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Abstract

In wireless sensor networks, sensor nodes may fail due to energy depletion or phys-

ical damage. To recover the data of a failed node, we propose a fault recovery

scheme which enables the remaining alive sensor nodes to use the redundant infor-

mation with regard to the failed node to fulfill the recovery. The idea is similar to a

level 4 RAID (Redundant Array of Independent Disks) in the sense that each sen-

sor serves as the dedicated parity disk for its neighbors. We compare the network

lifetime with and without recovery being involved, where the network lifetime is

defined as the time interval from the point that a network starts operation to the

point that a node failure is observed and can not be recovered. We explore the im-

pact of parameters such as node failure probability, communication range, and node

density on the network lifetime.
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Chapter 1

Introduction

1.1 Motivation

A wireless sensor network (WSN) is made up of potentially large numbers of sen-

sor nodes that use wireless communication protocol to communicate. The sensor

nodes can gather, process and exchange sensed data in a large area to achieve vari-

ous goals. Generally, the idea is to use autonomous sensor nodes to monitor areas

of interest so that spatial and temporal data about the physical phenomenon can be

collected without the need to actually be present in the target area. Each sensor

node contains a partial view of the environment it covers. The collected data can

be forwarded to certain energy-unconstrained base station(s) or sink(s) on a regu-

lar basis or on-demand. Hence, the advent of WSNs redefines the data gathering

process and significantly reduces the need of human involvement.

We have seen the proliferation of WSNs in a wide range of applications in re-

cent years. WSNs have been adopted to facilitate scientific research as well as

military and civil applications. For instance, environmental scientists may build a

sensor network to monitor snow processes in high mountains or climate change in

forests. The military force would have a WSN that can detect intruders and report

any abnormal observations. More applications in seismic/acoustic/medical data-

gathering [5], wildlife/habitat/civil structure monitoring are used.

Hardware technology advances enable the massive production of small and

cheap sensors. Sensor nodes come along with some limitations such as strict energy

constraints and limited computational capacity due to their small sizes and consid-
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erations of cost-effectiveness. Subject to application specific requirements, sensors

may vary in size, computational ability, power capacity, properties to be measured,

etc. However, sensors do share similar architecture and composition modules. A

sensor node is mainly made up of four components: sensing module, processor,

radio module and power unit, as shown in Figure 1.1. The sensing module sam-

ples the analog sensor signal and uses an A/D converter to digitize the signal to

achieve the goal of mapping physical phenomenon such as temperature, pressure

and light to quantitative measurement. The processor processes the digitized data

and completes the necessary manipulation. This data is often referred to as “raw

data” and needs to be relayed back to the sink. The radio module needs to estab-

lish digital channels in which sensors are able to communicate with each other. To

achieve such a goal, this component usually adopts a radio transceiver for both re-

ceiving and transmitting data. The power unit is often battery-operated and is used

for supplying power to all other units.

Figure 1.1: Typical architecture of sensor nodes [18]

Equipped with the radio module, the sensors can be integrated into networks of

any size. With proper routing algorithms a sensor can disseminate its measured data

to any other sensor or to the sink for further data analysis. Moreover, the ability to

communicate with other nodes in the network can facilitate the cooperation among

nodes to achieve a much more effective monitoring goal. Modern WSN applications

are often in the size of hundreds or thousands of sensor nodes.

Based on their different functions, the WSNs can be generally put into four cat-
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egories: monitoring, detection, prevention and response. Depending on the char-

acteristics of the deployed nodes, the sensor networks can also be classified as ho-

mogeneous or heterogeneous networks. Homogeneous sensor networks consist of

identical nodes with the same capability and functionality while the heterogeneous

networks assign different roles to nodes with different capabilities. Heterogeneous

networks facilitate the advent of hierarchical or cluster-based topology and algo-

rithms in which sensor nodes form clusters and send their data only to the corre-

sponding cluster head. In terms of mobility of the nodes, WSNs come in two main

forms: static or mobile. For some applications static sensor nodes would suffice,

while for other applications, mobile nodes are more favorable. According to [18], if

sensor nodes can adjust their positions, the monitoring capability can be improved

and the required transmission power can be reduced. Depending on how the net-

work is organized and how the nodes relay sensed data, a network can be either

multi-hop or single hop. Multi-hop communication is the mainstream communica-

tion mode due to the requirement of low energy cost and scalability.

Wireless sensor networks have attracted the attention of many researchers in

recent years. There are some common research challenges. Failures in wireless

sensor networks can occur for various reasons. Unlike wired networks, WSNs suf-

fer from resource constraints due to the wireless communication channel and the

basic nature of the nodes. The scarcity of the wireless channel limits the band-

width of each sensor and the inherent error-prone nature of the channel leads to

some failure in the communication process. The fact that sensor nodes have strict

energy constraints and that they are often deployed in large-scale, remote and harsh

environment renders the solution of recharging batteries impossible in most circum-

stances. Once the energy depletes, the node inevitably fails. Moreover, the hostile

and unpredictable environment makes the sensors vulnerable. The sensors can be

destroyed by an external event at any time. Since the deployment fields are some-

times unattended, an immediate replacement of a failed sensor node is not always

feasible.

Therefore, sensor nodes may fail due to energy depletion or physical damage

after the deployment of nodes. When a node failure takes place, the sensed data
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stored in this node will be lost ever since. The user can no longer have access to

all the valuable information the sensor node has collected before its failure, which

may mislead the user’s understanding of this network. To solve the problem of

node failure and data loss, a fault tolerant and recovery scheme is in urgent need for

securing the sensed data within the network.

1.2 Overview of our scheme

The goal of our work is to maintain high data availability and guarantee the com-

pleteness of query results when sensor node failure and data loss take place. To

achieve such goal, we propose to incorporate a fault tolerant, more specifically,

fault recovery scheme into WSNs. RAID (redundant array of independent disks) is

the original storage technique, which distributes data and utilizes redundant disks

for data recovery. Similar to the idea of RAID, we propose to let each sensor node

store some redundant information about all its direct neighbors. Within each sensor

node the storage unit is partitioned into two distinct sections. One section stores

normal sensed data and the other section stores the redundant information about its

neighbors’ sensed data. For example, node A, whenever it updates its own sensed

data, a copy of the update is sent to A’s direct neighbors so that the neighbors can

recalculate and update their information with regard to node A. In this way, the

sensed data of A is preserved in more than one place and therefore a recovery of

A’s sensed data is possible by taking advantage of its neighbors which contain the

redundant information about A. Our scheme is quite different from previous works

in WSN research. We do not aim to minimize the energy consumption of data dis-

semination or to provide a mechanism for tolerating link failure. Instead, we are

focusing on the data management level to achieve fault tolerance. It is obvious that

our scheme imposes the communication overhead of constantly broadcasting data

updates to neighbors and the additional message transmission cost when a recovery

process is initiated. However, we argue that it is worthwhile to invest a little bit

in exchange for a much longer period of complete query results, just like we pay

our health insurance fees for the long-term benefits. Figure 1.2 shows the topology
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of a network which is composed of 10 sensors. The edge between each pair of

nodes indicates that the connected nodes are within the communication range and

thus can transmit and receive messages to/from each other. In this topology, should

node 1 fail, our scheme is able to recover node 1’s sensed data by taking advantage

of nodes that are within any of the three rounded rectangles.

   Node 2

   Node 10

   Node 8

   Node 3

   Node 1

    Node 4

   Node 5

    Node 9

   Node 7

   Node 6

Figure 1.2: Schematic diagram of the proposed recovery scheme

1.3 Thesis contributions

In this thesis project we focus on proposing a fault recovery scheme in the context

of wireless sensor networks. By incorporating data redundancy into the network

our scheme can recover the sensed data of an already failed node and therefore

return the correct query results as if there were no failure in the network. More

specifically, the contributions of this thesis work lie in the following aspects:

• adapting the idea of RAID to wireless sensor networks

• enabling WSNs to tolerate a moderate rate of node failure without showing

any query result discrepancy
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• presenting the communication energy consumption model of the proposed

scheme

• conducting extensive experiments which show the performance gain of net-

work lifetime under different parameters

To the best of our knowledge, this is the first attempt to achieve in-network node

failure recovery for wireless sensor networks.

1.4 Thesis outline

Chapter 2 reviews recent literatures on fault tolerance in WSN research and the

general idea of RAID. Chapter 3 introduces the methodology of our scheme includ-

ing the underlying assumptions, the energy consumption model, and the network

lifetime definition. A detailed description of the simulation environment and ex-

perimental setup is presented in Chapter 4. Chapter 5 presents the experimental

results and a detailed analysis of them. A brief conclusion and possible future work

directions are given in the final chapter.
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Chapter 2

Related Work

In this chapter, we start reviewing existing research efforts in the field of fault tol-

erance in wireless sensor networks. Then a brief introduction to RAID (redundant

array of independent disks) follows.

2.1 Fault tolerance

Fault tolerance has been intensively studied in computing science for more than

half a century. In general, fault tolerance is the ability to maintain a desired level of

functionality in the presence of failures. In the context of wireless sensor networks,

both sensor nodes and data transmissions are prone to failures. The sensor nodes

can fail due to energy depletion, hardware faults, physical damage, and so on. The

data transmissions depend heavily on the quality of the communication channels,

which can be affected by environment conditions, physical obstacles, and signal

interference. Such error-prone nature requires that fault tolerance should be consid-

ered at the system design level for many WSN applications. Thus, lots of research

works on incorporating fault tolerance into WSNs has been proposed. Researchers

address the fault tolerance issue at different layers of the network protocol stack,

e.g., communication layer or application layer.

Many researchers focus on designing fault tolerant routing protocols. Accord-

ing to a survey by Alwan and Agarwal [2], fault tolerant routing techniques can

be classified into two main categories: retransmission and replication. Retransmis-

sion means that if the sender can not receive an acknowledgment packet from the
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sink before a pre-defined timeout, the sender will retransmit the sensed data to the

sink. This approach is quite popular since the packet loss rate in WSNs is higher

than in traditional networks. Two popular replication mechanisms are multipath

routing [20, 14, 13] and erasure coding [40, 41]. In the former approach multiple

copies of sensed data are transmitted over multiple routing paths so that the data

can successfully reach its destinations, so long as one path is free from node fail-

ures along the way. Thus, the multipath routing protocols are more resilient to node

failures at the expense of increased overall traffic. In [13], the authors study the

trade-off between the increased traffic and the fault tolerance ability of the network.

The scheme proposed in [14] is a multipath variant of the original directed diffusion

paradigm [19] and the authors believe that the use of multipath routing provides a

viable alternative for energy-efficient recovery from failures in WSNs. Erasure cod-

ing is another replication approach aiming at enhancing fault tolerance in WSNs.

The basic idea is to add K parity fragments to the M data fragments to have a total

of M +K fragments. Then the M +K fragments are divided into sub-packets and

transmitted over multiple paths. The sink can reconstruct the original data when

at least M out of the M + K fragments have been successfully transmitted to the

sink. The most widely used erasure coding algorithms in WSNs are Reed-Solomon

codes [30] and Rateless codes [7]. Deng et al. propose a light-weight routing mech-

anism for tolerating node failures [10]. This routing mechanism can dynamically

repair routing paths between sensor nodes to sink by selecting a new path which cir-

cumvents the failed node. When a sensor node detects that its parent node has either

failed or lost access to the sink, this node notifies all its child nodes about this fail-

ure, asks its neighboring nodes for their connection information, and chooses one

of the neighboring nodes as its new parent node based on the information received.

Liu et al. [23] survey fault tolerance algorithms/protocols in application layer of

WSNs. They study how fault tolerance is addressed in the following five categories

of applications: node placement, topology control, target and event detection, data

gathering and aggregation, and sensor surveillance. In each category, representa-

tive research works that aim at achieving fault tolerance in application layer are

discussed.
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Some research works about fault tolerance management can be found in [3, 32,

42, 27]. Yu et al. [42] survey existing fault management approaches for WSNs and

classify them into three phases: fault detection, fault diagnosis, and fault recovery.

They consider fault detection as the phase where the network system properly iden-

tifies the unexpected failure. According to their classification, there are two main

types in the current fault detection techniques: centralized and distributed fault de-

tection. Fault diagnosis is considered as the phase where the network distinguishes

certain detected faults from other irrelevant or spurious alarms. The last stage, fault

recovery, is the phase where the network is reconstructed or reconfigured in order

to mitigate the impact of detected failures. Another survey on fault management

is presented by Paradis and Han [27]. In this survey, they follow the taxonomy of

different fault tolerant techniques used in traditional distributed systems [37], i.e.,

fault prevention, fault detection, fault isolation, fault identification, and fault recov-

ery. Then they summarize and compare existing fault tolerant algorithms/protocols

for each category. Saleh et al. in [32] come up with a general framework for fault

tolerance in WSN that can be used to guide the design and development of fault tol-

erance solutions. The proposed framework has two major modules: System Man-

agement module and System Operations module. System Management consists of

four submodules: Defining Roles and Structures, Generating FT Schedule, Assign-

ment of Roles, and Executing FT Schedule while System Operations consists of

three submodules: Fault Discovery, Cost Assessment, and Fault Containment and

Recovery. The two major modules interact via a Analysis and Refinement com-

ponent. The authors then apply the framework to CRAFT, a checkpoint/recovery

scheme for data collection and dissemination in WSNs [31]. They also use the

framework to evaluate a few existing fault tolerant schemes and conduct a compar-

ative study based on the fault tolerance requirements they define. The authors in [3]

propose a self-managing fault management mechanism for WSNs to deal with fault

detection and recovery. They start with the definition of a fault model which de-

scribes different types of faults within the network. Then a hierarchical structure is

proposed to distribute fault management tasks and assign different roles to the sen-

sor nodes so that the sensor nodes can take appropriate reaction to fulfill their fault
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management goals. Their simulation results prove that the proposed mechanism is

more efficient than the scheme proposed in [38], in terms of energy consumption

and response time.

Most of the existing fault management or fault tolerance techniques in WSNs

simply isolate the failed or malfunctioning nodes in the communication layer and

ignore the data of the failed node as in [10, 25, 26, 36]. In these papers, fault

tolerance is achieved in a sense that the networks can still fulfill the sensing tasks in

the presence of failures. However, these approaches do not deal with the recovery

of the failed node. Once a node has failed, the data stored in the failed node is lost

forever with these approaches. We argue that the data of the failed node is valuable.

Thus, in this thesis project we propose a fault recovery scheme to recover the data

after node failures take place in WSNs.

Similar to our goal, Chessa and Maestrini [8] present a fault recovery mecha-

nism to cope with node failures in single hop WSNs. They came up with a solution

to recover data after a node failure by distributing redundant information of sensed

data among sensor nodes. More specifically, they proposed to partition the memory

of sensor nodes into two parts, one for storing its own sensed data and the other

for storing redundant data used for recovery. By keeping redundant data of other

sensor nodes this scheme is able to recover data loss after a node failure. The re-

dundant concept is similar to our work. However, their mechanism can only deal

with single node failure within single hop WSNs, whereas our work can be applied

to multi-hop WSNs for more than one node failure.

2.2 RAID

First proposed by Patterson et al. [28], the term RAID was originally the acronym

for Redundant Array of Inexpensive Disks. Later on manufacturers redefined the

term to represent Redundant Array of Independent disks. In the original paper,

the authors came up with the idea of RAID to solve the bottleneck issue of I/O

performance in order to catch up with the increasing speed of CPUs and memories.

The authors made it clear that RAID can be achieved in both hardware and software
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implementation. The paper described five different organizations of RAIDs and

analyzes their relative cost as well as performance, which laid the foundations of

modern architecture from RAID 1 to RAID 5.

Nowadays, RAID is typically referred to as a storage virtualization technology

that can replicate and distribute data among an array of disk drives while being

accessed by the operating systems as one single logical drive. Depending on differ-

ent reliability and performance requirements, RAID can be categorized into several

“levels” which specify how the data is accessed and how the redundancy is main-

tained. RAID levels and their corresponding data formats are standardized by the

Storage Networking Industry Association (SNIA) in the Common RAID Disk Drive

Format (DDF) standard1. A brief description of each standard RAID level follows.

RAID 0 represents a striped array with no parity. It divides sequential data into

several blocks so that different blocks can be written to different physical disk

drives. This level does not aim to provide any redundancy since it utilizes block-

level striping without parity or mirroring. The merit of RAID 0 is that several

physical disks can be combined to make a larger virtual disk and the I/O perfor-

mance will be better than using a single disk. One drawback is that the more disks

added to the array, the more likely that disk failure and data loss can happen.

RAID 1 can be described as a mirrored array. It requires at least two disks and the

data is always written identically to all the disks. Read operation can be completed

by accessing any of the disks in the array since the disks contain the same data. By

simply mirroring the data with no parity or striping techniques, the fault tolerance

is achieved in a sense that as long as one disk in the array is properly functioning,

the data can be accessed.

RAID 2 adopts bit-level striping so that no two consecutive bits in the original

data stream are written to the same disk. Hamming code is used in this level for

error correction. This level is the only original level proposed in [28] that is not

currently used.
1http://www.snia.org/tech activities/standards/curr standards/ddf
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RAID 3 is a byte-level striped array with a non-rotating parity disk. The non-

rotating parity disk is a special disk that is dedicated for storing parity results of

other data disks within the array. This level uses byte-level striping so that no two

consecutive bytes are on the same disk. Besides, the hamming-code parity used in

RAID 2 is replaced by bitwise “exclusive or” parity of the corresponding byte.

RAID 4 is a block-level striped array with a non-rotating parity disk for storing

the parity of other data disks. Since the data is stored in block-level and each disk

operates independently, the I/O requests on different disks can be handled concur-

rently. This level can tolerate at most one physical disk failure. In our work, we

choose this RAID level to incorporate data redundancy and achieve fault recovery

since it strikes a balance between space efficiency and data redundancy. Fig. 2.1

shows the diagram of a RAID 4 array composed of three data disks and one parity

disk. RAID 4 is often referred to as a dedicated parity scheme since it utilizes a

    

parity calculation

Data disk A Data disk B Data disk C Parity disk 

A1

A2

A3

A4

B1

B2

B3

B4

C1

C2

C3

C4

P1

P2

P3

P4

Figure 2.1: RAID 4 with three data disks and one parity disk

single disk for storing the parity information only. In this figure, each row within

the disk represents a data block. The data block of the parity disk stores the parity

results for all the data blocks on the data disks that are in the same row. Denote

the parity calculation as ⊕, for data block i, within this array we have the following
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relations:

Pi = Ai ⊕Bi ⊕ Ci (2.1)

Whenever a write is performed on any of the data disks, the parity calculation com-

ponent recalculates and updates the corresponding blocks on the parity disk. Should

any of the data disk fails, the remaining data disks, together with the parity disk,

can be utilized to reconstruct the data of the failed disk. For instance, if data disk A

fails, we can recover its data according to Eq. 2.2:

Ai = Pi ⊕Bi ⊕ Ci (2.2)

RAID 5 is a block-level striped array with rotating parity disks. It is similar to

RAID 4 except that now there is no more dedicated parity disk in the array. Instead,

the parity information is distributed evenly across the array, that is, each disk rotates

and takes partial responsibility for the dedicated parity disk in RAID 4. This level

can only tolerate one disk failure.

RAID 6 is designed in a similar way as RAID-5, but with dual rotating parity

physical disks. Thus, this level can tolerate at most two physical disk failures so

as to achieve high availability. Two distinct parity are calculated and distributed

evenly across the array. This RAID level eliminates the potential risk of data loss

when one disk in RAID 4 or RAID 5 has already crashed and not yet been replaced

and recovered.
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Chapter 3

Methodology

The motivation behind our research is to achieve high data availability and fault

tolerance in the context of node failure. Our scheme is more suitable for application

scenarios with the following characteristics:

• each sensor node plays the same role in the network

• the data each sensor gathers is of equal importance to the operation of the

network

• the data correlation or redundancy between neighboring nodes is rather small

3.1 Assumptions

A few assumptions about the system have been made to simplify the problem.

To make our method more general, the first assumption we made is that the

topology of the network is flat, which means that there are no superior nodes, hier-

archical structures or cluster heads that are in charge of other nodes within their

domain. All the nodes are considered as having the same significance and are

equipped with the same amount of storage space, computation resources, commu-

nication capacity and initial energy supply. Even though networks with clusters,

such as LEACH [16], do have a better performance in terms of minimizing energy

consumption, we try to make our scheme as generic as possible and investigate

the performance gain as well as the energy consumption overhead under a generic

network topology setting.
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In our scheme, the sink serves as an intelligent agent which spreads the queries

in each round, stores the whole network topology and chooses the best recovery

candidate based on the topology. The sink is assumed to be located at the center of

the deployment field. The sink is also considered as being constantly charged by

reliable electricity sources and thus has unlimited power supply.

We also assume that all the nodes communicate with a fixed communication

range since typical cheap sensors are not equipped with sophisticated communica-

tion electronics that can adapt the sensor’s transmission range according to different

scenarios. In other words, the sensors we consider are not able to adjust the trans-

mitting power towards different destination nodes.

We assume that sensor nodes are stationary after being deployed. Even though

mobile WSNs have their merits, such as the sensor coverage and network connec-

tivity can be improved, the mobility of nodes always complicates the design and

analysis of WSNs. For instance, if the nodes are mobile, the network topology may

change radically even if only a small portion of nodes change their positions, caus-

ing problems for routing. The majority application scenarios of wireless sensor

networks are static networks so far [11] and mobile nodes are only used in spe-

cial circumstances for achieving specific goals [1]. Since our method relies heavily

on the neighborhood relationships within the network, it is impossible to tolerate

topology changes caused by node mobility.

We assume that the initial radio state of all the sensor nodes are on and we do

not put the radio to sleep at any time. One may argue that not including wake/sleep

scheduling is not realistic for real-life applications. Though sleep/wake scheduling

has been considered as an effective mechanism to reduce energy consumption and

prolong network lifetime, it may bring up additional communication overhead for

periodically exchanging synchronization information between neighboring nodes

to achieve the precise synchronization. It may also incur additional transmission

delays while waiting for neighboring nodes to wake up. Neither of these two char-

acteristics is desirable for our scheme. After all, the purpose of this thesis project

is to tackle the problem of possible node failure, thus the sleep/wake scheduling is

not our concern.
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We assume that the edges between connected nodes are bi-directional. By bi-

directional, we aim to convey that the nodes can not be considered as connected

unless they can both transmit/receive messages to/from each other. If bi-directional

edges do exist between a pair of nodes, we assume that there is a link between them.

We also assume that in our scheme there is no link failure taking place during which

messages are dropped. The primary reason for making this assumption is that our

recovery scheme requires successful transmissions of sensed data from a node to its

neighbors.

Since our approach depends heavily on location of sensors and neighborhood

relationships between sensors, we assume that both the location and the neighbor-

hood information is known to all the sensors. This assumption implies that each

sensor node has a list of all the neighbors that reside within its communication

range. The sink stores the whole network topology. In real-life deployment, this

can be achieved during the system initialization period.

3.2 System model

We consider a WSN composed of large numbers of sensor nodes. The sensor nodes

do continuous and periodic sensing and data collection at their locations. Then the

sensor nodes pack the data into messages and transmit these messages back to the

sink on demand, i.e., when the sensors receive queries originating from the sink.

In the experiment, we assume that there is one single sink located at the center of

the deployment field, however, this can be easily generalized to other cases. Since

our scheme is proposed for maintaining data availability in the context of node

failure, the nodes are considered as error-prone. A node can be in either an alive

or a failed state. The transition from an alive state to a failed state is one-way and

irreversible. When one node fails, the remaining alive sensor nodes are able to

cooperate and recover the sensed data of the failed node by utilizing the redundant

information stored in the alive nodes. Therefore, the remaining alive sensor nodes

can successfully handle queries with regard to the failed node, as if there were not

any node failure. Moreover, if a new sensor is added into the network to replace
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the failed node, reconstructing the data of the failed node and migrating the data to

the replacing node can be potentially achieved in a similar way as described in the

proposed recovery scheme.

In our proposed scheme a lot of operations are conducted by the sink in a cen-

tralized manner, including issuing queries, neighborhood relationship management,

best recovery candidate selection, recovery initialization, and possibly the recovery

itself. The advantage of this design is the ease of implementation and less com-

munication needed from node to node. None of the sensor nodes rely on the global

knowledge of the network topology. They only need to be aware of who their neigh-

bors are. This centralized design decreases the message exchanges between sensor

nodes and can therefore reduce the energy consumption.

During our simulation, at the beginning of each round, the sink generates a

query message specifying the target query area. The query message is in the format

of [Center,Radius] where Center represents the coordinates of query center. The

query message is then flooded to the whole deployment field. Upon receiving the

query message, each sensor calculates the Euclidean distance d between its own

location and Center. If d is no greater than the specified Radius, this node deter-

mines that it is within the query area and will respond to this query. Fig. 3.1 shows

several nodes which are depicted as small disks and the query area as specified in a

query message. In this case, node i will respond to this query, since di ≤ Radius

and node j will not respond as dj > Radius.

We aim to incorporate in-network data redundancy to achieve node failure re-

covery. The main idea is about properly preserving the sensed data of one node

in its neighboring nodes so that in case this node fails, the neighboring nodes still

have access to sufficient information for recovering the data of the failed node. To

achieve this goal, we propose to partition the storage unit of a sensor node into

two separate sections, one for storing its own periodically collected data and the

other for storing the redundant information with regard to the sensed data of all its

neighbors. Fig. 3.2 shows an example of storage unit partition in a simple sensor

network which consists of six sensor nodes. The sink is ignored in this figure. Each

rectangle represents a sensor node. The edge between each pair of nodes indicates
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Figure 3.1: Nodes and the query area

that the connected nodes are within communication range and can transmit/receive

messages to/from each other.

 D6    P6

 D5    P5

 D3    P3

 D1       P1

 D4       P4 D2      P2

Figure 3.2: Storage unit partition in sensor nodes

As shown in Fig. 3.2, the storage unit of sensor nodes are partitioned into Di

and Pi where i represents the node ID.Di is the same as the storage unit of common

sensors and the data it stores is named SensedData. Pi is responsible for storing

the redundant information of all this node’s direct neighbors and the data it stores
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is called ParityData. Each time a node samples new data, the node not only

updates its Di section but also sends a copy of the newly sensed data to all its direct

neighbors so that the neighboring nodes can update their Pi sections by calculating

the parity of all the received data. Analogous to the idea of RAID 4 [28], each

sensor node in our scheme now serves as the dedicated parity disk for the array

composed of all its direct neighbors.

Different from the definition of parity in mathematics, which refers to the even-

ness or oddness of an integer, the parity in our context is the result of bitwise exclu-

sive or operation (denoted as⊕) of all the binary inputs. Therefore, the parity result

depends on all the inputs. Exclusive or, or abbreviated as XOR, is a widely used

logical operation in computing science. If there are two boolean inputs, the output

of XOR is true iff one input is true. If there are more than two boolean inputs, the

output of XOR is true iff an odd number of inputs is true. Parity has the property

that for the same bit, if one single error or an odd number of errors take place in

the input, the parity result of this bit will be incorrect. This property makes parity

a popular error detection scheme. In our scheme the Pi section of a node stores the

parity result of this node’s direct neighbors. If we simply use Di and Pi to represent

the data stored in these sections, based on the topology shown in Fig. 3.2, we can

define the following XOR relations for nodes with more than one neighbor:

P1 = D3 ⊕D4 (3.1)

P3 = D1 ⊕D2 (3.2)

P4 = D1 ⊕D5 ⊕D6 (3.3)

Suppose D1 contains data 10010110 and D2 contains data 00101111. By conduct-

ing the bitwise XOR operation as defined in Eq. 3.2 we can calculate the value of

P3 in this way:

10010110 D1

XOR 00101111 D2

10111001 P3
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Using the property of XOR, should any input value get lost, the lost input can be

easily rebuilt by conducting XOR operation on all the remaining input values and

the former XOR output value. Assume that in this case node 1 fails and we need to

reconstruct D1. From Eq. 3.2 and Eq. 3.3 we can see that D1 is preserved twice in

P3 and P4 respectively. We can reconstruct D1 by using either of the two means as

specified in Eq. 3.4 and Eq. 3.5:

D1 = P3 ⊕D2 (3.4)

D1 = P4 ⊕D5 ⊕D6 (3.5)

Assume we adopt Eq. 3.4 to fulfill the recovery, by subjecting P3 and D2 to the

XOR operation:

10111001 P3

XOR 00101111 D2

10010110

the data we can recover is 10010110, which is exactly the data stored in D1.

As shown in Eq. 3.4 and Eq. 3.5, in order to recover the SensedData of a

specific node, sometimes there is more than one option. The average number of

options is proportional to the network density and communication range. However,

the total number of failed nodes increases as time goes by so that not all the Di

at the right hand of the equations are accessible. Therefore, not all the options are

suitable for conducting a successful recovery. The good news is that our recovery

scheme works when there is at least one valid option for a specific failed node. This

means that as long as one neighbor of the failed node, denoted as A, is alive and all

the direct neighbors of A survive, the recovery can be successfully completed.

3.3 Recovery initialization

Prior to proceeding with the recovery, the sink needs to figure out which nodes are

expected to respond in each round. All the nodes that are expected to respond to

the current query forms a responding node set. When the sink does not receive the
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query response from a node that belongs to the responding node set, this node is

considered as failed. Note that we assume that the sink has the great picture of the

network topology. With range query structures like R-tree [15] and its variants [4,

33], it is guaranteed that we can find which nodes reside within the query range

in O(logN ) time theoretically. In our simulation, we did not implement such data

structure because it is not necessary for the size of our simulation. Instead, we

adopt a passive failure detection mechanism. Our experimental setup ensures that

the alive nodes within the responding node set will generate the response and the

response message is scheduled to arrive at the sink in the next round. In other

words, the first time that the sink misses the response of a specific node, the sink

determines that this node has failed. Thus, in the following sections, we treat the

time when we observe a missing response as the time when the corresponding node

failure happens. Once a node is considered as failed, it will be removed from the

responding node set since the sink should not expect its responses any more.

When a node failure has been observed, denoted as node F , the sink will initiate

the recovery process immediately according to Alg. 1. The main goal of this process

is to find the best recovery candidate.

From line 1 to 5, all the alive neighbors of the failed node F are considered as

recovery candidates. They are included in a recovery candidate set R.

From line 6 to 18, the algorithm traverses R to find all the valid candidates to

form the valid candidate set R′. We define a recovery candidate j as valid if all the

direct neighbors of j, other than the one which we aim to recover, are in the alive

state by the time we initiate the recovery process.

The last part of the algorithm traverses R′ and chooses the candidate with the

minimum vertex degree, denoted as Rparity, as the best recovery candidate to fulfill

the recovery task. The problem with a high degree recovery candidate is obvious

in the sense that we need more information about this candidate’s neighbors. The

recovery candidate with the minimum vertex degree in R′ guarantees that there is

less communication overhead incurred for requesting the data of this candidate’s

neighbors. The best recovery candidate is referred to as Rparity node since the

recovery process needs the ParityData of it to fulfill the recovery.
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Algorithm 1 Choose the best recovery candidate Rparity

Require: node F .alive==FALSE
1: for every direct neighbor i of F do
2: if i.alive == TRUE then
3: R = R ∪ i
4: end if
5: end for
6: for every j in R do
7: Valid=FALSE
8: for every direct neighbor k of j do
9: if k.alive == FALSE and k 6= F then

10: Valid=FALSE
11: else
12: Valid=TRUE
13: end if
14: end for
15: if Valid==TRUE then
16: R′ = R′ ∪ j
17: end if
18: end for
19: Min = INFINITY
20: for every l in R′ do
21: if l.degree < Min then
22: Min = l.degree
23: Rparity = l
24: end if
25: end for
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The direct neighbors of the Rparity node, excluding F , are considered as Rdata

nodes. Their SensedData, together with the ParityData of Rparity node, will

be utilized to reconstruct the data of F . In Fig. 3.3, a partial snapshot of a real

simulation run in our experiment is presented. The dots represent the uniformly

distributed sensor nodes and the edges between nodes indicates that the connected

nodes can receive/transmit messages from/to each other. Now assume that the node

within the circle is the failed node F . According to the topology, six sensor nodes,

from node 1 to node 6, form the recovery candidate set R, as marked by triangles.

Assume that all the recovery candidates in R are valid at this point. Node 3 has the

minimum degree of 4 among all nodes in R. Therefore, node 3 is chosen as the

best recovery candidate Rparity. Its three direct neighbors, i.e., node 4, 7, and 8, are

considered as Rdata nodes. The data of F can be recovered as specified in Eq. 3.6

after receiving all the necessary responses.

DF = P3 ⊕D4 ⊕D7 ⊕D8 (3.6)

Failed node
 
Recovery 
candidate

1 2

3

4

6

5

7

8

Figure 3.3: Recovery candidates in a simulation run
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3.4 Centralized and localized recovery approaches

After the sink initiates the recovery and chooses Rparity, the actual recovery pro-

cess begins. The recovery process can take place either at the sink or in the Rparity

node. If the process takes place at the sink, we name it centralized recovery. If it

takes place in the Rparity node, we name it localized recovery. The only difference

between centralized and localized recovery is where the actual recovery takes place

and where the data packets are transmitted. For centralized recovery, all the Rparity

nodes and Rdata nodes send their responses back to the sink. In contrast, for local-

ized recovery, the sink only initiates the recovery and all the other operations are

done at the best recovery candidates locally. The actual recovery process is slightly

different for both recovery approaches:

• For centralized recovery, if a Rdata node is within the query area, the sink has

already got its query responses and stored its SensedData. Therefore, it is

not necessary for the sink to request for its data. Otherwise the sink needs

to send request messages to Rdata nodes that are not within the query area,

asking for their SensedData. After receiving all necessary responses, the

sink completes the recovery calculation. Alg. 2 gives the pseudocode for this

process.

• For localized recovery, the Rparity node will be notified by the sink that it has

been chosen as the best recovery candidate and a recovery is needed based on

it. Then the Rparity node sends request messages to all Rdata nodes and waits

for their responses. The recovery calculation takes place in the Rparity node

and now the Rparity node can respond to queries on behalf of the failed node.

The process is shown in Alg. 3.

In general, the centralized recovery approach is more suitable for queries that

are interested in raw sensed data while the localized recovery approach is a better

idea for aggregate queries. Aggregate queries are more concerned about the sum-

mary or representative values of the raw data instead of details of the raw data.

When processing such queries, sensors merge and condense their data into high
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Algorithm 2 Centralized recovery at the sink
Require: Rparity has been chosen

1: send request message to Rparity node for its ParityData
2: for every Rdata node i do
3: if i outside of query area then
4: send request message to i for SensedData
5: end if
6: end for
7: if all response messages have arrived then
8: Result = ParityData
9: for every Rdata node i do

10: Result = Result ⊕ SensedData[i]
11: end for
12: end if

Algorithm 3 Localized recovery in the Rparity node
Require: this node has received the notice for initiating the localized recovery

1: send request message to every Rdata node for SensedData
2: if all response messages have arrived then
3: Result = ParityData
4: for every Rdata node i do
5: Result = Result ⊕ SensedData[i]
6: end for
7: end if
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quality data packets in order to reduce the volume of data that needs to be transmit-

ted to the sink. Therefore, aggregate query processing can result in a lower energy

consumption and a prolonged network lifetime. If a centralized recovery approach

is adopted, whenever a recovery process is initiated, Rparity node and Rdata nodes

need to transmit their raw data back to the sink. This is strongly against the concept

of aggregate query which aims at reducing the transmission of raw data. The local-

ized recovery approach solves the problem by having all the Rdata nodes send their

data to Rparity node. Then the whole recovery process is completed in the Rparity

node so that no raw data transmission to the sink is required. After the recovery,

Rparity has both its own sensed data and the sensed data of the failed node. Then

the aggregate query can be processed as it is.

Fig. 3.4 shows an example of the aggregation process. Note that this is not the

whole network topology, instead it is an aggregation tree rooted at node 1 where

data aggregation takes place at the non-leaf nodes. The aggregate function we

choose is to find both the minimum value min and the maximum value max of

the sensed data. The corresponding aggregation results are shown in the format

of [min, max] right beside each node. In Fig. 3.4(a) all the data is available and

node 1 has no problem getting the correct aggregation results. Then in Fig. 3.4(b)

node 6 has failed and without the recovery process the data of node 6 is lost. Thus

the root gets the max value of 8, which is not the maximum value among what

all the sensors have gathered. Assume that node 5 is chosen as the Rparity node

and has completed the recovery process for node 6, as shown in Fig. 3.4(c), node

2 can aggregate the data of node 4, 5 and the failed node 6, leading to thes correct

aggregation results at node 1.

3.5 Modeling energy consumption

Energy constraint is one of the most fundamental challenges in WSN research. Re-

searchers have come up with many energy models [12, 45, 17, 34] that are used to

evaluate network lifetime or compare different algorithms or protocols in network

design and analysis. With the help of energy models, we can have an analytical and
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Figure 3.4: Aggregation process in a routing tree where: (a) every node is alive, (b)
node 6 failed and no recovery has been achieved, (c) node 6 failed and the recovery
process has taken place at node 5

quantitative analysis of how much energy the network consumes as time goes by. In

general energy cost has three categories: sensing, processing and communication.

The energy cost for sensing and processing are often considered as constant values.

For communication, the energy consumption for both receiving and transmitting

packets are considered. The cost for receiving is due to the receiver electronics

while the cost for transmitting is due to both transmitter electronics and radio fre-

quency (RF) transmit power. In [29] the author gives a simple yet reasonable model

for calculating the transmitting and receiving energy cost for a single bit:

Etx = α11 + α2 × dn (3.7)

Erx = α12 (3.8)

where Etx and Erx represent the energy it takes to transmit and receive one bit

respectively, α11 and α12 indicate the energy cost caused by transmitter electron-

ics and receiver electronics respectively, α2 represents the energy radiated via the

power amplifier, d is the distance from the source node to the destination node, n

is the path loss exponent. The value of α2 depends on the path loss exponent n.

In Heinzelman’s dissertation [16], she used 87 meters as the “cross-over distance”

for the path loss exponent. If d is smaller than the cross-over distance, she chose

n = 2 and α2 = 10 pJ/bit/m2. Otherwise n = 4 and α2 = 0.0013 pJ/bit/m4

were chosen. In our simulation the communication range never exceeds 87 meters
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so we use n = 2 and α2 = 10 pJ/bit/m2. We also use the following values as

provided in [16]: α11 = α12 = 50 nJ/bit.

Eq. 3.7 implies that the radio wave scatters as it propagates towards the desti-

nation node and the average received signal power is modeled as inversely propor-

tional to the nth power of the distance. As a result, in order to achieve the same

amount of received signal (as required by signal-to-noise ratio), we need to enlarge

the transmission power to the nth power of the distance.

Note that in our energy consumption model, we neglect the energy cost for sens-

ing as well as processing and focus on the cost for communication only. Since we

are assuming that the sink has unlimited power supply, our energy consumption

model does not take the energy cost of the sink into consideration. In our imple-

mentation of the recovery scheme, the energy cost of all the sensor nodes in every

simulation round falls into the following categories:

• receiving query messages and transmitting query responses, denoted asEquery

• sending and receiving sensed value updates to/from neighbors, denoted as

Eupdate

• receiving recovery request messages and transmitting the corresponding re-

sponses, denoted as Erecovery

To come up with the energy consumption cost model, a few notations are used to

facilitate the representation. The notations along with the corresponding description

and default values are listed in Table 3.1. All the energy related notations are defined

from the perspective of sensor nodes. Note Nin is related to a specific simulation

run, Ndata and Nout are associated with the chosen Rparity node for a recovery

process in a specific simulation run, Lresp2 depends on which round the message is

generated in. The explanation and equations for calculating notations that do not

have default values follow.

Since we assume that the sensor nodes always transmit messages using a fixed

transmission power, Etxnode
can be calculated according to Eq. 3.7 using the com-

munication range W = 60 as the distance:

Etxnode
= α11 + α2 ×W 2 = 86 nJ (3.9)
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Notation Description Value
X Dimension of the deployment area on X axis 500 m
Y Dimension of the deployment area on Y axis 500 m
N Total number of the deployed nodes 400
Nin Number of nodes within the query area -
Nnb Average number of neighbors per node Eq. 3.10
Nhop Average number of hops from sensors to sink Eq. 3.14
Ndata Number of Rdata nodes in a recovery process -
Nout Number of Rdata nodes outside of the query area -
W Communication range 60 meters

Etxnode
Energy used to transmit a bit to a sensor node 86 nJ(Eq.3.9)

Etxsink
Average energy used to transmit a bit to the sink Eq. 3.15

Erxnode
Energy used to receive a bit from a sensor node 50 nJ [16]

Erxsink
Energy used to receive a bit from the sink 50 nJ [16]

Lquery Size of the query message 256 bits
Lresp1 Size of the response message to the query 64 bits
Lresp2 Size of the response message to the recovery request -
Lupdate Size of the sensed value update message 64 bits
Lreq Size of the recovery request message 64 bits

Table 3.1: Notations used in the energy consumption model
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IfN nodes are uniformly distributed on a deployment field with dimensionX×

Y , the average number of neighbors, Nnb, can be estimated by Eq. 3.10:

Nnb =
NπW 2

XY
− 1 (3.10)

Note we do not implement the multi-hop routing protocol between sensor nodes

and the sink since designing an adaptive and fault-tolerant routing protocol is be-

yond our scope. Instead, we present an analytical analysis of the energy consump-

tion of multi-hop routing and include it in the cost model. To calculate the energy

cost of a multi-hop routing path, one needs to know how many hops on average,

Nhop, are needed to send the data from the source node to the sink. Then the

multi-hop routing can be considered asNhop hops of direct communication between

neighboring nodes. Nhop can be estimated as the quotient of the distance between

source node and the sink, Dsink, divided by the average length of the orthogonal

projection of the direct communication paths onto the direction of Dsink, denoted

as Dproj . That is, the following equation holds true:

Nhop =
Dsink

Dproj

(3.11)

An example of the orthogonal projection is shown in Fig. 3.5. In this example, node

1 can send its data to the sink via node 2 and node 3. The path from node 1 to node 2,

D12, is now projected onto the direction from node 1 to the sink and the projection

is denoted as D12proj . For large size WSNs, the distance from nodes within the

 Sink
Dsink

D12proj1

2

3D12

Figure 3.5: Projection of a direct communication path on the direction towards the
sink

query area, Rdata nodes and Rparity nodes, to the sink can be approximated as the

distance between the center of the query area to the sink. Given the coordinates of
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query area center (Qx, Qy) and the coordinates of sink (Sx, Sy), this approximate

distance Dsink is:

Dsink =
√
(Sx −Qx)2 + (Sy −Qy)2 (3.12)

In [9], Dproj is given as:

Dproj =
2W

3
cos

π

2Nnb

(3.13)

Then the average number of hops between sensors to the sink can be approximated

as:

Nhop =

√
(Sx −Qx)2 + (Sy −Qy)2

2W
3

cos π
2Nnb

(3.14)

The average energy used to transmit a bit to the sink, Etxsink
, can be calculated as

the total energy cost of Nhop hops of direct communication:

Etxsink
= Nhop × (Etxnode

+ Erxnode
)− Erxnode

(3.15)

The −Erxnode
part is due to the fact that the source node does not need to receive

any message.

After explaining all the notations, we begin to derive the energy cost for each

category. For Equery, in each round the sink generates a query message and floods

the message to all the sensors within the deployment field. Thus, all the nodes (N )

need to pay the price of receiving the query message (Erxsink
× Lquery). On the

other hand, only nodes within the query area (Nin) will respond to the sink and pay

the price of transmitting the response messages (Etxsink
× Lresp1). Therefore, we

have the model for Equery as shown in Eq. 3.16:

Equery = N × Erxsink
× Lquery +Nin × Etxsink

× Lresp1 (3.16)

For Eupdate, in each round every node sends the update message containing the

sensed value collected in this round to all its immediate neighbors, resulting in a

transmission cost of Etxnode
× Lupdate. At the same time, one node receives Nnb

times of update messages which have been sent from its neighbors in the previous

round. By summing up the transmitting and receiving energy cost, we have the

model for Eupdate:

Eupdate = N × Etxnode
× Lupdate +N ×Nnb × Erxnode

× Lupdate (3.17)
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In the rounds when a recovery process takes place, we have another costErecovery

to be taken into account. If we denote Edata as the total cost at Rdata nodes and de-

note Eparity as the total cost at Rparity node, the total energy cost for recovering a

failed node is:

Erecovery = Edata + Eparity (3.18)

As discussed in section 3.4, there are two different recovery approaches. For

the centralized approach, both Rparity node and Rdata nodes interact with the sink.

They receive the request messages from the sink and send the requested information

back to the sink. Note only Rdata nodes that reside outside of the query area receive

the request messages. The Edata and Eparity for this approach are given in Eq. 3.19

and Eq. 3.20 respectively.

Edata = Nout × Erxsink
× Lreq +Nout × Etxsink

× Lresp2 (3.19)

Eparity = Erxsink
× Lreq + Etxsink

× Lresp2 (3.20)

For the localized approach, there are Ndata number of Rdata nodes and each of

them receives from and responds to the chosen Rparity node. Edata is shown in

Eq. 3.21. The Rparity node receives the notification from the sink, broadcasts the

recovery request message to Rdata nodes, receives all the responses from the Rdata

nodes, as shown in Eq. 3.22.

Edata = Ndata × Erxnode
× Lreq +Ndata × Etxnode

× Lresp2 (3.21)

Eparity = Erxsink
× Lreq + Etxnode

× Lreq +Ndata × Erxnode
× Lresp2 (3.22)

3.6 Network lifetime

The limited energy supply of sensor nodes results in the critical need for energy

efficient protocols and prolonged network lifetime. After all, a network that can

easily run out of energy is not practical for real-life deployment. In WSN research,

network lifetime has long been considered as one of the most important parameters

for evaluating WSN and WSN algorithms. Many research efforts have been spent

on maximizing network lifetime [22, 43, 35]. Other important parameters, such
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as connectivity and coverage, are also related to network lifetime. While some

authors use the term “network lifetime” without giving the exact definition, most of

the authors do make it clear how the network lifetime is defined in their work. As

the design of WSN depends heavily on the specific application requirements, the

definition and metrics for estimating network lifetime is also application specific.

In [11], the authors give a comprehensive classification of network lifetime def-

initions presented in research works. They classify the existing definitions based on

the metric(s) each definition considers. The metrics lie in the following aspects:

• the number of alive nodes

• sensor coverage

• connectivity

• application quality of service requirements

Each of the definitions has its own merit to be considered. For example, since

the primary goal of sensor networks is to cover and monitor the deployment field,

associating network lifetime with how the region of interest is covered by sensor

nodes seems to be natural. Two common definitions under this category are α-

coverage and k-coverage. α-coverage considers the time duration during which at

least α portion of the region of interest is covered by at least one sensor [44], while

k-coverage network lifetime requires that the area of interest is covered by at least

k sensors [21].

Sensor coverage is an important aspect of WSN applications. However, suffi-

cient sensor coverage must be complemented with satisfactory connectivity in order

to transmit data from source to the sink. Thus some metrics of network lifetime also

take the connectivity of the network into consideration. Connectivity has been used

as a network lifetime metric in wireless ad hoc networks in which there is no no-

tion of sensor coverage. Hence, in wireless ad hoc networks the network lifetime

is sometimes defined as the time that the size of the largest connected component

drops below a specified threshold [6]. In the context of WSNs, connectivity can
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be measured in terms of the packet delivery ratio at the sink node [39]. Many re-

searchers propose to combine sensor coverage and connectivity in the definition

of WSN network lifetime, e.g., in [39] the network lifetime is considered as the

continuous operational time of the system before either the coverage or the packet

delivery ratio drops below a specified threshold.

Coverage and connectivity are both essential properties for evaluating WSNs.

However, we aim to propose a fault recovery scheme which can reconstruct the

data of a failed node with 100% confidence. Neither coverage nor connectivity can

measure the level of redundancy and fault tolerance in our scheme. Thus, they are

not suitable metrics for the network lifetime definition.

Another common category of network lifetime definition is associated with the

number of alive nodes. For a network composed of n sensor nodes, it can be de-

scribed as n-of-n lifetime where the network lifetime ends as soon as the first node

fails or k-of-n lifetime where the network lifetime represents the time during which

at least k out of n nodes are alive. The advantage of this definition is its simplicity.

Due to its simplicity, one may argue that it does not yield a realistic and meaning-

ful estimation of network lifetime. However, as authors in [24] point out, this kind

of strict definition is only applicable to WSN applications in which all nodes are of

equal importance and critical to the network operation. Our scheme is just proposed

for applications with such characteristics. Thus, our definition is a variant of this

category.

By taking the specific goal of our scheme into account, we define network life-

time as: the time interval from the point that a WSN starts operation to the point

that a node failure is observed and can not be recovered. This definition captures the

fact that our proposed scheme can overcome node failures for a period of time and

the sensors can respond to queries continuously, as if there were no node failures

in the network. The recovery process can be transparent to the end users and the

user will not notice any discrepancy in the query results before the network lifetime

ends.
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Chapter 4

Experimental Setup

4.1 Sinalgo framework

In our experiments, we use the network simulator Sinalgo (Simulator for Network

Algorithms), which is developed by Distributed Computing Group at ETH Zurich,

Switzerland1. Sinalgo differs from other network simulators such as OMNeT++2

and ns-33 in a sense that it is designed to facilitate the verification and prototyping

process of network algorithms instead of simulating details of network protocol

stack or communication channel. Some of the features that make Sinalgo attractive

to us include:

• Quick prototyping

• High performance

• Straight forward extensibility

Sinalgo supports two modes, synchronous and asynchronous mode. Synchronous

mode is based on rounds and events could take place in parallel within such rounds.

Asynchronous mode is discrete event driven. Since our recovery scheme does not

require a discrete event driven feature, we have decided to choose the synchronous

mode. The calling sequence of a synchronous simulation in Sinalgo is shown in

Alg. 4. At the beginning of each round, we randomly disable selected nodes using

1http://disco.ethz.ch/projects/sinalgo/index.html
2http://www.omnetpp.org/
3http://www.nsnam.org/
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a predefined node failure probability p to reflect that nodes are error-prone at any

round, as shown from line 3 to line 7 in Alg. 4.

Algorithm 4 Calling sequence in Sinalgo
1: while round number r < threshold do
2: r = r + 1
3: for every sensor node i do
4: if node i.alive == true and RNG< p then
5: i.alive == false
6: end if
7: end for
8: handle global timers
9: adjust according to mobility/connectivity/interference models

10: for every node in the simulation do
11: gather all the messages this node has received
12: handle timers that fire in this round
13: process the arriving messages
14: end for
15: end while

4.2 Models

Sinalgo adopts the idea of models to achieve high extensibility of the simulation

environment. Models are used to describe the characteristics of nodes. There is

one global model, i.e., message transmission model, which is an instance owned

by the whole simulation framework. For each node, it has five instances of node

specific models: distribution, connectivity, mobility, interference, and reliability

model. Node specific models are instances that a node will have upon creation and

different nodes can have different implementation of models. The main function of

each model is listed in Table 4.1 and a detailed explanation of these models follows.

Transmission model This model is applicable to all nodes and all messages trans-

mitted. In our experiments, we set a constant time delay of 1, which indicates that

it takes one round for a message to arrive at its target.
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Model Description
Transmission How long it takes a message to arrive at its destination
Distribution Initialize the positions of the nodes
Connectivity If two nodes can be considered as connected

Mobility How the nodes change positions
Interference Whether simultaneous transmissions would interfere
Reliability The possibility that one message may be dropped

Table 4.1: Different models and their functions in Sinalgo

Distribution model We use a uniform node distribution model and a grid node

distribution model in our experiments. The uniform model randomly scatters the

nodes in the simulation area while the grid model places the nodes on the intersec-

tion points of a grid which covers the entire deployment area. In order to calculate

the position of each node, both models need the dimensions of the deployment area

as the input. The grid model also takes the total number of nodes into consideration

while the uniform model utilizes a random number generator to initialize the node

positions.

Connectivity model As an important property of wireless networks, connectivity

has been investigated by many researchers. Several factors can affect the connectiv-

ity of a network including but not limited to network density, communication range,

initial deployment. In our simulation, the Unit Disk Graph (UDG) is used as the

connectivity model. UDG is widely used in WSN topology design as a geometric

graph theory model. A pair of nodes are considered as connected iff the distance

between them is no greater than a certain specified threshold. Figure 4.1 (a) and (b)

are the graphic representation of the UDG model for uniform node distribution and

grid node distribution, respectively. In this figure, the diameter of the disk around

each node represents the distance threshold. Thus, two nodes are connected iff there

is intersection between the corresponding disks.

Mobility model This model defines how the nodes move. For example, a node

may move according to a direction or move completely randomly. As discussed in
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(a) (b)

Figure 4.1: UDG model for (a) uniform node distribution and (b) grid node distri-
bution

section 3.1, our scheme relies on static topology. Thus, no mobility model has been

utilized.

Interference model This model decides if the received message should be dropped

due to the interference caused by either environmental noise or message collisions

at this node. Our experiments assume that there is no interference.

Reliability model This model is used to simulate a lossy network in which mes-

sages will be dropped for whatever reason. Since we assume that all the transmis-

sions are reliable, we incorporate the ReliableDelivery model which does not drop

any message.

4.3 Message types

There are eight different types of messages involved in the simulation. The message

types, senders, receivers and functions are shown in Table 4.2.

UpdateMsg Our scheme requires that when a node captures some new data, a

copy of the newly captured data is sent to all its immediate neighbors. This is done

by using UpdateMsg messages. In each round, a node deals with UpdateMsg twice.

When a node updates its own sensed value, it also broadcasts a UpdateMsg message

to all its neighbors. Then this node needs to gather all the UpdateMsg messages it
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Message Type Sender Receiver Function
UpdateMsg Sensor Sensor Broadcast updates to neighbors
QueryMsg Sink Sensor Specify the query area and type
QueryResp Sensor Sink Contain the query response

ReqParityMsg Sink Rparity Ask for ParityData
ReqParityResp Rparity Sink Contain ParityData
ReqDataMsg Sink /Rparity Rdata Ask for SensedData
ReqDataResp Rdata Sink /Rparity Contain SensedData

NotifyMsg Sink Sink /Rparity Notify the receiver to initiate
a localized recovery

Table 4.2: Different message types in our simulation

has received from its neighbors and conduct XOR operations and append the calcu-

lation results in the parity section. Then the UpdateMsg messages are discarded.

QueryMsg The query area for a simulation run is set prior to any message trans-

mission. In each round of the simulation, the sink will send a QueryMsg message

to all the nodes specifying the center and the radius of the query area. When the

sensors receive this message, they will calculate to decide if they are within the

query area. In our experiments, we specify that the QueryMsg message asks for the

sensed values which the sensors have collected in the most recent simulation round.

QueryResp Once a node has received a QueryMsg and has decided that it is

indeed within the query area, this node will immediately generate a QueryResp

message and send this message back to the sink. Sensors include the sensed values

they have collected in the most recent simulation round in the QueryResp message.

The next five types of messages are directly associated with the recovery process.

The message exchange diagram of both centralized and localized recovery approach

is shown in Fig. 4.2.

ReqParityMsg This type of message is only applicable to the centralized recov-

ery approach. When the sink is aware of a node failure and has chosen one neighbor
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Figure 4.2: Message exchange in the recovery process for (a) centralized approach
and (b) localized approach

of the failed node as the Rparity node, the sink needs to send a ReqParityMsg mes-

sage asking for the ParityData and deliver it to Rparity.

ReqParityResp Upon receiving the ReqParityMsg from the sink, the sensor node

will send a ReqParityResp message containing all its ParityData to the sink to

facilitate the data recovery process.

ReqDataMsg In the centralized recovery approach, the sink needs to send a Req-

DataMsg message to each Rdata node that resides outside of the query area for their

SensedData. In the localized recovery approach, it is theRparity node which sends

this type of message to all the Rdata nodes.

ReqDataResp When the Rdata node receives the ReqDataMsg message, it will

generate a ReqDataResp message containing all its SensedData as a response and

send it back to the sender of the corresponding ReqDataMsg message.

NotifyMsg This type of message applies to the localized recovery approach only.

When the sink decides which node is chosen as Rparity node for the recovery, the

sink sends a NotifyMsg message to the Rparity node to notify that a localized re-

covery is needed.
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Key <Sensor> Value <Data>
2 1,5,3,2,9,3,6,...
... ...
15 4,8,6,0,1,3,5,...
... ...
42 8,3,6,4,2,1,6,...
... ...
58 7,6,3,7,1,9,2,...

Table 4.3: Excerpt from DataTable

4.4 Data structure at the sink

There are two types of nodes in our simulation: sink and sensors. The sink is a

super node with enough storage and computing capacity. As the core component of

the proposed fault recovery scheme, the sink maintains two data structure: a hash

map named DataTable for storing the data of the received QueryResp messages and

a hash map NeighborTable for storing the network topology.

In the centralized recovery approach, the sink needs the SensedData of the

Rdata nodes. In case some of the Rdata nodes are within the query area, they have

already sent their sensed values of each round in the QueryResp messages. Thus, a

DataTable is maintained to keep track of such values so that the sink does not need

to send new requests to these Rdata nodes. In general, DataTable is used to store the

SensedData of the nodes that are within the query area, based on the QueryResp

messages originating from these nodes. The hash map entries can be presented as

<Sensor; Data>pairs. When the sink receives a QueryResp message, the sink will

update Data of the corresponding message sender in the DataTable by appending

the sensed values wrapped in the QueryResp message to the end of the original

Data. Assume that the sensed values are integers, an excerpt of the DataTable is

given in Table 4.3.

NeighborTable is incorporated so that the sink can have a complete graph of the

network topology which can be used for the recovery process. It can be represented

as<Key; Value> pairs. Key stores sensor node objects while Value is a class which

contains Degree and NodeList. Degree is simply the size of NodeList and NodeList
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Key <Sensor> Value <Degree;NodeList>
2 7;<15, 34, 60, 73, 91, 94, 98>
... ...
15 3;<2, 42, 58>
... ...
42 6;<15, 29, 58, 64, 94, 95>
... ...
58 5; <15, 42, 64, 94, 95 >

Table 4.4: Excerpt from NeighborTable

is the vector composed of the key’s immediate neighbors. More specifically, the

hash map entries can be presented as <Sensor; <Degree; NodeList>>. Table 4.4

is an excerpt from the NeighborTable built in one simulation run.

Here is a simple example of how to use both hash maps to fulfill a centralized

recovery. Assume that the sink detects node 15 has just failed. The sink searches

NeighborTable and knows that node 15 has three neighbors, i.e., node 2, 42, 58.

Assume that all these nodes are valid recovery candidates. According to Alg. 1,

node 58 is chosen as the best recovery candidate since it has the lowest degree

among all the recovery candidates. Now we need the SensedData of node 42, 64,

94 and 95 and ParityData of node 58 to fulfill the recovery of Node 15. Then the

sink sends a ReqParityMsg to Node 58 and Node 58 wraps all its ParityData in the

ReqParityResp message. Meanwhile, the sink looks up in the DataTable for tuples

of node 42, 64, 94 and 95. If any tuple is missing, the sink generates ReqDataMsg

to that node requesting for its SensedData. By XORing SensedData of node 42,

64, 94, 95 and ParityData of node 58 we can recover the data of node 15.
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Chapter 5

Results and Analysis

As discussed in section 3.2, our recovery scheme is able to prolong the network

lifetime by incorporating data redundancy into wireless sensor networks. There-

fore, we are interested in to what extent the proposed scheme can extend the net-

work lifetime under different scenarios and network settings. On the other hand,

our scheme inevitably requires more message transmissions for both the recovery

process and the synchronization of sensed values between sensor nodes and their

neighbors, which impose additional communication overhead. Thus we conduct

experiments and use the energy cost model as defined in section 3.5 to investigate

the energy cost for each round. In section 5.6 the effect of various initial energy

supply on the network lifetime is discussed. To the best of our knowledge there

is no other approach that we could use in order to make a fair comparison with

respect to the our experimental results. We only use the no recovery scheme for

comparison.

Four key objectives guide the design of the following experiments:

• showing the trend of network lifetime as the node failure probability increases

• investigating the relations between network lifetime and different network

parameters

• showing how the size of the query area affects the network lifetime

• presenting the energy cost according to the energy consumption model in

section 3.5
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As defined in section 3.6, we consider the time interval from the point that a

WSN starts operation to the point that a node failure is observed and can not be

recovered as the network lifetime. Since Sinalgo adopts the concept of round to

achieve clock synchronization within the network, we use the number of rounds to

indicate the network lifetime. The first round a node failure takes place and can no

longer be recovered is considered as the end of the network lifetime.

In each section from 5.1 to 5.4, we vary one parameter and fix the others to

investigate the impact of the varied parameter. For a specific parameter setting, each

point in the figure represents the average result of S different simulation runs using

distinct seeds. We choose S = 20 for section 5.1- 5.4. Since the network lifetime is

a random variable, a 95% confidence interval of the S samples is included to give an

estimate of the true network lifetime. For a fixed parameter setting, we denote the

observed network lifetime of the ith simulation run as Tirec and Tino for the recovery

scheme and no recovery scheme respectively. The average network lifetime using

this parameter setting is defined as the sample mean of the S runs. The average

network lifetime for the recovery scheme, denoted as Trec, is given in Eq. 5.1 and

the average network lifetime for no recovery scheme, denoted as Tno, is given in

Eq. 5.2.

Trec =
1

S

S∑
i=1

Tirec (5.1)

Tno =
1

S

S∑
i=1

Tino (5.2)

We also define a performance gain ratio,G, to indicate how much performance gain

the recovery scheme can have over no recovery scheme:

G =
Trec
Tno

(5.3)

The sensor deployment field is in the size of 500m× 500m. A sink is located

at the center of the deployment field and the sensors are created using the models as

specified in section 4.2. A few notations used in this chapter are listed in Table 5.1.

In each section from 5.1 to 5.4, we vary each of the first four parameters according

to the given range and fix the other three parameters using their default values.
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Notation Description Values
p The probability that one sensor would fail [0.05%, 0.5%]

in one single round Default: 0.1%
W Communication range of sensors [40, 80] m

Default: 60 m
N Total number of deployed nodes [200, 800]

Default: 400
Q The percentage of the deployment field [5%, 30%]

that is covered by the query Default: 10%
Nin Number of nodes within the query area Eq. 5.7
Nnb Average number of neighbors per node Eq. 3.10
L The number of rounds until the first node failure -

takes place
Pfail The probability that at least one failure happens Eq. 5.4

within the query area in each round
Pvalid The probability that a recovery candidate Eq. 5.6

is considered as valid

Table 5.1: Notations used in the experiments

5.1 Node failure probability

Since the motivation of proposing a fault tolerant scheme is to cope with node fail-

ure, we want to investigate how the scheme performs under different node failure

probability ratios. The node failure probability, p, indicates the probability that one

sensor node would fail due to whatever reasons in one single round. The value of

node failure probability reflects the reliability of the sensor nodes and the environ-

mental conditions. Even though the numerical value of node failure probability is

difficult to be measured in real WSN applications, we use it as a conceptual indica-

tion of the error-prone nature of the WSNs. For poor quality sensors or extremely

harsh environment, the node failure probability should be relatively high. We con-

sider whether one sensor node fails as a Bernoulli trial with the probability p to

observe node failure. The probability distribution of node failure among different

nodes is i.i.d.

To investigate the trend of network lifetime and performance gain ratio under

various node failure levels, we vary the node failure probability in each round from
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0.05% to 0.5% with 0.05% as the increment. The total number of deployed nodes

N , the communication range W and the query size percentage Q are set to be their

corresponding default values.

The network lifetime of uniform node distribution and grid node distribution

is shown in Fig. 5.1(a) and (b). For both node distributions, as the node failure

probability increases, the network lifetime of both schemes drops.
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Figure 5.1: Network lifetime under different node failure probability for (a) uniform
node distribution and (b) grid node distribution

For no recovery scheme, the probability that at least one node failure takes place
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within the query area during one single round, Pfail, is given by Eq. 5.4:

Pfail = 1− (1− p)Nin (5.4)

For this experiment,Nin is considered to be fixed since neither the query size nor the

network density changes. When we increase p in the range of (0, 1), the resulting

Pfail increases monotonically. This implies that within a round, there is a higher

possibility that at least one node failure may take place. The number of rounds until

the first node failure occurs, L, is a geometrically distributed random variable. The

expected value of L is given by Eq. 5.5:

E[L] =
1

Pfail
(5.5)

Therefore, when Pfail increases, E[L] decreases, which indicates that the first node

failure is expected to come earlier when the node failure probability becomes larger.

Thus, we observe a shorter network lifetime for no recovery scheme.

For our recovery scheme, the network lifetime depends on when a failed node

can no longer be recovered. The recovery algorithm as defined in section 3.3 builds

a recovery candidate setR and a valid candidate setR′. How p varies will not affect

the composition of R. However, the size of R′ is associated with p. For a specific

recovery candidate Ci in R, there are two requirements that Ci must meet in order

to join R′: first, Ci is alive and second, all the direct neighbors of Ci, except the one

we aim to recover, are alive. Thus, the probability that Ci is considered as valid,

Pvalid, is given in Eq. 5.6.

Pvalid = (1− p)Nnb (5.6)

When p increases, Pvalid decreases monotonically, which means that each recovery

candidate experiences a more difficult time being chosen as a valid candidate. As a

consequence, R′ has a higher chance to be an empty set, resulting a shorter network

lifetime. Therefore, the network lifetime of the recovery scheme is also expected to

decrease as the node failure probability increases.

Since the network lifetime of both schemes is expected to decrease, the perfor-

mance gain ratio is worth investigating. As shown in Fig. 5.2, with uniform node

distribution, the maximum value of G is achieved when p = 0.15% and afterwards
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Figure 5.2: Performance gain ratio under different node failure probability

G drops. For grid node distribution,Gmonotonically decreases as p increases. This

means that for p ≥ 0.15% the lifetime performance drop of the recovery scheme

is greater than the no recovery scheme, which indicates that the increase of p has a

relatively larger impact on the recovery scheme. G decreases by 42.1% and 42.8%

from the maximum value to the minimum value for uniform and grid node distri-

bution, respectively. For the worst case, i.e., when the node failure probability is as

large as 0.5%, the recovery scheme can still achieve a network lifetime three times

as long as that of no recovery scheme.

5.2 Communication range

Given the same number of deployed sensor nodes, the communication range W has

a large impact on the connectivity of the network. Controlling the communication

range directly affects the number of neighbors a node can communicate with. Since

our proposed recovery scheme depends on the neighborhood relations, it is worth-

while investigating how the network lifetime gain will be influenced by W . The

first problem is how to set a reasonable range of W to conduct the experiment. A

network composed of 400 nodes with a W , which is below 40 meters, has a rela-

tively high chance of not being connected, while a network with a W larger than
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Communication range Nnb of uniform dist. Nnb of grid dist.
40 7.04 7.41
45 9.18 7.41
50 11.57 11.01
55 14.20 17.85
60 17.10 17.85
65 20.24 17.85
70 23.63 21.09
75 27.27 24.09
80 31.17 30.95

Table 5.2: Average number of neighbors using various communication range

80 meters yields a large average number of neighbors (more than 30). Thus, in this

experiment, we varyW from 40 meters to 80 meters with 5 meters as the increment.

The other parameters, N , p, and Q are set using their default values.

As shown in Eq. 3.10, for a randomly and uniformly distributed WSN, the aver-

age number of neighbors per node is proportional toW 2 given that the total number

of nodes and the dimension of deployment field are fixed. For grid distribution, the

average number of neighbors does not grow linearly with W 2 because sometimes

increasing W does not necessarily create more edges between nodes. Table 5.2

shows the average number of neighbors per node for uniform and grid node dis-

tribution as a function of W . Note that the numerical results of uniform node dis-

tribution are obtained from the calculation according to Eq. 3.10 while the results

of grid node distribution come from our simulation. For uniform node distribution,

since we use different seeds for every simulation run, the node positions of two

simulation runs are never the same. For grid node distribution, the node positions

are fixed as a 20× 20 grid and changing W affects the neighborhood relations only.

Differently from section 5.1, both the size of recovery candidate set R and the

size of valid candidate set R′ can be affected by W . The increase of W brings

more recovery candidates as Nnb increases. For a recovery candidate Ci in R, the

probability that Ci is considered as valid is the same as defined in Eq. 5.6. As Nnb

increases, Pvalid decreases monotonically, which indicates that it is more difficult

for Ci to be considered as a valid candidate. Thus, a larger W brings more recovery
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candidates, which has a positive effect on the recovery process. However, each

recovery candidate has a lower probability to be valid, which has a negative impact

on the network lifetime. The total effect of a larger recovery candidate set R and a

lower Pvalid for each recovery candidate depends on which factor plays a dominant

role.
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Figure 5.3: Network lifetime using different communication range for (a) uniform
node distribution and (b) grid node distribution

The network lifetime for uniform and grid node distribution is shown in Fig. 5.3

(a) and (b), respectively. From Fig. 5.3 (a) we can see that when W varies from 40

to 45 meters, the network lifetime of the recovery scheme increases by 46 rounds,
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which equals to a 32.9% increase. The corresponding Nnb varies from 7.04 to

9.18. This performance improvement indicates that at this stage, increasing Nnb

has an overall positive impact on prolonging the network lifetime since the positive

effect of a larger R outperforms the negative effect of a lower Pvalid. After this the

network lifetime remains quite smooth from 50 to 70 meters and the corresponding

Nnb is in the range from 11.57 to 23.63. In this period, the increase of Nnb does

not significantly affect the network lifetime since the two factors offset each other.

When W goes beyond 70 meters, a performance drop of 32 rounds takes place,

indicating that the negative effect of a decreasing Pvalid is dominant.

The analysis of the experiment results leads us to believe that there exists a cer-

tain threshold for Nnb, below which increasing W can have better lifetime perfor-

mance and above which increasing W may even result in an opposite effect. More

specifically, for this parameter setting, when Nnb is below 9.18, more neighbors

means more recovery candidates and all candidates have a fairly large probability

to become valid candidates. When Nnb goes beyond 9.18, even though increas-

ing W indicates more recovery candidates, each recovery candidate experiences a

more difficult time being chosen as the valid recovery candidate. In short, the av-

erage number of neighbors is a double-edge sword which can bring more recovery

candidates with lower probability to become valid candidates. Thus the average

number of neighbors should be carefully chosen. Under this parameter setting, a

Nnb less than 20 seems to be suitable.

For grid node distribution, the network lifetime of the recovery scheme has a

similar trend as shown in uniform node distribution. Note that for W = 40 and

W = 45, the connectivity of the network is identical since Nnb is both 7.41. The

same holds for W = 55, W = 60, and W = 65. Since the node distribution is

fixed, the same connectivity implies the same network lifetime performance. When

W is in the range of 40 - 50 meters, the network lifetime achieves the highest

values. The corresponding Nnb is no greater than 11.01. After that the network

lifetime decreases by nearly 50 rounds when W increases from 50 to 55 meters.

The corresponding Nnb increases from 11.01 to 17.85, which can be considered to

be a significant increase. As previously discussed, the considerable increase in Nnb
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brings more recovery candidates which are less likely to be considered as valid,

resulting in the lifetime decrease. The same performance degradation is observed

from W = 70 to W = 80, which comes with a non-negligible increase of Nnb. We

do not recommend the average number of neighbors go beyond 20 under current

parameter setting.

The network lifetime of no recovery scheme does not change significantly asW

increases. As discussed in section 5.1, Pfail is given by Eq. 5.4. In this experiment,

both p and Nin are considered as fixed. Thus, increasing W will not affect the

lifetime of no recovery scheme.

The performance gain ratio, G , as a function of the communication range, W ,

is shown in Fig. 5.4. In general, G decreases as we enlarge W for both distribu-
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Figure 5.4: Performance gain ratio for different communication range

tions. For grid node distribution, the recovery scheme achieves a lifetime at least

four times as long as that of no recovery scheme and G decreases by 39.2% in the

best case to the worst case scenario. For uniform node distribution, the lifetime

of recovery is at least three times as long as that of no recovery scheme and G

decreases by 42.3% it the best case to the worst case scenario.
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5.3 Node density

We are very interested in how the network topology affects the network lifetime

and the performance gain ratio G. Typically, the topology determines which node

is allowed to communicate with which other nodes. Since we already made a few

assumptions such as we are dealing with flat WSNs and sensors are static after

deployment, the problem of topology control is all about node density and commu-

nication range. In the previous section we discussed communication range and in

this section we will explore the impact of node density.

In this experiment, p, W and Q are set to be their default values. We vary the

total number of deployed nodes from 200 to 800, with the increment being 100. If

the total number of nodes is below 200, for a uniformly distributed network with

60 m as the communication range, there is a higher chance that the network is not

connected. If the total number of nodes exceeds 800, the average number of neigh-

bors a node has will be greater than 32 for both node distributions. We consider

any scenario beyond this point to be too dense for a real WSN application, since an

extremely high density will cause problems for MAC and routing protocols. The re-

sults for uniform and grid node distribution are shown in Fig. 5.5 (a) and (b) respec-

tively. In Fig. 5.5 (a) we can see that as the total number of nodes N increases, the

network lifetime of both no recovery scheme and the recovery scheme decreases.

For no recovery scheme, this trend is anticipated, since no recovery scheme consid-

ers the first node failure as the termination of network lifetime. For uniform node

distribution in a given deployment field, the number of nodes that reside within the

query area, Nin, is proportional to the total number of nodes, N , and the percentage

of the deployment field covered by the query, Q, as shown in Eq. 5.7:

Nin = N ×Q (5.7)

For grid distribution, the previously indicated relations holds true approximately.

As shown in Eq. 5.4, when Nin increases, Pfail increases monotonically, which

results in a lower expected value of L. Thus, the first node failure is expected to

come earlier when the network becomes denser.

For the recovery scheme, the average number of neighbors Nnb increases as the
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Figure 5.5: Network lifetime achieved with different total number of nodes for (a)
uniform node distribution and (b) grid node distribution

network gets denser. For uniform node distribution, Nnb increases linearly with N

as defined in Eq. 3.10 and for grid node distribution, Nnb increases monotonically

with N . The Nnb of both node distributions with different total number of deployed

nodes is given in Table 5.3.

Similar to the discussion in section 5.2 , a larger Nnb can not guarantee a longer

lifetime for recovery scheme since each candidate within the recovery candidate

set has a less likelihood to be valid. According to Eq. 5.6, a larger Nnb yields a

smaller Pvalid. However, the drop of Pvalid is not the only reason why the recovery
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Total number of nodes Nnb of uniform dist. Nnb of grid dist.
200 8.05 7.16
300 12.57 10.85
400 17.10 17.85
500 21.62 18.08
600 26.14 25.12
700 30.67 32.17
800 35.19 32.39

Table 5.3: Average number of neighbors using various total number of nodes

candidates are less likely to be considered as valid. Note Pvalid of different recovery

candidates can not be considered as independent. As the network becomes denser,

there is a greater chance that two or more recovery candidates share some neigh-

boring nodes in common. Once a common node fails, all the associated recovery

candidates are considered as invalid and therefore can not be used to initiate the

recovery process. Consider the example in Fig. 5.6. In this case, assume we are

 D6    P6

 D5    P5

 D3    P3

 D1       P1

 D4       P4 D2      P2

 D7       P7

Figure 5.6: An example of common node shared by recovery candidates

trying to recovery node 1. Node 1 has two recovery candidates: node 3 and node

4. Different from the topology shown in Fig. 3.2, in this case, recovery candidate

node 3 and node 4 share the same neighbor: node 7. Should node 7 have failed,

neither node 3 nor node 4 can be considered as a valid candidate for the recovery.

The denser the network is, the more likely that this scenario can be observed. Thus,

apart from the decrease of Pvalid, recovery candidates are less likely to meet the
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requirements of valid candidates as we increase the network density.

The performance gain ratio obtained when we increase the network density is

shown in Fig. 5.7. We can see that for uniform node distribution, G does not sig-
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Figure 5.7: Performance gain ratio under different total number of nodes

nificantly change as N increases. Our recovery scheme can achieve a lifetime four

times as long as that of no recovery scheme regardless of the network density for

uniformly distributed WSNs. The performance gain ratio for grid node distribution

shows greater variance. This is due to the fact that the average number of neighbors

of the grid node distribution does not grow linearly as the density increases. For

example, from N = 300 to N = 400, G drops obviously and the corresponding

Nnb has a significant increase from 10.85 to 17.85. From N = 400 to N = 500, G

does not change significantly and the corresponding Nnb has a minor increase from

17.85 to 18.08. A 38.7% drop of G is observed from the best case to the worst case

for grid node distribution.

5.4 Query size

Since our definition of network lifetime is associated with observed node failures

within a given query area, one may question if the size of the query area matters to

the outcome. In this experiment, we aim to explore how the query size will affect
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the lifetime gain of our scheme. We vary the percentage of the deployment field

that is covered by the query from 5% to 30%. The total number of nodes is set to

be 400 with a communication range of 60 meters. The node failure probability is

set to be 0.1%. The network lifetime is shown in Fig. 5.8.
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Figure 5.8: Network lifetime achieved using different query size for (a) uniform
node distribution and (b) grid node distribution

From Fig. 5.8 we can see that for both node distributions, the network lifetime

of both recovery scheme and no recovery scheme decreases as the query size in-

creases. As shown in Eq. 5.7, Nin increases as we enlarge query size Q. Therefore,

the network lifetime of no recovery scheme is expected to decrease since the first
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node failure is expected to come earlier, as defined in Eq. 5.4 and Eq. 5.5. For the

recovery scheme, given this parameter setting where Nnb and p are fixed, the total

number of recovery candidates and Pvalid for each recovery candidate will not be

affected by the query size. Thus, the probability that each node failure is recover-

able stays the same no matter how the query size varies. However, as Nin increases,

the probability that all the nodes are recoverable decreases. Thus, the first non-

recoverable node failure is expected to co me earlier and a shorter network lifetime

is observed for the recovery scheme when the query size increases.

The performance gain ratio of network lifetime for different query sizes is

shown in Fig. 5.9. Combined with Fig. 5.8, we can conclude that even though

the absolute value of network lifetime decreases as we enlarge the query size, the

relative performance gain ratio does not. More specifically, the value G of uniform

node distribution increases steadily. The result implies that the network lifetime

degradation of no recovery is faster than that of recovery scheme. In other words,

the proposed recovery scheme is more robust to the change of query size. In the

worst case scenario, the recovery scheme can still achieve a lifetime 3.70 and 3.13

times as long as no recovery scheme for uniform and grid node distribution, respec-

tively.
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Figure 5.9: Performance gain ratio for different query size
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5.5 Communication overhead

In section 3.5 we define the energy consumption model for the proposed recovery

scheme. In this section, we use this model to calculate the energy cost of Eupdate,

Equery and Erecovery for each round. For the experiments in this section, p, W , N ,

Q are all set to be the default values.

As discussed in section 4.3, the query asks for the sensed values which the sen-

sors have collected in the most recent simulation round. Table 3.1 lists the parame-

ters we need for the calculation. Note that the QueryMsg message has a fixed size

of 256 bits. The QueryResp message and the UpdateMsg message has a fixed size

of 64 bits, since we assume that the size of the sensed values in one round is 64 bits.

All the recovery request messages, including ReqParityMsg, ReqDataMsg, and No-

tifyMsg, have a fix size of 64 bits too. The size of the recovery request response

message, i.e., ReqParityResp and ReqDataResp message, grows linearly with the

round number. Denote the round number as T , given that the size of the sensed

value in one round is 64 bits, the size of the recovery request response message in

the T th round is:

Lresp2 = 64T (5.8)

For simplicity, we neglect the fact that a node does not send the update messages to

its neighbors or respond to the QueryMsg message after its failure.

We begin with the explanation of a specific simulation run. In one run, the cen-

ter of the query area is located at coordinates [331, 359]. Five node failures take

place in rounds 14, 26, 77, 98 and 107. The failure that takes place in round 107 is

the first non-recoverable node failure. Thus, the network lifetime for no recovery

scheme and the recovery scheme is 14 rounds and 107 rounds, respectively. Equery

and Eupdate can be calculated according to Eq. 3.16 and 3.17. For the centralized

recovery, only Rdata nodes outside of the query area need to send the responses to

the sink. In this run, the number of Rdata nodes that reside outside of the query

area is 4, 2, 3, 2 for rounds 14, 26, 77 and 98, respectively. For the localized re-

covery, note that in order to fulfill the recovery, all the Rdata nodes need to send all

their SensedData to the Rparity node. The number of Rdata nodes for rounds 14,
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Figure 5.10: Energy cost composition in each round for (a) the centralized recovery
approach and (b) the localized recovery approach

26, 77 and 98 is 15, 19, 10, 13, respectively. Fig. 5.10 (a) and (b) shows the en-

ergy cost composition for the centralized recovery and localized recovery approach,

respectively, for this specific simulation run.

From Fig. 5.10 (a) and (b), we can see that in the beginning, Erecovery only

accounts for a small proportion of the overall energy cost. As the round number

increases, Lresp2 increases accordingly, resulting in an increase of Erecovery. The

recovery scheme regularly pays a costEupdate to keep redundant information within

the network for the recovery. Eupdate can be expensive, which is three times more
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Run number Total energy cost of Total energy cost of Ratio
Equery (mJ) Eupdate (mJ)

1 669.07 2577.41 3.85
2 704.85 2625.59 3.73
3 1296.93 5082.56 3.92
4 1259.11 4432.19 3.52
5 667.57 2625.59 3.93
6 1309.04 4673.07 3.57
7 577.75 2240.18 3.88
8 652.66 2770.12 4.24
9 933.20 3275.96 3.51

10 923.96 3589.11 3.88
11 576.16 2384.71 4.14
12 575.18 2553.32 4.44
13 532.63 1878.86 3.53
14 462.82 1686.16 3.64
15 1384.88 5154.83 3.72
16 1239.21 4913.95 3.97
17 940.51 3878.16 4.12
18 987.58 3781.81 3.83
19 721.74 3107.35 4.31
20 768.48 3227.79 4.20

Average 859.17 3322.93 3.87

Table 5.4: Total energy cost for the query and the update in different simulation
runs

than Equery in this case. However, without the proposed scheme, there is data loss

as early as round 14.

To make the results more generic, we conduct 20 simulation runs to compare

the total energy consumption of Eupdate and Equery. Erecovery is ignored because the

other two categories are two orders of magnitude greater than Erecovery. We sum up

the energy cost of each category till the network lifetime of the proposed scheme

ends. The results are shown in Table 5.4. As shown in this table, the energy cost for

updating information is 3.87 times as expensive as the energy cost for the query on

average. The communication overhead is an inevitable drawback of the proposed

scheme. For mission critical WSN applications, we argue that it is still worthwhile

to invest in the extra message transmissions to achieve higher data availability.
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5.6 Initial energy supply

As discussed in the previous section, the communication overhead caused by the

proposed recovery scheme is not trivial compared to the query cost. Given the

same amount of initial energy, the network which adopts the recovery scheme will

run out of energy faster than the network with no recovery scheme involved. In

sections from 5.1 to 5.5, we did not take any energy constraint into account. This

implies that there is infinite initial energy supply for sensors in those experiments.

As one may argue, infinite energy supply is not realistic. In this section, we aim to

investigate how different initial energy supply levels affect the performance of the

recovery scheme and no recovery scheme. The parameters, p, W , N , and Q are set

to be their default values. Under such parameters, we set the range of initial energy

supply per node to be [5mJ, 50mJ]. This setting is pessimistic in the sense that

batteries would typically have a much larger charge1 making the energy overhead of

our approach be even less noticeable when comparable to the inherent probability

of failure. Now the reason for a node failure is two folds: either due to energy

depletion or due to the node failure probability p. The network lifetime achieved

for uniform node distribution and grid node distribution is presented in Fig. 5.11 (a)

and (b), respectively.

For both node distributions, different levels of initial energy supply do not affect

the network lifetime for the no recovery scheme. The moment that the first node

failure takes place, which is considered as the termination of network lifetime for

the no recovery scheme, the sensors have not suffered from energy depletion in most

cases, even when the initial energy supply per node is as low as 5mJ. Thus, the node

failure resulting from energy depletion can barely affect the network lifetime for the

no recovery scheme. The trend of network lifetime is therefore the same as if there

were no energy constraint.

For the recovery scheme, when the initial energy supply varies in the range of

[5mJ, 20mJ], it can have a large impact on the network lifetime. Decreasing the

initial energy supply can shorten the network lifetime significantly. In this range,

1http://www.allaboutbatteries.com/Energy-tables.html
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Figure 5.11: Network lifetime with various initial energy supply for (a) uniform
node distribution and (b) grid node distribution

sensors typically run out of energy before the first node failure caused by p takes

place, resulting in an early termination of network lifetime. Therefore, the network

lifetime can not achieve as high values as the cases when there is infinite energy

supply. When sensors are charged with more than 20mJ initial energy, the energy

can usually last longer than the first non-recoverable node failure caused by p. Thus,

varying the initial energy supply in the range above 20mJ will have very limited

impact on the network lifetime.

The performance gain ratio as a function of the initial energy supply is shown
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in Fig. 5.12. The trend of both node distributions is very similar. Within the range
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Figure 5.12: Performance gain ratio with various initial energy supply

[5mJ, 20mJ],G achieves rather small values and increasing the initial energy supply

leads to the increase of G. After 20mJ, G remains quite stable no matter how the

initial energy supply varies. This result indicates that if the initial energy supply is

very limited, the performance gain is not as substantial as the cases with unlimited

energy supply.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

In recent years, the proliferation of various wireless sensor network applications

resulted in an increasing research interest in WSNs. Sensor nodes come along with

limited energy supply due to their small sizes and the cost-effectiveness consid-

eration. When the energy depletes, a node inevitably fails. The fact that sensors

are often deployed in harsh and unattended areas renders them more vulnerable to

physical damage resulting from the environment. Moreover, recharging or replac-

ing the failed nodes is not feasible in most cases. Usually, the sink issues queries

for gathering the sensed values from the sensor nodes. When a node fails, the query

responses from the sensor nodes will be incomplete, which may mislead the user.

Without any fault recovery mechanism, the user can not have access to the sensed

data of the failed node ever since it failed. We argue that the data stored in the failed

node is valuable. Therefore, it is desirable for a WSN to have some fault tolerance,

more specifically, fault recovery ability so that the network can provide the most

accurate information to the user in the presence of node failures.

In this thesis project, we proposed a fault recovery scheme to recover the data

after node failures take place in WSNs. Our scheme is good for mission critical

applications where the sensed values of each sensor node matter and the system

designer is willing to pay for some communication overhead in exchange for higher

data availability. We designed the recovery scheme in a generic way so that it

can be integrated with other WSN protocols/algorithms. Our work differs from
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previous research efforts which isolate the failed nodes in the communication layer

and ignore the data of the failed node.

We used the network lifetime to indicate the performance of the proposed scheme.

However, in WSN research, there is no universal definition of network lifetime. Re-

searchers use different metrics, e.g., number of alive nodes, coverage, and connec-

tivity, to define the network lifetime. In our work, in order to measure to what extent

the recovery scheme can tolerate node failures, we defined the network lifetime as

the time interval from the point that a WSN starts operation to the point that a node

failure is observed and can not be recovered.

As authors in [42] have pointed out, there is always a trade-off between the com-

plexity of fault tolerance design and the resource consumption of sensor networks.

By adding the fault recovery feature into WSNs, the proposed scheme causes ex-

tra communication overhead. In order to investigate the energy cost, an energy

consumption model was presented in section 3.5. Using this model, the communi-

cation cost of querying, updating redundant information and the recovery process

can be quantified.

We used the network simulator Sinalgo to test the proposed recovery scheme.

We conducted a series of experiments to show the network lifetime gain of the pro-

posed recovery scheme under different parameters: node failure probability, com-

munication range, node density and query size. We also compared the network life-

time of the proposed scheme with no recovery scheme. Since the proposed scheme

relies heavily on the neighborhood relations, the average number of neighbors Nnb

is an important factor. The experimental results lead us to believe that for the re-

covery scheme, there is a turning point for Nnb, below which increasing Nnb will

yield better lifetime performance and above which increasing Nnb will result in op-

posite effect. Even in the worst case scenario, the network lifetime of the proposed

scheme can still achieve at least three times as long as the lifetime of no recovery

scheme.
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6.2 Future work

As shown in section 3.5, we have not implemented a fault tolerant multi-hop rout-

ing protocol between sensor nodes and the sink. Instead, we considered a multi-

hop routing path as Nhop hops of direct communication between neighboring nodes

along the path and calculated the sum of all the direct communication energy cost.

This analytical analysis does not take some realistic aspects into account and can

only give an estimation of the energy consumption. For example, as the number of

failed nodes increases, the average number of hops needed for transmitting a data

packet back to the sink should increase accordingly, since the optimal path may not

be available due to node failures along the path. Thus, a fault tolerant multi-hop

routing implementation is needed so that we can sum up the energy cost of each

sensor node on a routing path to get the exact energy cost for this routing path.

Our work assumes that all the message transmissions are reliable. In reality,

messages can be dropped due to the interference caused by either environmental

noise or message collisions at sensor nodes. Thus, we need a mechanism to ensure

the transmission reliability. Erasure coding might be an option to achieve such goal.

We also assume that the topology of the network is flat. However, it is worth

investigating how the network lifetime and the energy consumption will be when

the network topology is hierarchical.
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