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ABSTRACT

X-RAY FLUORESCENCE CHARACTERIZATION OF
VOLCANIC GLASS ARTIFACTS FROM
WILSON BUTTE CAVE, IDAHO

Excavations in 1988 and 1989 at Wilson Butte Cave, Idaho
recovered numerous lithic artifacts made from volcanic
glasses. A samplie of these artifacts was chemically
characterized, using non-destructive, energy-Qispersive x-ray
fluorescence analysis, in an attempt to identify the parent
geological source of the raw materials.

In order to achieve this goal, it was first necessary to
compile a 1library of trace element characterizations, or
"fingerprints"® for geological glass sources in the area
surrounding Wilson Butte Cave. Obsidian and ignimbrite samples
were collected at seventy-six localities on or near the Snake
River Plain in southern Idaho. Chemical and statistical

analyses identified thirty chemical types in the sample of
source material.

Patterns of volcanic glass use at Wilson Butte Cave changed
over time, with an apparent increase in the number of sources
being used, and a shift toward more western sources, during
the later occupations. Moreover, Big Southern Butte obsidian,
the donminant volcanic glass in the artifact sample from
Stratum E, Stratum Cl, and Facies €2 and C4 of Stratum C,
decreased significantly in frequency in the artifact sample
from the upper, disturbed stratigraphic zones, while the
Brown's Bench and Cannonball Mountain sources were used more
intensively. Unfortunately, the upper deposits were completely
destroyed prior to the 19858/89 excavations, so it is presently
impossible to determine “he time at which this apparent shift
in lithic resource exploitation occurred.
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INTRODUCTION

The archaeological record is, by definition, fragmentary.
Interpretation of this record requires the use of multiple
lines of evidence, incorporating data from many levels of
inquiry, including regions, sites, artifacts, and artifact
attributes. In recent years archaeology has found allies in
many other disciplines, including the physical sciences, which
have stretched the boundaries of archaeological analysis. This
study presents an application of scientific methodology to a
question of anthropological interest.

Volcanic glass artifacts recovered from Wilson Butte
Cave, Idaho, were subjected to x-ray fluorescence analysis in
an attempt to identify the geological origin of the raw
materials exploited by prehistoric occupants of the cave. X-
ray fluorescence (XRF) is a spectroscopic technique of trace
element measurement which allows one to characterize
chemically, or "fingerprint%, certain materials according to
their unique suite of trace element compositions. Volcanic
glasses such as obsidian and various densely-welded tuffs are
well suited to XRF characterization because they exhibit low
intra~-flow and relatively high inter-flow variation in trace
element composition. These features make volcanic glasses very
useful in the study of prehistoric patterns of 1lithic
procurement and exchange.

Chapter 1 of this study discusses the development of

1



chemical characterization research, and p:: vious spproaches to
lithic characterization within the present study area and
elsewhere,.

Chapter 2 discusses the fundamentals of xX~-ray
fluorescence and its applications to archaeology, as well as
the details of the methodology used in <this study. Alsc
included in the second chapter are discussions of sampling
considerations and data reduction methods. XRF analyses
generate large quantities of data which must be reduced by
sophisticated statistical means. These are discussed in terms
of their assumptions and applications to the data herein.

Chapter 3 presents a general overview of the study area.
The geology of the Snake River Plain is briefly described, and
the Wilson Butte Cave site and the associated artifacts are
discussed in greater detail. The volcanic glasses
characterized in this study were collected from 76 localities
on or adjacent to the Snake River Plain in southern Idaho. It
was hypothesized that most of the volcanic glasses represented
in the Wilson Butte artifact assemblages originated within
this region of volcanic activity.

Chapter 4 presents the results of the XRF analysis of the
gcoological source samples. Questions about the interpretation
of the data are addressed with reference to specific cases.

Chapter 5 considers the results of the artifact
characterizations and the reliability of the source

attributions derived from statistical manipulation of the

2



data.

The final chapter, Chapter 6, attempts to evaluate the
data in terms of prehistoric behaviour. Although a single site
provides insufficient data for the formulation of broad
hypotheses of regional procurement and exchange, the data
raise a number of interesting gquestions which are considered

in this chapter.



CHAPTER ONE

CHARACTERIZATION STUDIES

History of Characterization Studies

Since the 1960s, archaeology has increasingly utilized
techniques developed by the physical sciences. This approach
ultimately has led to the emergence of archaeometry as a
subfield of archaeology. Chemical composition studies have
played a leading role in this development.

Pioneering chemical analyses of archaeological materials
were conducted as early as A.D. 1800, when the chemist Martin
Klaproth studied colour variation in Roman glass and the
chemical composition of Greek and Roman coinage (Harbottle
1982:13). In the 1840s, a professor Gobel at the University of
Dorpat, Estonia, suggested that chemistry could be valuable to
axrchaeology and prehistory. In perhaps the first
scientifically rigorous archaeometric study, Gobel compared
the chemical compositions of copper alloy artifacts from
prehistoric Greece, Rome, and Europe; concluding that they
were all probably of Roman origin (Harxbottle 1982:14).

In 1865, French mineralogist M.A. D'Amour remarked that
archaeologists should s#2k the aid of geologists, zoologists,
and palaeontologists to help interpret their discoveries.
Specifically, he said that principles of chemistry and
mineralogy should be used to help interpret the migratory

movements of prehistoric peoples (Caley 1951); this topic has
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received considerable attention in recent years. D'Amour also
conducted perhaps the first obsidian characterization study,
in which he characterized four obsidian sources and six
artifacts, including a Mesoamerican mask (Harbottle 1982).
Twenty years later, in 1885, Helm chemically analyzed amber
beads found by Schliemann at Mycenae and determined that they
were of Baltic origin. This was "one of the first indications
by chemical means of the traffic of a material over a great
distance in prehistoric times" (Caley 1967:122).

Other early chemical characterization studies employed
'wet chemistry' methods, in which a sample must be put into
solution prior to analysis (Harbottle 1982). These methods
were slow, labour intensive, destructive to the sample, and
relatively insensitive by modern standards. Consequently, wet
chemistry methods are rarely used today for the analysis of
valuable archaeological materials (atomic absorption
spectrophotometry is an exception). Several techniques have
been developed recently that are capable of producing
elemental composition data quickly and precisely with a
minimum of sample preparation.

Modern chemical characterization techniques are based
almost ‘qniversally upon the assumption that all natural
materials are impure and contain "a whole suite of trace
elements with concentrations ranging from fractions of a
percent ... down to parts per billion..." (Harbottle 1982:19).

Various spectroscopic techniques differ in their sensitivity

5



to particular trace elements, and, consequently, for the

analysis of particular materials.

Volcanic Glass Characterization

During the past twenty years, numerous techniques have
been refined specifically for the compositional analysis of
volcanic glasses. Atomic absorption spectrophotometry
(Michels 1981, 1982a,b, 1983), instrumental neutron activation
(Frison et al. 1968; Griffin et al. 1969; Wilmeth 1973), and
x-ray fluorescence (Nelson et al. 1975; Sappington 1981;
Godfrey-Smith 1985; Hughes 1986; James 1986) have all become
Popular and reliable means of "fingerprinting" volcanic
glasses. Less common techniques include electron microprobe
analysis (Merrick and Brown 1984), proton—induced x-ray
emission (PIXE) (Nelson et al. 1977) and optical emission
spectography (Cann and Renfrew 1964; R.C. Green et al. 1967).

Many early attempts to differentiate obsidian sources
concentrated upon the physical characteristics of the rock,
such as density, colour, or refraction (Reeves and Ward 1576).
However, because obsidian forms only under specific
conditions, these physiczi characteristics rarely display
sufficient variability for reliable differentiation (Godfrey-
Smith 1985). While certain obsidians may be quite distinctive
(some "snowflake" obsidians, for example), most are visually
quite similar. Hardness and density likewise vary 1little.

Other wvolcanic glasses (known variously as ignimbrites,



vitrophyres, welded tuffs, opaque volcanic glasses; see
Chapter 3 below) may exhibit greater physical variability,
sinmply because the flows often cover vast areas, picking up
various materials as they move. Still, the Idaho glass samples
have shown that visual inspection is usually insufficient for
confident source identification (cf. Bettinger et al. 1984).

For the present study, non-destructive energy-dispersive
x-ray fluorescence spectroscopy (XRF) was chosen as the best
method of analysis because it has been successfully applied in
numerous similar studies (e.g., Nelson et al. 1975; Godfrey-
Smith 1985; Hughes 1984,1986; Sappington 1981l1a,b, 1984; James
1986, 1992). XRF is a rapid technique that allows relatively
precise simultaneous measurement of several trace elements
with minimal sample preparation. The system used in this

study is discussed more fully in Chapter 2, below.

Previous Characterization Studies

Volcanic glass characterization studies are now
relatively common throughout the world. Cann and Renfrew
(1964) used trace element variations, (particularly Ba and
Zr), to distinguish obsidian sources in the Near East. They
later applied these methods to the study of obsidian artifacts
in the central Mediterranean and Aegean regions (Dixon, Cann
and Renfrew 1968) and in the Near East (Renfrew, Dixon and
Cann 1968). Wright (1969) also studied prehistoric obsidian

exchange networks in the Near East.



In the mid-1960s and early 1970s, obsidian
characterization gained popularity worldwide. Green (1962;
also R.C. Green et al. 1967) led the way in New Zealand, where
research is still very active. Early New Zealand obsidian
studies are concisely summarized by Reeves and Ward (1976).
Taylor (1976: ©Part II) presents regional summaries for
California, Mesoamerica, the Mediterranean, and the Near East.
In Canada, Roscoe Wilmeth (1973) conducted pioneering
research, using Instrumental Neutron Activation Analysis
(INAA) . In 1975, Nelson, D'Auria, and Bennett developed a non-
destructive energy-dispersive x-ray fluorescence system, which
they applied to artifacts recovered from archaeoclogical sites
in British Columbia.

Early work in the United States was concentrated at
Berkeley (Weaver and Stross 1965; Heizer et al. 1965), and at
the University of Michigan (Griffin 1965; Griffin and Gordus
1266) . Since these pioneering works, many advances have been

made in the field; and research remains very active,

especially in Yorth America.

Ncrth American Studies

There .re few regions in the world as rich in knappable
volcanic glasses as the northwestern United States and
neighbouring British Columbia. California, Oregon, Idaho, and
Wyoming house numerous sources of high-quality glasses that

were extensively used and exchanged Dby the aboriginal



inhabitants of these areas. Washington, Montana, and British
Columbia have smraller numbers oXf sources which were locally
important in prehistoric times., Other sources exist in Nevada
(Sappington 198la,b), Utah (Nelson 1984), and the American
Southwest (Shackley 1988). Most of these areas have been
subjected to at least preliminary characterization studies,
and a few have been examined more comprehensively.

Of the North American volcanic regions, California has
perhaps been most extensively studied. In terms of sheer
numbers of sources and artifacts analyzed, Robert N. Jack's
(1976) pilot study remains one of the largest obsidian
characterization studies to date. Over 1500 obsidian artifacts
from eighteen sources were characterized in this ambitious
attempt to determine which California sources were exploited
in prehistoric times. Ericson et al. (1976) list an additional
fourteen California sources, bringing the total to some forty-
two discrete obsidian localities in the state.

Drawing upon Jack's data, Ericson and Kimberlin (1977)
and Ericson (1981) performed multiple regression analyses to
identify ten regional prehistoric exchange systems in
California during Late Horizon times. While Ericson's study
was commendable for its anthropological perspective, his
interpretations are suspect. Hughes (1986:4) points out that
Jack's artifact collection included several tool types that
span a number of time periods. This selection effectively

eliminates all temporal control from a study in which time-



specific cultural reconstruction is the goal.

Ericson and Kimberlin (1977:112) previously used Jack's
data to produce a ccmputer-aided contour map (SYMAP) to
describe "the distribution of an exchanged item in space...".
According to Hughes (1986:4), Ericson used 52 archaeological
sites as data points to establish contours on his Late Horizon
SYMAP. These supposedly drew upon Jack's source-specific
analyses to predict expected obsidian percentages in lithic
assemblages at sites located within a particular contour line.
However, apparently only ten sites are common to the studies
of Ericson and Jack, comprising a collection of only seventy-
three artifacts. This 1limited sample means that Ericson
defined a group of ten Late Horizon exchange systems for the
entire state of California on the basis of seventy~three
artifacts from ten archaeological sites. This problen,
combired with the aforementioned lack of temporal control,
renders Ericson's interpretations dubious.

Richard E. Hughes (1984, 1986) has vastly expanded on
these early studies. Noting that "after nearly fifteen years
of endeavour, the anthropological problems on which obsidian
source analysis has been focused remain surprisingly few"
(1986:1), Hughes echoced Willey and Sabloff's (1974:185)
assertion that archaeoclogical theory has not kept pace with
the methodological advances made available to the discipline.
Specifically, he argued that most obsidian studies had been

purely descriptive, largely due to the fact that until
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" relatively recently a limited number of comprehensive regional
characterization studies had been completed. Such reference
studies are absolutely essential before specific questions may
be addressed, but the collection and analysis of glass samples
and the compilation of a regional source library are extremely
time-consuming activities for which few researchers have the
time or means.

Hughes (1986) used XRF characterizations to 1link
archaeologizzily-known obsidian distributions with past human
behaviours in what is now northeastern California and south-
central Uregon. He found marked diachronic variability in the
patterns of obsidian procurement at a number of sites in his
study area, and he presented several hypotheses to account for
the observed variability. Although no hypothesis was pursued
in great detail, Hughes' study marked a significant advance in
the application of obsidian research to anthropology. Studies
of comparable scope have been initiated elsewhere in the past
ten years (e.qg., J.P.Green 1982; Reed 1985), as
characterization studies have ©become more and more

sophisticated.

Tdako Studies

The first wvolcanic glass study that considered Idaho
sources correlated artifacts from Veratic Rockshelter near the
Montana border with an obsidian source about 100 km farther

south at Big Southern Butte, Idaho (Wright, Griffin, and
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Gordus 1969). Sappington (198la), however, noted that at the
time of the study most of the Idaho sources had not been
characterized; and on ¢t basis he judged the Veratic
Rockshelter study invalic .n 1975, Gallagher published the
first list of Idaho volcanic glass sources (Gallagher 1979:
Apprendix 1); the list was not exhaustive, nor did it contain
locational information for the sources (sappington 1981a).
These initial studies provided the impetus for more
extensive research. Sappington (1981a,b) located and
chemically characterised eleven chemically distinct obsidian
and "vitrophyre" sources in Idaho, and several others in
adjacent states and in British Columbia. Sappington (1981a)
also used XRF to assess the importance of the various sources
in the local aboriginal economy, as reflected in the stone
tool assemblages of a number of Idaho archaeological sites.
Sappington's research at the University of Idaho provided
the reference data necessary for studies of broader scope; and
other researchers used his characterizations to examine
hypotheses about prehistoric exchange, territoriality, and
lithic resource procurement. J.P. Green (1982) used source
characterizations to correlate archaeological assemblages in
an attempt to understand better the development of Archaic
settlement-subsistence syster in the Great Basin. Stressing a
systems approach in which 1lithic procurement takes place
within a broad subsistence strategy rather than as a separate

activity, Creen examined 1lithic collections from eight
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northeast Great Basin sites: Hogup and Danger Caves, and
Swallow Shelter in Utah; Brown's Bench, Rock Creek, Garden
Creek Gap, Malad Hill, and Weston Canyon, Idaho; and Deer
Creek Cave, Nevada. The Hawkins~-Malad-Oneida source was shown
to have been the primary contributor of obsidian to these
sites through time (Green 1982:1).

Reed (1985) applied XRF analyses to the identification of
Late Prehistoric Shoshonean subsistence territories in
southern Idaho. Although unable to correlate particular
projectile point types with specific volcanic glass sources,
Reed's research did raise some important questions about
access ¢ glass sources in prehistoric times. For example, the
Oneida obsidian source near Malad City, southeastern Idaho
(also known as the Hawkins-Malad-Oneida or Malad source), was
not represented in Reed's sample of small side-notched
projectile points, despite the fact that it is known to have
been highly-valued prehistorically as a source of toolstone,
an” traded over great distances (Nelson and Holmes 1979).
Given its importance in Fremont assemblages in Utah, Reed
suggested that the Oneida source may have been exploited
primarily by Fremont populations; and that the Shoshonean
activity sphere may not have included the extreme southeastern
portion of Idaho during the Late Prehistoric period (Reed
1985:58)

A second interesting aspect of Reed's study concerns the

Timber Butte obsidian source northeast of Boise. According to
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Sappington's (1984) study of the distribution of debitage
produced from Timber Butte obsidian, the source must have been
exploited by the Nez Perce during the Late Prehistoric period.
Reed's sample of presumed Shoshonean projectile points was
dominated by Timber Butte obsidian, suggesting some form of
exchange took place between the Nez Perce and the Shoshoni
that apparently was not a part of Shoshoni-Fremont interaction
(Reed 1985:58).

Another interesting application of obsidian
characterization research involved the so~-called "F.M.Y." or
"90 Group" obsidian (Griffin et al. 1969; Wright and cChaya
1985). Early research of obsidian distribution in
archaeological sites covering an area from the American
Midwest to Idaho identified two important obsidian sources
(Griffin et al. 1969: Table 3.) Using neutron activation
analysis, the researchers showed that one obsidian type had a
Na/Mn ratio clustering around 150 parts per million (ppm).
This source has since been identified as Obsidian Cliff,

located in Yellowstone Park, Wyoming (Wright et al. 1986).
A second obsidian type common in the study sample had a
Na/Mn ratio clustering around 90 ppm. This obsidian also
differed from the 150 group in other elemental ratios (Wright
and Chaya 1985). The location of the source of the 90 Group
obsidian remained unidentified until recently (Wright and
Chaya 1986). Griffin et al. (1969) analyzed a substantial

number of source samples to pinpoint the 90 Group origin, but
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found only one sample with a matching elemental profile. This
sample, submitted by the Field Museum in Chicago, was labelled
simply as "Yellowstone"; it has since become known as the
F.M.7. (Field Museum Yellowstone) sample. An extensive study
by Wright and Chaya (1985) failed to identify the source of
the F.¥.Y. sample, although they were able to demonstrate that
it was not a Yellowstone obsidian; nor did it match the
composition of the Teton source located in Jackson Hole,
Wyoming, south of Yellowstone. Wright and Chaya believed, on
the basis of distribution data for the 90 Group, that the
source was located west to ncrth of the Yellowstone Park
boundary (1985:240).

Wright and Chaya (1986) eventually concluded that Bear
Gulch, Idaho, was the source of the 90 Group obsidian. Bear
Gulch is located near Kilgore, in Clark county, Idaho, on the
southern face of the Centennial Mountains. The flow is
probably associated with nearby Table Mountain (Lawrence Dee,
personal communication Oct. 1989). A comparison of raw data
for the Bear Gulch and F.M.Y. obsidians tentatively supports
this conclusion (Table 1) . This comparison should, however, be
interpreted with <caution because different analytical
techniques were used. Moreover, the published data for the
F.M.Y. sample consist of only the elements Rb, Sr, and Zr.
While these are important elements for identifying obsidian
types, interpretations based on only three elements must be

seen as tenuous.
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These types of studies illustrate the range of
applications to which chemical characterization studies may be
applied within a systems approach. Taken as supportive
evidence in concert with other l.nes of inquiry, trace element
characterisations can provide the archaeologist with a

powerful tool for investigating numerous anthropological

questions.

Table 1. Comparison of mean data for Bear Gulch and
FMY obsidian.

Bear Gulch (ppm) Rb Sr Zr
Wright and Chaya (1986) 159.0 53.4 285.8
["dispersive XRF"] 170.0 58.6 284.0

161.0 53.7 281.0
X 163.3 55.2 283.6

Hughes and Nelson (1987)
[wavelength dispersive XRF n=3]

X 171.1 43.7 317.3
[energy-dispersive XRF n=10]

X 172.2 44.7 293.6
F.M.Y. 90 m
Wright, Chaya, and McDonald (1986)
{'dispersive' XRF; n=?] 146.2 58.4 298.9
"OB 90" (Wright et al. 1986)
[t*dispersive' XRF] 167.4 63.2 304.5
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Chapter Two

Theory

X-ray fluorescence (XRF) is a spectroscopic technique for
determining the elemental composition of « given material. XRF
involves the production and measuremeat of fluorescent
radiation lines which are characteristic of the elements
pres=nt in a sample. Within an x-ray tube, a heated cathode
produces electrons which collide with atoms in the anode of
the tube. These collisions stop the electrons, causing the
emission of a continuous spectrum of broadband
(bremsstrahlung) photons (Eisberg and Resnick 1974:46). These
high-energy photons are focused on a selectable secondary
target. When a photon collides with an atom of the secondary
target, an electron is ejected from an inner shell, rendering
the atom unstable {(Fig. 1). To return the atom to a state of
equilibrium, an electron from one of the outer shells moves in
to £ill the inner shelli vacancy. Each such transfer results in
a loss in the potential energy of the atom; this energy is
released in the form of fluoxescent radiaticn at an energy
level lower than that of the x-rays that initially bombarded
the target (Tertian and Claisse 1982:4).

The radiation produced in the secondary target is
subsequently focused upon the volcanic glass sample. Following
the same process that acted upon the secondary target,

fluorescent radiation is produced in the sample. Each element

17



present in the sample emits X-rays at characteristic energy
levels. It is possible to measure the relative intensities of
a number of trace element emissions, and to pProduce a graphic
display (spectrum) that characterizes the sample. Some photons
from the secondary target scatter after colliding with the
atoms of the sample, and are subsequently riot recognizable as
characteristic element emissions. These are recorded as
Compton and Rayleigh scatter peaks. The Compton peak consists
of photons which have lost energy after colliding with an
atom, and have reached the detector at an energy level lower
than their initial energy. Rayleigh peaks consist of

scattered, but otherwise unmodified radiation (Tertian and

Claisse 1982:22).

The SFU System

The XRF system used in this study is housed in the
Department of Chemistry and Biochemistry, Simon Fraser
University, Burnaby, British Columbia. The labcratory is
operated under the supervision of Dr. J.M. D'Auria. The Simon
Fraser XRF facility is a fully non-destructive energy-
dispersive system. It employs an automated X-ray spectrometer
with a gold (Au) x-ray tube (Fig. 2).

The selectable secondary target chosen for the glass
analysis was silver (Ag). According to Nelson et al. (1975),
the elements with characteristic energy lines slightly lower

than the energy emitted from the secondary target are most
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efficiently detected by +the system. Under analytical
conditions of 40 KeV and 5 mA the silver target emits x-rays
at approximately 21 KeV, allowing detection of x-rays in the
3 - 18 KeV range, with maximum detecticn efficiency in the 13
- 18 KeV range. This feature allows high resolution in the
detection of the characteristic energy lines produced by the
elements Rubidium (Rb), Strontium (Sr), Yttrium (¥), Zirconium
(2r), and Niobium (Nb). These elements have proven most useful
in characterizing volcanic glass sources (Nelson et al. 1975;
Godfrey-Smith 1985; James 1986).

Elements ranging between Potassium (K) and Rubidium (Rb)
on the atomic weight scale were also detected by the system
with somewhat less precision. Of these, only Fe (Ka and Kb)
and Zn were considered in this analysis. A thin silver (Aqg)
filter was placed in the path of the x-ray beam emitted from
the secondary target to ensure that the radiation reaching the
sanple consisted almost exclusively of K-alpha and K-beta
rays. This procedure reduces background radiation, and keeps
high-energy radiation from producing mnultiple minor peaks
which would make the spectra more difficult to interpret.

The fluorescent radiation emitted from the glass samples
was detected using a nitrogen-cooled Silicon-Lithium (Si[Lij)
detector. This system is capable of analyzing automatically up
=d 40 small (<2 cm) or 16 larger (<5 cm) samples. Samples
larger than 5 cm in diameter required alteration of the system

(discussed below).
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Pulse processing equipment used by the SFU system is from
tre Kevex Corporation. Information from pulse amplifying
electronics passed through an ND66 multi-channel pulse height
analyzer which stores the data in 512-~channel groups. The XRF
system is controlled by an IBM XT Personal Computer where the
data were stored as spectra on 5 1/4" floppy diskettes.

Following data acgquisition, the spectra were transferred
into an IBM AT computer where they were loaded into the peak-
fitting program GXL. This program is a recently modified
version of the MTS program GAMANAL. GXL searches each data
file for peaks, and performs an energy calibration for
selected peaks in the spectrum. It also fits the selected
peaks to a Gaussian curve; and computes the area contained
within each peak, as well as the background radiation.
Finally, GXL compares the goodness-of-fit of the mathematical
shape with the actual data. This comparison allows the
operator to adjust the calibration parameters to improve the
fit if necessary (Godfrey-Smith 1985). GXL is incapable of
calculating steeply rising peaks such as the Compton and
Rayleigh scatter peaks. The Compton and Rayleigh peaks were
computed separately using the GXL modifier program CRINTEG
(created by Andre Mattman 1991).

The numerical data from GXL and CRINTEG, expressed in
total photon counts, were imported into spreadsheets in the
program LOTUS 1-2-3 Release 2.0. These constituted the raw

data of the analysis. The values for each element were also
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normalized as ratios to the Zr peak at 15.746 KeV to produce
relative intensity measures (Appendices 1 and 2).
Normalization allows direct comparison of variable samples;
and reduces the effects of variable sample size, shape,
thickness, and unusually high or low total count measures. The
Zr peak was chosen for normalization to ensure comparability
with other studies from the SFU facility, and because this
peak is consistently well-represented in the source samples
(Nelson et al. 1975). Godfrey-Smith (1985) achieved a 98%
success rate discriminating obsidian flows using this
normalization procedure.

summary statistics were computed for each collection
locality; these included the mean normalized value and
standargd deviation for zach element (Appendix 3). The standard
deviation gives an estimate of the distribution of data points
within a collection locality. All summary statistics were
based on normalized values; raw data were used primarily as a
check to help identify sources of unexpected variability
and/or error.

To monitor instrumental drift, a standard obsidian sample
was included with each analytical run. This standard was from
Flow #3 of the Mt. Edziza obsidian source in northwestern
British Columbia (Godfrey-Smith 1985) . As a further test, five
runs of the Edziza standard were compared. In addition, a
single Edziza flake was analyzed five times in succession

without advancing tha chamber (see Tables 3, 4 in Chapter 4
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below). Both tests showed that machine error was minimal. A
test for operator error was also conducted because there were
two primary operators responsible for the peak-fitting stage
of the analysis. For all major elemental peaks, the mean
inter-operator measurement difference was less than 5%, which

is within the range of expected random variation for the

system (James 1991, personal communication).
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Figure 1. Ejection of a K~shell electron by proton
bombardment (Tertian and Claisse 1982:4).
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Sample Preparation

Source Samples

In virtually all cases, the source samples consisted of
cobbles eroded from primary volcanic deposits. It was
necessary to cleave flakes from the cobbles for analysis. The
flaking was done by hard hammer percussion, using a quartzite
hammerstone. Whenever possible (almost always), cortex was
removed from the flakes to avoid introducing impurities to the
analysis. However, past research using this system has shown
that the presence of cortex has no measurable effect on sample
characterization (Nelson et al. 1875). Prepared samples
measured a maximum of 2 cm in diameter to facilitate their
placement in 2 cm plastic sample cups. The samples were at
least 1 mm in thickness; this dimension satisfies the infinite
thickness criterion of Tertian and Claisse {1982:279). Nelson
et al. (1975) explain that x-rays of different energies are
differentially transmitted and absorbed by the surrounding
glass matrix. As a result, very thin samples will produce a
greater response to the low-Z elements in relation to the
high~-2 elements. This feature has resulted in
disproportionately high Fe readings in relation to Zr and Nb
values for very thin samples, when compared with thicker
samples from the same source (Godfrey-Smith and D'2uria 1987).

Whenever possible, five cobbles were selected at random
from each collection locality sample, and three flakes were

detached from each cobble. This procedure provided a sample
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set of 15 flakes from most localities =~ a number deemed
sufficient to test for intra-cobble and intra-flow variability
(cf.Sappington 198l1a; Hughes 1986)

Samples were placed on 3.6-micron-thick Mylar Spectrofilm
screens in the 2 cm cups, and irradiated for 600 seconds in an
air path. The spectra were collected using the acquisition
program PCA; late in the study, an autosequence program was
installed which allowed automatic sequential analyses of up to
40 small samples. Other analytical conditions were unchanged,

and no instrumental recalibration was necessary.

Artifacts

Artifact spectra were collected following the same
procedure outlined for source samples, with the exception that
some artifacts were placed in 5 cm sample cups rather than 2
cm cups. Very large artifacts could not be placed in even the
large cups, and special conditions were necessary for their
analysis. The sample tray was remcved for these analyses; and
the samples were laid directly on the machine, above the
detector. This setup oriented the large artifacts nearer the
detector than those placed in the tray; but because all data
were normalized as ratios, the data were directly comparable
with those of the smaller samples and no statistical
corrections were necessary.

Statistics

XRF analyses generate large sets of numerical data which
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must be organized in order to characterize a source or
artifact. Data reduction of this magnitude demands
multivariate statistical analyses (Harbottle 1982, Hughes
1984, Shackley 1988).

Some researchers recommend the use of computer-generated
Cluster analyses as a first step in XRF data reduction (e.qg.,
Harbottle 1982, Hughes 1%86). Clustering programs group
variables according to their degree of multivariate similarity
(Bowman et al. 1973; Shennan 1988) . They provide a quick,
general means of illustrating compositional similarities in a
sample set. However, clustering programs will create groups
Zrom any data, including those which are relatively distantly
related. Consequently, the results of cluster analyses must be
interpreted with caution; and they should be used only as a
preliminary test for covariance in conjunction with more
powerful analyses.

Usually, clustering is followed by some form of
discriminant analysis. For the present study, clustering was
not deemed necessary; and discriminant analysis was used
alone. Because the sources of the geologic samples were known
in advance, the initial groups (or clusters) of samples were

defined on an a priori basis. However, it was necessary to

express the group differences in mathematical terms; and to
produce a formula by which unknowr: cases (artifacts) could be
correlated with source fingerprints. Discriminant analysis is

well suited to these needs.
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Discriminant Analysis

Discriminant analysis tests the strength of previously
defined groups (sources, in this case), and formulates rules
(functions) by which new specimens may be assigned to a
source. New attributions are made so that variability within
each group is minimized, while inter-group wvariability is
emphasized (Neff and Marcus 1980:145). Each new correlation is
assigned a score indicating the Pythagorean distance in
multivariate space of that case from the group centroid
(Harbottle 1982). Known as the Mahalanobis distance, the
squared value of this score provides an estimate of the
strength of the group assignment; that is, a case is assigned
to the group to which the squared Mahalanobis distance is the
shortest (Neff and Marcus 1980).

Discriminant analysis thus serves two purposes for data
sets which have been divided into groups on the basis of a
priori classification:

1) It sets up rules for the assignment of new specimens

to groups;
2) It mathematically describes the distinctness of the

a priori groups relative to inter-group variability.

Limitations of Discriminant Analysis
Discriminant analysis appears ideally suited to the data
and questions of x-ray fluorescence analyses. However,

discriminant analyses are dependant upon particular
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statistical conditions for optimum efficiency (Neff and Marcus
1980; Hughes 1984). Perhaps most important ameng these is the
requirement of multivariate normality. Normality is very
difficult to assess in multivariate space; but Hughes (1984:3)
points out that by examining the means, ranges, and standard
deviations of individual trace elements it is possible to
monitor normality indirectly. Elements which are highly
variable within a source, and relatively unvarying across
sources are generally not good discriminators. Hughes argues
that poor discriminators may lead to misclassifications by the
discriminant analysis, and therefore these elements should be
excluded from statistical <treatment. This reasoning was
adopted in the present study, with only the best
discriminators chosen for peak fitting by the GXL program.

A second requirement of discriminant analysis is equality
of group covariance matrices (Hughes 1984:3). Hughes
recommends the use of Box's M statistic to assess this
condition. However, Neff and Marcus (1980:29,151) note that
tests for equality of covariance matrices are highly sensitive
to the multivariate normality requirement, and they do not
recommend the use of these tests. Since multivariate normality
was monitored in this study only by an examination of
univariate cohesion, no correction was attempted for equality

of group covariance matrices.
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SPSS DISCRIMINANT

The discriminant analysis package chosen for this study
was SPSSPC Release 3.1. This program offers several useful
output options, including summary statistics, classification
results tables, first- and second-highest group membership
probabilities, and rosterior probabilities of group

membership.

Classification Results Table

The classification results table tests the performance of
the program by calculating the success with which it
classifies cases of known group membership. The geologic
source samples were subijected to discriminant analysis to test
the reliability of the classification procedure (Hughes
1984:4). This test yielded an overall accuracy rating of 82.2%
(see Table 5 in Chapter 4 below). However, because the
analysis is tested with the same cases that were used to
derive the classification functions, these results 1likely
overestimate the accuracy of the analysis (Norusis 1988); and
they should be accepted as estimates only.

Two probability statements are provided by SPSS
DISCRIMINANT. The wvalue P(G/D), known as the 'posterior
probability,' indicates the likelihood that a sample is in
fact a member of the group to which it has been assigned by
the analysis. This measure assumes that the sample actually

belongs to one of the groups in the sampling universe. For
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volcanic glass studies, this assumption is not necessarily
valid, since one cannot be certain that all flows in a regicn
have been sampled. Conseguently, the posterior probability
value should not be accepted in isolation as a measurement of
the reliability of a source attribution (Hughes 1984). Many of
the SPSS misclassifications assigned samples to sources with
quite similar chemical profiles, but reference to the raw and
normalized data allowed the author to resolve most of these
discrepancies. This result emphasized the need to assess
critically all statistical analyses.

A second probability value, P(D/G), estimates the
probability that a case from the assigned group would be as
distant from the group centroid as the sample in question.
Knoen as the conditional prckability, this measure may be
interpreted as an approximation of the Mahalanobis D2 value
outlined above (Hughes 1984). P(D/G) may be useful for
identifying misclassifications made by the discriminant
analysis which are not made evident by the P(G/D) value; a
high P(D/G) corresponds with a low D2 value, suggesting a
close fit with the group centroid. Further checks of the

discriminant analysis generally require examination of the raw

or normalized source and artifact data.
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Chapter Three

The Present Study

Research Goals

The goals of this study were essentially twofold: to
compile a library of trace element profiles for southern Idaho
volcanic glasses, and to identify the parent sources of the
volcanic glass artifacts recovered from the Wilson Butte Cave
archaeological site. A related goal was to produce the
preliminary data required for obsidian hydration analyses to
be conducted as part of separate study (Gruhn, in
preparation) The primary requirement for compiling a source
library is to locate and sample as many dglass sources as
possible. Ideally, every source in the study area should be
sampled; but because it is impossible to be certain that all
localities have been located, it was necessary to impose a
geographic 1limit upon the study area. Most of the Xknown
volcanic glass sources in Idaho are located on or adjacent to
the Snake River Plain; and, since Wilson Butte Cave is also
located in this physiographic province, it was hypothesized
that most or all of the glass artifacts at the site originated
from sources on or near the Plain. Consequently, the area
contained within and directly adjacent to the Snake River
Plain comprises the study area.

Some seventy six 1localities were visited at which

volcanic glass cobbles could easily be collected today and
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(presumably) in the prehistoric past. Cobbles of various sizes
and colours were collected from each locality with the goal of
adequately representing physical and chemical variability
within the source. No intact bedrock sources were located; all
sources consist of eroded "float" material in the form of
cobbles of a wide range of shapes and sizes. The quality of
the glasses for flintknapping purposes also varied widely, as
a function of purity and degree of devitrification. Obsidian
and ignimbrite are particularly susceptible toc the effects of
weathering; they devitrify (loses their glassy quality) over
time, becoming crumbly in texture and dull in lustre.
Consequently, very old obsidian flows do not yYield rocks of
quality adequate for flintknapping. Even relatively recent
flows may contain spherulitic inclusions or phenocrystic
impurities which may adversely affect the flaking quality of
the rock. This variation in the quality of the material is
probably one of the primary reasons that high-quality glasses
were widely traded in prehistoric times; good material was
relatively scarce, and it would have been highly valued by
flintknappers.

The second goal of the study involved the correlation of
the trace element fingerprints of artifacts from Wilson Butte
Cave with those in the source library. As noted above,
accurate correlations depend upon the completeness of the
sampling universe. Since this requirement cannot be assessed

directly, it is necessary to assume that all sources in the
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study area have been sampled. Subsequent examination of the
trace element data identifies cases which do not match well
with any of the kXnown parent sources; this result may indicate
that an unknown source(s) is represented in the collection.
The correlation of artifact and source characterizations
for the Wilson Butte Cave collection provides an insight into
prehistoric lithic resource explcitation patterns at the site.
The limited scope of this study, and the inferred short
duration of occupations of the site, dictate that more
guestions are created by the data than can presently be
resolved. This study should be viewed as a part of a process
by which hypotheses may be generated about prehistoric
population movements, exchange systens, and resouice

exploitation on the central Snake River Plain.

The Study Area

The Snake River Plain

The 2 River Plain is one of the largest volcanic
provinces in the world. It extends some 650 km across southern
fg2aho from the Idaho/Oregon border northeastward to a point at
the Yellowstone Volcano on the Yellowstone Plateau of Wyoming.
The Plain forms an arch with a radius of approximately 260 km,
and a north-south width varying from 80 Kkm in the west to 200
km in the east-central portion (see Map 1). Greeley and King
(1975:1) described the Snake River Plain as a '"prominent

depression"; and indeed, on first impression it appears quite
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flat and featureless, especially in contrast with the mountain
ranges that surround it (the Timmerman and Bennett Hills to
the north, +the Cassia Mountains to thre south, and the
Centennial Mountains in the extreme northeast of the Plain).
The Owyhee Uplands border the Plain in the southwest, and the
Caribou Hills dominate the southeast. These features add to
the illusion of the Plain as a flat area. In fact, the Plain
varies in elevation from 760 m at the west end to 1830 m at
the northeast end: and it contai.~ a number of significant
features, including Wilson Butte (Gruhn 1961:2).

Most of the exposed bedrocks of the Snake River Plain are
basalt. This fact led early researchers to believe it to be an
extension of the Columbia Plateau, but the two physiographic
provinces differ vastly in age and composition (Greeley and
King 1975) . The Columbia Plateau consists of vast deposits of
vasalt of Miocene age. The Snake River Plain contains no flows
comparable in size to those of the Ceclumbia Plateau. The Snake
River basalts are relatively thin deposits of
Pliocene/Pleistccene to Holocene age, capping older and much
more extensive white rhyolite bedrock deposits (Alt and
Hyndman 1989:235). These older deposits had considerable
relief, especially in the eastern portion of the Plain, where
Big Southern Butte and its neighbours, Middle and Eastern
Buttes, rise above the surrounding Plain. Subsequent basaltic
lava flows extruded onto the rhyolite bedrock, significantly

levelling the topography of the Plain.
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Map 1. Extent of the Snake River Plain.
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Alt and Hyndman (1989) believe that a meteorite struck
the earth some 17 million years ago in what is now
southeastern Oregon, producing the volcanic events that formed
the Columbia Plateau. They further hypothesize that this
catastrophic event created a hotspot in the earth's mantle
which remains active today at the Yellowstone Volcano. The
hotspot remained stationary; but as the North American
lithospheric plate moved over it, a chain of volcanism was
created, beginning about 13 million years ago, which formed
the Snake River Plain (Alt and Hyndman 1989:33-34). If the
suggested timing of the Oregon meteorite is correct, then the
continental plate would since have had to move approximately
1.5 inches per year to account for the present location of the
hotspot below the Yellowstone Volcano. This analysis conforms
closely with many geologists' estimate that the plate moves at
a rate of about 2 inches per year (Alt and Hyndman 1989:239).

While the name Snake River Plain conveys a sense of
uniformity across the region, the Plain actually consists of
two structurally dissimilar segments that join near Twin Falls
(Greeley and Xing 1975:1). The main portion of the Plain forms
a virtually straight 1line following the <track of the
Yellowstone Hotspot from the southwest corner of Idaho to
Yellowstone Park. This is the basalt-~capped rhyolite Plain
described above. The western part of the Snake River Plain is
a northward-projecting Basin and Range valley. It consists of

a valley that filled with white rhyolitic ash, subsequent
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basalt flows, and finally valley-fill sediments (Alt and
Hyndman 198%9:236-237). The valley-fill sediments cover the
majority of the bedrock deposits, making this segment of the

Plain appear distinct from the basalt-covered main segment.

Wilson Butte Cave

Wilson Butte Cave (10JE6) sits atop a broad basaltic
ridge (Wilson Butte) rising above the Snake River Plain in
Jerome County, south-central Idaho (Gruhn 1961:2) (see Map 1).
The butte rises gradually some 125 m above the plain to a
maximum elevation of 1375 m above sea level (Gruhn 1961:4).
The cave is a large "lava blister" that was formed when gases
expanded within a cooling subsurface lava flow, forming a lava
tube with a relatively flat floor and arched ceiling. The
blister solidified as it cooled, forming a bubble of rock that
became a cave when a collapse of the east wall occurred during
the Late Pleistocene, providing an opening to the inner
chamber (Gruhn 1961.20). At the time of the first
professional excavation of the cave in 1959, its interior
measured 24.2 metres (north-south) by 21.1 metres (east-west)
by 4.5 metres high. The opening was 6 metres wide and 2 metres
high (Gruhn 1963). Since sediment deposition at the cave is
now primarily aeolian in nature (and therefore quite slow),
these dimensions have not changed significantly over the past
thirty years.

Wilson Butte Cave was initially excavated during the
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summers of 1959 and 1960 under a project operated jointly by
the Idaho State College Museum and the Peabody Museum of
Harvard University, under the direction ¢f Ruth Gruhn (Gruhn
1961) . Although the cave deposits had been significantly
disturbed by relic hunters, it was clear that the site housed
a sequence of cultural remains with considerable time depth.
Artifacts made from stone, bone, and parishable materials such
as leather, wood, and plant fibre were recovered {refer to
Gruhn 1961, Chapters 3 - 5 for a detailed description of the
site assemblages) . Further excavations were undertaken in 1988
and 1989 as a project supported by the University of Alberta

and the United States Bureau of Land Management (Gruhn, report

in preparation).

Aboriginal Use of Wilson Butte cave

Gruhn understood Wilson Butte Cave to be a short-term
campsite, probably associated with hunting on the butte (1989,
personal communication). The site offers a panoramic view of
the »utte and the plain (and presumably game) below; but
because there was no permanent water source nearby, the cave
was probably never occupied for long periods of time. After
the modern arid climate became established in the region about
5000 years ago, the cave may have been occupied primarily in
the winter or spring when snow or runoff water would provide

sufficient water for drinking and cooking.
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Stratigraphy

Five major strata were identified in the cave, with the
deposits reaching a maximum total thickness of three metres
near the opening (Fig. 3). The oldest deposit (Stratum E) was
a waterlain yellow/brown clay that coated the underlying
bedrock floor and accumulated amcng boulders and in crevices.
The clay deposit was generally quite thin, although it reached
a maximum thickness of 50 cm among boulders near the front of
the cave. The early excavations revealed very little evidence
that people occupied the cave at the time the clay was
deposited. Large mammal bone fragments were found scattered
throughout this stratum; most of the bones were
unidentifiable, but horse and camel species were identified,
and a concentration of large mammal bcnes near the mouth of
the cave was tentatively identified as Eguus sp. (Gruhn
1961:19). The bone concentration provided the first suggested
evidence of cultural material in the clay deposit; a modified
duck ulna and a small unidentified bone bearing parallel cut
marks were recovered during the early excavation. After
publication of the Wilson Butte Cave manuscript, a radiocarbon
date of 15,000 +/- 800 B.P. (M-1410) was obtained from a
collective sample of small mammal bones retrieved from Stratum
E (Gruhn 1965). The 1988/89 excavations yvielded additional
cultural evidence in the clay deposit in the form of six
flakes, including two large obsidian flakes found in situ.

Both flakes were analyzed as part of the present study.
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Overlying Stratum E in a highly localized pocket near the
front of the cave was Stratum D, a yellow/brown sandy silt.
This laminated waterlain deposit accumulated primarily among
rocks at the front of the cave, with a maximum thickness of 80
cm. It contained abundant small mammal bones but no cultural
material, and it is unlikely that there was any human use of
the cave at this time. Chronometric dating of the deposit was
not possible, but a time range corresponding to a glacial
advance was suggested by severe frost distortion of the
laminae in the deposit. Gruhn believed this glacial event
predated 11,000 B.P. (1961:48). Stratum D was not encountered
in the 1988/89 excavations.

Stratum C consisted of a thick deposit of grey/brown
waterlain sand. This sand overlaid Stratum D, where present;
and it directly overlaid Stratum E where Stratum D was absent.
Stratum C varied in thickness from 50 cm at the rear of the
cave, to a maximum of about 2 metres near the cave opening.
This deposit contained abundant large mammal bones, including
horse and camel, as well as modern biscn. Many small mammal
and bird species were also represented, and a single human
molar was found (Gruhn 1961). A blade, a burinated flake, and
a probable wood-working tool were found in association with
bone dated at 14,500 +/- 500 B.P. (M-1409) in the iower part
of Stratum €. In the 1988/1989 excavations, a number of
isolated "rocky zones" incorporated in the middle and lower

parts of Stratum C yielded numerous artifacts. Cultural
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materials were recovered from “hroughout Stratum C; but few
definite features were identified, with the exception of
concentrations of lithic material in association with large
mammal bones. Finished artifacts, waste flakes, and charcoal
comprised the bulk of the cultural remains; and these were
scattered widely throughout the thick sand deposit. In 1961,
four artifact assemblages were defined from the Stratum C
inventory (Wilson Butte Assemblages I-IV; Gruhn 1961: 117-
120) . Diagnostic projectile point forms are as follows:
Assemblage I had no standardized artifacts: a significant
portion of Assemblage II were projectile points, featuring
long lanceolate points similar to the parallel-flaked point
forms common on the Great Plains; Assemblage III included
stemmed, concave based projectile points; notabile point forms
in Assemblage IV incliuded large, broad side-notched forms and
stemmed, shouldered points (Gruhn 1961, Plates 33-35).

At first, Stratum C was believed to represent a moist
climatic phase extending from about 9,000 years to 7,000 years
B.P. A radiocarbon date on charcoal from the upper part of the
deposit produced a date of 6,850 B.P.+/- 300 years (M-1087)
{Gruhn 1961:27); but the 14,500 B.P. radiocarbon date
suggested that Stratum C started accumulating much earlier.

Stratum B was a moderately thick aeolian brown silt
deposit. By 1988 this stratum had been completely disturbed by
looters: and the lower portions of the deposit had been mixed

with upper Stratum C, creating a mottled grey/brown silty sand
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near their interface. Stratum B represents a long period
(possibly up to 6000 vyears) of slow sedimentation during
which human occupation of the cave became more intensive
(Gruhn 1961:120). This stratum contained a much greater
density of artifacts than did the lower strata; and there were
definite occupation areas, including hearths and artifact
concentrations. Artifacts from Stratum B comprise Gruhn's
Wilson Butte V assemblage, featuring medium-sized lanceolate
projectile points (similar to the Humboldt Concave-Base type),
medium-to-large corner-notched points, and large side-notched
points (Gruhn 1961, Plate 36).

Two radiocarbon dates were obtained from the early
excavations of Stratum B: a date of 940 +/~ 150 years B.P on
charcoal from the upper part of the deposit (M-1144; Gruhn
1961:31); and a date of 2940 +/- 200 years B.P on a piece of
sagebrush charcoal from the middle of the stratum (M-1143;
Gruhn 1961:32). The most intensive human use of the cave
during the deposition of the brown aeolian silt was probably
between 2500 and 4000 years B.P. (Gruhn 1961:121), Gruhn
suggested that the beginning of Stratum B deposition coincided
with the onset of a warm, dry period about 7,000 years ago;
the terminal date for the stratum is estimated at about 650
Years ago (Gruhn 1961:32).

Stratum A, the uppermost deposit in Wilson Butte Cave,
consisted of a matrix of fine, dry, aeolian silt containing

concentrations of dry vegetal materials. This stratum was
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deepest at the rear of the cave, where it reached a maximunm
thickness of 50 cm. Wnile most of the vegetation was probably
brought into the cave by rodents, some of it was likely
carried in by human occupants to serve as bedding material
(Gruhn 1961:33).

Stratum A held the greatest guantity and variety of
cultural material. Artifacts of stone, bone, shell, pottery,
wood, plant fibre and animal hide were recovered from this
deposit. The artifact assemblage, designated Wilson Butte VI,
was sufficiently complete to allow its definition as a
distinct phase - the Dietrich Thase (Gruhn 1961:122). Dietrich
Phase projectile moints are primarily arrow points, including
small triangular, correr-nctched, and side-notched forms
(Gruhn 1961, Plate 37).

Dietrich Phase occupants were apparently bison hunters;
very 1little evidence was found for plant processing. The
proposed beginning date for the deposition of Stratum 2 is
about 650 years ago, and a sample of wood from the middle of
the deposit yielded a radiocarbon date of 425 +/- 150 years
B.P. (M-1088; Gruhn 1961:39). Since no European goods were
recovered from Wilson Butte Cave in the 1959/60 excavations,
it was assumed that aboriginal use of the site ceased before
the onset of the historic period.

It comes as no surprise that the early dates at Wilson
Butte Caves were questioned by archaeologists who were

unwilling to accept evidence of human presence in the area
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prior to Clovis times (e.g., Haynes 1969, 1%71). In response
to these criticisms, further excavation was carried out at the
site in 1989 and 1990 to obtain additional radiocarbon dates,
and better to assess the extent of historical disturbance of
the deposits. These later excavations provided the artifacts
that were analyzed in the present study. Details of the
1988/89 excavations will be reported elsewhere (Gruhn, in

preparation).

Lithic Artifacts

The excavations of 1959/60 yielded approximately 250
identifiable 1lithic artifacts, including 106 conmplete or
fragmented projectile points. Raw materials represented in the
assemblage included obsidian, ignimbrite, basalt, and other
cryptocrystalline silicates such as chalcedony and chert
(Gruhn 1961:50) . The distribution of raw materials for each
stratum, based on waste flake frequencizs, showed that
ignimbrite was the dominant material in the 1lower (i.e.,
earlier) deposits; but, over time, the igneous raw materials
all declined in frequency, while chalcedony became more common
(Gruhn 1961:51).

The 1988/89 excavations yielded a large number of lithic
artifacts, including more <than 200 projectile points.
Unfortunately, only 29 of these were recovered from the
undisturbed lower sand deposits. A total of 135 complete and

fragmented prcjectile points and 105 other lithic items were
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characterized in the present analysis, including artifacts
from both disturbed and undisturbed contexts (see Chapter 5).
To date, raw material frequency distributions have not
been computed for the materials collected in 1988 and 1989;
however, if we are to assume that the 1959/60 1lithic
assemblages are representative of the entire site assemblage,
then we can expect that these raw material frequencies would
be approximately valid for the entire lithic collection.
Gruhn reported that most of the debitage from the early
excavations was small and that all cores were virtually
expended. She interpreted this fact as an indication that
sources of toolstone were not close at hand for the occupants
of the cave (1961:51). The present study confirms that while
there are numerous sources of flakeable glass within
reasonable procurement distance from Wilson Butte Cave, none
can be cornsidered "close at hand." The fact that fe ~., of
these sources vere exploited supports the - that
prehistoric lithic procurement took place as pa.t :7 a broader

subsistence system, rather than as a separate ace rity (cf.

Hughes 1986). This idea is pursued in greater detail in

Chapter 6.

Volcariic Glass Nomenclature
The terms 'obsidian,' 'ignimbrite,' and 'volcanic glass’
are commonly used by both archaeologists and geologists.

However, the exact meanings of the terms seem to differ among
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researchers, creating potential difficulties in interpreting
other scholars' work. The following discussion does not
pretend to resolve this problem, but ratner to acknowledge it

and to clarify the nomenclature used in the present study.

Obsidian

The meaning of the word obsidian is generally quite well
understood: it refers to a non-crystalline igneous glass
formed within a cooling magma extrusion. Sometimes described
as a "supercooled liquid silica melt" (Hughes 1986:21), there
is some disagreement about the details of the formation of
obsidian. Alt and Hyndman (1989) argue that it is
inconceivable that large obsidian flows could cool
sufficiently gquickly to preclude crystallization. Instead,
they suggest that magma is extremely viscous and that low
water content retards the ion acvement that would be essential
for the formation of crystal structure in rock. Although this
issue has little direct relevance for archaeologists, it does
have implications for understanding trace element homogeneity
in obsidian flows, and for the application of X-ray
fluorescence to cbsidian samples.

Obsidians from different volcanic events may be quite
variable in purity; small phenocrysts, spherulites, or other
inclusions are sometimes incorporated into the glassy matrix
as the flow cools. Subsequent weathering affects the hardness

and texture of the rocks and, consequently, some obsidians are
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not useful for flintknapping. This fact is important for
ar¥chaeologists because it helps to explain the wide
geographical distribution of certain high—-quality obsidians

that were valued and exchanged by prehistoric populations.

Ignimbrite

The term 'ignimbrite' has been more troublesome. The word
has often been used in the archaeological literature of
southern Idaho to describe a rock-type (e.g., Gruhn 1961,
Green 1982), but it has not been adequately defined.
Archaeologists sometimes use the term ignimbrite in a general
way to refer to an array of opaque volcanic rocks which may be
quite variable in lustre, hardness, homogeneity, colour, and
other physical and chemical qualities. This application has
often led to the use of a single term to define a number of
rock types, or to the use of a number of names for the same
rock type (e.qg., ignimbrite, vitrophyre, opaque volcanic
glass).

One cause of this confusion seems to be the mixing of
relatively precise geolocical usage of the word ignimbrite,
and the more general (if 1less accurate) archaeological
context. In geological terminology, an ignimbrite is "a
mappable, sheet-like deposit of relatively nonsorted and
nonstratified pyrcclastic material of probable nuee ardente
origin" (Cook 1962:13). The exact process by which ignimbrite

forms is not elearly understood; but it is believed that a
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'flowing cloud' of gases, ash, and other particles moves
downslope during a volcanic event, melting underlying
materials and re-fusing some of them to form rocks. Some
materials cool quite quickly, forming relatively glassy rock
types, while others may be much coarser. The formative
mechanism of ignimbrite deposits has been variously defined as
an ash flow, a pyroclastic flow, a sand flow, a tuff flow, and
a nuee ardente (Cook 1962). There has been some confusion in
the use of these terms, as illustrated by Ross and Smith :

Usage has not always differentiated

between the clouds themselves and

the dense ash or block-and~ash-

transporting basal part. If so used,

this basal portion would constitute

the noncloud portion of a glowing

cloud, which may or may not even be

glowing (1961, cited in Cook 1962:11).
In response to this confusion, many North American geclogists
have now adopted the simple term 'ash flow' to describe the
process by which ignimbrites form (L. Dee Feb. 1991, personal
communication).

Thus, an ignimbrite can be understood as a rock unit in
which rock types may vary from crumbly, non-welded (sillar)
rocks to densely-welded, crystal-poor, vitreous tuffs (Cook
1962; Lawrence Dee pers. comm. Feb. 1991). It is the densely-
welded ignimbrite rocks that were of interest to prehistoric
flintknappers, and hence to modern archaeologists. These rocks

vary significantly in colour and quality; but <they all

fracture according to a predictable (conchoidal) pattern, and
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produce sharp, durable edges.

A problem arises when some researchers understand
ignimbrites to be rock units, while others use the term to
describe a rock type. Sappington (198la,b) addressed this
problem by adopting the term 'vitrophyre!' to describe the
archaeologically significant components of ignimbrite
formations. He suggested that referring to vitrophyre as
ignimbrite is akin to calling obsidian lava (pers. comm., Aug.
1989). While the analogy is probably accurate, it can be
argued that the term 'vitrophyre' is also extremely vague; it
could conceivably describe any vitreous rock, including both
ignimbrite and obsidian.

'Welded tuff' is another term which, although technically
accurate, encompasses a wide variety of rocks; and more
pPrecise descriptors, such as ‘densely-welded, ' ‘crystal-poor,
and 'vitreous' are too cumbersome for common usage. At least
one archaeologist has used the term 'opaque volcanic glass'
(J. Ross pers. comm., Oct. 1989), but it has not been widely
adopted.

Such terminological issues cannot be resolved here, and
they would be best tackled in a symposium or similar meeting
of archaeologists. For the present study, obsidians and
ignimbrites are collectively described as 'volcanic glasses.'
¥or specific reference to opaque, vitreous, ash-flow rocks the
term 'ignimbrite' has been adopted because it is technically

correct, although imprecise; and because it is generally
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understood by archaeologists in southern Idahe and other
volcanic regions (even though it not always accepted). It is
recommended that this term be accepted until a more precice
one is introduced and widely accepted by the archaeolog.cal

community.
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Chapter Four

Source Analyses

Trace element analyses of the socurce samples were very
successful. All the geological samples provided sufficient
trace element data for analysis, and almost all sources were
very well characterized. Homogeneity in trace element
composition differed considerably among the glass sources; but
all exhibited low intra-source variability in comparison with
inter-source variability, thereby making it possible to define

thirty statistically discrete chemical groups, or glass

sources.

Field Sampling

Bedrock sources of volcanic glass are uncommon or absent
in Idaho. Most obsidian and ignimbrite occurs in the form of
eroded cobbles on hillsides or in stream beds, and the number
of known quarry sites at these secondary (float) localities
suggests that they were in fact preferred by prehistoric
flintknappers (James 1992). Collecting cobbles would require
less energy output than would procurement from a bedrock
deposit, and erosional processes would likely help to sort out
and remove materials of poor flaking quality (James 1992).

The Idaho glass sources were located primarily from
published information; and from directions supplied by

archaeologists, geologists, ranchers, landowners, and a number
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nof 'rockhounds' possessing intimate knowledge of the study
area. All collection localities were plotted on United States
BIM Surface Management Series maps, and on USGS 1:50,000
Topographic Series maps, when available. It was often
preferable to use the less-detailed surface management maps
when dealing with landowners, as many dirt roads and other
local features (including property 1lines) are included on
these maps.

Wherever possible, fifteen cobbles were collected from a
given locality. This sample size was deemed sufficient to
account for chemical variability within a flow, and to provide
an adequate database for statistical analyses and source
characterization. Field sampling was essentially randonm,
within broad criteria. A range of cobble sizes was collected,
but ccbbles ranging from 5 cm to 15 cm in diameter were
preferred due to transportation considerations. Moreover, when
colour variation was evident at a collection locality, an

effort was made to sample a range of cobble colours.

Laboratory Subsampling

The field sample was reduced in the laboratory by the
random selection of five cobbles from each locality, and the
removal of three flakes from each cobble. In the few cases
where smaller sample sizes were collected in the field, three
cobbles were subsampled, and five flakes were removed from

each for analysis. In only a few cases was it impossible to
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obtain fifteen flakes for analysis, and the minimum number of
samples used to characterize a source was nine. This
pProcedure was designed to control for chemical variability
both within a cobble and among cobbles from a collection
locality. The number of samples from a given locality was
almost always greater than the number of variables used for
statistical manipulation, as required for discriminant
analysis (Klecka 1980). It should be noted that, although the
necessity of this condition has been recently questioned, for
volcanic glass characterization it is important that sample
sizes be quite large regardless of the statistics employed.
Sources of Variability

Intra-flow Variability

The ideal of chemical homogeneity within a volcanic glass
flow is rarely achieved in nature. Recent research has
indicated that patterns of variability can be identified, not
only in extensive flows, but also in geographically confined
deposits (Sappington 198la; Reed 1989 pers. comm.; James
1992) . Variability may be due to horizontal differences in a
flow (especially in extensive flows), or the presence of a
number of separate flows originating from different volcanic
events. In the event of more than one extrusion at a locality
over a geologically short time span, flows may be chemically
similar because the degree of convective mixing of the parent
magma pool has been minimal, preventing significant alteration

of the trace element composition of the magma.
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Table 2. Idaho volcanic glass sources characterized in this
study, and corresponding scurce names from published sources.

IDAHO VOLCANIC GLASS

OBSIDIAN
Bear Gulch

Big Southern Butte
Cannonball Mountain 1
Cannonball Mountain 2
Chesterfield

Coal Bank Spring
Malad

Owyhee 1

Owyhee 2

Reynolds

Timber Butte

Wedge Butte (Snowflake)

IGNIMBRITE

Brown's Bench
Conant Creek

Camas Prairie
Cedar Creek

Deep Creek

Dry Creek

Fish Creek

Graham Spring
Jasper Flats 1
Jasper Flats 2
Medicine Lodge Canyon
Murphy Hot Springs
Ozone

Picabo Hills

Pine Mountain
Reas Pass

Snake River

Three Creek
Yale Creek

UOURCES

OTHER NAMES

Camas/Dry Creek
(Michels 1983)

Smith Creek (J.P.
Green 1982)

Oneida (Sappington
1981a) ; Hawkins-
Malad-Oneida (HMO)
(J.P. Green 1982)

Walcott (Sappington
1981a)
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In addition to horizontal variation in chemical
composition, it has been suggested that a flow may exhibit
significant vertical variability. For instance, it has been
noted that the upper and lower portions of a flow are often
chemically similar, while the central region may be distinct
(Reed 1989, pers. comm.; James 1992). The Owyhee, Idaho,
obsidian sources illustrate this trend, with two chemical
types represented within a very 1limited area: Owyhee 1
obsidian is apparently restricted in distribution to the north
face of the Owyhee Mountains; while Owyhee 2 was collected
only on the southern flank, at a location intermediate in
elevation to the two Owyhee 1 collection localities. A similar
Phenomenon was reported at Cannonball Mountain (Reed 1989,
pers. comm.), where two obsidian types are also represented.
Chemical type 1 was collected over a wide area of Cannonball
Mountain and the associated drainages, while the Cannonball
Mtn. 2 chemical type was apparently restricted to a ridge at
2 higher elevation then the Cannonball Mtn. 1 localities. In
contrast, Big Southern =2Butte obsidian shows significant
vertical variation in colour, texture, degree of weathering,
and purity; but it is chemically quite homogeneous. More
research into the mechanisms of volcanic activity might help
to explain the causes of chemical variability as a function of
elevation.

Colour Variability and Chemical Composition

The source analyses shcwed clearly that macroscopic
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variability does not necessarily correspond with trace element
variability. For example, obsidian collected from Locality 1
at Big Southern Butte was macroscopically distinct; it was
grey/green in colour, with visible lithophysic inclusions.
Obsidian collected at Big Southern Butte Locality 4 (Webb
Spring) appeared black in colour (dark olive green in thin
section) and contained fewer inclusions, hut it was chemically
indistinguishable from samples collected at other localities
on the butte. Cannonball Mountain and Coal Bank Spring
obsidian samples provided other examples to support this
point; these sources yielded cobbles in an assortment of
colours, but each group clustered tightly. The colour
variability exhibited at various ignimbrite <collection
localities (e.g., several Brown's Bench localities) was also

shown to be independent of trace element variability.

Interflow Variability

The fundamental regquirement of characterization studies
is that inter-group differences exceed all other types of
variation combined, including instrumental drift, operator
inconsistency, and actual variation within any particular
group. . is impossible to define distinct groups if this
criterion is not met. As noted above, the volcanic glasses
analyzed in this study were generally distinct enough that

<lear group boundaries could be defined.
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Interflow Similarity

As more volcanic glass sources are discovered, the
probability increases that chemically-overlapping flows will
be defined. In cases like this it is important that sufficient
samples are analyzed to reveal subtle patterns of variation
between the sources, and to meet the statistical requirements
of multivariate analyses. The analyst must also be capable of
examining other lines of inquiry to support the trace element
data; wuseful types of evidence may include Xknown {or
suggested) distributions of particular glass types: sample
colour, texture, homogeneity, reflectivity, and other
macroscopic characteristics; and the geographic location and
extent of the sources in question. In all cases, an adequate

sample size is a fundamental requirement.

Statistical Vvariability

Control experiments were incorporated into the research
design to help account for statistical variability and error.
Targeted sources of error included variability inherent in the
systen, inter-operator differences, and true chemical

variability within and between flows.

System Variability
A laboratory standard obsidian sample from Mt. Edziza,
B.C. was included with each analytical run to provide a point

of reference for comparing results from different runs. This
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procedure can help to identify unexpected variability that
might arise from accidental changes in the system settings, or
operator error. Unexpected variation in cross-run data for the
standards can help to pinpoint sources of unexplained
variability in source or artifact data.

T+ -est for consistentcy, the Edziza #3 standard was
irra.. - =d five times consecutively without moving the sample.
The res'ilts were compared with five separate runs of the
standard over time, included with the regular runs of source
materials. The comparison shows very little variation due to
system fluctuations or operator error (Tables 3, 4).

Another check for operator variability monitored the GXL
peak-fitting step of the analysis. Several samples from early
runs in the project were reanalyzed; and no significant
differences were found in the second analyses, indicating both
system and operator consistency. This system of checks helped
to ensure the consistency and reliability of the x-ray
fluorescence analyses, thereby enabling the operator more
confidently to attribute observed variability to actual flow

variability, rather than system error.

Actual Intraflow Variability

Intrasource variability does exist, and it may be either
due to flow variability or the presence of two or more flows
at a 1locality. In the event of two extrusions within a

geologically short time span, the flows may be chemically very
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similar because the degree of convection and mixing in the

earth's mantle has been relatively restricted, preventing

siarificant alteration of the trace element composition of the

magma pocl.

Table 3
Fe
1. 0.365
2. 0.374
3. 0.384
4. 0.417
5. 0.394

Mean 0.387
S.D. 0.020

Table 4
Fe
1. 0.394
2. 0.295

3. 0.384
4. 0.389
5. 0.289

Mean 0.391
S.D. 0.005

Normalized data from the Mt. Edziza
Flow #3 Laboratory Standard. Five
consecutive runs without moving the

sample.

FeB Zn Rb Sr Y Nb ZrB
0.064 0.019 0.100 0 0.1906 0.154 0.240
0.067 0.019 0.097 0 0.100 0.139 0.221
0.017 €.019 ©0.103 0 0.114 0.150 0.215
0.073 0.019 0.103 0 0.101 0.144 0.237
0.070 0.018 0.113 0 ©0.110 ©0.145 0.231
0.069 0.019 0.101 O 0.106 0.127 0.229
0.004 ©0.000 0.003 © 0.006 0.006 0.01l1

Normalized data from the Mt. Edziza
Flow #3 Laboratory Standard. Five
nonconsecutive runs.

Fel Zn Rb Sr Y Nb 2rB
0.070 0©0.018 0.113 0 0.110 0.145 0.231
0.069 0.021 0.107 O 0©0.111 0©0.154 0.241
0.067 0©0.019 0.099 0 ©0.105 ©0.142 0.223
0.059 0.020 0.105 O 0.105 0.142 0.234
0.069 0.020 0.105 O 0.105 0.142 0.234
0.069 0.020 0.106 0 ©0.107 0.145 0.233
0.001 0.001 ©0.005 O 0.003 0©0.005 0©.007
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SPSS RESULTS

Thirty chemically-cohesive volcanic glass types weye
defined on the basis of trace element similarity (Table 2).
SPSS discriminant analyses were used to test the strength of
these chemical groupings. The statistics program was directed
to group the normalized trace element data from the source
materials according to covarying trace element composition.
Since the actual group membership of each sample was already
known, it was possible to monitor directly the success of the
SPSS program. Each sample was entered into the analysis as a
separate case, thereby comparing the statistical groupings
with the known groups. This procedure produced satisfactory
results, with the discriminant function analysis even
identifying multiple flows within localities, and pexhaps even
intrusive cobbles (see the discussion of the Cedar Creek and
Three Creek ignimbrite samples in Appendix 8). The analysis
achieved an success rate of 82.2% (Table 5).

There are examples of overlapping chemical profiles in
the Idaho volcanic glass data. The cross-correlation of the
Deep Creek and Snake River sources 1is the most notable
example. The statistical overlap of the sources, as indicated
by discriminant analysis, is considerable; although it is
possible to separate the sources on the basis of patterned
differences between the sample sets; however, a single
artifact of unknown origin could not be confidently assigned

to one group or the other strictly on the basis of trace
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element data. In this case, the sources are geographically
close enough to one another that site locality may not help to
identify the artifact origin. Moreover, samples from the two
sources do not differ significantly in appearance, hardness,
or texture. Hence, even with the sizeable sample sets analyzed
in this study, it is not possible at this time to confidently
distinguish Snake River ignimbrite from Deep Creek ignimbrite.
Nevertheless, the author decided to define the two areas as
separate sources, with the hypothesis that they represent two
separate, but very closely related events, probably from the
same magma poocl.

Some misclassifications were made by the discriminant
analysis. In most cases, the misattributed cases were assigned
to chemically overlapping sources, but some errors were sinply
mistakes made by the analysis. This fact reinforced the need
to validate all statistical results by double checking the raw
and normalized data.

A number of localities were consistently correlated with
one anoth:r, suggesting that they were part of a single
chemical type, or source (Table 5). Many of the glass sources
were represented by a number of collection localities, and
this fact accounted for most of the cross-correlated cases. It
was necessary to examine more closely the numerical trace

element data to determine the validity of several other

correlations.
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Table 5. SPSS Classification Results
SOURCE % CORRECTLY MISCLASSIFICATIONS
IDENTIFIED

Owhyee 1 78% owyhee 2 21%

Owyhee 2 100%

Murphy Hot 93% Three Creek 7%

Springs

Brown's Bench 70% Picabo Hills 4%
Coal Bank Spr. 2%
Cedar Creek 2%
Camas Prairie 9%
Jasper Flats 2 4%
Fish Creek 9%

Three Creek 100%

O2one 61% Gibson Ck. 9%
Medicine ldg. 30%

Picabo Hills 93% Medicine Ldg. 7%

Timber Butte 100%

Snake River 67% Deep Creek 33%

Cannonball 1 100%




Cannonball 2 100%
Wedge Butte 100%
Coal Bank 89% Brown's Bench 6%
Spring Three Creek 3%
Picabo Hills 2%
Gibson Creek 55% Ozone 2%
Medicine 1dyg. 18%
Reas Pass 11%
Yale Creek 14%
Medicine 30% Ozone 41%
Lodge Canyon Gibson Ck. 12%
Reas Pass 6%
Yale Creek 6%
Dry Creek 5%
Malad 100%
Deep Creek 68% Snake River 32%
Chesterfield 100%
Bear Gulch 99% Medicine Lodge 1%
Cedar Creek 44% Camas Prairie 11%

J. Flats 2 11%

Fish Creek 33%
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Camas Prairie

59%

Brown's Bench 3%
Cedar Creek 17%

J. Flats 2 21%

Dry Creek 78% Yale Creek 22%

Big Southern 100%

Butte

Jasper Flats 100%

1

Jasper Flats 60% Cedar Creek 20%

2 Camas Prairie 20%

Reas Pass 80% Dry Creek 13%
Medicine 1dg. 7%

Reynolds 100%

Conant Creek 100%

Yale Creek 93% Ozone 7%

Fish Creek 100%

Pine Mtn. 61% Picabo Hills 13%

J. Flats 2 10%
Camas Pr. 13%

Cedar Ck. 3%
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After the chemical types were adequately defined, mean
values and standard deviations were computed for each element
measured in the XRF analysis, to indicate how well the groups

clustered (Appendix 3).

Discriminant Analysis

SPSS Source Correlations

Many of the collection localities were combined by the
statistical procedures, on the basis of trace element
similarities. This result was particularly true of ignimbrite
localities that represented a large common flow, such as the
Brown's Bench chemical type.

Brown'’s Bench Ignimbrite

Seven separate collection 1localities were shown to
represent the same chemical source, designated Brown's Bench
(Table 6), which covers an area of some 2,000 square
kilometers (Sappington 1981a). However, some patterned
variability can be identified within the Brown's Bench
material, although it is insufficient to warrant the
designation of a separate source. For example, it was
ultimately judged that the Rock Creek localities represent a
patterned variant of the Brown's Bench chemical group with a
tendency toward slightly lower Rb and Y values, and slightly
higher Sr and Nb values. Macroscopic similarity to Brown's
Bench ignimbrite, and geographic 1location (Rock Creek is
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located at the east end of the Cassia Mountain Range) were
other factors considered in the interpretation of the Rock
Creek samples. This patterning should provide increased
precision in the source attribution of artifacts made from
this widely distributed toolstone.

The identification of the discrete Murphy Hot Spring
source establishes a fairly precise western boundary for the
Brown's Bench source. The eastern extent appears to 1lie
somewhere in the Cassia Mountains between Rock Creek and Coal
Bank Spring, since the Rock Creek locality shows the first
signs of patterned variability to the east of Brown's Bench,
and Coal Bank Spring is the nearest discrete source in that
direction. Moreover, one cobble from the Coal Bank Spring
sample (CS1lE) correlated with the Cedar Creek Reservoir
chemical profile, which is quite fimilar to that of Brown's
Bench. This result may be indicative of human, or some other
process of transport, or it may represent actual overlap in
the trace element composition of the two sources. All other
Coal Bank Spring samples were chemically different from the
Cedar Creek Reservoir material, so it is likely that cobble
CS1E was intrusive.

The north-south extent of the Brown's Bench source is
somewvhat unclear at this time. Sappington reported occurrences
of Brown's Bench ignimbrite as far north as Roseworth; a.d the
southern boundary is located in Nevada, outside the present
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study region. In general, it can be said that Brown's Bench
ignimbrite is a chemically homogeneous deposit that caps
virtually the entire Cassia Mountain range; and it can also be
found in cobble form in many of the tributary streams flowing

from this range, and from Brown's Beach itseilf.

Table 6. Comparison of Brown's Bench ignimbrite collection

localities. All data are mean values, normalized to the Zr
value.

FeKa FeKb Zn Rb Sr Y Nb Z2rKb
Br. Bench 0.74 0.13 0.009 0.24 0.06 0.15 0.12 0.22
L. Hse. Ck 0.73 0.13 0.010 ©0.26 0.06 0.16 0.12 0.22
Antelope S. 0.73 0.13 0.008 0.27 0.06 0.15 0.11 0.21
Shoshone B. 0.71 0.13 0.002 0.22 0.07 0.14 0.11 0.22
Three Ck. 0.66 0.12 0.008 .32 0.03 0.19 0.14 0.23
Rock Creek 0©.73 0.13 0.009% 0.23 0.08 0.15 0.11 0.21

Deep Creek and Snake River Ignimbrite

Discriminant analysis grouped the Deep Creek ignimbrite
localities with the Snake River localities. This result is
surprising, given the considerable distance between the
collection localities. From a geographic standpoint, one might
expect the Deep Creek material to cluster more Closely
with the nearby Medicine Lodge Canyon or Lava Creek, Cow Creek
and Corral Creek ignimbrite samples; but on the basis of
physical characteristics, the Deep Creek material more closely
resembles the ignimbrite found at the Ozone localities to the

east. However, the raw trace element data convincingly argue
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for the correlation of Deep Creek ignimbrite with the Snake
River samples, primarily on the basis of Rubidium wvalues,
which clearly differentiate the Snake River and Deep Creek
samples from the other nearby ignimbrite sources (Table 7). In
cases such as this, the analyst must rely upon experience and
common sense to assess the accuracy of the groupings made by
the statistical analyses. For the Deep Creek ignimbrite, it
was judged unlikely that a single formation would account for
the vast distance between the localities; so the Deep Creek
and Snake River sources were interpreted to represent
separate, but chemically very similar formations. In order to
attributz2 an artifact of unknown origin to one or the other of
these sources, it would be necessary to consult other lines of
evidence, such as site location, artifact type distribution,
or suggested cultural affiliation (see discussion in Chapter

6) .

Table 7. Comparison of Deep Creek Ignimbrite with nearby
sources. Data are mean values for each source, normalized to
the Zr value.

FeKa FeKb an Rb sr Y Nb Z2xrKb

Deep Ck. 0.74 0.13 0.019 0.45 0.06 0.29 0.25 0.22
Snake Riv. 0.76 0.14 0.019 0.46 0.06 0.29 0.24 0.22
Med. Lodge 0.72 0.13 0.014 0.29 0,04 0.21 0.20 0.23
Ozone 0.73 0.13 0.015 0.28 0.03 0.20 0.20 0.22
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Bear Gulch Obsidian and Nearby Ignimbrite Sources

The Bear Gulch obsidian samples clustered together very
consistently. Interestingly, low-grade Dry Creek iguimbrite
Samples collected from well within the geographic boundary of
the Bear Gulch obsidian source were chemically distinct (Table
8). While the more abundant obsidian was of much higher
quality, ignimbrite has been recovered from sites in the area
(van Waarden 1977); and it is plausible that the Dry Creek
material was exploited 1locally. Moreover, the Dry Creek
chemical profile is quite similar (although distinct from)
both the Reas Pass Creek and the Yale Creek ignimbrites. These
three source localities form an east-west line along the
sSouthern face of the Centennial Mountains. It seems logical to
view them as related flows, possibly originating from a common
magma flow which changed in trace element composition over

time, as a result of convective processes in the earth's

mantle.

Table 8. cComparison of Dry Creek ignimbrite with nearby
volcanic glasses. All data are mean values, normalized to the
Zr value.

FeKa FeKb Zn Rb Sr Y Nb ZrKb
Dry Creek 0.70 0.13 0.015 06.33 0.04 0.24 0.23 0.21
Yale Creek 0.75 0.13 0.015 0.32 0.04 0.23 90.21 o0.21
Med. Lodge 0.72 0.13 0.014 0.29 0.04 0.21 0.20 0.23
Bear Gulch 0.75 0.13 0.014 0.32 0.09 0.18 0.22 0.22
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The Gibson Creek Chemical Type

The Gibson Creek, Graham Spring, and Moody Swamp
numerical data cculd not be confidently differentiated, and
this observatior. was reflected in the SPSS results (see Table
5). It was originally proposed <that the Gibson Creek
igr.’ sbrite was formed separately from that found at the latter
localities, on the basis of geography. Although all arse
located in the same general area of eastern Idaho, the Gibson
Creek material was encountered conly in the Caribou Mountain
Range, while Graham Spring and Moody Swamp are both situated
in the adjacent Snake River Range. Furthermore, since all
three source 1liocalities represented primary depositional
contexts at relativeiy high elevations, it is difficult to
envision a single ash flow that could produce such an
extensive formation. This conclusion stands in contrast w.th
the Brown's Bench chemical group, in which the majority of the
collection localities lay downslope from the presumed origin
of the flow. The processes responsible for the extent of the
Gibson Creek source are at present unknown, although it is
possible tha a number of volcanic vents were actively drawing
from the same magma pool at the time of its formation, or that
subsaquent glacial processes +transported float material
throughout the area. Further research might clarify this

issue.
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CHAPTER 5
ARTIFACT CHARACTERIZATION RESULTS

The Wilson Butte Cave artifact collecticn analyzed in
this study consisted of 240 obsiiiian and ignimbrite specimens.
Cf these, 133 were obsidian artifacts, comprising 55.4% of the

collection, while 107 (44.6%) were ignimbrite artifacts.

Artifact Sampling

All diagnostic projectile points and point fragments from
the 1988/89 excavations were selected for analysis. These
artifacts were selected for three reasons. First, projectile
points were presumably all used for the same or very similar
purposes. By controlling for function, questions about
function-specific socurce use, or transhumance are minimized.
This consideration is important for a short-term campsite such
as Wilson Butte Cave, from which broad guestions of settlement
and subsistence cannot be directly approcached.

A second reason for analyzing all projectile points is
that they comprised a relatively large portion cof the Wilson
Butte assemblage. Analysis of finished artifacts is wusually
preferable to debitage analysis for preliminary studies of
source utilization, because the sheer number of pieces of

detritus that can be created from the manufacture of =z single
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artifact dictates that subsampling is an important concern.
Moreover, control ©f function and time is much more difficult
to attain with debitage than with diagnostic artifacts, such
as projectile points.

A third reason for characterizing the Wilson Butte
projectile points is that many of them were subsequently
submitted for obsidian hydration dating, a technique that
requires knowledge of the material source. Regrettably, the
extent of recent disturkrance at Wilson Butte Cave precluded
stratigraphic terporal control of many of the artifacts. It is
hoped that hydration measurements will help to date many of
the Wilson Butte stone artifacts which were found in disturbed
contexts in 1988/89.

In addition to the projectile points, a selection of
flakes was analyzed, spanning the extent of each undisturbed
cultural stratum in the site. These specimens were selected to
ensure that each stratum was represented in the analyses, with
the goal ~tf gaining some insight into temporal patterns of
lithic resource utilization. All finished obsidian and
ignimbrite tools from the undisturbed strata were included in
the sample, as well as all the flakes recovered from the basal
clay layer. All samrple selections were made by Dr. Alan
Bryan, in consultation with the author. Artifact size was not
a factor, as it was possible to adapt the measuring apparatus
to accommodate large samples, although two flakes (WBC 673.
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WBC 682) may have been too thin to provide meaningful results

(see below).

Analytical Conditions

All analytical procedures were identical to those for the
source materials, with the exception of the irradiation time,
which was reduced to five minutes for the artifacts. All but
one artifact (WBC 651) yielded adequate spectral and numerical
data using this procedure (Appendices 7 and 8); unfortunately,
this sample was not available for re-analysis, and it was
therefore impossible to attribute it confidently to source.
The SPSS discriminant analysis did assign the artifact to the
Pine Mocuntain scurce (see Appendix 4), but the £it was not

satisfactory, and the match was considered a

misclassification.

Manual Source Assignments

All artifacts were initially assigned to source manually,
on the basis of the normalized fluorescent count data. All but
three artifacts (WBC 651, WBC 38, and WBC 363) coulid be
correlated with source data, with varying degrees of
confidence. The artifacts were thern assigned to sources using
SPSS discriminant function analysis to test the initial
assignments, and to gquantify the degree of similarity between
the artifact and its source (see Appendix 4). Each artifact
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was entered as an ungrouped, independent case and matched with

the previously defined source groups.

SPSS Discriminant Function Source Assignments

The discriminant analysis output provided probability
values for the most probable and second most probable group
membership for each artifact (Appendix 4). The conditional
probability value (P D/G) is a measure of the fit between a
case (artifact) and the group (source) to which it has been
assigned. The discriminant program searches for the source
profile that best matches the data for an artifact, assigns
the artifact to that group, and calculates the probability
that the assignment is correct, given the range of variation
within that group. A second probability statement, the
posterior probability (P G/D), describes the actual fit of the
source assignment compared with all other groups in the sample
set. The posterior probability does net assume that the
assigned group is the correct choice; rather, it quantifies
the probability that the correct assignment has been made
(Norusis 1988). This statistic must be interpreted with
caution, because discriminant analysis assumes that the case
must belong to one of the groups in the set, and it will
assigr the case to the statistically closest group even if the
match is very distant.
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Comparison of Classification Methods

The degree of agreement between the manual and
statistical source assignments was encouragingly high. Of the
artifacts assigned to a source by the author, 79.6%
corresponded with the primary probability provided by SPSS.
Discrepancies centred primarily around the Brown's Bench,
Picabo Hills, and Pine Mountain sources, which show
substantial overlap in trace element composition. oOut of
caution, the author tended to lump similar cases into the
geogre ::ically extens:ve Brown's Bench chemical group, while
the SPSS program tended to separate similar cases into
different groups. Further examination of the Brown's Bench,
Picabo Hills, and Pine Mou:.itain source assignments resulted in
some < "anges in both the manual and the statistical
assignn:znts (see discussion of individual cases below) .
Howsver, these source assignments shouid be considered
tentative until further sampling is undertaken to better
characterize the Picabo Hills and Pine Mountain sources. Both
sources are presently known as very restricted areas in which
small ignimbrite cobbles are found, and 1c seems urlikely that
either source would have constituted an important part of
prehistoric lithic procurement strategies. It is possible,
however, that these sources were richer in the past, or that
more intensive survay would show that they are more extensive
today than is presently recognized.
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The Idaho obsidian sources, in contrast with the
ignimbrites, are gquite distinct from one another; and,
consequently, there was only one case in which the manual and
statistical source attributions of obsidian artifacts
differed. WBC 363 was statistically assigned to the
Chesterfield source, when in fact it aid not adequately match
any of the chemical profiles in the sample set; and ultimately
it was classified as an ‘'unknown.'’

The Beac¢ Gulni: Big Southern Butte, Cannonball Mountain
1 and 2, M= a1, Tivver Butte, and Wedge Butte obsicdian sources
were all r«olwi s =g in the Wilson Butte Cave assemblage (see
fable 9); and all were assigned to source with high posterior
probabilities, reflecting the distinctness of these sources.
However, many of the conditional probabilities for these
sources were dquite low. This problem seemed to correlate
loosely with sources having high Compton and Rayleigh scatter
peak values. Since the Rayleigh wvalue w. excluded by the
disc. .ination analysis, it is possible that the conditional
prcbabilities have been consequenti, affected. In addition,
the SPSS discriminant analysis creates extremely exacting
rules for calculating the conditional probability. It is
possible that statistical intraflow variability exists that is
not readily apparent 1in a variable-by-variable visual
examination of the numexical data, and that cases given low
conditional probabilities are relative outliers within their
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groups. Finally, discriminant analysis uses different criteria
for defining groups than does a human researcher; cases are
combined according to covarying numerical data, without regard
to the actual number of counts represented by a variable. For
example, the zinc value rarely varies significantly within a
source, or even between souces; however, the size of the Zn
peak is generally very small. As a result, zinc is generally
considered a poor discriminator for oissidian characterization,
although it may not be recognized as such by a statistical
analysis that is designed to choose discriminators with a
minimum of variance. In this study, artifacts that were
statistically assigned to a source that matched the manual
attripution, were generally accepted as valid if the posterior
probability was high, regardless of +the conditional
probability value. There was a minor discrepancy between the
manual and stal - tical assignment of one Owyhee obsidian
artifact; but this was only a difference in flow atiribution,
with the discriminant analysis identifying it as an Owyhee
Flow #2 specimen, while the author assigned it o Owyhee Flow
#1. This difference is unimportant, as the collectiun locales
for the twe flows were adjacent.

As noted abhove, there were numerous c ‘fferences between
the manual and statistical source attributions of ignimbrite
artifacts. All of the Brown's Bench artifacts identified by
statistical means were also so attributed manually, but the
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discriminant procedure often assigned artifacts to the Pine
Mountain and Picabo Hills sources which the author had matched
with the chemically-similar Brown's Bench group. Thirty-three
artifacts were statistically assigned to the Picabo Hills
source; thirty-two of these had been manually identified as
Brown's Bench ignimbrites. The other artifact (WBC 651) was
misclassified by the discriminant procedure; it did not match
with any of the Idaho sources in the study, and it was
tentatively labelled an 'unknown,' pending comparison with

sources outside the Snake River Plain.

Assessment of Discrepancies

Re-evaluation o¥ the Picabo Hills source assignments
resulted in the acceptance of 15 of the 32 identifiable cases.
Seventeen artifacts were identified as members of the Brown's
Bench chemical group, primarily on the basis of lower Nb
values for the Picabo Hills source; five of these were
assigned a secondary probability of membership in the Brown's
Bench group. Furthermore, artifacts WBC 1 and WBC 1055 were
made of red ignimbrite, which wa~ found only at the Brown's
Bench localities during field collection for this study.

Although it has been shown that colour is an insufficient
criterion for source attribution, it has also been noted in
this study that macroscopic features are often useful for
assigning artifacts to sources when the trace element data

79



overlap, as is the case with the Pine Mountain/Brown's Bench
distinction. It was thus Jjudged that the data were
sufficiently similar for these two artifacts that it was
useful to consider colour as a selection criterion.

The discriminant analysis assigned ei: :t artifacts to the
Pine Mountain ignimbrite source, all of which were manually
attributed to the Brown's Bench group. These discrepancies
were not unexpzcted, given the chemical similarity of these
sources and the researcher's inability to simultaneously
evaluate multivariate similarity. After re-examining the
data, only one of the eight Pine Mountain =zttributions were
accepted, on the basis of slight differences in the Rb and Y
ranges for the two sources. Seven artifacts were confirmed to
best match the Brown's Bench data, based on Rb and Y values,
and also due to the fact that they are all made from red
ignimbrite. Three of these (431, 856, and 777) had secondary
probabilities of membership in the Brown's Bench group.

The single Camas Prairie statistical assignment was also
made manually; discriminant analysis assigned one artifact to
the Cedar Creek group, which the author identified as a
Brown's Bench specimen, probably originating near the Shoshone
Basin locality. Two Coal Bank Spring attributions were made by
the SPSS program; both (WBC 477) were confirmed by examination
of the normalized data.

The similarity of the Deep Creek and Snake River data was
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illustrated by discrepancies in the manual and statistical
analyses. The discriminant analysis assigned seven artifacts
to the Deep Creek source, all with secondary probabilities of
Snake River membersnip; four of these had been manually
ascribed to the chemically-overlapping Snake River source, one
(WBC 38) did not match any of the source data (an unknown),
and only one was attributed to the Deep Creek source. In
contrast, three artifacts assigned to the Snake River socurce
by the statistical procedure, all with secondary probabilities
of Deep Creek membership; and all three were also so assigned
manually. It has been shown that the two sources cannot be
statistically divided with the information currently
available, and all predictions for each source predicted the
other source as a second most probable group. For the purposes
of comparing the results of manual and discriminant function
source attributions, the Snake River and Deep Creek specimens
were considered as one.

Four specimens were statistically assigned to chemical
group 2 at Jasper Flats. Two of these were manually attributed
to the Camas Prairie source, and twc to the Brown's Bench
group. All four had secondary SPSS probabilities of membership
in the Camas Prairie group. WBC 673 (attributed to the Brown's
Bench source) and WBC 682 (Camas Prairie) were both very thin
flakes, and neither provided fully reliable fluorescent count
data. Consequently, these source assignments must be
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considered tentative.

Finally, the discriminant analysis identified two Three
Creeks ignimbrite cases, both of which were manually matched
with the Brown's Bench group. On re-examination, the numerical
data for artifact WBC 865 was shown to match the Picabo Hills
data, while WBC 228C closely conforms to the Brown's Bench

profile; the secondary SPSS prediction for this artifact was

the Brown's Bench chemical c¢roup.

Misclassification Rate

The total measure of agreement between the two source
attribuntion methods before examining discrepancies was 79.6%
for the pri .PSS predictions, and 82.5% if matches with
secondary preaictions are added. After assessing the
discrepancies between the two methods and making the changes
outlined above, 90.8% or the manual assignments matched the
primary SPSS source predictions, with another 2.9% matching
the secondary prediction. These results are comparable, or
better than those of similar studies elsewhere (Sappington
l198la; James, 1992). The remaining 6.3% ¢ f the artifacts were
misclassified by the discriminant function procedure, with
three artifacts of unknown origin erroneously assigned to
sources in the sample set, and only 12 artifacts assigned to

incorrect source groups.
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Most of the misclassifications apparently occurred
because the statistical overla; among the Brown's Bench, Pine
Mountain, and Picabo Hills sources is great, making it
difficult to distinguish them confidently. The conditional
probabilities for artifacts assigned to these sources are
generally quite high; but the posterior probabilities are
often low, probably because group membership is possibie for
a number of sources. Despite the low posterior probability
values, careful examination of the normalized data shows that
the artifacts assigned to the Picabo Hills and Pine Mountain
sources probably do belong to those groups. A low posterior
probability is cften interpreted as a sign that the group
attribution is unlikely; but in this case it is interpreted as
a division of the probability of group mnembership among a
number of sources.

The number of changes made to the manual source
assignment data after comparison with the SPSS results,
however, strongly arguss for the use of powerful statistical
techniques such as discriminant function analysis to identify
covarying attrikutes in a multivariate sample set; and the
small number of misclassifications should not be interpreted
as a failure of the technique. All discriminant funection
classifications must ke evaluated in terms of the probability
of misclassification by chance alone (Norusis 19883, which, in

the present study, is extromslv high.
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Source Distribution Frequencies

A total of 16 volcanic gl s sources are represented in
the sample of Wilson Butte Cav:. ~rtifacts. As expected, large,
relatively nearby sources cemp c b the bulk of the collectieon;
the Big Southern Butte so. " . accounts for 59.2% of the
obsidian artifacts (32.6% of the *otal sample), and the
Brown's Bench chemical grcu; comprises 70.8% of the ignimbrite
artifacts (31.8% of the total collection). Fourteen other
Sources are represented in smaller proportions (see Table 9),.

There is a general pattern indicating the exploitation of
an increasing number of volcanic glass sources over time, a
phenomenon reported el=eswhere, which may suggest increased use
of Wilson Butte Cave in later prehistoric times, changes in
the movements of the occupants of the site, or other cultural

facturs. These ideas are addressed in the following chapter.
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Table 9. Percentage Distribution of Sources in the total
Wilson Butte Cave Artifact Sample.

Source N Percent of Sample

Bear Gulch 8
Big Southern Butte 80
Brown's Bench 76
Camas Prairie 3
Cannonball Mtn. 1
Cannonball Mtn. 2
Coal Bank Spring
Deep Creek

Malad

Ow7hee 1

Owyhee 2

Picabo Hills 1
Pine Mountain

Snake River

Timber Butte

Wedge Butte

Unknown
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Chapter Six

Volcanic Glass Source Exploitation at

Wilson Butte Cave

At least sixteen volcanic glass sources were exploited by
the prehistoric occupants of Wilson Butte Cave (see Table 10).
Geographically, the source 1localities span virtually the
entire Snake River Plain, with the Owyhee and Timber Butte
scurces located at the southwest and northwest ends of the
Plain respectively, the Malad source in the southeastern
region, and Bear Gulch at the extreme northeast end of the
Plain (Map 2). Broad patterns of gradual diachronic change in
lithic resource use were revealed in the course of this
study; they are best outlined in a stratum-by-stratum review

of source frequencies, presented below.

Source Use By Stratigraphic Zone

Stratum E

Five flakes were analyzed from a yellow clay deposit
directly overlying bedrock. Three were made from Big Southern
Butte obsidian, while two flakes (WBC 673, WBC 682) were too
thin to yield adequate data, although the trace element
pattern were similar to the Brown's Bench and Camas Prairie

sources respectively. Little more can be said about the flakes
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Hap Linear Distance

Reference Source Froo Wilson Butte Cave
Tizber Butte 215 tn
2 Ouyhee 1, 2 18S kxo
3 Cannonball Hen. 1, 2 83 kn
4 Camas Prairie 59 ko
S Wedge Butte . 35 kn
6 Brown’'s Bench 73 ko
7 Coal Bank Sprinyg 68 hm
8 Picabo Hills 60 hm
) Pine Hountain 80 km
10 Big Southern Butte 120 km
11 Snake River 113 km
12 Halad 160 ko
13 Deep Creek 215 kn
14 Bear Gulch 260 ko

1
3 9 10
B
4 5
2
- 1
~- 12
P -
/ -
j/ 6 \‘7

Map 2. Location of volcanic glass sources identified in
the artifact sample from Wilson Butte Cave.
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from the yellow clay at present; two have been submitted for
obsidian hydration dating to help assess the validity of their

stratigraphic position (Gruhn 1992 pers. comm.).

Table 10. Volcanic Glass Sources Identified in the
Wilson Butte Cave Artifact Collection.

SPSS # SOURCE NAME

72 OWYHEE 1

73 OWYHEE 2

75 BROWN'S BENCH

78 PICABO HILLS

79 TIMBER BUTTE

80 SNAKE RIVER

81 CANNONBALL MTN. 1
82 CANNONBALL MTN. 2
83 WEDGE BUTTE

84 COAL BANK SPRING
87 MALAD

88 DEEP CREEK

30 BEAR GULCH

93 CAMAS PRAIRIE

95 BIG SOUTHERN BUTTE
105 PINE MOUNTAIN

Stratum C1l

Initial excavaticns of the thick grey-brown sand deposit
in 1959/60 yielded a meagre lithic assemblage of unknown
cultural affiliation in the 1lower part of Stratum Cl.
Containing few artifacts, none diagnostic, this assemblage was

designated Wilson Butte I. This zone was estimated to date to
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about 8000 B.C. (Gruhn 1961:117), but produced a radiocarbon
date on bone of 14,000 B.P. (Gruhn 1965). The sediments and
microfauna associated with %“his assemblage are suggestive of
a moist meadowland or parkland environment, possibly near a
forest margin. There is evidence of a hunting subsistence,
with the fragmented bones of horse and camel species present.
Scattered charcoal indicates that hearths may have been
present originally, but occupation of the cave was clearly
very sporadic at this time, as the cave would have been very
cool and damp.

During the 1988/89 excavations, the basal, compact grey
sand facies of Stratum C was designated Facies C4 (Gruhn pers.
comm. 1992). 1wo volcanic glass sources are represented in the
sample of four artifacts from this basal sand deposit in
1988/89 (see Appendix 5). Three utilized or retouched flakes
were made from Big Southern Butte obsidian, while a single
projectile point fragment was fashioned from red ignimbrite
from Brown's Bench. The small sample size from this =zone
precludes interpretation at present; but, tentatively, the use
of a very restricted number of sources is suggested by
samples from the lower sand deposit.

Gruhn's Wilson Butte II assemblage, originally estimated
to date to approximately 6000 B.C., was situated in the middle
of the grey-brown sand of Stratum Cl (Gruhn 1961:118). By this
time, the forest margin had receded, and Wilson Butte was
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probably covered by moist grassland vegetation. Camel and
modern bison were represented in the associated faunal record,
but horse had apparently become extinct. Hunting was again the
primary activity indicated, with large, parallel-flaked
lanceolate projectile points featured in the Wilson Butte II
assemblage. Gruhn (1961:119) noted a strong relationship
between the Wilson Butte II lanceolates and coeval projectile
point types from the Great Plains. Several examples of these
Plano-like points were recovered from undisturbed contexts in
Sstratum C in 1988 and 1989, but the majority of points were
stemmed forms reminiscent of the local Haskett type, which is
similar in form to Hell Gap points. Knives, scrapers, a blade,
and a hammerstone were included in the Wilsor Butte II
assemblage, supporting the interpretation that hunting was
taking place on the butte.

Seventy-three artifacts recovered during the 1988/89
excavations of Stratum Cl, the grey~-brown sand, were analyzed,
with thirteen volcanic glass sources represented (see Appendix
5) . Obsidian is more common than ignimbrite in the sample from
this zone (71.3% vs 28.7%):; and Big Southern Butte obsidian
dominates, comprising 61.6% of the inventory. Brown's Bench
ignimbrite is the next most common volcanic ¢glass,
representing 13.6% of the Stratum Cl1 sample. The first
indication of the use of more distant and varied sources cones
from these artifacts, with the Bear Gulch, Camas Prairie,
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Cannonball Mountain, Deep Creek, Malad, Owyhee, Picabo, Pine
Mountain, and Snake River sources represented in minor
quantities. A single utilized blade (WBC €51) was made from a
volcanic glass not identified in this study. A general
intensification in the use of the cave might explain the
larger artifact sample and the increase in the number of
sources represented in the 1988/89 lithic collection from the
undisturbed. portion of Stratum Cl,

A facies of coarse sand with abundant rock fragments (now
designated C2) was contained within the lower-middle part of
Stratum Cl. Thirty-one artifacts recovered from this zone in
1988/89 were analyzed; Big Southern Butte obsidian was again
the dominant material (64.5%), with Brown's Bench ignimbrite
the second most common glass in the collection from this zone
(29.1%) . Bear Gulch and Cannonball Mountain obsidian were each
represented by a single artifact. This distribution resembles
that of Stratum E and Facies C4 of Stratum C, with few sources
apparently exploited. Again, sampling considerations are
germane, as the study collections from these lower strata are
quite small; they may present a skewed picture of actual

source use during these earliest time periods.

Disturbed Zones
The uppermost three stratigraphic zones at Wilson Butte
Cave (Strata A and B, and the upper levels of Stratum C) were
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destroyed by artifact collectors prior to the 1988/89
excavations. For the purposes of this study, they are
combined, and discussed simply as the ‘disturbed =zones’®
because accurate distinctions were rendered impossible by the
degree of disturbance and mixing of the sediments in many
areas. Reference ls made, however, to Gruhn's discussions of
the strata in terms of the artifact assemblages found within
them in 1959/60.

The initial excavations at Wilscn Butte Cave in 1959/60
recovered a relatively sparse assemblage from a small
occupation area in the upper level of Stratum C, and a
separate assemblage at the top of the deposit (Wilson Butte
IIX and IV, respectively). The upper part of Stratum C had
been completely destroyed by 1988, but a few projectile point
types pertaining to this zone were recovered from disturbed
sand deposits.

The: megafauna in deposits associated with the Wilson
Butte III assemblage indicated a warmer and drier climate
(although moister than today), with grasslands on the
surrounding plain, and the first indication of xerophytic
fauna on the butte. Modern bison, (the only large herbivore
associated with the Wilson Butte III assemblage) were
certainly being hunted at this time; and large stemmed,
indented-base projectile points comprise a relatively large
portion of the assemblage, which has been radiocarbcn dated at
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48950 B.C. +/- 300 years (M-1087). Gruhn (1961:120) interpreted
this assemblage as evidence of occasional visits to the site
by small groups of bison hunters, with probable cultural
relationships with the Great Basin.

The Wilson Butte IV assemblage, situated at the top of
the grey-brown sand deposit, probably represents periodic
occupation of the cave by bison hunters ca. 4500 B.C. While
sediment and faunal ewvidence suggest a slightly drier climate
than that agggzigte? with the underlying Wilson Butte TII
assemblage, the fiont of the wmav:, #ud: its opening, was
apparently the preferred living area at this time, suggesting
that the cave was still somewhat cool and damp.

The Wilson Butte IV 1lithic assemblage includes large
side-notched projectile points, the Northern Side-Notched
typre, which was a component of the Desert Cultural Tradition
of the northern Great Basin, as well as stemmed/shouldered
projectile points with apparent southern Great Basin
affinities.

Gruhn (1961) defined Stratum B as a temporally -
expansive aeolian brown silt deposit, within which she
identified the artifact assemblage Wilson Butte V. Although
this stratum may represent a depositional history spanning
some 6,000 years, the major periocd of occupation, revealed in
the lower-middle portion of the deposit, probably occurred
between approximately 2000 B.C. and 500 B.C. (Gruhn 1961:121).
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Projectile points were numerous in the Wilson Butte V
assemblage. Most were of intermediazte size, with corner-
notched, stemmed, ¢triangular, and side-notched varieties
represented. Knives, scrapers, engraving tools, and a drill
provide evidence of hide-, bone~, and wood-working.

A moderate semi-arid climate had developed by this time;
and occupation of the cave had become more intensive, although
still of short duration, with living areas at the front and
back of the cave. Bison and antelope were evidently hunted
with atlatls, and the presence of milling stones indicates
that plant processing also took place at the site. Cultural
traits indicate close ties with both the Great Basin and the
northwest Plains.

Artifacts comprising the uppermost Wilson Butte
assemblage, found in the dry sand and vegetal material of
Stratum A, were sufficiently numerous and distiactive to
warrant definition of a separate phase, designated the
Dietrich Phase (Gruhn 1961:122). Material from the middle of
the deposit has been radiocarkon dated at A.D. 1535 +/- 150
Years (M-1088), and the phase likely persisted between about
A.D. 1300 and A.D. 1700 (Gruhn 1961:122). Use of the cave
during this time period was guite intensive, with large
amounts of cultural material deposited, along with numerous
shallow hearths.

Small corner- and side-notched projectile points indicate
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the use of the bow and arrow, and numerous knives and scrapers
suggest that dispatched game were processed at the site. Bone
and wooden tool comprise an important portion of the Dietrich
Phase inventory, and pottery vessels were apparently used for
cooking. A number of bone artifacts, including bone gaming
pieces, and other incised items, attests to the recreational
activities of the Dietrich Phase occupants.

Use of Wilson Butte Cave during the Dietrich Phase
remained periodic {likely seasonal), and was probably related
to hunting on the butte and the surrounding plain. In 1961
Gruhn proposed, on the basis of 1lithic, pottery, and
perishable artifact styles, that this assemblage represented
occupation of the cave by Shoshonean - speaking peoples. While
the total inventory of material culture is not present (due to
the specialized, short term of occupation), the Dietrich Phase
assemblage displays clear affinities with known assemblages of
the Great Basin (Gruhn 1961:135). However, relatively close
relationships with lithic assemblages of the Great Plains are
also evident. Currently there is consideration of the
possibility that some of the Late Prehistoric material may
represent a Fremont occupation of the site (Gruhn 1992 pers.
comm.) .

The intensity of occupation and variety of artifact types
in the 1988/89 collection from the upper, disturbed zones is
reflected in the inventory of volcanic glass sources exploited
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during the later prehistoric occupations. Sixteen sources are
represented in a sample of 127 artifacts from the disturbed
zones. Although time resolution is imprecise, with possibly
more than 6,000 years represented by these strata, a trend
toward an increasing preference for ignimbrite over obsidian
emerges (Fig. 4). 58.3% of volcanic glass artifacts from the
disturbed 2zones were fashioned from ignimbrite, with the
Brown's Bench source dominating the sample. This source
comprises more than 60% of the ignimbrite analyzed from every
stratigraphic zone, and 70.3% of the ignimbrite (40.9% of the
volcanic glass inventory) from the disturbed zones.

Of the 53 obsidian artifacts (41.7% of the disturbed zone
sample), only 9 (17% of the obsidian; 7.1% of the sample) were
from the Big Southern Butte source, while Cannonball Mountain
(41.5% of the obsidian; 17.3% of the sample) became the
primary source of obsidian. This pattern represents the first
evidence of a decline in the dominance of the Big Southern
Butte source (and of obsidian use in general), with a
concomitant rise in the frequency of ignimbrite; and
particularly material from the Picabo Hills source, located 60
km north of Wilson Butte Cave (Fig. 4). The Picabo Hills
source rises sharply in frequency in the disturbed zones,
comprising 20.3% of the ignimbrite, and 11.8% of the entire
sample from these deposits.

Six other obsidian sources were represented in the
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disturbed zone collection, comprising 16.5% of the sample from
these 2ones. An additional obsidian artifact came from a
source not characterized in this study. This apparent increase
in the number of obsidian sources being utilized is not
parallelled in the ignimbrite data, wherein source use appears
to become more focused, with only seven of seventy-three
artifacts originating at sources other than Brown's Bench or
Picabo Hills. Thus, an intensified use of a small number of
ignimbrite sources, coupied with an increasing diversity of
obsidian source use probably occurred during the time in which
the cultural materials in strata A and B, and upper Stratum C
were deposited. Greater quantities and varieties of cultural
materials during this time attest to intensified use of Wilson
Butte Cave, perhaps associated with a changing transhumant
pattern which resulted in a change in 1litvhic procurement
strategies.

Better chronological control would facilitate more
detailed interpretation of this potentially informative time
period, as a significant shift in 1lithic procurement is
indicated here. This economic shift may have resulted from a
more dgeneral subsistence or settlement pattern shift that
necessitated a change in 1lithic collection strategies.
Alternatively, it is possible that high-quality obsidian at
Big Southern Butte was becoming scarce by this time, dictating
a change in lithic procurement strategies. Recent explorations
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at the Webb Spring locality on Big Southern Butte identified
a lithic reduction site, but a lack of useable lithic material
was noted (Truitt 1991). Further research of the distribution
of Big Southern Butte obsidian over time might help to clarify

this issue.

Patterns of Volcanic Glass Exploitation

The high percentage of Big Southern Butte obsidian in the
older Wilson Butte Cave assemblages was not unexpected, as it
is a source of high-gquality obsidian relatively near Wilson
Butte. According to the central assumption of catchment
analysis, pecple explecit their environment in a rational way
in order to minimize the effort required to satisfy their
needs (Zvelebil 21983). Following this logic, it would be
expected that lithic raw materials would be collected as part
of a broader subsistence system, and that material sources
nearest the areas utilized for subsistence would be most
heavily exploited. The data from Wilson Butte Cave are
consistent with this pattern, with the relatively nearby Big
Southern Butte, Brown's Bench, and Cannonball Mountain sources
dominating the analyzed collection. The Brown's Bench
ignimbrite localities are also relatively near Wilson Butte,
and this proximity is reflected in their frequency 3in the
collection. Although the Wedge Butte source is geographically
nearer Wilson Butte, the quality of the stone is much lower;
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the rocks contain extremely abundant phenocrystic inclusions
that reduce the predictability of the fracture pattern of this
toolstone.

It is interesting that Big Southern Butte and Brown's
Bench are in diametrically opposite directions from Wilson
Butte Cave, and that Brown's Bench lies across the deeply
incised Snake River Canyon from the site. Thus, the bulk of
the obsidian recovered from the lower levels of the site came
from sources to the northeast, while most of the ignimbrite
was brought in from the southwest. This distribution is
notable because the Snake River ignimbrite source, which was
apparently intensively exploited locally, and traded elsewhere
(Druss pers. comm. 1989; Godfrey-Smith 1988), is only weakly
represented at Wilson Butte Cave, despite its relative
proximity to Big Southern Butte and Wilson Butte Cave. Located
approximately 110 km to the east of Wilson Butte, the Snake
River source comprises only 2.9% of the total analyzed
material; and it is absent in Stratum E, and Stratum C Facies
C2 and C4. Although substantial chemical overlap between the
Snake River and Deep Creek sources confounds this measure
somewhat, it is nevertheless known that the Snake River
material was used prehistorically as a toolstone; and its
relative infrequency at Wilson Butte Cave may indicate that
the cave was little used by populations to the southeast of
the site. The concordant infrequency of Malad obsidian
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supports this interpretation, with this extremely high-gquality
obsidian comprising only 2.1% of the sample collecticn. If, in
fact, people from the southeastern portion of the Snake River
Plain were not substantially using Wilson Butte Cave, this
conclusion may support Reed's (19285) assertion that the Malad
source was controlled, at least in Late Prehistoric times, by
Fremont people; and that there was therefore a cultural
barrier precluding its use by Shoshonean populations. It is
during the later occupation zones that we see mcre variety in
source exploitation at Wilson Butte Cave, and consequently, it
is during this time that we micht expect to see distant
sources such as Malad represented in the collection.

Also of interest is the guantity of Cannonball Mountain
obsidian in the sample. Despite the relative proximity of
Cannonball Mountain to Wilson Butte, the frequency of this
glass in the artifact sample is somewhat surprising because
this source has not been identified as a major component in
other Idaho sites, and it has not been reported outside the
Snake River Plain.

There is a general pattern at Wilson Butte Cave of
increasing use of distant sources in the later occupations,
represented by collections from the disturbed layers. This
pattern parallels the situation at Nightfire 1Island,
California, during the Elko Horizor (3350 - 1750 BP) (Sampson
1985). Bouey and Basgall (1984) also noted a change in the
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direction of obsidian procurement in tb - Sierran region of
California, beginning about 1500 years ago.

The presence of raw materials from distant locales may be
indicative of either population movement or exchange with
neighbouring grougps. In the case of Wilson Butte Cave, the
latter case is more 1likely; the abundance of high quality
volcanic glasses in Idaho, and particularly on the Snake River
Plain, would seem to preclude the need for extensive intra-
regional exchange of 1lithic raw materials, although it is
known that prehistoric inter-regional exchange of certain
Idaho obsidians was extensive. Bear Gulch obsidian, for
example, has been identified from archaeological contexts as
far north as Edmonton, Alberta (James 1986), and as far east
as the Hopewelliian mounds of Illinois and Ohio (Wright et al.
1986; Hatch et ail. 1990). However, the virtual absence at
Wilson Butte Cave of volcanic glass materials from outside the
Snake River Plain argues against the use of the cave by groups
from more distant areas; and it is more probable that the site
was occupied periodically by groups travelling to and from
hunting, fishing, and collecting sites near Wilson Butte.
Unfortunately, the degree ¢ disturbance at Wilson Butte Cave
has made it difficult to obtain good temporal resolution for
the upper layers, so the timing of the shift in volcanic glass
procurement strategies cannot be accurately determined at this
time. Analysis of artifacts recovered in the 1959/60C
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excavations, previous to much of the destruction of the upper
zones, might help to increase our understanding of this
problem.

The general pattern of socurce use at the cave is
suggestive of movements between the northeast and the
southwest of the site, with the major components including Big
Southern Butte, Picabo Hills, Cannonball Mountain, and Brown's
Bench, with occasional forays into other areas. Reference to
Map 2 shows that these source localities are consistent with
a pattern of transrumance that could include the collection of
camas roots at Camas Prairie; fishing along the Snake River
(possibly near Brown's Bench), where salmon were available
until recently (Gruhn 1961:4); and hunting on the plain below
Wilson Butte.

An alternative explanation of site use at Wilson Butte
Cave has a number of groups from different areas of the Snake
River Plain using the site, probably as a short-term shelter
associated with hunting activities, and introducing volcanic
glass items from sources within their various subsistence-
settlement territories. At present, there is no geochemical
evidence to suggest use of the cave by people from outside the
Intermontane West, with only three analyzed artifacts
originating at sources not characterized in this study.
However, some evidence from basketry, pottery, gaming pieces
and projectile point typology may indicate Late Prehistoric
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occupation by, or influences from, Fremont populations (Gruhn
pers. comm. 1992). Obsidian from the Malad source, previously
depicted as a 'Fremont - controlled' source (Reed 1985), is
present in the artifact collection from the disturbed deposits
of the site; but only in small guantities, probably more
indicative of small scale exchange or artifact curation, if

access to the source was indeed restricted by Fremont

populations.
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Conclusioen

Contributions to the Study of Idaho Archaeology

The present study successfully attained its three primary
goals. First, a substantial number of volcanic glass sources
on or near the Snake River Plain were located, sampled, and
chemically characterized. While much of this work had been
previously completed by R.L. Sappingten (1981a,b), a number of
previously unreported source areas were analyzed, and
excellent resolution was achieved, with the identification of
multiple flows at the Owyhee and Cannonball Mountain sources.
These data will prove useful to archaeologists interested in
examining prehistoric patterns of exchange, both within and
outside the study area. Volcanic glasses from Idaho have been
reported from sites as distant as central Alberta (James 1986;
Godfrey-Smith and D'Auria 1987) and Ohio (Hatch et al 1990);
reliable source characterizations provide the first step
toward reconstructing the cultural processes responsible for
their presence in these areas.

Several of the newly reported source areas regquire
further samp..ng to provide increased resolution for the
correlation of artifacts, but the foundation has been laid for
this work to be undertaken. Such sources include Deep Creek,
where more intensive sampling might help to distinguish this
source from the chemically - similar Snake River source; and
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the Cedar Creek and Three Creek areas, from which arparently
intrusive cobbles were analyzed which may be representative of
a source outside the Snale River Plain. Further refinement,
through a rigorous sampling strategy, might also strengthen
the distinction between the Brown's Bench, Picabo Hills, and
Pine Mountain sources; and provide more information about the
poorly - characterized Jasper Flats chemical types, where no
material of knappable quality was located in the course of
this study. It is hoped that these sources will be better
characterized in the future, allowing increased confidence in
the probabilities of artifact-to-source correlations.

Second, the identification of the parent sources of a
sample of obsidian and ignimbrite artifacts from Wilson Butte
Cave has supported inferences about the function of the site.
It was proposed that the cave was used as a short-t2rm camp
for people hunting on and around the butte. The virtual
absence, in the lower strata, of distant lithic raw materials
supports the notion that in 1late Pleistocene and early
Holocene times the cave was used primarily by 1local
populations. An apparent shift in lithic resource use over
time raises interesting questions about resource availability,
subsistence and settlement strategies, and population
movements. Chemical composition analysis can provide
supportive evidence for hypotheses about these and other
cultural processes.
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Finally, the identification of the parent sources of many
of the Wilson Butte Cave artifacts facilitated their dating by
the cobsidian hydration technique. Results of these analyses,
to be reported elsewhere (Gruhn, in preparation), wiill help to
date the occupation events at Wilson Butte Cave more securely,
and they may help to clarify the currently controversial
projectile pocint chronology suggested for the Snake River
Plain.

This study has demonstrated the usefulness of non-
destructive x~ray fluorescence analysis of volcanic glasses
for the correlation of stone tools with parent geological
sources. It has been shown that adequate results may be
obtained by applying the technique semi-quantitatively, using
multivariate statistics to quantify the degree of correlation
among samples, and to indicate the probability that artifact-
to-source correlations are correct. A major limitation of the
study is the probability that the Wilson Butte Cave site was
occupied only as a temporary campsite; and the deposits were
subsequently greatly disturbed by artifact collectors, thereby
making it more difficult to interpret the data. A regional
study of volcanic glass distribution at primary, long-term
habitation sites would provide more wvaluable insights into

prehistoric adaptive processes and exchange on the Snake River

Plain.
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APPENDIX ONE

NORMALIZED SOURCE DATA
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Owyhee 1,
Ouyhee 1,
Ouwyhee 1,
Owyhee 1,
Owyhee 1,
Owyhee 1,
Owyhee 1,
Ouwyhee 1,
Ouyhee 1,
Owyhee 1,
Ouyhee 1,
Owyhee 1,
Owyhee 1,
Owyhee 1,
Owyhee 1,
Owyhee 1,
Owyhee 1,
Owyhee 1,
Ouyhee 1,
Ovyhee 1,
Owyhee 1,
Owyhee 1,
Owyhee 1,
Ouwyhee 2, |
Owyhee 2,
Ouyhee 2,
Owyhee 2,
Ouyhee 2,
Owyhee 2,
Owyhee 2,
Owyhee 2,
Owyhee 2,
Owyhee 2,
Owyhee 2,
Owyhee 2,
Ouyhee 2,
Owyhee 2,
Owyhee 2,
Owyhee 2,
Owyhee 2,
Ouyhee 2,
Owyhee 2,
Murphy Hot Spr.
Murphy Bot Spr.
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1.223
1.275
1.301
1.345
1.398
1.220
1.236
1.363
1.320
1.29%
1,355
1.267
1.316
0.747
0.819

Fak:

0.256
0.366
0.222
0.218
0.241
0.391

0.193
0.215
0.216
0.225
0.227
0.214
0.190
0.226
0.210
0.221
0.189
0.218
0.191
0.179
0.175
0.184
0.212
0.222
0.227
0.238
0.243
0.234
0.212
0.224
0.233
0.228
0.238
0.253
0.218
0.225
0.253
0.231
0.222
0.239
0.233
0.239
0.141
0.156
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Rb

0.962
0.875
0.780
0.821
0.962
1.077

0.843
0.796
1.039
1.098
0.999
0.949
0.893
1.054
0.935
1.008
0.933
0.845
0.848
0.724
0.704
0.851
0.853
0.989
0.950
1.043
1.130
1.025
1.090
1.044
1.052
0.958
1.095
1.141
1.012
1.047
1.133
1.074
1.081
1.099
1.076
1.124
0.333
0.341

Sr

0.155
0.151
0.171
0.241
0.152
0.187

0.221
0.191
0.140
0.171
0.148
0.160
0.144
0.175
0.153
0.163
0.138
0.235
0.210
0.194
0.205
0.213
0.235
0.144
0.139
0.170
0.147
0.125
0.1384
0.161
0.162
0.140
0.191
0.190
0.162
0.168
0.152
0.184
0.169
0.171
0.167
0.151
0.037
0.030

0.390
0.349
0.293
0.317
0.420
0.389

0.356
0.341
0.378
0.381
0.380
0.377
0.383
0.399
0.375
0.388
0.368
0.339
0.313
0.309
$.316
0.320
0.295
0.404
0.398
0.424
0.385
0.408
0.404
0.379
0.397
0.381
0.455
0.416
0.432
0.452
0.416
0.4238
0.421
0.389
0.433
0.404
0.203
0.190
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0.108
0.034
0.143
0.079
0.156
0.094
0.073
0.124
0.135
€.127
0.089
0.102
0.106
0.134
0.085
0.108
0.102
0.097
0.092
0.0950
0.102
0.097
0.099
0.112
0.101
0.088
0.101
0.086
0.103
0.114
0.142
0.141

Iirkb

0.132
0.108
0.211
0.199
0.133
0.224

0.136
0.240
0.261
0.162
0.161
0.178
0.224
0.253
0.211
0.196
0.19¢4
0.186
0.161
0.253
0.249
0.176
0.277
0.222
0.254
0.257
0.259
0.223
0.252
0.209
0.293
0.246
0.233
0.181
0.202
0.175
0.351
0.234
0.250
0.214
0.223
0.337
0.193
0.226

Con

11.449
11.622
16.630
10.603
11.196
11.978

10.847
10.426
11.907
12.410
12.178
11.480
11.158
11.516
11.034
11.729
11.037

9.649
10.112

9.342

8.987

9.657
10.328%
11.203
10.841
11.780
12.963
11.440
12.237
13.026
12.991
12.811
12.599
12.775
12.007
12.022
12.652
13,158

13.304

12.112
12.437
13.079
3.450
3.623

Ray

7.766
7.856
7.463
7.225
7.302
7.939

7.704
7.154
8.044
8.575
8.635
7.864
7.843
7.846
7.569
8.035
7.317
6.464
6.878
6.424
6.195
6.630
6.997
7.468
7.470
7.876
9.047
7.691
8.415
9.115
9.325
8.369
8.489
8.699
8.323
3.231
8.614
8.972
9.121
$.308
8.716
9.210
2.385
2.627



Hurphy Hot Spr.
Hurphy Bot Spr.
Hurphy Hot Spr.
Kurphy Hot Spr.
Murphy Hot Spr.
Kurphy Hot Spr.
Murphy Bot Spr.
Kurphy Hot Spr.
Kurphy Hot Spr.
Murphy Hot Spr.
Murphy Hot Spr.
¥urphy Hot Spr.
Antelope Spring
Antelope Spring
Antelope Spring
Antelope Spring
Antelope Spring
Antelope Spring
Antelope Spring
Antelope Spring
Antelope Spring
Antelope Spring
Antelope Spring
Antelope Spring
Antelope Spring
Antelope Spring
Antelope Spring
Brown’s Bench
Brown’s Bench
Brown’s Bench
Brown’s Bench
Brown’s Bench
Brown’s Bench
Brown’s Bench
Brown’s Bench
Brown’s Bench
Brown’s Bench
Brown’s Bench
Brown’s Bench
Brown‘s Benrch
Brown’s Bench
Brown’s Bench
Brown’s Bench
Brown’s Bench
Brown’s Bench
Brown’s Bench
Brown’s Bench
Brown’s Bench
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5
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75
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75

0.707
0.708

0.747
0.769
0.698
0.695
0.715
0.717
0.796
0.787
0.773
0.800
0.730
0.683
0.723
0.734
0.761
0.736
0.723
0.786
0.714
0.731
0.701
0.716
0.734
0.715
0.696
0.928
0.777
0.956
0.692
0.748
0.698
0.685
0.686
0.739
0.668
0.685
0.744
0.742
0.754
0.692
0.782
0.685
0.666
0.710
0.700
0.735

0.128
0.125

0.134
0.140
0.124
0.123
0.134
0.131
0.141
0.143
0.142
0.140
0.126
0.121
0.127
0.133
0.132
0.130
0.129
0.134
0.131
0.129
0.128
0.130
0.134
0.134
0.132
0.162
0.139
0.162
0.125
0.138
0.124
0.129
0.118
0.131
0.125
0.124
0.132
0.136
0.137
0.098
0.137
0.127
0.117
0.123
0.126
0.13¢

0.009
0.011

0.011
0.011
0.014 0.360
0.008
0.008 0.358
0.011 0.373
0.010 0.357
0.014
0.011
0.011
0.007
0.007
0.009
0.010
0.007
0.008
0.008
0.008
0.011
0.008
0.008
0.009 0.258
0.009 0.263
0.010
0.007
0.012
0.010
0.005
0.010
0.011 0.263
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0.045
0.039

0.027
0.034
0.047
0.044
0.049
0.043
0.037
0.038
0.034
0.033
0.065
0.067
0.063
0.066
0.058
0.067
0.051
0.049
0.067
0.052
0.053
0.054
0.056
0.093
0.062
0.048
0.059
0.074
0.051
0.062
0.063
0.065
0.065
0.071
0.063
0.071
0.064
0.061
0.066
0.065
0.065
0.062
0.064
0.063
0.063
0.062

0.192
0.187

0.199
0.197
0.202
0.190
0.190
0.204
0.205
0.209
0.203
0.206
0.172
0.158
0.157
0.159
0.168
0.154
0.147
0.148
0.150
0.151
0.152
0.145
0.148
0.154
0.154
0.149
0.159
0.152
0.150
0.148
0.153
0.164
0.152
0.149
0.148
0.164
0.160
0.162
0.155
0.156
0.147
0.148
0.148
0.150
0.143
0.172

0.133
0.132

0.137
0.139
0.136
0.124
0.135
0.136
0.141
0.132
0.144
0.142
0.111
0.119
0.114
0.119
0.112
0.111
0.108
0.111
0.104
0.107
0.113
0.105
6.107
0.119
0.110
0.104
0.109
0.116
0.114
0.117
0.102
0.112
0.105
0.108
0.107
0.109
0.125
0.129
0.105
0.141
0.106
0.107
0.105
0.111
0.119
0.149

3.745

3.519

3.556

3.875
3.782
3.522
3.719
3.982
3.944

3.746
3.862
3.622
2.668
2.729
2.637
2.675
2.566
2.623
2.693
2.610
2.685
2.681
2.751
2.642
2.641
2.711
2.652
2.838
3.126
2.899
2.780
2.741
2.680
2.952
2.841
2.882
2.910
2.873
2.869
3.150
2.847
2.769
2.899
2.630
2.798
2.788
2.949
2.893

2.655
2.562

2.491
2.824
2.792
2.549
2.681
2.935
2.993
2.716
2.756
2.648
1.349
2.005
1.921
1.937
1.7713
1.925
1.846
1.701
1.835
1.782
1.869
1.805
1.820
1.889
1.825
2.028
2.196
2.133
2.028
1.897
1.935
2.177
2.140
2.066
2.165
2.151
2.091
2.274
2.139
2.012
1.985
1.91
2.031
1.081
2.130
1.998



Brown’s Bench
Brown’s Bench

Brown’s Bench
Brown’s Bench
Brown’s Bench
Brown'’s Bench
Brown’s Bench
Brown’s Bench
Brown’s Bench

Brown’s Bench
Brown’s Bench

Brown’s Bench
Brown’'s Bench
Brown’s Bench
Brown’s Bench
Brown’s Bench
Idaho Black
Idaho Black
1daho Black
1daho Red

Idaho Red

Idaho Red
Little House Ck
Little House Ck
Little House Ck
Little House Ck
Little Bouse Ck
Little Bouse Ck
Little House Ck
Little House Ck
Little House Ck
Little House Ck
Little House Ck
Little House Ck
Little Bouse Ck
Little House Ck
Little House Ck
Kurphy Hot Spr.
Oldzan Quarry,
Oldman Quazry,
Oldman Quarry,
Oldman Quarry,
Oldsan Quarry,
Oldwan Quarry,
Oldman Quarry,
Oldman Quarry,
Oldman Quarry,
Oldman Quarry,

75
7%
75
75
75
75
75
75
75

75
7

75
75
75
75
75
75
75
75
75
7%
75
75
75
75
7%
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
7%
75
75
75
75
75
75

0.696
0.724

0.688
0.667
0.705
0.677
0.727
0.732
0.704

0.722
0.728

0.724
0.726
0.667
0.715
0.719
0.772
0.820
0.716
0.912
0.747
0.772
0.773
0.727
0.707
0.744
n.741
0.7%5
0.783
0.721
0.722
0.723
0.747
0.705
0.710
0.736
0.697
0.893
0.697
0.734
0.734
0.712
0.726
0.708
0.7338
0.728
0.722
0.748

0.124
0.127

0.123
0.123
0.130
0.120
0.131
0.121
0.127

0.127
0.127

0.135
0.132
0.122
0.127
0.128
0.134
0.149
0.131
0.164
0.1
0.145
0.136
00126
0.128
0.132
0.139
0.132
0.140
0.132
0.129
0.131
0.131
0.129
0.126
0.128
0.118
0.16)
0.126
0.130
0.132
0.126
0.130
0.125
0.136
0.132
0.132
0.129

0.010 0.263
0.010 0.284

0.007 0.275
0.009 0.246
0.009 0.245
0.010 0.278
0.008 0.268
0.011 0.277
0.008 0.270

0.007 0.269
0.008 0.277

0.012 0.257
0.009 0.243
0.011 0.235
0.010 0.283
0.010 0.252
0.011 0.243
0.010 0.269
0.010 0.247
0.013 0.228
6.009 0.209
0.009 0.218
0.011 0.263
0.249
0.246
9.262
J.246
0.298
0.262
0.269
0.250
0.272
0.010 0.259
0.010 0.256
0.012 0.284
0.010 0.270
0.013 0.257
0.008 0.265
0.233
0.250
0.2%
0.245
0.244
0.249
0.261
0.262
0.267
0.262
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0.064
0.064

0.059
0.086
0.066
0.060
0.067
0.067
0.052

6.061
0.072

0.054
0.060
0.068
0.067
0.062
0.057
0.066
0.060
0.075
0.062
0.046
0.066
0.067
0.072
0.058
0.069
0.064
0.065
0.067
0.068
0.059
0.064
0.066
0.063
0.063
0.063
0.062
0.062
0.066
0.068
0.071
0.067
0.063
0.067
0.064
0.067
0.065

0.175
0.165

0.167
0.159
0.162
.171
0.165
0.169
0.166

0.174
0.177

0.171
0.161
0.166
0.166
0.154
0.146
0.155
0.151
0.166
0.155
0.148
0.158
0.146
0.148
0.161
0.141
0.168
0.154
0.162
0.156
0.153
0.158
0.148
0.166
0.155
0.159
0.143
0.147
0.155
0.157
0.153
0.151
0.160
0.157
0.158
0.165
0.161

0.143
0.131

0.114
0.107
0.110
0.119
0.123
0.125
0.118

0.115
0.128

0.116
0.118
0.126
0.127
0.127
0.116
0.116
0.095
0.138
0.134
0.136
0.135
0.114
0.120
0.118
0.119
0.114
0.125
0.118
0.103
0.119
0.127
0.130
0.124
0.116
0.127
0.101
0.105
0.110
0.115
0.114
0.113
0.121
0.115
0.11€
0.114
0.117

0.211
0.211

0.224
0.227
0.240
0.229
0.232
0.215
0.227

0.210
0.20

0.230
0.225
0.209
0.221
0.207
0.215
0.190
0.206
0.201
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0.204
0.221
0.223
0.237
0.231
0.203
0.212
0.220
0.209
0.213
0.221
0.212
0.204
0.21%
0.21%.
0.221
0.217

2.950
3.045

2.863
2.785
2.845
3.19
3.177
3.040
3.137
3.007
3.017
2.987
2.783
2.958
2.995
2.950
2.773
2.946
2.893
2.400
2.792
2.752
3.092
2.780
2.862
3.170
2.981
3.130
2.965
3.300
3.010
3.045
3.128
3.316
3.328
3.146
3.399
2.898
2.469
2.513
2.818
2.582
2.535
2.733
2.646
2.800
2.665
2.785

2.087
2.134

2.069
2.028
2.020
2.324
2.368
2.230
2.247

2.133
2.183

2.149
2.024
2.146
2.209
2.176
1.896
2.062
2.100
1.608
1,994
1.919
2.192
2.086
2.088
2.360
2.249
2.261
2.145
2.391
2.269
2.217
2.332
2.383
2.495
2.320
2.482
2.160
1.845
1.781
2.046
1.899
1.846
1.996
1.982
1.999
1.982
2.028



Oldpan Quarry, 75 0.711 0.130 0.008 0.252 0.067 0.15% 0.113 0.218 2.647 1.9%9
Oldman Quarry, 75 0.733 0.133 0.010 0.259 0.058 0.158 0.118 0.223 2.784 2.012

Oldean Quarry, 75 0.714 0.133 0.008 0.239 0.059 0.142 0.109 0.210 2.611 1.%00
Oldpan Quarry, 75 0.716 0.128 0.008 0.255 0.062 0.153 0.119 0.220 2.764 2.039
Oldman Quarry, 75 9.720 0.130 0.008 0.252 0.057 0.152 0.108 0.209 2.657 1.931
Shoshone Basin, 75 ©.772 0.139 0.010 0.215 0.067 0.140 0.131 ©.225 2.192 1.563
Shoshone Basin, 75 0.702 0,122 0.011 0.193 0.060 0.136 0.135 0.223 2.392 1.758
Shoshone Basin, 75 0.714 0.124 0.002 0.187 0.064 0.137 0.122 0.223 2.411 1.837
Shoshone Basin, 75 0.723 0.126 0.011 0.232 0.061 0.147 0.104 0.245 2.590 1.925
Shoshone Basin, 75 0.724¢ 0.131 0.010 0.240 0.063 0.149 0.110 0.242 2.606 1.945

Shoshone Basin, 75 0.724 0.127 0.012 0.230 0.064 0.144 0.102 0.204 2.547 1.893
Shoshone Basin, 75 0.693 0.129 0.007 0.247 0.056 0.165 0.115 0.231 3.013 2.113
Shoshone Basin, 75 0.775 0.133 0.011 0.305 0.060 0.158 0.121 0.226 2.700 1.950
Shoshone Basin, 75 0.802 0.143 0.010 0.260 0.063 0.162 0.111 ©.234 2.575 1.839
Shoshone Basin, 75 0.746 0.131 0.009 0.170 0.068 0.117 0.100 0.209 1.971 1.457
Shoshene Basin, 75 0.735 0.130 0.008 0.168 0.071 0.123 0.100 0.237 2.052 1.527
Shoshone Basin, 75 0.775 0.138 0.009 0.162 0.070 0.120 0.104 0.205 1.874 1.39%
Shoshore Basin, 75 0.726 0.132 0.011 0.212 0.071 0.138 0.118 0.213 2.245 1.622
Shoshone Basin, 75 0.737 0.135 0.010 0.184 0.067 0.130 0.115 0.236 2.304 1.696
Shoshone Basin, 75 0.732 0.131 0.011 0.192 0.073 0.134 0.114 0.216 2.312 1.725
Shoshone Basin, 75 0.734 0.127 0.008 0.18 0.082 0.127 0.114 0.224 2.309 1.665
Shoshone Basin, 75 0.685 0.127 0.010 0.182 0.061 0.121 0.108 0.232 2.268 1.692
Shoshone Basin, 75 0.730 0.135 0.007 0.198 0.066 0.127 0.106 0.222 2.327 1.728
Shoshone Basin, 75 0.803 0.144 0.008 0.179 0.065 0.129 0.097 0.215 2.088 1.502
Shoshone Basin, 75 0.654 0.116 0.007 0.179 0.065 0.132 0.000 0.225 2.396 1.662
Shoshone Basin, 75 0.782 0.140 0.009 0.163 0.068 ©€.125 0.106 0.228 2.071 1.551
Shoshone Basin, 75 0.782 0.133 0.005 0.164 0.067 0.117 0.111 0.240 1.575 1.465
Shoshone Basin, 75 0.780 0.140 0.010 0.161 0.074 0.118 0.099 0.227 1.975 1.453
Shoshone Basin, 75 0.740 0.131 0.009 0.165 0.070 0.119 0.115 0.224 2.067 1.518
Shoshone Basin, 75 0.737 0.132 0.011 0.157 0.072 0.116 0.108 0.213 2.046 1.535
Shoshone Basin, 75 0.744 0.136 0.009 0.201 0.060 0.143 0.136 0.230 2.427 1.765
shoshone Basin, 75 0.731 0.132 0.009 0.207 0.060 0.147 0.130 0.235 2.521 1.857
Shoshone Basin, 75 0.745 0.131 0.008 0.224 0.057 0.150 0.126 0.232 2.516 1.843
Shoshone Basin, 75 0.725 0.131 0.010 0.209 0.061 0.151 0.126 0.231 2.383 1.752
Shoshone Basin, 75 0.838 0.147 0.012 0.211 0.067 0.149 0.133 0.216 2.213 1.602
Shoshone Basin, 75 0.731 0.125 0.010 0.239 0.071 0.146 0.099 0.232 2.630 1.976
Shoshone Basin, 75 0.741 0.131 0.007 0.243 0.070 0.147 0.105 0.226 2.610 1.970
Shoshone Basin, 75 0.730 0.132 0.010 €.262 0.070 0.149 0.105 0.214 2.691 1.973
Shoshone Basin, 75 0.701 0.124 0.008 0.252 0.064 0.143 0.109 0.216 2.627 1.950
Shoshone Basin, 75 0.677 0.120 0.006 0.246 €.065 0.143 0.117 0.242 2.821 2.111
Shoshone Basin, 75 0.724 0.125 0.010 0.233 0.060 0.141 0.106 0.230 2.613 1.932
Shoshone Basin, 75 0.739 0.133 0.008 0.241 0.063 0.148 0.116 0.235 2.588 1.863
Shoshone Basin, 75 0.781 0.137 0.010 0.237 0. 0.134 0.104 0.234 2,325 1.736
Shoshone Basin, 75 0.755 0.135 0.008 0.239 0.065 0.138 0.103 0.230 2.468 1.811
Shoshone Basin, 75 0.757 0,137 0.010 0.245 0.062 0.148 0.107 0.205 2.486 1.800
Shoshone Basin, 75 0.728 0.133 0.009 0.189 0.074 0.139 0.126 0.222 2.339 1.754
Shoshome Basin, 75 0.711 0.129 0.007 0.185 0.068 0.141 0.124 0.217 2.285 1.682
Shoshone Basin, 75 0.707 0.127 0.009 0.187 0.0¢7 €.135 0.119 0.219 2.311 1.689
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Three Ck., ID
Three Ck., ID
Three Ck., ID
Three Ck., ID
Three k., ID

Three Ck., ID
Shoshone Basin,

Shoshore Basin,
Three Ck., ID
Three Ck., ID
Three Ck., ID
Three Ck., ID
Three k., ID
Three Ck., ID
Three k., ID
Three Ck., ID
Three Ck., ID
Younqean Quarry
Youngman Quarry
Youngman Quarry
Youngman Quarry
Youngman Quarry
Youngman Quarry
Youngman Quarry
Youngman Quarry
Youngman Quarry
Youngman Quarry
Youngman Quarry
Youngpan Quarry
Youngman Quarry
Youngman Quarry
Youngman Quarry
Three Ck. 2, ID
Three Ck. 2, ID
Three ck. 2, ID
Flint Hill, ID
Flint Hill, ID
Flint Hill,
Flint Hill,
Plint Bill,
Flint Hill,
Plint Hill,
Flint Hill,
Flint Hill,
Flint Hil},
Plint Hill,
Flint Hill,
Flint Rill,
Flint Hill,
Ozone, ID
Ozone, ID
Ozone, ID
Orone, ID
Ozone, ID

B
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%5
75
75
75
75

75
75

75
5
75
75
75
75
5
75
75
75
i)
75
75
7%
75
75
75
75
75
75
75
75
75
75
75
76
76
76
77
77
77
77
77
77
77
7
77

m
77
77
77

7
7

0.706
0.758
0.704
0.741
0.761

0.747
0.731

0.736
G.706
0.758
0.704
0.741
0.761
0.747
0.721
0.753
0.680
0.759
0.732
0.730
0.755
0.720
0.734
0.742
0.729
0.743
0.727
0.741
0.720
0.721
0.717
0.727
0.614
0.691
0.675
0.667
0.670
0.686
0.697
0.655
0.730
0.679
0.741
0.695
0.717
0.736
0.674
0.719
0.688
0.741
0.737
0.731
0.801
0.743

0.12%
0.131
0.122
0.132
0.142

0.135
0.127

0.133
0.125
0.131
0.122
0.132
0.142
0.135
C.128
0.142
0.123
0.135
0.137
0.132
0.134
0.125
0.128
0.140
0.130
0.132
0.134
0.134
0.133
0.132
0.132
0.128
0.112
0.122
0.119
0.126
0.122
0.127
0.126
0.119
0.129
0.127
0.138
0.125
0.127
0.131
0.122
0.126
0.121
0.137
0.128
0.127
0.142
0.133

0.267
0.281
0.264
0.257
0.261
0.254
0.190
0.183
0.267
0.281
0.264
0.257
0.261
0.254
0.230
0.231
0.247
0.264
0.259
0.251
0.262
0.242
0.262
0.264
0.250
0.269
0.250
0.254
0.243
0.238
0.241
0.239
0.320
0.329
0.325
0.263
9.017 0.260
0.014 0.267
0.014 0.260
0.013 0.265
0.014 0.288
0.012 0.283
0.015 0.267
0.013 0.260
0.013 0.276
0.015 0.283
0.008 0.270
0.0i4 0.269
0.013 0.257
0.017 0.282
0.016 0.277
Q.014 0.299
0.018 0.272
0.013 0.294
122
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0.061
0.059
0.066
0.063
0.071
0.062
0.070
0.069
0.061
0.059
0.066
0.063
0.071
0.062
0.067
0.073
0.064
0.064
0.062
0.063
0.063
0.065
0.071
0.060
0.064
0.064
0.061
0.060
0.068
0.066
0.069
0.063
0.030
0.031
0.041
0.028
0.030
0.029
0.025
0.027
0.033
0.028
0.030
0.027
0.030
0.030
0.029
0.029
0.030
0.030
0.036
©.030
0.051
0.032

0.158
0.156
0.158
0.138
0.137
0.142
0.138
0.143
0.158
0.156
0.158
0.138
0.137
0.142
0.147
0.144
0.132
0.157
0.164
0.152
0.155
0.165
0.169
0.163
0.151
0.157
0.153
0.152
0.152
0.14%
0.145
0.147
0.186
0.198
0.198
0.202
0.217
0.201
0.192
0.185
0.189
0.204
0.205
0.209
0.211
0.211
0.217
0.199
0.212
0.202
0.217
0.210
0.202
0.203

0.114
0.115
0.111
0.099
0.098
0.103
0.117
0.127
0.114
0.115
0.111
0.099
0.098
0.103
0.107
0.108
0.095
0.110
0.118
0.117
0.116
0.112
0.114
0.120
0.123
0.120
0.115
0.115
0.107
0.107
0.112
0.1i3
0.148
0.138
0.133
0.189
0.218
0.205
0.201
0.191
0.216
0.203
0.221
0.208
0.196
0.191
0.181
0.186
0.208
0.198
0.208
0.204
0.179
0.205

0.234
0.216
0.228
0.207
0.230
0.212
0.211
0.212
0.234
0.216
0.228
0.207
0.230
0.212
0.210
0.201
0.206
0.200
0.216
0.208
0.206
0.216
0.206
0.216
0.210
0.221
0.211
0.215
0.216
0.213
0.212
0.215
0.244
0.238
0.207
0.235
0.222
0.211
0.235
0.244
0.221
0.230
0.224
0.213
0.242
0.231
0.221
0.246
0.227
0.248
0.235
0.224
0.203
0.229

3.090
3.137
3.284
2.810
2.673
2.886
2.274
2.322
3.09
3.137
3.284
2.810
2.673
2.886
2.779
2.650
2.657
2.623
2.73¢
2.763
2.708
2.661
2.716
2.768
2.760
2.752
2.710
2.69¢
2.613
2.598
2.572
2.606
3.550
3.360
3.098
3.946
3.863
3.820
3.663
3.658
3.610
3.772
3.568
3.491
3.887
3.642
3.809
3.931
3.860
4.316
4.365
4.305
3.791
4.317

2.285
2.253
2.279
2.051
1.970
2.112
1.676
1.721
2.285
2.253
2.279
2.051
1.970
2.112
2.106
1.934
2.047
1.370
2.031
1.985
1.891
1.923
2.002
2.078
2.025
2.018
1.989
1,953
1.905
1.889
1.865
1.888
2.597
2.465
2.151
2.970
2.772
2.586
2.531
2.633
2.479
2.687
2.538
2.380
2.745
2.619
2.835
2.816
2.695
3.140
3.151
3.116
2.665
3.100



Czone, ID
Ozone, ID
Ozone, ID
Ozone, ID
Ozone, ID
Ozone,
Ozone,
Ozone,
Ozone,
Ozone,
Ozone,
Ozrone,
Ozone,
Oone,
Ozone,
Ozone,
Ozone,
Ozone,
Ozone,
Ozone,
Ozone,
Ozone,
Ozone,
QOzone,
Ozone,
DPicabo Hills
Picabo Hills
Picabo Eills
Picabo Hills
Picabo Hills
Picabo Hills
Picabo Hills
Picabo Rills
Picabo Bills
Picabo Hills
Picabo Hills
Picabo Rills
Picabo Rills
Picaho Hills
Tiwber Butte
Tigber Butte
Timber Bulte
Timber Butte
Timber Butte
Timber Butte
Timber Butte
Timber Butte
Timber Butte

BEEEEEBEEEESEEEBEBEEEE

77
1
77

77
7
77

77

717
77
77
77
717
77
77
77
77
77
77
77
77
77
77
78
78
78
78
78
78
78
78
78
78
78
78
78
78
79
79
79
79
79
79
79
79
79

0.773
0.683
0.685
0.691
0.747
0.736
0.741
0.73%
0.687
0.823
0.903
0.775
0.716
0.726
0.742
0.759
0.751
0.741
0.742
0.792
0.749
0.763
0.758
0.703
0.785
0.697
0.726
0.682
0.801
0.677
0.639
0.690
0.722
0.729
0.678
0.632
0.727
0.713
0.755
1.774
2.238
1.980
1.592
1.640
1.524
2.012
1.548
1.559

0.130
0.122
0.120
0.122
0.133
0.132
0.129
0.130
0.119
0.158
0.163
0.135
0.121
0.129
0.127
0.134
0.131
0.129
0.134
0.134
0.138
0.137
0.136
0.124
0.135
0.122
0.131
0.122
0.134
0.116
0.103
0.122
0.127
0.125
0.121
0.118
0.127
0.126
0.131
0.282
0.346
0.375
0.274
0.279
0.257
0.346
0.242
0.277

0.017
0.018
0.014
0.014
0.018
0.013
0.015
0.015
0.014
0.015
0.040
0.013
0.017
0.017
0.015
0.017
0.014
0.022
0.012
0.013
0.017
€.015
0.015
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0.109
0.111
0.087

123

0.032
0.029
0.047

. 0.035

0.033
0.040
0.022
0.031
0.036
0.039
0.039
0.032
0.029
0.033
0.036
0.029
0.037
0.030
0.031
0.027
0.034
0.028
0.031
0.028
0.031
0.050
0.058
0.053
0.065
0.055
0.044
0.054
0.047
0.054
0.058
0.052
0.058
0.059
0.056
0.153
0.177
0.160
0.148
0.149
0.129
0.166
0.097
0.168

0.209
0.181
0.201
0.199
0.216
0.214
0.196
0.212
0.193
0.212
0.200
0.190
0.205
0.203
0.211
0.214
0.210
0.200
0.201
0.190
0.213
0.206
0.206
0.199
0.214
0.17¢
0.183
0.192
0.161
0.165
0.206
0.165
0.165
0.181
0.177
0.176
0.165
0.174
0.166
1.084
1.129
1.092
1.036
1.093
1.137
0.997
1.014
0.951

0.182
0.177
0.190
0.180
0.202
0.2138
0.179
0.182
0.185
0.190
0.189
0.183
0.196
0.192
0.204
0.196
0.195
0.211
0.196
0.181
0.196
0.194
0.175
0.180
0.189
0.146
0.158
0.153
0.148
0.148
0.170
0.149
0.147
0.145
0.149
0.175
0.137
0.144
0.138
0.886
0.970
0.765
0.827
0.837
0.816
0.831
0.929
0.822

0.213
0.199
0.230
0.219
0.215
0.245
0.202
0.198
0.231
0.209
0.223
0.208
0.205
0.227
0.202
0.198
0.226
0.227
0.218
0.229
0.218
0.228
0.199
0.212
0.1%6
0.197
0.197
0.229
0.226
0.208
0.223
0.208
0.229
0.221
0.202
0.225
0.187
0.201
0.203
0.828

0.126
0.251
0.143
0.206

0.154
0.324

4.289 3.070
3.866 2.667
3.894 2.801
4.194 2,927
4.257 3.061
4.328 13.176
3.560 2.483
3.585 2.501
3.674 2.630
3.725 2,668
3.367 2.388
3.402 2.376
3.654 2,557
31.707 2.617
3.800 2.665
3.734 2.628
3.738 2.615
4.075 2.87%
3.770 2.733
3.478 2.429
3.966 2.851
3.653 2.581
3.567 2.498
3.941 2.665
3.420 2.379
3124 2.279
2,911 2.036
3.187 2.302
2.865 2.137
3.088 2.285
3.55) 2.268
3.063 2.195
2.992 2.142
2.916 2.040
3.101 2.286
3.077 2.122
2.736 1.954
2.811 2.014
2.726 1.928
29.482 19.127
27.262 18.114
27.793 18.015
23.944 16.331
26.699 18.454
26.697 18.218
30.788 20.432
27.088 17.745
25.298 16.420



Averican falls, 80 0.749 0.129 0.016 0.494 0.064 0.293 0.248 0.251 5.495 3,730
American Falls, 80 0.761 0.134 0.022 0.469 0.061 0.285 0.249 0.227 5.411 3.729
American Falls, 80 0.725 0.124 0.022 0.446 0.057 0.286 0.246 0.236 5.408 3.919
Aserican Falls, 80 0.766 0.143 0.000 0.424 0.056 0.289 0.227 0.225 4.952 3.250
Awerican Falls, 80 0.758 0.136 0.018 0.426 0.057 0.282 0.239 0.235 5.342 3.887

Awerican Falls, 80 0.749 0.131 0.019 0.440 0.060 0.288 0.241 0.247 5.666 4.078
Aserican Falls, 80 0.783 0.141 0.022 0.475 0.058 0.286 0.245 0.226 5.362 3.686
Awerican Falls, 80 0.750 0.130 0.021 0.440 0.049 0.283 0.248 0.222 5.231 3.783
Awerican Falls, 80 0.702 0.125 0.019 0.442 0.048 0.297 0.256 0.216 5.885 4.254
American Falls, 80 0.761 0.137 0.016 0.445 0.051 0.288 0.242 0.213 5.489 3.962
Awerican Falls, 80 0.756 0.142 0.021 0.475 0.058 0.307 0.251 0.204 5.335 3.564
American Falls, 80 0.753 0.128 0.021 0.496 0.067 0.304 0.245 0.224 5.419 3.843
Awerican Falls, 80 0.744 0.131 0.020 0.494 0.059 0.295 0.244 0.193 5.408 3.795
American Falls, 80 0.734 0.131 0.018 0.486 0.u57 0.305 0.236 0.231 5.521 3.820
Aserican Falls, 80 0.735 0.130 0.021 0.465 0.063 0.316 0.248 0.218 5.672 3.981
Snake River, ID 80 0.756 0.134 0.021 0.460 0.060 0.309 0.246 0.200 5.199 3.606

Snake River, ID 80 0.790 0.145 0.024 ©.453 0.084 0.287 0.224 0.184 4.903 3.336
Snake River, ID 80 0.729 0.127 0.016 0.413 0.049 0.280 0.217 0.191 §.777 3.910
Snake River, ID 80 0.744 0.131 0.022 0.452 0.053 0.280 0.234 0.217 5.432 3.854
Snake River, ID 80 0.673 0.124 0.019 0.460 0.067 0.317 0.257 0.217 7.738 5.043
Snake River, ID 80 0.631 0.114 0.018 0.412 0.065 0.285 0.259 0.227 7.944 5.276
Snake River, ID 80 0.642 0.109 0.020 0.441 0.059 0.294 0.259 0.217 8.192 5.454
Snake River, ID 80 0.658 0.128 0.016 0.433 0.058 0.280 0.258 0.212 8.120 5.429
Snake River, ID 80 0.903 0.156 0.032 0.451 0.062 0.312 0.222 0.185 5.427 3.435
Snake River, ID 80 0.826 0.139 0.025 0.461 0.067 0.304 0.266 0.209 6.042 4.072
Snake River, ID 80 0.787 0.143 0.023 0.484 C.061 0.299 0.255 0.188 6.102 4.199
Snake River, ID 80 0.829 0.154 0.019 0.524 0.064 0.277 0.242 0.196 6.072 4.247

Snake River, ID 80 0.721 0.124 0.020 0.453 0.058 0.289 0.243 0.169 5.603 3.846
Snake River, ID 80 0.814 0.149 0.020 0.452 0.092 0.303 0.230 0.143 5.177 3.343
Snake River, ID 80 0.774 0.132 0.025 0.444 0.069 0.298 0.238 0.161 5.431 3.647
Snake River, ID 80 0.774 0.141 0,024 0.458 0.051 0.309 0.238 0.190 5.634 3.719
walcott, ID 80 0.834 0.153 0.019 0.468 0.052 0.306 0.242 0.185 S.114 3,357
Walcott, ID 80 0.751 0.138 6.019 0.473 0.059 0.296 0.243 0.226 5.483 3.903
Walcott, ID 80 0.777 0.136 0.016 0.440 0.065 0.273 0.237 0.217 5.256 3.594
Walcott, ID 80 0.828 0.156 0.000 0.500 0.055 0.304 0.238 0.175 5.231 3.325
Walcott, ID 80 0.758 0.144 0.016 0.441 0.051 0.307 0.239 0.222 5.085 3.443
Walcott, ID 80 0.737 0.147 0.017 0.45¢ 0.060 0.296 0.249 0.212 5.211 3.622
Walcott, ID 80 0.790 0.140 0.019 0.445 0.059 0.299 0.238 0.189 4.974 3.326
Walcott, ID 80 0.749 0.131 0.018 0.457 0.058 0.278 0.245 0.227 5.547 3.905
Walcott, ID 80 0.749 0.143 0.023 0.481 0.054 0.310 0.252 0.218 5.543 3.886
Walcott, ID 80 0.781 0.137 0.022 0.461 0.054 0.275 0.246 0.224 5.129 3.488
Walcott, ID 80 0.766 0.135 0.015 0.457 0.057 0.300 0.244 0.211 5.264 3.631
Walcott, ID 80 0.841 0.143 0.020 0.465 0.049 0.287 0.244 0.199 5.206 3.566
Walcott, ID 80 0.764 0.136 0.020 0.449 0.060 0.299 0.232 0.235 5.500 3.923
Walcott, ID 80 0.738 0.134 0.018 0.446 0.057 0.281 0.238 0.216 5.542 3.956
Walcott, ID &0 0.758 0.137 0.017 0.469 0.063 0.298 0.238 0.208 5.470 3.836
Walcott, ID 80 0.734 0.130 0.017 0.506 0.062 0.286 0.241 0.226 5.535 4.007
®Walcott, ID 80 0.755 0.134 0.019 0.456 0.059 0.284 0.248 0.219 5.940 4.342
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Walcott, ID
Walcott, ID
walcott, ID
Walcott, ID
Walcott, ID
Walcott, ID
Walcott, ID
Walcott, ID
Walcott, ID
Walcott, ID
Walcott, ID
Walcott, ID
Cannonball Mtnl
Cannonball Ktnl
Cannonball Htnl
Cannonball Xtn1
Cannonball Ntnl
Cannonball Mtnl
Cannonball Htnl
Cannonball Ktnl
Cannonball Mtni
Cannonball Ntml
Cannonball Mtnl
Cannonball Mtnl
Cannonball Xtni
Cannonball Mtnl
Cannonball Mtnl
Cannonball Ntni
Cannonball Mtnl
Cannonball MNtnl
Cannonball Ktni
Canncnball Htnl
Cannonball Mtni
Cannonball Ntnl
Cannonball Ktnl
Cannonball Xtni
Cannonball Mtnil
Cannonball Mtni
Cannonball Mtnl
Cannonball Htnl
Cannonball Ktnl
Cannonball Kini
Cannonball Ktnl
Cannonball ¥tni
Cannenball Htnl
Cannonball Ktnl
Cannonball Ntni
Cannonball Ktni

80
80
30
80
80
80
80
80
80
80
80
80
81
81
81
81
81
8l
81
81
81
81
81
81
81
81
81
81
81
81
81
81
3
81
81
81
81
8l
81
81
81
81
81
81
81
81
81
81

0.796
0.769
0.724
0.771
0.755
0.787
0.729
0.783
0.784
0.741
0.764
0.718
0.462
0.600
0.466
0.465
0.553
0.465
0.474
0.454
0.466
0.469
0.450
0.503
0.544
0.483
0.439
0.463
0.432
0.462
0.452
0.466
0.397
0.511
0.521
0.462
0.454
0.492
0.473
0.540
0.462
0.487
0.480
0.481
0.469
0.525
0.471
0.471

0.143
0.132
0.129
0.138
0.121
0.140
0.139
0.145
0.134
0.124
0.141
0.131
0.083
0.102
0.082
0.083
0.099
0.084
0.082
0.080
0.087
0.086
0.078
0.092
0.095
0.084
0.077
0.085
0.078
0.084
0.084
0.082
0.073
0.030
0.098
0.083
0.082
0.088
0.088
0.091
0.082
0.089
0.087
0.088
0.086
0.095
0.081
0.084

¢.021
0.022
0.017
0.021
0.019
0.016
0.018
0.014
0.018
0.021
0.019
0.022
0.016
0.019
0.015
0.019
0.020
0.016
0.017
0.014
0.017
0.018
0.013
0.016
0.018
0.016
0.015
0.016
0.016
0.016
0.015
0.017
0.017
0.017
0.019
0.016
0.014
0.019
0.016
0.016
0.016
0.018
0.019
0.016
0.017
0.013
0.016
0.018

0.464
0.466
0.430
0.457
0.459
0.4
0.504
0.472
0.448
0.456
0.472
0.442
0.168
0.186
0.167
0.171
0.178
0.172
0.177
0.167
0.172
0.188
0.174
0.176
0.179
0.183
0.171
0.172
0.162
0.179
0.174
0.172
0.157
0.176
0.185
0.170
0.187
0.179
0.184
0.180
0.169
0.174
0.169
0.178
0.179
0.192
0.169
0.131
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0.052
0.056

0.049
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23238233835385352555322555255585085:

0.296
0.299
0.270
0.286
0.293
0.306
0.298
0.313
0.288
0.285
0.289
0.285
0.121
0.126
0.120
0.121
0.124
0.119
0.119
0.123
0.122
0.094
0.122
0.118
0.122
0.116
0.114
0.121
0.119
0.118
0.119
0.121
0.107
0.122
0.126
0.123
0.114
0.123
0.121
0.123
0.124
0.122
0.124
0.122
0.126
0.121
0.120
0.125

0.235
0.268
0.228
0.253
0.233
0.236
0.238
0.235
0.225
0.248
0.236
0.236
0.136
0.128
0.139
0.134
0.135
0.127
0.131
0.138
0.132
0.094
0.153
0.131
0.142
0.132
0.134
0.134
0.136
0.135
0.133
0.133
0.132
0.139
0.108
0.136
0.132
0.131
0.142
0.138
0.144
0.134
0.132
0.131
0.142
0.131
0.139
0.139

0.215
0.234
0.214
0.225
0.228
0.209
0.223
0.207
0.212
0.222
0.194
0.222
0.251
0.232
0.228
0.219
0.211
0.235
0.215
0.222
0.215
0.212
0.243
0.229
0.213
0.211
0.232
0.211
0.233
0.230
0.240
0.212
0.243
0.210
0.223
0.238
0.234
0.233
0.234
0.231
0.234
0.218
0.217
0.230
0.217
0.205
0.227
0.236

5.344
5.452
5.371
5.450
5.498
5.446
6.054
5.272
5.550
5.680
5.557
5.303
1.1%
1.046
1.116
1.066
0.975
1.169
1.130
1.101
l.121
1,250
1.428
1.399
1.299
1.137
1.190
1.184
1.357
1.218
1.230
1.196
1.516
1.368
1.205
1.265
1.41%
1.293
1.293
1.259
1.146
1.251
1.357
1.239
1.227
1.209
1.228
1.191

3.805
1.807
3.723
3.853
3.736
3.684
4.184
3.605
3.974
3.873
3.729
3.559
0.861
0.757
0.841
0.769
0.674
0.863
0.821
0.822
0.811
0.885
1.047
1.051
0.952
0.833
0.883
0.894
0.985
0.905
0.903
0.879
1.056
1.018
0.843
0.969
1.044
0.943
0.939
0.938
0.832
0.916
1.001
0.931
0.896
0.857
0.866
0.882



Cannonball Mtnl 81 0.464 0.082 0.017 0.179 0. 0.122 0.139 0.256 1.215 0.886
Cannonball Ktnl 81 0.464 0.082 0.016 90.175 0. 0.124 0.132 0.231 1.123 0.828
Cannonball Ktnl 81 0.470 0.086 0.017 0.168 O. 0.118 0.134 0.234 1.155 0.859
Cannonball Mtnl 81 0.454¢ 0.083 0.015 0.177 0. 0.118 0.135 0.241 1.150 0.814
Cannonball Mtnl 81 0.486 0.0%6 0.018 0.175 0. 0.121 0.144 0.237 1.177 0.839
Cannonball Mtnl 81 0.569 0.099 0.022 0.187 0. 0.127 0.134 0.218 1.156 0.807
Cannonball Mtnl 81 0.491 0.088 0.018 0.180 O. 0.121 0.129 0.231 1.169 0€.855
Cannonball Mtnl 81 0.472 0.085 0.020 0.177 O. 0.122 0.130 0.227 1.199 0.897

Cannonball Mtnl 81 0.507 0.090 0.021 0.186
Cannonball Mtnl 81 0.508 0.089 0.018 0.1384
Cannonball Htnl 81 0.541 0.098 0.018 0.191
Cannonball Mtnl 81 0.500 0.089 0.016 0.176
Cannonball Mtnl 81 0.508 0.089 0.019 0.177
Cannonball Mtnl 81 0.47¢ 0.086 0.015 0.186
Cannonball Ktnl 81 0.446 0.079 0.017 0.174
Cannonball Mtnl 81 0.503 0.088 0.017 0.176
Cannonball Mtnl 81 0.514 0.092 0.017 0.183
Cannonball Ktnl 81 0.443 0.079 0.015 0.171
Cannonball Ktnl 81 0.487 0.087 0.020 0.176
Cannonball Ktnl 81 0.457 0.082 0.016 0.176
Cannonball Mtnl 81 0.460 0.084 0.017 0.172
Cannonball Mtni 81 0.461 0.084 0.0i8 0.173
Cannonball Mtnl 81 0.470 0.085 0.016 0.177
Cannonball Mtnl 81 0.449 0.082 0.020 0.172
Cannonball Ktnl 81 0.472 0.084 0.016 0.175
Cannonball Htn2 82 1.152 0.204 0.038 0.254
Cannonball Mtn2 82 1.193 0.202 0.040 0.250
Cannonball Mtn2 82 1.273 0.224 0.032 0.266
Cannonball Mtn2 82 1.203 0.210 0.035 0.241
Cannonball Mtn2 82 1.202 0.207 90.031 0.254
Cannonbail Mtn2 82 1.182 0.206 0.031 0.263
Cannonball Mtn2 82 1.181 0.213 0.035 0.260
Cannonball #tn2 82 1.101 0.201 0.031 0.243
Cannonball Mtn2 82 1.183 0.206 0.029 0.256

0.119 0.124 0.242 1.217 0.907
0.105 0.125 0.219 1.15¢ 0.840
0.126 0.133 0.229 1.109 0.791
0.122 C.126 0.223 1.133 0.796
0.122 0.129 0.232 1.176 0.886
0.125 0.151 0.220 1.221 0.916
0.123 0.135 0.244 1.298 0.887
0.115 0.134 0.232 1.171 0.857
0.123 0.135 0.215 1.131 0.828
0.123 0.136 0.242 1.224 0.898
0.124 ©0.133 0.216 1.193 0.906
0.121 0.137 0.247 1.226 0.901
0.122 0.140 0.234 1.178 0.865
0.125 0.130 0.229 1.157 0.843
0.120 0.141 0.225 1.203 0.882
0.125 0.140 0.214 1.169 0.838
0.120 ©.137 C.219 1.187 0.879
0.173 0.191 0.226 1.895 1.425
0.164 0.182 0.214 1.820 1.338
0.242 0.200 0.213 1.662 1.191
0.173 0.201 0.235 1.846 1.401
0.17¢ 0.202 0.238 1.883 1.431
0.177 0.199 0.232 1.869 1.437
0.175 ©€.180 0.272 1.824 1.354
0.179 0.196 0.216 1.781 1.314
0.183 0.192 0.232 1.745 1.297

8883838388283885883858588583838888888%
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83 1.375 0.231 0.089 2.088
83 1.183 0.226 0.07¢8 1.934
83 1.238 0.216 0.077 2.047

1.509 1.257 0.173 9.236 6.24¢
1.285 1.068 0.164 7.802 5.20¢
1.447 1.178 0.183 9.130 6.12¢
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Cannonball Mtn2 82 1.173 0.213 0.030 0.260 0.000 0.192 0.198 0.210 1.683 1.251
Cannonball Mtn2 82 1.187 0.214 0.032 0.260 0.000 0.183 0.201 0.211 1.729 1.29
Cannonball Mtn2 82 1.137 0.201 0.027 0.247 0.000 0.182 0.187 0.213 1.786 1.37C
Cannonball Mtnz 82 1.166 0.215 0.030 0.291 0.000 0.183 0.187 0.229 1.769 1.358
Wedge Butte, ID 83 1.040 0.185 0.070 1.767 0.000 1.213 1.051 0.169 7.923 5.50%
Wedge Butte, ID 83 1.353 0.248 0.073 2.116 0.000 1.415 1.173 0.183 8.904 5.93:
Wedge Butte, ID 83 1.311 0.238 0.090 2.219 0.000 1.440 1.257 0.191 9.502 6.58¢
Wedge Butte, ID 83 0.995 0.167 0.069 1.757 0.000 1.270 1.063 0.170 8.429 6.004
Wedge Butte, ID 83 1.315 0.239 0.085 2.192 0.000 1.521 1.187 0.160 9.5% 6.36:
Wedge Butte, ID 83 0.882 0.156 0.061 1.417 0.000 1.013 0.824 0.180 6.251 4.18]
Wedge Butte, ID 83 1.140 0.201 0.077 2.082 0.000 1.410 1.112 0.148 9.351 6.67:

D 000

D 000
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Wedge Butte, ID
Wedge Butte, ID
Wedge Butte, ID
Wedge Butte, ID
CoalBank Spring
CoalBank Spring
CoalBank Spring
CoalBank Spring
CoalBank Spring
CoalBank Spring
CoalBank Spring
CoalBank Spring
CoalBank Spring
CoalBank Spring
CoalBank Spring
CoalBank Spring
CoalBark Spring
CoalBank Spring
CoalBank Spring
CoalBark Spring
Coz1Bank Spring
CoalBank Spring
CoalBank Spring
CoalBank Spring
CoalBank Sprirg
CoalBank Spring
CoalBank Spring
CoalBark Spring
CoalBank Spring
CoalBank Spring
CoalBank Spring
CoalBank Spring
CoalBank Spring
CoalBank Spring
CoalBank Spring
CoalBank Spring
CoalBank Spring
CoalBank Spring
CoalBank Spring
CoalBank Spring
Gibson Ck., Id

Gibson Ck., Id

Gibson Ck., Id

Gibson Ck., Id

Gibson Ck., Id

Gibson Ck., Id

Gibson Ck., Id

Gibson Ck., Id

83
83
83
&3
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
&4
84
84
84
85
85
85
8%
85
85
85
85

1.158
1.342
1.115
1.161
0.69¢
0.898
0.680
0.749
0.852
0.874
0.676
0.705
0.785
0.687
0.727
0.670
0.721
0.735
0.696
0.885
0.787
0.807
0.707
0.737
0.714
0.711
0.802
0.706
0.667
0.701
0.645
0.669
0.704
0.706
0.684
0.662
0.664
0.687
0.670
0.670
0.774
0,759
0.720
0.681
0.752
0.761
0.771
0.612

0.000
0.000
0.000
0.000
0.047
0.043
0.044
0.057
0.057
0.050
0.046
0.051
0.047
0.040
0.043
0.047
0.056
0.059
0.050
0.054
0.061
0.053
0.037
0.042
0.048
0.045
0.050
0.052
0.041
0.050
0.035
0.050
0.045
0.051
0.046
0.037
0.051
0.039
0.044
0.044
0.042
0.033
0.032
0.033
0,033
0.034
0.032
0.029

1.362
1.566
1.326
1.338
0.175
0.202
0.133
0.186
0.182
0.167
0.192
0.216
0.186
0.180
0.178
0.185
0.205
0.179
0.194
0.221
0.219
0.222
0.196
0.203
0.212
0.185
0.180
0.187
0.186
0.218
0.195
0.208
0.208
0.201
0.188
0.179
0.192
0.178
0.180
0.144
0.238
0.222
0.225
0.213
0.22%
0.234
0.209
0.179

0.135
0.153
0.168
0.183
0.224
0.237
0.230
0.221
0.210
0.214
0.212
0.222
0.205
0.228
0.223
0.221
0.206
0.223
0.243
0.237
0.214
0.232

0.215

0.218

0.241
0.220
0.227
0.229
0.232
0.226
0.199
0.226
0.222
0.211
0,229
0.258
0.232
0.184
0.227
0.165
0.211
0.234
0.232
0.228
0.231
0.228
0.219
0.240

8.803

10.458

8.792
8.357
2.500
2.834
2.794
2.944
2.462
2.512
2.507
2.344
2.531
2.708
2.555
2.630
2.752
2.690
2.680
2.982
2.755
3.065
2.942
2.823
3.053
2.741
2.685
2.766
2.699
2.954
2.800
3.272
2.990
3.030
2.767
2.698
2.861
2.683
2.707
2.664
.77
3.97¢4
4,035
4.074
4.039
3.884
4.149
3.544

6.026
7.135
6.088
5.668
1.768
2.002
2.052
2.138
1.752
1.840
1.789
1.9%
1.824
1.962
1.881
1.922
1.948
2.010
1.965
2.153
1.965
2.219
2.198
2.073
2.296
1.946
2.001
1.947
1.972
2.184
2.065
2.34
2.249
2.217
2.048
2.030
2.048
2.022
1.989
1.913
2.648
2.873
2.765
2.859
2.860
2.754
2.757
2.525



Gibson k.

, 1d
Gibson k.,
1

1d
Gibson Ck., 1d
Gibson Ck., Id
Gibson Ck., Id
Gibson Ck., 1d
Gibson Ck., 1d
Grahar Spring,
Graham Spring,
Graham Spring,
Graham Spring,
Graham Spring,
Grahak Spring,
Graham Spring,
Graham Spring,
Grabam Spring,
Graham Spring,
Graham Spring,
Graham Spring,
Graham Spring,
Graham Spring,
Graham Spring,
Koody Swazp, ID
Noody Swamp, ID
Moody Swamp, ID
¥oody Swamp, ID
Noody Swamp, ID
Hoody Swamp, ID
Hoody Swamp, ID
Noody Swamp, ID
Koody Swamp, ID
Noody Swamp, ID
Noody Swamp, ID
Kcody Swamp, ID
Noody Swamep, ID
Koody Swamp,
Corral Ck,
Corral ¢k,
Corral CX,
Corral Cx,
Corral ¢k,
Corral Ck,
Corral Ck,
Corral Ck,
Corral Ck,
Corral Ck,
Corral Ck,
Corral ¢k,

=]
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85
85
85
85
85
85
85
85
85
85
85
85
85
85
85
85
85
85
85
85
85
85
85
85
85
85
85
85
85
8
85
85
85
85
85
85
86
86
86
86
86
86
86
86
86
86
86
86

0.740
0.724
0.732
0.703
0.742
0.756
0.699
0.775
0.769
0.772
0.759
0.741
0.779
0.790
0.783
0.795
0.752
0.832
0.934
0.785
0.807
0.845
0.762
0.788
0.834
0.817
0.737
0.845
0.794
0.854
0.808
0.787
0.768
0.789
0.801
0.792
0.719
0.687
0.673
0.638
0.680
0.700
0.647
0.662
0.694
0.629
0.694
0.639

0.137
0.130
0.127
0.131
0.139
0.135
0.127
0.137
0.136
0.135
0.133
0.126
0.137
0.139
0.139
0.146
0.135
0.155
0.166
0.127
0.146
0.173
0.135
0.140
0.144
0.144
0.131
0.154
0.142
0.151
0.147
0.140
0.136
0.135
0.140
0.144
0.132
0.119
0.120
0.115
0.121
0.119
0.118
0.118
0.129
0.113
0.125
0.115

0.298
0.300
0.323
0.317
0.299
0.296
0.287
0.335
0.347
0.351
0.301
0.332
0.328
0.344
0.334
0.354
0.337
0.342
0.327
6 0.357
8 0.35%
0.325
0.305
0.331
0.335
0.299
0.290
0.363
0.338
0.316
0.312
0.319
0.309
0.351
0.338
0.355
0.252
0.252
0.254
0.229
0.250
0.261
0.238
0.253
0.243
0.249
0.250
0.248
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0.043
0.032
0.025
0.033
0.032
0.033
0.037
0.036
6.036
0.047
0.040
0.032
0.037
0.037
0.032
0.030
0.029
0.000
0.000
1033
.033
0.000
0.043
0.027
0.041
0.031
0.034
0.042
0.037
0.039
0.036
0.037
0.028
0.042
0.035
0.041
0.029
0.033
0.037
0.030
0.038
0.039
0.037
0.028
0.035
0.030
0.038
0.036

0.222

o000
NESER

cooco0
28
o
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0.220
0.227
0.219
0.203
0.207
0.209
0.208
0.215
0.217
0.218
0.240
0.222
0.189
0.227
0.214
0.207
0.203
0.229
0.215
0.224
0.226
0.230
0.204
0.193
0.225
0.183
0.206
0.230
0.187
0.213
0.194
0.217
0.202
0.212
0.226
0.204
0.19%
0.177
0.197
0.1%
0.210
0.200
0.191
0.185
0.203
0.1%
0.179
0.192

0.224
0.223
0.222
0.223
0.230
0.229
0.222
0.224
0.225
0.234
0.234
0.226
0.250
0.233
0.217
0.213
0.217
0.192
0.216
0.234
0.230
0.213
0.215
0.202
0.224
0.226
0.215
0.218
0.222
0.224
0.264
0.218
0.222

0.213
0.233
0.231
0.224
0.231
0.237
0.236
G.226
0.214
0.251
0.242
0.261
0.239
0.226

4.049
3.834
4.203
4.430
4.122
3.959
3.989
4.584
4.514
4.235
£.136
4.181
4.510
4.643
4.082
4.444
4.772
£.054
4.082
4.219
4.320
5.237
3.989
3.965
4.176
£.456
3.911
4.436
4.402
4.111
3.844
4.286
4,397
4.405
4.163
£.389
3.655
3.328
3.375
3.423
3.647
3.609
3.367
3.330
3.438
3.458
3.429
3.649

2.835
2.663
2.996
3.238
2.952
2.842
2.786
3.256
3.186
2.901
2.924
2.964
3.200
3.294
2.833
3.105
3.398
2.662
2.753
2.957
2.979
3.218
2.837
2.730
2.946
3.110
2.759
2,993
3.103
2.878
2.695
3.071
3.05%
3.100
2.949
3.098
2.550
2.379
2.2%90
2.368
2.507
2.514
2.354
2.384
2.447
2.488
2.432
2.603



Corral Ck, ID 86 0.670 0.114 0.0i2 0.273 0.029 0.192 0.204 0.254 3.613 2.603
Corral Ck, ID 86 0.722 0.132 0.013 0.256 0.033 0.196 0.188 0.256 3.481 2.419
Corral Ck, ID 86 0.680 0.122 0.0:5 0.249 0.036 0.186 0.190 ©.232 3.557 2.495

Cow Creek 8 0.704 0.121 0.014 0.274 0.033 0.195 0.170 0.213 3.497 2.520
Cow Creek 8 0.708 0.129 0.014 0.301 0.033 0.197 0.190 0.208 3.872 2.751
Cow Creek 8 0.717 0.131 0.019 0.307 0.035 0.214 0.204 0.239 4.053 2.906
Cow Creek 8 0.711 0.118 0.015 0.299 0.033 0.200 0.197 0.221 3.667 2.746
Cow Creek 8 0.875 0.152 0.016 0.283 0.038 0.190 0.171 0.199 4.127 2.982
Cow Creek 8 0.736 0.134 0.014 0.286 0.032 0.210 0.179 0.198 3.451 2.545
Cow Creek 8 0.716 0.126 0.015 0.310 0.033 0.212 0.213 0.204 4.280 3.138
Cow Creek 8 0.610 0.109 0.010 0.268 0.030 0.194 0.175 0.229 3.953 2.830
Cow Creck 8 0.755 0.136 0.019 0.305 0.044 0.215 0.216 0.233 4.210 2.955
Cow Creek 8 0.687 0.127 0.011 0.309 0.038 0.232 0.202 0.230 4.348 3.087
Cow Creek 8 0.669 0.124 0.014 0.311 0.042 0.231 0.223 0.226 5.004 3.534
Cow Creek 8 0.725 0.123 0.015 0.303 0.033 0.216 0.198 0.223 ¢€.552 3.203
Cow Creek 8 0.735 0.131 0.011 0.298 0.044 0.226 0.232 0.243 4.094 2.836
Cow Creek 8 0.78 0.132 0.014 0.308 0.034 0.227 0.207 0.219 4.526 3.177
Cow Creek & 0.769 0.134 0.016 0.321 0.043 0.239 0.183 0.247 3.975 2.717

lava Ck.,ID 8 0.689 0.127 0.010 0.292 0.032 0.217 0.185 0.245 3.844 2.700
Lava Ck.,ID 8 0.675 0.126 0.013 0.286 0.035 0.207 0.210 0.230 4.129 2.892
lava Ck.,ID 8 0.730 0.136 0.015 0.313 0.044 0.219 0.194 0.240 4.258 3.164
Lava Ck.,ID 8 0.713 0.134 0.016 0.307 0.042 0.228 0.200 0.231 4.287 3.060
lava Ck.,ID 8 0.719 0.130 0.014 0.309 0.039 0.228 0.199 0.219 4.317 3.117
lava Ck.,1D 8 0.741 0.136 0.015 0.311 0.043 0.216 0.202 0.216 4.163 2.810
Hedicine Lodge 86 0.739 0.126 0.014 0.296 0.043 0.219 0.215 0.218 4.111 2.876
Medicine Lodge 86 0.794 0.135 0.000 0.274 0.026 0.209 0.198 0.228 4.083 2.791
Hedicine Lodge 86 0.731 0.131 0.012 0.279 0.033 0.223 0.233 0.212  3.942 2.754
Medicine Lodge 86 0.726 0.127 0.017 0.302 0.030 0.228 0.215 0.229 3.969 2.819
Hedicine Lodge 86 0.724 0.129 0.015 0.310 0.040 0.229 0.209 0.225 4.132 2.883
Hedicine Lodge 86 0.724 0.126 0,014 0.304 0.037 0.219 0.198 0.237 4.04¢8 2.847
Hedicine Lodge 86 0.773 0.140 0.021 0.309 0.025 0.208 0.205 0.209 3.837 2.629
Medicine Lodge 86 0.701 0.127 0.013 0.296 0.038 0.218 0.201 0.223  4.184 3.060
Medicine Louge 86 0.700 0.129 0.015 0.298 0.037 0.227 0.212 0.253 4.15¢ 2.924
Nedicine Lodge 86 0.839 0.149 0.017 0.286 0.036 0.215 0.200 0.226 4.035 2.823
Hedicine Lodge 86 0.703 0.127 0.0i3 0.294 0.026 0.219 0.199 0.210 4.120 2.927
Nedicine Lodge 86 0.753 0.133 0.015 0.309 0.027 0.221 0.208 0.218  3.899 2.633
Medicine Lodge 86 0.726 0.133 0.016 0.294 0.034 0.220 0.197 0.222 3.885 2.778
Medicine Lodge 86 0.725 0.135 0.014 0.290 0.034 0.214 0.196 0.216 3.929 2.787
Bedicine lodge &5 0.695 0.123 0.013 0.275 0.046 0.223 0.224 0.222 4.006 2.797
Redicine Lodge 86 0.716 0.128 0.015 0.296 0.031 0.209 0.221 0.249 3.948 2.775
Redicine lodge 86 0.744 0.135 0.014 0.267 0.025 0.193 0.207 3.855 2.767
Bedicine Lodge 86 0.760 0.138 0.017 0.299 0.031 0.189 0.187 0.229 3.833 2.740
Nedicine Lodge 86 0.748 0.133 0.017 0.290 0.034 0.187 0.204 4.005 2.869
Nedicine Lodge 86 0.756 0.135 0.012 0.307 0.037 0.194 0.215 3.740 2.617
Nedicine Lodge 86 0.744 0.131 0.015 0.291 0.040 0.187 0.218 3.824 2.671
Redicine Lodge 86 0.774 0.142 0.013 0.28¢ 0.035 0.190 0.220 3.705 2.645
Medicine Lodge 86 0.731 0.125 0.015 0.322 0.032 0.184 0.217 4.161 2.915
»dicine Lodge 86 0.690 0.117 0.011 0.291 0.033 0.174 0.218 4.080 3.033
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Medicine Lodge 86 0.686 0.124 0.014 0.256 0.033 0.206 0.189 0.231 4.067 2.917
Hedicine Lodge 86 0.752 0.133 0.015 0.277 0.032 0.193 0.175 9.214 3.861 2.726
Nedicine Lodge 86 0.815 0.147 0.016 0.296 0.034 0.206 0.207 0.232 3.890 2.685
Kedicine lodge 86 0.685 0.124 0.014 0.268 0.032 0.194 0.184 0.217 3.795 2.704
Nedicine Lodge 86 0.732 0.129 0.013.0.295 0.035 0.196 0.186 0.225 3.879 2.750
Nedicine Lodge 86 0.739 0.133 0.017 0.280 0.027 0.199 0.199 0.213  3.990 2.341

Malad 87 1.311 0.229 0.000 ©.728 0.484 0.398 0.161 0.199 15.347 10.348
Nalad 87 1.336 0.247 0.000 0.713 0.441 0.424 0.183 0.234 14.351 9.905
Halad 87 1.547 0.269 0.000 0.741 0.462 0.406 0.179 0.194 13.802 9.250
Halad 87 1.220 0.227 0.019 0.676 0.456 0.383 0.192 0.151 12.867 8.773
Halad 87 1.381 0.269 0.026 0.742 0.524 0.419 0.3182 0.244 13.900 92.490
Kalad 87 1.347 0.241 0.028 0.73%8 0.487 0.394 0.163 0.231 14.578 10.105
Malad 87 1.392 0.242 0.000 0.785 0.487 0.441 0.176 0.192 13.788 9.276
Malad 87 1.356 0.238 0.029 0.796 0.442 0.396 0.196 0.149 13.699 9.378
Halad 87 1.263 0.238 0.032 0.746 0.489 0.411 0.208 0.202 13.504 9.440
Kalad 87 1.237 0.222 0.021 0.737 0.466 0.419 0.200 0.2Z21 14.559 10.008
Halad 87 1.329 0.237 0.000 0.714 0.465 0.451 0.185 0.240 13.620 9.301
Halad 87 1.344 0.234 0.024 0.696 0.435 0.406 0.204 0.207 13.542 9.313
Malad 87 1.360 0.242 0.032 0.763 0.469 0.389 0.178 0.203 13.934 9.768
Malad 87 1.314 0.202 0.033 0.711 0.467 0.390 0.190 0.201 14.440 10.103
Halad 87 1.322 0.231 0.018 0.743 0.464 0.378 0.200 0.219 14.728 10.329
Malad 87 1.381 0.251 0.000 0.794 0.485 0.395 0.186 0.232 15.646 10.911

Bawkins, ID 87 1.379 0.2¢8 0.014 0.722 0.443 0.407 0.200 0.166 14.275 9.923
Hawkins, ID 87 1.393 0.250 0.000 0.757 0.510 0.432 0.200 0.217 13.652 9.369
Hawkins, ID 67 1.281 0.245 0.036 0.684 0.451 C.445 0.195 0.244 13.834 9.753
Bawkins, ID 87 1.491 0.277 0 0.737 0.454 0.405 0.173 0.185 13.082 8.5%6

g

Hawkins, ID 87 1.333 0.243 0.022 0.762 0.475 0.432 0.164 0.206 15.084 10.646
Bawkins, ID 87 1.405 0.263 0.028 0.774 €.479 0.43¢ 0.153 0.164 14.95¢ 10.384
Bawkins, ID 87 1.387 0.248 0.074 0.754 0.447 0.400 0.180 0.227 14.686 10.017
Hawkins, ID 87 1.256 0.246 0.000 0.684 0.448 0.409 0.188 0.171 14.193 9.825
Hawkins, 1D 87 1.367 0.266 0.038 0.788 0.515 0.421 0.183 0.220 14.749 10.126
Bawkins, ID 87 1.279 0.237 0.059 0.712 0.489 0.423 0.192 0.213 14.099 9.786
Bawkins, ID 87 1.425 n.262 0.019 0.759 0.506 0.440 0.182 0.199 15.317 10.578
Hawkins, ID 87 1.i ..287 0.032 0.843 0.510 0.458 0.179 0.181 15.602 10.451
Bawkins, ID 87 1.4. .20 0.000 0.896 0.499 0.414 0.153 0.196 15.186 10.621

Hawkins, ID 87 1.524 0.280 0.053 0.910 0.555 0.416 ¢.146 0.230 15.832 10.562
Hawkirs. ED 87 1.395 0.253 0.051 0.721 0.472 0.410 0.133 0.185 15.284 10.820
Hawkins, ID 87 1.404 0.248 0.000 0.747 0.490 0.397 0.167 0.176 14.461 10.041
Bawkins, ID 87 1.401 0.253 0.000 0.721 0.447 0.418 0.173 0.204 13.960 9.811
Hawkins, ID 87 1.333 0.232 0.000 0.756 0.433 0.393 0.196 0.214 14.191 10.009
Bawkins, ID 87 1,355 0.237 0.000 0.649 0.455 0.409 0.181 0.272 14.065 9.853
Hawkins, ID 87 1.316 0.243 0.000 0.637 0.454¢ 0.399 0.213 0.198 13.460 9.132

Yawkins, ID 87 1.375 0.242 0.031 0.729 0.467 0.423 0.201 0.22¢ 14.231 9.660
Bawkins, ID 87 1.424 0.256 0 0.763 0.487 0.432 0.190 0.243 14.633 9.961
Hawkins, ID 87 1.454 0.263 0 0.736 0.463 0.400 0.172 0.156 14.503 9.310
Hawkins, ID 87 1.330 0.229 O. 0.661 0.432 0.408 0.217 0.1%0 13.817 9.268
Hawkins, ID 87 1.414 0.256 0 0.733 0.454 0.431 0.197 0.219 13.951 9.576
Hawkins, ID 87 1,343 0.236 © 0.711 0.511 0.412 0.172 0.160 14.197 9.632
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Hawkins, ID
Bawkins, ID
Wright ck.,
Wright Ck.,
Wright Ck.,
Wright Ck.,
Wright Ck.,
Wright Ck.,
Wright ck.,
wright ck.,
Wright ck.,
Wright Ck.,
Wright Ck.,
Wright Ck.,
Wright Ck.,
Wright ck.,
Wright Ck.,
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Deep Ck., ID

Deep k.,
Deep k.,
Deep k.,
Deep Ck.,
Deep Ck.,
Deep Ck.,
Deep Ck.,
Deep (K.,
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88
88
88
88
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83
83
88
88
88
88
838
88
88
838
88
83

1.424
1.361
1.346
1.333
1.341
1.629
1.456
1.370
1.428
1.467

.534
1.413
1.296
1.460
1.378
1.406
1.249
0.829
0.762
0.776
0.729
0.766
0.763
0.737
0.719
0.731
0.781
0.769
€.713
0.753
0.662
0.670
0.759
0.757
0.731
0.726
0.832
0.729
0.733
0.774
€.750
0.690
0.733
0.789
0.768
0.699
0.781
0.697

0.249
0.238
0.242
0.240
0.245
0.282
0.257
0.229
0.267
0.267
0.267
0.265
0.240
0.260
0.252
0.262
0.213
0.142
0.136
0.140
0.132
0.137
0.129
0.132
0.131
0.132
0.133
0.140
0.119
0.133
0.126
0.115
0.133
0.137
0.124
0.131
0.148
0.125
0.128
0.152
0.132
0.118
0.132
0.129
0.133
0.123
0.141
0.123
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0.785
0.768
0.734
0.673
0.719
0.792
0.778
0.746
0.782
0.742
0.746
0.755
0.689
0.817
0.758
0.754
0.693
0.552
0.451
0.454
0.416
0.527
0.443
0.447
0.431
0.444
0.453
0.430
0.433
0.439
0.439
0.431
0.503
0.441
0.472
0.465
0.451
0.456
0.436
0.478
0.449
0.443
0.461
0.392
0.457
0.411
0.498
0.452
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0.473
0.444
0.488
0.449
0.442
0.513
0.473
0.460
0.459
0.481
0.522
0.493
0.468
0.484
0.487
0.469
0.40¢
0.070

0.376
0.408
0.402
0.410
0.3%0
0.447
0.401
0.382
0.401
0.426
0.455
0.394
0.417
0.420
0.392
0.418
:.389
w321
0.285
0.287
0.316
0.290
0.298
6.302
0.307
0.290
0.289
0.304
0.285
0.280
0.300
0.292
0.315
0.286
0.288
0.313
0.302
0.289
¢.301
0.290
0.286
0.277
0.292
0.297
0.293
0.273
0.291
0.288

0.207 0.191 14.457 10.078

0.161 0.170 13.469 9.129
0.174 0.195 13.876 9.119
0.169 0.19¢ 12.668 8.657
0.168 0.165 14.638 9.864
0.178 0.183 14.010 8.971
0.153 0.161 14.674 9.955
0.174 0.178 13.132 8.902
0.202 0.159 14.214 9.634
0.159 0.232 14.509 9.945
0.159 0.224 15.427 10.713
0.156 0.161 14.558 9.950
0.227 0.210 13.827 9.611
0.163 0.174 13.558 8.934
0.165 0.179 14.024 9.719
0.206 0.171 13.935 9.948
0.164 0.109 14.076 9.485
0.25¢ 0.213 5.345 3.628
0.242 0.240 5.688 3.889
0.255 0.207 5.838 4.145
0.252 90,198 5.535 3.815
0.246 0.226 5.650 3.900
0.258 0.23%3 5.764 3.969
0.254 0.223 5.661 3.823
0.237 0.220 5.626 3.942
0.259 0.243 5.850 4.166
0.254 0.213 5.534 3.757
0.238 0.214 5.499 3.768
0.261 0.216 5.701 4.017
0.222 0.214 5.409 3.816
0.257 0.234 5.676 3.955
0.235 0.215 5.770 4.086
0.268 0.213 5.911 4.074
0.257 0.236 5.618 3.860
0.289 0.266 5.974 4.112
0.222 0.217 5.844 4.122
0.236 0.219 5.396 3.625
0.233 0.214 5.868 3.974
0.249 0.232 5.986 4.117
0.246 0.249 5.930 4.070
0.253 0.217 5.705 4.059
0.259 0.224 6.360 4.542
0.261 0.205 5.969 4.224
0.236 0.227 5.136 3.565
0.224 0.204 5.550 3.834
0.252 0.252 5.33¢ 3.7%90
0.237 06.205 S5.642 3.954
0.233 0.212 5.290 3.651



Deep Ck., ID
Deep Ck., ID
Deep Ck., ID
Deep Ck., ID
Deep Ck., ID
Deep Ck., ID
Deep Cx., ID
Deep k., ID
Deep Ck., ID
Deep Ck., ID
Chesterfield
Chesterfield
Chesterfield
Chesterfield
Chesterfield
Chesterfield
Chesterfield
Chesterfield
Chesterfield
Chesterfield
Chesterfield
Chesterfield
Chesterfield
Chesterfield
Chesterfield
Bear Guich, ID
Bear Gulch, ID
Bear Gulch, ID
Bear Gulch, ID
Bear Gulch, ID
Bear Gulch, ID
Bear Guich, ID
Bear Gulch, ID
Bear Gulch, ID
Bear Gulch, ID
Bear Gulch, ID
Bear Gulch, ID
Bear Gulch,
Bear Gulch,
Bear Gulch,
Bear Gulch,
Bear Gulch,
Bear Gulch,
Bear Gulch,
Bear Gulch,
Bear Gulch,
Bear Gulch,
Bear Gulch,
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G.705
0.750
0.742
0.730
0.690
0.733
0.743
0.744
0.690
0.716
1.248
1.243
1.231
1.253
1.326
1.242
1.211
1.204
1.252
1.216
1.242
1.262
1.157
1.251
1.185
0.793
0.760
0.770
0.688
0.708
0.71
0.790
0.736
0.762
0.742
0.765
0.803
0.731
0.745
0.763
0.735
0.705
0.735
0.711
0.732
0.872
0.760
0.760

0.126
6.129
0.134
0.127
0.117
0.127
0.12¢4
0.126
0.116
0.126
0.219
0.213
0.211
0.228
0.241
0.222
0.235
0.212
0.222
0.218
0.218
0.219
0.211
0.226
0.209
0.146
0.138
0.141
0.121
0.127
0.135
0.136
0.127
0.137
0.136
0.136
0.141
0.128
0.133
0.136
0.133
0.128
0.133
0.125
0.140
0.157
0.131
0.143

0.018
0.020
0.018
0.017
0.019
0.025
0.019
9.021
0.016
0.015
0.015
0.012
0.011
0.011
0.025
0.014
0.021
0.012
0.015
0.017
0.015 0.222
0.017 0.186

0 0.206
0.015 0.208
0.018 0.249
0.014 0.319
0.011 0.314
0.016 0.315
0.014 0.309
0.012 0.312
0.010 0.345
0.027 0.335
0.012 0.329
0.011 0.344
0.014 0.327
0.014 0.335
0.012 0.325
0.012 0.341
0.013 0.331
0.014 0.327
0.010 0.313
0.012 0.308
0.011 0.306
0.014 0.308
0.012 0.323
0.017 0.329
0.011 0.308
0.013 0.303

0.438
0.483
0.406
0.467
0.435
0.425
0.425
0.440
0.415
0.501
0.196
0.233
0.202
0.205
0.241
0.216
0.226
0.205
0.272
0.241
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0.056
0.066
0.049
0.055
0.058
0.051
0.061
0.056
0.044
0.064
0.669
0.684
0.686
0.688
0.666
0.666
0.692
0.672
0.711
0.699
0.696
0.671
0.665
0.683
0.679
0.033
0.094
0.086
0.080
0.094
0.098
0.088
0.085
0.088
0.082
0.089
0.089
0.086
0.098
0.081
0.085
0.081
0.091
0.082
0.086
0.089
0.088
0.077

0.294
0.310
0.264
0.295
0.303
0.292
0.281
0.275
0.265
0.282
0.107
0.139
0.123
0.131
0.133
0.142
0.127
0.114
0.152
0.131
0.129
0.121
0.129
0.119
0.135
0.165
0.166
0.166
0.164
0.179
0.178
0.194
0.176
0.182
0.183
0.179
0.179
0.181
0.173
0.172
0.180
0.169
0.169
0.170
0.179
0.167
0.180
0.165

0.236
0.239
0.268
0.252
0.237
6.274
0.247
0.251
0.251
0.257
0.049
0.054
0.055
0.048
0.051
0.046
0.051
0.049
0.051
0.032
0.042
0.051
0.053
0.047
0.048
6.222
0.201
0.203
0.216
0.209
0.212
0.205
0.221
0.219
0.217
0.222
0.212
0.217
0.206
0.213
0.215
0.216
0.228
0.229
0.216
0.222
0.217
0.236

0.233
0.223
0.221
0.232
0.234
0.233
0.202
0.210
0.211
0.224
0.178
0.185
0.183
0.167
0.161
0.161
0.161
0.149
0.175
0.177
0.178
0.171
0.182
0.181
0.156
0.216
0.214
0.220
0.215
0.219
0.208
0.191
0.218
0.206
0.186
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3.776
4.145
3.804
3.862
3.891
3.815
3.645
4.020
3.608
3.991
5.228
5.479
4.629
4.347
4.557
4.501
4.318
£.345
5.138
4.934
4.789
4.567
4.854
4.658
4.875
2.729
2.677
2.889
3.04
2.928
2.901
2.638
3.179
3.015
3.202
2.971
2.686
3.244
2.875
2.989
2.913
3.184
2.936
3.056
2.913
2.787
2.880
2.992



Bear Gulch,
Bear Gulch,
Bear Gulch,
Bear Gulch,
Bear Gulch,
Bear Gulch,
Bear Gulch,
Bear Gulch,
Bear Gulch,
Bear Gulch,
Bear Gulch,
Bear Gulch,
Bear Gulch,
Bear Gulch,
Bear Gulch,
Bear Gulch,
Bear Gulch,
Bear Gulch,
Bear Gulch,
Bear Gulch,
Bear Culch,
Bear Gulch,
Bear Gulch,
Bear Guich,
Bear Gulch,
Bear Gulch, ID
Bear Gulch, ID
Larkspur Canyon
Larkspur Canyon
Larkspur Canyon
Larkspur Canyon
Larkspur Canyon
Larkspur Canyon
Larkspur Canyon
Larkspur Canyon
Larkspur Canyon
Larkspur Canyon
Larkspur Canyon
Larkspur Canyon
Larkspur Canyon
Larkspur Canyon
Larkspur Canyon
Larkspur Canyon
Larkspur Canyon
Larkspur Canyon
Larkspur Canyon
Larkspur Canyon
Larkspur Canyon
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0.713
0.682
0.711
0.689
0.696
0.726
0.728
0.679
0.718
0.714
0.792
0.388
0.734
0.684
$.695
0.696
0.711
0.698
0.689
0.732
0.704
0.730
0.700
0.728
0.742
0.775
0.704
0.699
0.745
0.698
0.742
0.726
0.685
0.710
0.728
0.745
0.752
0.738
0.749
0.694
0.753
0.744
0.7%
0.81¢€
1.015
0.855
1.109
0.876

0.120
0.122
0.125
0.126
0.126
0.128
0.127
0.123
0.128
0.126
0.142
0.122
0.139
0.122
0.123
0.123
0.123
0.127
0.128
0.128
0.122
0.135
0.123
0.123
0.130
0.152
0.122
0.130
0.128
0.124
0.127
0.128
0.123
0.12%
0.130
0.130
0.130
0.128
0.136
0.123
0.129
0.139
0.142
0.141
0.174
0.150
0.183
0.156

0.012
0.010
0.013
0.012
0.014
0.010
0.012
0.014
0.014
0.012
0.022
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0.013
0.012
0.013
0.014
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0.015
0.011
0.013
0.012
0.015
0.012
0.015
0.016
0.013
0.013
0.012
0.013
0.015
0.012
0.011
0.010
0.014
0.015
0.013
0.013
0.010
0.014
0.011
0.011
0.015
0.019
0.011
0.020
0.019
0.030
0.011

0.305
0.309
0.311
0.328
0.295
0.305
0.312
0.296
0.316
0.295
0.296
0.303
0.317
0.308
0.298
0.328
0.347
0.35%
0.339
0.339
0.314
0.295
0.293
0.305
0.316
0.287
0.307
0.316
0.356
0.323
0.339
0.327
$.300
0.293
0.325
0.299
0.310
0.322
0.325
0.327
0.331
0.305
0.359
0.323
0.374
0.352
0.383
0.360
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0.085
0.09%4
0.092
0.081
0.081
0.077
0.083
0.079
0.087
0.080
0.047
0.086
0.087
0.082
0.090
0.079
0.094
0.083
0.092
0.083
0.077
0.078
0.082
0.087
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0.0386
0.089
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0.101
0.084
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0.102
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0.176
0.154
0.179
0.169
0.168
0.177
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0.170
0.177
0.203
0.171
0.176
0.179
0.187
0.183
0.184
0.180
0.177
0.173
0.176
0.167
0.179
0.169
0.173
0.165
0.179
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0.169
0.177
0.166
0.180
0.165
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0.174
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0.169
0.179
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0.190
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0.187
0.189
0.203
0.225
0.194

0.207
0.239
0.211
0.233
0.208
0.217
0.226
0.243
0.224
0.225
0.191
0.228
0.208
0.236
0.206
0.223
0.206
0.214
0.217
0.221
0.210
0.200
0.221
0.220
0.234
0.226
0.210
0.213
0.216
0.201
0.211
¢.218
0.232
0.216
0.198
0.220
0.210
0.210
0.221
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0.220
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0.214
0.220
0.203
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0.215
0.220
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0.218
0.243
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0.215
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0.244
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0.1%5
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0.22¢4
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0.167
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0.197
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0.160
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4.153
4.354
4.218
4.369
4.443
4.311
4.262
4.352
4.003
4.072
4.387
4.187
4.515
4.350
4.471
4.247
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4.434
§.385
£.498
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£.458
4.3
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§.288
4.218
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4.305
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£.073
£.133
4.079
3.975
4.269
4.324
4,226
4.524
4.000
3.910
4.262
3.844
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2.999
2.928
3.084
2.921
3.157
3.219
3.035
3.029
3.163
2.786
2.903
3.129
2.974
3.230
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2.982
3.095
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3.081
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3.284
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3.201
3.130
2.920
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3.15%
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2.328
2.898
2.923
2.822
3.0%0
3.097
2.937
3.143
2.670
2.577
2.830
2.398
2,918



Larkspur Canyon
Larkspur Canyon
Larkspur Canyon
Larkspur Canyon
Cedar Ck 1, ID
Cedar Ck 1, ID
Cedar Ck 1, ID
Cedar Ck 1, ID
Cedar Ck 1, ID
Cedar Ck 1, ID
Cedar Ck 1, ID
Cedar Ck 2, ID
Cedar Ck 2, ID
Cedar Ck 2, ID
Cedar Ck 2, ID
Cedar Ck 2, ID
Cedar Ck 2, ID
CoalBank Spring
CoalBank Spring
CoalBank Spring
Camas Prairie,
Capas Prairie,
Capas Prairie,
Camas Prairie,
Camas Prairie,
Camas Prairie,
Camas Prairie,
Camas Prairie,
Camas Prairie,
Camas Prairie,
Camas Prairie,
Camas Prairie,
Camas Prairie,
Camas Prairie,
Camas Prairie,
Camas Prairie,
Capas Prairie,
Camas Prairie,
Camas Prairie,
Camas Prairie,
Camas Prairie,
Camas Prairie,
Camas Prairie,
Camas Prairie,
Camas Prairie,
Camas Prairie,
Camas Prairie,
Camas Prairie,

90
9
91
91
91
91
91
91
9a
9
92
92
92
92

92
92
92
92
93
93
93
93
93
93
93
93
93
a3
93
93
93
93
93
83
93
93
93
9
93
93
93
93
93
93
93
93

0.821
0.772
0.692
0.703
0.73%
0.706
0.678
0.686
0.757
0.673
0.686
0.690
0.709
0.692
0.685
0.672
0.705
0.758
0.691
0.753
0.744
0.739
0.724
0.777
0.738
0.778
0.706
0.735
0.750
0.742
0.707
0.694
0.692
0.771
0.757
0.725
0.721
0.717
0.716
0.73%
0.757
0.759
0.742
0.730
0.717
0.773
0.987
0.727

0.151
0.132
0.125
0.124
0.133
0.115
0.117
0.120
0.141
0.120
0.120
0.125
0.129
0.122
0.122
0.121
0.129
0.133
0.125
0.139
0.132
¢.128
0.130
0.136
0.130
0.137
0.124
0.131
0.135
0.133
0.123
0.124
0.118
0.135
0.139
0.126
0.127
0.126
0.129
0.129
0.138
0.131
0.136
0.132
0.126
0.132
0.170
0.129

0.015
0.018
0.011
0.012
0.209
0.008
0.008
0.012
0.011
0.009
0.011
0.011
c.011
0.009
0.011
0.007
0.010
0.010
0.009
0.008
0.009
0.011
0.010
0.008
0.011
0.011
0.009
0.011
0.010
0.010
0.007
0.010
0.011
0.013
0.009

0.337
0.362
0.229
0.239
0.237
0.193
0.198
0.199
0.210
0.204
0.211
0.193
0.186
0.174
0.163
0.154
0.155
0.155
0.142
0.142
0.166
0.163
0.161
0.158
0.172
0.162
0.169
0.156
0.161
0.173
0.174
0.177
0.167
0.177
0.164
0.188
0.175
0.182
0.171
0.173
0.176
0.195
0.184
0.197
0.194
0.17%
0.260
0.171
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0.0%%
0.092
0.071
0.062
9.070
0.060
0.060
0.063
0.065
0.065
0.066
0.066
0.070
0.067
0.069
0.064
0.071
0.075
0.679
0.070
0.070
0.069
0.067
0.069
0.071
0.068
0.071
0.068
0.068
0.070
0.070
0.071
0.074
0.052
0.069
0.07C
0.065
0.073
0.070
0.068
0.072
0.074
0.068
0.068
0.063
0.061
0.086
0.061

0.185
0.203
0.154
¢.155
0.158
0.147
0.161
0.158
0.157
0.154
0.155
0.134
0.138
0.133
0.125
0.122
0.123
0.122
0.117
0.116
0.115
0.117
0.114
0.116
0.115
0.119
0.128
0.123
0.118
0.123
0.125
0.122
0.124
0.127
0.136
0.126
0.123
0.127
0.131
0.127
0.130
0.130
0.093
0.129
0.128
0.123
0.178
0.129

0.192
0.154
0.243
0.216
0.229
0.212
0.232
0.220
0.212
0.224
6.229
0.215
0.223
0.236
0.227
0.221
0.227
0.225
0.231
0.222
0,230
0.215
0.240
0.203
0.233
0.232
0.220
0.214
0.217
0.227
0.232
0.230
0.214
0.219
0.218
0.217
0.218
0.209
0.231
0.235
0.228
0.219
0.211
0.215
0.223
0.202
0.239
0.253

3.948
4.646
2.721
2.731
2.635
2.690
2.681
2.791
2.609
2.739
2.737
2.435
2.416
2.492
2.222
2.271
2.157
1.990
2.048
1.899
1.959
2.002
2.081
1.934
2.017
1.968
1.968
1.987
2.107
2.150
2.172
2.239
2.221
2.176
2.138
2.128
2.189
2.138
2.185
2.204
2.187
2.18
2.197
2.232
2.241
2.069
3.058
2.225

2.727
3.141
2.044
2.023
1.915
2.015
1.937
2.058
1.899
2.034
1.975
1.828
1.752
1.874
1.661
1.741
1.599
1.481
1.559
1.393
1.412
1.449
1.559
1.353
1.441
1.469
1.472
1.414
1.565
1.579
1.593
1.700
1.583
1.555
1.526
1.546
1.625
1.617
1.627
1.628
1.558
1.458
1.5%0
1.675
1.642
1.425
2.255
1.645



Cavas Prairie, 93 0.742 0.129 0.009 0.189 0.062 0.131 0.120 0.217 2.238
Camas Prairie, 93 0.700 0.122 0.011 0.154 0.069 0.128 0.112 0.224 2.166
Flattop Butte, 93 0.759 0.134 0,009 0.169 0.065 0.129 0.107 0.203 2.395
Flattop Butte, 93 0.707 0.126 90.010 0.170 0.065 0.130 0.119 0.216 2.417
Flattop Butte, 93 0.666 0.123 0.010 G.162 0.069 0.127 0.120 0.216 2.412
Plattop Butte, 93 0.801 0.143 0.010 0.165 0.073 0.129 0.103 0.227 2.306
Flattop Butte, 93 0.720 0.128 0.007 0.171 0.080 0.126 0.120 0.222 2.568
Flattop Butte, 93 0.759 0.136 0.010 0.164 0.069 0.123 0.119 0.2i3 2.411
Flattop Butte, 93 0.764 0.139 0.004 0.167 0.070 0.122 0.105 0.226 2.304
Flattop Butte, 93 0.757 0.139 0.003 0.168 0.072 0.127 0.115 0.204 2,281
Flattop Butte, 93 0.741 0.136 0.009 0.180 0.072 0.127 0.116 0.203 2.368
Dry k., ID 94 0.745 0.131 0.013 0.344 0.049 0.236 0.211 0.212 4.177
Dry Ck., ID 94 0.723 0.131 0.015 0.329 0.048 0.242 0.217 0.245 4.414

Dry Ck., ID 94 0.669 G.120 0.016 0.352 0.038 0.237 0.222 0.000 4.475
Dry Ck., ID 94 0.681 0.122 0.013 0.341 0.032 0.235 0.24¢ 0.239 4.230
Dry ., ID 94 0.697 0.120 0.017 0.317 0.039 0.239 0.232 0.225 4.114
Dry C., ID 94 0.678 0.124 0.016 0.328 0.036 0.221 0.217 0.228 4.165
Dry Ck., ID 94 0.680 0.127 0.013 0.309 0.046 0.233 0.246 0.229 4.249

Dry C., ID 94 0.697 0.123 0.015 0.299 0.039 0.236 0.245 0.239 4.325
Dry k., ID 94 0.695 0.125 0.014 0.330 0.039 0.240 0.225 0.243 4.270
Big Southern B. 95 0.751 0.134 0.069 0.515 0.000 0.661 1.172 0.197 4.34
Big Southern B. 95 0€.773 0.133 0.070 0.513 0.000 0.682 1.133 0.206 4.348
Big Southern B. 95 0.821 0.145 0.075 0.536 0.6%0 1.184 0.188 4.275
Big Southern B. 95 0.758 0.137 0.072 0.514 0.660 1.191 0.201 4.238
Big Southern B. 95 0.768 0.145 0.068 0.536 0.677 1.187 0,237 4.437
Big Southern B. 95 0.766 0.134 0.072 0.524 0.676 1.195 0.197 4.464
Big Southern B. 95 0.780 0.149 0.076 0.532 0.672 1.203 0.216 4.623
Big Southern B. 95 0.825 0.149 "~ 074 0.520 0.686 1.152 0.190 4.213
Big Southern B. 95 0.782 0.153 0.672 0.492 0.661 1.198 0.201 4.535
Big Southern B. 95 0.800 0.138 0.067 0.513 0.649 1.156 0.204 4.390
Big Southern B. 95 0.954 0.160 0.067 0.510 0.661 1.140 0.178 4.276
Big Southern B. 95 0.760 0.149 0.068 0.550 0.687 1.195 0.204 4.418
Big Southern B. 95 1.002 0.170 0.082 0.51¢ 0.677 1.233 0.218 4.395
Biq Southern B. 95 0.828 0.146 0.071 0.518 0.675 1.146 0.239 4.375
Big Southern B. 95 0.748 0.138 0.068 0.500 0.655 1.193 0.196 4.257
Biq Southern B. 95 0.777 0.142 0.068 0.518 0.674 1.191 0.200 4.410
Big Southern B. 95 0.820 0.148 0.071 0.522 0.662 1.163 0.196 4.099
Biq Southern B. 95 0.775 0.145 0.071 0.518 0.674 1.169 0.195 4.127
Big Southern B. 95 0.740 0.129 0.065 0.470 0.€56 1.178 0.196 4.061
Big Southern B. 95 0.728 0.129 0.065 0.483 0.649 1.177 0.204¢ 4.068
Big Southern B. 95 0.775 0.131 0.069 0.495 0.661 1.221 0.208 4.292
Big Southern B. 95 0.762 0.140 0.074 0.511 0.68C 1.200 0.193 4.425
Big Southern B. 95 0.736 0.132 0.068 0.488 0.661 1.228 0.201 4.215
Big Soutlern B. 95 0.747 0.133 0.068 0.518 0.643 1.163 0..37 4.154
Big Southern B. 95 0.783 0.135 0.071 0.547 0.700 1.263 0.206 4.653
Big Southern B. 95 0.741 0.134 0.068 0.501 0.665 1.223 0.194 4.272
Big Southern B. 95 0.736 0.133 0.06§ 0.517 0.678 1.205 0.190 4.688
Big Southern B. 95 0.706 0.128 0.062 0.448 0.619 1.152 0.191 4.211
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Big Scuthern B.
Big Southern B.
Big Southern B.
Big Soutbern B.
Big Southern B.
Big Southern B.
Big Southern B.
Big Southern B.
Big Southern B.
Big Southern B.
Big Southern B.
Big Southern B.
Biq Southern B.
Big Southern B.
Big Southern B.
Biq Southern B.
Big Southern B.
Big Southern B.
Big Southern B.
Big Southern B.
Big Southern B.
Big Southern B.
Big Southern B.
Big Southern B.
Big Southern B.
Big Southern B.
Big Southern B.
Big Southern B.
Big Southern B.
Jasper Flats 1,
Jasper Flats 1,
Jasper Flats 1,
Jasper Flats 1,
Jasper Flats 1,
Jasper Flats 1,
Jasper flats 1,
Jasper Flats 1,
Jasper Flats 1,
Jasper Flats 1,
Jasper Flats 1,
Jasper Flats 2,
Jasper Flats 2,
Jasper Flats 2,
Jasper Flats 2,
Jasper Flats 2,
Reas Pass Ck.,

Reas Pass Ck.,

Reas Pass Ck.,

95
95
95
95
95
95

95
95
95
95
95
95
95
95
95
95
95
95

95
95
95
95
95
95
95
95
95
96
96
96
96
96
96
96
96
96
S
96
97
97
97
97

98
98
98

0.768
0.798
0.762
0.784
0.761
0.775
0.841
0.755
0.743
0.786
0.752
0.792
0.741
0.851
0.772
0.785
0.775
1.106
0.856
0.910
0.850
0.788
0.910
0.964
0.883
0.857
0.739
0.762
0.952
0.773
0.778
0.723
0.753
0.785
0.754
0.727
0.758
0.788
0.780
0.7i7
0.749
0.727
0.761
0.748
0.746
0.741
0.757
0.736

0.138
0.149
0.135
0.141
0.135
0.143
0.1%0
0.133
0.132
0.148
0.133
0.145
0.128
0.147
0.136
0.151
0.140
0.185
0.148
0.157
0.156
0.141
0.164
0.175
0.157
0.151
0.133
0.135
0.171
0.136
0.140
0.131
0.135
0.139
0.134
0.130
0.136
0.140
0.138
0.128
0.127
£.132
0.135
0.134
0.137
0.138
0.129
0.128

0.067 0.488
0.069 0.519
0.07r 0.514
0.073 0.520
0.069 0.507
0.065 0.502
0.071 0.522
0.068 0.510
0.067 0.492
0.071 0.53
0.071 0.474
0.076 0.535
0.072 0.497
0.077 0.559
0.067 0.510
0.067 0.483
0.075 0.549
0.067 0.568
0.075 0.543
0.074 0.58¢
0.074 0.528
0.079 0.521
0.076 0.528
0.073 0.534§
0.077 0.52
6.070 0.556
0.066 0.481
0.066 0.536
0.067 0.503
0.009 0.146
0.010 0.151
0.009 0.140
0.009 0.146
0.008 0.146
0.008 0.151
0.008 0.148
0.005 0.147
06.010 0.153
0.008 0.150
0.009 0.145
0.011 0.173
0.009 0.130
0.011 0.173
0.010 0.171
0.010 0.176
0.011 0.336
0.016 0.359
0.019 0.368
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0.072
0.070
0.033
0.035
0.032

0.661
0.673
0.657
0.674
0.658
0.670
0.659
0.643
0.656
0.676
0.647
0.664
0.662
0.708
0.663
0.666
0.692
0.672
0.695
0.684
0.676
0.659
0.672
0.690
0.654
0.634
0.662
0.668
0.662
0.117
0.116
0.112
0.112
0.111
0.123
0.114
0.120
0.117
0.113
0.110
0.129
0.134
0.130
0.130
0.146
0.230
0.232
0.237

1.168
1.207
1.170
1.223
1.189
1.185
1.169
1.172
1.169
1.195
1.182
1.228
1.212
1.235
1.240
1.224
1.186
1.246
1.255
1.261
1.200
1.244
1.215
1.1%0
1.244
1.261
1.214
1.246
1.209
0.096
0.096
0.100
0.098
0.0%0
0.105
0.100
0.104
0.098
0.107
0.098
0.120
0.120
0.117
0.112
0.112
0.216
0.235
0.213

0.189
0.201
0.201
0.201
0.197
0.1%9
0.195
0.222
0.197
0.194
0.192
0.211
0.205
0.189
0.206
0.174
0.198
0.194
0.203
0.203
0.193
0.205
0.188
0.188
0.198
0.212
0.201
0.219
0.207
0.215
0.214
0.210
0.208
0.216
0.221
0.219
0.211
0.225
0.214
0.211
0.209
0.231
0.217
0.207
0.210
0.229
0.223
0.217

3.83%5
4.224
4.243
4.645
4.348
£.232
3.991
4.280
4.131
4.434
4.007
4.492
4.217
4.511
4.614
4.078
4.565
4.737
4.995
4.709
4.566
4.613
§.412
4.225
4.533
4.483
4.242
4.823
4.545
1.939
2.121
1.981
1.821
1.945
1.927
1.950
1.911
1,922
1.941
1.899
2.143
2.266
2.058
2.180
2.209
5.000
4.789
5.011

2.611
2.955
3.023
3.2n
3.018
2.946
2.733
3.102
2.927
2.998
2.898
3.169
3.001
3.049
3.191
2.844
3.122
3.213
3.486
3.243
2.964
3.168
3.053
2.896
3.278
3.066
3.004
3.410
3.260
1.428
1.578
1.494
1.350
1.443
1.437
1.505
1.422
1.437
1.455
1.473
1.549
1.696
1.519
1.569
1.579
3.593
3.342
3.401



Reas Pass k.,
Reas Pass k.,
Reas Piss k.,
Reac Pass Ck.,
Reas Pass Ck.,
Reas Pass Ck.,
Reas Pass Ck.,
Reas Pass Ck.,
Reas Pass Ck.,
Reas Pass Ck.,
Reas Pass Ck.,
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Rock Ck., ID
Rock k., ID
Rock Ck., ID
Rock Ck., ID
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Reynelds,

98
98
98
98
98
98
93
98
98
98
98
93
99
99
99
99
99
99
99
99
99
99
99
99
e9
99
99
99
99
99
99
99
99
99
99
99
99
99
99
99
99
99
100
100
100
100
100
100

0.729
0.743
0.737
0.761
0.713
0.794
0.745
0.789
0.807
0.695
0.774
0.757
0.822
0.731
0.712
0.748
0.701
0.727
0.711
0.707
0.723
0.709
0.686
0.720
0.683
0.753
0.735
0.698
0.712
0.720
0.728
0.710
1.064
0.733
0.754
0.731
0.701
0.691
0,725
0.723
0.717
0.674
0.949
1.008
0.973
0.984
1.016
1.021

0.133
0.129
0.127
0.138
0.124
0.150
0.128
0.138
0.144
0.121
0.137
0.135
0.149
0.131
0.123
0.136
0.124
0.133
0.128
0.129
0.126
0.130
0.120
0.129
0.121
0.128
0.133
0.123
0.130
0.130
0.132
0.127
0.129
0.134
0.135
0.133
0.127
0.124
0.129
0.126
0.126
0.119
0.167
6.179
0.169
0.158
0.177
0.169

0.017
0.017
0.017
0.012
0.017
0.017
0.016
0.017
0.018
0.011
0.018
0.016
0.009
0.008
0.010
0.007
0.008
0.008
0.011
0.010
0.009
0.011
0.008
.009
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0.317
0.363
0.324
0.340
0.310
0.371
0.308
0.345
0.350
0.309
0.349
0.348
0.221
0.254
0.236
0.300
0.239
0.241
0.307
0.242
0.237
0.302
0.236
0.211
0.246
0.291
0.241
0.177
0.178
0.179
0.178
0.187
0.237
0.237
0.237
0.242
0.190
0.182
0.191
0.193
0.193
0.251
0.981
0.731
0.973
1.012
0.986
0.975
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0.037
0.036
0.041
0.044
0.034
0.037
0.035
0.035
0.040
0.036
0.041
0.041
0.070
0.067
0.058
0.061
0.061
0.068
0.065
0.068
0.069
0.060
0.061
0.069
0.065
0.060
0.064
0.068
0.067
0.066
0.064
0.068
0.427
0.066
0.063
0.068
0.072
0.062
0.068

0.239
0.239
0.24¢4
0.236
0.217
0.240
0.241
0.239
0.241
0.232
0.232
0.236
0.138
0.149
0.144
0.185
0.148
0.155
0.189
0.154
0.151
0.184
0.150
0.130
0.148
0.198
0.154
0.149
0.137
0.134
0.136
0.140
0.147
0.143
0.146
0.164
0.134
0.137
0.139
0.142
0.127
0.159
0.701
0.569
0.726
0.735
0.716
0.705

0.194
0.213
0.199
0.198
0.222
0.228
0.214
0.202
0.230
0.224
0.215
0.221
0.214
0.216
0.204
0.227
0.224
0.217
0.200
0.212
0.215
0.215
0.220
0.213
0.217
0.196
0.224
0.207
0.235
0.220
6.216
0.225
0.213
0.222
0.206
0.211
0,210
0.213
0.220
0.221
0.215
0.221
0.201
0.213
0.198
0.216
0.214
0,179

4.477
4.780
5.660
4.489
3.986
4.944
4.467
4.652
£.700
4.427
4.745
4.666
2.314
2.703
2.588
3.034
2.673
2.765
2.971
2.582
2.605
3.134
2.578
2.446
2.540
3.107
2.650
2.305
2.302
2.295
2.167
2.292
2.611
2.446
2.466
2.634
2.292
2.262
2.385
2.349
2.213
2.766
7.873
7.448
8.371
8.226
8.557
7.191

3.06%
3.314
2.950
3.050
2.799
3.435
3.077
3.298
3.288
3.142
3.450
3.306
1.708
2.000
1.895
2.200
2.008
2.097
2.161
1.932
1.924
2.273
1.932
1.851
1.894
2.165
1.941
1.621
1.702
1.736
1.572
1.687
1.891
1.817
1.767
1.972
1.670
1.628
1.747
1.7
1.615
2.073
5.464
5.228
5.641
5.652
5.966
4.938



Keynolds, ID
Reynolds, ID
Reynolds, ID
Reynolds, ID
Conant
Conant
Conant
Conant
Conant
Conant
Conant
Conant
Conant
Conant
Cohant
Cenant
Conant
Conant
Conant
Yale ¢k., ID
Yale k., ID
Yale Ck., ID
Yale Ck., ID
Yale ¢k., ID
Yale ¢k., ID
Yale ¢k., Ib
Yale Ck., ID
Yale k., ID
Yale Ck., ID
Yale Ck., ID
Yale ¢k., ID
Yale ¢k., ID
Yale Ck., ID
Yale Ck., ID
Pish Ck., ID
Fish .,
Fish Ck.,
Pish Ck.,
Fish Ck.,
Fish k.,
Fish k.,
Fish Ck.,
Fish ck.,
Pish Ck.,
Fish .,
Pish Ck.,
Fish Ck.,
Fish .,

c5EEBEBEEBERBEE

100
100
100
100
101
101
101
101
101
101
101
101
101
101
101
101
101
101
101
103
103
103
103
103
103
103
103
103
103
103
103
103
103
103
104
104
104
104
104
104
104
104
104
104
104
104
104
104

1.105
0.961
0.836
1.429
1.001
0.969
0.948
1.163
1.044
1.039
1.027
1.015
0.937
0.961
0.994
0.964
0.987
G.936
0.973
0.783
0.733
0.769
0.850
0.749
0.705
0.764
0.737
0.732
0.724
0.73%
.707
0.727
0.716
0.748
0.871
0.828
0.296
0.861
0.871
0.892
0.883
0.826
0.816
0.852
0.847
0.864
0.871
0.850

0.487
0.7
0.149
0.234
0.184
0.178
0.165
0.200
0.18%
0.186
0.186
0.186
0.159
0.173
0.180
0.178
0.174
0.162
0.175
0.131
0.131
0.137
0.150
0.130
0.128
0.133
0.132
0.129
0.132
0.136
0.121
0.130
0.132
0.138
0.161
0.146
0.153
0.161
0.162
0.162
0.159
0.150
0.143
0.145
0.152
0.153
0.150
0.155

0.061
0.633
0.067
0.063
0.032
0.029
0.036
0.046
0.032
0.031
0.037
0.034
0.032
0.033
0.039
0.031
0.034
0.036
0.031
0.014
0.018
0.015
0.015
0.012
0.012
0.014
0.018
0.018
0.017
0.014
0.013
0.013
0.013
0.018
0.017
0.020
0.024
0.019
0.023
0.023
0.022
0.021
0.023
0.025
0.025
0.023
0.020
0.021

0.989
0.971
0.971
0.937
0.491
0.511
0.483
0.510
0.523
0.492
0.522
0.523
0.498
0.491
0.526
0.518
0.509
0.509
0.516
0.320
0.323
0.325
0.338
0.332
0.312
0.357
0.328
0.318
0.316
0.317
0.296
0.332
0.311
0.311
0.512
0.495
0.515
0.504
0.522
0.508
0.504
0.525
0.496
0.512
0.509
0.482
0.483
0.508
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0.706
0.722
0.711
0.711
0.414
0.394
0.395
0.401
0.423
0.405
0.414
0.413
0.420
0.414
0.418
0.401
0.414
0.391
0.395
0.240
0.233
0.238
0.248
0.235
0.229
0.234
0.231
0.225
0.238
0.239
0.217
0.236
0.221
0.229
0.350
0.328
0.353
0.342
0.341
0.339
0.356
0.357
0.345
0.336
0.358
0.362
0.339
0.340

0.325
0.321
0.268
0.299
0.406
0.379
0.370
0.378
0.410
0.378
0.399
9.377
0.405
0.387
0.387
0.386
0.384
0.390
0.399
0.210
0.209
0.221
0.208
0.220
0.202
0.210
0.220
0.212
0.223
0.215
0.204
0.212
0.210
0.220
0.278
0.288
0.282
0.291
0.293
0.291
0.288
0.294
0.292
0.283
0.302
0.286
0.285
0.303

0.188
0.209
0.181
0.193
0.198
0.189
0.182
0.211
0.150
0.219
0.177
0.193
0.21%
0.208
0.224
0.225
0.201
0.207
0.204
0.200
0.202
0.208
0.201
0.198
0.218
0.214
0.211
0.210
0.214
0.212
0.199
0.207
0.207
0.204
0.200
0.219
0.191
0.206
0.206
0.180
0.197
0.212
0.197
0.210
0.206
0.198
0.192
0.211

6.716
6.572
6.513
4.084
4.102
4.335
3.660
4.171
4.160
4.183
4.225
4.066
4.247
4.297
3.650
4.178
4.050
4.071
5.268
5.636
5.426
5.719
5.737
4.906
5.148
5.517
5.421
5.295
5.610
9.642
4.885
5.545

5.684
5.556
5.841
5.889
4.297
4.055
4.126
4.389
4.264
4.396
4,358
4.265
4.816
4.470
4.776
4.553
4,935
4.576
4.61%
2.792
2.892
3.130
2.500
2.960
2,935
3.012
3.077
2.900
3.013
3.180
2.556
2.986
2.964
2,901
3.57¢
3.930
3.768
4.078
4.022
3.322
3.432
3.938
3.718
3.651
3.382
3.921
3.363
3.951



Fish Ck.,
Fish k.,
Fish ck.,
Fish k.,
Fish k.,
Fish ck.,
Fish Ck.,
Fish k.,
Fish ck.,
Fish Ck.,
Fish ¢k.,
PFish ck.,
Fish ck.,
Fish ck.,
Pine Ktn.,
Pine Mtn.,
Pine Mtn.,
Pine Ktn.,
Pine Xtn.,
Pine Ktn.,
Pine Ktn.,
Pine Ktn.,
Pine Htn.,
Pine Kta.,
Pine Ntn.,
Pine Ntn.,
Pine Mtn.,
Pine Htn.,
Pine Ktn.,
Pine Ktn.,
Pine Htn,
Pine Htn,
Pine Ntn,
Pine Kta,
Pine Ktn,
Pine Mtn,
Pine Mtn,
Pine Ktn,
Pine Ktn,
Pine Ktn,
Pine Htn,
Pine Htn,
Pine Mtn,
Pine Htn,

D
D
D
D
D
D
D
ID
iD
vy
ID
ID
1D
ID
i)
D
ID
ID
)]
D
ID
ID
D
D
ID
D
)]
ID
I
ID

BE8EBEEEEBEBEBEEE

104
104
104
104
104
104
104
104
104
104
104
104
104
104
105
105
105
105
105
105
105
105
105
105
105
105
105
105
105
105
105
105
105
105
105
105
105
105
105
105
105
105
105
105

0.863
0.842
0.824
0.859
0.838
0.854
0.860
C.849
0.912
0.827
0.862
0.858
0.871
0.863
0.648
0.650
0.671
0.684
0.667
0.678
0.677
0.678
0.748
0.613
0.695
0.658
0.631
0.692
0.658
0.710
0.733
0.791
0.655
0.743
0.698
0.772
0.681
0.691
0.754
0.757
0.693
0.703
0.680
0.681

0.157
0.154
0.149
0.156
0.145
0.152
0.155
0.151
0.168
0.155
0.153
0.151
0.159
0.153
0.115
0.116
0.122
0.125
0.117
0.127
0.115
0.122
0.135
0.109
0.123
0.117
0.110
0.125
0.117
0.123
0.129
0.142
0.121
0.129
0.124
0.140
0.121
0.128
0.137
0.133
0.126
0.126
0.125
0.121

0.022 0.507
0.025 0.502
0.023 0.485
0.024 0.517
0.021 0.504
0.023 0.511
0.025 0.518
0.021 0.511
0.023 0.499
0.025 0.504
0.023 0.516
0.021 0.497
0.025 0.51%
0.029 0.51%
0.006 0,241
0.007 0.227
0.010 0.23%
0.012 0.215
0.009 0.197
0.011 0.199
0.008 0.177
0.008 0.178
0.009 0.176
0.010 0.172
0.009 0.186
0.009 0.194
0.008 0.205
0.010 0.206
0.008 0.207
0.009 0.176
0.007 0.185
0.010 0.197
0.010 0.190
0.008 0.18°
0.008 0.186
0.010 0.184
0.007 0.184
0.008 0.175
0.010 0.202
0.009 0.174
0.008 0.186
6.009 0.198
0.008 0.220
0.009 C.192
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0.341
0.333
0.342
0.340
0.351
0.346
0.347
0.356
0.352
0.357
0.356
0.357
0.329
0.353
0.161
0.163
0.161
0.153
0.149
0.150
0.130
0.143
0.145
0.130
0.139
0.145
6.139
0.141
0.159
0.143
0.132
0.147
0.131
0.128
0.132
0.124
0.133
0.123
0.136
0.131
0.141
0.137
0.151
0.139

0.289
0.294
0.291
0.277
0.277
0.300
0.296
0.288
0.279
0.302
0.292
0.293
0.302
0.293
0.144
0.136
0.143
0.133
0.120
0.129
0.134
0.120
0.121
0.101
0.118
0.119
0.110
0.123
0.137
0.118
0.103
6.119
0.122
0.115
0.121
0.111
0.115
0.105
0.117
0.128
0.113
0.120
0.126
0.112

6.210
0.211
0.207
0.215
0.205
0.217
0.229
0.202
0.187
0.214
0.219
0.212
0.208
0.212
0.215
0.218
0.214
0.211
0.204
0.226
0.228
0.236
0.208
0.234
0.214
0.230
0.225
0.219
0.230
0.215
0.219
0.205
0.227
0.210
0.219
0.219
0.217
0.202
0.216
0.219
0.210
0.224
0.213
0.216

5.330
5.760
5.529
5.400
5.282
5.405
5.844
5.543
5.109
5.338
5.367
5.470
5.402
5.650
2.933
2.927
2.867
2.751
2.792
2.729
2.563
2.548
2.397
2.217
2.460
2.622
2.823
2.808
2.842
2.580
2.527
2.262
2.485
2.158
2.292
2.098
2.298
2.114
2.436
2.248
2.362
2.352
2.676
2.369

3.651
4.135
4.005
J.884
3.498
3.717
4.297
3.810
3.343
3.671
3.697
3.8
3.844
3.986
2.142
2.125
2.131
1.996
2.020
1.962
1.926
1.883
1.736
1.581
1.711
1.937
2.097
2.016
2.108
1.846
1.825
1.597
1.812
1.592
1.734
1.485
1.651
1.534
1.797
1.597
1.718
1.706
1.924
1.712



APPENDIX TWO

NORMALIZED ARTIFACT DATA
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Normalized Artifact Data
PeKa Pekb Zn Rb Sr Y ir ¥ Irkd Com. Ray.

wbcae? 0.830 0.150 0.072 0.494 -0.000 0.663 1.143 0.216 4.45¢ 3.838
wbc583 0.755 0.132 0.007 0.261 0.062 0.158 1.000 0.114 0.213 3.656 3.446
wbcl189  0.749 0.133 0.069 0.487 -0.000 0.652 1.161 0.19% 4.760 3.923
wbcl2g 0.941 0.160 0.078 0.512 -0.000 0.670 1.240 0.217 4.783 4.283
wbceT4 0.780 0.139 0.067 0.472 -0.000 0.627 1.162 0.219 4.589 3.864
vbc4s 1.143 0.185 0.06¢ 1.657 0.122 0.878 0.708 0.166 27.39% 22.771
wbc343 0.804 0.133 -0.000 0.231 0.075 0.148 0.097 0.220 3.153 2.934
wbc327 0.790 0.131 0.013 0.247 0.060 0.169 0.146 0.212 3.581 3.581
whcl20 0.714 0.124 0.010 0.257 0.060 0.178 0.151 0.219 3.786 3.3%0
wbhc60 0.736 0.132 0.002 0.245 0.057 0.173 0.147 0.223 3.593 3.254
wbc799 0.735 0.131 0.014 0.294 0.091 0.165 0.207 0.231 4.843 3.847
wbc372 0.684 0.124 0.013 €.263 0.063 0.172 0.146 0.224 3.803 3.010
wbhc34b 0.734 0.127 0.018 0.409 0.056 0.29 0.247 0.213 6.097 4.763

:

T

e e =

S vl el el wll

000

GO0

000

000

.000

000

000
wbc647 0.717 0.121 0.067 0.8%1 ~0.0™ 0.645 1.000 1.193 0.205 0.000 0.000
whel3d 0.824 0.143 0.07% 0.508 ~C.000 0.667 1.000 1.224 0.195 0.000 0.000
wbclild 1.170 0.203 0.055 0.425 =0.000 0.€33 1.000 1.055 0.204 0.000 0.000
wbcl65 0.847 0.150 0.076 0.497 0.00¢ 0.¢73 1.000 1.182 0.199 4.715 4.089
wbcilsé  0.752 0.128 0.070 0.480 -0.0%) 0.679 1.000 1.208 0.202 4.691 3.435
wbcll93  0.747 0.130 0.069 G.455 =0.000 0.623 1.CX 1.115 0.205 4.696 4.147
wbc226 0.802 0.146 0.074 0.504 -0.000 0.662 1.000 1.182 0.197 4.923 4.167
wbcdgo 0.642 0.112 -0.000 0.257 0,055 0.144 1.000 0.115 0.214 3.628 3.383
wbc736 0.748 0.133 0.072 0.499 -G.000 6.669 1.000 1.188 0.192 5.000 3.998
wbc349 0.763 0.139 0.010 0.157 0.074 0.123 1.000 0.102 0.216 2.589 2.316
wbc520 0.828 0.137 -0.000 0.237 0.074 0.168 1.000 0.144 0.200 3.234 2.920
wbcl1082 2.181 0.338 0.039 0.670 0.489 0.411 1.000 0.128 0.174 16.661 12.430
wbcis3 0.996 0.184 0.002 0.233 0.005 0.175 1.000 0.197 0.234 2.099 1.729
whel? 0.703 0.12¢ 0.013 0.319 0.096 0.173 1.000 0.200 0.215 4.770 3.733
wbc533 0.705 0.129 0.059 0.252 0.056 0.163 1.000 0.132 0.206 3.335 2.592
wbc5%0 0.614 0.108 0.00¢ 0.193 0.058 0.140 1.000 0.123 0.225 3.246 2.382
wbcl051  0.631 ©.115 0.006 0.231 0.068 0.148 1.000 0.108 0.228 3.551 2.636
wbc26 0.670 0.126 0.014 0.248 0.075 0.158 1.000 0.111 0.223 3.267 2.375
wbesdO 0.408 0.073 0.015 0.162 -0.000 0.114 1.000 0.126 0.22¢ 1.332 0.990
wbcilo 1.349 0.234 0.025 0.8% 0.199 0.344 1.000 0.055 0.303 11.747 10.298
wbcid 1.546 0.248 ©.113 1.99¢ 0.202 1.087 1.000 0.835 9.161 31.484 26.451
wbcll7l  0.671 0.114 0.008 0.255 0.059 0.170 1.000 0.142 0.209 3.342 2.733
wbcll65  0.920 0.165 0.083 0.530 -0.000 0.677 1.000 1.183 0.216 &.806 4.243
wbc631 0.792 0.138 0.065 0.494 -0.000 0.665 1.000 1.184 0.211 4.944 4.273
wbc589 0.233 0.138 0.007 0.272 0.066 0.162 1.000 0.111 0.211 2.776 1.767
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wbcl5éa  0.864 0.16C 0.083 0.525 -0.000 0.688 1.000 1.155 0.235 3.941 2.618
wbclS6b  0.817 0.155 0.073 0.538 -0.000 0.684 1.000 1.164 0.194 4.074 2.794
wbclS6c  1.026 0.183 -0.000 0,838 0.072 0.283 1.000 0.101 0.233 9.749 6.408
wbcl5sd  0.745 0.139 0.022 0.426 0.065 0.293 1.000 0.283 0.233 5.208 3.562
wbclSée  0.835 0.150 0.072 0.531 -0.000 0.673 1.000 1.131 0.1%0 4.005 2.771
wbciS6f  0.917 0.162 0.085 0.5:0 -0.000 0.696 1.000 1.207 0.194 4.193 2.595
wbc675 1.059 0.181 0.015 0.260 0.077 0.162 1.000 0.138 0.205 2.531 1.778
wbe682 0.800 0.140 0.020 0©.154 0.070 0.122 1.000 0.102 0.211 2.101 1.482

whe540 0.450 0.080 0.017 0.167 -0.000 0.116
4bc363 1.382 0.252 0.031 0.514 0.866 0.262
whc582 1.306 0.252 0.101 1,164 0.118 0.446

0.124 0.215 1.246 1.021
0.101 0.158 13.587 10.242
0.105 0.194 14.819 11.268

.

FHTETE

wbc399 0.707 0.125 0.016 0.226 0.064 0.152 1.000 0.110 0.209 3.138 2.490
wbe577 0.624 0.111 0.058 0.411 -0.000 0.547 1.000 0.962 0.201 3.790 2.867
wbcli57  0.685 0.121 0.012 0.215 0.066 0.14% 1.000 0.132 0.213 2.958 2.282
whc369 0.861 0.143 0.028 0.403 0.069 0.311 1.000 0.247 0.207 6.686 5.140
wbcl8s 0.675 0.120 0.008 0.227 0.058 0.137 1.000 0.095 0.208 2.944 2.316
wbcl045  1.377 0.236 ~0.000 0.702 0.491 0.440 1.000 0.163 0.167 15.639 11.869
wbc865 0.736 0.011 -0.000 0.255 0.060 0.174 1.000 0.141 0.230 3.405 2.7
wbc995 0.685 0.122 0.009 0.264 0.079 0.157 1.000 0.112 0.200 3.250 2.585
wbe581 0.456 0.082 0.016 0.179 -0.000 0.110 1.000 0.124 0.228 1.29 1.012
wbc3%0 0.670 0.157 0.030 0.974 0.140 0.386 1.000 0.069 0.255 0.000 0.000
wheie 0.454 0.067 0.015 0.171 -0.000 0.118 1.000 ©0.125 0.235 1.304 1.016
wbc24 0.712 0.126 0.013 0.417 0.055 0.291 1.000 0.248 0.207 5.952 4.549
wbcd77 0.650 0.113 0.016 0.236 0.040 0.176 1.000 0.125 0©.224 2.949 2.316
wbc957 0.694 0.126 0.010 0.235 0.069 0.150 1.000 0.108 0.227 3.033 2.353
wbcll? 0.660 0.118 0.010 0.193 0.051 ©.144 1.000 0.130 0.212 3.045 2.330
wbc339 0.677 0.126 0.01¢ 0.247 0.066 0.159 1.000 0.111 0.219 3.161 2.589
wbc29 0.442 0.081 0.017 0.164 -0.000 0.116 1.000 0.115 0.224 1.290 1.019
wbcll06  0.740 0.129 0.013 0.256 0.065 0.172 1.000 0.144 0.208 3.486 2.859
wbc66G 0.685 0.128 0.009 0.261 0.063 0.152 1.000 0.102 0.217 >.258 2.597
wbc6ll 0.627 0.110 0.007 0.267 0.070 0.155 1.000 0.132 0.218 3.548 2.340
wbcige 0.435 0.075 0.016 0.174 =0.000 0.112 1.000 0.125 0.232 1.305 1.026
wbcli68  0.711 0.123 0.007 0.207 0.057 0.134 1.000 0.106 0.214 2.923 2.297
ubci2 0.691 0.118 0.013 0.229 0.065 0.148 1.000 0.113 0.233 3.044 2.339
wbc281 0.677 0.121 0.009 0.252 0.066 0,157 1.000 0.111 0.221 3.321 2.583
wbcll7¢  0.600 0.106 0.007 0.237 0.061 0.147 1.000 0.110 0.209 3.372 2.546
wbcBol 0.733 0.134 0.010 0.238 0.067 0.147 1.000 0.101 0.220 3.086 2.431
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wbc241d  0.811 0.147 0.069

0.495 -0.000 0.666 1.000 1.099 0.199 3.725 2.515
whc241e 1.371 0.238 0.101 0.584 -0.000 0.682 1.000 1.098 0.182 3.598 2.325
whe23la  0.915 0.160 0.082 0.565 <0.000 0.714 1.000 1.188 0.202 4.056 2.762
wbc23lb  0.882 0.157 0.076 0.539 -0.000 0.679 1. 1.188 0.221 3.882 2.637
wbc231c 1.039 0.183 0.095 0.600 -0.000 0.698 1. 1.133 0.178 3.654 2.420

wbc398 0.736 0.139 0.069 0.467 -0.000 0.649
whcllé 0.735 0.134 0.068 0.458 -0.000 0.657
wbe651 0.619 0.112 0.015 0.138 0.031 0.133
wbc669 0.665 0.109 0.063 0.445 -0.000 0.650
wbCcl80 0.651 0.111 0.009 0.220 0.058 0.133
whcl72 0.661 0.115 0.010 0.196 0.072 0.147

1.181 0.195 4.399 3.205
1.201 0.191 4.322 2.925
0.088 0.199 2.942 2.231
1.112 0.190 4.673 3.229
0.109 0.217 3.058 2.438
0.126 0.228 3.207 2.523

T

2888

e

whe221 0.756 0.130 0.064 0.479 -0.000 0.645 1 1.169 0.189 4.178 3.170
wbcé45 6.792 0.133 0.070 0.502 -0.000 0.662 1. 1.187 0.197 4.211 3.364
wbhc854 0.720 0.124 0.067 0.492 -0.000 0.658 1.00C 1.221 0.201 4.371 2.979
whc446 0.741 0.136 0.069 0.500 -0.000 0.669 1.000 1.222 0.211 4.371 3.275
whe770 0.738 0.136 0.072 0.515 -0.000 0.685 1.000 1.210 0.189 4.198 3.026
wbcl36 0.749 0.136 0.018 0.436 0.078 0.326 1.000 0.254 0.235 5.936 4.618
wbe671 0.758 0.135 0.061 0.475 -0.000 0.648 1.000 1.157 0.212 4.338 3.347
whcl82 0.759 0.139 0.024 0.450 0.060 0.284 1.000 0.247 0.213 6.086 4.612
wbc225 0.665 0.125 0.009 0.213 0.070 0.148 1.000 0.136 0.241 3.027 2.297
wbe367 0.651 0.120 0.026 0.254 0.068 0.167 1.000 0.115 0.202 3.141 2.413
wbeo77 0.636 0.122 0.057 0.469 -0.000 0.683 1.000 1.207 0.216 4.82¢ 3.279
wbc644 0.766 0.147 0.075 0.505 -0.000 0.691 1.000 1.220 0.189 4.379 3.220
wWbcl27 0.763 0.146 0.085 0.500 -0.000 0.697 1.000 1.220 0.199 4.472 3.101
whed39 0.757 0.150 0.076 0.520 -0.000 0.681 1.000 1.238 0.125 4.932 3.780
whes5t 0.715 0.123 0.017 0.424 0.062 0.303 1.000 0.243 0.215 6.611 5.079
wbc905 0.708 0.122 0.011 0.237 0.057 0.170 1.000 0.137 0.209 3.383 2.655
wbcd59 1.071 0.189 0.077 1.726 -0.000 1.297 1.000 1.045 0.188 9.007 6.67°
wbc1218 0.677 0.118 0.010 0,282 0.066 0.191 1.000 0.148 0.208 3.685 2.t .;
whc228a  0.723 0.132 0.007 0.194 0.071 0.150 1.000 0.127 0.212 2.82¢ =.7°
vbe226b  0.593 0.096 0.027 0.223 0.059 0.160 1.000 0.108 0.206 3.449 . 7
vbc22sc  0.599 0.101 0.033 0.264 0.061 0.152 1.000 0.115 0.204 3.302 2..-.
whe397 0.767 0.127 0.067 0.504 -0.000 0.672 1.000 1.208 0.185 4.430 3.2u5
wbc224 0.708 0.128 0.068 ©.465 -0.000 0.619 1.000 1.149 0.139 4.280 3.068
wbe4ll 0.616 0.116 0.010 0.228 0.056 0.146 1.000 0.125 0.209 3.023 2.312
vbcl096  0.631 0.109 0.011 0.228 0.066 0.151 1.000 0.110 0.207 3.394 2.598

143



wbcéQ?
whc395
whcdio
whe366
wbced3
whe3dl
whc342
whed73
whc464
whc699
whcisl
whe291
wbch4l
whcal6
whc38
whel07
wbcl87
wbc43
whe32
wbcS8
wbe55
wbcs42
wbc798
wbcl0
whc703
wbc793
wbc832
wbc347
wbe731
wbcol2
whc740
wbcoll
wbe335
whclell
whes7l
wbc93l
wbc735
wbelldl
wbc760
wbcl023
wbc794
wbclll9

0.75
0.815
1.235
0.799
0.708
0.757
0.749
0.498
0.732
0.870
0.952
1.815
0.458
0.754
1.362
0.318
0.483
0.826
0.474
0.762
0.681
0.805
0.432
0.781
0.650
0.837
0.860
1.087
0.776
0.553
0.848
0.750
0.476
0.711
0.701
1.584
0.710
0.732
0.472
0.738
0.492
0.756

0.124
0.125
0.086
0.139
0.089
0.136

0.132 0.008
0.143 0,011
0.238 0.107
0.148 -0.000
0.126 0.011
0.138 0.00%
0.138 0.013
0.031 0.016
0.127 0.011
0.155 -0.000
0.167 0.026
0.347 0.128
0.082 0.017
0.131 0.00%
0.2¢4 0.020
0.145 0.009
0.088 0.017
0.139 0.011
0.081 0.017
0.142 0.010
0.121 0.014
0.144 0.010
0.075 0.015
0.139 0.013
0.124 0.008
0.137 0.014
0.153 0.076
0.189 0.013
0.134 0.008
0.102 0.020
0.145 0.009
0.133 0.012
0.088 0.017
0.13¢ 0.010
0.122 0.012
0.272 0.115
0.011
0.011
0.017
0.010
0.016
0.013

0.262 0.063
0.161 0.075
2.048 -0.000
0.280 0.049
0.253 0.050
0.251 0.068
0.242 0.071
0.173 -0.000
0.251 0.060
0.262 0.066
0.447 0.062
2.422 0.189
0.177 -0.000
0.252 0.037
0.550 0.ii3
0.154 0.069
0.173 -0.000
€.243 0.060
0.169 -0.000
0.280 0.057
0.248 0.059
0.361 0.063
0.173 -0.000
0.222 0.067
0.208 0,062
0.343 0.0%
0.537 -0.000
0.242 -0.000
0.267 0.063
0.186 -0.000
0.254 0.061
0.238
0.187 -0.000
0.239
0.237
2.124
0.245
0.259
0.194 ~0.000
0.263 0.060
0.176 -0.000
0.258 0

0.187
0.130
1.403
0.153
0.153
0.155
0.143
0.121
0.170
0.168
0.292
1.229
0.118
0.166
0.346
0.130
0.121
0.170
0.120
0.168
0.173
0.163
0.115
0.157
0.131
0.182
0.676
0.173
0.162
0.123
0.15¢4
0.179
0.115
0.148
0.160
1.142
0.180
0.183
0.122
0.189
0.123
0.153
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0.158
0.112
1.084
0.123
0.122
0.133
0.105
0.124
0.132
0.146
0.253
0.938
0.136
0.121
0.284
0.100
0.146
0.161
0.127
0.132
0.159
0.220
0.126
0.139
0.097
0.188
1.210
0.198
0.1i5
0.128
0.114
0.143
0.119
0.111
0.12%
0.924
0.146
0.14¢7
0.136
0.138
0.134
0.120

0.208
0.221
0.177
0.200
0.219
0.214
0.219
0.235
0.226
0.211
0.234
0.261
0.237
0.227
0.444
0.214
0.230
9.223
0.223
0.202
0.222
0.230
0.230
0.227

3

A7

2.870
2.118
8.169
2.748
2.682
2.7113
2.701
1.166
3.079

2.068
1.574
5.563
1.877
1.908
1.971
1.942
0.861
2.220
2.850 1.982
5.496 3.848
30.430 20.497
1.168 0.877
2.991 2.197
6.412 4.739
2.099 1.517
1.082 0.792
2.856 2.028
1.108 0.803
2.850 2.124
2.921 2.118
4.330 3.070
1.150 0.837
2.821 2.003
2.400 1.758
4.145 2.902
4.150 2.870
1.741 1.296
2.804 2.049
0.984 0.638
2.993 2.147
2.762 1.986
1.140 0.812
3.041 2.356
2,910 2.101
27.005 17.546
3.255 2.372
3.057 2.144
1.147 0.840
2.866 2.043
1.094 0.800
3.047 2.285



wholh24
wbC640
whc1209
wbc1217
whc795
wbc105
wbc992
whcS80
wbc681
wbeclés
whcl190
wbc1132
wbc130
wbc1025
wbc750
wbcll24
whecll72
whc649
whcls6
whe242a
whe242b
whc242¢
¥bcl197
wbc1210
wheB30
whel
wheh2
whc219
wbc8l3
whc222
wbcll3
whcllo
wbc650
whclll
whel03
whc545
whcold
wbc685
wbcid96
whes02
wbhc3i0
whcl93

0.874
0.753
0.760
0.692
0.469
0.8%0
0.702
1.413
0.737
0.706
0.795
0.711
0.791
0.707
0.723
0.883
0.786
0.759
0.766
0.748
0.695
0.791
0.752
0.771
0.746
0.604
0.781
0.752
0.692
0.677
0.801
0.640
0.795
0.6~
0.55¢
0.722
0.462
1.477
0.716
0.776
0.749
1.520

0.160 0.014
0.131 -0.000
0.137 0.067
0.121 0.009
0.082 0.016
0.152 0.020
0.125 0.007
0.234 0.029
0.139 0.072
0.125 0.010
0.140 0.068
0.144 0.002
0.152 0.069
0.130 0.01z
0.129 0.011
0.153 0.079
0.131 0.070
0.134 0.065
0.140 0.071
0.132 0.063
6.123 0.009
0.147 0.06%
0.133 0.072
0.135 0.077
0.132 0.012
0.110 0.006
0.149 0.063
0.136 0.068
0.128 0.063
0.116 0.008
0.154 0.076
0.118 0.008
0.133 0.069
0.121 0.014
0.101 0.009
0.127 0.013
0.080 0.017
0.233 -0.000
0.126 0.012
0.132 0.009
0.130 0.022
0.305 0.158

.
NN WE NI
.

B W) e W N )
O W e nw
L] ...o
82883

-~ Y- =]

0. 0

0 0

0 -0

0. 0

0 -0

0. 0.101
0. 0.068
0.625 0.432
0.527 -0.000
0.250 0.066
0.501 -0.000
0.523 -0.000
0.524 -0.000
0.258 0.054
0.277 0.069
0.558 -0.000
0.532 -0.000
0.494 -0.000
0.518 -0.000
0.478 -0.000
0.225 0.063
0.500 -0.000
0.478 -0.000
0.483 ~0.000
0.336 0.080
0.215 0.069
0.476 ~0.000
0.500 -0.000
0.489 -0.000
0.220 0.066
0.520 -0.000
0.240 0.062
0.517 -0.000
0.317 0.092
0.233 0.0%2
0.214 0.0%3
0.180 -0.000
0.674 0.489
0.256 0.057
0.239 0.067
0.207 -0.000
2.100 0.148
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0.199 2.892 1.842
0.169 3.134 1.986
0.207 4.836 3.560
0.237 3.150 2.481
0.218 1.214 0.914
4.001 2.607
2.935 2.278
-162 15.301 10.886
4.931 3.617
3.423 2.714
4.714 3.594
4.691 3.511
4.625 3.208
3472 2.674
3.497 2.719
4.850 3.7713
4.693 3.467
4.574 3.398
5.470 3.633
4.476 2.881
3.051 2.289
4.753 3.502
4.472 3.387
$.347 3.101
4.849 3.760
3.162  2.222
0.212 4.551 3.090
0.183 4.723 3.206
0.188 5.302 3.871
0.225 3.103 2.354
0.210 4.640 3.418
0.199 2.815 2.238
0.190 4.518 3.430
0.198 4.386 3.165
0.256 3.254 2.550
0.22¢ 2.764 2.014
0.226 1.202 0.892
0.143 14.066 9.605
0.223 3.207 2.304
0.199 2.662 1.840
0.185 1.075 0.686
0.084 27.520 18.484
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wbc1012
wbc805
wbc856
wbca56
wbc549
wbc203
wbhc9l3
whc8d4
whc8S2
wbcl216
wbhc777
wbc382
whcsdl
wbc587
whc629
wbcl211
wbc537
wbcll60
wbcl055
wbc630
wbc37
whcllsd
whcl32
wbel3s
wbcl1198
wbc771
wbc43
wbc38s
wbc1180
whc7Rl
vC280
\bellss
wbcl58a
wbc158b
wbc158c
wbcl57a
wbcl57b
whclS7c
ubcl57d
whc24la
wbc241b
wbc24lc

0.759
0.950
0.526
0.798
0.731
0.282
0.485
0.775
0.778
0.524
0.667
0.640
1.874
1.82%
0.476
0.828
0.665
0.838
0.718
0.719
0.735
0.501
0.718
0.723
0.715
0.732
0.765
0.707
0.873
L.872
0.765
0.528
1.040
0.899
1.059
0.755
0.802
0.945
0.832
0.957
1.040
0.954

0.128 0.008
0.171 -0.000
0.096 0.007
0.148 0.013
0.133 0.008
0.159 0.020
0.089 0.017
0.141 0.020
0.141 0.010
0.093 0.017
0.120 0.005
0.114 -0.000
0.322 0.161
0.321 -0.000
0.086 0.017
0.145 0.075
0.119 0.008
0.152 0.071
0.127 0.011
0.130 0.008
0.122 -0.000
0.087 0.018
0.128 0.063
0.137 0.064
0.127 0.010
0.136 0.074
0.136 0.065
0.123 0.010

0.130 0.081
0.157 0.078
0.140 0.070
0.094 0.018
0.19% 0.089
0.161 0.080
0.193 0.087
0.140 0.066
0.148 0.071
0.172 0.082
0.147 0.068
0.175 0.089
0.188 0.056
0.169 0.081

0.278 0.058
0.287 0.075
0.147 0.039
0.292 0.048
0.231 0.058
0.277 0.061
0.179 -0.000
0.487 0.048
6.304 0.064
0.181 -0.000
0.242 0.09%
0.226 0.058
1.933 0.307
0.734 0.522
0.171 -0.000
0.527 -0.000
0.272 0.057
0.519 -0.000
0.200 0.056
0.265 0.064
0.296 0.080
0.191 ~0.000
0.45% -0.000
0.482 -0.000
0.244 0.064
0.487 -0.000
0.504 -0.000
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0.118
0.145
0.092
0.152
0.116
0.148
0.137
0.248
0.120
0.128
0.140
0.115
0.772
0.187
0.142
1.174
0.151
1.177
0.154
0.126
0.207
0.127
1.114
1.142
0.109
1.182
1.208
0.115
1.159
1.147
1.149
0.132
1.143
1.128
1.110
1.155
1.122
1.185
1.132
1.104
1.151
1.084

0.242 3.036
0.196 2.750
0.137 1.660
0.217 3.050
0.226 2.655
0.230 2.909
0.229 1.139
0.229 5.714
0.214 2.953
0.219 1.089
0.218 3.178
0.220 2.850

0.236 25.971 17.850

0.106 12.390
0.236 1.115
0.204 4.259
0.214 3.414
0.202 4.225
0.230 2.516
0.219 2.897
0.210 4.065
0.232 1.130
0.198 3.841
0.211 4.180
0.211 2.733
0.200 3.624
0.197 4.043
0.222 1.965
0.205 4.511
0.205 3.768
0.214 4.161
0.207 1.026
0.168 3.192
0.199 3.840
0.188 3.410
0.203 3.873
0.181 3.948
0.187 3.995
0.197 3.731
0.196 3.614
0.182 3.899
0.182 3.520



APPENDIX THREE

NORMALIZED SOURCE MEANS AND STANDARD DEVIATIONS
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SOURCE\FLOW NO. FEKALR FEKBIR

Owyhee 1 (72)

N=19

Mean 1.293
s.D. 0.362
Owyhee 2 (73)

N=17

Mean 1.282
S.D. 0.059

Hurphy Hot Springs (74)
N=14

HKean 0.748
S.D. 0.042

Brown’s Bench (75)
N=194

Kean 0.735
S.D. 0.047
Three Creek (76)

N=3

Hean 0.656
S.D. 0.041
Ozone (77)

N=44

Kean 0.732
S.D. 0.047
Picabo Hills (78)

N=13

Kean 0.711
S.D. 0.042
Tizber Butte (79)

N=9

Kean 1.661
S.D. 0.256
Snake River (80)

N=58

Nean 0.758
S.D. 0.045

0.228
0.057

0.232
0.011

0.136
0.009

Source Heans and Standard Deviations

INZR

0.026
0.011

0.008
0.001

0.015
0.004

0.011
0.002

0.095
0.014

RBIR

1.061
0.059

0.351
0.012

0.242
0.032

0.281
0.016

0.233
0.011

2.024
0.121

0.459
0.021

SRIR

0.182
0.035

0.161
0.017

0.038
0.007

0.032
0.005

0.055
0.004

0.143
0.024

0.059
0.008

148

YIR

NBZR ZRKBIR

0.111
0.027

0.189
0.048

0.246
0.049

0.219
0.011

0.229
0.019

0.221
0.014

0.211
0.014

0.289
0.249

0.219
0.019

CONZR RAYZR

10.923 7.443
1.008 0.708

12.435 8.564
0.728 0.589

3.715 2.687
0.169 0.167

2.701 1.961
0.289 0.211

3.336 2.404
0.223 0,229

3.824 2.711
0.274 0.229

2.969 2.132
0.153 0.131

26.715 17.759
2.036 1.261

5.642 3.892
0.697 0.452



Cannonball Htn. 1 (81)
N=61

Hean 0.481
S.D. 0.035

Cannonball Htn. 2 (82)
N=13

Hean 1.179
S.D. 0.039
Wedge Butte (83)

N=14

Mean 1.186
S.D. 0.147

Coal Bank Spring (84)
N=36

Hean 0.726
S.D. 0.067

Gibson Creek (85)

K=44
Mean 0.766
S.D. 0.052

Medicine Lodge (86)
N=66

Nean 0.718
S.D. 0.047
Malad (87)

=59

Kean 1.365
S.D. 0.078
Deep Creek (88)

N=41

Mean 0.739
s.D. 0.037

Chesterfield (89)

=15
Mean 1.239
S.D. 0.039
Bear Gulch (90)
N=73
Hean 0.747
S.D. 0.069

0.086 0.017 0.176 0
0.006 0.002 0.007 0
0.209 0.032 0.258 0
0.007 0.004 0.012 0
0.209 0.077 1.973 0
0.028 0.008 0.223 0

0.128 0.016 0.227 0.048
0.012 0.603 0.026 ©

0.137 0.017 0.318 0.035
0.011 0.006 0.025 0.011

0.128 0.014 0.285 0.035
0.008 0.003 0.023 0.005

0.249 0.031 0.751 0.475
0.017 0.018 0.051 0.027

0.131 0.019 0.451 0.058
0.008 0.004 0.032 0.007

0.221 0.014 0.221 0.682
0.005 0.023 0.014

0.133 0.014 0.322 0.087
0.012 0.004 0.021 0.007

149

0.183
0.019

1.365
0.144

0.192
0.017

0.227
0.015

0.207
0.015

0.411
0.019

0.292
0.013

0.129
0.011

0.173
0.011

0.134
0.008

0.133
0.024

0.211
0.015

0.197
0.014

0.182
0.018

0.249
0.014

0.048
0.006

0.216
0.011

0.228 1.207
0.011 0.09%4

0.226 1.792
0.017 0.074

0.169 8.752
0.016 1.002

0.221 2.7M
0.016 0.184

0.225 4.1711
0.012 0.298

0.226 3.905
0.014 0.327

0.197 14.392
0.031 0.689

0.223 5.659
0.015 0.214

0.171 6.764
0.011 0.397

0.219 4.243
0.025 0.184

0.883
0.073

1.343
0.074

5.982
0.713

2.021
0.147

2.933
0.197

2.765
0.241

12.719
0.782

3.931
0.199

4.681
0.282

2.987
0.177



Cedar Creek (92)

N=9
Mean 0.706
S.D. 0.031

Camas Prairie {93)
N=39

Kean 0.743
s.D. 0.049
Dry Creek (94)

N=9

Kean 0.696
S.D. 0.024

Biq Southern Butte (95)
N=57

Mean 0.803
S.D. 0.076

Jasper Flats 1 (96)
N=11

Hean 0.758
S.D. 0.026

Jasper Flats 2 (97)
K=5

Hean 0.746
S.D. 0.012
Reas Pass (98)

N=15

Mean 0.752
S.D. 0.031
Eeynolds (100)

N=10

Nean 1.033
S.D. 0.151

Conant Creek (101)
N=1%
Mean 0.997

S.D. 0.05%

0.132
0.608

0.125
0.004

0.144
0.012

0.176
0.023

0.178
0.011

0.009
0.002

0.015
0.001

0.071
0.004

0.011
0.001

0.016
0.003

0.119
0.181

0.034
0.004

0.163 0.071
0.018 0.005

0.174 0.069
0.018 0.005

.
[
oboe
—

0.328 0
0.017 0.

8

0.516 0
0.025 0

0.339 0.037
0.021 0.004

0.953
0.081

[~ ]

0.508 0.063
0.014 0.009
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0.125
0.0068

0.126
0.011

0.701
0.047

0.408
0.011

0.111
0.015

0.111
0.022

0.229
0.013

1.201
0.032

0.221
0.011

0.303
0.022

0.389
0.012

0.215
0.012

0.199
0.014

0.203
0.015

4.269
0.118

4.368
0.226

1.942
0.072

2.171
0.078

4.719
0.369

8.116
0.464

6.379
0.242

1.654
0.161

1.614
0.159

3.014
0.126

3.045
0.167

1.457
0.057

1.582
0.067

3.234
0.214

5.586
0.313

4.459
0.253



Yale Creek (103)

N=15

Mean 0.745 0.133 0.015 0.32z 0.044 0.233 0.213 0.207 4.099 2.919
S.D. 0.036 0.006 0.002 0.014 0.007 0.008 0.006 0.006 0.199 0.187
Fish Creek (104)

N=28

Kean 0.858 0.15¢4 0.023 0.506 0.011 0.347 0.291 0.206 5.435 3.784
S.D. 0.022 0.006 0.002 0.011 0.006 0.009 0.008 0.011 0.237 0.246
Pine Mtn. (105)

N=31

Hean 0.693 0.124 0.009 0.195 0.067 0.141 0.121 0.218 2.512 1.829
S.D. 0.042 0.008 0.001 0.018 0.004 0.011 0.269 0.031 0.251 0.192
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APPENDIX 8
SOURCE LOCATIONS

All map references for the source locations, unless otherwise
specified, are Bureau of Land Management Surface Management
Status 1:100,000~-scale Maps (1985), which were compiled from
USGS 1:24,000-scale topographic maps dated 1968-1971. All map

legal descriptions refer to the Boise Baseline and Boise
Meridian.

IGNIMBRITE SOURCES

Brown’s Bench Chemical Group, Ignimbrite, Owyhee, Twin Falls
and Cassia Counties.

Ignimbrite of good flaking quality is reported over a 2000
square-kilometer area in extreme south-central Idaho
(Sappington 1981a). Cobbles were collected at seven localities
between Little House Creek (T15S R1ZE NW1l/4 NW1l/4 section 23)
and Rock Creek (T13S R19E NW1l/4 NEl1/4 section 17):; Sappington
(1981a) observed material as far north as Roseworth.
Ignimbrite cobbles in a range of sizes are available at many
locations in this area. Colour variaticn is significant,
varying from black, to grey, to brick red; but all are
chemically comparable. Cobbles range in size from pebbles to
about 30 cm in diameter, with particularly abundant deposits
in the Shoshone Basin area, and on Brown’s Bench itself.

193 samples were analyzed from these localities, and the
source is very well characterized.

Camas Prairie Ignimbrite, Gooding County.

Localities: T3S R15E NW1/4 secticn 2; S1/2 section 11.
T2S R15E SW1/4 section 35. Fairfield Quadrangle.

Small black ignimbrite cobbles were collected from low
hillsides and roadcuts. Flakes of brick red ignimbrite were
observed, but only very small unworked pebbles were found.
Sappington (1981a) reported two chemical types here; one
obsidian and one "vitrophyre’, or ignimbrite. No obsidian was
found at Camas Prairie in the course of this study. Thirty-
nine samples were analyzed, providing an adeqgquate
characterization of the source. However, significant overlap
with the Brown’s Bench chemical type makes discrimination of
the Camas Prairie type difficult.
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Cedar Creek Ignimbrite, Owyhee County.

Locality: T14S R13E S1/2 SEl1/4 section 14. Rogerson
Quadrangle.

Fifteen cobbles of bl«¢k and red ignimbrite were collected
from the shore of Cedar Creek Reservoir, at the northern base
of Brown’s Bench. The cobbles, ranging from 10 cm to 20 cm in
diameter, were megascopically identical to those found on
Brown’s Bench, and at surrounding localities. However, samples
analyzed from a single cobble yielded data that did not match
any of the source profiles in this study. For the purposes of
this thesis, the cobble was tentatively designated a separate
chemical type, "Cedar Creek", although it is possible that the
rock was transported to the area by natural or cultural means.
However, one cobble from the Coal Bank Spring source had a
chemical composition similar to the Cedar Creek sample, sc it
is possible that a separate source is indicated. Further
sampling, and comparison with Nevada ignimbrite data might
clarify the nature of this poorly-characterized chemical type.

Conant Creek Ignimbrite, Fremont Country.

Locality: T8N R45E NW1/4 SW1l/4 section 24. Ashton
Quadrangle.

Abundant rounded ignimbrite cobbles were noted in Conant Creek
bed and on the first terrace above the creek, near Buggy
Spring. Black and grey cobbles of moderate flaking guality
were collected. The primary source of this ignimbrite was not
located; but it may lie in the Conant Pass area of Wyoming,
from which samples were previously reported (Sappington
198la). 15 Conant Creek samples were analyzed in the present
study, providing an adequate chemical fingerprint.

Deep Creek Ignimbrite, Clark County.

Localities: T11N R33E N1/2 NEl/4 section 29
NE1/4 SEl1/4 section 20
center NW1l/4 section 27. Ashton
Quadrangle.

Cobbles of high-quality, black ignimbrite to 15 cm in diameter
occur on a north-south trending ridge northwest of Dubois.
Cobbles are visible in road cuts and along streams, suggesting
the source is largely buried; however, abundant debitage
throughout the area indicates that the material was accessible
in prehistoric times. 39 samples were analyzed, yielding a
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differentiate confidently between the Deep Creek and Snake
River chemical types. Further sampling might determine the
relationship between these two material types.

Dry Creek Ignimbrite, Clark County.
Locality: T13N R40E N1/2 SW1/4 section 9. Ashton Quadrangle.

Cobbles of low-grade, partially devitrified ignimbrite were
collected from the bed of Dry Creek for comparison with the
nearby Bear Gulch obsidian. The Dry Creek ignimbrite showed a
different chemical composition than the obsidian, and it is
possible that higher quality ignimbrite exists in the area.
Cobbles at the Dry Creek locality ranged from 5 cm to 60 cm in

diameter. 9 samples were analyzed, providing an adequate
characterization.

Fish Creek Ignimbrite, Fremont County.

T12N RASE sections 29 and 32.

Cobbles of low- to medium-grade red and black ignimbrite
visible in the hillsides adjacent to Fish Creek Road. All
sanples were quite brittle and contained abundant phenocrysts
but all were flakeable; red cobbles, where present, were of
higher quality than black cobbles. Cobbles ranged widely in

size, from pebbles to boulders. This source is adequately
characterized.

Gibson Creek Chemical Group, Madison, Teton, and Bonneville
Counties.

Localities: Gibson Creek: T1N R42E N edge NW1l/4 section 20.
Palisades Quadrangle.
Moody Swamp: T4N R42E section 13. Rexburg
Quadrangle.
Graham Spring: T5N R43E section 21. Rexburg
Quadrangle.,

Angular cobbles of light grey to black, brittle ignimbrite
were collected over a wide area of eastern Idaho. The material
was of moderate flaking quality; and very abundant at the
collection 1localities, where it was found eroding out of
hillsides, in road cuts, and in an area cleared by logging
(near Graham Spring). The threse localities sampled in this
study were chemically indistinguishable, and they were
therefore combined to form the Gibson Creek Chemical Group.
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The processes responsible for the formation of these rocks are
not presently clear; but it is 1likely that a number of
volcanic vents, associated with a single magma pool, produced
the spatially-distinct, but chemically similar ignimbrite
deposits.

A total of 44 samples was analyzed from the three localities,
and the chemical type has been well characterized.

Jasper Flats Ignimbrite Types 1 and 2, Blaine County.
Locality: T1N R20E section 31.

Small cobbles of somewhat crumbly, partially devitrified black
ignimbrite were analyzed from Jasper Flats in an attempt to
trace the source of the small Picabo Hills cobbles submitted
by Dr. Mark Druss. Two distinct chemical types were identified
in the Jasper Flats material; but, at present, it is not known
whether flakeable ignimbrite is present in this area. Further
survey is strongly recommended for the Jasper Flats area.

Medicine Lodge Canyon, Clark County.

Locality: NW 1/4 SE 1/4 NW 1/4 sec.18 T11N R34E, Dubois
Quadrangle.

Ignimbrite cobbles were found on hillsides and exposed on dirt
roads atop the bench on the west side of Medicine 1lodge
Canyocn. All samples were black, fairly brittle ignimbrite in
cobble form, to a maximum diameter of 12 cm. Lithic scatters
containing substantial amounts of ignimbrite were found along
the bench, particularly near water sources.

Corral Creek Locality: NW 1/4 sec.33 T13N R35E, Dubois
Quadrangle.

Ignimbrite pebbles and cobbles to 60 cm in diameter were
collected from a slope directly to the north of Corral Creek.
All samples contained phenccrystic inclusions, and all were of
moderate flaking guality. Colour ranged from grey to black,
with banding or colour grading evident in some samples.

Cow Creek Locality:
Most ignimbrite cobbles at this locality were small, although
two samples measuring approximately 25 cm in diameter were

collected. The samples were visually identical to the Corral
Creek material.

314



Lava Creek Locality: LEGALS?? Same as Cow Creek.

Black and grey ignimbrite cobbles were collected along Lava
Creek Road, near its crossing of Lava Creek. This locality is
directly east of Cow Creek, on the opposite face of the hill
separating the two creeks.

The Medicine Lodge Canyon source has been well characterized.
Murphy Hot Spring Ignimbrite, Owyhee County.

Locality 1: SW 1/4 NW 1/4 sec.24 T16S ROE.
Locality 2: W 1/2 SE 1/4 sec.27 T16S R9E.
Sheep Creek Quadrangle.

Both collection areas are located on a hill directly west of
the settlement of Murphy Hot Springs. Locality 1, on the
eastern face of the hill, produced small (< 5 cm) pebbles of
black ignimbrite; a number of flakes and chunks and a single
biface were also recorded at the locality.

Locality 2, located at the top of the same hill, consisted of
a much more dense concentration of cobbles; most were in the
5-10 cm size range. Samples were invariably black in colour,
but flaking quality varied significantly. Five samples were
analyzed from Murphy Hot Springs Locality 1, and 10 samples
from Locality 2. Flakes from one cobble grouped within the
Browns Bench chemical type:; this cobble was probably
intrusive. The source is well characterized.

Ozone Ignimbrite, Bonneville Ccunty.
Locality: Center sec.36 T1N R39E. Palisades Quadrangle.

Very dark brown to black ignimbrite with visible phenocrystic
inclusions was found eroding from a gentle slope on the north
side of Rock Creek. Cobbles were also exposed in a ploughed
field adjacent to the creek. Virtually all cobbles were
located on the north side of the creek, although this
distribution may be a function of agricultural disturbance.
Cobbles ranged in size from 5 cm to 40 cm, and the average
size collected was approximately 10 cm. There was no evidence
of transport or redeposition of the material, so Flint Hill is
assumed to be a primary source.

A local landowner indicated that the material was abundant
throughout the area. The Idaho Falls District of the Bureau of
Land Management lists an "“obsidian" quarry site near this
locality (site 10-BV-78, center N 1/2 SW 1/4 sec.32 T1N R40E;
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Richard Hill pers. comm. 1%89) which is probably another
exposure of the same deposit. The source is well
characterized.

Picabo Hills Ignimbrite, Blaine County.
Locality: W 1/2 sec 24 T1S R20E. Fairfield Quadrangle.

The Picabo samples were kindly submitted by Dr. Mark Druss,
who collected them as a raw material sample near site 10-BN-
183 (BLM IMACS data on file at the Shoshone District Office,
United States Bureau of Land Management). He suggested that
the primary exposure might be at nearby Jasper Flats, but the
only material recovered there was extremely friable. Thus, the
precise origin of the Picabo Hills ignimbrite remains unknown.
However, the 1lithic scatter at site 10-BN-183 contained
numercus cortical and secondary flakes of black ignimbrite:;
this find supports the suggestion that the raw material was
close at hand.

All Picabo Hills samples were smaller than 10 cm in diameter,
and all were black with few visible phenocrysts. Fifteen
flakes were analyzed, representing five cobbles. The chemical
type is well characterized, although the location of the
primary source should be more accurately determined.

Pine Mountain Ignimbrite, Blaine County

Locality: S 1/2 SW 1/4 sec.12 T1N R22E. Craters of the Moon
Quadrangle.

Small ignimbrite cobbles were collected from a small exposure
ac the base of Pine Mountain. One cobble was chocolate brown
in colour; all others were black. The largest cobble measured
approximately 15 cm in diameter but most were smaller, and
some flakes were present. The ignimbrite is apparently eroding
out of Pine Mountain, rather than the adjacent Timber Butte,
on which no cobbles were found. 15 flakes, representing five
cobbles, were analyzed, producing a good chemical profile for
this source.

Reas Pass Ignimbrite, Fremont County.

Locality: sec.2 T14N R45E Hebgen Lake, Mont., Id., Wyo.
Quadrangle.

Cobbles of friable phenocrystic black ignimbrite were found in
the gravels of Reas Pass Creek, approximately 2 km downstream
from Reas Pass in the Centennial Mountains. Some cobbles were
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quite large, and the average size was about 25-30 cm in
diameter. Most cobbles had smooth water-worn outer surfaces,
but the mass of the rocks and the smallness of the stream
suggest that little or no water transport had taken place.
Scattered debitage noted along the banks of the creek suppert
the notion that this locality was exploited prehistorically.

Sappington (198la) reported the collection of obsidian from
Reas Pass in the center of sec.2 T14N R45E. However, his
analyses grouped the Reas Pass material with samples from Bear
Gulch, Spring Creek, and a number of Montana sites to comprise
the "Centennial"™ source. The present study considers the Reas
Pass ignimbrite to be different from Bear Gulch obsidian.

Snake River Ignimbrite, Power and Bonneville Counties

Locality 1: NW 1/4 sec.6 T8S R31E.
Locality 2: NW 1/4 NW 1/4 SW 1/4 sec.32 T8S R30E
Locality 3: SW 1/4 sec.29 T8S R30E

All Pocatello Quadrangle.

This source has previously been identified as the Walcott
Source (Sappington 198l1a).

Cobbles of a rather brittle black ignimbrite were collected at
the american Falls Sanitary Landfill site in Power County, and
at two other localities near Massacre Rocks Park (see legal
descriptions above). Ignimbrite cobbles were found eroding out
of the hillside and in roadways; size varied from small flakes
to large cobbles, to about 40 cn.

Sappington (198la) reported that this source has been
identified at several localities between Neely (approximately
7 km southwest of American Falls) and Ammon, some 115 linear
km *“o the northeast. Luessen (1987) notes a 12 m~thick
ignimbrite deposit northeast of the Rock Creek townsite, in
the NW 1/4 NE 1/4 Sw 1/4 of an unspecified secticn of T9S
R30E. It is not clear whether the deposit contains rock
suitable for flintknapping. Sappington identified the American
Falls ignimbrite as part of the Walcott Tuff Formation of
Middle Pliocene age (cf. Trimble and Carr 1976). Greeley and
King referred to an "upper dark obsidian welded tuffs”
(1975:35) in this formation, which probably corresponds to the
ignimbrite samples collected.

A total of 45 flakes were aralyzed from the American Falls
localities (15 flakes from each locality). The source is well
characterized.
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Three Creek Ignimbrite, Owyhee County.

Locality: T16S R11E center N1/2 section 10. Sheep Creek
Quadrangle.

As with the Cedar Creek collection 1locality, Three Creek
ignimbrite was collected as part of the Brown’s Bench sampling
strategy. 12 samples were analyzed, representing four cobbles:;
nine samples matched the Brown'’s Bench chemical profile, but
the samples from a single cobble failed to conform to any of
the source fingerprints in this study. Further sampling is
required to determine the validity of this chemical type.

Yale Creek Ignimbrite, Fremont County.

Localities: T13N R42E NW1/4 NEl1/4 section 1
T14N R42E SEl1/4 section 36. Ashton Quadrandgle.

Small, rounded cobbles of black ignimbrite were collected from
in and adjacent to Yale Creek. Ranging in size from 3 to 8 cm
in diameter, the cobbles were of moderate flaking quality. 15
samples were analyzed, providing a good chemical profile, but
further survey should be undertaken to locate the primary
source of this material.

OBSIDIAN SOURCES
Bear Gulch Obsidian, Clark County.

Locality 1: NE 1/4 NW 1/4 sec.1l6 and E 1/2 SW 1/4 sec.9 T13N
R38E. Ashton Quadrangle.

Cobbles to 10 cm in diameter were exposed along West Canas
Creek and Bear Gulch Road. Cortex was smooth due to
weathering, but not rounded by transport; this is a primary
source.

Locality 2: SW 1/4 NW 1/4 sec.15 T13N R38E. Ashtoecn
Quadrangle.

Located at the Fjunction of Bear Gulch Road Spur No. 4 and
Camas Creek Road, cobbles were especially abundant near the
East Fork of West Camas Creek, where they were exposed by
erosional processes. Cobbles were also observed in the road
cut, and eroding from the dirt road itself. Cobbles were
larger than those at Locality 1. This location is just west of
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Sappington’s Spring Creek locality (1981a).

Locality 3: center of south boundary sec.36 T13N R38E. Ashton
Quadrangle.

Cobbles to 20 cm in diameter were found on both sides of the
Kilgore road, approximately 1.5 km west of Kilgore. A private
gravel pit has exposed many cobbles.

Locality 4: NE 1/4 NE 1/4 sec.22 T13N R38E. Ashton Quadrangle.

Most cobbles at this locality were 3-5 cm in diameter: but a
few reached 20 cm, and many were elongated. An extensive
archaeological site lies on the surface at this locality;
lithics observed at the site included flakes, retouched
flakes, scrapers, and bifaces.

The Bear Gulch source has keen very well characterized by the
analysis of 50 samples. This source is also known as the
Camas/Dry Creek (Michels 1983) and the Centennial Source
(Sappington 198la). The former name was not adopted because a
physically and chenmically different volcanic glass
(ignimbrite?) was collected from the Dry Creek locality: the
latter name was Jjudged too general, in light of Hughes and
Nelson‘’s (1987) evidence that obsidian from the Centennial
Valley of Montana differed chemically from obsidian on the
south (Idahc) face of the Centennial Mountains. As noted in

Chapter 1, Bear Gulch obsidian is equivalent to the FMY 90
aroup obsidian.

Big Southern Butte Obsidian, Butte County

Big Southern Butte is a large lava dome rising some 760 m
above the Snake River Plain. It is the youngest of a series of
such features in the area, dated at approximately 300,000
vyears old. A total of 57 flakes were analyzed, producing an
excellent characterization for the Big Southern Butte source.

Localities 1, 2, and 3 were located at various points along
the road leading to a lookout station at the top of Big
Southern Butte. All three localities are in the northern 1/2
sec.23 T1N R29E, Craters of the Moon Quadrangle.

The obsidian at locality 1 ranged in colour from black to grey
to a milky grey/green. No rounded cobbles were observed at
this locality; instead the obsidian occurred in amorphous
forms containing large spherulitic lithophysae and bands of
coarse-grained material (Lawrence Dee 1989 pers. comm.).
Locality 1 was littered with flakes and chunks of this
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obsidian. Locality 2 contained similar obsidian; but fewer
artifacts were found, and some rounded cobbles were collected.

At Locality 3, located on the west side of the butte just
below the lookout station, obsidian occurred in a number of
forms. Small pebbles and tabular pieces of grey and green
phenocrystic obsidian of average flaking quality were fairly
abundant. A small bedded seam of similar material was sampled
from the slope of the butte, as was a large weathered boulder
(measuring approximately 60 cm in diameter:; the outer surface
was very friable, but harder rock was found within). Some
small cobbles in the 5 cm range were eroding out of the bank
about 15 m downslope from the boulder.

Locality 4, 1located in the vicinity of Webb Spring, is
probably the best known collection locale for Big Southern
Butte obsidian. Artifactual material was abundant, consisting
primarily of debris from early stages of 1lithic reduction
(Truitt 1991). Only one sizable cobble was found, although
others are probably present; however, rockhounds and
archaeologists have apparently collected obsidian from this
location for several decades (B. Rcbert Butler 1989, pers.
comm. ), and it is likely that much of the source has been
exhausted. Sappington (1981a), however, reported that samples
from Webb Spring were submitted to him, and that some cobbles
up to 50 cm in diameter had been observed on the butte; the
precise location of these large cobbles is unclear from his
description.

Cannonball Mountain Obsidian, Camas County.

Cannonball Mountain samples were provided by William G. Reed,
Boise National Forest archaeologist. Reed sampled 32
localities on and near Cannonball Mountain during a 1983
survey project for the Bureau of Land Management. A total of
77 samples were analyzed from six localities. Subsampling of
Reed’s large sample was based primarily upon the quantity of
material available from individual localities. Cobbles were
preferred over flakes; although some flakes were analyzed, and
a range of macroscopically variable samples was selected.

Two chemically-distinct obsidian types were represented in the
Cannconball Mountain samples. Localities 1-4 and Locality 6
clustered closely, comprising the Cannonball Mountain 1
chemical type. Locality 5 samples clustered closely together,
but they were gquite distinct from the other Cannonball flakes.
The 15 samples from Locality 5 define the Cannonball Mountain
2 chemical type.
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Locality 1: N 1/2 NW 1/4 sec.19 T1N R15E, at the confluence of
Big Deer and Little Deer Creeks. Fairfield Quadrangle.

Ten samples were analyzed, consisting of opaque black obsidian
with a dark brown tinge on thin edges. Most of the flakes had
sandy inclusions, which sometimes occurred in bands.

Locality 2: N 1/2 sec.12 T1IN R14E. Fairfield Quadrangle.

Three flakes were cleaved from each of five small cobbles
(averaging approximately S5 cm in diameter). The obsidian
varied in colour from black to black/grey banded. Thin flakes
held before a light source showed a grey matrix with black
speckles. A lithic quarry site (temporary number 050-83-12)
was found at Locality 2 (report on file at the Shoshone

District Office of the United States Bureau of Land
Managemnent) .

Locality 3: sec.14 T1N R1l4E

Samples from this locality consisted primarily of
decortication fiakes from a associated guarry site (temporary
number 050-83-13-2), recorded by Reed (1983; report on file at
the Shoshone District Office of the United States Bureau of
Land Management). Fifteen flakes were analyzed.

Locality 4: Elk Creek: T1N R14E section not given.
Locality 6: SE 1/4 sec.14 T1N R14E. Fairfield Quadrangle.

Fifteen cobbles were analyzed from this collection area. One
cobble (CB6-A) was an opague black obsidian with abundant
phenocrysts that was visually similar to the Locality 1
samples. This cobble may have been brought to Locality 6 from
elsewhere, as all other samples from this area consisted of
small pebbles of opaque blue/grey obsidian with a slightly
grainy texture. However,all samples from Locality 6 were
chemically consistent; and, despite the range of visual
characteristics, the Locality 6 flakes all correlated very
closely with those from Localities 1-4.

Cannonball Mountain 2

Locality 5: SW 1/4 SW 1/4 sec.6; NW 1/4 NW 1/4 sec.7 TI1N
R1S5E. Fairfield Quadrangle.

Fifteen flakes were analyzed from Locality 5. The chemical
fingerprint for this locality is quite distinct from that of
the other Cannonball Mountain samples. Further analysis is
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required before the nature of the volcanic events at
Cannonball Mountain can be understood, but it is clear that
two discrete events deposited obsidian on the mountain.

Chesterfield Obsidian, Caribou County.

Chesterfield obsidian samples were provided by R.L Sappington.
He reported collection areas in sec.9 and sec.10 T6S R38E, and
over a broad area in TéS R37E and R38E (198la). Although the
source was exploited locally (Green 1982), the obsidian is of
only moderate quality:; and it was probably not a highly valued
raw material if other sources were available. Sappington
suggested that the bedrock source for the Chesterfield float
material may be associated with Miocene-Pliocene rhyolite
flows in the area (1981a:14), but he noted that further
investigation of the area is required before the extent of the
source can be delineated. Fifteen samples were analyzed, and
the chemical type is adequately characterized. Chesterfield
obsidian is sometimes known as Smith Creek obsidian (Green
1982).

Coal Bank Spring Obsidian, Cassia County.
Locality: T16S R12E NW1l/4 NEl/4 se¢- .on 18 Oakley Quadrangle.

Cobbles of green, grey, and green/grey banded obsidian with a
sugary texture were collected from this geologically-complex
area, which contains cliffs of ash and pumice, as well as
abundant metamorphic rock types (Lawrence Dee, pers. comm.
1989). Most obsidian occurred in blocky, angular form to 25 cm
in diameter, but ropy extruded forms are not uncommon.
Quantities of debitage were noted in the area. 39 samples were
analyzed from this well-characterized source; samples from one
cobble matched the suggested Cedar Creek chemical type.

Malad Obsidian, Oneida County.

Localities: T12S R35E NWl/4 section 4 (Hess Pumice Mine)
T11S R35E SEl1/4 SEl1/4 section 26 (Wright Creek)
T11S R35E center section 9; NEl1l/4 SW1l/4 section
16. All Malad City Quadrangle

This high-guality obsidian can be found scattered throughout
the area near Daniels, southeastern Idaho, north of Malad
City. Cobbles ranging in size from 8-15 cm were collected from
the overburden at the Hess Pumice Mine; one sample had
mahogany-coloured streaks, similar to those of the well-known
Glass Buttes obsidian from Oregon. Elongated cobbles with
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little or no cortex were collected from the section 9 and 16
localities, where the glass was very abundant. Fifty-nine
samples of Malad obsidian were analyzed, prcducing a very
distinctive, well-characterized chemical profile.

Owyhee Obsidian, Owyhee County.
Owyhee 1

Locality i: NE 1/4 NE 1/4 sec.l T5S R1W, and Nw 1/4 NW 1/4
sec.6 T5S R1E. Both in Murphy Quadrangle.

Cobbles of high-guality obsidian were collected from the banks
and bed of Brown Creek. Maximum cobble size was approximately
10 cm in diameter. Owyhee obsidian is black in colour,
visually homogeneous, and extremely translucent.

Locality 2: SE 1/4 SW 1/4; and N 1/2 SE 1/4 sec.30 T5S R1W.
Murphy Quadrangle.

This locality is approximately 12 km upstream from Locality 1,
also along Browns Creek. Cobbles were slightly larger and more

abundant here, suggesting this locality is nearer the primary
source.

Locality 3: NW 1/4 sec.22 Té6S R2W. Murphy Quadrangle.

Located at the summit of Toy Pass between Oreana and Triangle,
this may be the primary source of the Owyhee obsidian. Cobbles
were generally quite small, with the largest piece observed
measuring approximately 12 cm in diameter; but the material
was extremely abundant. An adjacent hillside did not have
exposures of obsidian, nor did the slopes below the pass. It
appeared that the road had cut into the deposit, or that
erosion associated with vehicular traffic had resulted in
exposure only at the road level.

Owyhee 2
Locality 4: east-central sec.6 T7S R2W. Murphy Quadrangle.

Located about half-way between Locality 3 and Triangle, this
locality coiitained the largest cobbles found at the Owyhee
source (up to 20 cm in diameter). This is the only Owyhee
locality on the south face of the hills. The obsidian was
visually identical to that found at the other Owyhee
localities, but it was chemically distinct; it was found in
road cut exposures over an area of approximately 0.6 km.

323



A total of 37 flakes were analyzed from the Owyhee sample.
Localities 1 and 2 were combined to produce 15 flakes; twelve
flakes were run from Locality 3, and ten were run from
Locality 4.

Sappington reported that the Owyhee obsidian occurs on both
slopes of the Owyhee mountain range over an area of some 1600
km?. The obsidian is apparently Pliocene or older in age
(Ssappington 198l1a:14), and it is apparently associated with
silicic volcanics approximately 13.8 million years old
(Bennett 1976: Fig.4).

Reynolds Obsidian, Owyhee County.

Locality: Several secticns in the northeastern corner of
T3S R4W. Murphy Quadrangle.

Reynolds obsidian samples were provided by R.L. Sappington.
This material was used lccally, but it was apparently not
important outside the range of its availability (Sappington
1981b:5). The author was able to locate only very small
pebbles of Reynolds obsidian (<2 cm), and those submitted by
Sappington were no larger. However, the fact that this
chemical type is represented at archaeological sites in the
Reynolds Creek area indicates that larger cobbles were
available in the past. Fifteen flakes were analyzed:; and while
the geographical extent of the source is poorly understood,

the Reynolas obsidian chemical type is well characterized.

Timber Butte Obsidian, Gem and Boise Counties.
Locality: SE 1/4 sec.6 T8N R2E. Weiser Quadrangle.

The Timber Butte samples were provided by R.L. Sappington. The

obsidian is black, sometimes with grey banding,
macroscopicall' *.mogeneous, and highly translucent. According
to Sappingten ¢ . ‘1a), Timber Butte obsidian may be collected

at a number ot :iocations on Timber Butte and along Squaw
Valley in streambeds over a distance of over 16 km®. Fifteen
Timk<r Butte samples were analyzed, and data from four
additional samples from the Simon Fraser University obsidian
library were added. The source is chemically distinct, and it
is very well characterized.

Wedge Butte (Snowflake) Obsidian, Blaine County.
Locality: SW 1/4 SW 1/4 sec.14 T2S R18E. Fairfield Quadrangle.
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Wedge Butte obsidian is quite distinctive in appearance,
having abundant inclusions. The material is of moderate
flaking quality. A small exposure was located on a finger
extending northward near the bacse of Wedge Butte. Most cobbles
measured approximately 3-4 cm in diameter, but there were
numerous decortication flakes in an associated iithic scatter
which attested to the presence of larger cobbles in the past.

15 samples were analyzed, and the source is well
characterized.
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