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ABSTRACT

In this thesis the propagation and reflection of waves on a nonlinear hy-
perelastic string, using a general strain-energy function, is investigated. The
Riemann problem for the longitudinal motion js investigated and an iterative
Riemann solver is proposed. Upto shock formation characteristic methods are
used to investigate breakdown and envelopes of characteristics for fairly general
initial, boundary value problems. Thereafter a numerical algorithm is required
and Godunov’s scheme combined with the solutions to the Riemann problems
are used to investigate solutions after shock formation. A ruomber of physical

examples have been examined.
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CHAPTER I
INTRODUCTION

Over the past few decades there has been considerable interest in models
for physical phenomena which involve a system of hyperbolic conservation laws.
In this thesis we consider a class of conservation laws arising from a motion of
a nonlinear elastic string, and we investigate the propagation and reflection of
longitudinal waves.

Since, in general, solutions of the equations of mation develop disconty-
nuities, a generalized (weak) solution is required. This causes both numerical
and analytical difficulties when solving these equations, especially when refiec.
tions are involved [3]. Morcover, if realistic forms of the strain energy function
associated with the elastic string are used, problems of degeneracy oceur,

For certain initial, boundary conditions it is possible to describe the be.
haviour of the string when both longitudinal and transverse waves are present
(17], at least up to reflection. However, these are essentinlly extensions of the
Riemann problem. However if general initial, boundary conditions are imponed,
the solutions can no longer be found using similagity solutions or elementary
characteristic theory. An attempt to investigate such a problem by perturbation
methods and the difficultics generated by the degeneracies is deseribed in {16}.
In this thesis we will consider fairly general initial boundary wvalue problems.

This thesis is composed of five chapters. The weond chapter conusts

of two parts. The first part describes the theory of hypetbolic conseryation



laws, Ba.sic features sﬁch as entropy conditions #nd Bre@i(doﬁs of siﬁooﬁx '
solutions are explained. The second part of the cﬁ#ﬁtef invesiigatm #umeﬁ-
cal techniques for solving hyperbolic conservation laws. The main properties
of conservative schemes, monotone schemes and upwind schemes are discussed.
Godunoves scheme, which is based on the exact solution of the Riemann prob-
lem is described and the idea of Riemann solvers is introduced. Also in this part
of the chapter Harten's Artificial Compression Method (ACM) (5] is described
and an automatic switch for turning the ACM on and off is presented.

In Chapter III the system of Lagrangian governing equations of the plane
motion of the nonlinear elastic string is fouﬁulated in conservation form. The
longitudinal equation of motion is obtained as a special case of these equations.
The constitutive relations for Mooney-Rivlin and Ogden three-term strain en-
ergy functions are presented. In formulating these relations, the thermodynamic
effects are neglected Intuitively this is a good approximation since rubberlike
materials are relatively poor conductors of heat. Moreover it has been shown
that termperature variations are small for the deformation of hyperelastic strings
[17]. Also in Chapter III the Riemann proirlem for the longitudinal equations of
motion is investigated. The solution is described both for strings with Mooney-
Rivlin strain energy function and for Ogdens three-term strain energy function.

Later on in this thesis these solutions to the Riemann problem are used
in the application of Godunov's scheme to solve problems of longitudinal wave

propagation in hyperelastic string. The exact solution to the Riemann problem
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has pfoven very expenswe to solve. Therefom an npptopnate, mmphﬁed apptox-
imate solutxon is reqmred Such an approximation is propoaed in Chaptcr IV
when an iterative method is used to obtain the solution. In certain cases this
iterative technique converges in a few iterations to the exact solution.

In Chapte V we shall consider fairly general initial, boundary value prob-
lems for which internal shocks occur, and for which elementars characteristic
theory breaks down. Therefore, it is necessary to investigate other numerical
methods. As previously mentioned Godunov's method is employed.

In general, shock fronts smear substantially leaving the difficulty of differ-
entiating between shock waves and expansion waves. Sometimes this is of im-
portance when dealing with reflections. In order to sharpen the shocks, Harten's
Artificiai Compression Method (ACM) and an automatic switch to turn on and
off the ACM are incorporated with the existing scheme. Finally some conelud-

ing remarks are presented at the end of Chapter V.



CHAPTER I
CONSERVATION LAWS

AND NUMERICAL METHOD OF CONSERVATION LAWS

2.1. Introduction to Hyperbolic Conservation Laws
Let u € R be the density and let f(u) € R® be the flux of certain
physical quantities. Then in the absence of sinks and sources we have the

hyperbolic conservation law

(2.1) i/udm:— f-nds
dt Jq an

for any fixed domain Q in the =z space with a boundary 0. Here n
denotes the outward norma' to £ and dS the surface element on 9.
(2.1) is called the integral form of the Conservation laws. It expresses the fact
that the rate of change of the quantity u contained in  is equal to the
flux entering  through the boundary 0Q. By applying the divergence

" theorem and by takiug d/dt under the integral sign we obtain

(2.2) / ( + div f)dz

If we divide (2.2) by VOL(Q) and then shrink 2 to a point where all

partial derivatives of u and f are continuous, then we obtain

(2.3) %t'i + divf=0.
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This is called the divergence form of the conservation law and it expresses the
divergence free character of the scalar field u. We shall consider systems of

conservation laws
wl+divf =0 j=1,...,n,

where f' is some nonlinear function of u!,...,ul. In the one space dimen-

sion z€R and f = f;8, (2.3) becomes

(2.4) %"t-+§—gg‘—)=o t>0,

where uw = (w1,u2,u3,...,us)T and f = (fi,fa, far--., fn)T. Examples of
conservation laws include, compressible Euler equations, elasticity models and
shallow water wave équations. Later on in this thesis both the derivations and
the solutions of several elasticity models will be discussed.

If A(u) denote the jacobian matriz for f(u), that is
(2.5a) Au) = ==

then we can write (2.4) in the following matrix form:

(2.5b) -g't‘- + A(u)%— =0.

Following P.D. Lax’s [9] definition, the system (2.4) will be strictly hyperbolic if

all the eigenvalues of A are real and distinct,

A(u)ri(u) = Ai(u)ri(v)
(2.6)
A1(8) < Az(¥) < - -+ < An(u).



Eqﬁation (2.4) is calied geﬁuiﬁcly noﬁlfneaf, in fbr a € {1,2, é,...,n} '
(2.7) VAi(u) -ri(u) #0 for all wu.

We say the system is linearly degeneraie or ezceptional if

(2.8) VAi(u) -ri(u) =0, for some 1.

For a geﬁuinely nonlinear system, it turns out that because of the de-
pendence of the characteristic values () on the variable wu, singularities
tend to develop in the solution. This causes both analytical and numerical dif-
ficulties. In order to illustrate these nonlinearity features, let us consider the
scalar conservation law u € R with the smooth initial data u(z,0) = uo(z).

Along the characteristic curves
dz .
(2.9) i Au) = f'(u),

we must have (du)/(dt) = u, + u, (dz)/(dt) = u, + f'(u)u, = 0. Thercfore
u is constant along the characteristic. Hence the characteristics are straight
lines with the slope 1/f'(uo(z)). I A(uo(z)) is an increasing function of
z then u(z,t) will be an expansion wave which is also called a rarefaction
wave. A rarefaction wave is a cdntinuous solution of the form u = u(z/t),
(see Fig. 2.1). On the otherhand if A(uo(z)) is a decreasing function of

z, then wu(z,t) will be a compression wave which eventually will become

multivalued, (see Fig 2.1).



'fhérefore classical soiutions cease to exist in a ﬁﬁte tiﬁe and ihe'aoiuiion. '
becomes discontinuous. To overcome these difficulties we must generalize the
notion of solution to include such discontinuous and nohdiﬁ'eientiable solutions
in such a way that they still satisfy the original differential equations in some

sense, This will be done by employing the idea of weak solutions.

Y A A 1
v\ \ 1 L TS
N |
\ N /uI \
VY 17 TR
WALy AN
\\ ) /,/ / / l' ) \
— \W\ V2 . — A N -
Expansion Wave Compression Wave
Figure 2.1.

To this end we write the divergence form of the conservation law in one

dimension (2.4) as
(2.10) V- (ufw) =0

where the operator V = (6,,9;). Let ¢(z,t) be any smooth test func-
tion with compact support in ¢ 2 0. Then multiplying (2.10) by ¢ and

integrating over ¢ >0 we obtain,

(2.11) / /‘ 69 f)dzdt = 0.



Then by applying the divergence theorem to (2.11) we obtain
(2.12) / / _ (V8): (u.fw)deds + / u(0, 2)é(z,0)dz = 0.
120

A bounded measurable function u(z,t) satisfying (2.12) for any test function
é with compact support in ¢ >0 is called a weak solution of (2.4).

As a result of this new notion of solution, every piecewise continuous weak
solution of (2.4) must satisfy the Rankine-Hugoniot relation across the line of

discontinuity z = y(t),
- (2.13) ofu] = {f(u)]

where [u] = (uy —u_), [f(u)] = [f(us) - fu-)],ux = u(¥h(t) £0,t) Fig (2.2),

and o is the speed of propagation.

Figure 2.2 Discontinuity along z = y(t).

An interesting feature of shock wave theory is that there can be an infinite
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humber of weak solutions of (2.4) with same initiai ciata uo(.i). . Therefore -
an admissibility criterion, the entropy éondition. is needed to select a physically
relevant solution. The simplest problem having this property is the Riemann

problem, which is an initial value problem for (2.4) with the initial data

: u for z<0
(2.14) u(z,0) =
u, for z>0

for given constant states uw, and w,. Assuming (2.4) to be genuinely non-
linear, Lax [9 ] showed that the following entropy condition must be satisfied
for some i€ (1,2,...,n];
Aifue) > o > Aifur)
(2.15)
Ai—1(ue) < 0 < Ajgy(uy).

These inequalities are called entropy inequalities. Discontinuities satisfying these
inequalities are called i-shock waves.

Another approach in settling the admissibility criterion is to use a viscosity

principle [9). Therefore those solutions that are limits as € — 0 of solutions

u(e) of the parabolic viscous equations.
(2-16) Y, +,(u)g = alzg E> 0

are admissible. The existence and uniqueness of the solutions u(e) of (2.16)
has been established by using the maximum principle for parabolic equations

[9]. Moreover as € — 0, u(e) converges to the solution u(z,t) of (2.4).
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Consider the system cf conservation laws (2.4) that has an eniropy func-

tion U(u) with the following properties.

(i) U is a convex function of wu, that is:

(2.17a) Uw >0

and

(i1) U satisfies

(2.17b) Ufe = F

where F is some other function called the entropy fluz. Therefore by multi-

plying (2.4) by U, and by using (2.17) we see that every smooth solution of

(2.4) satisfies

(2.18) U(u)¢ + F(u); = 0.
Lax[9] showed that the limit solutions of (2.16) satisfy
(2.19a) Uu) + F(u); < 0.
Therefore by using the divergence theorem we have

(2.19b) - J{ [_w(fﬁcU + ¢, F)dzdt — [_m #(z,0)U (uo(z))dz < 0,



1

where ¢(z,t) ‘is a smooth test function with a compact support in t>
0. This is equivalent to requiring that for all rectangles [a,b] x [t;,t3] the

inequality obtained by integrating (2.19a) over the rectangle should hold:

b b
/U(u(z.'tz))dz—/ Ulu(z,ty))dz
+ / " F(u(b, t))dt - / " F(u(a,t))dt < 0.
4 4

1

(2.19¢)

If u is piecewise smooth with discontinuities, then (2.18) holds pointwise in

the smooth region, and across the discontinuities we have,

(2.10d) F(ur) - Fue) < o(Ulw,) - Uluy).

Relations (2.19) are called entropy conditions.

These conditions for selecting physically relevant solutions are only ade-
quate if the entropy function U and its corresponding entropy flux can be
contructed. Nevertheless, as we will see later on, these conditions arc uscful
in checking the admissibility of numerical schemes and in obtaining a priori

estimates.

2.2 Conservative Numerical Schemes
In this section we will consider the numerical solutions of tlie one dimen-

sional system of conservation laws (2.4)

(2.4) % +flu);=0 t>20 -ow<z<o©



_ p
wﬁeﬁ' ﬁ(é,t) e R", I(ﬁ(z,t)) € R". To do this we wxll look a; ﬁnﬁe difference
schemes which can be put into the following conservation fonﬁ. Consider a point
z and let u}‘ =u(z+ih,t,), where t,,n=0,1,... are discrete time levels
and h a step size in the 2z direction. A finite difference method is said to

be in conservation form if it can be written in the form

(2.20) w(z, tny1) = u(z, tn) + A(G"(z + -g) -Gz - -;.‘.)) A= ‘i{_‘_ -1
where G(z + %)= GuZ yyuloyy,-- . uy) and G(z - %) =
Gl ulgyy,...,u3_;). Here G is a vector valued function of 2¢ argu-

ments. It is called a numerical fluz. In order for (2.20) to be in agreement

with (2.4), we require the following consistency condition;
(2.21) G(u,u,...,u) = f(u).

In other words, the numerical flux must be consistent with the physical flux.

The discrete analogue of the entropy condition (2.19a) will be
. n+l n n h n h
(2.22) UM <SUP + A(FR(z + 5) = FB(z - -2-))

where Ul =U(uw?) and Fp(z+ %) = Fg(uloyyy---oup). Fp(um,...) isa

numerical entropy fluz which must be consistent with the entropy flux;

(2.23) Fg(u,u,...,u) = F(u).
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From the following theorem, proved by Lax and Wendroff [10], we see that -
a finite difference approximation to a conservation law should be in conservation

form.

THEOREM 2.1. Let wu(z,t,) be a solution to a finite difference scheme in
conservation form. If w(z,t,) converges boundedly almost everywhere to some
function v(z,t) as h and t tend tozero, then w(z,t) is a weak solution

of (2.4).

PROOF: Let ¢(z,t) be a test function with compact support in ¢ > 0.
Multiply (2.20) by ¢(z,t), integrate with respect to z and sum over all

values of ¢ that are integer multiples of k to obtain the following:

;/:Z¢(z,nk)("(z'(n+ l)t)—u(z,nk))dz k

(2.24)

=~ [ sy @ DG Dy,

Applying summation by parts to the left side we have

Z/m d,(z’nk)(u(z,(n + 1):) -—u(z,nk))d: k

(2.25) = —/_ é¢(z,0(z,0)dz

- f: (Hznb) - élf"(" =8 otz nkyde £,

-0
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Now using (2.25) and a simple change of variable, (2.23) becomes

) /.:(db(zmk) - ¢’£z, (n- 1)’@))"(13’“,0&,,:z k
(2.26) + ;[:[e‘(z + g,nk) - é(z - g-; nk)lG(z)dz k

+ /m é#(z,0m(z,0)dz =0,

where G(z) = G(ul,,...,u7) and the values ulg,...,u; are the values
of u at the 2¢ points symmetrically distributed about the point (z,nk).
If w(z,nk) tends boundedly almost everywhere to a function w(z,t), so do

4y and thus G(z) tends to G(w,w,...,u) which by the consis-

n
u q

Bre s
tency requirement (2.21) equals f(v). Hence the limit of (2.26) is the desired

limit
(2.27) /ooo ‘/_: (dw + ¢.f(v))dzdt + [: #(z,0n(z,0)dzr = 0.

Therefore w(z,t) is a weak solution of (2.4). O
Theorem 2.1 does not indicate whether or not the limit solution is the

physically relevant solution. In order to ensure that the entropy condition is

satisfied, we will look at the so called monotone schemes. Let a finite difference

scheme of the scalar conservation law be in the following form:

(2.28) u?'“ = Qu = H(u?_', ceny u?+').
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This difference scheme is said to be monotone if H is a monotone ixicrea.sing '

function of each of its arguments. In other words
(2.29) Hi=5=20.

The operator Q in (2.28) is called monotone preserving if for any monotone
mesh function V,W = QV is also montone.
Harten, Hyman, and Lax [6] proved the following theorems concerning

monotone and monotone preserving schemes.

THEOREM 2.2. Let (2.28) be a monotone finite difference method in conser-
vation form. If the solution of this finite difference method, ul converges
boundedly almost everywhere to some function v(z,t) as 1t and h ap-
proach to zero with A fixed, then v(z,t) is a weak solution of (2.4) and

the entropy condition is satisfied at all discontinuities of v.

THEOREM 2.3. A monotone finite difference method in conservation form is

first order.

‘THEOREM 2.4. A monotone finite difference method is monotone preserving.

Therefore monotone schemes satisfy the entropy condition and they are non
oscillatory.
The notion of montone finite difference methods can be extended to the

vector case, by taking the inequality (2.29) to mean that all the cigenvalues of



the m#trix H; are nonnegative .for every j€({ -Q,. . ,cj}. However fhe no- '
tion of monotone preserving, unlike the notion of monotone, cannot be extended
to nonlinear systems.

Before we conclude this section let us note that when a conservative sys-
tem is approximated by a conservative difference scheme, shocks which fall be-

tween mesh points can at best be represented by transitions over two intervals.

In other words a shock of the form

w for z<uz,

(2.30) u(z) = {

ur for z>z,

where z; 1 <2, <7Zj;1 can at hest be represented by a transition of the

form

4 w for i<y
(2.31) u!=( uy for i=j
" u for i>;

where um(z)-,,_* —zj_y) =uz, —zj-§)+ur(x,-+§ —Z4), Ti+y = (zj+1 +25)/2
However, in most practical computations, shocks are spread over far more than
two intervals. This difficulty of poor resolution of shocks is known to be less
severe if we use upwind difference schemes. These schemes attempt to discretize
the conservation law by using differences based in the direction determined by
the sign of tiie characteristic speed.

We conclude this section by giving the definition of a general three point

upwind scheme.
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DﬁFINﬁION: A diﬁereﬁce scheme in conservation form is aﬁ.id ’to be upwmd, if :
the following two conditions hold.

i) For the nearby states u; and ug, the following is a linear approxima-

tion to the numerical lux G(u;,u;)

(2.32) Gy, ) = Atwy + A™wp

where A(u) is the Jacobian matrix of f(u) and

(2.33) At = %(A + |A)).

If w, and w; are near some state u, then the requirement (2.32)

is equivalent to requiring that,

Gluy,u;) = flu,) + A+("o)("l —U,)
(2.34)
+ A7 (u,)(uy —u,) + 0( sy — | + huy ~u,|).

ii) When all signal speeds associated with the numerical flux G(u;,uz) are
positive, then G(uy,u;) = f(u;). When all signal speeds associated with

the numerical speed are negative, then G(wy,%;) = f(u;).
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2.% Godunov's Scheme
Consider the initial value problem for the one dimensional hyperbolic sys-

tem of conservation laws (2.4)

?'-‘+a'f(u)=0 -0<z<
(2.35) ot Oz

u(z,t0) = uo(z)
where wu(z,t) is a column vector of n variables and f(u) is a vector
valued function of n components.

To solve the above initial value problem, Godunov constructed a first order
upwind finite difference scheme based on successive solutions of local Riemann
problems. In the derivation of his scheme, Godunov considered a numerical
approximation of wu(z,t,) of the discrete time levels t,, n=0,1,2,... to

be a piecewise constant function of z;
n g 1 .1
(2.36) u(z, ty) =ul (i- §)h Sz <(i+ §)h

where h is a step size in the =z direction. In order to calculate u at
time tn4; =1t, + 7, we solve (2.35) in ea~"s iuterval [ih,(i + 1)h] with the

following initial conditions:

U z_<_(i—-;-)h

uly, z>(+3)h

(2.37) u(z,ty) = {



e
This initial value problem defines a sequence of Riemann problems. The waves

generated by neighbouring Riemann problems will not interact if the CFL condition

(2.382) v

IA
[ ST

is satisfied (see Figure 2.3). Here «4 is the Courant number given by
r
(2.38b) Y= [Amaxly

where [Ama| is the largest signal speed.

\ L\ / =t
: T' n+1
I 1
| !
| |
| [}
{ 1
| [}
| !
| |
| 1
t=t
i-1 i-V2 i i+% i+ n
E' [ g y)
! Litss

where Li={Z:(i-1/2h< T < (i + 1/2)h}
Figure 2.3
Thus the solution u®(z,t) for t, <t<t,4; can be expressed exactly
in terms of the solution of local Riemann problems. Let R(%§,ur,u,) denote

the solution of the Riemann problem for system (2.4) with the initial data,

u z<0
u z>0.

(2.39) w(z,0) = {
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Then wu®(z,t) is given by

=(i+3)h

(2-40) u“{m,f’.‘) = R(z t—1 vu?s"?+l) ih S T 5 (i + l)h"

- Godunoy then abtains wf?! by averaging u®(z,t) over [(i—1)h,(i+})h]

(i+$)h
(2.41) u}‘*‘ = 1 u*(z,tne1 )dz.
h Jii-4n

Since wu®(z,t) is the exact solution of (2.35), we can ixitegrate (2.35) over the

rectangle [(i — 3)A, (i + 3)h] X [tn,tn41] to obtain.

G+3h ot Bue(z,t)  Of(u'(z,t))
'/; ( 5 + o )dtd:z:

(i‘%)h n

(i+%)h (i+3%)h
(2.42) =/ ' u’(z,t,.+1)dz—/ ' u®(z,t,)dz
(i-$)h (i-$)a

tn41 tnd1
+ /‘ Fu(G+ %)h,t))dt- /' ' Flus((i - %)h,t))dt =0.

From (2.40) we see that u®((i - 3)h,t) = R(0,ul_;,u?) and w((i+3)h,t)=
- R(0,u},u? ,) and therefore (2.42) becomes

(2.43)

G+{)n Gi+§)h
/ u'(z,t,.+1)=/ u®(z,ty)dz
(i=3)h (i-=$)n

thit tnet
+/: F(R(O,u}_;,u? )-/‘ FRO,u],uly,)).



| 21
Using (2.41) we obtain

@49) W =ul - Z(ARO,UE.) - SROME, ).

Therefore
W = = ATy - 1)

where A = [, "?ﬂ = R(0,u?,u?,,) and ﬂ‘ﬂ = ’(“?ﬂ)' (2.45) is Go-
dunov’s scheme and it is clearly in a conservation form. Godunov's scheme is
monotone preserving and Harten, Lax and Van Leer [7] showed that it is also
upwind.

It is clear that Godunov’s scheme does not use all the information derived
from the exact solution of the Riemanr problem. Instead it uses the data at a
selected point in the relevant interval. However, the Riemann problem can be
very expensive to solve and in many cases it is impossible to obtain the exact
solution. Harten, Lax and Van Leer [7] proposed the replacement of the exact
solution R(z/t,us,u,) of the Riemann problem (2.39) by an approximate
solution w(z/t,us,u,.). This approximate solution can be structurally much
lecs complex as long as it is in a conservation form and as long as it satisfics
the entropy inequalities. They proved the following theorem which shows that

this type of an approximation is consistent.

THEOREM 2.5. Let v(z/t,us,u,) be an approximation to the solution of the

Riemann problem (2.39) that satisfies the following conditions:
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i) consistency with the integral form of the conservation law:

M3 o h
(2.46) (=, ue, b )dz = -2-(m +ur) = 7(f(ur) — f(ue))
h/2

‘r!

for % > 7|Amax]-

ii) consistency with the integral form of the entropy condition:

h/2 z h
(2.47) / . U(r(5 ue,ur)de < 5 (Uwe) + Uur) - 7(£Fg(ur) = fe(ue))

for %’- > 7| Amaxl-

Then the Godunov type scheme, deiined as follows

h/2

1 T 1 /° z
(2.48) ut! = %), r(;,u}'_,,u?)d:t-}- Z/_h/zr(;,u?,u}'“)dz

is in conservation form consistent with (2.39), and satisfies the entropy
approximating inequality (2.22).

We note that Godunov's scheme is of Godunov’s type. Then by using
a classical result of Lax [7] we see that limit solutions of Godunov’s scheme
which uses the above approximate solution; obeys the conservation law and
satisfies the entropy condition. In Chapter IV we will consider some particular

approximate solutions (%,vs,v;) to the Riemann problem corresponding to
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an elasticity conservation law. Approximate solutions to the Riemann problem -

satisfying Theorem 2.5 are called Riemann solvers.

2.4 The Artificial Compression Method

Consider the scalar conservation law
(2.49) Ug + f(u): =0

with the initial data
u(0,z) = uo(z).

Suppose the solution u(z,t) has a discontinuity denoted by (we(t), u(t),o(t))
where u(t) and u.(t) are the state to the left and to the right of the shock
respectively, and o(t) is the shock speed. Oleinik [12] gave the following ad-

missibility criterion:

S(U,U() = .‘.f(_u):_f_(ll). 2 g 2 f(U) _f(u")

U —uy u—u,

(2.50) = s(u,u,) VYu € (uq,u,).
This can be restated in the following convenient form:
(2.51) l9o(1) = clsgn(ur(t) = ue(t)) 20 Vu € (ue,uy)

where go(u) = f(u) —ou is the fluz function in the coordinate system mov-

ing with the discontinuity. The constant ¢ = go(us) = go(u,). Jennings (8]
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showed ﬁhﬁt in the case of strict inequality in (2.51), which couési:oﬁds fo a -
shock wave, every monotone scheme in conservation form possesses a viscous
- profile and the number of ceils W(ue,up) occupied by values between u,
and u, in the profile is inversely proportional to go(u) —c. However in
the case of strict equality in (2.51), which corresponds to contact discontinuity,
Jenning showed that such a profile does ~uot exist and that W(ue,u,) is un-
bounded in time. Therefore we need to mcdify the standard finite diﬂ'érex;ce
methods so as to prevent the smearing of contact discontinuities and improve
the resolution of shocks. In this thesis we shall discuss one such modification,
Artificial Compression Method (ACM), which was introduced by Harten
[4]. ACM can be used in conjunctioh with an already existing finite difference
scheme.

Consider a function g(u,t) which has the following properties:

(2.52a) g(u,t) =0 for all u ¢ (ue(t),ur(t))

- (2.52b) g(u, ¢)sgn(u,(t) — ue(t)) >0 for all u € (uet), ur(t)).

Such a function g is called Artificial Compression Fluz (ACF).

THEOREM 2.6. If wu(z,t) is the solution of the original conservation law

(2.49), then it is also the solution of the modified conservation law:

(2.83) ue + [f(u) + g(u,t)]: = 0.



ER
PROOF: Since wu(z,t) does not ta.ké any values between u,(t) and- u.(t), -
property (2.52a) tells us that f = f+g=f and (2.53) is reduced to the
original equation (2.49).
The Rankin-Hugoniot condition for the modified equation (2.53) will be:
Fur(t) = flue(®)) = [f(ur(t) + glue(t), )] = [f(ue(t)) + glue(t), )]
(2.54) = f(ur(t)) = f(ue(t)) by property (2.52a)
= o(t)(ur(t) - ue(t)) by (2.13).
Therefore  (ue(t),u,(t),0(t)) is also a discontinuity for (2.53). To complete
the proof we show that wu(r,t) is an admissible discontinuity for (2.53). Let
Go(u,t) = f(u,t) —ou be the flux function in the coordinate system moving
| with the discontinuity (ue(t),u,(t),0(2)). Then by (2.52a) ¢ = go(ue(t)) =
do(ur(t)) = ¢. Therefore using (2.51) and (2.52b) we obtain the following in-
equality:
(§o — &)sgn(ur —ue) = (f + g — ou — c)sgn(u, - ue)
(2.55) = (f — ou — c)sgn(u, — ug) + g(u, t)sgn(u, — uy)
= (go(u) — c)sgn(ur — ue) + g(u, t)sgn(uy, — ue) > 0.
Thus the modified equation satisfies the entropy condition. However, note that
the entropy condition (2.55) is a strict inequality. Therefore both contact dis-
continuities and shocks for the original equation will be shocks for the modified
equation. Note also that [§o(u,t) — ¢} > |go(u,t) — ¢| so that the spread of
shocks for the modified equation which is inversely proportional to |go(u,t)—c|,

is reduced.
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If we approximate the modified equation by a monotone finite difference -

scheme then we have a more restrictive CFL condition.
(2.56) : m‘?xla.,f +0.9|AL L

To overcome this difficulty Harten suggested the use of split fluz method where
the artificial compression is separated from the main calculation. Let the mod-

ified scheme L be such that

I
Q
t~

(2.57) i

where L is a finite difference approximation to the solution operator of the
original conservation law and C, the arlifical compressor is some finite differ-

ence approximation to the solution operator of the equation,
(2.58) ug + g(u,t)e =0.

Observe that if (u¢,ur,0) is an admissible solution of the original problem

then by (2.52a) we obtain

gue(®) = g(ue®) _,
) —ud)

Thus - (ue,u,,0) is a stationary shock of (2.58).
The split luc ACM, L =CL is a corrective type two step scheme. In
the first step, L smears discontinuity as it propagates it. In the second step

C compresses the smeared transition towards a sharp discontinuity. Since the
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appllcatxon of C does not involve a.ny phymca.l mot:ou, it does ﬁof alter the
phys:ca.l time in the solution obtained by the first step. Therefore the time step
"= A'h  should be regarded as a dummy time step.
The split flux approach allows us the freedom to choose C indepen-
dently of the main calculation. Harten [4] chose C to be the upwind scheme

in conservation form:
(2.59) ujt! = o} - —(GM GY_y)

where G,-H =g7 + 9741 — 1974, - 97 |sen(uly, ~uj) and g} = g(ul,t). He

showed that if the discrete CFL condition

(2.60) A max |79 <
ul#uJ+‘ u1+] "'u,

then the upwind scheme (2.59) is monotone preserving. Harten showed by the
following theorem that this upwind scheme possesses stationary shock-like pro-

files.

THEOREM 2.7. Let g(u,t) be an ACF (2.52) for the discontinuity (u¢,u,,0).

The finite difference solution of the upwind scheme (2.59) to the initial data

ue for j<J
(2.61) ul=1{ u,j for Ju<j<lJ,
u, for J,>j
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whem u., isa monotone function of j, converges pomthse to the statzou- ‘

shock-bke solution

Uy for j<Jeo
(2.62) uP =¢ wtalur—u) for j=Jo
Ue for j>Jeo

where the integer Jo and a, 0 a <, Jy £ Jo < J, are uniquely

determined by the conservation relation

Jr
(2.63) Z u =Y uP =(Jo—a=Je+ Dug+(Jr = Jo + @)uy.
J=Je J=Je

Equation 2.62 is the maximum resolution possible for the conservation scheme

L.

In general u, and u,, which are used in the construction of g in
(2.51), are not known in advance. Harten [5) showed that this information can
be extracted directly from the numerical solution u™ itself. He defines g

as follows:
(2.64) = ”* max|0, nun(lA,Hu"l, Si+3 O] _%u")]

where A;.‘ﬁu =uly; —uj and SP., .= sgn(AH,,,,u) Therefore

lg},,, 971 £ lu}yy —u}|, and the CFL condition (2.60) becomes A’ < 1.
The artificial compression operator Ca is the upwind scheme (2.59)

with ¢! defined by (2.64). The analogue of Theorem 2.7 holds where the

artificial compressor C is replaced by the numerical compressor Ca.
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TﬁEoﬁEM 2.8, Leé ﬁ”"" =Cau", n 20 where C’A is the artificial éom- :
pressor (2.59), (2.84) with A' <1, and u',’, is the initfa.l data (2.61). As
n — oo,u” converges pointwise to the stationary shock like solution (2.62),

(2.63).

The artificial compression method can be extended to the system of con-
servation law. The method described for the scalar case can be applied compo-
nentwise to the system of conservation laws. However, the artificial compressor

g in this case is approximated by the vector
(2.65) o =a}(uiyy —ui-y)

where the nonnegative scalar o = a;(u") is defined by

min{|A%;, yul, ST, 4 A7yl

2.66 ¢ = max {0, mi
(2.66) of = max [0, min 875448l +1A3;_yul |

where A7, v = ulis —ul; SP, 1= sgn(A;:j + iu) and w; denotes the

- J's component of u} for j=1,2,...,p. This modification constructs the
numerical artificial compression flux in the correct direction.

The artificial compression method is essentially a modification of the char-
acteristic field of the given initial value problem by the addition of the conver-
gent characteristic field 9% =g’ (2.53) of a stationary shock. In this process
ACM improves resolution of the solution in the neighbourhood of admissible

discontinuities. If the ACM is used in smooth regions (bounded w,.), then

the characteristic speeds are modified by a term which is O(h). This will



cauue a.hy combtessnon wave td develop mto a shoclc ea.rlm' th&n 1t should a.nd .
any expansion wave to expand with O(h) delay. Moreover d applxed to an
inadmissible discontinuity, (eg. a rarefaction wave developing from initial dis-
continuities) the ACM might make it become an admissibility discontinuity in
the modified equation: (2.53). Therefore it is necessary to design some sort of
automatic switch that eliminates the application of ACM in rarefaction regions.

We modify the upwind scheme Cy by Cl which is given by
(2.67) ut! =l - (0,+§G,+% 6 G y)

where 67, y s an automatic switch such that 0< fivg €1 and O vy~
for shocks and contact discontinuities, but 67, } = O(h) in smooth regions.
In order to construct the switch er 4y We must be able to identify the dis-
continuities. There are two possible ways to detect a discontinuity on a fixed
mesh:

i) to look for a large variation of the solution

ii) to look for abrupt changes in the variation of solutions; such that abrupt

changes occur at the end points of transitions.

There are many such switches that can be constructed using these two ideas
[5). In this thesis we will use the following automatic switch constructed by

Harten [5] using the second idea

(2.68) ?Hr = max(6}, é?ﬂ)




‘where

a7, LAl-lar L8l —
il for 1A% 481+ 1A, 48> ¢

| ) I
(2.69) 6t =
| 0 otherwise.

Here B = B(u) is a scalar function of the vector uw which has a jump
discontinuity when wu is a shock or contact discontinuity. Otherwise it is
smooth. We choose € > 0 so that a variation in A(u) which is less than
€ is negligible. Clearly 0< A } €1 and it satisfies the required properties.

Note that the switch detects abrupt changes in the variation of A(u),
independent of their size. Its values for the numerical solution might fluctuate
and, in so doing, trigger the switch. Such an occurance can be prevented by
choosing an appropriate tolerance ¢ in (2.69). In Chapter V we will present
several examples of computations with ACM using the artificial compressor C'

given by (2.6). As we will see, these computations exhibit oscillation free tran-

sitions with-an excellent resolution of shocks.
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CHAPTER 111
FORMULATION OF THE EQUATIONS OF MOTION
AND SOLUTION TO THE RIEMANN PROBLEM

3.1. Governing Equations

Consider a perfectly flexible uniform incompressible hyperelastic string.
Suppose that in its reference configuration the string has its unstressed natural
length at temperature Ty, and occupies the interval [0,Ly] on the =,
axis of a rectangular coordinate system. The =z, coordinate of a particle in

its reference configuration is denoted by X € [0, Ly]. Therefore the motion

of the string is given by
(3.1) z=z(X,t)= (xl(X,t),:z:g(X,t))T

where z is the position at time ¢ of a particle that occupies position X
in the reference configuration and the superposed T denotes the transpose.
If S(z,t) denotes the arc length measured from =z = z(0,t) in the

deformed configuration then the stretch A(X,t) is given by

(3.2) A(X,t) = gks-.

Therefore we have the following compatability relations,

O(Acosf)  u d(Asinf)  dv
(3.3) a —oax ™ T Tax

32
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where u=2;,v=%;, and 8=6(X,t) is the angle that the tangezit' to the

string makes with =z, axis as indicated in Figure 3.1.

2

Figure 3.1

Since we have assumed that the string is perfectly flexible, the tensile
force P per unit sectional area of the string in the reference configuration is
tangential to the string. Therefore if the body forces are neglected, then the

Lagrangian equations of motions will be as follows;

O(Pcosb/py) _ Ou d(Psinf/po) _ v
(34) —ax o ¥ ox

where po is the constant density in the reference configuration.

System (3.3) and (3.4) are in the following conservation form;

6 OBE) _
(3.5) % ax =0
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where G = (Acosb, Asinb,u,v)7, H = (u,:v,Pcosl)/po, Psin/p)7. We -

write (3.5) in the following convenient form,

' : oG oG
(36) W+Bﬁ—o.

If the isentropic approximation is adopted and P = P(A) is the adiabatic

nominal stress-stretch relation, then the matrix B is given by

(- | I)
c|] O

where I is the 2 x2 identity matrix, and C isa 2x2 matrix with
the following components;
C11 = (C} cos? 6 + Cksin?4)

Ciz = Cy = (C} — C¥)sinfcosh

(3.8) Ca2 = Cisin®8 + Chcos? 8
; _ 1 9P
Ci= po OA
P
C} = —.
L= o

The eigenvalues of B are +C; and =+Cp. Therefore the system will be
strictly hyperbolic if C} >0,C%>0 and C} # C2.

If system (3.5) is subjected to certain initial and boundary conditions
then solutions can be found (see for example [14] [16]). Hov.ever these are
essentially solutions to the Riemann problems. In this thesis we will consider

fairly general initial boundary value problems for the special case of (3.5) with
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9=0 and v=0MXt) € {(Xt):0<XE Lot >0} Thisisa
simple longitudinal stretch of a string which occupies the interval [0, Ly] of
the r; axis in the undeformed natural reference state at temperature 7p.
Therefc;re the governing system of partial deferential equations (3.5) is reduced

to a system of two equations:
(3.9a) w+ flu)x =0

where uw=(u,A\)7 and f= (:';—:’Q, —u)7. If equation (3.9a) is non-dimensionalised

P Wnfe)' P .y o
t = y U= Gro/0)" where L isa

by setting =%, X=%, P=L,

4

typical length, then dropping the hats, we obtain the conservation law
(3.9b) %+ flu)x =0

where w=(Au)T and f=(-P,-u)T where u= an.

In Chapter V we will consider a number of initial, boundary value prob-
lems for (3.9). In general these problems develop internal shocks and it is not
possible to find analytic solutions beyond a finite time ¢,. Consequently it
is necessary to investigate other numerical methods. In this thesis Godunov's
method which is described in Section 2.4, will be employed. Godunov’s scheme
is based on the exact solution of the Riemann problem for (3.9). Thercfore
later on in thi- Chapter we shall discuss solutions of the Riemann problem.
But first we shall describe the constitutive relations required in order to wolve

(3.9).
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3.2. '('ansktittvxﬂtii‘r:e‘ Kelaiiohs
In ﬁlis thesis we shall consider thé problem of simple tension of an in-
compressible hyperelastic string. For these problems the strain energy function

is given as a function of )\, so that

1 1

where A is the stretch in the direction of the tension. We obtain results

for special cases of the Mooney-Rivlin and three term Ogden strain energy

functions. For Ogden’s three term strain energy function we have
3 "

3.1 W) =) (A% 42A7%/2 _3),

(3.11) () ; o )

where p3 is the infinitesimal shear modulus, 0< a <1 and E?:x ia; =

2u.

For isothermal tension Ogden [11] has shown that the nominal stress-

stretch relation,

3
(3.12) P() =) (At - a=¥ )

=3
obtained from

(3.13) P(A) = %"9

gives a close fit with experimental data for simple tension of certain rubber up

to stretches of about 7 when the u; and a; take the values
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lf‘x= 1.491 lf‘z= 0.003 l‘i‘l= -0.0237

(3.14)
a;=13 a= 5.0 ay= -2.0.

With these parameters (3.12) gives an s-shaped curve with an inflection point
1=2.624 [see Fig. 3.2]. The Maoney-Rivlin strain energy function is a special

case of (3.11) with

";‘-:a B=_(1-a) f3y =

(3.15)
a1=2.0 ar= -2 OS(YS 1,

and the corresponding nominal stress stretch relation is

1

(3.16) P(A) = p(a + (1 = a)/A)(\ - 1)

With a =0.6 (3.16) gives a close fit with simple tension experimental data
for A upto about 3.5. The Neco-Hookian stress stretch relation is a special

case of (3.16) with a =1,

(3.17) P=pu(A-17?.

For the problems we will consider in this thesis we will use the stress

stretch relations (3.12), (3.16) and (3.17). These relations are generally used
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Figure 3.2




for isothermal deformations. The thermodynamic effects are investigated .in [17], -
where it is verified that for rubber like materials the error caused by neglecting

these effects on the P - A relation is negligible.

3.3. The Riemann problem for the Mooney-Rivlin String

Consider the conservation system (3.9)

(3.18) % + ag‘(:;) =0

where uw = (\u)T and f = (-u,-P(A)T. For now we will consider the

Mooney-Rivlin string which has the convex stress stretch relation given by
(3..19) PA)=p{la(A=2A")+ (1 -a)(1-2"Y}, a=06.

We may write (3.18) as

(3.20) ' u + Au, =0

where A = (’gi _01) and Cp = /P'(X) > 0. The cigenvalucs of A
are;

a;=CL = \/ITA) >0

a; = -C, = —\/P'(A) < 0.

These are both real and distinct. Therefore (3.9) is strictly hyperbolic.

(3.21)
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We consider the Riemann problem for (3.9) subject to the initial condition -
ue=(Anu)? X <0

(3.22) (0, X) = (A0, X),u(0,X))7 =
' YUpr = ('\nur)r X>0

where uw, and wu, are constant states. The solution of the Riemann problem
(3.9), (3.13) for a general function P, with P'" <0 and P' >0, consists
of constant states separated by either shock waves or by rarefaction waves (see
[14]).

Now we will discuss shock wave curves. Let u = (A, u)7 be a state
connected to wue = (As,u,)7 on the right by an i-shock. Then wu satisfies
the following jump condition (2.13),

(3.23) 1% [uJ =

-P()
12

-u

where [F] = F, — F, denotes the jump in the quantity F from the right
state to the left state, and V is the shock speed. Thus solving for V we

obtain the followfng:

(3.24) V = ta(A)

where o)) = \/%(—‘\-‘—l.

Eliminating V in (3.23) we obtain

(3.25) [u] = £/[P]IA].



| | o
The i-shock must satisfy the usual shock ine(iuality (2.15)
(3.26) ai(A) £ Vi € ai(Ae).

Hence for the 1-shock ¥} = —0()) <0 and for 2-shock V3 =¢(A) >0, since
a; <0< ay.
We now consider the possible states u that can be connected to wuy

on the right by a l-shock. In this case (3.26) implies

(3.27) —VPN < —/P(A)

which gives P'(A) > P'(A¢). Thus A¢> A since P'" <0. From (3.25) we

have
(3.28) ViItA=Ap) = —(u—ug) and Vo(A = Ag) = —(u —uy).

Hence since V; <0<V, and (A-A)) <0 we conclude that [u] =u—uy<
0. Therefore in (3.25) we must choose the negative sign. Thercfore any state
that can be connected to u, by a 1-shock on the right will lie on the 1-shock

curve given by the following;

(3.29) ST iu—ug=(A- ,\)\/P“z fl“’ =s"(A\u) A< A

P(A¢)=P(A)4 P (A) (A=A - . )
> 0. Hence s is monotone in-
2:/2(”11‘\1 ’

creasing. It can be shown that in region A < Ag, ¢~ s starlike about the

do-
Note that 7';

point (A u) (i.e. any straight line through (As,u¢) crosses the curve s~



at most at one pomt) Hence in the (Ayu) plane the s~ curve will be as ‘.

shown in Fsg 3.3a.

" ve =-0(A) 4
; - E
Uy U,
X -
Figure 3.3a Figure 3.3b

If wr is any point on this curve then the Riemann problem can be

solved by connecting 1-shock on the right (see Fig. 3.3b).

Similarly we consider the possibility of connecting 2-shock wave to the

right of state we. In this case the shock inequalities (3.26) require

VP'(A) < P'(A).

Hence A > .. Then using a similar argument as above we obtain the 2-shock

curve which is given by,

(3.30) Stiu—u= -(A A )\/P('\) P _ st (M ue) A> A



Here s* is monotone decreasing and it is starlike about the point . ‘(Ac,uc) ,

(see Fig. 3.4a).

Uy
14 v
st V=+0o())
u
u, L4
u,

by
X

Figure 3.4a Figure 3.4b

Thus for any u, on this curve the solution to the Riemann problem
will be as depicted in Fig. 3.4b.

Let us now find all the possible states w = (A,u)T that can be connected
to the right of wu¢ by a rarefaction wave. Rarefaction waves are the continuous
solution to the Riemann problem of the form w =u(X/t). Here we have two
families of rarefaction waves corresponding to each characteristic values a;.
For k=1,2 a k-rarefaction wave must bg such that au(u(X/t)) is an
increasing function of X/t.

If z=X/t, for u =u(z) we obtain w, = % and w = -!'J‘g"-"-.

Hence (3.20) becomes

(3.31) (A -z, =0.



If U, = =0 then u is constam Thetefore suppose U, # 0 In thxs ca.se u, '
will be a right exgeuvector of A correlpondmg to the exgenvalue 2. I-Ience

corresponding to each eigenvalue, we obtain a rarefaction wave which satisfics

C} - U, 0
From this we obtain }(f= —-a;  or,

. du _
(3.32) I ~ap for k=12,

which by integration gives the k rarefaction curve given by

A
RY:u=u, +/ or(y)dy, k=1 and 2.

A

Then the requirement ag(A) > ai(Ag) gives P'(A) > P'(Ay) for l-rarefaction

wave and P'(A) < P'(\y) for 2-rarefaction waves. Therefore since P" <0

we have
A
R :iu-uy= / Cr(s)ds=r"(Aug) A> A
A
(3.33)
A
Rt:u—uy=~ [ Cr(s)ds=rT(Au) A<A,.
A

Note that % = CL(’\) >0 and %—_ ZZL((A‘\)) <0 Slxmlarl dT':\t =

-Cr(A\) <0 and -‘g{;— = —%{% > 0. Therefore the rarefaction waves can

be depicted as in Fig. (3.5a).



48

Uy
Yy
X
Uy ! "
R* /
1 ) ul
Uy ' /. Uy
-I——; -
X
Figurc 3.5a Figure 3.5b

The corresonding solution of the Riemann problem will then be as shown in
Fig. (3.5b).

Hence given the initial condition (3.22) one can solve the Riemann problem
by connecting w, to wu, by a rarefaction wave as follows. For instance
if ai(Ar) < ay(A;) then we obtain A(X/t) from X/t = ay (MX/Y) =
—v/P'(A(z/t) which will then be used to find w{X/t) from u = u;+
| f:‘ Cr(s)ds.

Note that 4 =[(c?+P')}, and G =£0_
fore since ‘\liu}‘&-}i{-’f—“'i = P'(A) we obtain Y |res,= P'(A) and
%’-}; [a=a,= ﬁﬁ\)ﬁ. Therefore at A = A, the s~ and the f"’ curve

have 2" order contact (i.e. their first and second derivative are equal). Sim-

ilarly we can show that s* and r* have second order contact at A = A,.



| | T
Therefore we have four curves dxvxdmg the (A u) pln.ne xnto four dnsjomt

regions. They meet smoothly at A=A, (see Flg 8 6).

1.2 T T T T
+
06} R -
1V
U o0} 11 I A
| S+ -
‘OG - ” -
_ S” -
qol 1 1+ v 1 o1
1.0 1.4 1.8 2.2 2.6
A
Fig. 3.6

So given any uy = (A, us)T € R? if wu, lies in one of these curves then

the Riemann problem is solved as described above. If wu, does not lie on one

of these curves then we solve the Riemann problem as follows. For u € R?
define

S+(@) = {(A\,u): u—ur = s3(A,0)}
(3.39) Re(@) = {(A,u) : u—ug =r2(,0)}

Wi(u) = 53(u) U R (w).



.«
If u.- = (A.-, u.-) is in regxon I, II or III, then C I umque i= (X u) suc.b
that w, lies on Wi(u) and @ lieson W_(uc) (for detmls see [15]). If
_however U, isin region IV then such a @ exists only if an extra condition is
imposed on  P. (For example P must be such that [{° VP )y = +00.)
Therefore for both the Mooney-Rivlin and the Neo-Hookian strings there exists
a unique # with the above properties for any u,. € R?®. The solution to
the Riemann problem is now clear. Suppose for example that u, is in region
I. Then as we discussed above there exists a unique @ = (),4) such that
Wi(u) passes through wu,., and W_(u,) passes through‘ . Hence u is
connected to wue on the right by a 1l-rarcfaction wave, and wu, is connected

to @ on the right by a 2-shock wave (see Fig. 3.7).

W (1)

W (ue)
W_(ue) X

Figure 3.7

The three other cases can also be analyzed similarly.

Note that if P" > 0, then obvious changes need to be made, and we

find again four curves dividing the (A,u) plane (see Fig. 3.8).
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3.4 The Riemann Problem for the Three-Term Stress-Stretch Relation

We shall now investigate the solution to the Riemann problem for the

three-term stress-stretch relation. From Fig. (3.1) we can see that in this case,

P has the following properties:
i) sgn(P") = sgn(A-A;), A>1 where A;=2.643 is the only inflection

point,

ii) P(1)=0, P'(A)>0 and there are exactly two solutions Am, A,

Am < Ay such that the following equation is satisfied

P(})



-

The solutxon wé discuss in this section ai:plies not ot;iy fo;' tiiis case but

also for the case where P is any function with properties i) and ii) (see [13]).

As before we start our discussion with shock wave curves. Let u = (A u)7

be a state that can be connected to wy = (A, u)T on the right by an i
shock. For now consider the case where A¢ < ;.

For the 1l-shock curve we require P'(A) > ¢ > P'(A¢). Therefore we

obtain the standard 1-shock curve given by

tu—ug=(A- ,\)\/P('\) POD _ - A< Ae < A

For the 2-shock curve the requirement P'(A) < 0 < P'(A¢) must be satisfied.
Therefore proceed as follows. Let L be a tangent line to the curve P = P(\)
passing through (A, Py). Then let  (Are, P(Ape)) be the point at which this
tangent line touches the curve (sce Fig. 3.9). Clearly we have Ay > A, and
for A < A < Ap¢  the requirement for 2-shock curves is satisfied. So for
At < A < Ar¢ we connect (A ue) to (A u) on th;: right by a 2-sklmck

which is given by

Stiu—upg=—-(A- ,\)‘/P(A) P('\') st (A u) A <A< A < Ay

We can proceed with this shock curve only up to A = Ay, since at = Ay
we have P'=o0 and then P'(A\)>eo for A > Are. To go beyond Ay

we connect (Are,ure) to (A,u) by a 2-rarefaction wave. This is possible
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since for A > Ay, P'(A) is increasing. Hence, for A > Apy we havean R+
curve connecting (Aqe,ure) to (A,u) given by:

. A
Rt:u-—up =- \ Cr(y)dy =f*(Aupe) A > Ape.
T

-t
N
o
fow

0~

P(\)

Figure 3.9

Note that l’g- = !liﬂ:_;'—"l(}"(,\) +0() and yd’_;;_ = -sng:;-kzpzt -
' 2
_Tu_(zl"w;;u % 2), By the choice of Ar; we have o(Ary) = P'(Are). Therefore

+ 2.4 " A
ijrhm\r, = /P'(Ar¢) and %I,\:,\n = ;57,%. Hence st(A7e,up)

and 7t(\,ur,) have a second order contact at A = Ay, (i.e. their first
and second derivatives are equal at this point). Therefore on the z -t plane

the solution will be as depicted in Fig. 3.10.
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Figure 3.10

Let us now discuss the rarefaction wave curves. For a first rarefaction
wave we must have P'(A,) > P'(A). Clearly for A, < A < A; this require-
ment is satisfied. Hence up to A =)\, we can connect (Agus) to (A u)
by a 1l-rarcfaction wave. However we cannot proceed any further with cxbansion
waves since  P'(A;) < P'(A) for A > );. We also cannot connect ();,u,)
to (A, u) by a shock curve since the shock speed will be greater than some
of the rarefaction characteristic speeds. Therefore we proceed as follows. For
each A > ); there exists a Ar = Ar(A) such that 1 <Ar <), and,

PQA) -~ P(A7)

i = POn).

(3.35)



Then if Ay > Ay, we connect (Aé.ug) to (A,u) b& the usual -1-shock -
curve because in this case we have P'(A) > & > P'()\;) which is the 1-shock

inequality (see Fig. 3.11). )

P(A)

Figure 3.11

But if A, < Ar then we first connect (Aquy) to (Ar,ur) by a 1-

_ rarefaction wave which requires P'(A;) > P'(A). Then we obtain the R~

curve given by
A

(3.36) R :u-—yr= / Cr(s)ds =r~(Aue) At <A< AT
A

Now since P'(A) > ¢ > P'(Ar) for A > Ap, we go from (Ar,ur) to
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(a\; u) b}" a l-shock, where u is given by

b= urt (A=) P(,\g - f(xr)
(3.37) " T
=uet | Culs)ds+(A=Ar)Cu(Ar).

The form of the solution will be as shown in Figure 3.12. There is a jump at

the right edge of the rarefaction.

- S
R At ts
Y
Ae < AT ¢t DAT
ut Ur. U,
u,
u u, X u u, X

Figure 3.12

Finally we consider the 2-rarefaction wave. Here we require  P'Ay) <

P'(A). So we obtain the standard 2-rarefaction wave curve given by

A
(3.38) RY iu—-us=- Cu(s)ds=r"(Au) A< A,

A

As in the convex case, we have four smooth curves which divide the (A u)

plane as shown in Fig. 3.13.
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1.2

u 0o

-1.2

Figure 3.13

The curve :T}Tp denotes the locus of the tangent points of the type
illustrated in (3.9) for curves emmanating from the r~ curve through wu,
and w;, 7y being the tangent point associated with A, To that for A =1.
The extension of this curve into region IV denotes the locus of tangent points
of the type illustrated in Figure 3.11, for curves emmanating from the curve

S7. In referring Figure 3.11 ) there corresponds to the pointson S;”. The



S,' c;;'fre ;;érése;xts 'tllxe lécus of éomts (S u) oﬁ Flgute 3 11 as 4\7 wmes ‘
on fhe curve r~ throug U, A7 £ A;j. The other curves are as md:cuted
previously.

So given any wy = (A,u)T € R* if u, lies on one of these curves
then the Riemann problem is solved as deseribed above. If wu, lies in regions
I to IV the solution is as described in the Mooney-Rivlin case. The remaining
regions require the cémposite curves of the type illustrated in Figure (3.9) and
Figure (3.11). Suppose for example w, lies in region !Va. Then we have two

possible solutions corresponding to twa different cases:

Uy =it — (\, — ;)\/w
(3.39) A —
i=uc+ [ Culs)ds + (A= M)Culdr),
A
or
=uc+ (A=A )\/P(") P(Ae)
with

P(2) - P(Ar)

A L AT ol V)
POy = =512,
where referring to Figure 3.11, ) corresponds to A there and A to
the tangent point. The first solution corresponds to the case where Ap > A,

In this case the constant state @ = (1,4)7 is connected to w,ll be a 1-

rarefaction with a jump at the right edge and w, if connected to & on the



nght by a 2-shock (Fxgurc 3 14&) Thc accoud colut:on corresponds to the case .
where A lies mﬂiclcnﬂy fa: to the nght 80 that .\1- < Ag. In this case ©
is connected to u, be a l-shock and wu, s connected to @ on the right

by a 2-shock (Figure 3.14).

If Ae=A; we can use Fig. 3.8 to obtain Fig. 3.15.

> —
u Ur X ue vy X

Figure 3.14

Now we consider the case where Ay > A;. For the l-shock wave we
must have the inequality P'(A¢) < o < P'(A). This is satisfied when A > A,

since in this case P" > 0. Hence we get the £~ curve given by

PO = PO _

(3.41) ST iu—up=(A=-2Ap) =

-(4\u¢) AD> A > A
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On the (A,u) plane S~ is monotone increaaing,

1 T 1 T 1 | 1 i T

10 -
+
05 . R ’S\* o
Ui
U o0 -
05} R* .
5-

-10F -

[T DU NN N M S R N

1.5 2.0 2.5 3.0 3.5 4.0
A
Figure 3.15

For the 2-shock curve we must have P'(A) < ¢ < P'(Ay). This is sat-
isfled for A7y < A < Ay where Ay, is the point at which the tangent line
L passing through (A, ue) touches the P = P(A) curve (see Fig. 3.16).
Here 1< Are < Aj. For Are < A< Ay the 2-shock inequality is satisfied.

Therefore we connect (Ag,u¢) to (A,u) by a 2-shock curve given by

+oumug= (A= f\c)\/ Az fl(a\c)

= s*(A,m) AT < A< ) < A,

(3.42)



P(A)

Figure 3.16

At A = Apre we have o(Ary) = P'(Ar¢) and o()) < P'(A) for
A< Are. We connect (Are,ure) to (A,u) by 2-rarefaction curve since for

A< Are, P'(A) > P'(Are). Thus we obtain the RY curve given by

A
(343) RY:u-upe=-| Cr(s)ds=r*(Aup)) A<App <A <Ap

Aty

The curves §t and r* havea 2™ order contact at A = Ap, and they
are both monotone increasing. The solution to the Riemann problem will then

be as shown in Fig. 3.17.
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Figure 3.17

Let us now investigate the rarefaction waves. We start with the l-rarefaction
waves where P'(A) must be less than P'()). Henceif A; <A<, we
can connect (As,ug) to (A,u) on the right by a l-rarefaction wave. How-
ever for the same reason discussed in the case where A, < A; we cannot
proceedba.ny further than A = \;. Therefore for every A <), wefinda

A7 such that

P(}) - P(A1)
A=Ar

(3.44) = P'(A7)

then A; < Ar (see Fig. 3.18).
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Figure 3.18

If A¢< Ar, the inequality P'(A\) > o > P'(A;) is satisfied. Therefore

we connect (Agur) to (A u) by a l-shock curve, which will be given by

(3.45) S tu—ug=(A- /\)\/M sT(Au) A<Ai <A< AT

However if Ay > Ap, we first connect (Ag,ue) to (Ar,ur) by a 1-

rarefaction curve given by

(3.46) R :u=u +/ C(s)ds=7"(A, ) A <A< A
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Then as in the previous case we connect (Ar,u,) to the state (A,u) by a -

1-shock, where u is given by

P(A) - P(A7)
A=-Ar

(3.47) u=ur+(A- Ar)\/

Then the solution will be as depicted in Figure 3.19.

- S
R ‘}t
A¢ >AT
ur
uy
uy¢ uy )?

Figure 3.19

Finally we have the 2-rarefaction wave which requires P'(1) > P'(A).
Thus for A > A, we connect (A,u;) to (A,u) on the right by the 2-

rarefaction curve given by
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A
R+ U~ U= — CL(S)db - r"’(a\,ul) z\,‘ < A <A
Ae

This is a monotone increasing curve originating at (A, ug) (see Fig. 3.20).

u

Figure 3.20

As in the previous cases we have four curves which divide the (A,u) plane

as shown in Fig. 3.21.
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Figure 3.21

The curve iT,Tp denotes the locus of the tangent points of the type
illustrated in Figure 3.16 for curves emmanating from the r~ curve through
e and w;,T; being the tangent point associated with 1,,Tp, that for
A =1. The extension of this curve into region II denotes the locus of tangent
points of the type illustrated in Figure 3.18, for curve einmanating from the
curve S?. In referring to Figure 3.18 )\ there corresponds to the points on
S;. 87 is as described earlier.

We now can solve the Riemann problem as in the previous cases.



CHAPTER IV
NUMERICAL ALGORITI-IMS
AND APPROXIMATE SOLUTION TO THE RIEMANN PROBLEM

4.1. Algorithms for the Exact Solution of the Riemann Problem
ALGORITHM 4.1A: The Riemann problem for the Mooney Rivlin string.
To solve the hyperbolic consewatibn law,

u+fy=0

where uw=(\u)? and f=(-u,~P) subject to the initial

condition:
U = (z\(,u()T AN<oO

u(X,0) =
= (A u)T X >0.

Here P is a convex function given by (3.16).
INPUT:  wup,u,.
OvuTPUT: exact solution uw, — L —ug —» R — u,.

OUTPUT INTERPRETATION: For exampleif L=s- and R=rt% then
we have three constant states ue,u, and wug separated by a 1-shock

and a 2-rarefaction wave (see Fig. 4.1).

64
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up

ue.

xt £

Uy u,

Figure 4.1

STEP 1: Calculating the boundaries of the four :"egions.

Set

A,
UR=u;+| Cr(s)ds|
A

US = ur = V(P(Ar) = P(A0))(Ar = Ar)-

Ovutprut: UR,US.

STEP 2: Determining the location of wu,.
If u,=UR then
if A¢<Ar then wg=(Au)T,L=r",R=v,
else ug =v(4\¢,u¢)7',L =u,R=rt
Go to Step 6
end if,

else if u, >UR then go to Step 3,



€ w0 thn
if Me<A then ug=(Anu)T,L=u,R=s"
else ugp =(\u)T,L=s",R=u,
go to Step 6
end if.
else if u, <US then go to Step 5,
end if.
else go to Step 4
end if.

end.

STEP 3: Calculation of wg in the case where wu, is in region IV.

Solve for ug = (Ag,ug)7,

Ag
ug = ue+ C(s)ds
A
A,
U = Ug — CrL(s)ds
Ag
L=r", R=r*

OuTPUT: ug,Ag,L and R.

STEP 4: Calculation of ug in the case where w4, is in region I and re-
gion IIL

Solve for ug = (Ag,ug)7,



if A¢e<Ar then

Ugp =g+

ur=ug +(Ar = Ag )J

else

Ag

A

L=s", R=rt

Cr(s)ds

P(f\z) P('\r)

P(Ag) — P(A
u;.;:zu-(AE -./\()\/ (/\F]z—/\l( l)

end if.

A,

Ur = UE — Cr(s)ds

Ag

L=r", R=s*

OuTPUT: ug,Ag,L and R.

STEP 5: Calculation of

Solve for u® = (A

ug in the case where wu, is in region II.

Equ)T

ug =ue+ (Ag = Ar)

Uy = ug — (A — Ag)

P(Ag) ~ P(Ar)

AE — Ae
P(Ar) = P(Ag)
A - A\

OuTPUT: ug =(Ag,ug)’,L, and R. .

67



ST!:-:i’ 6: OUTPUT
exact solutién Y=L —oug—R-vy.
stop

end.

REMARK:
1. This algorithm furnishes the exact solution for the given Riemann problem
with any function P such that P" < 0. If P"(A) >0 forall A
then to get the exact solution to the Riemann problcxﬁ, we only need

to reverse all the inequalities signs and replace US by US = u, +

VPQA) = P(A)) (Ar = A)
2. If we want to solve the conservation law (3.9) with a general initial

data using Godunov’s scheme then the above algorithm gives the value
n
of ul, p where
=u” —_ — n
ue=uj, U =uiy, o ull =up(uliuly,)

where ui, } is used in the Godunov’s scheme given by

ult! =l + A(f(u;-‘ﬂ —f(u;.‘_§)).
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ALGORITHM 4.1B: The Riemann bmblem for the three-term string. - .
To solve the hyperbolic conservation law,

u+fx=0

where u=(A\u)” and f=(~u,~P)T subject to the initial condition

v =0AnU)T X<o0
u(X,0) =
u = (A, U)T X >0

Here P is given by (3.12).

INPUT:  we,u, and A; where A =0A; is the only inflection point for
the function P = P(A). Herc we suppose Ay < A,, and A, <A,
OuTPUT: Exact solution wy— L —ug — R —wu,, with Ap,Ape
OUTPUT INTERPRETATION: For example if L =r"s~ and R =rt
then we have three constant states u,,u®,u, scparated by l-ra.rcfact;ion,

1-shock and 2-rarefaction (see Fig. 4.2).

Figure 4.2



STEP 1: Ca.lculatmg iﬁe Boundaries oi" the !;our baﬁic ;égions.
i A; < A then let Ap=JApe=A,.
else
Calculate the tangents Ar the tangent to A, as shown in Figure (3.11)
where A, corresponds to A there, and Agy the tangent to A, as
shown on Figure (3.9).
end if.

if Ar > A¢ then

Ar ) = P()
UR=ue+ [ Cule)ds + (3, — Ap)y| A= FOr)
4\¢ r— AT

L'=r"s

else

UR = e+ (Ae = Ar)\/ P20

L'=s"

end if.

If Are< A, then

P(ATe) - P(,\,) Ar
’\Tl ATe

US =up—(Are — /\()\/ Cr(s)ds

R =gstrt



!

eise

P(A,) - P(A
Us=u.-(xr-xe)\/ Bl 2
R =gt
end if.
end if

OurruT: UR,US.

STEP 2: Determining the location of wu,.

If u,=UR then
e =Anu), L=L" R=u,

go to Step 6
else if u, >UR then go to Step 3

if u,=US then
ug =(’\l)ul)T) L = Uy, R= R,

go to Sfep 6.
else if u, <US then go to Step 5
end if

else

go to Step 4



end if

end.

STEP 3: Calculation of ug in the case where w, is in the IV regions.
Set Ag = A,
¢« if Ag<A; then
set Am =Ag,As=A,R=rt and L=r"
else
Caleuluate Ap, the tangent to Ag as shown on Figure (3.11), where
Ag corresponds to A there.
if A< Ar then
set Ap=A¢ and L =s"
else
set Ap=Ar and L=r"s"
end if.
if Ap <A, then
set A, =X, ,R=st
else
set A, =Ap,R=s%rt
end if.

end if.



Then check if the following equations are sutikﬁed;

Am , — : _
Ug =up+ Cr(s)ds+(Ag — Am) P(’\f) f("m)
A¢ _E- m
- Ar '
up =up — (Ay = Ag) P('\'\E) P(f\a)_ CLls)ds.
E"‘\c

If not then increase Ar and go to

OuTPUT: ug = (Ag,ug)’, L,R,Am, and A,.

STEP 4: Calculation of wg in the case where u, is in the I regions.

Set Ag =),
* if Ag < A; then

set Ap=A,L=r"

73

Calculate Aty the tangent to Ag as shown on Figure (3.9) where

Ag corresponds to Ay there.
if Ar¢> Ar  then,
set Ay = A, R=st
else
set Ay = ATy R=s%rt
end if
else

set A, =Ag R=r*

Calculate Ar the tangent to Ag as shown in Figure (3.11) where

AE corresponds to A there if Apr < Ay then



T
sef Am=Ay, A=s"
else
set A\, =A7, A=r"s"
end if
end if

Then check if the following equations are satisfied,

Am i) -
Ug = u¢+ Cb(s)ds+(/\g—z\m)\/P( f) ’\P(,\m)
A¢ E— Am
A,
ur=ug — (A — /\E)\/P(/\E) = PQ) _ Cr(s)ds.
AE— A, .

If not then incrcase Ap and go to =*.

OuTrPuT: ug = (Ag,ug)T, L, R, Am, and A,.

STEP 5: Calculation of uwg in the case where w, 1is in the II regions..
Set Ag = A,
* L=s"
Calculate A7y, the tangent to Lg as shown on Figure (3.9) where
Agp corresponds to A there.
if Are> A, then
set Ay = A, R=st
else
set A\, =Ary, R=strt

end if.
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Then check if the following equations are satisfied,

ug = ug+ (Ag - A.)\/P("flg:i('\‘)

-— Ar
ur = ug = (s - Aa)\/} SA=08) [ o

If not then decrease Ap and go to +

OuTPuT: wugp =(Ag,ug)’, L, R and ),

STEP 6: OUTPUT: the exact solution
Stop

end.

REMARK:

1. The algorithm gives the exact solution to the given Riemann problem
for the threc-term stress-stretch string, if Ay < A, and A, < A;. All
the other cases can be done by making simple alterations. For example if
Ae>Ar and A, < A; then to get the solutiun to the Riemann problem,
we only need to reverse all the inequalities in this algorithm.

2. Same as Remark 2 in algorithm 4.1.

4.2. An Iterative Riemann Solver
Let we=(Ae,us)T and w, =(A,u,)T be the left and the right states,

respectively, in the the Riemann problem fcr the Mooney-Rivlin string. Then we
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e i pprsition o the it it 41 = (.
To do this we introduce the following curves:

$*tu=uy - (A= M)/ ERZPA - v (aw,) A<,

§- tumuy + (A=A )/ EREZPA - 5-(ay,)  AS AL

Rt iu=u, - [} Cp(s)ds = P+ (Au,) A> A,

R iu=u, + [;, Cu(s)ds = 7 (A,u,) A< A,

where u, = (A,,u,)7 isany pointin R® A>1. In the following discussion
we shall add a * suffix to the expansion curves to denote their extension. For
example the backward extension of the r~ curve from w, will be denoted

by r.; (see Figure (4.3)). Note that from the Schwartz inequality we have,

A
(4.2) | /A Cu(s)ds| < VP = POW)A= o),

so that the shock curves lie in the convexity of the rarefaction curves (see Figure
4.3).

If w, lies on any of the standard shock or rarefaction curves then, as
discussed in Chapter III, we do not have e.y intermediate states. Therefore,

let us suppose that wu, lies in one of the four regions.
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Figure 4.3

Region I:
Suppose u, lies in region I. As a first approximation of up we take

iy which is the value of u at the intersection of the r~ curve starting at

u¢ and the 7§ curve starting at u, (see Figure 4.4). Then

1 Ar
(4.3) uy = §(u¢ +u,+ C(s)ds).

A¢

Note that @; will always be smaller than ug since the 7}t curve emma-

nating at w, lies below the 3§ curve emmanating at u, (see Figure 4.4).
In order to get a first approximation A; of Ag we look at the straight line

joining uw, and wpy = (Ay,uer)T, where Apy is the value of ) at the
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St ced

intersection of the tangent line at u, and the horizontal line u =1;, and
Ugry is the value of u on the §t curve emmanating at wu,. Then,

ﬁl - Uy
A =N\ + ——
8= T

(4.4)

A) = P(A
Ugrl =ur+('\r_/\ll)\/P( '\)-/\c(x u)

Note that since #; <ug, we have Ag 2> Ay. Note also that since the s
curve is starlike about the point wu,, the straight line does not cross it at
any point between Ay and )\, (sce Figure 4.4). Therefore if we let X,
be the value of A where the straight line meets the horizontal line u = i,

then we obtain,

Y - /\r_/\ll
(4.5) AL = Ar 10 u,-)\/P(,\r) ~ 0w

Then the starlike property and the fact that at wu,, the slope of the =¥ s
the same as the slope of the 5% curve, gives us )y > Ag (see Figure 4.4).

Now let w. = (A, ury)T  denote the point on the §* curve given by

(4.6) Uy = Uy +(’\r — Xl)\/P(/\r) ‘{:(/\l).
X

and let uwy = (A, ue)T  denote the point on the r curve through w,
given by

A

(4.7) Uy = ug + l Cr(s)ds.
Ay
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As a sccond approximation of ug we shall take wu; which is the value

of u where the r~ curve starting at wy meets the 7 curve starting

at ury. Again i; < ugp since the 7} curve starting at w,; lies below

the §% curve starting at wu,. To sce this let (A u@)T be a point on the

¢ curve and let (A,ug;)7 be a point on the &+ curve, then for fixed

*

’\r a'nd ’\rh

h(A) = uqr — uq = VP(Ar) = P(A))(Ar - 1)

(4.8a)

A
— VPO = PO =) + A Cpistis
rl



K
and
POI-PQ)
(4.8) h'(A) = /P'(A) - P (A) C)

Pso\rl-‘\( )

Using the incquality a+b > 2/avh with b= P(A) >0 and a =
ﬂi{%:—fiﬂ. >0 weget Rh'(A) 0. But h(A) = 0 so that for any
A<An, B(A)=ug) —ug 20.

In order to get the second approximation A; of Ap we let wyp =
(Ar2,uer2)”  be the point on the 3§ curve where Ay is the value of A

where the tangent line at wy meets the horizontal line v = @iy, and wugn

is the value of u on the §* curve emmanating at w,. Then

ﬁl — Uy
At = Ae +
: ‘T Cu(hn)
4.9)
r] A
Ugrr = Up + (Ar = Ap2 )\/P('\/\) — ,\Pl(z n).

As before Ag > Agp since #; <ug and Ay € Ag. Since Ay > A2, Ag
is a better approximation to Ag than ;.

This procedure can be applied successively producing points wuy; = (Agi, ug)7
on the r~ curve where,

Ui = Uy(i-1)

i = Aoy + S M=)
b AEDT e o)
(4.10)

Aei
ugi = Ug(i-1) + / Cir(s)ds,

Agi-1)
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and producing points us; on the & curve where

(4.11) Ueri = Uy = (Agi = '\r)JP('\;'Z : fr(Ar)'

Then the i** approximation #; to wug is defined as the value of u
where the r~ curve starting at wey meets the % curve starting at

Ur(i-1) where,

(4.12) ri =ty + (Ar = Xy )\/P“')

Ar = A

Here X; is the i'" approximation to Ag is the value of A where the
straight line joining the point wei and u, meets the horizontal line u = ;.

Then the i*" approximation @; =(A;,#;)7T of wug is given by,

Ap(i-1)

_ 1
(4.13) i = E(ul(,-_,) + uri-y) +/ Cr(s)ds
Ag(i=1)

and

'\lt
~ (@ = “"\/ FOn) — PO

Region II:
Let us now suppose that wu, is in region II. Here we have three different

cases to consider.

CASE 11 A\, <A,



Let u,e = (Ayure)” denote the point on the &% curve starting at

u, where,

(4.15) Upy = Up + \/(P(l\r) - P(’\l))(’\r - Ar).

Then as a first approximation of ugp take w; which is the value of u at

the intersection of the r; curve starting at w, and &} curve starting at

ure (see Figure 4.5).
(4.16) ) = (ug+ up,)/2.

Note that the value of u where the §* curve starting at w, meets the
s~ curve starting at w, is equal to ;. Therefore #; < ug since the
§* curve starting at u, lies below the 3% curve starting at wu, (sce
Figure 4.5). To sce this let (A, up)T be a point on the 3§ curve starting
at u, and let (A up;)T be a point on the 5+ curve starting ét Uy

(see Figure 4.5). Then for fixed A, and A, we have

(4.17)
m(3) = upy —up = B = PO = &) — v(POh) = PO)(Ae = &)

= V(P(A) = PA))(A = Ag)

and
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(4.18)
W= (— PO z”ﬁ-”,*')( VMR Vi =

\/F_g.\ E-_-f‘(xg) ‘/T’___Q)P ) 2

) (AZ g.\-Pgm P A P'(A))( P A)~P(A \/P A)=P(A, )

A— Ar -ag -A,
2 P(.\) P()\¢) P(A)=P(A,)
A=A A=A,

which gives us  hj(A) <0 for A < Ay (see Figure 3.2 for the P,A relation).

But hy(A¢) =0 and hence hy(A) >0 for A2 A,
Now let ury = (Ary,ueg)T be a point on the §* curve siarting at
ur., where A,y is the value of A at the intersection of the tangent line at

ur, and the horizontal line u =1#; (see Figure 4.5). Then

(@) = Ups)

A= Ae= Ci(Ar)

(4.19)

Ugr] = Ur + \/(P(’\r) - P(’\rl ))('\r - '\rl )
" As a first approximation of Ag take A; which is the value of A where the
line joining w,; and u, meets the horizontal line u =i; (see Figure 4.5).

Then

>
II

(4.20)

(- “"\/ PO = P(A,,)

As in Region I, since #; < ug we have Ag 2 A, and by the starlike

property of the 3% curve about uw, we=zlsohave Ay > Ag (see Figure 4.5).
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‘ Ii a\l is suﬂicnently close to Mg, there may be a possxbxhty that A; li;as -
to the nght of A¢ A large number of numenca.l expenments were pezforined
to check if such a case can occur. In all the expenments done thss case failed to
occur. If by any chance such a case occurred we can continue with the iteration
by taking a A; sufficiently close to the left of A, so that it does not lie
to the left of Ag. However since in this case A, is very close to Ap any
standard techniques for solving nonlinear equations will converge very fast, if
A¢ is used as an initial approximation. Therefore in our discussion we shall
see that A, lies on the right of A,

In order to get a second approximation let wup,; = (A1, ure)7  be the

point on the &t curve starting at u, where,

(4.21) urar = ur 4+ \/(PA) = P(4)(Ar — A1)

and let w1 = (A ,ue)T  be the point on the s~ curve starting at we

where,

(4:22) ueer = ue = \/(PO) = PO1)(Ae - 1),

As a second approximation of ug take A; which is the value of A where
the horizontal line u = d; meets the straight line joining urs2 = (Arz, ues2)”

and u,. Here A, is the maximum of \,; and the value of A where
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the tangent line at w,,; meets the horizontal line u =1i; and U iS5 B
point on the &% curve starting at wy,

Ara = max (Apy, Ay = (lig = Ura1)/CL(Ay))

(4.24)

Ugrd = Up + \/(P('\r) - P('\rz))('\r - '\rz)'
Then
(4.25) Ay = A, = (i1 ~ ur)\/P(:\r) 500

so we will repeat the above procedure producing points wr.; and we con-

verging to wug. Let us now show that the j‘h

approximation 4; of ug
is monotonically increasing from #; to ug. To do this we will show that
for a given Ag, A ug,u,. the function ha(Xi—)) = ug —@; with g = A,

is an increasing function. Then

ey < 2@20,; - POg))(Ar = Ap)

(4.26) N \/(P(f\c) = P(Ai=1))(Ae = Ai-1)
2

(PO = PO = i)
2




and

ha(Xic1) = l(-—,,—l,:\::('\_‘;—‘)_-— + ‘/P('\;z = i{v\:—x)) ‘
v v

1, P(ic) |, [PR)=PRiy)
——( l"o\‘\)"‘l’.l i= +¢ ’(l-:\i—l : )

- ( \/P(Ar) = POizy) [POQ = PGit) _ puy.

A=Ay A= Aicy
‘ \/m,) = P(Risy) _ \/m,) = PGiza)y
Ar = Aoy Ae=Ain

which by the P — A relation gives us hj(A\;—;) > 0. Therefore since i
are decreasing monotonically hg(X;—;) will decrease monotonically hence as

t increases u; goes from Ay to Ap (sce Figure 4.5).

Uery

Figure 4.5

CASE 2: ¢ =,



Tlus case is a specml case of Case L Here the above procedure is used
: wath Y 3S U, Note that in thxs case (4. 16) gives the exact w.lue of ua

already at the first approximation (see Fig. 4.6).

Uer)

Figure 4.6

CASE 3: A > A,

This case is very similar to Case 1. We need only to interchange the role
of u¢ and wu, (see Figure 4.7). The analysis can be doen the same way as
in Case 1. The appropriate equations involved in the calculation are given in

Algorithm 4.2. Note that in this case w; is monotonically decreasing,.
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Yery

Figure 4.7

Region 111
Region Il is very similar to Region | and the method used there can be
used with obvisus meodifications (see Figure 4.7). The cquations involved in the

calculations are given in Step 3 of Algorithm 4.2.



Figure 4.8

Region IV

Ideas similar to the one used in Region II can be employed for Region IV,
however Region IV is very simple since we have convex and concave curves
involved. Therefore we use a simple lincar approximation as discussed below.

If u, isin Region IV then the exact value ug is given by

A,

(4.28) ugp = (ue +u, + A Cy(s)ds)/2.

Suppose Ay > A, then as a first approximation A; of Ag we take the

value of A where the tangent line at u, meets the horizontal line u=ug

(see Figure 4.9). Then

UE — U

Cr(Ad)’

A +

(4.29) A
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As a second approximation of Ag we take A3 the value of A at the
intersection of u =ug and the tangent line at wy = (3;,uy)T where uy

is a point on the r~ curve starting at ue with
. i

(4.30) ug =g+ / Cr(s)ds
A

because of convexity this procedure is monotone increasing and it will converge
to Ag. If A, < )\, then we do the above procedure starting with the point
uy = (Ar,u,)7  instead of uy, where

Ay

(4.31) Uy = Uy + Cr(s)ds.
A

Figure 4.9

ALGORITHM 4.2. The iterative Riemann solver for the Mooney Rivline string.

This algorithm is the same as Algorithm 4.1 with Step 3 to Step 5 altered

as follows.



STEP 3: Calculation of ug when wu, isin Region IV.

Set up = (ue+ur+ f:" Cr(s)ds)/2

If A 2Ar then

’\'l = Ay

Uel = Uy

else
Ar
Uyl = Uy +/
A¢
Ael = A
end if
UE — Uy
A2 = Ay + ————
2T T ()

* if |Ay — As2| > tolerance (input) then

Ae2
Ue] = Us) +/
Aot

Atl = /\02
UE — Usy
/\t =/\t + =
2T L0
goto =*

else

Ap = Aa2
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end if

STEP 4: Calculation of ug when u, isin Region I and Region III.

If Ay <A, then (we have Region I)

Set:

’\El = ’\r
/\ol = ’\l
Ugpy = Uy
Ugry = Uy
1 A
Upy = .')'(“ofl + Hey) */ )
2 Aoy

(e = uen)
Aoz = Aop o+ el 2100
PO

weer = e/ (POV) = POL2))(Ar = Aua)

P(X) - P(A,,
Am=Ar—<u,.;,~u.-)\/ el Z )
r 7 Nel

if |Ap2 — Ag1] 2 tolerance then
Set

Ao

Uet] = Uepy + Cr{s)ds
’\-l

Aol = '\02

tort = up +/(POA) = P(Ag1)) (A, = Agy)

1 Ag
ugy = ;(u.n + Ugpy + Cr(s)ds)
2 Ay
(ugy - uen)

Aoz = Ay +
PO
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urer = e + /(PO = PO2)) (Ar = Aua)

Ag2 = Ar — (ug) — ur)\/P(,\ )—P(/\.z)

AE = Ap;

UE = UE

ug,Ag, L=r" and R=st

else we have Region III.

Agr = A¢
Ael = Ar
Uyt = Uy
Upry = Uy
f\ol
1
up; = E(Uoll + Usry +/ )
AE1L
u - Uu
/\.2=,\‘1 +( El Tl)

CL(’\tl)
Urey = Ug — \/(P(/\l) — P(A2))(Ae = As2)

P(Ae) = P(As2)
’\l - ’\02

Agz = A+ (upr — ug)

[Ag2 — Ag1| = tolerance then
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Set

else

end if

QuTpruT:

end if

04

Aoz
Uet) = Usly —/ C[,(S)({S

ol

’\vl = '\02

won = ue= /(PO = PO (M = Aa)
Aot

(tepy + Uypy + C1.(s)ds)
A

Ugp =

O] =

gy — "orl)

Cr(Aey)
Upey = Uy — \/(P('\() ~ P(A2)) (N = Ao2)

[P0\ = P(A,)
Apz = M+ (upy ~ Nr)\/ e

/\02 = /\vl +

BV

Apo= Ay

Wi = gy

ug, ’\Ev L= 57, R=nRt

STEP 5: Calculation of wg in the case where w, is in Region 11

if A <A,

then

Uopp = u, + \/(m,) — POAD)(A, - Ag)

Ugty = Uy



UE] = Uy + uorl)/z'

/\.1 = /\(

(uEl - u'rl)
CL('\OI)

urer = ur + 1/ (POV) = P2)) (A = Av2)
Ag1 = Ar +Uppy — ur)‘/;(’\’:;; :’[\;'(’\r)

if Mgy > A¢ then this is the rare case described earlier and since in this

/\.2 = ’\Ol -

case A¢ is very close to Agp then any of the suggested ideas can be

used.

if Ay —Ap; > tolerance then

’\01 = ’\El

Uer] = Ur + \/(7P(’\") - P(’\'l))L" - '\‘l)

wer = =/ (P(A) = POAu1)) (e = Aut)

ugy = (Uety + ter1)/2
Ay = ’\tl - (uEl - uorl)/CL(’\‘l))

Ae2 = max(Aez, Ae2)

Urgy = Ur + \/(P(’\r) - P(’\'z))(’\" = Au)

Ar — A,
’\El =Ar + (urll - ur) P(/\r) _ P(zt\.g)

else

AE = AR UE = Ug]
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end if

OUTPUT: g, ue, L =s", R=st

else if (A¢>A,) then

'\olr

Uty = Up — \[P Ae) = P(A)) (A = )

Uer) = Uy

UE = Uqgpy +- “orl)/?-

/\0'2 = \'l +(“Il —uvll)/(l( o)
Uppy = Up — \/—-]) \( - I’ A |))( \' -\ ".r

P_.._ ~~-«I,.,.... e
'\I':l = A¢ + (u,n - 11;‘)\/»( ) ( :)
[P

Again if /\].;1 > A, then ,\;.; 15 very close ta A, so that use tech

niques described earlier.

if Ay —Ag; > tolerance then

Aot = Apy

Uety = Uy — \/(P(\ ) ol))( olj

worr = ur +/P(A) = PO = A
UL = (Uepy + ery)/2
A.J = '\Ol + (“f:l — Uen )/C'l.()‘")

A2 = max(A, Aey)
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Urey = Ug — \[(P(v\c) ~ P(Aa2))(Ae = Ae2)

P(3) - PO\,
Ap1 = A+ (ures — ue) ( ;2 _,\(2 2)

else
Ag =Ag, UE=ug
end if
OUTPUT: Mg, ug, L=s", R=s" a

In Chapter V we will look at specific examples in order to illustrate the

convergence of this technique.

4.3. Algorithm for Solving Initial, Boundary Value Problems by Go-

dunov's Scheme.

ALGORITHM 4.2A:

To solve the hyperbolic conservation law,
u+fy=0
where u=()\,u)T and f=(-u,~P) subject to the initial condition,

u(X,0) = F(X), 0<X <L,
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a.ﬁd one of the l"ollowing three boundarydconditions.

BVI: = u(0,t)= g(t), u(L,t)= h(t), t>0,

BV2:  A(0,t)= ¢(t), u(L,t)=h(t), 1t>0,

BV3: 43(0,1)=1P(N0.1)),  u(L.)=h(t), t>0.
Here <+ is a given parameter.
INPUT:
i. F,h and g for BVl and BV2;, F,h.y for BV3.
2. N the number of iterations.
3. dX the space step size.
4. L
5. dt is chosen at each iteration n so that Ay o the maxinum

value of A will satisfy the CFL condition given by (2.38). Therefore we

take
~ dyN
T 2VPOR)
OourtpuT:
N S L
u' for ;=0 to M where M = 0V with

QUTPUT INTERPRETATION:
w' = dX Ndt) for ;=0 to M

STEP 1:
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Initﬁaiize,
For j=1 to M-1
set ul= g f ;:’_*: F(s)ds
where  Xj41/2=(j + })dX.
Set ud=F(0) and u}, = F(MdX).
OutPUT: w? for j=0 to M.

J

End.
For n=1 to N do Step 2 and Step 3 below.

OUTPUT: APPROXIMATE SOLUTION ul for j=0 to M.

STEP 2:

Construction of u"+l

Given u} for j=0 to M we construct u;'“ as follows.
Foreach j=0 to M -1 do the following.

Set w,=u; and ur=ujp

evaluate wj4+1/2 which is the value of the intermediate state for the

Riemannian problems, using Algorithm 4.1 or Algorithm 4.2. If 1<j < .

M then

dt
set ult! =u} + sy -fi-y)

where [}‘h} = f(u], } )-

End if
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Continue.
OuTPUT:
uft! for j=1 to M-1
STEP 3:

Computations at the boundaries,

1. At X =0 we have
”n-4 ” llt n
A '-"—1‘\,(1; "f:,).)

a) If u s specified at - X =0, e f we have BVE then we proceed
as follows.

Solve for 1’:‘,/2 frem,
n dt
uptt =+ (-;—;;(-—I’,",, = (=P ) where ug = g(ndt)

Solve for u", PEE follows.

if '\:x/z > Ag  then

A
ug = ul, w—/ ci(a)da

ERFA

olse

Yok

"o o . e PAg) -~ P2
Uy = U_yrq ™ ()‘G - AN;]I)V A; - -‘1' .

17

raad if,
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Set At =Ap + F(-ul), - (-ulyp)).
b) If A is specified at X =0, i.e. if we have BV1 then we proceed

as follows.

Solve for ul, /2 from,
n+l1 n dt n n n
ATH=A8 + R(—u‘” —(-uly/;)) where A§ = g(ndt).

Salve for A"

12 as follows

if 4, >ul then
2
Ao
n_,n
uo - u_% -

'\21/2

P(’\'.‘.l/g) - P(/\S)
else uf=u", - (\}=\"
0 =uly—(Ag —%)\J A% 2 = AF)

end if.
Set ug™! =uf + (- P(AY;,) = (=P(A%, ,)).
(c) If a mass is attached on X = 0 end then we have BV3. In this

case we approximate the boundary by the finite difference

u3+1 - u()\ n n
= vP; where Pgt = P()0,t)).

Then proceed as case (a) where u is specified by

ugt! = ug + dtyPg.



102
2) At X =L we have

uj?

dt
=tn + o5 Fiey = Fu-y)
Solve for Py,y from

W = by b (= Py = (<Pi_y) where u = h(Mdb)

Solve for Uy /2 88 follows.

I Ajyyje > Ay then

Ade
ujy = u"M+% =/ cr(s)ds
AM+§
else
P(AY) = P(A", . 1)
Wl =uly, g+ (Al = A% )| —— M
141 M+ /\x’ _ ’\'l:1+l
2
end if
OvuTPUT:
upt! and W}l
End

In Chapter II we have seen that shocks that occur between mesh points are
spread in many more than two intervals. Therefore the Artificial Compression

method with an automatic switch was introduced. The following algorithm of
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ACM is to be implemented as a subroutine of the main program 4.3a, and must

be called at the end of Step 3.

ALGORITHM 4.3B:

To é,pply the artificial compression Cj given by (2.67)

ut}+1

A . .
i =u;-' - 5‘(01+§G;'+} - 0;‘_*G;'_*)‘

INPUT:

u}‘"’l,u}' for all j,&,B(u) and A

here (8 is a scalar function of the vector u as described in Chapter II.
We shall take A(u) = in this case and &> 0 is chosen so that any
variation of |A(u)| which is less than ¢ is negligible. In this algorithm

we shall take ¢ =0.01 !na,xlz\;-‘+1 - ,\;-'f} .
OuTPUT:

n+l

u for all j.

STEP 1:

Computation of G;-‘_l ;o and 67,



For j=0 to M-1 do the following,
Set

AN = ABH - A

R S S T3 |
Auj = uil) - u]

Ao(u}) = o(u}y,) - o(u])

if >0 then

¥i = min(|AA;], Ay sgn A)j),
vj = min[|Auy;), Auj-y sgn Aujj,

‘@ = min[¥;, v]

Reset
a; = max|(0, a;)
set
g = aj[“;":ll "";'ifxl
if

AB(u}) - ABu}_,)) > ¢

104



then

st g = DBED) - AB,)

7T AR} + ABMY_,)
else
set 01 = 0
end if
if j>1 then
set é}'—g = 8j-1 + & — |8j-1] sgn(u}}] -
87_y = max(6;,6;-1)

End if
End if.

OuTtpuT: Continue

STEP 2:

Application of C},

-

For j=2 to M-2.

Reset

ur}+1

u

8, .;.,Gj-% for 7=2 to M-1

A an WA
i =u = (6744 Glyy — 6], GT_y)

105

n+1
-1
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Continue.
OuTPUT:
u;-'"" for j=0 to M.

End.



 CHAPTER V
NUMERICAL ILLUSTRATIONS AND CONCLUSION

8.1. Numerical Hllustrations

Before solving some physical problems with general initial, boundary con-
ditions, the method discussed in the preceding chapters have been tested using
several simple initial value problems. The solution of one of such tests is il-
lustrated in Figure 5.0 where the solution of (2.4) subjected to the following

initial condition is shown.

(1.5,00T X <o

u(X,0) = { (2.0,0.0T X >0.

The calculation was done using Godunov's scheme given by Algorithm 4.3a..
The single dotted line shows the solution with compression, the heavy line shows
the solution without compression and the double dotted line shows the exact
solution. Clearly the solution is in close agreement with the exact solution. In

all the other examples considered similar results were found.
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We #hn.ll now look at numerical exb?nrnents c@ed out oﬁ a nﬁmber of
sample physxcal problems with general xmtxa.l bounda.ry condxtxons. For the
examples discussed below we use Algorithm 4.3a with the exact solution to the
successive Riemann-problems given by Algorithm 4.1a and 4.1b, as a Riemann
solver. In the algorithm a fixed time step chosen to satisfy the CFL condition
was used, however, in order to reduce the computation time this was repluced
by the variable time step as described in Algorithm 4.3a. The algorithm with
the variable time step has proven to speed up the calculation considerably and
it gives the same solution as the fixed time step.

In the following we employ Lagrangian coordinates and the non-dimensional
form of the equations (3.9b). The unstretched string has length L, and in
nondimensional form we take it to lie along the z axis 0<z < Lo/L.

As a first example consider a Neo-Hookian string, P(A)=A~A"% C} =

48 =1+22-3%, lying along the z axis with

(5.1) A(2,0) = Ao, u(2,0)=0, 0<z< -LL—
0

subject to boundary conditions

u(0,t) = g(2),
(5.2) "y

where we take

(5.3) 9(t) = Fysin(wt), 0<t< 5
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and zérb éﬁherwisq. Béfbre reﬂéctioﬁ, element@ cix#r#c;eristic thédfy xmplm
that thé ﬁdsitive chaxa;fefistics are straight lines

z= C(i(f))(z - 1), 0

Mr): [ 0y (a)ds = —g(7),

A
-
A

€l

(5.4)

where r is a parameter, 7(0,t)=¢ and A7) =)Ao otherwise.

The envelopes of the characteristics are then given by

dac
t=74+C —,
(5'5) + dr
X=C(t-r),
where
(58) F =~ LRI r/C(ir)

It is then clear that A(r) cannot decrease to 1 if

(5.7) (A0 = 1)Cr(X0)/Fo > 1,

so that the string does not go into compression at the left boundary. Further

since
dt 13 XToc R 3
(5.8) e =4(1-A%)/3 + A'C} sin wt/3 cos® wt,

for the g(t) considered the first breakdown does not occur on the front X =

Cr(Xo)t but at an interior point where ;‘—: = 0. A shock thus occurs before
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reflection if breakdown point on the ﬁ'ont is less than Lo/L. This is so if
(5.9) Xp = C}(Ao)A§/3wFy < Lo/L.

To illustrate this case we shall take Mg =2, Fy =1, w=8 and L= Ly/2.
Fig. 5.1 shows the solutions at T = 1.45 of the Godonov's scheme without
artificial compression. In this figure the result obtained using the numerical al-
gorithm 4.3a is compared to that obtained using the exact characteristic theory
where the lower envelope of the positive characteristic has been used in the ex-
act calculation. If the scale is magnified it can be shown that the discontinuity
actually occurs behind the leading front.

If a positive shock reflects from the right hand boundary then we have

5.0 (A1 = A (P(Ar) - P(;\ll)) = (Arr = Ann)(P(A 1) = P(A1n)
5.10
Ar>An> My

where A; is the stretch ahead of the positive shock (that is essentially the
initial stretch), A;; is that behind it and ahead of the negative shock, and
Ar1;  is the stretch behind the negative reflected shock. Thus if Ay =2,
then Arr will fﬂl to 1 and the string goes into compression on reflection
Arr = 144 to 1.45. This is the case for the abo?e example and it is not
taken to reflection. If the amplitude is taken as 0.5 this does not occur and
the solutions just before breakdown occured and after reflection is shown in
Fig. 5.2. Fig. 5.2# shows the solution at ¢ =164 obtained using the exact

characteristic theory. After the shock has occured, Algorithm 4.3a is employed
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w:th dX = 0 04 a.nd r=0 01 80 that the CFL condxtnon is mtuﬁed M’ter
each time step the Amﬁcla.l Compressxon subroutme 4 3b thh the pa.ra.me-
. ters fBu)=A and " =0.01 max;, IA }ﬂ s is called to sha.rpen pomble
discontinuities, We observe that the solution is oscillation free and that the
discontinuitiés are very sharp.

The same problem is next considered for the s-shaped stress-stretch re-
lation given by (3.12). \; = 2.642 is again the value of the stretch at the
inflection point, and we take an irnitia.l stretch Ao > A;. Referring to
Fig. (3.2) it is clear that as ) decreases from Ay an expansion wave prop-
agates, and if A does not fall below A; then as A again increases to
Ao the positive characteristics converge to possible form a shock (see equation
5.5). If A decreases below A; then the positive characteristics converge
first diverse, then converge and as A increases diverge and converge again.
In this case one expects two shocks to form. Up to the formation of the first
shock, exact characteristic theory can be employed and the numerical algorithm
4.a therealter. To illustrate this later case we shall consider the above example
with Fy=0.75 and Ay =3.2 and the other parameters as before. Fig. 5.3a
shows the solution at ¢ =2.24 obtained using the exact characteristic theory.
After the first shock has occured Algorithm 4.3a is employed with the Artifi-
cial Compression subroutine 4.3b. The parameters used in the algorithm is the

same as before, and the solutions at different times is shown in Fig. 5.3b to d.
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ﬁ mstead stfess is speéiﬁed at the left boﬁndﬁ.fy, or equiva.iéxitly streich,

a aiuﬁlar ;xxalysis can be carried out up to the formation of the ﬁrst hock.
In order to ree the effect of the § shaped stress-stretch relation we take
Lg =L, with initial slreicis Ag = 1.5. The boundary condition at the right

end is as above aad at the left end we take
(5.11) A(0,¢) = ()

where
( 1.5 t<0

h(t)={ 1.5+2sin(2rt) 0St<§

{ 3.5 t> g

In order to show the effect of the ACM, we use Algorithm 4.3a both with
and without the compression subroutine 4.3b. Fig. 5.4a shows the solution at
t =0.9 and the dotten lines indicate the solution without any ACM. The rest

of Fig. 5.4 show the solution at different times after reflection.
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We ﬁbﬁv éozﬁsider a diﬂ'erent iype of p?oi:iein. A mass is attaéhé& aﬁ the

left end while fixed -at the right and then it is released. The ensui;ig peﬁodic
motion, while assuming that the fixed end did not interfere and while ignoring
the mass of the string is described in [1]. In order to see the effect éf waves
in the string we consider this problem with L =L, and an initial stretch of
Ao =3, sothat A lies beyond the inflection point or the s-shaped stress-
stretch curve. If gravity and friction effects are ignored, then the boundary

condition at the left end is
du
(5.11) 'd;(ost) = vP{A(0,1)},

where v = AgLopo/M, As being the undeformed cross sectional area. A
characteristic analysis can be carried out as before. Initially an expansion wave
propagates. Depending on the value of M this either reflects from the right
boundary or a shock forms before reflection. If no shock forms and if A(0,¢)
decreases sufficiently quickly, the reflected wave causes the string to go into
compression and further investigation is required. In either case the behaviour
of the string and mass appears to differ from that considered in (1]. We take
two diseparate values of v corresponding to large and small mass, and the
results using the numerical algorithm 4.1a without compression is shown on
Fig. 5.5 and Fig. 5.6. Fig. 5.5 shows the solution corresponding to the big

mass and Fig. 5.6 shows the solution corresponding to the small mass.
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As discussed in Section 4.2 we have also looked at an iterative R.iéma.n.n
solver in order to speed up the Algorithm 4.3a used in the above ex&ﬁtples.
In order to illustrate the iterative Riemann solver we shall considei' simple
Riemann problems. Four examples are chosen so that each one represents a
Riemann problem with a right state lying in one of the four regions. The re-
sult agress with the analysis given in Section 4.2. For example in region I case
the intermediate value of the velocity is monotonically increasing while that of
the stretch is montonically increasing while that of the stretch is montonically
decreasing (see Table 5.1a). The solution found for each region shows that the
technique converges to the exact solutions in a few iterations.

When this iterative Riemann solver is used in Algorithm 4.3a to solve the
first example considered earlier, where a Neo-Hookian string is released from
the left end while fixed at the right end, the solution found as exactly the same
as the one found using the exact Riemann solver. However, the computation
time has reduced by a factor of about six from the original calcuation.

The iterative Riemann solver was also used in the other examples where
we have the more complicated three-term stress-stretch relations. As in the
Neo-Hookian case the result found matches with the one found with the exact
Riemann solver. This numerical result appears to indicate that the iterative
Riemann solver can also be used in the three-term string case. Although at

this point we do not have any proof to verify this observation, we leave it as &
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conjucture that the iterative Riemann solver can be extended to the problems

involving the more complicated three-term stress-stretch relation.

Ug =45y M o=D,y Up =04y
' X; ﬁi
ly 2.66658222532472, 10072891106644160y
Ay 2.66%5%406693615804, 1,072940%045541 0864y
v 2,665404873508947, 10072941132492271,
4y Q14665404B730524639 1007994113284594&1
He  2,6654048730525728, 1,0729411320846035,
by 2,665404873052525, 1.072941 132846035,
‘ Region 1.
Table 5.1a
U =2,y Ag:g,, Ur=~2,, A'=4.'
1y 1,720951430460196y .833483454&00030{v
2y 1.,720100514214743y VBRASI7BIR9IV6395
3y 1.,720096418692003 WBRATARRHLARTH247y
4y 1,72009464398950312y 2BRA542991 2853500y
5y 1,720096398855150, +B245429914032446y
by 1.720096398854651 y +BR45429914038129
7y 1. 720096358854685 VBRABAZITLA0FHIGT y
By  1.720096398854689 VBRA5A299 140381564y
9y 1, 720096398B54689, VBRABARIPLACIBL Sy
Region II
Table 5.1b
Ut =
4 Ueyr A‘._..a.' Ur::(),, l\r=20'
ly  Q2.971268B190171003, = BA2BVL1L06H441L601
Ay 2e970070266355220, = BRIPONAL0O2IFO379y
Jv  2.,970068198878485, = B2AYOHABE2708398,y
4y 2.927006B1987074657, =~ B229054854006387
Sy 2.970068198707644, = B22%054054006493%
Region III
Table 5.1¢
1y 4,224307554349473, v 17710R8933558399,
Ay 4,224659301528498, v 1771088933558399,
v 4,224659302270825, 17710889335 58399,

x"do’

Region IV
Table 5.1d
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5.2, Céhclﬁéioﬁ

The éropagation and reflection of waves travelling on a nonlinear hypér-
elastic string has been investigated. It is clear that characteristic theory is
preferable when available. When shocks and reflactions are present numerical
methods, such as Godunov's scheme are required. This was the method used
in this thesis and it appears to work well and accurately. Godunov's numerical
scheme uses numerical fluxs based on the solution of the Riemann problems.
The exact solutions of the Riemann problems are very costly to solve. To over-
come this difficulty an iterative Riemann solver has been proposed in this thesis
at least for the Mooney-Rivlin stress-stretch relation. This method reduces the
computation time considerably and it provides accurate results. Moreaver nu-
merical experiments have shown that the Riemann solver can also be used for
the three-term string. However, since at this point there is no proof this is left
as a conjecture. It would be interesting to compare this technique with other
Riemann solvers such as the ones given in [7] and (18]. There is no oscilla-
tion superimposed on the solutions but shocks do smear. In order to sharpen
the shocks Harten's Artificial Compression Method (ACM) with an automatic
switch to turn the ACM on and off was used. In all the examples considered
this has proven to resolve the shocks enormously.

The numerical experiments or physical examples suggest further investi-

gations. If, for example, in considering the stretch string with & mass attached



to the leit ;ﬁd th; stnng géa :nto compressxon on .r;ﬁ;c;;o;:, bﬁt the;'c is #txli
temxou nt the ma.ss, the questxon arises as to how the stnng then behnves a.nd
as to how compresswe regions propagate.

In general the algorithm is successful in solving problems of this type
and, with modifications, should be extended to investigate more complicated

problems,
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