stability of E1, I look at the eigenvalues of D1 and D2 when they 
are evaluated at E1, this time starting with D2. Instead of actually finding the 
eigenvalues, I use the Routh-Hurwitz criteria to see if they all have negative real 
parts, which will guarantee the asymptotic local stability of E1. The elements of 
D2 at E1 are: 
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 To utilize the Routh-Hurwitz criteria, I need to find the coefficients of the 
characteristic polynomial for D2. The formula for the characteristic polynomial 
of a three by three matrix is: 
 
3 2

1 2 3
a a a! ! !+ + +  

 
 Where λ is the eigenvalue of the matrix and the ai values are the 
coefficients. All the eigenvalues of D2 will have negative real part if and only if 
a1>0, a3>0 and    a1a2-a3>0. The value of a1 is equal to the negative of the trace 
of D2, which is the sum of the diagonal elements of D2. The value of a3 is equal 
to the negative of the determinant of D2 and the value of a2 is equal to the sum of 
the minors of each element on the diagonal of D2. Inspection shows that the three 
terms listed above are all positive and thus the real parts of all three eigenvalues 
are negative. 
 The situation for D1 is a bit more difficult to discern for the Routh-
Hurwitz criteria are more complicated. The formula for the characteristic 
polynomial of D1 is: 
 
4 3 2

1 2 3 4
a a a a! ! ! !+ + + +  

 
 All the eigenvalues of D1 will have negative real part if and only if a1>0, 
a3>0, a4>0 and 2 2

1 2 3 1 4 3
0a a a a a a! ! > . Due to the complexity, I will proceed by 

evaluating each condition one at a time in order to see if they are satisfied. I start 
by examining the elements of D1: 
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 Here, sgn(D1) indicates the sign of the elements in D1 and can help 
simplify the analysis of the matrix. For example, all the diagonal elements of D1 
are negative and hence the trace of D1 will be negative. Since the coefficient a1 
is equal to the negative of the trace of D1, it will be positive and the first 
condition of the Routh-Hurwitz criteria is met. 
 The other coefficients require a bit more algebra for to get at their signs. 
The fourth coefficient, a4, is equal to the determinant of D1, which is equal to the 
following expression: 
 
4 42 21 13 34 14 33det( ) ( )a j j j j j j= = ! !

1
D  

 
 Since j42 and j21 are positive, a4 is only positive if j14j33 is greater than 
j13j34 since both are positive. This is true as long as ζ1 is less than one, which is 
true by definition (see Table 2.2). Therefore, this condition is always met. The 
third coefficient, a3, is equal to: 
 
3 33 22 11 33 21 12 33 21 32 14 21 42( )a j j j j j j j j j j j j!= " + + "   

 
 The first term in the expression is positive, the next two terms are 
negative and the last term is positive. To show that a3 is positive, it is sufficient 
to demonstrate the first term is larger than the next two terms: 
 

33 11 22 33 21 12 33 21 32

33 11 22 21 12 21 32( )

j j j j j j j j j

j j j j j j j

!

!

" + +

= " " "
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 At this point, I only need to show that the value inside the parenthesis is 
positive since –j33 is positive: 
 

' 1 1 ' 1 1 1

11 22 21 12 21 32 1 1 1 1 1 1 1 1 1 1 1( ) ( ) ( ) ( ) ( ) 0j j j j j j g Q h R m h R g Q B! " ! µ # µ "$ $% % = % + % + >

 
 Since the interior of the parenthesis is positive, a3 is positive and another 
condition is met. The second coefficient, a2, is required to be positive in order 
for the last criterion to be satisfied, though a positive second coefficient does not 
guarantee that the last criterion is met. The coefficient can be expressed as: 
 
2 11 22 11 33 22 33 12 21
a j j j j j j j j= + + !  
 
 The first three terms are positive while the last term is negative. Since the 
first term is larger in magnitude than the last term as seen in the derivation of the 
sign of a3, a2 must be positive as well. Therefore, the final criterion, 

2 2

1 2 3 1 4 3
0a a a a a a! ! > , can possibly be met. Unfortunately, evaluating this 

criterion requires knowledge of the magnitudes of the coefficients and it is 
difficult to determine whether the condition holds for all parameter values that 
allow for E1 to exist. 

However, I will approach solving this problem by looking at what 
happens when δi is equal to zero (no recycling) and when it approaches infinity 
(instant recycling). In both cases, the system of equations reduces to five 
dimensions from seven, making it easier to apply the Routh-Hurwitz criteria. 
 
 Let us first consider the case with no recycling. I introduce a new matrix 
called N, which is the Jacobian matrix for the ecosystem with no recycling 
evaluated at E1. The elements of N will be a subset of the elements of J and are 
listed below the matrix: 
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 The eigenvalues of N can be obtained by finding the eigenvalues of the 
each submatrix on the diagonal, which I label V1 and V2. Instead of finding the 
eigenvalues directly, I will use the Routh-Hurwitz criteria to make sure the real 
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part of all eigenvalues is negative. Since V2 is a two by two matrix, its 
characteristic polynomial takes on the following form: 
 
2

1 2
a a! !+ +  

 
 For the eigenvalues to have negative real part, a1 and a2 both need to be 
positive. To find their expression, I examine V2: 
 

44 45

54 55

, sgn( )
n n

n n

! +" # " #
= =$ % $ %

+ !& '& '
2 2
V V  

 
 Since a1 is equal to the negative of the trace of V2, by inspection of V2 it 
can be seen that a1 must be positive. Also by inspection, the determinant of V2, 
which is equal to a2, must be positive. Therefore, the Routh-Hurwitz criteria are 
met for V2 and both eigenvalues have negative real parts.  
For V1, the characteristic polynomial and the Routh-Hurwitz criteria is the same 
as for D1 as they are both three by three matrices. I begin by examining the 
elements of V1: 
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The expressions for a1, a2 and a3 in terms of the elements of V1 are: 
 
1 1 11 22

3 1 13 21 32

2 11 22 33 11 22 12 21

( ) ( )

det( )

N

N

N N N

a D n n

a D n n n

a D D D n n n n

= ! = ! +

= ! = !

= + + = !

tr

 

 
 Remembering that the Routh-Hurwitz criteria for a three by three matrix 
is that a1>0, a3>0 and a1a2-a3>0, it is straightforward to meet the first two 
criteria. By inspection of the sign matrix, a1 and a3 must both be positive. The 
third criterion is a bit more complicated as it involves the magnitudes of the 
coefficients: 
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 Every element of a1a2 is positive, so if at least one element of a1a2 is 
greater in magnitude than -a3, then a1a2-a3 must be greater than zero. By 
inspection, the third to last element of a1a2 must always be greater in magnitude 
than a3 since µ∞ is always larger than m, then a1a2-a3 is greater than zero and all 
the criteria are met. Therefore, all the eigenvalues of N have negative real parts, 
which implies that E1 is locally stable when there is no recycling. With the lower 
bound of mineralization rate constant examined, I now proceed to the upper 
bound where it is infinite, i.e. the recycling is instantaneous. I define a new 
matrix called T, which is the Jacobian for the ecosystem with instantaneous 
recycling evaluated at E1. The elements of T are nearly identical to N with some 
slight modification to four elements: 
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 for the remainder
ik ik
t n=  
 
 Since T is block diagonal like J and N, I will find its eigenvalues by 
examining the submatrices along its diagonal, which I label W1 and W2: 
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 The characteristic polynomials and Routh-Hurwitz criteria for W1 and 
W2 are the same those for N1 and N2. The coefficients for the characteristic 
polynomial of W2 are: 
 
1 44 55

2 44 55 45 54
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 By inspection, both of the coefficients are positive. Since the Routh-
Hurwitz criteria for W2 is that a1 and a2 both be positive, both eigenvalues of W2 
have negative real parts. The coefficients for the characteristic polynomial of W1 
are: 
 
1 11 22

3 13 21 32
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 By inspection, all three coefficients are positive. Therefore, two of the 
Routh-Hurwitz criteria, namely that a1>0 and a3>0, are met. The last criterion, 
a1a2-a3>0, requires more work: 
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 As for matrix V1, all the elements of a1a2 are positive and if any one of 
those elements is greater that a3, then a1a2-a3 must be positive. By inspection, 
the third to last element of a1a2 is larger than a3 since µ∞ is always larger than m. 
Therefore, the third criterion is met and all three eigenvalues of V1 have negative 
real parts. Since all the eigenvalues of V1 and V2 have negative real parts, E1 is 
locally stable when recycling is instantaneous.  

Therefore at both the upper and lower limits of the mineralization 
parameter, I find that E1 is stable if it exists. I will now treat the final Routh-
Hurwitz criterion for the matrix J evaluated at E1 as a function of the 
mineralization parameter and I will see if the function never crosses zero for any 
positive value of this parameter. If this is the case, then the mineralization 
parameter has no effect on the stability of E1 and this would imply that E1

 is 
always stable if it exists independent of the value of δ1. The function is: 
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 I will show that each coefficient bi is greater than zero, thereby 
demonstrating that the Routh-Hurwitz criteria is always met for any positive 
value of δ1. I start with b4: 
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 I note that j14j42j21 is present in both terms. I can therefore divide through 
by j14j42j21, though I must alter the signs since j14j42j21 is negative. I then have: 
 

11 22 22 11 21 12 14 42 21( )( ) 0j j j j j j j j j! + ! + >  
 
 The first term is identical to a1a2 for the matrix V1 and the second term is 
identical to –a3. As I have already shown that a1a2-a3 is positive for V1, it must 
also be the case here. Therefore, b4 is positive. The situation is similar for b1: 
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 The first term here is identical to –a3 for the matrix W1 and the second 
term is nearly identical to a1a2 with a term missing that does not change the final 
result. Since I have already shown that a1a2-a3, it must also be the case here. 
Therefore, b1 is positive. 

These results indicate that as the mineralization parameter approaches 
either infinity or zero, the Routh-Hurwitz criteria will be satisfied for the full 
system, just as it was when I assume instantaneous recycling and no recycling. 
The next two coefficients require using some insights gained from the previous 
work: 
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 The first two terms of b2 are negative and as long as the other three 
terms, which are all positive, are larger, then b2 would need to be positive. To 
begin, the second term is smaller in magnitude than the fourth term. This fact 
can be quickly derived by the fact that if you divide both by 
11 22 21 32 21 12
j j j j j j!" " , which is positive, adding the two terms together gives 
ωj21j32, which is a positive number. If ζ1 is greater than 0.5, then the following 
must be true: 
 

11 22 1 14 42 21 14 42 21 11 222( )(1 ) ( ) 0j j j j j j j j j j!" + " + + >  
 
Even if ζ1 is less than 0.5, the smallest it can be is zero and so the following must 
hold: 
 

11 22 1 14 42 21 14 42 21 11 22 11 22 1 14 42 212( )(1 ) ( ) ( )(1 )j j j j j j j j j j j j j j j! !" + " + + # " + "   
 
 Therefore, the magnitude of the remaining negative term is than the one 
on the right hand side. Adding the third term to the term on the right hand side 
gives a positive value since, after diving by -(j11+j22), the third term is nearly 
identical to a1a2 for V1 with one term missing that does not affect the final result 
and the remaining negative term is identical to –a3. Therefore, b2 is positive. 
The final coefficient to investigate is b3: 
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 As with b2, two terms are negative and three are positive. Adding the first 
term and the fourth term together gives a positive number since 1 is always 
greater than (1- ζ1). Furthermore, adding the second term to the third term gives 
a negative number with a magnitude always less than or equal to: 
 

22 11 21 32 21 12 14 42 21( )j j j j j j j j j! !  
 
 Adding the above expression to the final term and dividing this sum by 

22 11 21 32 21 12( )j j j j j j! ! , which is a positive number, results in the final term 
being exactly a1a2-a3 for V1, which is positive. Therefore, b3 is positive. 

Since all the values of b3 are non-negative, the polynomial has no real 
positive roots, is strictly positive and increasing if δ1 is non-negative. This result 
implies that δ1 does not affect the stability of E1 and it also indicates that if E1 
exists, then it is locally stable. I have therefore extended the results from variable 
resource storage models with no recycling (Klausmeier et al. 2004) and 
instantaneous recycling (Ballantyne et al. 2008) to a model with a detritus 
compartment. I also somewhat generalized the uptake functions for the 
organisms by allowing it to be affected by the concentrations of nutrients within 
the plant. 
 I now know the conditions for the stability of both steady states: E0 is 
stable if E1 does not exist, E0 is unstable and E1 is stable if E1 exists. 
 
2.I Derivation of a Condition for the Coexistence Steady State 
 
 In this section, I derive one of the conditions for the existence of the 
coexistence steady state. The derivation comes from the fact that at this steady 
state, the consumption of nutrients by the organisms must equal the supply of 
nutrients, with the supply originating from abiotic sources and the recycling of 
dead plant material. This fact can be translated into a vector formulation such 
that cxy, the consumption vector at steady state, must balance the sum of the 
abiotic supply vector u and the recycling vector rxy. As I know the formulas for 
these vectors from Eq. 2.7 and 2.8, I can write out the vector equation: 
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 I only want certain solutions of this vector equation, specifically those 
that allow for Bx and By to be positive. Therefore, I want to solve for these two 
unknowns with the two equations. The easiest way to solve the system is to 
rewrite the above equations as:  
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 The vector equation is now in the familiar form of Ax=y, where A is a 
coefficient matrix, x is the vector of unknowns and y is the vector of known 
values. If A is invertible, i.e. it is a square matrix whose determinant is not equal 
to zero, one can solve for x by multiplying both sides of the vector equation by 
A-1, the inverse of A. One then has x=A-1y and it is then possible to obtain the 
values of x. The determinant of A is: 
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 The determinant of A will not equal to zero as long as the net 
consumption of the limiting nutrient at steady state for each species is not equal 
to the net consumption of the non-limiting nutrient at steady state. This condition 
will be satisfied as long as the species are not both co-limited by the two 
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nutrients at steady state, which is highly unlikely. I therefore assume that the 
determinant is not zero and I define the inverse of A as: 
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With the inverse in hand, I can now solve the vector equation: 
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 The possible values of the nutrients at steady state that can give a positive 
solution to the biomass of the two species depends on if the determinant of A is 
positive or negative. If the determinant of A is positive, then: 
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 Therefore, the slope of the supply vector must lie in between the slopes 
of the net consumption vectors of the two species. This result implies that the 
supply point must also lie between the slopes of the net consumption vectors for 
otherwise the slope of the supply vector would lie outside the slopes of the net 
consumption vectors. The result is similar when the determinant is negative, with 
only the changing the ‘greater than’ signs with less ‘less than’ signs. The 
condition can be rewritten using the components of the consumption and 
recycling vectors: 
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 For the sake of simplicity, within the main text I define the slope of the 
net consumption vectors as βj.  
 
2.J Derivation of Eq. 2.9 
 
 The formulation of βj found in Eq. 2.9 can be derived from the existence 
conditions of the coexistence steady state. βj is formally defined as the slope of 
the net consumption vector of plant j, which can be written mathematically as: 
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 I note that at steady state, the uptake of nutrients per unit biomass must 
be equal to the loss of nutrients, which means ( ) ( )xy xy xy

ij i ij ij j ijh R g Q m Q= in order 
for this condition to be satisfied. I substitute the right-hand side of the expression 
into the formulation of βj and I derive Eq. 2.9: 
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2.K Stability Conditions for Two Species, Two Nutrient Steady States 
 
 As for the single species case, stability conditions are derived by 
linearising around the steady state and determining the eigenvalues of the 
associated Jacobian matrix. The general Jacobian matrix for two species and two 
nutrients, without assuming a priori which nutrient is limiting which species, 
can be written as: 
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 The values of a few of the entries are dependent on which nutrient is 
limiting at steady state. If the growth of plant x is limited by nutrient 1, then j34 
and j54 are equal to zero. Similarly, if the growth of plant x is limited by nutrient 
2, then j43 and j53 are equal to zero. These results equally applied to plant y such 
that if it is limited by nutrient 1 or nutrient 2, then j67 and j87 are equal to zero or 
j76 and j86 are equal to zero, respectively. This fact will be important during the 
analysis of the Jacobian matrices. 
 At the no-plant steady state, the Jacobian matrix is: 
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 Recalling that the eigenvalues must satisfy det(J-λI) = 0, where I is the 
identity matrix, and that one can start taking the determinant from any row or 
column in the matrix, it is fairly simple to obtain the eigenvalues of this large 
matrix. Inserting the eigenvalues into the above matrix, I have: 
 



 

103 

   

(J
E

0
! "I) =

j
11
! " 0 0 0 j

15
0 0 j

18
j
19

0

0 j
22
! " 0 0 j

25
0 0 j

28
0 j

2,10

j
31

0 j
33
! " j

34
0 0 0 0 0 0

0 j
42

j
43

j
44
! " 0 0 0 0 0 0

0 0 0 0 j
55
! " 0 0 0 0 0

j
61

0 0 0 0 j
66
! " j

67
0 0 0

0 j
72

0 0 0 j
76

j
77
! " 0 0 0

0 0 0 0 0 0 0 j
88
! " 0 0

0 0 0 0 j
95

0 0 j
98

j
99
! " 0

0 0 0 0 j
10,5

0 0 j
10,8

0 j
10,10

! "

#

$

%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

&

'

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

 

 
 I note that rows five and eight only have one non-zero entry. Thus, I 
know that j55 and j88 are eigenvalues for the matrix for if λ is equal to either of 
them, the determinant of the matrix is zero. Removing the rows and their 
associated columns leave us with an eight by eight matrix:  
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 As before, I have two rows with only one non-zero entry and if the 
eigenvalues are equal to the entry, then the determinant is equal to zero. 
Therefore, j99 and j10,10 are both eigenvalues of the matrix. Removing these two 
rows and their associated columns from the matrix results in two more rows (the 
first two) having only one non-zero entry and j11 and j22 are also eigenvalues for 
the matrix. I am left with a four by four matrix: 
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 Since one of j34 and j43 as well as one of j67 and j76 must be equal to zero 
since only one nutrient is limiting, then all the entries on the diagonals (j33, j44, 
j66 and j77) are eigenvalues of the Jacobian. Except for j55 and j88, all the 
eigenvalues of the Jacobian are always negative. For these two eigenvalues, they 
are only negative if and only if: 
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 These conditions are violated if either of the single plant steady states 
exists, which is similar to the single species case. Therefore, the no-plant steady 
state is only locally stable if the single plant steady states do not exist. 
 The stability of the single plant steady states can also be investigated 
analytically. I first must assume that the plant is limited by one nutrient at steady 
state. For this example, I assume that plant x is limited by nutrient 1. With this 
assumption, the Jacobian matrix evaluated at Ex is: 
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 Three eigenvalues of this matrix are readily available, as j88 is the lone 
non-zero entry in the eighth row and is on the diagonal and therefore must be an 
eigenvalue in addition to j66 and j77, for one of j67 and j76 is equal to zero due to 
the fact that only one nutrient is limiting. The matrix that remains is identical to 
the Jacobian for the single species case, which has only negative eigenvalues as 
proved in Appendix 2.H. Furthermore, both j66 and j77 are negative, such that the 
stability of Ex depends solely on j88. This entry describes the net growth of the 
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plant y at the nutrient concentrations at Ex such that plant y can invade if j88 is 
positive and cannot invade if it is negative. Mathematically, the stability 
condition can be defined as: 
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 The stability condition for having only plant y present at steady state is 
similar. Due to the complexity of the Jacobian matrix for the coexistence steady 
state, Exy, no analytic stability conditions were derived. 
 
2.L R* Derivation for Specified Functional Forms 
 
 In this section, I derive the R* values for a species by using the specified 
functional forms as specified in Eq. 2.3. I begin by setting the equations dB/dt 
and dQi/dt equal to zero and assume nutrient i is limiting: 
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 R* values are therefore dependent on the growth rate constant, the half-
saturation constant, the mortality rate constant, the maximum uptake rate 
constant and the minimum and maximum internal concentrations of nutrients 
inside the plant. Since a plant’s competitive ability increases with decreasing R* 
values, it is important to know if increasing the value of a model parameter will 
either increase or decrease the R* (i.e. decrease or increase competitive ability). 
The best way to do so is to the take the partial derivatives of R* with respect to 
the parameter. To do so, I first rewrite the R* values with only parameters: 
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Next, I take the partial derivatives with respect to each parameter: 
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 The kinetic parameters have opposite effects on R* when increasing: the 
uptake rate decreases R* and the half-saturation constant increases R*. 
Therefore, a plant that minimizes the half-saturation constant and maximizes its 
uptake rate will be most competitive for the limiting nutrient. Continuing on: 
 



 

107 

  

!R
i

*

!µ
"

= #
µ

"
K

i
m

2
Q

min,i
V

max,i
Q

max,i
(Q

max,i
# Q

min,i
)

(V
max,i

(Q
max,i

#
µ

"
Q

min,i

µ
"
# m

) # µ
"

(
µ

"
Q

min,i

µ
"
# m

# Q
min,i

)(Q
max,i

# Q
min,i

))2

$
!R

i

*

!µ
"

< 0

!R
i

*

!m
=

µ
"

2
K

i
mQ

min,i
V

max,i
(Q

max,i
# Q

min,i
)2

(V
max,i

(Q
max,i

#
µ

"
Q

min,i

µ
"
# m

) # µ
"

(
µ

"
Q

min,i

µ
"
# m

# Q
min,i

)(Q
max,i

# Q
min,i

))2

$
!R

i

*

!m
> 0

 

 
 The effects of growth rate and mortality meet one’s intuitive expectations 
that a high growth rate and low mortality would allow for better competitive 
ability, which is the case as higher growth rates decrease R* and higher mortality 
rates increase R*. The last set of parameters is the stoichiometric parameters: 
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 The capacity to hold more nutrients and the ability to tolerate lower 
internal nutrient concentrations both reduce R* values. Overall, a species with 
high nutrient uptake rates, a high growth rate and high maximum internal 
nutrient concentrations combined with a low half-saturation constants, a low 
mortality rate and low minimum internal nutrient concentrations will be the best 
competitor for nutrients. 
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Chapter 3 
  

Life History Traits, Competition and 
Stoichiometry: A Spatial Model of Early 
Plant Primary Succession on Mount St. 
Helens 

 
3.1 Introduction 
 
 The phenomenon of succession poses an important question to 
ecologists, which many have tried to answer over the years (Clements 1916, 
Gleason 1927, Odum 1969, Connell & Slayter 1977, Pickett et al. 1987, Walker 
& Chapin 1987, Walker & del Moral 2003). Can the total development of 
communities, including rates and trajectories, be predicted at scales relevant for 
ecosystem rehabilitation?  This question spawned two schools of thought, with 
the holists (e.g. Clements 1916) believing that biotic mechanisms such as 
competition and facilitation dominate succession and make it deterministic while 
the reductionists (e.g. Gleason 1927) believed succession to be driven by abiotic 
mechanisms and therefore highly stochastic (Walker & del Moral 2003). The 
modern consensus is that no one group of mechanisms can explain the entirety of 
succession, though life history traits can be used to predict the pattern of 
succession (Chapin et al. 1994, Chapin et al. 2002, Walker & del Moral 2003). 
For example, the seed size of the dominant species progressively become larger 
as succession proceeds, resulting in a pattern of larger seeded species replacing 
smaller seeded species over time (Chapin et al. 2002). 
 In early primary succession, the key life history traits are seed dispersal 
ability, seed germination, vegetative growth and survival (Walker & del Moral 
2003). Species with small, wind-dispersed seeds that can reach the bare 
substrate, germinate, grow rapidly and survive to reproduction should dominate 
early primary succession (Chapin et al. 1994, Chapin et al. 2002, Walker & del 
Moral 2003). However, species with small seeds have greater difficulty 
establishing on stressful primary successional sites than those with larger seeds 
(Wood & del Moral 1988, Wood & Morris 1990, del Moral & Bliss 1993, Wood 
& del Moral 2000). Furthermore, even if plants with small seeds do establish, 
they may have great difficulty producing seed sets due to nutrient limitation 
(Larcher 2003, Walker & del Moral 2003, Gill et al. 2006). Lastly, species 
interactions such as competition can help structure the composition of the 
community even in early primary successional sites, indicating that a focus on 
only life history traits may result in misleading predictions (Walker & del Moral 
2003, Gill et al. 2006).  
 On the Pumice Plain of Mount St. Helens, the first colonizer was Lupinus 
lepidus, a small, prostrate nitrogen-fixing legume with large seeds and no 
obvious mechanisms for long-distance dispersal (del Moral 1983, Bishop 2002). 
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During the first few years of succession, large monocultures of Lupinus were 
established across the Pumice Plain and improved soil conditions within their 
colonies (Halvorson et al. 1991b, Halvorson & Smith 1995, Halvorson et al. 
2005). The colonies were then invaded by herbivores and other colonizing plants 
such as Hypochaeris radicata and Agrostis scabra, which greatly reduced their 
dominance in the community (Bishop et al. 2005, del Moral & Rozzell 2005). 
The colonies are known to have differing species composition and could be in 
the midst of diverging in their successional trajectories with neighbouring sites 
on the Pumice Plain (del Moral & Rozell 2005, del Moral 2007, Titus 2008).  
 With knowledge of these mechanisms, other authors have made 
predictions about the possible trajectories and rates of succession on Mount St. 
Helens and other primary successional habitats (del Moral & Bliss 1993, Chapin 
et al. 1994, Walker & del Moral 2003, del Moral et al. 2005). However, these 
predictions are based on conceptual models and empirical work that have 
difficulties elucidating the relative importance of these mechanisms and how 
they may interact (Walker & del Moral 2003). To provide a better mechanistic 
understanding to succession, I have developed a mathematical model that 
includes life history traits, competition for limiting nutrients and ecosystem 
stoichiometry within a landscape. 
 By adding life history traits, the model becomes more biologically 
realistic compared to the model in Chapter 2. No longer is it assumed that plants  
act like algae, some green slime vegetatively growing across the Pumice Plain. 
Nor do the plants continuously lose biomass throughout the growing season at a 
constant rate and mortality is ever present. Finally, the landscape itself need no 
longer be a homogeneous pool of nutrients to be accessed and absorbed, but can 
have some heterogeneous features such as increased or decreased nitrogen and 
phosphorus supplies at different locations. However, the main reason for the 
addition of life history traits is to improve model predictions. 
 The key hypothesis driving this research is that competition for nutrients, 
plant stoichiometry and nutrient cycling can give key insights to the patterns and 
rates of primary succession. This hypothesis has been partially validated in 
Chapter 2 by the good qualitative agreements between field experiments and the 
model. However, the model made predictions that do not seem to hold, such as a 
lack of coexistence between Hypochaeris and Agrostis while they commonly co-
occur (e.g. Gill et al. 2006). I hypothesize that the addition of life history traits 
such as seed dispersal, seed size and others to the basic competition model will 
allow for Hypochaeris and Agrostis to coexist in spite of local competitive 
effects. Such a result would fit well into current theory about 
colonizer/competitor tradeoffs, with Agrostis being the colonizer and 
Hypochaeris the competitor (Tilman 1994). While the original theory has been 
criticized (Amarasekare 2003), recent theoretical and empirical studies have 
supported the concept (Calcagno et al. 2006, Hunt & Bonsall 2009). 
 Another hypothesis, which is more specific to Mount St. Helens, is that 
herbivory affecting nitrogen-fixers should help increase the biomass of nitrogen-
limited species by increasing the nutrient cycling rate (Bishop 2002). The 
previous model did not support this hypothesis (Chapter 2). It is likely that the 
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assumption of continuous mortality, which is clearly violated by the actual life-
cycles of perennial plants such as Lupinus, caused the discrepancy. It is therefore 
predicted that having discrete mortality events will give rise to the effect 
predicted by others (Bishop 2002).   
  Both of the specific hypotheses relevant to Mount St. Helens have been 
borne out in the model (Figures 3.7, 3.11 and 3.14). Competition is important at 
local scales and becomes more important as nutrient levels increase, but in poor 
nutrient conditions, poorer competitors with a better suite of life history traits 
will do better. Such traits include nutrient uptake and plant stoichiometry, 
validating the previous premise that nutrient limitation, nutrient cycling and 
stoichiometry matter in primary succession. 
   
3.2 Model Development and Parameterization 
 
 In this section, I proceed to derive a spatial model that incorporates the 
major facets of the biology of the plant community on Mount St. Helens. The 
key elements include the growing season, which is modelled in a similar way as 
in Chapter 2, the reproduction of plants at the end of the growing season, 
mortality events in winter and seed germination and seedling establishment in 
the spring. Each of these elements includes life history traits that will determine 
aspects of the competitive ability of the plants and are therefore needed to 
capture the community dynamics. I follow the derivation by dealing with key 
assumptions being made within the model and how their validity (or lack 
thereof) can alter model output. Finally, the last section deals with the 
parameterization of the model from data.  
 
3.2.1: Model Derivation 
 

When considering the spatial and temporal properties of ecosystems and 
communities, it is important to choose a model that can appropriately describe 
the processes of interest (Durrett & Levin 1994). These processes may be 
continuous in time and space (e.g. nutrient diffusion), continuous in time and 
discrete in space (e.g. plant growth), continuous in space and discrete in time 
(e.g. seed reproduction and dispersal) or discrete in both time and space (e.g. 
plant mortality). Furthermore, the processes can be approximated with 
deterministic equations or can be described by stochastic models. The choice of 
model depends on what processes are most important for the problem at hand.  
 For this chapter, the problem is the spatial distribution of plants on 
Mount St. Helens over time. Since plants are discrete organisms in space and can 
form discrete populations, it makes sense to model them in discrete space. 
Therefore, the spatial structure of the landscape upon which the plants colonize 
will be a lattice of connected patches (Figure 3.1a). The connections between 
patches are maintained through the movement of nutrients (Figure 3.1b) and 
through the dispersal of seeds (Figure 3.1c). The size of each patch is 0.25m2, 
which is the standard unit for measuring plant cover on Mount St. Helens (e.g. 
del Moral & Bliss 1993). Such an area is large enough to enclose one large plant 
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of all three species considered here, though in rare circumstances a Lupinus plant 
may be larger than 0.25m2 (Bishop 2002).  The effect of changing patch size is a 
change in the size of adult plants, though the current patch size gives realistic 
values for adult plant size. 

Some processes involving plants, such as vegetative growth and nutrient 
uptake, occur continuously throughout the growing season and can be modelled 
deterministically (Chapter 2). The production of seeds, seed dispersal, plant 
mortality, seed mortality and seed germination all take place within discrete time 
frames and can be highly variable (Titus & del Moral 1998, Braatne & Bliss 
1999, Bishop 2002). These facts indicate that the growing season should be 
treated separately from the other events, which has been done in previous models 
(Fagan et al. 2005).  

The general sequence of events for the processes considered here follows 
the following outline if one starts right after seedling emergence (Figure 3.2): 

 
1. Continuous growing season (~100 days; Halvorson et al. 1992) 

with vegetative growth, nutrient diffusion and nutrient uptake. 
2. Growing season ends. Plants that can reproduce do so. Seeds are 

dispersed across the landscape. 
3. After reproduction, seedlings, adults and seeds suffer mortality 

from winter and/or herbivory. 
4. Spring arrives and seeds germinate. Seedlings compete with one 

another to lay claim to the patch if it is unoccupied by any adult 
or by an adult from the same species. Only one seedling or one 
seedling of each species remains after competition. Enter growing 
season (event number 1). 

 
The parameters governing the behaviour of the model may change over 

time and space, for life history traits like mortality and landscape features such 
as nitrogen levels can vary widely over time and/or space (e.g. Bishop 2002, 
Titus 2008). In general, I limit changes over time to the scale of one full year or 
an iteration of the four events listed above. This limitation is in order to ignore 
seasonality within the growing season, as the other events only occur once each 
year and therefore can only be changed once each year. Differences between 
patches are set for the entire time period the model is run, in order to clearly see 
if those differences can alter patterns seen when no spatial heterogeneity is 
predetermined.  

Each run of the model consists of thirty time iterations, which is the 
equivalent to thirty years. When considering community dynamics, the initial 
condition is a single Lupinus adult positioned at the centre of the lattice, which 
corresponds to the single individual found in 1981 on the Pumice Plain (Bishop 
2002). The size of the lattice is normally 25 by 25 patches, which is 12.5m by 
12.5m, though I did investigate different sizes of the lattice, which had little 
effect on the results. For each set of parameter values chosen, I run the model for 
at least 100 runs, unless otherwise indicated, in order to capture the variability 
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inherent in the model. With these general model considerations addressed, I now 
turn to the specifics of how each event within this model is constructed. 

 

 
 
Figure 3.1: Spatial arrangement and connectivity of the model. a Patches form 

a square lattice and are connected through the dispersal of seeds and the movement of 
nutrients. b The connectivity due to the movement of nutrients occurs at a local scale 
with a maximum of eight neighbours (arrows between patches). c The connectivity due 
to the dispersal of seeds (red arrows, S) can be over long-distance and in any direction 
from the seed source (L). 
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Figure 3.2: Sequence of events in the spatial model. The dynamics of the community 
during the growing season is determined by a modified version of the well-mixed model 
that allows for nutrients to be exchanged between spatial subdivisions. The rest of the 
events in the model occur outside the growing season. 
 
 
3.2.1.1 Growing Season 
 

The growing season (event 1) can be adequately described by coupled 
ordinary differential equations similar to those used in Chapter 2 (units of 
variables and parameters are listed in Table 3.1): 

 

 
Growing Season 
(Spring/Summer) 

Reproduction 
and Seed 
Dispersal 

(Fall) 

Seed 
Germination 
and Seedling 

Establishment 
(Spring) 

Adult and Seed 
Mortality 

(Fall/Winter) 
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 Where Rik is the concentration of nutrient i in the soil solution of patch k, 
Qijk is the internal concentration of nutrient i in plant j in patch k and Bjk is the 
biomass of plant j in patch k. Dik is the amount of nutrient i within dead plant 
tissue in patch k at the beginning of the growing season and therefore a constant. 
After the growing season, Dik is updated to reflect the loss of nutrient i that 
occurred during the time period using the following formula: 
 

100
(100) (0) ik

ik ik
D D e

!"
=                                            (3.2) 

 
 In general, the supply of nutrients mostly comes from the mineralization 
of organic nutrients into inorganic nutrients that are readily available for plant 
uptake (Chapin et al. 2002). There are also contributions from atmospheric 
deposition, the weathering of rocks and other abiotic processes, but they are 
quickly turned into organic forms by soil microorganisms (e.g. Halvorson et al. 
2005). Here I separate the mineralization of organic nutrients supplied by dead 
plant tissue from that supplied by other sources in order to better demonstrate the 
contributions of plants to the nutrient pool. The parameters associated with the 
supply of nutrients are the net mineralization rate of bare soil, Iik, the turnover 
rate,

ik
! , and the rate of mineralization of the dead plant tissue for nutrient i in 

patch k. The other parameter, ω, is a conversion coefficient describing the water 
content of the soil. 
 Another way of describing the supply would be to assume that the supply 
of nutrients follows the total amount of nutrients within the soil (e.g. Tilman 
1985). Therefore, the mineralization parameter Iik would be a function of the 
total amount of nutrient i in patch k. If this assumption were true, then one would 
expect the mineralization rate and the pool of inorganic nitrogen to increase with 
increasing total nitrogen on Mount St. Helens. 
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Table 3.1: Definitions, units, values and sources of parameters used in the 
growing season component of the model  
a) Lupinus lepidus physiological parameters 
Parameters Units Value (Range) Definition Source 
Vmax,NL mol N/ 

(mol C x 
day) 

7.05 x 10-4 
(5.93-7.05  
x 10-4) 

Maximum uptake rate 
for nitrogen 

Halvorson et 
al. 1992a 

Vmax,PL mol P/ 
(mol C x 
day) 

2 x 10-3 (1.5-2 
x 10-3) 

Maximum uptake rate 
for phosphorus 

Esteban et 
al. 2003b 

KNL mol N/L 1.15 x 10-4 
(1.15 – 1.19 x 
10-4) 

Half-saturation 
constant for nitrogen 
uptake 

Dunabin et 
al. 2002c 

KPL mol P/L 1.57 x 10-5 

(1.57-1.67 x 
10-5) 

Half-saturation 
constant for 
phosphorus uptake 

Esteban et 
al. 2003b 

Qmax,NL mol 
N/mol C 

0.04507 Maximum internal 
nitrogen concentration 

Fagan et al. 
2004 

Qmax,PL mol 
P/mol C 

0.00187 Maximum internal 
phosphorus 
concentration 

Fagan et al. 
2004 

Qmin,NL mol 
N/mol C 

0.02525 Minimum internal 
nitrogen concentration 

Fagan et al. 
2004 

Qmin,PL mol 
P/mol C 

0.000816 Minimum internal 
phosphorus 
concentration 

Fagan et al. 
2004 

µ∞,L 1/day 0.218 Theoretical maximum 
vegetative growth rate 

Halvorson et 
al. 1991 

lL 1/day 0.005 (0.001-
0.01) 

Loss of carbon during 
growing season 

Free 
Parameter 

* Value used means that these values were used for all figures were simulations were used. 
a Based on average nitrogen accumulation by Lupinus lepidus over whole growing season 
(hundred days). 
b Data from Lupinus albus.  
c Data from Lupinus angustifolius and Lupinus pilosus. 
d Value based on 30% yearly mortality if no growth occurs.  
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Table 3.1 continued 
b) Hypochaeris radicata physiological parameters  
Parameters Units Value 

(Range) 
Definition Source 

Vmax,NH mol N/ 
(mol C x 
day) 

0.1272 
(0.0707-
0.1272) 

Maximum uptake rate 
for nitrogen 

Van de Djik et 
al. 1982 

Vmax,PH mol P/ 
(mol C x 
day) 

3.48 x 10-4 Maximum uptake rate 
for phosphorus 

Longeran & 
Asher 1967a 

KNH mol N/L 7 x 10-6 

(0.7 – 1.9 x  
10-5) 

Half-saturation 
constant for nitrogen 
uptake 

Van de Djik et 
al. 1982 

KPH mol P/L 7.312 x 10-7 Half-saturation 
constant for 
phosphorus uptake 

Longeran & 
Asher 1967a 

Qmax,NH mol 
N/mol C 

0.050934 Maximum internal 
nitrogen concentration 

Fagan et al. 
unpublished 
data set 

Qmax,PH mol 
P/mol C 

0.001731 Maximum internal 
phosphorus 
concentration 

Mamolos et 
al. 1995b 

Qmin,NH mol 
N/mol C 

0.011548 Minimum internal 
nitrogen concentration 

Fagan et al.  
unpublished 
data set 

Qmin,PH mol 
P/mol C 

0.001079 Minimum internal 
phosphorus 
concentration 

Mamolos et 
al. 1995b 

µ∞,H 1/day 0.3518 
(0.2527-
0.3518) 

Theoretical maximum 
vegetative growth rate 

Fenner 1978, 
Van de Djik et 
al. 1982 

lH 1/day 0.005 (0.001 
– 0.01) 

Loss of carbon during 
growing season 

Free 
Parameter 

a Data from Hypochaeris glabra. Parameters are derived from fitting using non-linear least 
squares.  
b Assuming constant value for %C of 40.74.  
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Table 3.1 continued 
c) Agrostis Scabra physiological parameters 
Parameters Units Value 

(Range) 
Definition Source 

Vmax,NA mol N/ 
(mol C 
x day) 

0.01834 
(0.01605-
0.01834) 

Maximum uptake rate 
for nitrogen 

Rachmilevitch 
et al. 2006 

Vmax,PA mol P/ 
(mol C 
x day) 

1.87 x 10-3 

(1.46-1.87 x 
10-3) 

Maximum uptake rate 
for phosphorus 

Newberry et 
al. 1995a 

KNA mol N/L 1.5 x 10-5 
(1.5 – 3.0 x  
10-5) 

Half-saturation 
constant for nitrogen 
uptake 

Barber 1995b 

KPA mol P/L 3.7x10-6 
(1.47 – 3.7 x 
10-6) 

Half-saturation 
constant for 
phosphorus uptake 

Mouat 1983c  

Qmax,NA mol 
N/mol 
C 

0.03766 Maximum internal 
nitrogen concentration 

Bishop et al. 
unpublished 
data set 

Qmax,PA mol 
P/mol C 

0.003296 Maximum internal 
phosphorus 
concentration 

Newberry et 
al. 1995a 

Qmin,NA mol 
N/mol 
C 

0.004499 Minimum internal 
nitrogen concentration 

Bishop et al. 
unpublished 
data set 

Qmin,PA mol 
P/mol C 

0.0004301 Minimum internal 
phosphorus 
concentration 

Newberry et 
al. 1995a 

µ∞,A 1/day 0.140 
(0.120-
0.140) 

Theoretical maximum 
vegetative growth rate 

Rachmilevitch 
et al. 2006 

lA 1/day 0.005 (0.001 
– 0.01) 

Loss of carbon during 
growing season 

None 

a Data from Agrostis capillaris.  
b Data from non-Agrostis grass species such as Fescue.  
c Data from Agrostis tenuis. 
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Table 3.1 continued 
d) Nutrient dynamics parameters 
Parameters Units Value 

(Range) 
Definition Source 

IN mol 
N/(L x 
day) 

-- (1.01 x 10-

6-2.55 x 10-4) 
x ω 

Influx of plant 
available nitrogen 
without plants 

Halvorson & 
Smith 2009, 
Gill et al. 
2006a 

IP mol 
P/(L x 
day) 

-- 
(0.25-2.17 x 
10-4) x ω 

Influx of plant 
available 
phosphorus 
without plants 

Halvorson & 
Smith 2009, 
Fagan et al. 
2004b 

φN 1/day 1 (0.1-5) Efflux of plant 
available nitrogen 
without plants 

Free Parameter 

φP 1/day -- (1-5) Efflux of plant 
available 
phosphorus 
without plants 

Free Parameter 

dN 1/day 0.1 (6.06-34.6 
x 10-7) 

Diffusion rate 
constant of 
nitrogen 

Raynaud & 
Leadley 2004c 

dP 1/day 0.01 (4.8 -106 
x10-9) 

Diffusion rate 
constant of 
phosphorus 

Raynaud & 
Leadley 2004c 

ω 1/L 0.2667 (0.2-
2) 

Reciprocal of soil 
water content 

Titus 2008 

a Ranges of values found on Mount St. Helens in two different studies done in 2002 and 2005. 
b Ranges of values found on Mount St. Helens in two different studies done in 2000 and 2005. 
c Value used is much greater than the actual ranges of diffusion to show lack of importance of 
diffusion between patches. Ranges calculated using formula 3 of Raynaud & Leadley (2004) 
assuming a distance of 0.5m between centres of patches. 
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Table 3.1: continued 
e) Detritus dynamics parameters 

Parameters Units Value 
(Range) 

Definition Source 

ζNL -- 0.2 (0-0.99) Proportion of 
nitrogen 
recycled from 
dead Lupinus 

Free 
Parameter 

ζPL -- 0.1 (0-0.99) Proportion of 
phosphorus 
recycled from 
dead Lupinus 

Free 
Parameter 

ζNH -- 0.1 (0-0.99) Proportion of 
recycled from 
dead 
Hypochaeris 

Free 
Parameter 

ζPH -- 0.1 (0-0.99) Proportion of 
phosphorus 
recycled from 
dead 
Hypochaeris 

Free 
Parameter 

ζNA -- 0.1 (0-0.99) Proportion of 
nitrogen 
recycled from 
dead Agrostis 

Free 
Parameter 

ζPA -- 0.1 (0-0.99) Proportion of 
phosphorus 
recycled from 
dead Agrostis 

Free 
Parameter 

δN 1/day 0.0035 Mineralization 
rate of 
nitrogen from 
dead plant 
material 

Free 
Parameter 

δP 1/day 0.0035 Mineralization 
rate of 
phosphorus 
from dead 
plant material 

Free 
Parameter 
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 Experimental work has shown that the mineralization rate has fluctuated 
widely while total nitrogen soil has increased and levels of inorganic nitrogen 
have remained constant for nearly twenty years, though little is known about 
why this is occurring (Halvorson et al. 2005, Halvorson & Smith 2009). For 
example, bare soil on Mount St. Helens seems to have stopped accumulating 
nitrogen since 1997, yet the net mineralization of the soil has increased 
(Halvorson & Smith 2009). The lack of an unambiguous relationship between 
total nitrogen and net nitrogen mineralization prevents describing the nitrogen 
supply in this fashion. 
 A potential source or sink for nutrients comes from the diffusion of 
nutrients between patches. Amount of nutrients entering or leaving a patch 
through diffusion is determined by the difference of nutrient concentration 
between patch k and patches h as well as the diffusion rate constant di. The 
parameter denoted by g indicates the size of the neighbourhood of patch k. The 
last component of nutrient dynamics is the uptake of nutrient i by all the plants 
found in patch k. The functions describing the uptake of nutrients by plants all 
have the following form: 
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 Where Vmax,ij is the maximum uptake rate, Kij is the half-saturation 
constant of uptake, Qmax,ij is the maximum internal concentration and Qmin,ij is 
the minimum internal concentration of nutrient i for plant j. Biologically, the 
function means that plants uptake more nutrients in environments with high 
nutrient levels and when they are impoverished in that nutrient. The nutrients 
that enter the plant through uptake serve to increase the concentration of that 
nutrient within the plant while plant growth serves to dilute it (Eq. 3.1). The 
gross growth functions of all the plants obey Liebig’s Law of the Minimum and 
are described by: 
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 Where µ∞,j is the theoretical maximum growth rate of plant j at infinite 
internal nutrient concentration and the ‘min’ within the equation represents the 
minimum function, i.e. the minimum value within the brackets is always used. 
The above function indicates that the least abundant nutrient within the plant will 
control the gross growth rate. The final parameter of note within Eq. 3.1 is lj, 
which is the rate at which biomass is lost during the growing season. This rate is 
used as a proxy for the costs of respiration, root exudates and other losses of 
biomass encountered by the plant. 
 Based on the knowledge gleamed from Chapter 2 on which nutrients are 
limiting for which species on Mount St. Helens, it is possible to reduce the 
complexity of the model by making a few assumptions. I will assume that 
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phosphorus is always limiting for Lupinus and nitrogen is always limiting for 
Hypochaeris and Agrostis. I will also assume that the internal nutrient 
concentration of the non-limiting nutrient will be at the equilibrium value 
predicted for the parameter values chosen. These assumptions have little to no 
effect on model output and are made to reduce computing time.  
 Furthermore, when the assumption that only one plant can grow in a 
particular patch at a time, then the dynamics of patch k simplify greatly: 

 

   

dR
k

lim

dt
Rate of Change in 
the Limiting Nutrient in
Patch k

!
= I

k

lim !"
k

lim R
k

lim ! f
k

lim (R
k

lim ,Q
k

lim )B
k
+#$

k

lim D
k

lime
!$

k
lim t

+
d lim

g
R

h

lim ! R
k

lim( )
h

g

%
dR

k

non

dt
Rate of Change in 
the Non-Limiting Nutrient in
Patch k

!
= I

k

non !"
k

non R
k

non ! f
k

non(R
k

non ,Q
k

non )B
k
+#$

k

non D
k

none
!$

k
nont

+
d non

g
R

h

non ! R
k

non( )
h

g

%
dQ

k

lim

dt
Rate of Change in 
the Limiting Nutrient in
in the Plant in Patch k

!
= f

k

lim (R
k

lim ,Q
k

lim ) ! µ&,k
(Q

k

lim ! Q
min,k

lim )

dB
k

dt
Rate of Change in
Plant Biomass in Patch k

!
= µ&,k

1!
Q

min,k

lim

Q
k

lim

'

(
)

*

+
, ! l

k

'

(
))

*

+
,,

B
k

     (3.5)     

 
 The dynamics of each patch can now be described with only four 
equations, rather than the eight needed if one plant of each species can grow 
within a patch at a time. Nonetheless, both approaches (one plant per patch and 
one plant per species per patch) will be explored within the modelling 
framework derived here.  

The next three sections are concerned with life history traits of the three 
plant species under study here. The parameters and units for all life-history 
characteristics, including dispersal kernels, are listed in Table 3.2. The values for 
each species are listed in Table 3.3. 
 
3.2.1.2 Reproduction and Seed Dispersal 
  
 When the growing season ends, the plants enter their reproductive phase 
(event 2). At this point, the plant has two options: utilize some of the biomass 
accumulated during the growing season to create reproductive structures and 
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seeds or keep the biomass accumulated and have no reproduction. The option 
chosen will depend on the size of the plant, which is known as a critical 
flowering size (Werner 1975). Plants below the threshold do not reproduce while 
those above it do so. Each species may have its own threshold for flowering and 
the parameter describing the critical flowering size is denoted as cmin.  

If a particular plant does have more biomass than the threshold, then the 
plant will invest a fixed amount of its biomass into reproductive structures, 
which is denoted by ra. From the fixed amount allocated to reproductive 
structures, a certain amount will be allocated to seeds and sa denotes this value. 
For example, a plant with biomass 1 mol C might allocate 40% of its biomass to 
reproduction and 10% of that to seeds. This plant would therefore allocate 4% of 
its biomass or 0.04 mol C to seed production. 
 
Table 3.2: Parameters used to describe life-history characteristics of the plant 
species on Mount St. Helens 
 

Symbol Meaning Units 
m  Non-size dependent 

probability of mortality 
Dimensionless 

msize Size dependent 
probability of mortality 

Dimensionless 

csize Reciprocal of the size 
needed to halve msize 

1/mol C 

ssize Seed size mol C 
cmin Minimum plant biomass 

for reproduction 
mol C 

sm Probability a seed dies 
during the non-growing 
season 

Dimensionless 

sg Probability a seed 
germinates 

Dimensionless 

ra Proportion of biomass 
allocated to reproduction 

Dimensionless 

sa Proportion of 
reproduction biomass 
allocated to seeds 

Dimensionless 

bj Mean dispersal distance 
of a seed of species j 
according to a Laplacian 
dispersal kernel 

Meters  

νH Location parameter for 
the Wald dispersal kernel 

Meters 

λH Scale parameter for the 
Wald dispersal kernel 

Meters 
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Table 3.3: Life-history parameters for Agrostis, Hypochaeris and Lupinus 
a) Agrostis 

Parameter Value (Range) Source 
m 0.25 (0.1-0.7) Free Parameter 
msize 0.288 (0.2-0.5) Free Parameter 
csize 10000 (10-10000) Free Parameter 
ssize 1.97 x 10-6 Tsuyuzaki & Miyoshi 

2008 
cmin 0.0683 Free Parameter 
sm 0.5 (0.5-0.99) Free Parametera 
sg 0.32 (0.32-0.99) Smyth 1997, Tsuyuzaki 

& Miyoshi 2008b 

ra 0.1 (0.1-0.4) Tilman & Wedin 1991 
sa 0.123 (0.123-0.25) Rabinowitz & Rapp 

1979, Tilman & Wedin 
1991 

bA1 0.46 Rabinowitz & Rapp 1979 
bA2 2.23 Rabinowitz & Rapp 1979 
a There is evidence that smaller seeds persist longer, hence the high upper-end of the range 
(Bekker et al. 1998). In addition, Agrostis scabra forms persistent seed banks, which indicates 
high seed survival year over year (Titus 2008). 
b Germination data from two different primary successional sites, with one averaging 32% 
germination and the other 99%. 
 
b) Hypochaeris 

Parameter Value (Range) Source 
m 0.25 (0.042-0.760) Tsuyuzaki et al. 1997, 

Becker et al. 2008a 
msize 0.288 (0.2-0.5) Free Parameter 
csize 10000 (10-10000) Free Parameter 
ssize 2.46 x 10-5 Tsuyuzaki et al. 1997 
cmin 0.1166 (0.0683-0.1166) Doi et al. 2006b 
sm 0.99 (0.894-0.994) Roberts 1986, Titus & 

del Moral 1998c 
sg 0.86 (0.647-0.928) Tsuyuzaki et al. 1997 
ra 0.4 (0.359-0.506) Doi et al. 2006 
sa 0.1 (0.1-0.14) Doi et al. 2006 
νH 3.18 Katul et al. 2005 
λH 3.31 Katul et al. 2005 
a Data from locations other than Mount St. Helens is used to provide the full range of values due 
to a lack of survival analysis for Hypochaeris 
b Value based on the cover-biomass relationship in Eq. 3.12. The bottom value of the range is 
used as a null case to see what happens if there was no difference in critical flowering sizes 
between species.  
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c Number of seeds surviving based on number of seedlings establishing per 100 seeds sown, 
since Hypochaeris seeds rarely survive more than a year or two. 
  
Table 3.3 continued 
c) Lupinus 

Parameter Value (Range) Source 
m 0.25 (0.1-0.95) Braatne & Bliss 1999, 

Bishop 2002 
msize 0.288 (0.2-0.5) J. Bishop (unpublished 

data) 
csize 10000 (10-10000) J. Bishop (unpublished 

data) 
ssize 1.66 x 10-4 Halvorson et al. 1991 
cmin 0.0431 (0.0431-0.0683) Bishop 1996a 

sm 0.78 (0.64-0.92) Bishop 1996 
sg 0.77 (0.74-0.80) Bishop 1996 
ra 0.18 (0.18-0.26) Pitelka 1977b 

sa 0.27 Pitelka 1977b 

bL 2.857 Fagan & Bishop 2000 
a Value based on the cover-biomass relationship in Eq. 3.12. The bottom value of the range is 
used as a null case to see what happens if there was no difference in critical flowering sizes 
between species. 
b Value from Lupinus variicolor, a perennial lupine of similar size. 
 

The amount of seeds produced will be the amount of biomass allocated to 
seed production divided by the amount of biomass required to make a seed, 
which is denoted by ssize. Continuing the above example, if an individual seed 
weighs 0.001 mol C, then the plant will produce 40 seeds. In addition, there is a 
fixed amount of the most limiting nutrient for the particular plant within the 
seeds. This amount is assumed to be higher than that found inside a plant at 
steady state, such that nutrients need to be transferred from the reproductive 
tissues to the seeds. This transfer reduces the amount of nutrient inside the 
reproductive tissues, which are lost to the plant after seed production and enter 
the detritus. 

After the seeds are produced, they must disperse across the landscape 
according to each species dispersal kernel. The dispersal (or redistribution) 
kernel is a probability density function that describes the dispersal of a 
population (Neubert et al. 1995). In my case, the dispersal kernel describes the 
dispersal of the seeds of an individual plant. Each species has its own particular 
dispersal mechanisms and these mechanisms are factored into the kernels. 
 The seeds of Lupinus lepidus are explosively dehisced and travel fairly 
short-distances (Bishop 2002). While long-distance dispersal events for Lupinus 
do occur, they are fairly uncommon and require other vectors like runoff due to 
snowmelts that are not modelled here (Bishop 2002). Others have already 
modelled Lupinus dispersal kernel in one-dimension and used a Laplace or 
‘double exponential’ kernel (Fagan et al. 2005). The formula for the Laplace 
kernel in one-dimension for the dispersal of an individual seed is: 
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 Here, x is the position from the seed source if one treats the seed source 
as being at position y, k(x-y) is the probability of the seed being at position x 
after dispersal and b is the mean seed dispersal distance. For two-dimensions, 
there is no simple extension of the Laplace kernel (it would be a modified zero-
order Bessel function of the first kind; Lewis et al. 2006). Therefore, I model 
dispersal by using the exponential distribution to generate distances and a 
uniform distribution from 0 to 2π to pick the direction of the seed travels. The 
exponential distribution for generating a distance x for a Lupinus seed is:  
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 Here, kL(x) is the probability that a Lupinus seed travels a distance x and 
bL is the mean seed dispersal distance of Lupinus. To make use of the distance 
travelled by the seed and the angle taken from the source for finding the new 
position of the seed on the lattice, I take the radial coordinates x (the distance) 
and θ (the angle) and transform them into Cartesian coordinates with x1=xsin(θ) 
and x2=xcos(θ). The new coordinates of the seed, if the seed was at position 
(y1,y2) before dispersal, would be (x1+y1,x2+y2).  
 The dispersal kernel for Agrostis scabra seeds is more complicated than 
that for Lupinus due to two modes of dispersal. The first mode is a short-distance 
dispersal with seeds falling from the panicle while the second mode involves the 
panicle breaking off from the culm and rolling like tumbleweed over long-
distances (Rabinowitz & Rupp 1979). Both dispersal modes can be adequately 
modelled by using the exponential distribution for distance and the uniform 
distribution for the angle taken as described in Eq. 3.7, but an additional 
modification is required: 
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 Here, p is a Bernoulli random variable that can takes on the value of 1 
with probability q and the value of zero with probability (1-q), kA1 is the short-
distance dispersal kernel of Agrostis, kA2 is the long-distance dispersal kernel of 
Agrostis and bA1 and bA2 are the mean seed dispersal distances for short and 
long-distance dispersal, respectively. This means that each seed is randomly 
assigned one of the two kernels based on q, which is roughly equal to 0.46 for 
Agrostis (Rabinowitz & Rupp 1979). 
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 The dispersal kernel for Hypochaeris radicata seeds has already been 
modelled by others (Katul et al. 2005). Since Hypochaeris seeds have plumes 
that allow for long-distance transportation by wind, the authors used the inverse 
Gaussian distribution or Wald distribution as it has a ‘fat-tail’, i.e. rare long-
distance dispersal events can occur (Katul et al. 2005). However, they modelled 
only the distance that an individual seed travels, so the dispersal kernel is the 
probability of being distance x away from the seed release point: 
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 Here, νH is the location parameter and λH is the scale parameter of the 
Wald distribution for Hypochaeris and kH(x) is the probability of a Hypochaeris 
seed travelling a distance x. To make the two-dimensional dispersal kernel, I 
once again used the uniform distribution to obtain an angle for the direction 
travelled by the seed as I did for Lupinus and Agrostis. 
 For each species, the outputs from the continuous distributions are 
discretized by multiplying the position values by two and rounding them, since 
the length and width of each patch is 0.5m. This method has proved satisfactory 
in generating random locations for seeds within the lattice, though it may be 
possible to use discrete probability density distributions to achieve similar results 
(Chesson & Lee 2005). 
 In addition to local reproduction, there are seeds entering the lattice from 
the seed rain of the surrounding environment (Wood & del Moral 2000). Most of 
these seeds come from species with wind-dispersal such as Hypochaeris, though 
there are some seeds from grasses (Wood & del Moral 2000). The number of 
Hypochaeris and Agrostis seeds entering from the seed rain is modelled with a 
Poisson distribution with mean equal to 4 for Hypochaeris and 1 for Agrostis. 
The mathematical expression for the Poisson distribution is: 
 

( ) , 0,1, 2,..., 0
!

x

p x e x
x

!!
!

"
= = >  

 
 Here, x would be the number of seeds deposited into the patch by the 
seed rain, p(x) is the probability of that many seeds being deposited, the 
exclamation mark denotes that the number is a factorial and λ is the mean 
number of seeds deposited.  
 
3.2.1.3 Adult and Seed Mortality 
 
 After the seeds are dispersed, the plants and their seeds are faced with 
mortality due to herbivores, seed predators and winter (event 3). Assuming that 
the death of a plant or a seed is a random event, I use Bernoulli random variables 
to describe the mortality events. The probability that an individual seed will die 
during this phase is denoted as sm, which means the probability that an individual 
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seed survives is 1-sm, and differs for each species. The probability that an 
individual plant dies is based on the following function: 
 

Pr(plant dies)
1

size

size

m
m

c B
= +

+
                                           (3.10) 

 
 Here, m is the non-size dependent probability of a mortality event, msize is 
the size dependent probability of a mortality event, csize is the reciprocal of the 
plant size needed to halve msize and B is the plant’s biomass, with each species 
having its own values for each parameter. The use of a size-dependent mortality 
term is motivated by the fact that a plant needs to have roots established at least 
15cm below the surface in order to survive drought conditions on Mount St. 
Helens (Braatne & Bliss 1999). Therefore, plants that are small will have 
increased risk of mortality. The large ranges of values for these terms in Table 
3.3 is due to presence of highly stressful events such as droughts and attacks by 
herbivores (Braatne & Bliss 1999, Bishop 2002). 
 The nutrients of the dead seeds and plants enter into the detritus 
compartment according to the recycling parameters ζij, which can differ between 
different species and different nutrients. These nutrients within the detritus are 
assumed to remain constant until the next growing season, when they are 
mineralized by the detrital community. 
 
3.2.1.4 Seed Germination and Seedling Establishment 
 
 After winter, but before the growing season, seeds germinate and 
seedlings establish (event 4). An individual seed germinates according to a 
Bernoulli random variable with a probability sgerm of a successful germination, 
which can differ between species. Seeds that do not germinate enter the seed 
bank and may try again to germinate next year if they survive. The seedlings 
emerging from the seeds then have to establish within the patch. I have modelled 
seedling establishment in two ways, depending if only one plant can be in a 
patch at a time or if one plant of each species can be in a patch at a time.  
 In the first case, if an adult is present, all seedlings that have emerged 
lose in competition with the adult and die. The nutrients stored within them enter 
the detritus compartment in the same way dead seeds and dead adults do (section 
3.2.1.3). If only the seedlings of one species emerge in the patch, then one 
seedling of that species establishes and the others die with their nutrients 
entering the detritus. If two species or three species have seedlings emerging in 
the patch, then there is competition between the seedlings. Independent of the 
type of competition, only a single seedling out of all that emerge in the patch 
will enter the growing season. The rest of the seedlings perish with their 
nutrients entering the detritus compartment. 
 The winner of competition is determined by a binomial (for two species) 
or a multinomial (for three species) random variable. The probability of one 
species winning can be symmetric (50% for two species or 33% for three 
species) or asymmetric. One possible way of implementing the asymmetry is 
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having the probability of one species establishing be equal to the amount of 
seedling biomass of that species divided by the total biomass of all emerged 
seedlings. Such a formulation seems reasonable for Mount St. Helens since 
species with larger seeds are better at establishing than those with smaller seeds 
if the number of seeds is equal, but this can be counterbalanced by having many 
more seeds if they are smaller (Titus & del Moral 1998). I use both methods to 
see if different types of seedling competition alter the patterns of community 
composition. 
  In the second case, only if an adult of the same species is present do all 
the seedlings of the same species perish. Otherwise, one seedling of that species 
may establish, though it is dependent on the cover of the other two species 
within patch. The rest of the seedlings that do not establish die and have their 
nutrients enter the detritus. The probability of seedling of species x establishing 
can be described by the following equation: 
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        (3.11) 

 
 This formulation accounts for the fact that adult plants can negatively 
impact the growth of seedlings and prevent them from surviving (Morris & 
Wood 1989). In addition, it also takes into account the multiple chances of at 
least one seedling out of many establishing somewhere in the patch if the patch 
does not already have 100% cover. It should be noted that it is possible to have 
more than 100% cover for a patch as plants can overlap (e.g. Table 1 of del 
Moral & Rozzell 2005). Cover for each species within the patch is proportional 
to the biomass of each species and the relationships for each are (data from 
unpublished data set of Schoenfelder et al.): 
 

cov cov cov
0.467 , 0.281 , 0.534L H ALup B Hyp B Agr B= = =                (3.12) 

 
 In this formulation, there is no competition between seedlings, only 
between seedlings and adults. A more complete version with competition 
between adults and seedlings would require a finer scale model than the one 
proposed here. However, this formulation is adequate to explore seed inhibition, 
which has been documented in the plant community (Morris & Wood 1989). 
 
3.2.2 Model Assumptions 
 
 The model described in section 3.2.1 required certain assumptions within 
each event of the model in order to create succinct mathematical expressions for 
the various processes. This section helps clarify what was assumed and notes 
what justifications there are for making such assumptions. I begin with the 
assumptions for the spatial structuring of the model and continue in order for 
each of the events, starting with the growing season. 
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 In making the landscape of Mount St. Helens a two-dimensional lattice, I 
made the following assumptions about its spatial characteristics: 
 

1. There are no physical barriers that prevent seeds from entering a patch. 
2. There are no physical barriers that prevent movement of nutrients 

between patches, which occurs through diffusion down the concentration 
gradient. 

3. The landscape is flat, i.e. there is no slope which would create a gradient 
of nutrient flow or make seed dispersal non-isotropic. 

4. The boundary condition for seed dispersal is absorbing, i.e. a seed 
dispersing beyond the boundary is lost. 

5. The boundary condition for nutrient diffusion is reflecting, i.e. nutrients 
do not diffuse to outside of the lattice. 

 
 While it is true that physical barriers do exist on many locations of the 
landscape, a great deal of the Pumice Plain is barren with little to prevent the 
movement of seeds or nutrients (personal observations). Hence, the first two 
assumptions seem reasonable especially with the relatively small scales 
considered here. 
 The third assumption can approximate some locations on the Pumice 
Plain where there is little to no slope, but there are some differences in elevation 
between patches (Tsuyuzaki et al. 1997). However, these differences would be 
small at the scales considered here (Tsuyuzaki et al. 1997). Therefore, it is likely 
that this assumption is mildly violated in many locations on the Pumice Plain 
and should not cause great discrepancies in model outcomes. 
 Since the lattice is to represent a restricted spatial area of interest, any 
seeds that leave the area would not be followed and are therefore ignored. It is 
true that plants that would establish just outside of the area could contribute to 
the seed rain within the lattice, but then they need to be modelled just like those 
inside the lattice to know how much they would contribute. Therefore, I simply 
assume that the area outside of the lattice cannot be colonized and the seeds 
perish. 
 For the final assumption regarding spatial features, I once again assume 
the boundary conditions in order to ignore what is occurring outside of the 
lattice. Reflecting boundary conditions make more sense than absorbing 
boundary conditions since it is likely that the areas near the edge patches can 
have similar nutrient levels. 
 With regards to the growing season, the following assumptions were 
made: 
 

1. Plants can only obtain nutrients from the soil solution in inorganic 
forms. 

2. The nutrients within the soil solution in a patch are considered to be 
well-mixed, i.e. the plant available nutrient concentrations are identical 
everywhere in the area considered. 
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3. Nutrients within the soil are primarily located in the first ten 
centimetres of the soil. 

4. Nutrients move between patches only through diffusion. 
5. The amount of water within the soil remains constant over time. 
6. Plants have a fixed shoot:root ratio in terms of allocation of biomass. 
7. Plants have a constant percentage of carbon within plant biomass. 
8. Plants have fixed nutrient uptake parameters. 
9. Plants grow vegetatively and sexual reproduction is ignored.  
10. The detrital community converts the nutrients in dead plant material 

into plant available nutrients at a constant rate that is proportional to the 
total amount of dead plant material. 

11. Plants compete through the reduction of belowground resources. 
12. Plants from one patch do not send biomass into surrounding patches 

vegetatively. 
 

The justification for most these assumptions are listed elsewhere (section 
2.2.2 of thesis). One assumption not dealt with there is that nutrients move only 
diffusively. This assumption is true for phosphorus, though it is not for nitrogen 
as mass flow due to water uptake of plants could result in greater movement of 
nitrogen in the soil (Barber 1995, though see Chapin et al. 2002). However, the 
form of nitrogen most commonly found on Mount St. Helens is ammonium, 
which does not move in water as readily as nitrate (Anghinoni & Barber 1990). 
Therefore, it may be reasonable to only look at diffusion of nutrients between 
patches. In any case, increasing the diffusion coefficient between patches can 
approximate the additional effects of mass flow.  

Another new assumption needed for the growing season is that plants do 
not spread vegetatively into other patches, particularly their roots. Since patch 
size was chosen to be able to contain a large adult plant of any of the species and 
since most individuals will never reach such a size, it is likely that this 
assumption would hold if individuals were always located at the centre of 
patches. Furthermore, the use of well-mixed patches does not amend itself easily 
to showing overlap in rooting zones, though it can be done (Raynaud & Leadley 
2004). If one wanted to follow overlap of roots as plants grow, it would be better 
to use individual-based models (IBMs) than the model presented here. IBMs 
were not used here for any such model would be very complex in two 
dimensional space and ecological stoichiometry. 

Only a few assumptions were made for the reproduction of plants and the 
dispersal of their seeds. The key assumptions for these processes are: 

 
1. The amount of biomass allocated to reproduction and to seeds is 

fixed. 
2. Plants must reproduce if they are larger than the critical size. 
3. Plants can transfer enough nutrients from reproductive tissues to 

seeds to make only biomass the limiting factor for seed production. 
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 The first assumption is used to eliminate the need for a random variable 
to describe the allocation of biomass, which can be somewhat variable as seen in 
the values of the constants for Agrostis and Hypochaeris (Table 3.3b,c). 
However, the large differences in Agrostis are due to very high amounts of 
nitrogen, which seemed to alter the biomass partitioning of the plant (Tilman & 
Wedin 1991). Otherwise, the values for allocation do not vary tremendously. 
 The second assumption is not correct, as plants larger than the critical 
size may not reproduce at all (Doi et al. 2006). This simplification is made to 
reduce model complexity and to maximize the amount of reproduction 
occurring. The model could be adjusted to allow for plants to not reproduce, but 
more data on the proportion of plants beyond a certain size not reproducing 
would need to be gathered. 
 The third assumption helps eliminate the need to consider nutrient levels 
as well as biomass in determining the number of seeds produced. Since it is true 
that senescing tissues such as dying flowers can move up to 70% of some of its 
nutrients back into circulation within the plant (Chapin et al. 2002) and seeds 
represent such a small percentage of reproductive biomass of these species, it 
seems likely that the assumption is justified. However, since little is known 
about the mineral contents of Agrostis and Hypochaeris seeds, it may be that the 
senescing tissue would not provide enough nutrients and it would reduce seed 
production or result in aborted seeds. Still, imposing such a condition would be 
relatively simple for the model to accommodate. 
 There is a little to be said about the assumptions made for considering 
mortality of adult plants and seeds. It is known that mortality events are 
stochastic, can be made more frequent due to herbivory and other stressors and 
are influenced by the size of the plants (Bishop 1996, Braatne & Bliss 1999, 
Bishop 2002). Since the exact functional form of size dependent mortality is not 
known, I have assumed the relationship in Eq. 3.10 for simplicity.  
 For seed germination and seedling establishment, the assumption that 
only one or three plants can establish in a patch needs addressing. It is, of course, 
not true that only one seedling or adult can establish in a patch. However, in 
order to model the situation correctly, there would need to be two additional 
ordinary differential equations for each seedling establishing in the patch, which 
would soon get out of hand. In order to make the model manageable in terms of 
analysis and simulation time, I made the above assumption. 
 
3.2.3 Model Parameterization 
 
 The majority of the parameters estimates listed in Tables 3.1 and 3.3 
were obtained from point estimates in the literature or from field data with the 
sources for particular estimates listed. Since many of the parameter estimates 
could only be derived from graphs, I used both ImageJ and Adobe Professional’s 
measuring utility to obtain values. Only for a few values were any statistical 
techniques needed to obtain parameter values or to determine an appropriate 
functional form. Any estimates requiring such methods in Table 3.1 is listed 
elsewhere (section 2.2.3). 
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 For the long-distance dispersal kernel of Agrostis, I used Matlab’s 
distribution fitting toolbox in order to see which distribution best suited the data 
found in Rabinowitz & Rapp (1979). I tried numerous distributions including the 
exponential, gamma, Wald and lognormal distributions and compared their fit 
using the corrected Akaikie Information Criteria or AICc (de Vries et al. 2006). 
The AICc indicated that while Wald distribution was the best fitting distribution, 
the differences were small. I decided to use the exponential distribution since it 
has only one parameter and its quality of fit was similar to the Wald. 
 For the functions describing the relationships between plant biomass and 
plant cover, I fitted a linear regression through the origin to the data set of 
Schoenfelder et al. (unpublished) after transforming the data into moles of C for 
the entire plant from grams of aboveground biomass using the assumptions 
found in Appendix 2.B of my thesis. The quality of fit based on R2 ranged from 
0.3275 to 0.5652. 
 For the estimation of the size-based mortality parameters for Lupinus, I 
obtained a data set from J. Bishop (unpublished) and used non-linear least 
squares to determine the parameters. Only seedlings that are smaller than 5cm in 
diameter are used in the estimation, since the seedlings larger than that size 
exhibit a pronounced drop-off in survival. This drop-off may be due to size-
dependent herbivory (J. Bishop, personal communication) and is not related to 
the mechanism proposed in Eq. 3.10. Therefore, it is appropriate to ignore the 
data for larger individuals if one wants to model non-biotic environmental 
stressors such as drought with Eq. 3.10. 
 All parameters that lack sufficient data are declared free parameters and I 
have explored ranges of values that have been suggested to me by biologists in 
the field or from other studies.   
   
3.3 Results 
 
 The results of this chapter are divided into three major sections and one 
short section. The first section (3.3.1) investigates the importance of nutrient 
diffusion between patches and the distribution of individual plant species across 
the spatial domain if only that plant species were around. The second section 
(3.3.2) explores the formulation of the model where only one plant can occupy a 
patch at a time, which emphasizes seed dispersal ability and seedling 
competition. The third section (3.3.3) delves into the formulation of the model 
where one plant of each species can occupy the patch, which emphasizes local 
competition between plants and adult inhibition of seedlings. The fourth section 
(3.3.4) briefly touches upon the sensitivity of the model’s outcomes when 
parameter values are altered within the ranges provided in Table 3.3. 
 
3.3.1 Nutrient Diffusion and Population Distribution  
  
 A key question that occurs frequently in studies of terrestrial plant 
communities is the distance at which plants can affect one another in the 
competition for mineral nutrients (Huston & DeAngelis 1994, Raynaud & 
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Leadley 2004). For phosphorus, other studies have shown that competition can 
only occur over very small distances between plants, on the scale of a few 
millimetres (Cadwell et al. 1987, Barber 1995). However, these studies assume 
that nutrients move only through diffusion, while bulk movement of solutions in 
the soil may increase the effective distances of influence of plants (Huston & 
DeAngelis 1994). For this reason, I used very large diffusion rate constants 
(compared to those commonly observed, see Table 3.1d) to see if competition 
between plants in neighbouring patches would occur through the reduction of 
nutrient levels in the local patches by the plants.  
 The diffusion of nutrients between patches has nearly no effect on the 
growth of plants and competitive effects between plants in neighbouring plants 
are highly unlikely (Table 3.4). In the example in Table 3.4, eight Hypochaeris 
competitors in a 3x3 lattice surround an Agrostis plant with dN set to 0.1. If 
competition was within the patch, Agrostis will eventually be excluded by 
Hypochaeris and is immediately impacted by its presence (Table 3.4). However, 
there is almost no difference between Agrostis growing with or without diffusion 
between patches (Table 3.4). Therefore, competition for nutrients can only occur 
within patches and not between them, which means the one plant per patch 
formulation of the model does not incorporate resource competition.  
 
Table 3.4: Effects of nutrient diffusion and within patch competition on a single 
Agrostis plant with eight Hypochaeris neighbours or one Hypochaeris within the 
patch. Parameter values used to generate the results are listed in Appendix 3.A.
  

 Without 
Diffusion 

With 
Diffusion 

Percentage 
of Without 
Diffusion 

With 
Competition 

Percentage 
of Without 
Diffusion 

Agrostis 
Biomass 
(mol C) 

2.9429 2.9426 99.99 0.0110 0.44 

 
 The distributions of each plant species are dependent on the seed source, 
which is in turn dependent on the nutrient levels within the soil. For Lupinus, the 
seed source is solely dependent on the local population and the lupine population 
exhibits clustering of individuals around the first colonist of the patch (Figure 
3.3). The lupine population can be maintained and can expand across the 
landscape despite the low levels of phosphorus used to generate Figure 3.3.  
 For Hypochaeris and Agrostis, the spatial distribution of plants remains 
random, as would be expected with random seed rain, until soil conditions 
improve to allow for local reproduction (Figure 3.4). While Agrostis is able to 
have reproductive adults at low nitrogen levels, Hypochaeris is not (Figure 3.4). 
Therefore, the reproductive status of the local populations, which is determined 
by both the nutrient levels and the individual species growth responses to those 
nutrient conditions, determines the spatial distribution of individuals. 
 Herbivory on Lupinus was modelled by increasing adult mortality from 
0.25 to 0.50 and seed mortality from 0.78 to 0.97 in even years after the tenth 
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year of the simulation for herbivory is cyclical and began in earnest ten years 
after initial colonization (Fagan & Bishop 2000, Bishop 2002). Herbivory results 
in a decrease in Lupinus cover (Figure 3.5). Average patch occupancy does drop 
during the years of herbivory, but quickly recovers the next year (Figure 3.5). 
The loss of cover is primarily due to adult mortality, while the patch occupancy 
drops due to seed mortality for the most part (Figure 3.5). Even with both 
effects, only with very high rates of herbivory was any contraction of the spatial 
extent of Lupinus obtained in the model (Figure 3.6). 
 

 
Figure 3.3: The spatial expansion of Lupinus from a single adult plant at position 
(13,13). Using the average patch occupancy for Lupinus for one hundred runs of the 
model, it can be seen that a at year two the population is mostly located around the adult 
plant and expands outward in b year four, c year six and d year eight. After year ten, a 
Lupinus plant always occupies each patch at the beginning of the growing season. 
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3.3.2 One Plant per Patch: Patch Dynamics and Seedling Competition 
 
 In this section, I used two formulations or models of how seedlings 
compete for patches and establish. In the first case, I assume that all three 
species have an equal chance of establishing if they have at least one germinated 
seed. I call this random seedling establishment and I define the model as the 
OPPRSE model (One Plant per Patch with Random Seedling Establishment). In 
the second case, I assume that the probability of establishment for each species is 
dependent on the total germinated seed weight of each species and of all species 
combined. I define this model as the OPPSEW model (One Plant per Patch with 
Seedling Establishment by Weight). The OPPSEW model is likely the most 
realistic model of seedling competition (Titus & del Moral 1998). 
 The dynamics of patch occupation is highly dependent on the type of 
seedling competition used to determine which species will occupy the patch. 
With the OPPRSE model and low nitrogen, both Agrostis and Lupinus can 
maintain high levels of cover (Figure 3.7a). On the other hand, Lupinus 
dominates the biomass with the OPPSEW model and low nitrogen (Figure 3.7b). 
When nitrogen levels are higher, Agrostis biomass increases, though Lupinus 
remains an important contributor to total cover (Figure 3.7c,d). In all cases, 
Hypochaeris has difficulty establishing due to poor seed survival and 
accumulating less biomass than Agrostis at similar nitrogen levels (Figure 3.7).  
 Increasing Hypochaeris seed survival and decreasing Agrostis seed 
survival results in Lupinus performing poorly within the OPPRSE model and 
Agrostis performing poorly within the OPPSEW model (Figure 3.8). The poor 
performance by Lupinus in the OPPRSE model is due to a lower probability of 
occupying a patch, as both Hypochaeris and Agrostis seeds are likely to be 
present and low seed production per unit biomass than Hypochaeris and 
Agrostis. These two factors combine to greatly reduce Lupinus’ ability to 
colonize patches. With the OPPSEW model, Agrostis does much worse since its 
seeds weigh very little and only a fraction survives at the lower seed survival 
probability.  
 The changes in cover for the plant species can be explained, in part, by 
changes in the number of individuals of that species on the lattice (Figure 3.9). 
The OPPRSE model allows for more Agrostis and Hypochaeris plants to be 
present in the lattice and results in higher cover levels for both than in the 
OPPSEW model (Figure 3.9).  Nonetheless, increases in nitrogen levels also 
play an important role in increasing cover, especially for Agrostis (Figure 3.9). It 
also occurs that cover and number of plants may go in opposite directions due to 
greater seed competition and higher nutrient levels as time progresses (Figure 
3.9c).   
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Figure 3.4: Spatial distributions of Agrostis and Hypochaeris for a single run of the 
model. Nitrogen increases from 1 x 10-7 mol N/L to 3 x 10-6 mol N/L by increments of 1 
x 10-7 mol N/L per year for thirty years. a Agrostis plants are randomly distributed 
across the lattice at year seven (T=7) as up to that point no local reproduction occurs. b 
In year eight (T=8), local reproduction has occurred and clustering around reproductive 
individuals occurs. c and d No Hypochaeris reach reproductive maturity over the thirty-
year period, resulting in randomly distributed individuals in the lattice. 
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Figure 3.5: The effects of herbivory on Lupinus. a Herbivory results in the loss of cover 
by removing adults from the population. The black line, which comprises seed and adult 
mortality, is indistinguishable from the blue line, which is due solely to adult mortality. 
b Herbivory also reduces the average patch occupancy by Lupinus the year following 
herbivore attacks. Hence in the year above, year 29 of the simulation, patch occupancy 
is not total everywhere. c This reduction in patch occupancy is mostly due to seed 
herbivory, though adult mortality increases the effect as seen in b. 
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Figure 3.6: Permanent reduction in the extent of the Lupinus population due to 
herbivory. a In year 29 of the simulation, the average patch occupancy is very low due 
to the previous year’s herbivory. b Though the population does recover in the 
subsequent year, it does not, on average, reoccupy all the patches as it would at lower 
herbivory levels. Herbivores are therefore reducing the spatial extent of Lupinus even in 
years when herbivory is not present.  
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Figure 3.7: Plant cover of each species under different nitrogen levels and different 
seedling establishment rules. The solid lines represent mean values while the dashed 
lines represent plus or minus two standard errors. a In the OPPRSE model with low 
nitrogen, Agrostis (cyan line) and Lupinus (green line) dominate total cover (red line). b 
In the OPPSEW model with low nitrogen, Lupinus represents most of the total cover, 
with some contribution from Agrostis. c and d With higher nitrogen levels, Agrostis 
either dominates cover (c OPPRSE) or contributes nearly half of total cover (d 
OPPSEW). In all cases, Hypochaeris (black line) accounts for very little of total plant 
cover. 
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Figure 3.8: The effects of increasing Hypochaeris seed survival and decreasing Agrostis 
seed survival. The solid lines represent mean values while the dashed lines represent 
plus or minus two standard errors. a In the OPPRSE model, Hypochaeris (black line) 
does better than previously (Figure 3.7a) and Lupinus (green line) suffers a large decline 
in cover, resulting in an overall decline in total cover (red line). b In the OPPSEW 
model, Agrostis does worse due to the lower seed survival and greater seed survival for 
Hypochaeris does little to increase its cover. 
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Figure 3.9: The number of plants of each species under different nitrogen levels and 
different seedling establishment rules. The solid lines represent the mean value and the 
dashed lines represent plus or minus two standard errors. For a and b, sample size is 
100. For c and d, sample size is 20. a In the OPPRSE model with low nitrogen, Lupinus 
(green line) becomes most numerous after five years, but Agrostis becomes numerically 
dominant after fifteen years as nitrogen levels increase. b In the OPPSEW model with 
low nitrogen, Lupinus is always numerically dominant after five years. Note that 
Hypochaeris (black line) has around the same number of individuals as Agrostis, but 
occupies much less space (Figure 3.7b). c In the OPPRSE model with higher nitrogen 
levels, Agrostis is consistently numerically dominant, but its dominance is reduced as 
time progresses. d In the OPPSEW model with high nitrogen, Lupinus is the 
numerically dominant species, but Agrostis is very common. Hypochaeris, on the other 
hand, is almost driven to exclusion. 
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 The impact of dead Lupinus on the seedlings of Agrostis and 
Hypochaeris can result in large increasing in seedling biomass (Figure 3.10). For 
Agrostis, the effect is large enough to allow some seedlings to reach reproductive 
maturity in one growing season when dead Lupinus is present (Figure 3.10a). 
For Hypochaeris, the effect of Lupinus is more variable, mostly due to the fact 
that there are simply less Hypochaeris seedlings present (Figure 3.10b). 
However, the mean effect of dead Lupinus is positive and large enough to allow 
Hypochaeris seedlings to reproduce in their first growing season (Figure 3.10b). 
 When herbivory on Lupinus is added to the model, the net effect is to 
increase the cover of Agrostis (Figure 3.11). This result can be explained in part 
by the earlier result showing the large positive response of Agrostis seedlings to 
dead Lupinus. This indicates that the additional Lupinus mortality due to 
herbivory greatly increases Agrostis seedling size and hence Agrostis cover. The 
fact that Hypochaeris does not seem to benefit from the increase in Lupinus 
mortality is due to Hypochaeris’ poor seed survival, which reduces Hypochaeris’ 
ability to establish in dead Lupinus patches.  
 Adding random spatial heterogeneity to the model for nutrient levels in 
patches and removing nitrogen accumulation does not seem to greatly alter the 
results, except that Lupinus can greatly benefit from patches with higher 
phosphorus levels (Figure 3.12a). When the spatial heterogeneity is structured in 
such a way that there are three ‘safe-sites’ with high nitrogen levels, but the rest 
of the lattice has poor nitrogen, the cover for Agrostis and Hypochaeris is much 
lower (Figure 3.12b). However, the cover at the ‘safe-sites’ is higher than the 
other patches when random establishment of seedlings is used (Figure 3.13). 
 The overall result of this section is that Hypochaeris is poorly suited for 
seed competition while Agrostis and Lupinus can both compete effectively for 
patches. The competitive abilities of each species are determined by their life 
history traits, including stoichiometry, in conjunction with the nutrient status of 
the environment. In the next section, seed competition is replaced by adult 
competition for nutrients and adult inhibition of seedling establishment, which 
can cause substantial differences in results. 
 
3.3.3 Three Plants per Patch: Adult Competition 
 
 The three plants per patch formulation represents a large change to the 
competitive dynamics of the model. First of all, seedling establishment becomes 
a function of the number of germinated seeds and the total cover of other species 
adults in that patch (Eq. 3.11). Since plant cover can be fairly sparse even with 
adults present, it is much easier to colonize new patches than in the previous 
model. Furthermore, the cover levels of each plant will be higher simply because 
all patches can be, theoretically, colonized by each species even when occupied 
by other species unless there is 100% cover. Lastly, species are now capable of 
removing nutrients from other species through resource depletion, which 
negatively impact a species biomass and reproductive capabilities. These 
changes should be kept in mind when comparisons are made between results in 
section 3.3.2 and this section. 
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Figure 3.10: The effect of dead Lupinus on the growth of seedlings of Agrostis and 
Hypochaeris. The solid lines are mean values and the dashed lines are standard 
deviations. The standard deviations are much larger for Hypochaeris due to the lower 
number of seedlings present in the lattice. a Agrostis seedlings with dead Lupinus (black 
line) are almost twice the size as those seedlings that do not have a dead Lupinus (blue 
line). b Hypochaeris seedlings with dead Lupinus (black line) are, on average, larger 
than those without (blue line). Since the critical flowering size of Hypochaeris is 0.1166 
mol C, many Hypochaeris seedlings with dead Lupinus should be able to reproduce in 
their first growing season. 
 
 
 

 
 
Figure 3.11: The effect of herbivory on plant cover. The solid lines are mean values and 
the dashed lines are plus or minus two standard errors. a and b With both OPPRSE (a) 
and OPPSEW models (b), Lupinus  (green line) suffers large declines and Agrostis 
(cyan line) greatly benefits. Hypochaeris (black line) does not benefit from the 
herbivory and total cover (red line) is slightly less than it would be without herbivory 
(Figure 3.7a,b).  
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Figure 3.12: The effect of spatial heterogeneity on plant cover with random seedling 
establishment. The solid lines are mean values and the dashed lines are plus or minus 
two stand errors. a Random spatial heterogeneity with nitrogen values ranging from 10-8 

to 10-6 mol N/L and phosphorus values ranging from 6.817 x 10-7 to 6.817 x 10-6. 
Lupinus (green line) biomass is much higher due to areas of high phosphorus content, 
which increases total cover (red line). Agrostis (cyan) biomass is similar to that of 
Figure 3.7a. b The community is dominated by Lupinus as nitrogen levels are very low 
except in three ‘safe-sites’. In both a and b, Hypochaeris (black line) is barely 
contributes to total cover. 
 
 

 
 
Figure 3.13: Spatial distribution of average Agrostis cover at year 30 of the simulation 
and the spatial distribution of nitrogen. The lighter the colour indicates greater cover or 
greater nitrogen. The lightest patches in the Agrostis cover lattice correspond to the 
lightest patches in the nitrogen lattice. This result reveals that spatial patterning in 
nutrient levels should result in some spatial patterning in plant biomass.  
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 In addition to these functional changes, I also decided to allow a small 
delay between Lupinus colonization and the colonization of other species. The 
motivation for this delay is due to the fact that Lupinus was the only species 
present for a few years on the Pumice Plain (del Moral et al. 2005). This delay 
does not significantly impact any of the results, but does change the figures in 
this section. 
 One general pattern that still holds from the previous section is the 
relative rankings in plant cover for each species, with Lupinus being the most 
dominant, followed by Agrostis and Hypochaeris for low nutrient conditions and 
no herbivory (Figure 3.14a). When herbivory does occur, the benefits to Agrostis 
are minimal compared to the gains found when only one plant could occupy a 
patch at a time (Figure 3.14b). In fact, the amount of cover for Agrostis within 
the lattice is decreasing in time while both Hypochaeris and Lupinus are trending 
upwards (Figure 3.14a,b). This trend towards reduced Agrostis cover continues 
to occur when spatial heterogeneity in resource supply is added randomly or by 
creating ‘safe-sites’ with high nitrogen levels (Figure 3.14c,d). The ‘safe-sites’ 
within this formulation do not seem to impact plant cover at all, which makes 
sense as Lupinus is present across the lattice and influences soil fertility (Figure 
3.14d). 
 Why does Agrostis decline in time within the community, even while 
nitrogen levels are increasing and therefore should increase the biomass of 
individual Agrostis plants? The answer is the negative effect of Hypochaeris on 
Agrostis biomass, as indicated in Table 3.4. Whenever Hypochaeris and Agrostis 
co-occur, Hypochaeris will reduce Agrostis biomass and will eventually displace 
Agrostis from the patch. As time progresses, more and more Agrostis plants 
begin to co-occur in patches containing Hypochaeris, which explains the drop in 
cover despite increases in soil fertility (Figure 3.15).  
 Nonetheless, the reduction of Agrostis cover is slow and all three species 
coexist at the regional level for all the above scenarios considered (Figure 3.14). 
Furthermore, all species have fairly significant levels of cover on the lattice, with 
even Hypochaeris reaching nearly 3% average cover in the lattice. These levels 
of cover for both Hypochaeris and Agrostis are unlikely to be achieved without 
Lupinus being present, especially in regions with even slower nitrogen 
accumulation (Figure 3.16).  
 Without Lupinus and slightly poorer nitrogen conditions, Agrostis is able 
to establish a small foothold on the lattice while Hypochaeris barely has any 
cover at all (Figure 3.16a). With phosphorus levels within the ranges reported by 
Halvorson & Smith (2009), Lupinus can achieve very high levels of cover, 
which may inhibit other species from establishing (Figure 3.16b). However, the 
net effect of Lupinus is a large increase in both Hypochaeris and Agrostis cover 
(Figure 3.16b). If herbivory is included, Agrostis benefits at the beginning, but 
Hypochaeris does benefit more towards the end of the time period considered 
(Figure 3.16c).  
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Figure 3.14: Model formulation with within patch competition and adult inhibition of 
seedling establishment. The solid lines denote mean values while the dashed lines 
indicate two standard errors around the means. a Plant cover of Lupinus (green line), 
Agrostis (cyan) and Hypochaeris (black line) with the same parameter values as Figure 
3.7. As in Figure 3.7a, Lupinus and Agrostis contribute most to the total cover (red line), 
though there is more Hypochaeris present here. b Adding herbivory to the model 
demonstrates a clear difference with the previous formulation, as Agrostis does not 
benefit from increased Lupinus mortality and declines in cover. c and d Adding spatial 
heterogeneity does not change the qualitative structure of the community, though there 
is more cover in c due to high phosphorus sites on the lattice to promote Lupinus 
growth. 
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Figure 3.15: Co-occurrence of other species with Agrostis over time. The solid lines are 
mean values and the dashed lines are one standard deviation around the mean. Early on, 
Agrostis is mostly associated with Lupinus or is by itself. As time progresses, Agrostis 
becomes increasingly associated with Hypochaeris and Lupinus as Hypochaeris 
becomes more abundant in the lattice. The net effect of this greater association is a loss 
of cover for Agrostis (Figure 3.14). 
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Figure 3.16: The effect of Lupinus on the plant community. The solid lines are mean 
values while the dashed lines are two standard errors around the mean and the sample 
size is equal to30. a Without Lupinus, both Agrostis (cyan line) and Hypochaeris (black 
line) struggle to establish on the lattice. b With the addition of Lupinus (green line), the 
total cover (red line) and the cover of Agrostis and Hypochaeris greatly increase, despite 
the fact that increased Lupinus cover inhibits other species seedling establishment. c 
Adding herbivory does result in a temporary increase in Agrostis cover and a mild 
increase for Hypochaeris cover. 
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 The general results of this section is that Lupinus has a large, positive 
effect on the other two species and Hypochaeris does have a negative effect on 
Agrostis at a regional scale, though such an effect can only be seen when 
nitrogen have accumulated sufficiently to allow for Hypochaeris to become 
common over the landscape. 
 
3.3.4 Model Sensitivity  
 
 The sensitivity of the model to changes in model parameters is a key 
determinant in evaluating the validity of the model and can guide other 
researchers by indicating which parameters are important to study (Haefner 
2005). While a full sensitivity analysis of the model would be extremely 
involved due to the numerous parameters and variables, a partial analysis of 
some of the life history traits is presented here. 
 To test model sensitivity, one must use some sort of index to describe 
how a change one parameter results in changes in model variables. The 
sensitivity index used here has been termed as a ‘global’ sensitivity index (Huth 
& Ditzer 2000, Bampfylde & Lewis, in review) and can be described by the 
following equation:   
 

max min

standard

( , )
2

v v
globalSI v p

v

!
=                                           (3.13) 

 
 Where v and p are the variable and parameter of interest, vmax and vmin are 
the maximum   and minimum values of the variable over the range of possible p 
values, respectively, and vstandard is the value of the variable for the standard set 
of parameters. The higher the value of the index, the more sensitive the variable 
is to the changes of the parameter (Bamfylde & Lewis, in review).  
 The variables used for the sensitivity index are the average cover levels 
of each species after thirty years, since cover is traditionally used on Mount St. 
Helens to estimate amount of a particular plant in the ecosystem (e.g. del Moral 
& Rozzell 2005). The parameters selected for the sensitivity analysis are adult 
mortality, loss of carbon during growing season, seed mortality, seed 
germination (for Agrostis and Hypochaeris) and allocation to reproduction (for 
Lupinus). The parameters were chosen to capture the different elements in the 
model such as vegetative growth, mortality and reproduction. 
 For the single species cases, loss of carbon in the growing season and 
adult mortality were always most sensitive for all species (Figure 3.17). Only 
Hypochaeris was sensitive to seed mortality and somewhat sensitive to seed 
germination (Figure 3.17). This likely reflects the difficulty Hypochaeris has at 
establishing a reproductive population on the landscape and any improvements 
to any life history traits will increase cover. Lupinus and Agrostis are both able 
to easily establish on the landscape and hence cover is controlled by growth rates 
and mortality (Figure 3.17). The slight sensitivity to reproductive allocation for 
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Lupinus is due to loss of vegetative material associated with higher reproduction 
(Figure 3.17).  
 When species interact on the landscape, the sensitivity profiles can differ 
depending on model structure (Figure 3.18). The three plants per patch model 
(section 3.3.3) is most sensitive to changes in adult mortality and loss of carbon 
during the growing season, while both one plant per patch models indicate more 
sensitivity to seed mortality (Figure 3.18). Furthermore, the three plants per 
patch model is less sensitive to changes in parameters than the other two models, 
though the OPPRSE model is only very sensitive in Hypochaeris cover with 
changes to Hypochaeris seed mortality (Figure 3.18a,b). In addition, Agrostis 
cover for the OPPSEW model is highly sensitive to a number of parameters 
when compared to the other models (Figure 3.18c). 
 
 
 

 
Figure 3.17: Partial sensitivity analysis for the cases where only one species is present 
on the lattice. The darker the colour of the square, the more sensitive the variable 
(species plant cover) is to the change of the parameter. The parameters that cause the 
largest changes in cover for all species are adult mortality and loss of carbon during the 
growing season. Seed mortality and seed germination of Hypochaeris are also important 
in determining Hypochaeris cover. 
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Figure 3.18: Partial sensitivity analysis for the three formulations of the three species 
model. The darker the colour of the square, the more sensitive the variable (species 
plant cover) is to the changes of the parameter. a The three plants per patch model is 
fairly insensitive to changes of the parameters (note the scale below the squares). The 
most important parameters are adult mortality and loss of carbon in the growing season 
for all species. Seed mortality for Hypochaeris also is important for Agrostis and 
Hypochaeris cover. b The  OPPRSE  model is also fairly insensitive, except 
Hypochaeris seed mortality has a very large effect on Hypochaeris cover. Overall, the 
pattern is similar to that of a, but seed mortality for Agrostis and Hypochaeris are more 
important for plant cover of all species. c The OPPSEW model is more sensitive to 
parameter value changes than the previous models, particularly when Agrostis cover is 
considered. The most important parameters are adult mortality for Lupinus and Agrostis 
and seed mortality for Lupinus and Hypochaeris.  
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3.4 Discussion  
 
 Life history traits, nutrient limitation, competition for resources, 
facilitation and herbivory are commonly invoked mechanisms that can explain 
the pattern and the rates of succession (Chapin et al. 1994, Chapin et al. 2002, 
Walker & del Moral 2003). However, how these mechanisms interact and the 
importance of each mechanism for the development of the plant community is 
not well known (Walker & del Moral 2003). The only guides for ecologists are 
conceptual models (e.g. Pickett et al. 1987, Walker & Chapin 1987, Callaway & 
Walker 1997) that may be overly reliant on previous empirical studies to provide 
insight into new ecosystems (Walker & del Moral 2003). 
 In this chapter, I developed a mechanistic model (section 3.2) to see how 
life history traits interact with nutrient limitation, nutrient cycling, competition 
and herbivory and how these mechanisms can help explain patterns seen in plant 
primary succession. The model was parameterized with data for three plant 
species found on Mount St. Helens and was simulated thousands of times in 
order to explore the model’s behaviour under different assumptions and different 
parameter regimes.  
 The model indicates that both life history traits, competitive and 
facilitative interactions play important roles in the structuring of the primary 
successional plant community, though the effects of each are dependent on 
nutrient levels. Furthermore, specific results such as the coexistence of 
Hypochaeris and Agrostis were predicted from the model, which indicates that 
the model is capturing the necessary mechanisms needed to explain field 
observations. Overall, the model indicates the validity of focusing on nutrient 
dynamics as a key mechanism in explaining successional dynamics in primary 
succession. 
 
3.4.1 Which Life History Traits Matter? 
   
 The addition of life history traits improved both the biological realism 
and the predictions of my model. However, due to the overall model complexity 
created by adding all these additional traits, it can be asked which traits where 
most important. In general, factors such as seed size, seed germination, 
allocation to reproduction and maximum growth rates are considered to be key 
life history traits (Chapin et al. 1994, Chapin et al. 2002).  
 From the results of the model, it seems that seed survival is a key trait for 
species to have in order to establish themselves in primary successional habitats 
(Figure 3.8). With poor seed survival, it is unlikely that rare, long dispersal 
events of seeds will allow for the development of a local population. Even with a 
steady supply of seeds, Hypochaeris has great difficulty establishing itself in the 
model and on Mount St. Helens in large numbers, except in ‘safe-sites’ where 
seed survival is higher (Titus & del Moral 1998, Titus 2008).  
 Another key trait is the ability to obtain sufficient biomass even at lower 
nutrient levels, which depends greatly on the stoichiometry of the plant and its 
nutrient uptake abilities. Since Agrostis is capable of maintaining very low levels 
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of nitrogen within its tissue compared to Hypochaeris, it is likely that it can 
maintain superior levels of growth at low nitrogen levels, even though it is a 
poor competitor for nitrogen (Chapter 2, Tilman & Wedin 1991).   
 The last trait that could alter model outcomes was seed size. With smaller 
seed size, Agrostis is able to swamp the environment with its long-lived seeds 
and can allow for quick establishment across the landscape, even though its 
allocation to reproduction is the lowest of the three species (Table 3.3). 
However, this benefit became a negative in the OPPSEW model (Figure 3.7). In 
addition, other factors that may select against smaller seeds, such as drought, 
were not modelled here and could further reduce the competitive ability of 
Agrostis (Chapin & Bliss 1989, Wood & Morris 1990). 
 
3.4.2 Model Sensitivity and Structure 
 
 The model proposed in this Chapter relies on parameter estimates that 
can have large ranges and on assumptions that shape the model’s formulation. 
Two kinds of uncertainty can therefore arise: uncertainty due to parameter values 
and uncertainty due to model structure (Haefner 2005). To deal with the first 
kind of uncertainty, I performed a sensitivity analysis for a subset of the model 
parameters and investigated their effects on model outcomes (section 3.3.4).  
 The overall sensitivity of the model to changes in parameters investigated 
is relatively low for two of the formulations, with differences between the 
minimum and maximum value obtained for the variable being rarely more than 
twice the value at the standard parameter value (Figures 3.17- 3.18). With the 
OPPSEW model, the sensitivity of the model was much higher to changes in a 
number of parameters and the sensitivity profile differed substantially (Figure 
3.18c). The parameters resulting in the greatest changes in the model variables 
were usually adult mortalities for the different species. However, changes seed 
mortality, particularly Hypochaeris seed mortality, can result in large changes in 
the cover of various species and can alter community composition greatly 
(Figures 3.8-3.9, 3.18). 
 The differences found in model sensitivity and model outcomes due to 
differences in model formulation indicate the uncertainty surrounding the 
biology of the plant community can result in vastly differing predictions (e.g. 
Figure 3.8). Such uncertainty in model structure is becoming increasingly 
important to address as modelling techniques become more common for 
ecologists to use (Pascual et al. 1997, Wood & Thomas 1999, Stephens et al. 
2002). I have tried to use different formulations in order to investigate how such 
differences may influence model outcomes, but many others could be proposed 
to investigate the system. The best way to resolve issues surrounding 
uncertainties with model structure is to gain better knowledge of the mechanisms 
involved in order to use appropriate mathematical formulations and to test a 
variety of plausible models (Pascual et al. 1997, Wood & Thomas 1999). 
   
3.4.3 Possible Improvements and Extensions of the Model 
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 As with any modelling exercise, there are ways in which the model can 
be improved in terms of realism, precision or generality, though rarely in all 
three (Levins 1966). For my part, I will focus on how the model can be improved 
vis-à-vis the biology of the system. 
 One possible improvement is to model the nutrient uptake of the plants in 
a truly spatially explicit way such as in Raynaud & Leadley (2004). With such 
models, domains of interaction between plants can be precisely defined and 
hence the possibility of competition can be investigated. However, such models 
may not be computationally feasible due to the high model complexity involved. 
Another way of implementing spatial uptake is to have an uptake kernel, similar 
to the competition kernels proposed by Snyder & Chesson (2004). Such a kernel 
would depend on the size of the plant, allocation to roots and other factors that 
impact its range of effect. Such an approach may be mathematically tractable 
and give greater ability to model competition for resources in space. 
 Another potential improvement would be to model explicitly the 
behaviour of the herbivores, which is also an extension of the model to higher 
trophic levels. Previous work has shown spatially structured herbivory at work 
on Mount St. Helens (e.g. Fagan et al. 2004, Bishop et al. 2005, Fagan et al. 
2005), which would likely result in different predictions than those found here. 
Furthermore, the herbivory may also be influenced by the nutritional quality of 
Lupinus, which could once again alter the spatial structure of the community 
(Fagan et al. 2004). While it would be best to explicitly model the herbivores 
and their behaviour, it may be possible to add rules to the current model to 
obtain equivalent effects. 
 A final improvement/extension of the model would be to include a 
realistic detritus compartment, which involves modelling the soil community. 
With such a compartment, better understanding of nutrient cycling and nutrient 
availability becomes possible, even though they can add a great deal of 
complexity (Cherif & Loreau 2007, 2009). Furthermore, it becomes possible to 
model plant-soil feedbacks that can alter aboveground community structure 
(Levine et al. 2006, Cherif & Loreau 2009) Since succession is as much a 
belowground process as an aboveground one, it is important to consider the 
detritus community in greater detail (Halvorson et al. 2005).  
 
Appendix 
 
3.A Parameters for Tables and Figures 
 
 For all figures and Table 3.4, the values listed under the ‘Value’ column 
of Table 3.1 are used in the simulations that led to the creation of the figures and 
Table 3.4. If the values of life history trait parameters are not listed in this 
Appendix, then they take on the values listed in Table 3.3. 
 
Table 3.4: Model was simulated over a time period of 1000 ‘growing days’ in 
order to maximize potential differences. Initial plant size was 1 mol C for both 
Agrostis and Hypochaeris plants. The loss of carbon parameters, lA is equal to 
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0.008/day and lH is equal to 0.007/day. The influx of nitrogen parameter, IN, is 
equal to 3 x 10-5 mol N/(day x L). 
Figure 3.3: The influx of phosphorus parameter, IP, is equal to 1.871 x 10-6 mol 
P/(day x L) and phosphorus efflux, φP, is equal to 5/day.  
Figure 3.4: See caption for changes from Tables 3.1 and 3.3. 
Figure 3.5: Same as Figure 3.3 except φP = 1. 
Figure 3.6: Same as Figure 3.5 except adult mortality, mL, due to herbivory is 
0.95 and seed mortality, smL, increases to 0.995.  
Figure 3.7: Same as Figures 3.3 and 3.4, except IN increases from 1 x 10-7 mol 
N/L to 1.2 x 10-5 mol N/L by increments of 4 x 10-7 mol N/L for c and d. 
Figure 3.8: Same as Figure 3.7a,b except smH =0.07, smA =0.01 and sgA =0.95. 
Figure 3.9: Same as Figure 3.7. 
Figure 3.10: Same as Figure. 3.7a. 
Figure 3.11: Same as Figure 3.7a,b. 
Figure 3.12: See caption for changes from Tables 3.1 and 3.3. 
Figure 3.13: Same as Figure 3.12b. 
Figures 3.14-3.15: Same as Figure 3.7a,b. 
Figure 3.16: Same as Figures 3.3 and 3.4 except IN increases from 1 x 10-8 mol 
N/L to 1.2 x 10-6 mol N/L by increments of 4 x 10-8 mol N/L, ζLN =0.3 and IP= 
4.871 x 10-5 mol P/L. 
Figures 3.17-3.18: Same as Figures 3.3 and 3.4.  
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Chapter 4 
 

Concluding Remarks 
 

4.1 Approach to Studying Primary Succession: Strengths, Limitations and 
Applicability 
 
 Understanding how an ecosystem recovers after a large-scale disturbance 
is of growing importance as humans continue to alter ecosystems for various 
purposes (Walker & del Moral 2003). The phenomenon of ecological recovery 
from a state with little to no biological remnants to a fully developed ecological 
community has traditionally been called primary succession or succession on 
primary areas (Clements 1916). Insights from studies of primary succession after 
natural disturbances, such as the eruption of Mount St. Helens, have helped 
ecologists identify key processes that control the trajectory and the rate of 
succession (Pickett et al. 1987, Walker & Chapin 1987, del Moral & Bliss 1993, 
Chapin et al. 1994).  
 However, as indicated by my survey of the literature in Chapter 1, it is a 
rare thing to see mechanistic models of succession that can be used to explore 
the importance of and the interactions between the various mechanisms proposed 
by ecologists. A mechanistic model for succession would need to include 
facilitation, competition, herbivory and life history traits of the organisms in 
order to make accurate predictions concerning successional trajectories (Chapin 
et al. 1994, Chapin et al. 2002).  Furthermore, any mechanistic model of 
succession would need to be able to address processes that function across levels 
of biological organization and across spatial scales (Walker & del Moral 2003).  
 Within this thesis, I have developed mechanistic models for plant 
primary succession by focusing on ecological stoichiometry of the ecosystem 
(Sterner & Elser 2002). The first model (Chapter 2) treats the ecosystem as a 
dynamical system, i.e. the ecosystem changes over time and space, which can be 
analysed with techniques derived from the theory of differential equations 
(Strogatz 1994). Furthermore, the model postulates that competition at local 
scales is determined by resource competition, allowing the use of graphical 
methods and R* theory developed for classical resource competition models 
(Chapter 2; Tilman 1980, 1982). 
 The main strength of this approach is the ability to make predictions 
about community structure based on plant traits and the dynamics of nutrients. 
By deriving competitive abilities (R* values) from plant traits, the model 
predicts the outcome of competition within the community based upon the 
nutrient status of the environment. Thus, predictions can be made about the 
potential success of a newly arrived plant species as long as scientists have 
knowledge of its traits and the nutrient status of the soil. The predictions from 
resource competition models have been validated by experimental work on 
aquatic species in laboratory settings and a few terrestrial field experiments 
(Dybzinski & Tilman 2007, Wilson et al. 2007). 
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 Despite this strength, there are many limitations to such an approach to 
primary succession. A major limitation is obtaining usable parameters for the 
plant traits, for numerous of experiments would be required for each species 
added to the model. Another limitation to this approach is the difficulty in using 
a dynamical system to model certain life traits of plants, such as plant mortality 
and plant reproduction (Chapter 2). While these traits can be incorporated into a 
mechanistic model of succession (Chapter 3), the powerful analytical techniques 
from the theory of differential equations can no longer be applied. In addition, 
competition for resources may only occur on local scales (Huston & DeAngelis 
1994, Raynaud & Leadley 2004), may not occur through the reduction of 
average resources (Inderjit & del Moral 1997, Craine 2005) and may result in 
poor predictions if allocation of biomass is assumed to be fixed (Dybzinski & 
Tilman 2007).  
 Some of these limitations have already been addressed through the 
elaboration of a spatially-explicit mechanistic model as seen in Chapter 3 or 
could be addressed by using more elaborate models of plant growth (e.g. Wang 
et al. 2007) and including other forms of competition such as allelopathy (Grover 
1997; Appendix 2.C of Chapter 2). The main stumbling block is obtaining 
parameters for the models, which requires better communication between 
theoreticians and experimenters on what to measure and greater funding for 
basic ecological research. 
 The application of mechanistic models using ecological stoichiometry 
has already begun, with models similar to those used in this thesis used for 
modelling the dynamics of oceanic and aquatic phytoplankton as well as 
understanding nitrogen fixation and nitrogen limitation in terrestrial ecosystems 
(Klausmeier et al. 2004, Litchman et al. 2006, Klausmeier et al. 2007, Wang et 
al. 2007, Houlton et al. 2008). The insights gained from the models proposed in 
this thesis could also be applied to those systems with some modifications. 
 Regarding application to other successional habitats, the models 
developed here can be applied readily to primary successional habitats that have 
infertile substrates and are colonized by vascular plants. Such habitats are 
created by volcanic eruptions, rock outcrops, wind erosion (sand dunes), mining 
and human-made structures such as cities and roads (Walker & del Moral 2003). 
Glacial moraines, floodplains and landslides are usually richer in nutrients, 
which would allow succession to quickly proceed into later successional stages 
and other processes such as light competition would need to be modelled 
explicitly (Walker & del Moral 2003). Primary successional habitats with 
significant amounts of lichens and bryophytes can be modelled with my 
approach, though more needs to be known about the competitive ability of lower 
plants for mineral nutrients (Bates 2000, Ayres et al. 2006). In general, the 
models presented here are best suited for modelling early primary succession 
where competition for light is limited and the life spans of plants are short.  
 
4.2 Summary of Results 
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 By using ecological stoichiometry, I successfully integrated ecosystem 
processes such as nutrient cycling and nutrient limitation with the community 
processes like competition and facilitation in Chapter 2. The fine scale model 
produced in Chapter 2 was capable of predicting the competitive hierarchy 
observed on Mount St. Helens for the three plant species parameterized. The 
model also predicted the net facilitative effect of Lupinus on the other species as 
seen on Mount St. Helens and demonstrated good qualitative agreement with 
nutrient addition experiments. These results indicate that mechanistic models 
based upon ecological stoichiometry can aid in our understanding of primary 
succession. 
 In Chapter 3, I extended the scale of the model developed in Chapter 2 by 
allowing for explicit space. I also added more biological detail concerning life 
history traits that many authors deem important for understanding succession 
(del Moral & Bliss 1993, Chapin et al. 1994, Chapin et al. 2002, Walker & del 
Moral 2003). The addition of more biological realism further improved model 
predictions with regards to the plant community on Mount St. Helens. For 
example, it predicted regional coexistence of Agrostis and Hypochaeris despite 
the superior competitive abilities of Hypochaeris at local scales, which is seen on 
Mount St. Helens (e.g. Titus 2008). This prediction results from the superior 
ability of Agrostis to obtain biomass at lower nutrient levels than Hypochaeris, 
resulting in a colonizer/competitor tradeoff that allows coexistence (Tilman 
1994). 
  Combined, the two models act as the first steps in creating a mechanistic 
and mathematical framework for primary succession. They indicate that life 
history traits, competition and facilitation all contribute to the community 
dynamics and community structure in early primary succession. Furthermore, 
many of the interactions between species and between species and the abiotic 
environment can be adequately described within the framework of ecological 
stoichiometry.   
  
4.3 Philosophical Considerations 
 
 In Chapter 1, I presented how ecologists have traditionally been split on 
how succession proceeds. Holists, such as Clements and Odum, viewed 
succession as a predictable and directional process of community development 
from bare substrate to a climax community that is dominated by biotic processes 
(Clements 1916, Odum 1969). Reductionists, such as Gleason and Cooper, 
viewed succession as an unpredictable and non-directional process dominated by 
abiotic processes (Gleason 1917, 1926, 1927, Cooper 1926). The majority of 
ecologists studying succession today view themselves as neo-reductionists and 
focus on particular processes within a system of study, with emphasis on life 
history traits, physical gradients and stochastic processes (Walker & del Moral 
2003).  
 The problem of the neo-reductionistic approach is the inability to 
generalize their empirically derived results to other ecosystems (Walker & del 
Moral 2003). This failing can be attributed to the lack of an overarching 
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framework to integrate the various processes involved in succession in particular 
and ecology in general (Walker & del Moral 2003). The lack of a framework is 
due to discrediting of the top-down approaches to ecology of Clements and 
others during the twentieth century (Walker & del Moral 2003). However, new 
frameworks for ecology developed from the bottom-up have been proposed in 
the past decade and provide hope for generality in ecology (Sterner & Elser 
2002, Brown et al. 2004). 
 One such framework, ecological stoichiometry, proposes that ecological 
processes and interactions can be explained through the chemical compositions 
of organisms and their environments (Sterner & Elser 2002). I have used this 
highly reductionist approach to integrate numerous processes involved in 
succession. However, though the framework may be reductionistic, my main 
interest in ecological stoichiometry is to see how community structure and other 
higher-level phenomena such as nutrient limitation emerge from interactions 
within the ecosystem. In this way, reductionism leads to holism through the 
interactions of the parts of the system. Hopefully, such a synthesis will allow the 
insights from both the holists and the reductionists to be used to help us 
understand succession and make ecological rehabilitation more efficient. 
 Also in Chapter 1, I discussed the potential tradeoffs that occur when 
modelling a complex system. Levins (1966) mentioned how it may not be 
possible to achieve generality, precision and realism in the same model. Two of 
the three goals may be achieved at a time, but not all three and each combination 
leads either to understanding, prediction or control (Haefner 2005). The model in 
Chapter 2 is intended to be very general at the cost of precision and some 
realism. The model in Chapter 3 is less general but gains in realism and 
precision. Still, the emphasis of the models focused on generality in order to 
foster greater understanding of the processes of succession. Predictive capability 
and the ability to control ecosystems are secondary concerns for this thesis. 
 To achieve the amount of realism found in models in this thesis, a good 
deal of complexity has crept into the model equations. Such complexity can 
make the model more accurate (Chapter 2 vs. Chapter 3), it comes at the cost of 
making it difficult understand what will occur if one variable changes, making 
prediction more difficult (Haefner 2005). Simple models with little realism can 
allow for good prediction and can be easily used, which is why certain ecologists 
maintained that simple statistical models are the best way to do ecology (Peters 
1991). However, simple models can lead one astray when processes are 
nonlinear and small changes in one variable can lead to catastrophic changes 
(Scheffer 1999). It is important for many models of varying degrees of realism, 
generality and precision to be used in studying ecosystems in order to avoid the 
pratfalls of any one approach.    
 
4.4 Future Work 
   
 The two research chapters have shown the validity of approaching 
primary succession through the framework of ecological stoichiometry and 
utilizing mathematical articulation of the mechanisms involved, achieving some 
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of the goals laid out in Chapter 1. However, a great deal more needs to be done 
to give a full account of primary succession. 
 Further data collection and parameterization of the models are needed for 
quantitative predictions to be possible. Many parameters have been estimated by 
using related species or not estimated at all, which limits the applicability of the 
model. The key parameters that should be focused on are nutrient uptake rates 
and loss of biomass due to respiration, adult mortality and seed mortality. 
 Experimental tests in a controlled setting of competitive abilities for 
phosphorus and nitrogen are needed to validate the model predictions concerning 
R* values. Only in such setting could other effects such as herbivory, water 
stress and acidity be discounted in explaining the structuring of the community 
at local scales. In addition, experimental tests of seedling competition is needed 
to determine the rules of seedling establishment, which has been shown to be 
important in Chapter 3. 
 Data on the spatial distribution of plants at fine scales are needed to 
validate the model output from Chapter 3. While there is data readily available 
concerning the spatial distribution of plants on Mount St. Helens are large scales 
(e.g. del Moral & Bliss 1993), the model presented in Chapter 3 has, so far, only 
been able to model more limited spatial extents. I have tried to obtain such data 
for my thesis, but discussions are still ongoing and will not be resolved before 
the end of my degree. 
 Concerning the models, further mathematical investigation of the models 
proposed here can allow for more complete understanding of possible model 
outcomes. In Chapter 2, I was unable to prove the global stability of the steady 
states for the single-species model and found it difficult to obtain stability 
criterion for the coexistence steady state of the two species model. While the 
solutions of these problems are of more interest to the mathematician than the 
biologist, the results will allow for greater biological understanding. In Chapter 
3, a more thorough investigation of the model’s sensitivity is needed to examine 
the validity of model predictions throughout different parameter regimes and to 
focus attention on the most sensitive parameters. 
 Explicit consideration of herbivores, detritovores and other trophic 
groups is necessary for it has been demonstrated in other studies how these 
groups can alter the ecological stoichiometry of the soil and the structure of plant 
communities (Bishop 2002, Cherif & Loreau 2009). The addition of more 
trophic levels will need to be carefully considered, for the mathematical 
tractability of models becomes lesser as a model becomes more complex and 
non-linear (Kaplan & Glass 1995).  
 Other potential extensions of the model include additional plant species, 
additional resources, more refined modelling of resource exploitation patterns 
over space by plants, the addition of allelopathy and considerations of longer 
time scales. All these additions to the model can be comfortably included into 
the overall conceptual framework developed in Chapter 1. Hopefully, the 
conceptual framework will help make the study of primary succession more 
mechanistic and aid us in our quest to understand and predict primary 
succession.  
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