
University of Alberta

An Object�Oriented Multimedia Database

System

for a
News�on�Demand Application

by

Chiradeep Vittal

Technical Report TR �����

June ����

DEPARTMENT OF COMPUTING SCIENCE
The University of Alberta
Edmonton, Alberta, Canada

Contents

� Introduction �

��� Motivation �
��� Characteristics �

����� Object�oriented Databases �
����� Document Standards �

��� Scope and Organization of the Thesis �

� Application Environment �

��� The News�on�Demand Application �
��� Project Components �
��� Multimedia News Documents �
��� A Sample Multimedia News Article �
��� System Architecture �	

����� Distributed System Architecture �	
����� Database Architecture ��

��� Query Examples ��
����� Retrieval Scenario ��
����� Searches ��

� Overview of SGML and HyTime ��

��� SGML Principles ��
����� Markups and Logical Structure ��
����� Document Type Declaration ��
����� DTD Design ��

��� Why not HTML
 ��
��� HyTime Overview ��

����� Architectural Forms ��
����� HyTime Modules ��
����� Finite Coordinate Spaces �	
����� A DTD Fragment for Closed Captioned Video � � � � � � � � � � � � � � � � � ��
����� HyTime Locators ��

�

� Design of the Multimedia Type System ��

��� Modeling of Monomedia Objects ��
����� The Type System for Atomic Types ��
����� Storage Model for Text ��

��� Type System for Elements ��
����� Design of the Type System ��
����� Top Level Hierarchy �	
����� Text Elements ��
����� Structured Text Elements ��
����� HyTime Elements ��
����� Other Types ��

� Implementation Issues ��

��� Example Design ��
��� Implementing the Type System ��

����� Designing for Persistence ��
����� Abstract Types and Inheritance ��
����� Modeling DTD Constraints ��
����� Performance Issues ��

� Related Work ��

��� Database Models for Structured Documents ��
��� Other Multimedia Databases ��

����� Presentation�Oriented Multimedia Databases � � � � � � � � � � � � � � � � � � ��
����� Miscellaneous Multimedia Databases �	

� Conclusions and Future Work ��

Bibliography ��

A DTD for Multimedia News Articles ��

B Type Declarations ��

B�� Atomic Types �	
B�� Top�Level Element Hierarchy ��
B�� Type ArticleRoot ��
B�� Union Types ��

�

List of Figures

��� Processing Environment �
��� Sample Multimedia Document �
��� Distributed System Architecture �
��� Conceptual Database Architecture ��

��� Axes Events and Extents �adapted from �DD���� �	
��� Extents Along the Time Axis for Events in CC Video � � � � � � � � � � � � � � � � � ��

��� Atomic Types Hierarchy ��
��� Annotations to Mark�Up Text Documents ��
��� First�Level Element Type Hierarchy ��
��� Type Hierarchy for Unstructured Text Elements ��
��� Type System for Structured Text Elements ��
��� Type Hierarchy for HyTime Elements ��

��� Partial Object Composition Hierarchy ��
��� Remaining Composition Hierarchy �Synchronous Portion� � � � � � � � � � � � � � � � ��

�

Abstract

Multimedia applications need support from an underlying multimedia storage system to store
and retrieve multimedia objects� The presence of spatio�temporal and composition relationships
between the objects their large volume and their inherent distribution pose interesting modeling and
implementation requirements� These requirements cannot be fully met by conventional means such
as �le servers and relational databases� The design and implementation of a multimedia database to
satisfy these requirements is described in this thesis� The design is targeted to a News�on�Demand
application� The features of this work are the use of object�oriented database technology and the
use of document standards to represent multimedia documents�

News�on�demand is a distributed multimedia application that uses broadband network services
to deliver news articles to subscribers in the form of multimedia documents� A type system is
developed to model the individual media components �monomedia� of the documents� To capture the
composition and spatio�temporal relationships between the monomedia objects in the news articles
the SGML and HyTime document standards are used� This is done by designing an SGML�HyTime
document type declaration �DTD� for multimedia news articles� This DTD is mapped to a type
system� An annotation scheme ensures e�cient storage of the text component of the document�
These type systems are implemented on an object�oriented database system and fully satisfy the
requirements of the news�on�demand application�

Chapter �

Introduction

��� Motivation

Multimedia information systems integrate a variety of data types such as text images sound and
video to enable di�erent multimedia applications� These applications have several requirements
including the storage and retrieval of multimedia objects� The characteristics of multimedia data
make the use of conventional storage systems ��le systems or relational databases� inadequate or
problematic� Some of these characteristics are�

�� Large volume� For example each of the following takes � Mbytes of storage in uncompressed
form �Fox���� six seconds of CD�quality audio a single ��	x��	 color image with �� bits�pixel
single frame ����	 second� CIF video or one digital X�ray image ��	��x�	��� with � bits�pixel�

�� The presence of spatial temporal and logical relationships between components of a multime�
dia object� Examples of spatio�temporal relationships include the synchronization of captioned
video and audio� Multimedia data is often presented in the form of documents� Multimedia
documents� are structured complex objects containing a number of primitive objects �mono�
media objects� such as video digitized voice and images� Document components have logical
relationships between themselves� the composition relationships between chapters sections and
subsections in this document are examples of logical relationships� These relationships should
be modeled explicitly as part of the stored data�

For a database where such multimedia documents are stored there should be facilities for �a�
accessing objects based on their semantic contents and �b� accessing di�erent components of
these objects� Furthermore there are relationships among the multimedia objects �i�e� clas�
si�cation specialization�generalization and aggregation hierarchies� that need to be modeled
�WKL�� DG�� Thur����

�� Multimedia information systems require an extensible data model that allows application de�
signers to de�ne new types as part of the schema� For example since monomedia objects
are not just strings or integers or characters new types have to be de�ned to handle them�
Furthermore the applications themselves must be able to add and delete new object types

�The terms �composed multimedia data� and �multimedia documents� are used interchangeably�

�

dynamically �Thur���� Therefore multimedia systems must not have static schemas and the
storage system must be able to handle dynamic schema changes�

�� Distribution� The storage requirements of multimedia data and the development of gigabit
networks and server technology has meant that multiple servers are used to meet the demands
of applications such as news�on�demand �LG�� Stev�� GDC�����

These characteristics make multimedia information systems excellent candidates for the use of
database management system �DBMS� technology� However most current multimedia information
systems do not use DBMSs� This implies that system support for standard DBMS functions such as
querying update control through transactions etc� is absent in these systems� As next generation
multi�user systems are developed �such as news�on�demand collaborative and interactive work and
electronic publishing�multimediaDBMSs that provide native support for these functions will become
more attractive�

Although several �multimedia �le systems� have been implemented �le systems do not possess
the full functionality of DBMSs� File systems leave to the user the responsibility of formatting
the �le for multimedia objects as well as the management of a large amount of data� Even if the
multimedia data is stored in �les the spatial temporal and logical relationships need to be stored in
some DBMS� This has been the traditional role of DBMSs in multimedia information systems� the
term �multimedia database� often refers to a centralized directory service for data stored in various
�le systems� Distributed DBMS technology � �OV��� can be used to e�ciently and transparently
manage data distribution� distributed �le systems are no match for distributed DBMSs in their
functionality� The development of multimedia computing systems can bene�t from traditional DBMS
services such as data independence �data abstraction� high�level access through query languages
application neutrality �openness� controlled multi�user access �concurrency control� fault tolerance
�transactions recovery� and access control�

However relational DBMSs are also not adequate to support the requirements of multimedia
systems� Neither is there support for the new media types in relational systems nor is there a way
to extend the type system to incorporate them �extended relational systems are an exception�� The
�binary large objects� �BLOBs� that are supported in some relational systems are not su�cient to
model these entities� One can store an image for example as one BLOB but it is not possible
for the relational DBMS to interpret this BLOB �i�e� access parts of it or perform image�speci�c
operations on it�� Furthermore it is di�cult to represent the complex structure of multimedia
documents the spatio�temporal relationships between document elements and the classi�cation and
specialization�generalization relationships in the relational model�

As a central component of a distributed multimedia information system a multimedia database
should o�er solutions to the storage and retrieval requirements posed by multimedia applications�
News�on�Demand is a typical distributed multimedia application with the characteristics and re�
quirements mentioned above� This thesis presents the design and implementation of a multimedia
database for the news�on�demand application� The particulars of the design are the use of object�
oriented database technology and the use of document standards to represent multimedia documents
in the database�

�

��� Characteristics

����� Object�oriented Databases

Since relational databases fall short in their ability to support the storage and retrieval requirements
of multimedia informations systems alternate technology must be used� The emerging object�
oriented DBMS technology �D�OBS��� is speci�cally targeted for �advanced� application domains
such as multimedia information systems� Object�oriented DBMS o�er solutions to the requirements
of multimedia data mentioned above�

In particular object�oriented systems provide an extensible data model and can support dynamic
schema changes� Object�oriented DBMSs� even though they may not provide native support for
the new media types can at least be extended to include them as part of the multimedia DBMS ex�
tensions� They can model the complex hierarchical structure of multimedia documents� In addition
the classi�cation specialization�generalization and aggregation relationships between multimedia
objects have direct support in an object�oriented system�

There is also an ulterior motive in the use of OBMS technology� For years research and devel�
opment of OBMS technology has been motivated by the claim that it is best suited to meet the
demands of �advanced� applications which include multimedia information systems� Unfortunately
reports of functional applications that use OBMS technology are scarce� The work on this thesis
provides a test for this claim�

����� Document Standards

As indicated before multimedia data is often presented in the form of documents� For example in
the news�on�demand application information providers insert multimedia news articles in the form
of documents into the multimedia database for subsequent retrieval by subscribers� To ensure a
su�ciently open system international standards for multimedia document representation are used�
This is essential because the target application demands that a standard representation be used for
which various authoring tools are available� The tools themselves can be di�erent but they should
at least be based on the same document representation� This is one way to support heterogeneity
of tools while providing a uni�ed database representation�

SGML �ISO��� and HyTime �ISO��� have been chosen as the standards to follow because of
their suitability for the target application and their relative power� SGML has widespread use �for
example the Hypertext Markup Language HTML that is the basis of World Wide Web is an
application of SGML� and is the basis of the HyTime hypermedia representation standard� SGML
mostly deals with textual documents while HyTime adds support for hypermedia documents �e�g�
links video etc��� The two other alternatives to follow would have been the O�ce Document
Architecture �ODA� Standard �ISO��� and the MHEG Standard �Pric���� ODA is not su�ciently
rich �the standard de�nes formats only for text and graphics� to be used in this application and
the MHEG standard �even in draft form� was not yet released when this work was started� While
SGML�HyTime is gaining acceptance and tools are being developed for it MHEG is still in draft
form� The SGML and HyTime standards are used by designing a document type declaration �DTD�
for multimedia news documents� This DTD is used to encode �by means of markups� complex
multimedia news articles� The DTD forms the basis of the design of the database�

�Henceforth� the term �ObjectbaseManagement System �OBMS�� will be used in place of �Object�oriented database
management system��

�

��� Scope and Organization of the Thesis

At the core of this thesis is the design and implementation of a type system which can be used
to store monomedia objects and SGML�HyTime�encoded news�on�demand documents containing
these objects in an object oriented database� The design satis�es the requirements of multimedia
data and addresses the following issues in particular�

� the modeling of monomedia objects

� the modeling of document structure

� the modeling of spatio�temporal constraints between document components and

� the modeling of the meta�information required by other system components of a multimedia
information system�

The implementation of the design on a commercial object�oriented database and its integration
with other components of a distributed multimedia information system validates the choice of OBMS
technology and the use of document standards�

The rest of this thesis is organized as follows� Chapter � describes the application environment
while highlighting the important characteristics of the target application� Chapter � also gives a
running example of a multimedia news�on�demand document that is used in this thesis� Chapter �
gives an overview of the SGML and HyTime standards� Chapter � presents the main contribution of
the thesis and addresses the main design issues indicated� Chapter � describes details of the imple�
mentation of the design� Chapter � reviews related work reported in literature� Chapter � concludes
with a discussion of the features and limitations of the design and implementation� Chapter � also
presents future directions for the work�

�

Chapter �

Application Environment

��� The News�on�Demand Application

News�on�Demand is an application which provides subscribers �or end users� of the service access
to multimedia documents� These documents are news articles that are inserted into a distributed
database by news providers �or information sources�� The news providers are commercial news
gathering�compiling organizations such as wire services television networks and newspapers� The
news items that they provide are annotated and organized into multimedia documents by the service
providers �who may also be news providers�� The subscribers access this multimedia database and
retrieve news articles or portions of relevant news articles� This is typically a distributed service
where clients access the articles over a broadband network from distributed servers �see Figure �����

The above scenario for the News�on�Demand application brings up two issues�

� There are several news providers inserting documents into the database from di�erent remote
sites over a network� Although the news providers may employ various proprietary formats
to represent their articles all articles have to be ultimately inserted into a database� This
means that everybody has to follow a standard for news article representation and encoding
to enable transmission over the network and insertion into the database� This implies that the
representation of the document in the database should be architecture independent� There is
a similar concern at the user�s end where di�erent browsers and interfaces may be used to
access the articles�

The choice of SGML�HyTime as the standard for document representation is re�ected in the
overall organization of the News�on�Demand multimedia information system application �Fig�
ure ����� News providers compose hypermedia articles on their own authoring systems� These
articles are then translated to the SGML�HyTime representation� An SGML�HyTime com�
piler checks the document being inserted against the document type declaration �DTD� which
describes the acceptable document structure� It then instantiates the appropriate objects in
the database� Subscribers use a querying interface to access articles and�or article components
from the database which can also be queried by various system components� to obtain relevant
meta�information� This report deals with the database processing side of Figure ����

�System components are described in Section ����

�

DTD’s

SGML/
HyTime

Compiler

Type
System

…

Query
Processor

Service Providers End Users

SGML/HyTime
Processing System

Database
Processing System

Multimedia DBMS

Disk-
based

Repository

Figure ���� Processing Environment

� Once the news article is inserted into the database it is not updated by either the news
provider or the subscriber� Thus there is a read�only model for the database� However as
time progresses the news provider may insert newer versions of the news article� The database
management system would handle the version management issues�

��� Project Components

The work on this thesis is part of a larger project which focusses on researching broadband services
for multimedia information systems� This multi�university project is supported by the Canadian
Institute for Telecommunications Research �CITR� which is one of the Networks of Centres of
Excellence funded by the Government of Canada� It was started in ���� and has a �ve year duration�

In this component of the project the focus is on the database issues for multimedia information
systems� The other components are the QoS Negotiation component �Universit�e de Montreal�
the Synchronization component �University of Ottawa� the Continuous Media File Server �CMFS�
�University of British Columbia� and Scalable Encoding for Video �INRS� components�

Within the multimedia database component of the project two areas were investigated up to

�

this point� The �rst is the modeling of multimedia data and the related database issues and the
second was the design of a visual query interface to the database described in �EM����

��� Multimedia News Documents

A document is a structured collection of pieces of information related to a particular subject� In
a multimedia document these pieces of information are not restricted to conventional text but
include other media such as audio video and images� These media themselves may be composite
so that we may have combinations of audio and video image and text etc� These individual media
objects are called monomedia� The structure of the document �i�e� the relationships between various
document components� enables the contents of the document to be understood by the reader�

The structure is strictly hierarchical in nature with the document itself at the root of the
hierarchy� As an example a book can be made up of chapters� chapters can consist of sections�
sections consist of paragraphs and so on� There is a distinction between the document content and
the structure of the document�

Two types of structure can be identi�ed� the logical structure and the presentation structure of
the document� The logical structure refers to the logical organization of document components� the
presentation structure refers to the layout of the components actually displayed to the reader� The
logical structure of a book would be the organization into chapters sections paragraphs and so on�
while the presentation structure has information on the number of columns of text used to display
the document the fonts and font sizes used to display the chapter titles etc�

Documents often have links to other documents or document components� Common examples
of such links in paper based documents are bibliographic references footnotes and cross�references�
Text overlaid with a link structure is called hypertext� In the case of multimedia documents this
term is changed to hypermedia�

��� A Sample Multimedia News Article

This section describes a sample multimedia news document that will be used as a running example
throughout this report� This is an article about the Department of Computing Science at the
University of Alberta� The article is organized as a series of news releases which are interlinked�
The document components will be described in terms of the media present in the document� the full
document is depicted in Figure ����

� The text portion consists of the title the �optional� subtitle the keywords an �optional�
abstract paragraph the date and location of the news release the paragraphs that make up
the article�s content the author and the captions of any images appearing in the text� This
information can also contain text that may not be shown in the presentation of the document
such as the keywords�

� The images in the document are any pictures related to the subject of the article� In this case
the picture of the building which houses the department is included in the document� The
image can be stored in any format �GIF TIFF JPEG etc��� The presentation of the image is
also independent of the logical structure because the user may choose to reproduce the image
inline with the rest of the document or display it in a separate window�

�

Department of Computing Science
The Department of Computing Science at the University of Alberta is one
of the oldest computer science departments in Canada, having been
established in 1964. The Department is part of the Faculty of Science
together with seven other departments . Its main office is located in 615
General Services Building.

 GSB - Home of the CS Department
This is a young and active Department. It is currently made up of 32
 fa c ulty , 27 support staff and approximately 100 graduate students. There
are research programs in many areas of computing science. Research ties
exist with TRLabs and Alberta Research Council.

Chair’s Welcome Tour of Facilities Research Programs

M.T. Özsu 10 November 1994

Figure ���� Sample Multimedia Document

� The sound or audio component of the document is the recording of a welcome message from
the Chair of the Department� Here again the representation format is independent of the
logical structure of the document� The tone and volume of the audio playback are examples
of presentation attributes�

� The video component is a tour of the facilities� The representation format of the video data
�MPEG MJPEG Quicktime etc�� and the presentation aspects �frame rate size of the win�
dow etc�� may not be information relevant to the logical structure of the document� Video is
seldom displayed on its own � there are associated media played back or synchronized along
with the video� Therefore in the video clip about the facilities the voice of the commentator
is synchronized with the video so that the viewer does not �nd the displayed video out of phase
with the sound of the voice being played back� There could be text subtitles displayed with
the video and commentary simultaneously giving the French translation of the commentary�

�

� The subscriber typically would like more information on the various events and people men�
tioned in the article that may not be found in the document itself� By providing links to
other documents or document components where further information can be found this doc�
ument enhances its information capacity� Another possibility is that the user may want to
make comments �annotations� on the text that would be visible the next time the document
is retrieved�

In Figure ��� the links to other documents are marked by underlined text� There could be other
more obvious icons used to denote the link� This may depend on the preferences of the viewer the
type of terminal and the author�s own choice� These are issues of presentation and are not related
to the logical structure of the document�

It is important to note that Figure ��� represents only one possible �rendition� of the news
article� The user for example may prefer not to see any text at all or if the available display is an
ASCII terminal only the text portion may be presented causing the system to skip the retrieval of
the image audio and video components of the documents�

C
lie

n
ts

S
e
rv

e
rs

 ATM Network

NCM
Server #1

NCM
Server #n

CM
Server #1

CM
Server #m

Figure ���� Distributed System Architecture

�

��� System Architecture

The stored multimedia data are classi�ed as continuous media and non�continuous media� Contin�
uous media refers to those types which have to be presented at a particular rate for a particular
duration of time� These include audio and video� Non�continuous media such as text and still images
do not have the real�time constraints of audio and video� Typically continuous media are stored on
a separate storage server which is designed to meet the real�time constraints of the data� In this
system continuous media and non�continuous media are stored on di�erent servers�

����� Distributed System Architecture

Figure ��� shows the architecture of the distributed multimedia system with data distributed between
a number of non�continuous media servers �NCM servers� and a number of continuous media servers
�CM servers�� The distribution of data is transparent to the users since they interact with a querying

facility �EM�� �OSEV��� at the client rather than directly accessing individual servers� The client
machines contain the query interface the multimedia object�oriented DBMS client synchronization
modules and the decoders for MPEG and Motion JPEG data streams� All accesses to the servers
are routed through the client OBMS�

The current architecture however does not integrate the continuous media servers with the
database� Instead the database stores meta�information about the �les on the continuous media
�le server� The database is queried by other system components to determine the location of a
particular piece of a multimedia object� After obtaining the �le name and the server on which it
resides on the �le is accessed directly from the �le server� This architecture is necessary since the
database system chosen for implementation of the application does not provide any native support
for continuous media objects�

The retrieval of the document involves several system components each of which must access
the database to determine information necessary for the completion of its tasks�

Brie�y the user chooses a document to display on the client workstation after having browsed
the database through a Visual Query Interface �EM���� The user negotiates through the Quality
of Service �QoS� Negotiator �HBB���� with the distributed system for the desired level of quality
and cost of access� Then the Synchronization component �LG��� takes over by coordinating over
the network the delivery of several streams of monomedia data contained in the document to the
client� For continuous media it has to request the Continuous Media File Server �CMFS� �NY���
to retrieve the appropriate �les and start the streams� Non�continuous media components of the
document are retrieved by the client OBMS�

The QoS negotiation module has to determine the media types in the document their QoS
parameters the capabilities of the user�s hardware and the bandwidth availability in order to perform
its task� The synchronization component needs a representation of the temporal constraints between
the media types in the document in order to determine the schedule of delivery of data over the
network� The continuous media �le server needs to know the names and locations of the �les it is
supposed to retrieve�

To determine the media types in the document and their quality of service parameters �cost
quality delay size etc� the QoS negotiation module queries the database� The temporal constraints
are represented in the structure of the document according to the HyTime standard� The database
responds to a query by the Synchronization system component by translating this representation
into the desired data structure� The database stores a unique �le identi�er assigned by the CMFS
for each monomedia object it stores� The continuous media server uses this to determine the name

�	

and location of the �le�s� containing the monomedia object�
There are four types of information� The types of information mentioned in the last paragraph

are meta�information i�e� information about information� The meta�information is not part of the
document content and is not visible to the user� There is also presentation information which is also
not part of the document content as explained in Section ���� Then there is the actual document
consisting of the individual monomedia objects and �nally the logical relationships between the
components of a document�

Applications

End Users

ObjectStore

Visual Query Interface Application
Independent API

…

M
ul

tim
ed

ia
 D

B
M

S
E

xt
en

si
on

s

Query Processor &
Optimizer

Multimedia Type System

Figure ���� Conceptual Database Architecture

����� Database Architecture

The current prototype of the multimedia DBMS is an extension of a generic object�oriented DBMS
called ObjectStore �LLOW���� The extensions provided by the multimedia DBMS include speci�c

��

support for multimedia information systems� The conceptual architecture omitting many compo�
nents not yet developed is depicted in Figure ���� The development of a type system that supports
common multimedia types is at the heart of the multimedia extensions� This research has focussed
on this central issue as well as the development of a compatible visual query processing interface�
These two components enable high�level modeling and access capability for application developers
and end users� Future work as discussed in Chapter � includes the development of an application�
independent API and a more powerful query model that supports content�based queries of images
and video as well as an optimizer for these queries�

The fact that this work currently uses a generic object�oriented DBMS introduces some important
restrictions� There is no native multimedia support and there is no access to source code� Therefore
the only way to extend the generic DBMS is to use standard object�oriented techniques to build a
multimedia layer�

Currently the visual query interface �EM�� �OSEV��� interacts directly with the ObjectStore
query processor via the multimedia type system� Each menu item is linked to an ObjectStore
query which is invoked when the selection is made� As the application�speci�c query processor and
optimizer development progresses the visual query interface will interact with it rather than with
the ObjectStore system� The new interaction is shown by a dashed line �Figure �����

This architecture is open so that it can accommodate various multimedia servers� Many of these
servers are �le system servers without full database management functionality �e�g� querying�� If
�le system servers are used but the applications require database functionality then a multimedia
DBMS layer can be placed on top of the �le system servers and the underlying storage system can
be modi�ed accordingly�

As indicated earlier this is a distributed system where a number of clients access a number
of servers over a broadband network� In the prototyping environment the clients and servers are
IBM RS�			���	 machines interconnected by a broadband ATM network� This is a multiple client�
multiple server system �Figure �����

��� Query Examples

The larger database project aims at developing query languages access primitives and visual query
facilities � �OSEV��� that would allow sophisticated querying of these databases including content�
based querying of all types of media� While the work on the thesis is about logical modeling of
multimedia databases the work on the query interface deals with querying the database in greater
detail� Since the type and frequency of the queries also a�ect the design of the logical model a few
sample queries are described here� As noted before queries on the document are read�only in nature
with no updates after the document is inserted� In the following examples of queries on multimedia
news articles are provided� A more detailed description is found in �EM����

����� Retrieval Scenario

The following retrieval scenario elaborates on the type of queries the user and the system may
perform�

� The retrieval process is started by a search on the article database by the user� As an example
the user wishes to see some articles about educational institutions� Alternatively the request
may be to view some articles featuring the University of Alberta� Therefore the database

��

is queried for all documents with the keyword education in them �or University of Alberta��
Section ����� discusses searches in greater detail�

� As a result of the above query the database returns a list of titles of articles with the required
keywords� Along with the title the user may also see an abstract paragraph of the article�
Other information displayed could be the list of media types in the article and the nominal
cost of retrieval of the document� This cost changes as the user negotiates the quality of service
desired �or that can be paid for� with the system� Note that each of these additional pieces of
information is obtained through the user interface by querying over the documents in the list�

� The user then selects one particular article �for example the one described in Section ����
and retrieves the document after negotiating the cost of access�

� The retrieval process itself triggers additional queries to fetch the necessary information for
accessing and displaying the document� This includes fetching meta�information and presen�
tation information as described in Section ����

� The user can perform queries on the displayed document as well� Text string matching is a
common example� Following the links within the document could trigger a new set of queries
by the system to determine the meta�information associated with the new document�

����� Searches

Attribute Based Queries

An attribute based search is the most likely scenario in which queries are predicated on news article
attributes such as �date� and �title�� For example�

� select documents with the words �Department� or �Science� in their titles

� select documents with the location �Edmonton� published within the last year

� select documents by authors whose names contain �Smith��

� select documents in the category �Education� and having the keywords �Research� and �Databases�
with a date later than January � ���� etc�

Content Based Queries

Examples of these queries include �select documents with the string �graduate studies� within the
text of the article� �select documents with buildings in their images� and �select documents with
video clips containing scenes of people walking�� While searching text is possible and e�cient
searching the contents of images and video still remains a major area of research� This work has
so far concentrated on elaborate searching of textual parts of documents and provides means for
accessing other monomedia objects by means of keywords�

��

Queries Based on the Structure of the Document

Since documents are structured it is possible that queries based on the structure of the document
will be posed �CACS���� For example the query could be� �select documents with video but no
text�� It is also possible that the query retrieves only logical components of a document rather than
the complete document� This leads to more complex queries� For example� �select the abstracts and
�rst authors of articles having a section containing the words �Research� and �Canada���

Queries can also be posed without a precise knowledge of the structure� �select all paragraphs
in articles with titles containing the word �Department� in them�� Here paragraphs could be sub�
components of more than one document element say section and abstract� The query does not
specify whether the desired paragraphs should be subcomponents of sections or the abstract�
The resulting set of paragraphs can be found by following these two di�erent paths in the article
composition hierarchy�

The HyTime standard describes a query language known as �HyQ� �ISO�� DD���� HyQ is
intended to handle the hierarchical structures of SGML documents� Although the utility of HyQ
lies in its ability to locate SGML document components content based queries are also possible in
HyQ�

Queries which are combinations of the above types of queries are not excluded� For example�
�select paragraphs from documents which have images containing buildings in them�� However
as noted before attribute based and content based queries are considered to be the most likely
scenario�

��

Chapter �

Overview of SGML and HyTime

The logical structure of the document is necessary for the contents of a document to be understood�
For example document presentation certain queries �Section ���� and hyperlinks all rely on the
logical structure of the document� SGML uses markups to represent this information� Other doc�
ument representation formats use markups to represent both logical and presentation information
�e�g� LaTEX uses �section to mark up sections and �bf to present text in bold font��

SGML is intended for publishing in its broadest de�nition ranging from conventional publishing
to multimedia database publishing �ISO���� HyTime �ISO��� uses SGML representation syntax� it
is thus admirably suited to work with SGML documents� HyTime provides a standard way of rep�
resenting links and also de�nes their processing� In particular it deals with structured information
and the ability to link from and to structured information �DD���� HyTime also provides a way to
represent scheduling and rendering information�

One of the reasons for the success of the World Wide Web �WWW� is the use of the Hypertext
Markup Language �HTML� standard for document representation� HTML is an application of
SGML� The concept of the WWW is close to the idea of open hypermedia in which links can be
made to any piece of information including non�hypermedia representation� HyTime is an attempt
at following open hypermedia �DD����

��� SGML Principles

����� Markups and Logical Structure

Markups were traditionally used in document formatting programs to indicate processing instruc�
tions to the formatter� For example before the beginning of each paragraph there would be a
markup indicating the amount of indentation for the �rst line of the paragraph the number of blank
lines to leave before starting the paragraph and so on� This is known as procedural markup in which
the presentation information is mixed with document structure and document content�

SGML is a meta�language which describes the logical structure of a document by using markups
to mark the boundaries of its logical elements� The generalized markup approach of SGML separates
the description of structure from the processing of the structure� The philosophy is that processing
instructions can be bound to the logical element at the time of formatting or display� Descriptive
�or generalized� markup identi�es logical elements using start tags and end tags to mark their

��

boundaries� The elements are identi�ed by their generic identi�ers �GI� or tags� In the following
example the GI is hdline and marks o� the headline of the sample news document�

�hdline� Department of Computing Science ��hdline�

The processing instruction which is stored separately in this case could be �set all hdline
elements in ��pt bold Helvetica font��

The markup in SGML is rigorous �Gold�	� in that elements can only contain other elements to
form a hierarchy with constraints on the type of elements which can occur at a particular position
in the hierarchy� Thus chapter elements can only contain title and section elements� section
elements can contain paragraph elements and so on� The hierarchy is a tree and whole subtrees can
be manipulated as one unit� In other words an SGML document consists of instances of document
elements arranged in a hierarchical structure�

����� Document Type Declaration

SGML does not specify what these elements should be or what the hierarchy should look like�
Instead the list of elements types and the relationships between them is expressed as a formal
speci�cation called a Document Type Declaration �DTD�� A DTD is written in SGML by the
document designer for each category of document being designed� For example a DTD represents
the HTML standard for hypertext documents� For the news�on�demand database it is necessary
to write a DTD for multimedia news articles but there could be DTDs for books letters technical
manuals etc�

A DTD speci�es the element types the hierarchical relationships between element types and
attributes associated with them� Attributes contain information that is not part of the document
content� In the example multimedia news document of Figure ��� the following element types can
be identi�ed� article headline date paragraph �gure �gure caption emphasis author and link�
Note that the article itself is considered an element and there may be other elements �e�g� keywords�
that are not demonstrated in the rendition of Figure ���� Omitting the audio and video elements
the marked�up sample news document is�

�article�

�front�

�author� M�T� Ozsu ��author�

�keywords� computer science� University of Alberta� education

��keywords�

�hdline� Department of Computing Science ��hdline�

�date� �� November ���	 ��date�

�location� Edmonton� Alberta� Canada ��location�

��front�

�body�

�paragraph� The Department of Computing Science at the University of

Alberta is one of the oldest computer science departments in Canada�

having been established in ��
	� The Department is part of the

Faculty of Science together with seven other �link

linkend�sci�depts�sgml�departments��link�� Its main office is

��

located in
� General Services Building�

��paragraph�

�figure filename�gsb�gif�

�figcaption�GSB � Home of the CS Department��figcaption�

��figure�

�paragraph� This is a young and active Department� It is currently

made up of �� �link linkend�faculty�sgml�faculty��link�� �� �link

linkend�faculty�sgml�support staff ��link� and approximately ���

graduate students� There are research programs in many areas of

computing science� Research ties exist with

�emphasis�TRLabs��emphasis� and �emphasis�Alberta Research

Council��emphasis��

��paragraph�

��body�

��article�

This document is declared to be an article type� Thus the legality of its mark�up is determined
according to the article DTD which de�nes the acceptable article document structure� The following
is a segment of the article DTD�

��ELEMENT article � � �front� body� �

��ELEMENT front � � �author� keywords� hdline� date� location��

��ELEMENT body � � �paragraph�figure�� �

The �rst line of the DTD �known as an element type declaration� declares an article element
as consisting of a front element and a body element� The article element is said to have a content
model consisting of a front element and a body element� The connector �� implies �followed by��
Note that a document structure hierarchy is emerging here with the article element at the root
with children elements front and body� This hierarchy is important when the type system is created
to represent the document structure� Element front represents the front�matter of articles and as
speci�ed in the second line of the DTD must consist of author� keywords� hdline� date� and
location elements� The document structure hierarchy should now be obvious� Finally the last
DTD line indicates that the body element consists of zero or more occurrences �symbol � �� of a
paragraph or �symbol �j�� a figure element in any sequence� Note that the example mark�up obeys
the DTD fragment shown here except that de�nitions for paragraph and �gure must be added� The
example given here is a simpli�ed form of the full DTD for the multimedia news articles that is
given in Appendix A� An outline of the DTD development process is presented here�

����� DTD Design

Once the logical elements of the document are identi�ed their content models need to be de�ned�
This will be done for the elements occurring on the right hand side in the DTD fragment above�
The elements keywords hdline date emphasis and author do not have other elements within
them� they only contain text strings� In SGML syntax these strings are called �PCDATA� Since these
elements have identical content models only the left hand side of the element type declaration will
di�er� When all these declarations are combined into one �

��

��ELEMENT �keywords�hdline�date�emphasis�author� � � ��PCDATA� �

In the sample document paragraph elements contain strings of text ��PCDATA� interspersed
with emphasis and link elements� Both of these sub�elements can be optional� The �gure element
contains one sub�element the �gure caption element figcaption� This element just contains text
strings or �PCDATA� It can be assumed that this sub�element to be always present� Using these
inferences and assumptions �

��ELEMENT paragraph � � ��PCDATA � emphasis � link���

��ELEMENT figure � � �figcaption��

��ELEMENT figcaption � � ��PCDATA��

The next step is to de�ne attributes for the element types if any� Looking back at the marked
up document link and figure elements have start tags with attribute values in them� Writing the
attribute lists for link and �gure elements in the DTD�

��ATTLIST link

linkend CDATA �REQUIRED�

��ATTLIST figure

filename CDATA �REQUIRED�

The CDATA refers to the data type of the attribute �character data in this case�� The �REQUIRED
value means that any instance of the link element has to have a value associated with the linkend
attribute��

To summarize the DTD contains element type declarations and attribute lists� There are several
optional features of SGML not mentioned here� they will not be used� The design of the DTD is
based on our concept of a multimedia news document and the requirements of the application since
there isn�t an extensive base of pre�existing documents to analyze� The complete DTD based on
this concept is presented in Appendix A�

��� Why not HTML�

The complex DTD design process raises the obvious question� Aren�t there DTDs already written
for this purpose for which standard tools and browsers are available
 The HTML DTD for example
is a highly popular application of SGML and is used to represent a wide range of documents for
information transfer over the internet� There are two reasons why the HTML DTD was not used�

First the HTML DTD has no support for specifying spatio�temporal constraints on the contin�
uous media present in the document� This requires HyTime support as explained in the remainder
of this chapter�

Second the HTML DTD is designed to represent a wide range of documents� In a database
however it is advantageous to use application�speci�c DTDs� Application�speci�c DTDs identify
elements with signi�cant semantic importance in the application� For example the HTML DTD
does not have the logical elements date abstract hdline and authors�

If the news article was represented in the database using the HTML DTD there would be no
way of determining the authors of a document� Note however that an easy translation to the

�Other options are �IMPLIED �attribute need not be instantiated�� and �FIXED �attribute can be instantiated to
only one value��

��

HTML standard can be achieved by mapping the elements author hdline abstract date in the
multimedia news DTD to the elements heading� address blockquote emphasis respectively in
the HTML DTD� Once this translation is done a standard HTML browser can be used to view the
multimedia news document�

��� HyTime Overview

����� Architectural Forms

The above discussion omitted any discussion of links audio and video objects� These are the domain
of the HyTime standard� HyTime also uses DTDs to represent document categories� This leads us to
the idea that one catch�all DTD could be de�ned for hypermedia documents which would allow us to
represent links temporal information and other special needs of hypermedia documents� The DTD
would contain element type declarations for these special elements needed by hypermedia documents
�for example link elements�� The syntax de�ned by this DTD together with the semantics for the
special elements would be our hypermedia �language�� A similar strategy is seen in the design of
the HTML standard for example� This approach is too restrictive � document designers would
like to use their own names for these special elements the semantics de�ned for the elements may
be too basic to be useful for certain applications etc�

Instead the HyTime standard uses a meta�DTD� The meta�DTD de�nes several special hyper�
media elements called architectural forms �AF� that can be used in DTDs� For example there is
an architectural form called clink which de�nes a so�called contextual link� A contextual link is a
link with an anchor rooted in a particular context exactly like the links shown in the sample news
document� To use architectural forms in HyTime document instances element types are de�ned
which conform to the speci�cation of the architectural forms� Then instances of these conforming
element types are used� If the clink architectural form �AF� were to be used as the basis for a link
element in the news article DTD the following declarations would exist in the DTD �

��ELEMENT link � � ��PCDATA��

��ATTLIST link

HyTime NAME �FIXED �clink�

linkend CDATA �REQUIRED�

The value of the HyTime attribute of link is �xed to clink� This informs the HyTime parser
that the element is supposed to conform to the clink architectural form� To conform to an AF an
element declaration �or instance� must have the HyTime attribute set correctly and also have the
other attributes declared for the AF in the HyTime standard� For the clink AF there is a linkend
attribute declared in the standard� therefore the link element must also de�ne that attribute in the
DTD�

����� HyTime Modules

The HyTime standard is divided into modules each of which describes a group of concepts and
architectural forms� These modules are the base module the measurement module the location
address module the hyperlinks module the scheduling module and the rendition module� Each
module may use certain features of other modules lower down in the hierarchy� thus the location

��

address module does de�ne AFs which are used in the rendition module� Each HyTime�compliant
DTD must declare the names of the modules it requires�

In the DTD for multimedia news articles certain features of the base module �as in all HyTime
documents� some features of the location address module some of the features of the hyperlinks
module and some of those of the scheduling module are used� The description of these modules is
skipped except for the scheduling and location modules� Concepts needed from other modules will
be de�ned where required�

����� Finite Coordinate Spaces

To represent relatively simple spatial and temporal constraints between document elements the
�nite coordinate space �FCS� architectural form de�ned in the scheduling module is used� This in
turn requires features of the measurement and location modules� In the discussion that follows
several architectural forms will be used in the examples but not explained� It is hoped that the
relevant ideas can be understood� The following convention is used� whenever an element type name
appears with a �my � pre�x in an example then it conforms to the architectural name that follows
the �my � pre�x�

HyTime models space and time using axes of �nite dimensions� A �nite coordinate space is a
set of such axes� All measurements are associated with axes� The units of measurement along axes
are called quanta� There are various types of quanta de�ned in HyTime besides the normal units
of measurement � including characters words nodes in trees etc�

Time Axis

Y Axis

X Axis

Event

Extent

Figure ���� Axes Events and Extents �adapted from �DD����

The following element declaration in a DTD de�nes a time axis conforming to the axis architec�
tural form and having an addressable range from � to �					 seconds�

�	

��ELEMENT time � � EMPTY �

��ATTLIST time

HyTime NAME �FIXED �axis�

axismeas CDATA �FIXED �SISECOND�

axisdim CDATA �FIXED ��������

�

The quantum used in this example for axes measurement is the SI second� An FCS can be
considered to be a Cartesian product of HyTime axes which is mapped to the real world space and
time at the time of presentation�rendition� Figure ��� describes the various concepts used� The
�nite coordinate space shown here has three axes� two spatial and one temporal�

In HyTime an extent is a set of ranges along the various axes de�ning the FCS� An event
corresponds to an extent in the FCS� An event schedule consists of one or more events� Extents
are speci�ed using the extlist architectural form� Events are created using the event AF� event
schedules using the evsched architectural form� The document instance associates a data object
with the event� The semantics and the manner in which the events are rendered can be de�ned by
the application� The �meta� element type declarations used for these architectural forms are�

��ELEMENT axis � � EMPTY�

��ELEMENT fcs � � �evsched���

��ELEMENT evsched � � �event���

��ELEMENT event � � ��HyBrid���

The ��HyBrid�� content model means that the content model is unrestricted� Any element
including non�HyTime elements can appear in the content model� Although the attribute lists are
not given above note that the eventAF has an attribute called exspec which is of the type IDREFS�
This means that this attribute gives the IDs of various HyTime elements conforming to the extlist
architectural form� These extlist elements give the extents of the event along the axes of the FCS�

����	 A DTD Fragment for Closed Captioned Video

In the sample document shown in Figure ��� there is an icon to indicate that there is a video
presentation associated with the article� This could be for example the recording of a department
tour along with French subtitles displayed at intervals at the bottom edge of the screen� This is
called closed captioned video �CC Video�� The design of the DTD fragment corresponding to the
CC Video concept is illustrated here to demonstrate the use of FCSs for storing spatio�temporal
constraints�

In the CC Video document there are three types of events which roughly correspond to the
three types of media present � audio video and �synchronized� text� Figure ��� shows only the
time axis to display the extents of these events for the �rst �� seconds of the presentation� There
are �ve events of type text �because the number of subtitles is assumed to be �ve in the �� seconds�
and one each of the audio and video types� There are spatial extents also � two axes are created
to represent the X and Y coordinates on the workstation screen �the time axis was presented in the
previous section��

��ELEMENT X � � EMPTY�

��ATTLIST X

��

HyTime NAME �FIXED �axis�

axismeas CDATA �FIXED �virspace�

axisdim CDATA �FIXED ����	� �

The DTD declaration for the Y axis is similar except for the value of the axisdim attribute
which is �		� The measurement units are in a HyTime de�ned unit called �virtual space� or
virspace which is used when there are no other pre�de�ned units available� In this case the
virspace corresponds to pixels on a workstation screen �assumed to be �	�� x �		��

As mentioned before there are three types of events which have extents along all three axes
�although the audio event will not use the spatial axes�� All three DTD entries are collapsed into
one�

��ELEMENT �audio�video�text� � � EMPTY�

��ATTLIST �audio�video�text�

file CDATA �REQUIRED

�� HyTime Attributes��

HyTime NAME �FIXED �event�

exspec IDREFS �REQUIRED�

In this case a �le has been associated with each event� It could also have been a portion of a �le
or an object in a database� The �lename is given by the value of the �le attribute in the element
instance�

Video

Audio

Text

Time10 20 22 30 33 42 70 7544 56 59

Figure ���� Extents Along the Time Axis for Events in CC Video

The event schedule which can represent the timeline shown in Figure ��� which consists of one
audio one video and several text events can be de�ned as�

��

��ELEMENT my�evsched � � �video� audio� text���

For a complete DTD including attribute lists refer to the Appendix A� What remains is the
declaration of the FCS�

��ELEMENT my�fcs � � �my�evsched���

Finally the CC Video document is declared �which is called audio�visual to make it more general�
to be�

��ELEMENT audio�visual � � �x�y�time�my�fcs�my�extlist���

The my extlist element instances are used to specify the extents of the event instances�
The marked up document representing the schedule in Figure ��� conforming to the DTD frag�

ment just written is�

�audio�visual�

�x���x�

�y���y�

�time���time�

�my�fcs�

�my�evsched�

�video file��tour�mpg�� exspec�video�exspec�

�audio file��welcome�au�� exspec�audio�exspec�

�text file��subtitle��txt�� expspec�text��exspec�

�text file��subtitle��txt�� expspec�text��exspec�

�text file��subtitle��txt�� expspec�text��exspec�

�text file��subtitle��txt�� expspec�text��exspec�

�text file��subtitle	�txt�� expspec�text	�exspec�

�text file��subtitle�txt�� expspec�text�exspec�

��my�evsched�

��my�fcs�

�my�extlist ID�video�exspec���
���my�extlist�

�my�extlist ID�audio�exspec���
���my�extlist�

�my�extlist ID�text��exspec��� ����my�extlist�

�my�extlist ID�text��exspec��� ���my�extlist�

�my�extlist ID�text��exspec��� ���my�extlist�

�my�extlist ID�text	�exspec�		 ����my�extlist�

�my�extlist ID�text�exspec�� ����my�extlist�

��audio�visual�

����� HyTime Locators

Links represent relations between locations in documents� In HyTime data objects are located
using the architectural forms �or locators� de�ned in the location address module� To achieve the

��

�exibility required in hypermedia information system there are several locators de�ned �DD����
These locators can be classi�ed according to the method used to locate the object�

Objects can be located by name �by assigning IDs to the objects� by counting �as in �third
element in the list�� and by querying ��paragraphs which are sub�elements of sections and contain
the string �Canada���� Although all three can be reduced to queries the distinction is maintained
in the standard� An example of the second kind of locator is the treeloc locator which is used
to locate data items in tree structured documents� A treeloc locator works by specifying how to
navigate to the element from the root of the tree� For example this is the second paragraph of the
�fth subsection of the second section of the third chapter in this thesis� This would be written as�

�here thesis body is the ID of the thesis body element��

�my�treeloc locsrc�thesis�body�

�my�marklist�� � ���my�marklist�

��my�treeloc�

Treeloc locators are considered to be the simplest and most intuitive location method in the
absence of IDs �DD���� Other locators are fairly complex� For locators which are queries the HyQ
query language is used� This is a type�less LISP�like language� Although locators are not used in
the multimedia news article DTD they are mentioned here because in the future DTDs will be
designed which use some of these features� A hypermedia database based on the HyTime standard
needs to be able to support these locators indirectly or directly�

�This is not strictly true� Figures� lists� titles� and other elements which would increment the counts are neglected�

��

Chapter �

Design of the Multimedia Type

System

The design of the type system actually involves the conceptual design of the multimedia database�
There are four issues in designing a multimedia database�

�� The di�erent media components of the document �i�e� text image audio and video� need to
be modeled and stored in the database� These are called monomedia objects and their storage
structures in the database is critical for good performance�

�� A representation is needed for the document�s logical structure� Not every multimedia in�
formation system represents the document structure explicitly� For example a multimedia
system that uses postscript �les for text documents containing images ignores the hierarchi�
cal structure of the document� It is important to represent this structure explicitly both for
querying and for presentation�

�� In multimedia documents one has to deal with the representation of the spatial and temporal
relationships between monomedia objects� These relationships are important for presentation
purposes � spatial relationships are used to model the placement of the various components
on the screen while temporal relationships are essential for the synchronization of monomedia
objects during presentation �e�g� audio synchronization with video or captioned text with
video��

�� The meta and descriptive information necessary for the operation of the system components
needs to be determined and stored in the database� As well access routines need to be provided
�as part of the API� for easy access to this information�

This chapter focusses on the �rst three issues which are central to the database design� As
indicated earlier an object�oriented approach is being used� The design of the type system aims for
�exibility portability and extensibility �to other document types and to other applications�� The
choice of the implementation medium �i�e� xlC�ObjectStore� is another in�uence on the design of
the type system�

��

Types have methods and attributes� In the following the motivations behind each type the
implementation of the types �in terms of attributes and methods� and the in�uence of the imple�
mentation on the design �if any� are discussed� When a method is said to be declared it is not
necessarily de�ned �implemented�� However every method in a type has to be de�ned to be able to
instantiate it� Although the type hierarchy was arrived at with a mostly bottom�up approach �with
iterations in the design� it is described in a top�down fashion�

��� Modeling of Monomedia Objects

The storage of continuous media such as audio and video is a challenging problem particularly if
content�based indexing of these media is considered� Since the continuous media �le server is not
yet integrated with the multimedia database only descriptive information about audio and video
objects is stored in the database�

As mentioned before ObjectStore does not provide native support for multimedia data other
than text �or strings�� Instead the multimedia DBMS that sits on top of ObjectStore implements
these data types as atomic types�

	���� The Type System for Atomic Types

Figure ��� illustrates the type hierarchy for atomic types� Instances of atomic types hold the raw
�mono� media representation along with other information relevant to the QoS and synchronization
system components�

Atomic

Text SyncText Temporal

NCMType CMType

Video Audio

Image

Figure ���� Atomic Types Hierarchy

There are two subtypes of type Atomic � one modeling non�continuous media �NCMType� and
another modeling continuous media �CMType�� The di�erence between the two types is that in�
stances of NCMType actually store the raw media in the object� Instances of CMType only have

��

meta information about the �les which store continuous media� The attributes and methods which
are common to both kinds of media are in the Atomic type� The attributes are the size and QoS
parameters such as cost and delay �HBB�����

From the database perspective there are two kinds of QoS parameters� The �rst set consists
of the intrinsic properties of the media themselves� For example the width height and color of an
image instance are part of the QoS information required by the QoS negotiation component when
accessing an Image instance� The second set of QoS parameters are those not directly related to
the media such as cost and delay� The values of these parameters however depend on the server
�also called host� on which the monomedia is physically stored� These QoS parameters are grouped
into a separate type HostQoS� For every unique server �host� and monomedia type combination the
values of the second set of QoS parameters are constant� A single instance of the HostQoS type
stores these values for every such combination� This avoids duplication and maintains consistency
of the QoS data� An added advantage of isolating these parameters is the insulation of the design
from the changing requirements of the QoS Negotiator design group� Therefore type Atomic has an
attribute which is a reference to a HostQoS instance�

In the present state of implementation of the distributed multimedia information system every
system component assigns or requires an identi�er for every logical monomedia instance� The type
Atomic has an identi�er attribute �attribute name� that acts as a logical identi�er� multiple copies
of the same logical object have the same identi�er� Multiple copies do not always imply physical
copies� for example the same image can be stored in three di�erent image formats� The issue of who
assigns identi�ers and who manages multiple copies is a topic for research� Ideally the distributed
DBMS should handle identi�ers and not the users� Currently the DBMS does not have control over
all the components of the distributed multimedia system� In the absence of any consensus the use
of a logical identi�er is an ad�hoc solution to the problem�

The NCMType media are further subtyped into Text and Image media types� NCMType has
the attribute content which is an array of characters� The Text subtype has additional methods�
Match which implements a pattern matching algorithm and Substring which returns a portion of
the text object given the two integers representing the start and end locations� The Image type
has additional attributes such as the width height and color which describe an image�s intrinsic
properties independent of storage format� The Image type can be further subtyped to re�ect the
di�erent storage formats possible�

A similar subtyping scheme is seen on the CMType side of the type hierarchy� The CMType
type represents monomedia instances stored on the continuous media �le server �CMFS�� It has
attributes storing meta�information such as �lename location and UOI �another identi�er used by
the CMFS�� The location attribute is actually an instance of another type which has the host name
network address and directory location as attributes� Synchronized text �SyncText� is not subtyped
from Text since it is stored on the �le system and not as an object in the database� The methods
Match and Substring cannot be applied to the synchronized text media� The Temporal supertype
of Video and Audio is de�ned because both have a duration attribute� In addition to the width
height and color attributes the Video has frame rate and bit rate as attributes� These properties are
independent of storage format� Similarly the type Audio has attributes number of channels sample
rate and bits per sample� Both types can be subtyped to represent the actual storage format�

	���� Storage Model for Text

Text �a character string� is an atomic type which is supported in the database system� However
in the news documents the text component of the article is richly structured consisting of many

��

hierarchically arranged components �also called elements�� One alternative for representing text
components of a multimedia document is to de�ne object types for each of these structure compo�
nents and associate with each of them a fragment of the complete text of the article� This is a direct
mapping of the document type de�nition to the object oriented database schema�

Storing the text content of the article by fragmenting it in this manner can have serious per�
formance implications� For example to store the second instance of the paragraph element in the
sample document of Figure ��� three fragments are needed � the emphasis element the link ele�
ment and the rest of the text� Accessing the text of the paragraph now involves three accesses to
persistent store�

Although there are strategies such as clustering to improve performance with large objects
these techniques may be inadequate� In any case the pointer swizzling overhead of these objects
cannot be overcome by clustering� Furthermore if pattern�matching methods are de�ned on text
elements it would be necessary to reassemble the entire text component of the document� This has
performance implications�

In addition to performance issues there are modeling complications as well� One problem is
to decide what the granularity of the fragmentation should be � paragraphs
 sentences
 words

The granularities can be determined by the granularities of the logical elements of the document�
Thus each logical element would contain a fragment of the text� For example there would be an
Emphasis type for instances of logical emphasis elements� This can cause several copies of the same
piece of text to reside in various logical element instances� The second problem which arises is as
follows� suppose an emphasis starts at some position in one word and runs until some position of
a subsequent word �i�e� does not cover entire words�� Since there is a logical emphasis element in
the mark�up of this document it would be necessary to create an instance of the Emphasis type and
store the emphasized text as the value of one instance of this type� However this precludes the
possibility of querying for either one of those two words involved in the emphasized string�

To avoid fragmenting the textual elements in this manner the entire text content is stored as a
single string� To associate a particular instance of an element with its text content the �rst and last
character locations of that portion of text in the entire text content are stored� Pairs of integers such
as these are called annotations� Using this model the text content of the sample news document
can be modeled as depicted in Figure ���� In this example the �rst paragraph instance has the
annotation ��� ����� The link sub�element of the paragraph has the annotation ���� �����

Every document instance in the database has a �base� object �Article root� associated with
it which stores the text string forming the text content of the article together with the lists of
annotations associated with each text element type� To display the document the browser can scan
these lists e�ciently and determine the presentation of the text� This representation is mapped to
a type system by de�ning the type Text whose instances store a single string that is the entire text
content of a document as represented in Figure ����

There are two distinct advantages of using this storage model for text elements�

� Displaying the complete document text becomes faster and more e�cient because multiple
accesses to persistent store and joins are avoided�

� Indexes can be built on these annotation objects which can aid searches for element instances�
For example it is possible to search for emphasized strings in a document�

There is one disadvantage of this approach� Updates to the text content are expensive since a
change to the content of a document may cause many annotations to change� This can be avoided
to a certain extent by specifying annotations relative to some enclosing structure say with respect

��

Paragraph 1

Begin

End

Emphasis 1

Begin

End

Department of Computing
Science The Department of
Computing Science at the
University of Alberta is one of
the oldest computer science
departments in Canada,
having been established in
1964. The Department is part
of the Faculty of Science
together with seven other
departments. It’s main office is
located in 615 General Services
Building. GSB - Home of the
CS DepartmentThis is a young
and active Department. It is
currently made up of 32
faculty, 27 support staff and
approximately 100 graduate
students. There are research
programs in many areas of
computing science. Research
ties exist with TRLabs and
Alberta Research Council.
M.T. Özsu10 November 1994

Begin

End

Figure

Begin

End

Link 1

Figure ���� Annotations to Mark�Up Text Documents

to a paragraph� Then after an edit the only annotations that change are the annotations of the
sub�elements in the edited paragraph and the annotations of all following paragraphs but not the
annotations for the sub�elements of these paragraphs�

��� Type System for Elements

	���� Design of the Type System

General Approach and Conventions

Figures ��� ��� and ��� show the type hierarchies for logical document elements� The general
characteristics of the design are�

��

� Each logical element type in the DTD is represented by a type in the type system�� For
example the paragraph element is represented by the type Paragraph� It can be argued that
the textual element types have no semantic signi�cance attached to them by either the DTD
or the SGML standard �BAH���� That is there is no di�erence between the operations applied
to a title element and those applied to a paragraph element� There could be just one type
type Element with an attribute whose value would indicate the type of the element� However
the markup in SGML is generalized� Elements are chosen by the DTD designer because each
element has a di�erent semantic signi�cance in the document� This would be especially true
of elements conforming to the HyTime standard since the standard assigns semantics to the
element� In addition the rigorous nature of the markup means that the DTD constraints need
to be maintained� This can be done by ensuring as much static type checking as possible� This
is explained in the next item�

� To model the hierarchical structure any type whose instance occurs in a non�leaf node in
the hierarchy has attribute�s� which are reference�s� to child instances� For example the
frontmatter DTD element has the content model�

��ELEMENT frontmatter � � �edinfo� hdline� subhdline� abs�p��

Therefore the type Frontmatter has attributes whose types are references to instances of Edinfo
Hdline Subhdline and Abs p types� This design ensures as much static type checking as
possible� For example an attempt to make a Section instance as a child element of a Frontmatter
instance would be disallowed at compile time� If there was just one type to represent all
elements then this checking would have to be done at run�time�

� Any SGML attribute de�ned in the DTD for a particular element �including those de�ned by
the HyTime standard� is represented by an attribute in the representative type� The attributes
themselves are always string�valued� Therefore new types for the attributes are not de�ned�
The types may have methods which access the values of these attributes�

The general convention is that a method beginning with the pre�x Get is an access method�
Methods which modify the state of the object are not considered since a read�only application
environment is assumed�

	���� Top Level Hierarchy

The supertype of all element types is the Element type� This models the is�a relationship � every el�
ement instance is an Element instance� As the document instance has a tree structure the operations
common to all element instances are tree operations� For example HyTime speci�es architectural
forms for navigating the tree �described in Section ������� Certain queries �Section ���� also involve
navigation of the document structure�

The frequently used operations in the navigation are �a� get the parent element �b� get the nth

child element and �c� get either sibling� It is possible to achieve the last operation with a combination
of the �rst two� There are operations and queries common to tree structured data which are not

�The only exception is the type Pcdata� Although not a logical element� it is considered to be a pseudo�element

in the HyTime standard� For this reason� a type is declared for it� and instantiated whenever it occurs in an element
with a mixed �logical elements mixed with plain character data� content model�

�	

considered here �SLVZ���� A detailed analysis on document queries would reveal the salient set of
tree operations required �BAH���� In the absence of such a detailed analysis the two representative
methods� GetNthChild and GetParent� are considered�

As these methods are independent of the type of the element instance the declarations of these
two methods could be in the Element type� However leaf nodes in the document tree never have child
elements� All those element types in the DTD which have as content models EMPTY or ��PCDATA�
are always leaf nodes in the document tree� In other words there are two types of elements in any
DTD� structured �non�leaf nodes� and unstructured �leaf nodes� elements� Therefore type Element
only has the method GetParent� type Structured which is subtyped from Element has the method
GetNthChild�

Links can be made to arbitrary elements in di�erent documents� Searches performed over several
documents can also return arbitrary element instances� It is often useful to know the article these
element instances which they belong to� An example query is �select articles which have any
section element containing the word �SGML��� This query could be broken down into two steps�
�rst the collection of Section instances is searched and then their articles are extracted� Hence the
method GetArticle is added to the type Element��

Type Element is subtyped into TextElement Structured and HyElement� In the DTD for news
documents given in Appendix A the document is divided into components called async and sync�
This is because of the fact that continuous media with synchronization constraints �the sync part�
need to be handled by HyTime conforming element types� other �TextElement� ordinary SGML
element types are adequate to deal with text and image data� The supertype HyElement represents
all the HyTime elements used in the DTD�

	���� Text Elements

Type TextElement models textual DTD elements� Every textual element instance has an annotation
instance associated with it� The method to access this is the GetAnnotation method� To obtain the
actual character string which the text element instance represents the method GetString is de�ned�
The TextElement type hierarchy �excluding StructuredText which is described later� is illustrated in
Figure ����

The types in Figure ��� correspond to text elements that do not have any sub�elements� Most
of the types here do not have any additional methods other than those present in TextElement�
they have been created as subtypes for classi�cation purposes� This maintains the uniformity of the
approach of modeling all element types in the DTD as types in the type system� The exceptions
are the Quote and the Author which have the methods GetSource and GetDesignation respectively�
This is because the DTD elements quote and author have the SGML attributes source �the source
of the quote� and designation �the designation of the reporter�author in the news organization�
respectively�

	���	 Structured Text Elements

Textual elements that are structured have a common supertype StructuredText �Figures ��� and �����
Type StructuredText is a subtype of types Structured and TextElement� The subtypes of this type

�These two methods are essential for the HyTime architectural form treeloc which is used as a locator� Navigating
the structure is also possible by following pointers to child and parent elements	 we just don�t declare every possible
method for every possible navigation�

�GetDocument would have been a better name� since there could be other document types in the database�

��

Element

StructuredTextElement HyElement

StructuredText AudioVisual SyncArticle

Figure ���� First�Level Element Type Hierarchy

include all types representing text elements with complex content models �list section figure
frontmatter etc��� Except for type Figure which has methods GetImage and GetFormat all other
subtypes of StructuredText do not have additional methods declared�

	���� HyTime Elements

The type HyElement in Figure ��� is the supertype for all HyTime elements in the type system� All
HyTime conforming element types in the DTD have ID and HyTime attributes� The values of these
attributes provide an identi�er and the name of the architectural form to which the element conforms�
Type HyElement has two methods to access these values� GetID and GetAForm respectively� The
sub�hierarchy rooted at HyElement is depicted in Figure ���� Its immediate subtypes are those
modeling the architectural forms used in the DTD� The HyTime standard de�nes semantics and
attributes for each architectural form�

There are nine HyTime architectural forms used in the DTD� From Chapter � architectural
forms are assigned �a� attributes and �b� meta�content models by the HyTime standard� Types
representing architectural forms have attributes modeling the HyTime attributes� The meta�content
model determines whether the type is subtyped from Structured TextElement or StructuredText in
addition to HyElement� If the meta�content model is ��HyBrid� then the type is only subtyped from
HyElement� However the actual conforming element cannot leave the content model as ��HyBrid��
If the content model is EMPTY then the type is only subtyped from HyElement�

The most signi�cant AFs from the database perspective are the fcs and the ilink AFs� Recall
that the ilink elements model hyperlinks with more than one destination or source� This AF has a
��HyBrid�� content model� therefore it could be a Structured element depending upon the content
model de�ned by the DTD designer� A type for this AF is created called Ilink AF as a subtype of
the HyElement type� In the DTD for news articles the link element has a complex content model

��

TextElement

Loc Source

Author Subject Date

QuoteEmphasis

Emph1 Emph2

FigcaptionEdinfoElement

Keywords

Figure ���� Type Hierarchy for Unstructured Text Elements

containing only text elements and conforms to the ilink AF� Therefore the Link type is a subtype
of both Ilink AF and Structured� The Ilink type declares the method Traverse which takes the object
ID �a reference to an Element instance� of a destination element and performs a traversal according
to the applications semantics� This method is de�ned in the Link subtype�

The fcs element is important because it provides the interface to the other system components�
This allows the types of media objects present in the continuous media as well as the presentation
schedule of the media objects which are a part of the FCS to be determined� The fcs AF is
represented by the type Fcs AF� The actual type used in the document is the Av fcs type� In the
composition hierarchy of a multimedia news article instance all the continuous media objects are
descendants of the Av fcs instance� Therefore the Av fcs type is entrusted with the interfaces to
other system components�

As explained in Section ��� the synchronization component requires a representation of the
temporal constraints between the monomedia �atomic type� instances in the document instance�
The QoS negotiation component requires the list of monomedia instances in the document to be
able to negotiate their quality of access� The method GetSchedule of type Av fcs returns an instance
of a data structure called scenario str� This is a data type de�ned by the synchronization component
design group� Its instances contain a representation of the temporal constraints� The playback
schedule for the Atomic instances in the FCS is derived from this representation� The methods
GetVideoObjects GetAudioObjects and GetSyncTextObjects return lists of references to objects of
type Video Audio and SyncText respectively �which are atomic types��

Instances of the Article type are at the root of the composition hierarchy� The article element
has to conform to the hydoc architectural form� Hence type Article is a subtype of HyDoc AF�
According to the DTD Article instances should have references to instances of Frontmatter Async
and Sync types� This means that Article is also a Structured type� In addition the date source
subject and author are attributes �type String� of Article even though these values are already
stored �by means of annotations� as instances of Date Source Subject and Author types respectively
�Figure ����� This replication is done for performance reasons explained in the next chapter�

The other HyTime types �Figure ���� are architectural forms and the conforming elements used in
the DTD� The axis architectural form has a ��HyBrid�� meta�content model� The actual conforming
axes used in the DTD �x y and time� have EMPTY content models� Hence type Axis AF does not have
Structured as a supertype� The three document axes declared in the DTD have their representative

��

StructuredText

ListItem Section

Figure

Async

Paragraph

Link

FrontMatter

List Abs-pEdinfo

Ilink-AF

Figure ���� Type System for Structured Text Elements

types �X Y and Time� subtyped from Axis AF� They do not declare additional methods or attributes�
However they have di�erent semantics in the DTD� The values of the attributes for the dimensions
measurement units and measurement granularity �axisdim axismeas and axismdu� are di�erent for
each axis�

The event architectural form also has a ��HyBrid�� meta�content model in the HyTime standard
but the events in the DTD all have EMPTY content models and hence type Event AF representing
this architectural form is not a subtype of type Structured� The Event AF type has been subtyped
to represent the three di�erent types of events possible in the �nite coordinate space � text video
and audio �SText SVideo and SAudio�� The intermediate supertypes Spatial and Spatio�Temporal
model the temporal dimension of SAudio while SVideo and SText have both spatial and temporal
dimensions� These types have attributes which reference the atomic type instances which store the
media associated with these objects� For instance an SText type instance will have a reference to
an instance of SyncText� The exspec attributes have references to the Extlist instances which hold
the values of the extents of these elements along the three axes�

The extlist architectural form is represented in the DTD by the element type av�extlist� The
content model of this element type is de�ned to consist of one instance of xdimspec one instance
of type ydimspec and one instance of tdimspec� These elements represent extents on the three
di�erent axes �x y and time respectively�� They conform to the dimspec architectural form� This
AF is represented in the type system by type Dimspec AF� The three subtypes of Dimspec AF are
XDimspec YDimspec and TDimspec which model the respective DTD elements� The content models
of the three DTD elements are identical � they consist of two integers representing the start and
length of the extent� Hence av�extlist instances are not leaf nodes in the document composition
hierarchy� Therefore the Av extlist type is a subtype of the Structured type�

��

TextElement Structured HyElement

StructuredText

Ilink_AF
Evsched_AF

Extlist_AF

Event_AF Fcs_AF
Axis_AF

Dimspec_AF

Link

Temporal

Saudio Spatio-temporal

SvideoStext

Av-fcs Av-evsched

Av-extlist

X Time

Xdimspec Ydimspec

Tdimspec

HyDoc_AF

Article

Y

Figure ���� Type Hierarchy for HyTime Elements

	���� Other Types

AudioVisual and Sync are the remaining subtypes of Structured which have not been described� In
the DTD the element audio�visual models one set of logically related HyTime components� For
instance if the document was one hour of a television broadcast there would be one audio�visual
each for the news the commercial segments etc� The whole broadcast would be modeled by the
sync element� Sync instances hence have collections of AudioVisual instances as child elements�

��

Chapter �

Implementation Issues

The design presented in Chapter � is general enough to be implemented on most object�oriented
systems� The implementation described here is constrained by the implementation environment�
These constraints in turn a�ect the design of the type system� In the following the composition
hierarchy which emerges when the sample multimedia document shown in Figure ��� is inserted in
the database is described� Then the constraints and the design decisions taken in their context are
described�

��� Example Design

In this section the sample document �Figure ���� is used to demonstrate how the type system can
be exercised� This discussion concentrates on the composition hierarchy that emerges among objects
according to the document structure� The composition hierarchy is based on the attributes of each
type� Instead of presenting the attributes abstractly it will be demonstrated how the structure of
the sample document is mapped to a composition hierarchy as objects are instantiated and their
attribute values set� This discussion refers to Figures ��� and ��� where object instances of type X
are denoted as MyX and the arrows are from objects to their component objects�

The root of the composition hierarchy �Figure ���� is one instance of the Article type object
called MyArticle� MyArticle has three attributes among others that point to a Frontmatter type
object called MyFrontmatter an Async type object called MyAsync and a Sync type object called
MySync� MyFrontmatter holds the information in the document that is delimited by the markup
�front� and ��front�� As discussed in Section ����� the body of the document is separated
into an asynchronous part �MyAsync� and a synchronous part �MySync�� The asynchronous part
describes the text and image part of the document�

According to the DTD of Appendix A each document is separated into sections �rst� In this
example it is assumed that the �gure which consist of the building�s picture and the text before it is
one section �even though it is only one paragraph� and the part after the �gure is a second section�
Thus there are two Section type objects �MySection�� and MySection�� � as well as one Figure type
object MyFigure which are components of MyAsync�

The rest of the hierarchy should be obvious� Note that there are composition paths from some
of these objects to instances of atomic types �Figure ����� For example MyFigure has a link to an

��

MyArticle

MyFrontmatter MyAsync MySync

MyEdinfo MyHdline MySection-1 MyFigure MySection-2

MyAuthor

MyKeywords

MyDate MyParagraph-1 MyParagraph-2

MyLink-1 MyEmphasis-2

MyLink-2

MyFigCaption

MyLink-3

MyEmphasis-1

Figure ���� Partial Object Composition Hierarchy

object of type Image �or one of its subtypes depending on the type of the Image� for the picture of
the building�

The synchronous part of the document that corresponds to the audio and video is shown in
Figure ���� In the sample news document of Figure ��� it is assumed that a closed captioned video
of the Guided Tour is associated with the article�

The closed caption video consists of the video synchronous with the commentary �audio� along
with captions which appear periodically giving the French translation of the commentary� The three
media are modeled as events in the �nite coordinate space described in the DTD� The whole �audio
visual� therefore consists of the two spatial axes �the time axes� the �nite coordinate space and
the list of event extents along the axes�

Since there is only one closed captioned video there is only one instance of the AudioVisual
element in Figure ��� which has as its children the instances of the axes the instance of the Av fcs
and multiple instances of extent lists �MyAv�extlist��

The Av fcs instance itself contains just one event schedule �there could be several if the commen�
tary had been partitioned into logical segments�� The event schedule is just the collection of the
events occurring in the FCS� Since the audio and video data are not segmented there is just one
audio event one video event� there are however several synchronized text �SText� event instances
one for each caption�

��

MySync

MyAudio-Visual

MyX MyY MyTime MyAv-fcs MyAv-extlist-1 MyAv-extlist-2 . . .

MyXdimspec MyYdimspec MyTdimspec

 MyAv-evsched

 MyAudio MyVideo MyStext-1 MyStext-2 MyStext-3 . . .

Figure ���� Remaining Composition Hierarchy �Synchronous Portion�

According to the DTD each extent list consists of dimension speci�cations �dimspec� which in
turn consist of marker lists �list of positions along the axes�� The �rst two instances of the Av extlist
type are shown in the �gure� the contained dimspec instances are shown for the second� The marker
list is omitted since it is too involved to display in one �gure�

Not shown in the composition hierarchy are the occurrences of instances of atomic types� In
Figure ��� MyFigure has a reference to an instance of Image� In Figure ��� My�Audio has a
reference to an instance of Audio MyVideo to an instance of Video and MySText�� etc� have
references to instances of SyncText�

��� Implementing the Type System

The implementation language is C!! �Stro���� The speci�c implementation of the language used is
the xlC product from IBM� The OBMS used is ObjectStore� Methods of a type are called �member�
functions in C!!� The term interface refers to a set of methods� Attributes are also called data
members� Types have two special function members � a constructor and a destructor� Constructors
usually involve memory allocation and initialization for a new instance of the type�� Destructors
involve cleanup and deallocation of memory for that object� If no constructor or destructor is

�Actually� classes� and not types� have instances� However� all objects of a class have the same type�

��

provided the compiler provides default implementations for them� Pointers to instances are also
called references in the following discussion� For a type T the type of the reference to an instance
of type T is called pointer�to�T� In C!! the syntax is T��

ObjectStore provides an extensive set of parameterized collection types which can store references
to instances� The parameter is the type of the references of instances which can be inserted into the
database�

����� Designing for Persistence

The ObjectStore data model provides persistence independent of type� Any C!! object can be
made persistent and handled the same way as non�persistent objects� Once persistent an object
can be accessed either by navigation from other persistent objects or by giving it a persistent name
�a character string�� These names are called database roots or entry points�

ObjectStore does not maintain type extents automatically� Extents should be maintained by the
user programs if needed� Extents are essential for queries which search over a particular type of
element� For example the query may be� �select paragraphs which contain the word �Computer� �
or �select structured text elements containing the word �Canada��� In this implementation type
extents are automatically maintained as persistent parameterized sets with the type as a parameter�
These sets are database roots� For example the extent declaration for the type Paragraph looks like�

os�Set�Paragraph��� Paragraph�extent �

�os�Set�Paragraph����create�db�

os�collection��pick�from�empty�returns�null

	

This de�nes the extent of the Paragraph type to be a set of pointer to Paragraph� The default
behavior of the set is modi�ed so that a query over an empty set returns null and does not signal
an exception�

When a type is instantiated the type�s constructor ensures that a reference to the object is
inserted into that type�s extent� Similarly the destructor of the type deletes the reference from
the type�s extent� When an object is constructed its supertype�s constructors are called before
the object itself is created� This conveniently ensures that extents for all supertypes of an object
are automatically maintained� For instance when a Paragraph instance is created references to
this object are inserted �in sequence� in the extents for types Element Structured TextElement
StructuredText and Paragraph� This sequence implies that the constructor for type Element would be
called twice� once each by the Structured and TextElement types� The result would be an inconsistent
type extent containing duplicate pointers� By using the virtual inheritance mechanism of C!! this
is avoided�� Destroying an object has the opposite e�ect to that of the constructor� it removes the
references to the object from all the extents in the opposite sequence�

����� Abstract Types and Inheritance

An abstract type is a type which speci�es interfaces without implementing at least one of them�
Abstract types cannot be instantiated� In C!! a type is made abstract by declaring at least one
of its methods �function members� to be pure virtual� A virtual function is a mechanism in C!!

�Extents are sets
 duplicate elements are not allowed� Therefore� even if a particular constructorwas calledmultiple
times during a single instantiation� the state of the extent would not change�

��

to support dynamic binding� A derived type can re�implement functions declared to be virtual in
the supertype and hence override the implementation in the supertype� A pure virtual function is
usually left un�implemented in the abstract type�

The purpose of an abstract type is to represent a general concept� In the type system for
elements types in the top level hierarchy are all abstract types� All types representing HyTime
architectural forms are also abstract types� In the type system for atomic media types Atomic
CMType NCMType and Temporal are abstract� A non�abstract type is referred to as a concrete
type�

Implementing Abstract Types

An issue in implementing abstract types is whether abstract types should merely specify interfaces
at least one of which is not implemented� This design paradigm has an appeal to it� A type
implementor who is implementing a type for a document element creates it as a subtype of one of
the abstract types� The implementor then implements the interfaces speci�ed in the abstract types
for that subtype �and any additional methods de�ned for the subtype�� But there could be methods
that are implementable in the abstract supertypes� This implementation could then be inherited
by the concrete subtypes� An example is the method GetArticle in the Element type� This can be
implemented by having an attribute which is a reference to the Article instance which the element
belongs to� GetArticle simply returns this reference� This method now needn�t be re�implemented
for every concrete type in the type system �there are �	 of them��

The disadvantage of the latter approach is that a constructor with a non�zero number of pa�
rameters needs to be implemented for type Element� This is because the attributes of Element need
to be initialized� Since the constructor of a type calls the constructor of its supertypes the type
implementor needs to know about the constructors of all the supertypes and make explicit calls to
them� In the �rst approach there would be no need to write a constructor for the abstract type�
The compiler would supply a default constructor�

In this implementation the second approach is adopted � every method is implemented at the
highest possible level in the type hierarchy� This approach tends to make certain portions of the
implementation complex �the constructor for type Paragraph needs to call four constructors with
three parameters each for instance� but it cuts down on overall implementation time�

Return Types

In the last chapter some of the methods of the types in the top level type hierarchy for document
elements were described� These methods are implemented as virtual functions� The full C!!
speci�cation is given in Appendix B� The return types of these methods are the most general types�
For example method GetParent of type Element has a return type Element� However in most cases
the type of the parent element of an element instance is constrained by the DTD� For example
instances of type Frontmatter can only have instances of type Article as a parent� Therefore GetParent
for Frontmatter would have its return type as reference to Article� Unlike the case for GetArticle type
Element does not have an attribute which is a reference to the parent instance� GetParent is a pure
virtual function which is implemented in type Frontmatter� This type would have an attribute parent
which is of type pointer�to�Article� GetParent would be implemented in Frontmatter and not Element�
The same reasoning applies for the declarations and de�nitions of GetNthChild in type Structured�
The �simpli�ed� declarations for types Element and Frontmatter are given below�

class Element �

�	

private�

Article� articleElement

public �

virtual Element� GetParent�	 � �
pure virtual function

virtual Article� GetArticle�	
can be re�implemented by subtypes

�

class Frontmatter � public StructuredText�

private�

Article� parent

public�

Edinfo� edinfo

Hdline� hdline

Subhdline� subhdline

AbsP� absP

Article� GetParent�	
 implemented in this type

TextElement� GetNthChild�int index	
 inhrtd from Structured

�

C!! allows the return type of an overriding virtual function to di�er from that of the overridden
function provided that �a� the overridden function returns a reference to an instance of type T and
�b� the overriding virtual function returns a reference to a type derived from T� In the example
above Article is �indirectly� derived from Element�

����� Modeling DTD Constraints

The DTD speci�es constraints on the type the number and order of the sub�elements of elements
with complex content models �called structured elements�� Modeling these constraints is non�trivial
since there is little or no support from the C!!�ObjectStore data model for these constraints� In
the following the speci�c problems and the solutions employed are discussed�

Union Types

Structured types model elements which have complex content models� These are non�leaf elements
in the composition hierarchy� Since the document tree is ordered their children are ordered which
gives the view of a tree as a nested list� Any structured element with an undetermined number of
children will have a childList attribute� This attribute is a parameterized list whose parameter is the
type of the child instances as an attribute� For example the type Sync has the content model and
simpli�ed C!! type declarations�

��ELEMENT sync � � �audio�visual�	�

class Sync � public Structured �

private�

Article� parent

public�

os�List�AudioVisual��� childList

��

Article� GetParent�	

AudioVisual� GetNth�int index	

�

The problem arises out of the use of the �or� connector ��j�� in conjunction with the ��� or �!�
connectors in the content model� For example the Async element has the content model�

��ELEMENT async � � �section�figure�link	��

There could have been three attributes for the Async type each of which is list of references of the
type of one of the three elements listed on the right hand side �i�e attributes sectionList �gureList
and linkList�� However with this representation the relative orderings between say Section instances
and Figure instances are lost� One solution to this problem is to have just one list of references of
the existing common supertype of Section Figure and Link� this is Structured in this case� However
this leads to type checking problems since references to any subtypes of Structured �say Paragraph
elements� could now be inserted into childList�

A second solution is to use union types� the parameter of the list of children is the union type
of the three types� Section Figure and Link� Unions are present in the C!! data model and
ObjectStore allows named union types to be made persistent� However a discriminant method has
to be provided to di�erentiate between the types in the union and the user has to ensure that
the right type is being accessed �i�e� there is run�time type checking�� The third solution �the one
adopted in this implementation� is to create an abstract supertype of Section Figure and Link� The
convention adopted is to concatenate the �rst three letters from each type name to obtain the name
of the new type� The parameter of the childList is then this supertype and there are no type checking
problems� The drawback is that it creates an explosion of types in the system� Abstract supertypes
created for this purpose are called pseudo�union types in this model� The declaration for type async
now is�

class Async � public StructuredText�

private�

Article� parent

public�

os�List�Fig�Lin�Sec��� childList

Article� GetParent�	

Fig�Lin�Sec� GetNthChild�int index	

�

Pseudo�union types are subtyped from types already present in the element hierarchy� For
example the type Fig Lin Sec is a subtype of StructuredText� Pseudo�union types are abstract� In
some cases it is possible that the pseudo�union type is indeed a genuine supertype of the types
involved� The modi�cation to the type system after the inclusion of union types is a di�cult task�
The pseudo�union types de�ned in the type system are listed in Appendix B���

Ordering of Sub�elements

The second problem occurs in the use of the �follows� connector ����� For example the element
frontmatter has the content model�

��

��ELEMENT frontmatter ���edinfo�hdline�subhdline�abs�p	�

This means that instances of Edinfo Hdline Subhdline and Abs�p must follow each other in any
document instance� To capture this constraint in the type system a mechanism is needed to order
the attributes of the type Frontmatter� This feature is not present in the data model of ObjectStore��
An implicit ordering of attributes is assumed in this case� The behavior of the Frontmatter type is
such that it enforces the ordering� Thus when the method GetNthChild with the value of parameter
�n� equal to � is applied to an instance of Frontmatter the result is a reference to an instance of the
type Subhdline�

Number of Sub�elements

The DTD declaration for the element frontmatter �given above� gives the constraint that there is
exactly one edinfo one hdline one hdline one subhdline and one abs�p sub�elements� None of
the elements can be omitted� A wide variety of constraints on the number of sub�elements can be
speci�ed with the ��� �!� and �
� occurrence operators�

There is no direct support from the data model for this constraint� There is no way of specifying
for instance that a particular attribute cannot have a null value� The constraint can be enforced
through the type�s constructor� For example the constructor for type Frontmatter would ensure that
no Frontmatter instance is created unless it is supplied references to existing Edinfo Hdline Subhdline
and Abs p instances�

However this is not such a clear�cut issue� Is it possible to build a database loader which could
use such constructors
 Is it e�cient
 Is it necessary for the constraints to be satis�ed all the time

Could the database provide a consistent view of the document only after the whole document has
been instantiated
 Some of the responsibility for maintaining this DTD constraint also lies with the
parser�database loader which ensures that the document being inserted conforms to the DTD for
multimedia news articles�

In this implementation since the database loader has not yet been designed the issue is left
open� However the rudimentary instantiation program built to test the type system does try to
enforce the number constraints�

����	 Performance Issues

In the section describing the design of atomic types a storage model for text which avoided frag�
mentation of the text component of the document was presented� This was done to optimize the
performance of the database� It was also mentioned that there was a single type type ArticleRoot
which stored as attributes the lists of annotations of the logical elements� A complete listing of
this type is given in Appendix B� This feature also enhances the performance of the browser in
displaying text�

A related design goal is to minimize complex navigations of the hierarchy� By maintaining
references to objects frequently accessed as attributes of ArticleRoot access cost is reduced� For the
multimedia news document a frequent request from other system components is for the list of the
atomic media instances present in the document� The references to these media instances are stored
in lists which are attributes of the ArticleRoot type� A similar strategy is seen in the declaration
of the GetArticle method in type Element� Any element can navigate through the parent elements

�Product types� which are not present in the data model of ObjectStore� can model attribute ordering�

��

to determine the article it belongs to� By providing an attribute whose value is the reference to the
Article instance this navigation is avoided�

To enhance the performance of the database there are two key ways by which the implementation
can help the DBMS� The �rst is by clustering related objects and the second is by providing indices
on collections to help optimize queries�

Because ObjectStore transfers data from the server to the client a page at a time� clustering
related objects in the same object cluster optimizes performance� Clustering can be done at various
granularities� For the hierarchical structure of the document instance it is desirable to store the
child instances of an element instance in the same cluster or segment as that of the element instance�
As noted in the preceding section an element instance may not have control over the instantiation
of its child instances� It is left to the instantiation routines to carry out this optimization� However
all constructors which allocate memory for attributes of a type�s instance try to ensure that the
allocation occurs within the same segment of the instance�

ObjectStore collections can be indexed on data members �attributes� only� Except for attributes
which are are integer character or string valued the type implementor has to provide the rank and
hash functions which enable the index to be built� It is the responsibility of the type implementor to
indicate which attributes are indexable� Once this is done indexes can be automatically maintained
�under updates to the attribute� by the DBMS� However for attributes which are references to
user de�ned types or are character strings valued user controlled index maintenance must be used�
This involves calling index maintenance functions within the methods of the type which modify
the attribute being indexed� With the read�only assumption this usually involves modifying the
constructor and destructor of the type� The user of the type must explicitly request ObjectStore to
add or drop an index to a collection based on that attribute�

In Section ����� it was stated that the date source subject and author are attributes �type
String� of Article even though these values are already stored �by means of annotations� as instances
of Date Source Subject and Author types respectively The reason for this replication becomes clear
now� It is desirable to index the collection of Article instances on the values of these attributes since
queries predicated on these are likely to be frequent �Section ����� However ObjectStore collections
cannot be indexed on methods� The string value of instances of Date Source Subject and Author
can only be obtained by the application of the method GetString� Hence although there could have
been methods GetDate GetSource GetSubject and GetAuthor for the Article type it would not have
been possible to build indices on these methods�

More details on indexes and queries can be found in �EM����

�This data transfer policy can be changed�

��

Chapter �

Related Work

The issue of database design for multimedia data has been tackled from the relational as well as
the object�oriented data modeling perspectives� The design usually involves �a� de�ning a model
for multimedia documents and �b� de�ning models for multimedia data� Documents multimedia
documents in particular are richly structured� Document models try to capture the structure
of documents and in the case of hypermedia the functionality of hyperlinks� Since multimedia
data �speci�cally time�based media such as audio and video� di�er from traditional data in their
synchronization and temporal requirements they require a data model di�erent from conventional
models� These are usually object�oriented models� Thus for example Atomic types have been
de�ned to model these data�

Of the various media types which make up a multimedia document the text component is by far
the most richly structured� In the news�on�demand database design the SGML standard has been
adopted to describe this structure� Structures for video image and audio data involve spatial and
temporal constraints� It is foreseeable that in the future these media will be just as richly structured
as text �OT����

In this chapter database models of structured documents �speci�cally SGML�HyTime docu�
ments� are reviewed �rst� Later other implementations of multimedia databases reported in lit�
erature are examined� Both relational and object�oriented models are considered although the
emphasis is on object�oriented models�

��� Database Models for Structured Documents

A comprehensive description of various database models for SGML documents proposed in literature
is given in �SAZ���� These models either employ �a� a direct representation of the DTD in the schema
or �b� the schema is de�ned external to the DTD �i�e� DTD�independent schema�� Our database
model is an example of the former�

Relational Models

An example of the latter approach is found in �BCK���� where the task of incorporating support for
structured text in a relational DBMS is tackled� To enable queries on structured text documents in

��

SGML format extensions to SQL are proposed� Instances of document categories �de�ned by their
DTDs� are �elds with data type TEXT of relations� Each TEXT �eld consists of the contiguous text
content of the document along with the parse tree which represents the structure of the document�
A schema creation for an article would look like�

CREATE TABLE �aid INTEGER�

insert DATE�

document TEXT GRAMMAR article�dtd�

PRIMARY KEY �aid		

Here article dtd is a reference to the article�s DTD aid is the article id and insert is the
date the article was inserted� The EXPAND operator can be used to convert parts of the parse
tree into �elds of a relation� In this way speci�c elements of the document can be extracted by
selecting nodes in the parse tree� Updates to the TEXT �eld are not handled� The aim of the model
is to integrate a relational DBMS with a text retrieval engine� It would be extremely di�cult to
incorporate support for multimedia and HyTime elements in this model� The idea of storing the
text content contiguously and not fragmenting it is found in the news�on�demand database design�
However the locations of the start and end of text element instances �annotations� are stored� the
parse tree is implicit in the composition hierarchy �Section ����� A similar approach to storing SGML
documents is found in �Macl�	�� The DTD is external to the schema and the parse tree is stored
as combinations of links to the parent elements and o�sets from the start of the text� A full text
retrieval system is integrated with this model�

Object�Oriented Models

The advantages of object�oriented database systems for multimedia�hypermedia applications over
relational systems is highlighted in �Thur��� and �Bala���� A case for using object�oriented databases
for storage and retrieval of structured multimedia documents is made in �BA���� Perhaps the ear�
liest object�oriented approach is in �WKL��� which discusses the logical modeling of structured
multimedia documents� In addition to standard DBMS functions the authors identify other func�
tional requirements of multimedia applications� These include aggregation generalization dynamic
schema modi�cation modeling of presentation information versioning large data volume content
based access and the ability to specify constraints between logical document elements� It is pro�
posed to represent the constraints as methods of the objects representing the document elements�
Since the work does not adopt any standard for document representation there is very little a priori
knowledge of the structure and any object in the composition hierarchy can have a relationship
with any other object regardless of type or position� In the news�on�demand database design the
heterogeneity of the objects involved in the relationships is constrained by the document�s DTD�
For example a section element is not allowed to be the sub�element of a paragraph element�

Querying of SGML documents is the focus of �CACS��� where extensions of two OBMS query
languages are proposed� The DTD is mapped into an object�oriented schema implemented on the
O� OBMS� Two extensions to the data model of O� are proposed� They are� �a� ordered tuples
or the ordering of attributes of a type and �b� marked union types� Union types are introduced to
handle the �or� connector� For example a DTD entry using the �j� connector and the corresponding
O� declarations are�

��ELEMENT section �� ��title�body�	��title�body��subsectn�		�

��

class Section public type union�

a��tuple�title�Title� bodies�list�Body		�

a��tuple�title�Title� bodies�list�Body	�

subsectns�list�Subsectn			

constraint� �a��title ��nil� a��bodies ��list�		

�a��title ��nil� a��subsectns ��list�		

Here a� and a� mark the union� The extensions to the query language are �a� the contains
predicate to handle querying on strings �b� implicit selectors to select the correct path while handling
queries over union types and �c� two new sorts to query text without exact knowledge of its structure
�Section ����� Types representing unstructured document elements �with a �PCDATA content model
for example� are inherited from basic �atomic� types such as Text and Bitmap� This means that
textual document elements are fragments of the text content of the document which imposes a
performance overhead while fetching the entire document� There are no inheritances relationships
between classes�

Union types have been introduced here to handle alternative structures for the same document
element �such as the section shown in the example above�� In general union types are needed to
constrain the heterogeneity of the elements which can occur at a particular position in the compo�
sition hierarchy� Our approach for handling union types is described in Section ������ The ordering
of attributes is visible through the behavior of the types� Queries with inexact knowledge of the
document structure are not considered in our model� Querying on text content is handled by the
method Match of the Text type� Since marked union types are not used in the news�on�demand
type system implicit selectors are not dealt with� The inheritance hierarchy described in Chapter �
and the composition hierarchies described in Section ��� illustrate our approach� every element is
an Element and may have an instance of an Atomic type� If the element is a TextElement then its
content is obtained by the method GetString�

The design of an OBMS application to handle the storage of SGML documents is described in
�BAH���� This design also fragments documents according to the document�s SGML type de�nition�
The paper does not describe the querying facilities but describes in detail how dynamic DTD
handling is implemented by means of meta�classes�

The application called D�STREAT follows a layered approach by separating the DTD speci�c
features and DTD independent features into two separate layers of classes� Document type�speci�c
classes are specializations of the document type�independent classes� This means that features
present in all SGML documents �methods to navigate the document tree for example� can be located
in the DTD�independent layer which contains only one class called Document Element� Furthermore
there are two meta�classes� TERMINAL and NONTERMINAL� The TERMINAL class models leaf
nodes in the document hierarchy �i�e� �PCDATA elements� while the NONTERMINAL class models
elements which are structured elements� Classes in the DTD�speci�c layer are instances of either
of these meta�classes� The meta�classes have methods to create new document�speci�c classes at
run time �createElemType�� The content model of the new class can be set using another method
setContentModel� Instances of the DTD�speci�c class can be created at run time using the method
createElem inherited from either meta�class� In this manner DTDs can be dynamically created
and inserted into the database� Finally the content of the element can be set using the setContent
method�

The schema is essentially a �at class hierarchy with depth one� Every nonterminal element is
a list of document elements� This implies that schema does not enforce the DTD constraints �i�e�
the content model of the individual elements� on the heterogeneity of the elements comprising the
list� It is argued that since the SGML standard and the DTD do not de�ne semantics for each

��

document element type they do not have any semantic relationships between them� Therefore the
classes representing the DTD elements are only specializations of the Document Element class� The
value of the attribute elementTypeName of the TERMINAL and NONTERMINAL meta�classes is the
name of the logical document element the instance represents� Unions are not needed because there
is no heterogeneity in the composition hierarchy� The authors envisage that the setContent method
would check the insertion of a new element instance against the content model� The creation of a
new element�type class is illustrated here�

��ELEMENT authlist � � �author	��

representative classes are capitalized and

first letter of instance names are capitalized

AUTHLIST �� NONTERMINAL��createElemType��authlist�	

AUTHLIST��setContentModel���author	��	

Authlist� �� AUTHLIST��createElem�	

Authlist��setContent�author�� author�	

author� and author� are pre�existing instances of AUTHOR

The disadvantage of this approach is that a signi�cant amount of type checking is done at
document insertion time� In the news�on�demand database design types are checked at compile
time� There are similar implications for the processing of queries� The assertion that the element
types never have semantics is debatable� For example both table and figure element types may
have a float attribute which speci�es their position relative to the surrounding text� Conceivably
the two may have a common supertype because of this attribute� In addition HyTime elements
have semantics well de�ned by the HyTime standard�

Nevertheless our approach has features similar to those of D�STREAT� The supertypes TextEle�
ment Structured and StructuredText can be said to be document type�independent types� However
our type hierarchy is not �at � the schema ensures that the document being inserted conforms
to the DTD� In �BAH��� it is pointed out that the fact that the document structure is always a
tree is factored into the DTD�independent layer� Thus optimization algorithms for queries on tree
structures could be integrated into the OBMSs query optimizer� Dynamic additions of DTDs to the
database have not been considered in the news�on�demand database design��

The extension of D�STREAT to handle HyTime�encoded documents is described in �BMN����
Since a document element conforming to an architectural form has both SGML and HyTime seman�
tics there is an additional HyTime layer in the model� Every architectural form has a meta�class
modeling its semantics� For every HyTime conforming element instance in the document there are
two objects in the database� For example link instances would have two classes �and hence two
instances� representing them� The �rst class would be an instance of the NONTERMINAL meta�
class and the second would be an instance of the ILINK meta�class� The second class is also a
specialization of the �rst� In our model type Link is derived from both StructuredText and Ilink AF
types �Figure �����

A document model based on the O�ce Document Architecture �ODA� is described in �BRG���
and �MRT���� ODA is similar to SGML in that it allows for the speci�cation of the logical structure
of the document� In addition it allows the speci�cation of a layout structure or the presentation
information associated with the document� The papers mention object�oriented models as candidates

�This is possible� ObjectStore has metatypes in its data model and allows the dynamic addition of types to the
ObjectStore database schema�

��

to model these structures� They de�ne an additional layer called the conceptual structure which is
used to capture the semantics of the components of the logical structure� In �MRT��� it is recognized
that support for multimediality is required� this is achieved by providing primitive classes for each
media type� Querying this document model and the optimization of such queries are described in
detail in �BRG����

��� Other Multimedia Databases

Presentational applications sometimes use OBMSs to manage persistent multimedia data and per�
haps manage data capture and playback devices� These applications have common requirements such
as composition synchronization and playback control� Models and implementations exist which pro�
vide support for these requirements either by integrating an OBMS or building the model around
the OBMS �GBT�� SW���� The intent is to provide a generic object�oriented toolkit which can be
used by application developers to implement various multimedia applications� Other database mod�
els focus on a particular monomedia �e�g� video or image� or on providing support for distribution
or on merely storing meta�information�

����� Presentation�Oriented Multimedia Databases

An object�oriented framework for modeling composite multimedia objects �such as multimedia doc�
uments� is proposed by the Object Systems Group at the University of Geneva in �GBT��� and
�GBT���� The focus is on providing a high level interface for multimedia programming� In par�
ticular �GBT��� deals with data models for time�based media and �GBT��� deals with so�called
audio�video �AV� databases� These databases are collections of digital audio�video data and pro�
cesses which can compose and aggregate these data� An AV database therefore not only stores
data but is also �involved with the capture presentation and scheduling of complex objects man�
aging access and allocation of devices and channel bandwidths and notifying the application of
presentation�related events��

A similar all�encompassing approach is seen in �SW��� where a layered data model for multimedia
applications is described� There are four layers� a data manipulation layer �DML� a data presen�
tation layer �DPL� and a data control layer �DCL�� The DDL is similar to the de�nition of Atomic
types� The DML provides services to group DDL objects into so�called MM events and speci�es an
event calculus to allow construction of complex events� The DPL provides descriptions of how data
is to be presented to the user and adds information to events from the DML �e�g� information on
spatial layout output format icons� to produce a set of instructions for communicating the data to
the user� The DCL manages the presentation � including playback control I�O device control and
navigation� These models perform almost all of the functions of a HyTime engine �KRRK�� Rutl����

The implementation of a persistent object�oriented system for HyTime documents is described
in �KRRK��� and �Rutl���� The database �implemented on ObjectStore� forms part of a HyTime
engine �called HyOctane� which is used to process and display hypermedia documents represented
using the HyTime standard� This design also fragments the document according to the element types
in the DTD� The design is layered� there is an SGML layer a HyTime layer and an application
layer�

There are only three classes in the SGML layer� the document class the element class and the
attribute class� When a document is inserted into the database an instance of the document class is
created with its �elds as the collection of all instances of the elements of the document� The element

��

instances in turn have references to their attributes which are instances of the attribute class� In the
HyTime layer each architectural form �AF� has a class associated with it� Instances of these AFs
get inserted at document insertion time� The application layer has a class for each element type in
the DTD� These get instantiated by the application process which obtains information on them by
querying the HyTime and SGML layers� The application then works from this layer� Updates to
these objects get propagated down to the appropriate HyTime and�or SGML layers�

����� Miscellaneous Multimedia Databases

A novel object�oriented model for a video database is proposed in �OT���� The model is schemaless
and includes inheritance by inclusion as an inheritance mechanism� This means that instances not
types inherit attributes� Therefore the hierarchical structure of a video object would be described
by a series of derivations and not by composition� However it is not clear as to how one can navigate
the structure � how does one get to the third scene of a movie for instance
 Other approaches to
object�oriented models for multimedia data include �CAF����� Incorporating structured video data
will be a future extension to our design �through an extension to the DTD��

Others have focussed on the temporal aspects of multimedia data and their synchronization�
�HR��� describes a model for temporally composing multimedia objects and the playback of the
composite objects� In �LG��� Little and Ghafoor present a procedure for the spatial and temporal
composition of distributed multimedia objects� The environment is a distributed multimedia system
�like the one described in Section ����� Object Composition Petri�nets �an augmented model of Petri
net with logic of time intervals for Petri net execution� are used to specify the temporal constraints
of compound multimedia objects� The destination workstation retrieves the temporal relationships
from the server database evaluates the Petri net and derives the playback schedule� In �LG���
the same authors present a conceptual temporal model based on intervals to model the timing
relationships present in compound multimedia objects� This model forms a basis for a hierarchical
data model and for temporal access control algorithms to allow VCR�like capabilities� They show
how it can be mapped to a relational database and derive the playback algorithm�

HyTime also adopts an interval based approach to modeling timing relationships and establishes
a composition hierarchy �Figure ���� using the document structuring feature of SGML� There
is a single time axis for the whole document and all time intervals are de�ned on this axis� In
our implementation this representation is mapped to an instance of a Time Flow Graph �LG���
�a playback schedule�� � The Time Flow Graph is used by the synchronization component of the
distributed multimedia system to synchronize data streams retrieved from the servers�

�Type Av fcs� which models a Finite Coordinate Space has a method GetTimeSchedule� which returns a data
structure representing the binary temporal relationships between the events in the FCS� From this data structure�
the synchronization module derives the Time Flow Graph�

�	

Chapter �

Conclusions and Future Work

In this thesis an object�oriented multimedia DBMS design for a news�on�demand application has
been described� The focus of the work reported here is the development of a type system that
supports multimedia documents� There are three characterizing features of the type system design�
��� the central use of DBMS technology ��� the reliance on object�oriented systems and ��� strict
adherence to international standards� The database is designed to accommodate actual multimedia
objects as well as meta�information about them� The database schema consists of an object type
system which follows the SGML�HyTime standard for document representation�

The other features of this work are�

�� The choice of a document representation standard� Three document representation standards
were examined� O�ce Document Architecture �ODA� SGML and HyTime� Based on their
relative modeling powers and suitability to the application the SGML and HyTime standards
were chosen� The architecture of the processing environment for the database system was
designed to support the choice of the SGML and HyTime standards�

�� The development of a Document Type Declaration �DTD� for multimedia news articles�

�� The development of a complete type system that is in complete harmony with the news�article
DTD�

�� The annotation�based storage of text which allows for e�cient storage of documents as well
as for fast search according to any of the document markups�

�� The successful implementation of the design on a commercial object oriented database man�
agement system �ObjectStore� and subsequent integration with other system components �in�
cluding a visual query interface �EM���� by other project participants�

The type system design implements a DTD de�nition for multimedia news documents� Popu�
lating the database with instances of other document types is not possible� Dynamic insertion of
new DTDs needs to be investigated to allow insertion of di�erent document types� Inserting new
types at run time could involve using meta�types� An interesting question in the context for support
for multiple DTDs is whether there are inheritance relationships between the types representing
document elements in di�erent DTDs� For example there could be a slightly di�erent article DTD
which does not have say quotes but has bibliographic references�

��

A related goal which is important to consider in future is modeling the whole DTD as an object
in the database� This would support dynamic additions of new document types in the database�

The type system also needs to be made richer to support other HyTime architectural forms not
used in the multimedia news DTD� In particular the location AFs given in the location module
need to be implemented� This includes supporting the functionalities of the HyQ query language�

This work has concentrated on the right�hand�side of Figure ���� Consequently a multimedia
document is currently entered into the database by creating the object instances according to the
types de�ned in the database� The document being inserted is assumed to conform to its DTD� A
database loader needs to be written which can validate multimedia documents and load the database
with the type instances automatically� This can be done by coupling the multimedia DBMS with
an SGML compiler which is retro�tted to instantiate object instances at the �code generation�
step of compilation� For document elements which provide support for continuous media HyTime
capability needs to be added to this front�end� In this fashion documents marked�up according to
the SGML�HyTime standard can be automatically inserted into the database�

An important extension to the atomic types would be the ability to index media objects other
than text based on content� At this point the only way to query images for example is to de�ne
a number of attributes and search on the values of these attributes� It is important to provide the
facility to pose queries that refer to the content of the images rather than the attributes de�ned on
them and be able to deal with such queries� The initial step in providing this facility would be to
work on indexing of image contents�

In the long�run an extensible OBMS that has inherent support for multimedia information
systems is being developed� The intention is to use this system called TIGUKAT ��OPS���� to
eventually replace ObjectStore� Although it may not be possible to achieve the same performance
there will be opportunities to expand on the functionality and investigate the feasibility of various
issues� It is di�cult if not impossible to investigate all of the issues related to multimedia DBMS
design by building a layer on top of a closed system such as ObjectStore� TIGUKAT is currently
being prototyped at the Laboratory for Database Systems Research of the University of Alberta� It
has a purely behavioral object model where the users interact with the system by applying behaviors
to objects� In this way full abstraction of modeled entities is accomplished since users do not have
to di�erentiate between attributes and methods�

��

Bibliography

�BA��� K� B�ohm and K� Aberer� �Storing HyTime documents in an object�oriented database�
In Proc� of CIKM ��� pages ��"�� �����

�BAH��� K� B�ohm K� Aberer and C� H�urer� �Extending the scope of document handling� The
design of an OODBMS application framework for SGML document storage� Arbeitspa�
piere der GMD No� ��� GMD�IPSI Germany �����

�BMN��� K� B�ohm A� M�uller and E� Neuhold� �Structured document handling � a case for
integrating databases and information retrieval� In Proc� of CIKM ��� pages ���"���
�����

�Bala��� V� Balasubramaniam� �State of the art review on hypermedia issues and applications�
Internal document Graduate School of Management Rutgers University Newark New
Jersey �����

�BCK���� G� E� Blake M� P� Consens P� Kilpel�ainen P��A� Larson T� Snider and F� W� Tompa�
�Text�relational database management systems� Harmonizing SQL and SGML� In
Proc� First Intl� Conf� Appl� of Databases pages ���"��	 June �����

�BRG��� E� Bertino F� Rabitti and S� Gibbs� �Query processing in a multimedia document
system� ACM Trans� O	ce Information Systems ������"�� January �����

�CACS��� V� Christophides S� Abiteboul S� Cluet and M� Scholl� �From structured documents
to novel query facilities� In Proc� ACM SIGMOD Intl� Conf� Management of Data
pages ���"��� May �����

�CAF���� S� Christodoulakis N� Ailamaki M� Fragonikolakis Y� Kapetanakis and L� Koveos�
�An object�oriented architecture for multimedia information systems� Q� Bull� of IEEE
Tech� Comm� on Data Eng� ������ ���� September �����

�DD��� S� J� DeRose and D� G� Durand� Making Hypermedia Work
 A User�s Guide to
HyTime Kluwer Publishers �����

�DG��� N� Dimitrova and G� Golshani� �EVA� A query language for multimedia information
systems� In Proc� Intl� Workshop on Multimedia Information Systems pages �"�	
February �����

�D�OBS��� A� Dogac M� T� �Ozsu A� Biliris and T� Selis� Advances in Object�Oriented Database
Systems Springer�Verlag �����

��

�EM��� G� El�Medani� A Visual Query Facility for a News�on�Demand Multimedia Database�
Master�s Thesis University of Alberta Department of Computing Science ���� �forth�
coming��

�Fox��� E� A� Fox� �Advances in interactive digital multimedia systems� Computer ����	��
�"�� October �����

�GBT��� S� Gibbs C� Breiteneder and D� Tsichritzis �Audio�video databases� An object�
oriented approach� In Proc� �th Intl� Conf� on Data Engineering pages ���"��	 �����

�GBT��� S� Gibbs C� Breiteneder and D� Tsichritzis� �Data modeling of time�based media� In
Proc� ACM SIGMOD Intl� Conf� on Management of Data pages ��"�	� May �����

�GDC���� C� Goble M� Docherty P� Crowther M� Ireton J� Oakley and C� Xydeas� �The
Manchester Multimedia Information System�� In Proc� Conf� on Extending Database
Technology pages ��"�� �����

�Gold�	� C� F� Goldfarb� The SGML Handbook Oxford University Press ���	�

�HBB���� A� Ha�d G� v� Bochmann T� Burdin R� Dssouli J� Gecsei B� Kerherv�e and
Q� Vu� �On news�on�demand service implementation� Publication #��� D�epartement
d�Informatique et de Recherche Op�erationnelle Universite de Montreal September
�����

�HR��� R� Hamakawa and J� Reikmoto� �Object composition and playback models for handling
multimedia data� In Proc� ACM Conf� Multimedia ��� pages ���"��� October �����

�ISO��� International Standards Organization� Information Processing � Text and O�ce In�
formation Systems � Standard Generalized Markup Language �ISO ����� �����

�ISO��� International Standards Organization� O�ce Document Architecture �ODA� and Inter�
change Format �ISO ����� �����

�ISO��� International Standards Organization� Hypermedia�Time�based Structuring Language�
HyTime �ISO �	���� �����

�KRRK��� J� F� Koegel L� W� Rutledge J� L� Rutledge and C� Keskin� �HyOctane� A HyTime
engine for an MMIS� In Proc� ACM Multimedia ��� pages ���"��� August �����

�LG��� T� D� C� Little and A� Ghafoor� �Interval�based conceptual models for time�dependent
multimedia data� IEEE Trans� Knowledge and Data Engineering ��������"��� April
�����

�LG��� T� D� C� Little and A� Ghafoor� �Spatio�temporal composition of distributed multimedia
objects for value added networks� Computer ����	����"�	 October �����

�LG��� L� Lamont and N� D� Georganas �Synchronization architecture and protocols for a mul�
timedia news service application� In Proc� IEEE International Multimedia Computing
and Systems Conf� �����

�LLOW��� C� Lamb G� Landis J� Orenstein and D�Weinreb� �The ObjectStore database system�
Communications of the ACM ����	�� �	"�� October �����

��

�Macl�	� I� A� Macleod� �Storage and retrieval of structured documents� Information Processing
and Management ���������"�	� February ���	�

�MRT��� C� Meghini F� Rabitti and C� Thanos� �Conceptual modeling of multimedia docu�
ments� Computer ����	�� ��"�	 October �����

�NY��� R� Ng and J� Yang� �Maximizing bu�er and disk utilizations for news�on�demand� In
Proc� ��th Intl� Conf� on Very Large Databases pages ���"��� �����

� �OPS���� M� T� �Ozsu R� Peters D� Szafron B� Irani A� Lipka and A� Munoz� �TIGUKAT� A
uniform behavioral objectbase management� VLDB Journal ���� �To appear��

� �OSEV��� M� T� �Ozsu D� Szafron G� El�Medani and C� Vittal� �An object�oriented multimedia
database system for a news�on�demand application� ACM Multimedia Systems Jour�
nal ���� �To appear��

�OT��� E� Oomoto and K� Tanaka� �OVID� Design and implementation of a video�object
database system� IEEE Trans� Knowledge and Data Management ��������"��� Au�
gust �����

� �OV��� M� T� �Ozsu and P� Valduriez� Principles of Distributed Database Systems Prentice�Hall
�����

�Pric��� R� Price� �An introduction to the future international standard for hypermedia object
interchange� In Proc� ACM Multimedia ��� pages ���"��� �����

�Rutl��� L� Rutledge� A HyTime Engine for Hypermedia Document Presentation� Master�s The�
sis University of Massachusetts Lowell �����

�SAZ��� R� Sacks�Davis T� Arnold�Moore and J� Zobel� �Database systems for structured doc�
uments�� In Intl� Symp� Advanced Database Tech� and their Integration ADTI ����
�����

�SLVZ��� B� Subramaniam T� W� Leung S� L� Vandenberg and S� Zdonik� �The AQUA approach
to querying lists and trees in object�oriented databases� In Proc� of Intl� Conference
on Data Engineering ��� �����

�Stev��� S� M� Stevens� �Next generation network and operating system requirements for
continuous�time media� In Proc� Second International Workshop on Network and
Operating System Support for Audio and Video pages ���"�	� �����

�Stro��� B� Stroustrup� The C�� Programming Language� Addison�Wesley �����

�SW��� G� A� Schloss and M� J� Wynblatt� �Building temporal structures in a layered multi�
media data model� In Proc� ACM Multimedia ��� pages ���"��� �����

�Thur��� B� Thuraisingham� �On developing multimedia database management systems using
the object oriented approach� Multimedia Review �������"�� Summer �����

�WKL��� D� Woelk W� Kim and W� Luther� �An object�oriented approach to multimedia
databases� In Proc� ACM SIGMOD Intl� Conf� on Management of Data pages ���"
��� May �����

��

�V�OSE��� C� Vittal M� T� Ozsu D� Szafron and G� El�Medani� �The Logical Design of a Mul�
timedia Database for a News�On�Demand Application� Technical Report ��"�� De�
partment of Computing Science University of Alberta December �����

��

Appendix A

DTD for Multimedia News

Articles

DOCTYPE article SYSTEM �article�dtd� �

���� HyTime Modules Used ���

��HyTime support base�

��HyTime support measure�

��HyTime support sched manyaxes���

��HyTime support hyperlinks�

���� Non�HyTime Notations used ���

��NOTATION virspace PUBLIC �� virtual space unit �vsu	��

��ISOIEC �����NOTATION Virtual Measurement UnitEN��

���� Document Structure ���

��ELEMENT article � � �frontmatter� async� sync	�

��ELEMENT frontmatter � � �edinfo� hdline� subhdline� abs�p	�

��ELEMENT edinfo � � �loc � date � source � author� �

keywords � subject	�

��ELEMENT �loc�source�subject	 � � ��PCDATA	�

��ELEMENT �hdline�subhdline	 � � ��PCDATA	�

��ELEMENT date � � ��PCDATA	�

��ELEMENT �author�keywords	 � � ��PCDATA	�

��ELEMENT abs�p � � �paragraph	�

��ELEMENT async � � �section�figure�link	��

��ELEMENT section � � �title�� �paragraph�list	�	�

��ELEMENT title � � ��PCDATA	 �

��ELEMENT paragraph � � �emph��emph��list�figure�link�quote��PCDATA	��

��ELEMENT �emph��emph��quote	 � � ��PCDATA	 �

��ELEMENT list � � �title�� listitem�	�

��ELEMENT listitem � � �paragraph	��

��

��ELEMENT link � � �emph��emph��quote�figure��PCDATA	��

��ELEMENT figure � � �figcaption�	 �

��ELEMENT figcaption � � ��PCDATA	�

��ELEMENT sync � � �audio�visual�	�

��ELEMENT audio�visual � � �x� y� time� av�fcs� av�extlist�	�

��ELEMENT �x�y�time	 � � EMPTY�

��ELEMENT av�fcs � � �av�evsched�	�

��ELEMENT av�evsched � � �audio�� video�� stext�	�

��ELEMENT �audio�video�stext	 � � EMPTY�

��ELEMENT av�extlist � � �xdimspec� ydimspec�tdimspec	�

��ELEMENT �xdimspec�ydimspec�tdimspec	 � � �axes�marklist	�

��ELEMENT axes�marklist � � ��PCDATA	�

��ATTLIST article

id ID �REQUIRED

HyTime NAME �FIXED HyDoc�

��ATTLIST quote

source CDATA �IMPLIED�

��ATTLIST author

designation CDATA �IMPLIED�

��ATTLIST figure

filename CDATA �REQURED

format CDATA �REQUIRED�

��ATTLIST �x�y�time	

HyTime NAME �FIXED axis

id ID �IMPLIED

axismeas CDATA �FIXED �virspace�

axismdu CDATA �FIXED � �

axisdim CDATA �FIXED �virspace��

��ATTLIST link

HyTime NAME �FIXED ilink

id ID �REQUIRED

linkends IDREFS �IMPLIED�

��ATTLIST av�fcs

HyTime NAME �FIXED fcs

id ID �REQUIRED

axisdefs CDATA �FIXED �x y time��

��ATTLIST av�evsched

HyTime NAME evsched

id ID �REQUIRED

axisord CDATA �FIXED �x y time�

basegran CDATA �FIXED �vsu vsu vsu��

��ATTLIST �audio�video	

HyTime NAME �FIXED event

id ID �REQUIRED

��

filename CDATA �REQUIRED

format CDATA �REQUIRED�

��ATTLIST stext

HyTime NAME �FIXED event

id ID �REQUIRED

filename CDATA �REQUIRED�

��ATTLIST av�extlist

HyTime NAME �FIXED extlist

id ID �REQUIRED�

��ATTLIST av�dimspec

HyTime NAME �FIXED dimspec

id ID �REQUIRED�

��ATTLIST axes�marklist

HyTime NAME �FIXED marklist

id ID �REQUIRED �

��

��

Appendix B

Type Declarations

B�� Atomic Types

�� class Atomic � Parent class in the hierarchy for basic media types
� private members �
� length � size of the media object
� hostQoSParam� pointer to object holding media independent
� QoS parameters
� protected members�
� Atomic� constructor protected to make the class abstract�
� name � keep track of multiple instances of the same object at
� di�erent hosts�
� public members �
� �Atomic � virtual destructor
� GetLength � returns the size of the object in characters�
� GetName � returns the name of the object temporary feature�
� subtypes� NCMType� CMType
��

class Atomicf
private�

unsigned long length�
HostQoSParameter �hostQoSParam�

protected�
char� name�
Atomic�unsigned long length

char �name $	
HostQoSParameter �qos $	�� ��constructor

public�

�	

static os typespec� get os typespec���
virtual �Atomic��� ��destructor
unsigned long GetLength���
char� GetName���
HostQoSParameter� GetHostQoSParameter���

g�

�� class NCMType � Parent class of non continuous media types
� private members �
� content �array of characters representing the object
� protected�
� NCMType � constructor to make it an abstract class�
� public members �
� �NCMType� destructor
� GetContent� return the content of the object as char �
� subtypes � Text� Image
��
class NCMType � public Atomicf
private�

char �content�
protected�

NCMType�const char� content unsigned long length
char� name $	 HostQoSParameter� qos $	��

public�
static os typespec� get os typespec���
�NCMType��� �� destructor virtual as it is abstract��
char� GetContent���

g�

�� class CMType � Parent class of continuous media types
� private members �
� �lename � name of the �le containing the object
� location � location of the �le site� directory��
� uoi � the Universal Object Identi�er
� protected�
� CMType � constructor to make it an abstract class�
� public members �
� �CMType� destructor virtual since type is abstract�
� GetFilename� return the �le name
� GetLocation� return the location
� GetUOI � returns the Universal Object Identi�er required by the CMFS
� subtypes � Temporal� SyncText
��
class CMType � public Atomicf

��

private�
char ��lename�
Location �location�
UOI uoi�

protected�
CMType�const char ��lename Location �location

UOI uoi int length char �name $	
HostQoSParameter �qos $	��

public�
static os typespec �get os typespec���
virtual �CMType���
char �GetFilename���
Location �GetLocation���
UOI GetUOI���

g�

�� class Temporal� Parent class of continuous media types
� with temporal attributes
� private members�
� duration� length of playback in seconds�
� protected�
� Temporal� constructor to make it an abstract class�
� public members �
� �Temporal� destructor virtual since it is abstract�
� GetDuration� returns the value of the duration attribute
� subtypes� Video� Audio
��
class Temporal � public CMTypef
private�

unsigned long duration� ��in seconds
protected�

Temporal�unsigned long duration const char �fname
Location � location UOI uoi unsigned long length
char �name $	 HostQoSParameter �qos$	��

public�
static os typespec �get os typespec���
virtual �Temporal���
unsigned long GetDuration���

g�

��

B�� Top�Level Element Hierarchy

�� class Element � Parent class in the hierarchy for element types
� private members
� articleElement � the article to which the element instance belongs
� protected members
� Element� constructor protected to make the class abstract�
� maintains extents
� Default constructor to be used when element does not
� belong to any article
� public members
� �Element � virtual destructor
� GetArticle � returns the pointer to the Article instance
� GetParent � pure virtual function � returns the parent of the
� instance in the composition hierarchy
� subtypes� TextElement� Structured� HyElement
��
class Elementf
private�

Article �articleElement�
protected�

Element���
Element�Article ���

public �
virtual �Element���
virtual Element �GetParent�� $ 	�
Article �GetArticle���

g�

��class TextElement� Elements which are text instances and can be re�
� presented by annotations�
�private members �
�protected members�
� TextElement � constructor made protected to enforce abstractness
� of the class�
�public members �
� absoluteAnnotation � annotation of the text element with
� respect to the entire text representing

the text content of the article�
� GetString �returns the string value of the TextElement instance�
� GetAbsoluteAnnotation � returns the annotation object�
��

class TextElement � public virtual Elementf

��

protected�
TextElement�Annotation � Article ���
TextElement���

public �
Annotation �absoluteAnnotation�
virtual �TextElement���
Annotation �GetAbsoluteAnnotation���
char �GetString���

g�

��class Structured � Elements which have subelements children�
� Virtual inheritance from Element so that
� multiply inheriting subtypes will have only
� copy of the Element subobject
�private members �
�protected members�
� Structured � constructor made protected to enforce abstractness
� of the class� Default constructor to be used when
� there is no article instance�
�public members �
� �Structured � destructor � removes instance from extent
� GetNth � returns nth sub�element count starts from
� one� not zero�� Pure virtual function
��

class Structured � public virtual Element f
private �
protected�

Structured���
Structured�Article ���

public �
virtual �Structured���
virtual Element �GetNth�int� $ 	�

g�

�� class StructuredText � text elements which are structured�
� private members � none�
� protected members �
� StructuredText � constructor� made protected to enforce
� abstractness of type� Maintains extent
� public members �
� �StructuredText � destructor� removes instance from extent�
� GetNth� inherited from Structured� Returns nth child element
� return type changed to TextElement�� Pure virtual

��

� function
��

class StructuredText� public virtual TextElement public virtual Structuredf
private �
protected�

StructuredText�Article � Annotation���
StructuredText���

public �
virtual �StructuredText���
virtual TextElement �GetNth�int�$	�

g�

��

B�� Type ArticleRoot

class ArticleRootf
public�

static os typespec� get os typespec���
��list of atomic media
Text� textBlock�
os List�Image��� imageList�
os List�Audio��� audioList�
os List�Video��� videoList�
os List�SyncText���stextList�
��the article instance where all this stu� belongs
Article� article�
��Annotations for various singly occurring TextElements
Annotation� edinfo�
Annotation� loc�
Annotation� keywords�
Annotation� source�
Annotation� author�
Annotation� subject�
Annotation� date�
Annotation� frontmatter�
Annotation� hdline�
Annotation� subhdline�
Annotation� absP�
Annotation� title�
�� Annotation lists�
��the non�Structured TextElements
os List�Annotation��� �gcaptionList�
os List�Annotation��� emph�List�
os List�Annotation��� emph�List�
os List�Annotation��� quoteList�
os List�Annotation��� titleList�
��StructuredTextElements
os List�Annotation��� listList�
os List�Annotation��� paragraphList�
os List�Annotation��� �gureList�
os List�Annotation��� sectionList�
os List�Annotation��� listItemList�
os List�Annotation��� linkList�

ArticleRoot�Text� textBlock��
�ArticleRoot���

g�

��

B�� Union Types

��for class Async
class Fig Lin Sec� public virtual StructuredTextf
g�

��for class AudioVisual
class Ext Fcs Tim X Y � public virtual HyElement f
g�
��for class Av evsched
class SAu STe SVi � public virtual Event AFf
public�

virtual CMType �GetContent�� $	�
virtual char �GetSummary�� $	�
virtual os List�TDimspec�� �GetTimeExtents�� $	�

g�

��for class Paragraph
class Emp Fig Lin Quo � public virtual TextElementf
g�

��for class Link
class Emp Fig Quo � public virtual Emp Fig Lin Quof
g�

��

