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A b s t r a c t

A condition based predictive maintenance system will have the 

following functions: analyzing collected vibration signals and iden­

tifying the components tha t have deteriorated significantly, pre­

dicting the degradation of these components, and making an ap­

propriate maintenance plan for minimizing total equipment op­

eration cost. In this thesis, Support Vector Machines (SVM) 

regression is used for prediction of machine’s degradation and 

is studied in depth. The selection of SVM model parameters is 

investigated based on current problems tha t have arisen in the 

industrial application of SVM regression. A new rule is proposed 

for selection of the error zone value, one of the SVM model param ­

eters. The proposed rule is also compared with CM a’s method 

and the results show that applying the new rule, SVM regression 

can provide better prediction than  CMa’s method.
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C h a p t e r  1

I n t r o d u c t i o n

1.1 M otivation

The prediction of Machine degradation is very useful in industries. W ith pre­

cise prediction, catastrophic failure and a decrease in product quality can be 

mitigated. Moreover, accurate prediction is helpful to engineers attem pting 

to make reasonable inspection and maintenance plans. Degradation predic­

tion regarding mechanical equipment relies heavily on mechanical vibration 

signals. Mechanical vibration is sensitive to noise and outliers, two features 

which complicate degradation prediction making it difficult to achieve a high 

degree of accuracy.

Since the creation of the SVM theory by Vapnik in 1995 [29] at the AT&T 

Bell Laboratories, there have been breakthroughs in the application of SVM 

to classification. Results in pattern  recognition have been promising. On 

the other hand, the application of SVM to regression has only recently come 

under development. Some researchers have used SVM for time series pre­
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1.1 Motivation 2

dictions, such as the forecasting of financial markets [2, 14], the estimation 

of power loads [33], and the prediction of travel time [31]. Support vector 

machines have been applied to the mechanical industry mostly with regard 

to fault diagnosis, which uses SVM classification instead of SVM regression. 

Using support vector regression to predict the degradation of mechanical 

equipment has been developed by Jiang [12]. For his thesis, Jiang applied 

SVM regression to equipment deteriorating prediction based on vibration sig­

nals. He also compared SVM and time series models in terms of prediction 

accuracy. His experiments showed that SVM regression makes better predic­

tions than are possible with time series models [12], In studies of condition 

trend prediction Lin et al [16] applied Support Vector Machines regression 

to machines condition trend prediction based on vibration signals collected 

from machines. He concluded tha t the SVM regression does an excellent job 

of predicting the condition trend of mechanical equipment and will be used 

increasingly for tha t purpose.

As we can see, SVM has great potential and has performed well in many 

fields; this is because SVM is theoretically based on the structural risk min­

imization (SRM) principle. The SRM principle is better able to  generalize 

and is therefore superior to the empirical risk minimization (ERM) princi­

ple used in time series models and neural networks [4]. Because of the SRM 

principle, the global optimal value of SVM regression model can be obtained, 

whereas other prediction models can obtain only a local optimal value [29]. 

Thus, the SVM regression model has great theoretical advantages over other

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1.2 Research Objective 3

prediction tools.

The SVM regression model does, however, face a big challenge. This is 

because there are three factors tha t control the prediction performance of 

the SVM regression model. They are the error zone term, regulation factor 

used for capacity control, and the type of kernels and kernel parameters [22]. 

Improper selection of the above three factors could result in bad prediction 

results. As reported in the literature, param eter selection and kernel type 

selection are complicated because the performance of the SVM regression 

model depends on all three factors. So far, despite the work tha t has been 

done, no single rule or method has been judged superior for selecting the 

suitable parameters and kernel types. Under the circumstances, the SVM 

regression model requires expert interface and is not user friendly. The ap­

plication of the SVM regression model to real industry is under development, 

therefore, finding some rule or method for selecting a suitable model param­

eter tha t will improve the prediction accuracy of SVM regression is a top 

priority.

1.2 R esearch O bjective

The goal of this thesis is to investigate how these factors affect the perfor­

mance of SVM regression, and what rule can be followed to select the three 

factors so as to obtain the most reasonable prediction results. W ith this goal 

in mind, one learning process will be proposed tha t focuses on the selection 

of a suitable error zone value, kernel type and kernel parameter. Several
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1.3 Organization o f Thesis 4

benchmark data sets will be adopted to show how SVM regression perfor­

mance fluctuates as both kernel type and SVM parameters vary. The focus 

will largely be on selection of the error zone value because its flexibility is 

the source of the undependable predictions produced by the SVM regression 

model. In contrast, the selection of kernel type and kernel param eter is rel­

atively limited although some research work would be worthwhile. As well, 

the application of SVM regression to the prediction of machine degradation 

based on vibration signals will be studied, because this is a very im portant 

step in making possible condition based maintenance in the mechanical in­

dustry.

1.3 O rganization o f T hesis

The thesis is organized as follows. Chapter 2 provides a literature review on 

SVM principle, theory and its application in different fields. It also introduces 

the three most im portant factors affecting SVM regression and their impact 

on the prediction performance of the SVM regression model. Chapter 3 

proposes one learning process for selecting suitable error zone value, kernel 

type and kernel parameter. Three data  sets are used to test SVM regression’s 

performance following the proposed learning process. One conclusion on 

optimal error zone value is initially brought forward based on the analysis 

of the experiments results. Chapter 4 adopts the Golden Section Search 

Optimization method to further prove the conclusion proposed in Chapter 

3. Chapter 5 then compares this thesis’ conclusion with CM a’s method. The
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1.3 Organization of Thesis 5

result demonstrates the superiority of this thesis’ conclusion. In the next 

chapter, the SVM regression model with optimal error zone value is used to 

predict the vibration trend of machines based on their vibration signals. The 

resulting prediction shows tha t it is successful. The final chapter gives the 

summary and conclusion of this thesis and suggests possible areas for future 

research.
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C h a p t e r  2

L i t e r a t u r e  R e v i e w  o n  SVM R e g r e s s i o n  

T h e o r y  a n d  I t s  A p p l i c a t i o n

2.1 T he B asic Princip les o f Support V ector M achines R egression

The Support Vector Machines regression model is developed based on the 

Structural Risk Minimization (SRM) principle [29]. SRM came from the 

statistical learning theory (SLT) developed by Vapnik in the 1960’s. SRM 

provides a solid foundation for SVM, making it superior to other learning 

machines. The SRM principle defines a trade-off between the quality of the 

approximation of the given learning data and the complexity of the approx­

imation function [9]. In SVM, the quality of the approximation of the given 

learning data  represents the learning ability of the machines. Complexity is 

a term that describes how many parameters are in the potential regression 

function. If the complexity of a learning machine is too high, the learning 

ability of this machine may be good, but its prediction ability may not. The
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2.1 The Basic Principles o f Support Vector Machines Regression 7

learning machine will over-fit the data. On the other hand, when the learning 

machine has too little complexity, it may not have good learning ability. The 

learning machine will under-fit the data. The SRM principle is concerned 

with finding the right balance between the learning ability and prediction 

ability of the learning machines.

In support vector regression, structural risk consists of two parts: the 

empirical risk of the function, and a complexity term. The expression is as 

follows:

Rreg = C  R emP[f] + \  =  C  £  \Vi -  f(Xi)  |£ +  \  |M |2 , (2.1)
Z i=1 Z

where Xi € R n, yi G R, lo € R n, R emP[f] is the empirical risk which is defined
i

as the training error; X) I Vi ~  f ( x i)\e is defined as loss function, which is the 
i= 1

sum of the error between the predicted data, /(x*), and the observed data, 

yp ||cu||2 represents the complexity of the learning machines, which is defined 

as how many parameters there are in the learning machines; I denotes the 

sample size, and C  is called the regularization constant, which is used to

control the trade off between the complexity and the error term.

Structural risk minimization determines the param eter u  by minimizing 

the equation (2.1). We can see that applying structural risk minimization 

provides a good balance between the complexity of the machine and the 

training error.
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2.2 Linear Regression Using Support Vector Machines 8

2.2 Linear R egression  U sing  Support V ector M achines

Suppose we have a data  set {(xi,?/i)} (xi,yi)}, X; € Rn, y  € R. SVM

is applied in regression by introducing a class of loss functions. Figure 2.1 

illustrates four loss functions.

square error criterion. The loss function in Figure 2.1 (b) is a Laplacian

robust loss function shown in Figure 2.1 (c), which has better property when 

the underlying distribution of the data  is unknown [9]. However, these three 

loss functions do not have the sparseness property, which will be explained 

later in the section on support vectors. Vapnik proposed the loss function in 

Figure 2.1 (d), which is called the e-loss function [29]. The e-loss function is 

an approximation to Huber’s loss function but make it possible to obtain a

\
\ /

/
\

\

(a) Quadratic (b) Laplace

(c) Huber (d) Vapnik

Figure 2.1: Loss Functions

The loss function in Figure 2.1 (a) corresponds to the traditional least

loss function that is less sensitive to outliers. Huber proposed the so-called
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2.2 Linear Regression Using Support Vector Machines 9

sparse set of support vectors. 

The e-loss function is:

\y — / (x )  | £ =  m ax{ 0, \y -  / (x )  | -  e } . (2.2)

In e-SV regression, our goal is to find a function, / (x ) ,  such th a t all 

data points are at most e deviation from this function. Errors less than e 

are ignored, but those greater than  this are penalized. Figure 2.2 shows the 

e-tube and the slack variables, £ and £*.

/

+£

Figure 2.2: The e-loss function

Based on the structural risk minimization principle and the e-loss func­

tion, we obtain the following regression model:

m m i |M |2 +  C ] T t e  +  C ) (2.3)
1  i= l
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2.2 Linear Regression Using Support Vector Machines 10

Vi — (tO,  X j)  — b < £  +  £»
Subject to: and £* > 0,

{to, yti) + b ~ V i < £  + (,*

i
where the term  C  X) (£» +  £*) represents the error term. The constant C

i=1
determines the trade off between the complexity and the empirical risk.

Now, the regression problem becomes a quadratic optimization problem 

that can be dealt with by using Lagrange theory. The key idea is to construct 

a Lagrange function from both the objective function and the corresponding 

constraints by introducing a set of multipliers. This Lagrange function is:

L — 9 IM |2 +  C  +  O  ~  ^ 2 a i (£ +  -  Vi +  (w>x i) +  b)
1 i= 1 1=1

-  a i (£ +  £  +  Vi ~  Xi) fa Z i  +  rfiCi) , (2 -4 )
i= 1 1

where the multipliers a^a*, rjitri* > 0.

A very important property for Lagrange is that at the saddle point, the 

partial derivatives of L  with respect to the primal variables [to, &,£,,£*) should 

be zero.

QL 1
—  = o ; - ^ ( a j  -  a-)xi  =  0, (2.6)
au} i=i
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2.2 Linear Regression Using Support Vector Machines 11

8T
=  C - a i - r ii  =  0 ,  (2 .7)

<96

c ) T
—  =  =  0 . (2 .8 )

Substituting (2.5), (2.6), (2.7), (2.8) into (2.4), yields the dual optimiza­

tion problem [29].

1 1
max  W (a ,a* )  = - -  (a i ~  a *)(a j ~  a *) (x i, Xj)

1 i,3=i
i i

-  e ] T ( a ;  +  a * ) +  (“ ; - “ ; )  (2 -9 )
2 = 1  2 = 1

E  (ai -  a*) =  0 
Subject to: *=1

aifa* e [0,C].

In deriving (2.9), the dual variables are eliminated through the

condition (2.7) and (2.8).

From the condition (2.6), param eter oj is obtained.

i
V = J 2 ( a i ~ a i )Xi- (2'10)

2 = 1

Therefore, the following regression model is obtained:

/(* )  =  (“ < ~  a i) (x i,x > +  b- (2-n )
i=l
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2.2 Linear Regression Using Support Vector Machines 12

Equation (2.10) is also called the Support Vector expansion since to can 

be completely described as a linear combination of the training data  X;. The 

vector x represents the testing points.

Now, let us compute the param eter b in equation (2.11). Karush-Kuhn- 

Tuker (KKT) condition [29] states th a t at the optimal solution, the products 

between multipliers and inequality constraints equal zero. This means:

on (e +  ii -  Vi +  (w, x») +  b) =  0

a i (£ +  £* +  Vi -  (t^Xi) -  b) =  0
(2 . 12)

(C - a n )  & = 0 
and (2-13)

( C - a * K *  =  0.

From equations (2.12) and (2.13), it is apparent tha t [29]:

1. Only the samples (x;, y;) corresponding to ai — C  and a* — C  that lie 

outside the e tube around / (x )  are used to construct the SVM model.

2. If ai,a* € (0,C), then £;,£* — 0 and therefore the second factor of 

equation (2.12) equal zero, b is obtained from Equation (2.12)

b = y i -  (u,Xi) - e ,  f o r  a ;<E(0,C ). (2.14)

b =  yt -  (u), Xj) +  e, f o r  a- <£ (0,C).  (2.15)

A very im portant property of SVR is the sparsity of the SVR expansion
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2.3 Nonlinear Regression Using Support Vector Machines 13

which is expressed by Equation (2.10). From Equations (2.12) and (2.13), 

only if |/(x j)  — y%\ > £ Lagrange multipliers may be nonzero. In other words, 

for samples inside the e-tube, or*, a* would be zero. For |/ (x ,)  — yi\ < e, the 

second factor in Equation (2.12) is nonzero, hence a;, a* have to be zero so 

that the KKT conditions is satisfied. Therefore, in the expansion Equation

(2.10), Xj refer only to the sample data with nonzero coefficients, i.e. sample 

data outside the e-tube. The sample data x* used in the expansion Equation

(2.10) are called support vectors [29]. Thus, the parameters of the regression 

model depend only on the support vectors, which represent the sparseness 

property of support vector machines.

2.3 N onlinear R egression  U sing  Support V ector M achines

SVM was first developed as linear learning machines; however, most problems 

encountered in real life are nonlinear. This requires learning machines be 

able to map nonlinear data  in the input space into linear da ta  in a higher 

dimension space [29]. This higher dimension space is called the feature space. 

In this way, the capacity (sometimes, called generality) of the support vector 

machines is increased; however, as the number of the dimensions grows the 

dimensionality of the feature space can become computationally difficult to 

handle. Furthermore, the learning machine’s prediction performance will 

degrade as the number of input dimensions increases [23]. This phenomenon 

is called the curse of dimensionality. Kernel method is the key to  solving this 

problem.
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The idea of the kernel function enables operations to be performed in 

input space rather than in high dimensional feature space [22]. Now, let’s 

re-exam the support vector machines in linear form. The equation is:

f ( x ) = Y ,  (a i ~  a **) x ) +  (2-16)
2—1

where x* represents the support vectors.

If the input data (x, y) are nonlinear, the specific mapping would be made 

from the input space into high dimensional feature space. Assume that the 

mapping function is <£(x); being the case, the SVM regression model can be 

expressed in nonlinear case. Its model is:

/(* )  =  H  (a i ~  a *) (x ) > 0  (x i)) +  b■ (2 J 7 )
2 = 1

We can see tha t the inner product (</>(x), ^(x*)) needs to be evaluated in 

the feature space. This is computationally difficult. In order to  solve this 

problem, support vector machines developed a theory based upon Reproduc­

ing Kernel Hilbert Space (RKHS) [29].

An inner product in feature space has an equivalent kernel in input space.

^ (x ,  Xj) =  (4> ( x ) , 4> (x»)) • (2.18)

Hence, the inner product does not need to be evaluated in feature space.
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The nonlinear SVM regression model can be written as:

f (x) =  D  ~  °*i )K  (x ’ x 0 +  h- (2.19)

Now, the key problem becomes finding the kernel function. The condi­

tions for a kernel are: K (x, x,) is an admissible kernel function if it produces 

a kernel m atrix th a t is symmetric and positively semi-definite [29]. This con­

dition can be used to build various kinds of kernels so tha t we do not need to 

consider feature space in explicit form. Through using the kernel function, 

the inner product in feature space is determined directly as a function of the 

input data  in input space [22]. Furthermore, the SVM regression model uses 

only the support vector in input space. Thus, using the kernel function, only 

the inner products between support vectors and the input data  have to  be 

calculated. The regression model (2.11) can be written as follows when the 

kernel is used in the SVM model.

max

-  e]T(a!i+ a,*) + Y,Ui(ai -Oh) (2 .20 )
i= 1 i = 1

E  (a* -  a*) =  0
Subject to:

QtiU* G [0,C].
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2.4 Im p lem en tation  o f  Support V ector M achines R egression

The optimization problem in equation (2.20) can be solved by using standard 

optimization routines tha t define the quadratic programming (QP) problem 

in terms of the Hessian m atrix and separate matrixes for the equality and 

inequality constraint [17].

The Hessian matrix, H , is now a (21 x 21) matrix such tha t

Assume (3 = 

becomes:

H  =
f  K(x i , x . j )  —K  (x^ Xj) ^

a

*a

\ - K  (xi,Xj) K  (xi,Xj
(2 .21 )

The  SVM for regression in m atrix formation then

Subject to:
1;

- 1/

02 1 < P <  ?hi ,

e h  -  y  

e h  + y

T

(3 = 0

(3 (2 .22 )

where 1; presents [ l i , ..., h]T■ The SVM model is then a quadratic optimiza­

tion problem with equality and inequality constraints. The solution can be 

obtained by solving this QP optimization model.
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2.5 T hree Factors in SV M  R egression  M odels

There are three factors tha t affect the prediction performance of SVM regres­

sion. They are the error term, e; the regulation factor (also called “additional 

capacity control”), C; and the type of kernels and the kernel parameter. The 

selection of model parameters and kernel type is critical to optimizing SVM 

performance.

2.5.1 T he Error Zone Value

The error zone value, e, controls the width of the e-insensitive zone. In 

SVM regression, e is used to control the noise on the performance of the 

model. The value of s affects the number of support vectors tha t are used to 

construct the SVM regression model [29]. If the error zone value chosen is 

larger, fewer support vectors are used to  construct the SVM model and the 

prediction calculation time is shorter. The prediction result may be under­

fitting. If the error zone value chosen is smaller, more support vectors are 

used to construct the SVM model and a longer calculating time is needed. 

The prediction result may be over-fitting. Therefore, proper selection of the 

error zone value has a significant effect on SVM regression performance.

2.5.2 T he R egulation Factor

Parameter C  is the regulation factor of a SVM regression model which de­

termines the trade off between model complexity (flatness) and the degree
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2.5 Three Factors in SV M  Regression Models 18

to which deviations larger than  e  are tolerated in equation (2.2). A large 

C  value assigns higher penalties to errors, thus the regression minimizes er­

ror with a lower generalization while a smaller C  value, which assigns lower 

penalties to errors, results in a higher generalization ability [28].

2.5.3 T he K ernel Function  and th e  K ernel P aram eter

2.5.3.1 Kernel Functions

The type of kernel function used in SVM regression for prediction has sig­

nificant impact on SVM performance. Normally, which kernel is to be used 

depends on the properties of the data set [21]. In this chapter, several com­

monly used kernels are introduced. The SVM model currently includes sev­

eral kernel functions such as: polynomial function, radial basis function, ex­

ponential radial basis function, multi-layer perception, fourier series, splines, 

B-splines, and additive kernels. Among these kernels, the polynomial kernel 

and the radial basis function are the most popular since most of prediction 

work can be solved by either of the two [22], Moreover, Maria [17] made a 

mixture of these two kernels. It appears tha t this new mixed kernel possesses 

the advantages of both the polynomial and Gaussian radial basis kernels. 

These three kernels are discussed below.

1. Polynomial Kernel ( “poly”)

K ( x , X i )  — ( x , X i ) d . (2.23)
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This type of kernel, classified as a global kernel, gives the support vec­

tor model good extrapolation properties [17]. The extrapolation prop­

erty is the ability to estimate a value for a variable outside a known 

range from values within a known range by assuming th a t the esti­

mated value follows logically from the known values. For this reason, 

the polynomial kernel should be the first choice for regression; however, 

the param eter of the polynomial kernel is degree d, which could influ­

ence the extrapolation property. When d increases, the interpolation 

ability of the polynomial will increase and the extrapolation ability will 

decrease [17].

2. Radial Basis Function Kernel ( “rbf”)

The param eter is the width, a , which depends on the scale of the input 

data [17]. This type of kernel, classified as a local kernel and it gives 

the support vector machines good interpolation ability [17]. The kernel 

function has the ability to detect local phenomena.

Maria [17] made a mixed kernel which combined polynomial and radial

(2.24)

3. Mixed Kernel ( “polyrbf” )

R r n i x  —  P K p o l y  " F  ( 1  p )  K r b f  • (2.25)
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basis kernels. In this way, the new kernel has both interpolation and 

extrapolation properties, p is the mixing coefficient. Normally, it falls 

into the range [0.5 : 0.95].

2.5.3.2 Kernel Parameters

The selection of the kernels and kern el parameters can directly affect pre­

diction quality. Two commonly used kernels are the polynomial kernel and 

the radial basis function. The parameters of these kernels are the degree of 

the polynomial kernel and the width of the radial basis function. The kernel 

parameters should be carefully chosen as they implicitly define the structure 

of the high dimensional feature space, </> (x), and thus control the complexity 

of the final solution. Selection of a particular kernel type and the kernel 

parameter is usually based on application domain knowledge and may reflect 

distribution of the input value of the training data  [29]. No criteria are set 

regrading how to choose the kernel and the kernel param eter for SVM. It 

is well known that SVM generalization performance (estimation accuracy) 

depends on a good setting of the hyper-parameters C, e, kernel type and the 

kernel parameter. Model parameters selection is further complicated by the 

fact tha t SVM model complexity depends on all three factors [21]. How to 

determine these three factors is always critical in SVM applications. It is the 

focus throughout this thesis.
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2.6 A p plications o f the SV M  R egression  M odel 

2.6.1 SV M  Software D evelopm ent

There are several software packages available for SVM regression and clas­

sification; these include Stefan Ruping’s mySVM for Windows and Unix, 

Chih-Jen Lin’s Looms, and Gunn’s M atlab Support Vector Machines Tool­

boxes [39]. Among these, Gunn’s SVM M atlab toolbox [9] is the most widely 

used because it is user friendly. Gunn used two benchmark data  sets (Sine 

and titanium ) to show how SVM regression performs when using this soft­

ware. In his experiments, the “rbf” kernel param eter is set at from 0.1 to 

1. The “poly” kernel parameter is set at from 1 to  5. Gunn presented and 

compared the prediction results bu t he did not explain how to determine the 

parameters.

2.6.2 SV M  R egression for T im e Series P red iction

Muller et al. applied SVM for time series prediction [18]. In his paper, Muller 

compared SVM prediction with radial basis function networks. Two bench­

mark time series: Mackey Glass and Santa Fe Competition were evaluated 

by applying these two prediction methods. In both cases, SVM performed 

better still, Muller was unable to explain how to determine the three factors 

tha t work best for the SVM model.
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2.6.3 SV M  R egression  in th e  M echanical Industry

Jiang and Zuo applied SVM to the mechanical industry [13]. In their paper, 

they compared SVM prediction with the time series model. Vibration data  

was used to represent equipment deterioration levels and the “spline” kernel 

was chosen for SVM regression. The results showed that SVM regression 

predicted more accurately than the time series model does. The authors did 

not give reasons for having chosen the “spline” kernel but they did study 

the impact of the regulation factor on SVM prediction performance. The 

line search optimization method was used to find the optimal value for the 

regulation factor. Investigation indicated tha t SVM would predict best when 

the regulation factor is infinity but no study was made of how the other pa­

rameters, “error zone” and “the kernel param eter” influence SVM regression 

performance.

Lin et al [16] applied support vector machines to condition trend predic­

tion of mechanical equipment based on vibration signals from machines. The 

one step and 24 steps ahead prediction methods were adopted by using Peak- 

Peak value of the vibration signal. The radial basis kernel ( “rb f’) function 

was adopted. Their experiments showed that the optimal kernel param eter 

should not be large if the prediction accuracy of the SVM regression model 

was a consideration. Lin also observed th a t a large kernel param eter would 

result in longer calculating time.
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2.6.4 SV M  R egression  in T ransportation

Wu et al [31] made prediction for travel time, which is one type of time 

series data  using SVM regression. His experiments showed th a t SVM re­

gression can significantly reduce mean square error and relative mean error 

significantly compared with traditional predictors such as time series, linear 

model, and neural networks. Wu demonstrated the feasibility of applying 

SVM regression in travel time prediction and proved th a t SVM regression 

was applicable and performed well for traffic data  analysis. No investigation 

was conducted into the selection of SVM regression model factors.

Vanajakshi and Rilett [27] applied the SVM regression model to traffic 

speed prediction. Their paper presents a comparison between Neural Net­

works and the SVM regression for short-term prediction of traffic speed. The 

Neural Networks model used was a multi-layer feed forward Neural Networks 

and the SVM regression model used was a support vector regression with 

radial basis kernel function. The conclusion was tha t SVM regression per­

formed better than Neural Networks when training data were less in quality 

and quantity. The paper didn’t show how to determine the model param e­

ters.

2.6.5 SV M  R egression in  the C hem ical Industry

Maria applied SVM to the chemical industry [17]. In his thesis, he pro­

posed a new kernel which combined two commonly used kernels, “poly” and 

“rbf” . The new combined kernel is supposed to have both interpolation and
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extrapolation properties. Some experiments were done to test this hypothe­

sis. Results showed that the new combined kernel improved SVM regression 

prediction accuracy in some situations. In M aria’s thesis, the “rbf” kernel 

parameter chosen ranges from 0.1 to 1 and “poly” kernel param eter chosen 

from 1 to 5. Maria did not give the reasons for these selections.

2.6.6 SV M  R egression  in F inancial Forecasting

Stock market prediction is one example of a challenging financial time-series 

prediction. Theodore used the SVM regression model for IBM, Yahoo and 

America Online daily stock price predictions [26]. He compared two different 

QP algorithms of the SVM regression model, specifically, a primal dual inte­

rior point method and the standard QP algorithm. In addition, he compared 

the SVM regression model with other techniques such as backpropagation 

and RBF Networks. His conclusion was that the SVM regression was better 

at prediction than the other two techniques. The model param eter error zone 

value was simply fixed at zero throughout all the experiments he conducted, 

without any reasons being given.

Tay and Cao [25] examined the feasibility of SVM in forecasting financial 

time series, comparing SVM regression with a multi-layer back-propagation 

Neural Networks. They investigated the prediction variability in the SVM 

regression performance with respect to the SVM parameters. The conclusion 

they reached is that the SVM regression model provides a better generaliza­

tion ability than does BP Networks because SVM regression model is based

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.6 Applications o f the SV M  Regression Model 25

on the structural risk minimization principle while BP Network is based on 

the empirical risk minimization principle. Tay and Cao also concluded tha t 

improper selection of model parameters can cause either over-fitting or under­

fitting of the training data; because parameters have a significant impact on 

prediction performance, it is im portant to develop a structural way of select­

ing optimum parameters for SVM regression.

Wang and Wu [32] used the SVM regression model with an e-insensitive 

loss function to forecast Shanghai stock composite index. BP Networks was 

used as a benchmark for comparison. Their conclusion was th a t the forecast­

ing variation of SVM is smaller than  that of BP, and the direction forecasting 

of SVM is more accurate.

Kim [14] applied SVM regression for financial time series forecasting. In 

his study, SVM regression and BP Networks are compared. SVM regression 

model outperformed BP Networks. Kim investigated the effect the value of 

SVM parameters had on his experiment, and concluded th a t the prediction 

performance of SVM regression model is sensitive to the value of these pa­

rameters. He concluded it is im portant to find the optimal values for SVM 

regression model parameters.
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C h a p t e r  3

D e t e r m i n a t i o n  o f  SVM R e g r e s s i o n  

P a r a m e t e r s

3.1 P roposed  Learning P roced ure for Selection  o f P aram eters

In this chapter, a learning procedure based on SVM regression theory is given. 

The purpose of the proposed learning procedures is to find the optimal combi­

nation of error zone value, the kernel param eter and suitable kernel function 

since these three factors control SVM model prediction performance. Ker­

nel function is chosen from among the “rb f’, “poly” , and“polyrbf’ kernels 

as these three kernels have been theoretically proved able to represent most 

unknown functions. Moreover, these three kernels have been documented 

widely throughout the literature as providing excellent predictions.

The learning procedure involves four steps. Following this learning pro­

cedure, experiments are conducted and the results are presented numerically 

and in figures. The learning procedure is given below:
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• Step 1: Choosing loss function: the e-insensitive loss function is the 

first choice because it has sparse property over the other loss functions.

• Step 2: Selecting a kernel function from among the “rb f’,“poly” and 

“polyrbf’ kernels.

•  Step 3: Using the line search optimization method to find the optimal 

error zone, e, and kernel parameter, a. A program with two loops is 

compiled. One loop is used for optimizing s, the other loop is used for 

optimizing a.

Param eter C  is defined as infinite. This is based on Fan’s recommen­

dation. His thesis proved th a t SVM regression model obtained the best 

prediction results with a infinite regulation factor [12].

• Step 4: Adopting “mean square error” as a criterion for evaluating re­

gression model performance. There are several statistical measures that 

are used to assess the overall performance of a regression model. These 

include error statistics like the mean square error and standard devi­

ation, and traditional statistics like the residual analysis [7]. Among 

these, error statistics, “mean square error” is the most widely used in 

model regression assessment. It is defined as:

E {Vi -  V i f
mse  =  — ------------- , (3.1)

n

where y  is the observed data and y is the prediction data. The value
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n  is the size of the data set. Many works on SVM regression have 

used this error statistics as benchmark representing SVM regression 

performance. The mean square error is also used in this thesis since 

it makes easier to compare the prediction results from SVM regression 

with others obtained by other methods. The searching process has 

indicated that the optimal param eters can be found in terms of the 

smallest “mse” . As the searching goes on, the “mse” values in consec­

utive iterations become very close. As a result, the “mse” ratio has 

been adopted as the stopping criterion. It is expressed by the following 

equation:
msen m se„+i . .

mse ratio = ----------------------, fo.zj
msen

where msen represents the “mse” obtained in iteration n  and msen+\ 

represents the “mse” obtained in iteration n +  1. Two prediction re­

sults are regarded as identical when the “mse” ratio between them is 

smaller than 0.01. In this situation, the experiment stops, and the cor­

responding parameters at the n th iteration are regarded as the optimal 

parameters.

3.2 D ata  A nalysis

Experiments based on the learning procedure are conducted and the results 

are presented numerically or in figures. Among the parameters, the model 

error zone value and kernel parameter are studied in detail. One program
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with two loops is compiled to find the optimal value for the two param eters 

in terms of the smallest “mse” .

The line search optimization method is adopted in every loop. A very 

simple version of this method is used. The starting point and the step size 

are fixed in every cycle. Later this thesis refers to this version of the line 

search optimization method as the “Fixed Step Size” method. Three data  

sets are used in the experiments.

3.2.1 T h e Sine D ata  Set

The first data set is the Sine data set. It comes from the Sine function:

Sinc(x ) =  sm7|^-—; x  E [—10,10].

The “Sine” function, also called “sample function” , arises frequently in signal 

processing and the theory of Fourier transform. It is widely used to test the 

performance of regression models. The step size of x  is 0.4. There are, in 

total, 51 data  points in the Sine data set. The accuracy of the input target 

value [Sinc(x)\ for this data  set is 10-5 .

A set of prediction experiments are conducted using this data  set. In 

the experiments, the “Radial basis function” kernel is chosen based on the 

prediction accuracy. The “Fixing Step Size” optimization m ethod is used in 

order to find the optimal error zone value and kernel param eter simultane­

ously. The program used in this set of experiments includes two loops. One 

loop is used to find the optimal error zone value. The other loop is used to
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find optimal kernel parameter. Based on the reports in the literature, the 

kernel param eter is usually in the range from 1 to 10. The error zone value 

could be chosen from a wide range. The ranges searched first are: [1, 10] with 

a step size 1, [0.1, 2] with a step size 0.1, and [0.01, 0.2] with a step size 0.01. 

The values 1, 0.1 and 0.01 are found to be the error zone values correspond­

ing to the smallest “mse” in the corresponding ranges. Unfortunately, the 

prediction results at these three values are very bad because the prediction 

line is almost flat, whereas the plot of the Sine data set is a curve. Analyzing 

the reasons for this, SVM regression theory can be of some assistance. In 

the SVM regression model the error zone value is used to control prediction 

noise. It seems tha t the error zone value given here is too large to play its 

role.

Since 0.01 is the smallest error zone value searched so far, the decision 

was made to search for the optimal error zone value in a smaller range, [0, 

0.02] with a step size 0.001. The prediction results are illustrated in Tables

3.1 and 3.2 (see pages 41 and 42). The smallest “mse” (0.0034) was obtained 

when e equalled 0.001 and a  equalled 3. The experiment also offered us two 

important insight. First, the “mse” value is relatively large when the error 

zone value is zero. Thus, we can’t simply fix the optimal error zone value at 

zero. Second, the smaller the error zone value, the smaller the “mse” value. 

As a result, the search work for the optimal error zone value continued.

The range in which to search for the optimal error zone value was re­

fined. Around the value 0.001, the new searching range was [0, 0.002], and
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the step size was 10~4. The result is shown in Tables 3.3 and 3.4 (see 

pages 43 and 44). The smallest “mse” (4.9325x1(E4) was obtained when 

e equalled 1(E4 and a  equalled 3. This prediction result is obviously bet­

ter than the last one. According to Equation (3.2), the “mse” ratio was 

(0.0034 — 4.9325 x 10“4)/0 .0034=0.85. The search continued because the 

ratio was still pretty  large.

Since the smallest “mse” was obtained at the error zone value of 10“4 in 

the previous iteration, the new searching range was refined to [0, 2 .0 x l0 -4], 

with a the step size of 10-5 . Tables 3.5 and 3.6 (see pages 45 and 46) illustrate 

the results th a t the smallest “mse” (2.7088 x 10-4) was obtained when e 

equalled 10~5, and a  equalled 3. The ratio between the “mse” obtained 

in this iteration and the previous iteration was (4.9325 x 10~4 — 2.7088 x 

10~4)/(4.9325 x 10“4) =0.45, still greater than  the required precision of 0.01. 

The prediction obviously improved during the searching process. The search 

continued.

The new searching range was refined to [0, 2.0 x 10-5] with a step size of 

10-6. The result is illustrated in Tables 3.7 and 3.8 (see pages 47 and 48). 

When e equalled 10—6, a equalled 3, the smallest “mse” (2.5684 x 10-4) was 

obtained. The ratio between this “mse” value and the last “mse” value was 

(2.7088 x 10“4 -  2.5684 x 10“ 4)/(2.7088 x 10“4)=0.05, still greater than 0.01.

It is apparent th a t the “mse” ratio becomes smaller as the error zone value 

becomes smaller. Based on this observation, the search for the optimal error 

zone value continued because the stopping criterion had not been reached
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yet.

The new searching range was refined to [0, 2 x 10-6] with a step size of 

10“7. The prediction result is presented in Tables 3.9 and 3.10 (see pages 49 

and 50). The smallest “mse” 2.5552 x 10” 4 was obtained when e equalled 

10“7 and <j equalled 3. The ratio between the two smallest “mse” values 

was (2.5684 x 10“4 -  2.5552 x 10“4)/(2.5684 x 10”4) =  0.0051 according to 

Equation (3.2). Since this is smaller than 0.01, the prediction results be­

tween these two searching cycles are very close. According to  the stopping 

criterion, the predicting results of e — 10-7 and e =  10-6 are considered 

virtually identical, the search stopped here. Figure 3.1 shows the prediction 

result when the error zone value is 10~6 and ICC7 respectively. Clearly the 

prediction curves have almost merged together. Because there can be no sig­

nificant improvement in prediction accuracy there is no need to  try  smaller 

error zone values for this data.

As has already been stated, the smaller the error zone value and the more 

support vectors there are, the longer the computation time is. Here, experi­

ment has shown that there is no significant different between the prediction 

accuracy obtained with an error zone value of ICC6 and ICC7. However, the 

predicting time when the error zone value is ICC7 is longer than  that when 

the error zone value is ICC6. Considering both the predicting time and pre­

diction accuracy, fixing the error zone value at ICC6 is reasonable. We call 

this value the optimal error zone value for this da ta  set. We also found that 

the error zone value is closely related to the accuracy of the input target
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value. The accuracy of the input target value of the Sine data  set is 10~5. 

The optimal error zone value is equal to  the one-tenth of the accuracy of the 

input target value.

Sine Data Set Prediction Result

Observed Data Set 
Predicted Data Set1 
e=10"6
Predicted Data Set2 
e=10-7

0.6

>

0.2

- 0.2

-0.4
45

X

Figure 3.1: Sine D ata Set Prediction Result 

3.2.2 T he Sunspot D ata  Set

The Sunspot data set, the record of solar magnetic activity, has been stud­

ied by other researchers as a non-stationary time series, using various kinds 

of prediction models such as the ARM A model and the Neural Networks 

model [40]. There are 459 data points in the Sunspot data set. The accuracy 

of the input target value is 1. In the experiment, the “polyrbf” kernel was 

chosen because neither the “poly” kernel nor the “rb f’ kernel alone could give
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good prediction results. The experiment shows th a t only when the kernel pa­

rameter is fixed at 1, does the prediction program run normally. Otherwise, 

the predicting program breaks down. Thus only one loop is needed for the 

program to find its optimal error zone value. In searching for the optimal 

error zone value, the range [10, 100] with step size 10 was tried first. The 

prediction results were not good because the distance between the predicted 

curve and the observed curve was very great. This means th a t the error 

zone value given here must be too large to control the prediction noise. We 

decided to start the search for the optimal error zone value in the range [0, 

11], with a step size of 1. The results are illustrated in Table 3.11 (see page 

51). When the £ equalled 1, the smallest “mse” (144.48) was obtained. From 

the prediction result, we found the “mse” value was relatively large when 

the error zone value was zero. The optimal error zone value can not simply 

be fixed at zero. We also noticed th a t for this data  set, the smaller the er­

ror zone value tha t was given, the smaller the “mse” value we could obtain. 

Hence, the search for the error zone value continued.

A new searching range was refined around 1, it was [0, 2], with a step 

size of 0.1. Table 3.12 (see page 51) illustrates the results. W hen e equalled 

0.1, the smallest “mse” (142.03) was obtained. This prediction result was 

obviously better than the previous one as can be seen by comparing the 

smallest “mse” values. The ratio between the two “mse” values is (144.48 — 

142.03)/144.48=0.017 according to Equation (3.2). Based on experience ob-
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Sunspot Data Set Prediction Result
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Figure 3.2: Sunspot D ata Set Predicting Result

tained from the Sine data  set experiment, the smaller the error zone value 

searched, the smaller the “mse” ratio. The search continued.

The next searching range needed to be around 0.1. The new refined 

searching range was [0, 0.2]. The starting point of the error zone was set 

at zero, and the step size of the error zone was set at 0.01. Table 3.13 

(see page 51) illustrates this experiment’s results. When e equalled 0.01, 

the smallest “mse” (141.79) was obtained. We can see tha t there is litter 

difference between the smallest “mse” values when the error zone is equal 

to 0.1 and 0.01 respectively. The ratio between these two “mse” values is 

(142.03 — 141.79)/142.03 =0.002, smaller than the required precision of 0.01. 

The two predicting results can be regarded as the same, so the search stopped
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here. Figure 3.2 shows the prediction results when the error zone values are 

0.1 and 0.01 respectively. We can see th a t the predicted curves at 0.1 and 

0.01 have almost merged together. Under this circumstances, there is no need 

to continue the search for the optimal error zone value. W ith the increase of 

searching iterations, the “mse” ratio will continue to decrease, so there will 

be no significant improvement of the prediction accuracy. On the other hand, 

the predicting time when the error zone value is 0.01 is longer than  tha t when 

the error zone value is 0.1. Based on this observation, we may say tha t the 

optimal error zone value should be 0.1 in terms of both prediction accuracy 

and calculating time. We know the accuracy of the input target value is 1. 

For this data  set, the optimal error zone value is equal to  one-tenth of the 

input target value.

3.2.3 T h e V ibration  D ata  “R m sv”

The third data  set is processed one-dimensional vibration data  which is called 

the vertical root mean square (Rmsv) data  [38]. It is from a gearbox life­

time assessment experiment conducted in the Reliability Research Lab at the 

University of Alberta. We used the Rmsv data  from points 750^986 as the 

input data. The accuracy of the input target value of the Rmsv data set is 

10~ 4 .

Similar to the last two data  sets, the “poly” kernel gave the best pre­

diction result among the three kernels used in the experiments. The kernel
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parameter was fixed at 1 since the range of “poly”kernel param eter is very 

limited. In most cases the “poly” kernel param eter value offers only two 

choices, either 1 or 2. Otherwise, the Hessian matrix of the SVM quadratic 

optimization programming (QP) will not be positively definite and the im­

plementation of the SVM quadratic optimization programming will break 

down. In this situation, a prediction program with one loop is used to find 

the optimal error zone value. Since the accuracy of the input target value of 

the Rmsv data set is very small, and based on experience from other data  

sets, the small value range of [0, 1] with a step size 0.1 was searched first. 

At the value zero, the smallest “mse” was obtained. We found th a t the pre­

diction results were not good - the distance between the predicted curve and 

observed curve was very large; and “mse” value was large too. As a result, 

the optimal error zone value was searched in the range [0, 0.020] with a step 

size of 0.001. The prediction result is illustrated in Table 3.14 (see page 52). 

The result shows tha t at e=0, “mse” Smse =  1.0893 x 10"7. Based on the 

experience obtained from the last two data  sets, the optimal error zone value 

should not be zero. This result implies tha t the error zone value chosen from 

this range was too large and had lost the ability to control the prediction 

noise. In this case, an error zone 0 controls the prediction accuracy, but this 

prediction result was not what we want and so the search for the optimal 

error zone value continued.

A new searching range was refined to [0, 0.001] with a step size of 10-4 . 

Table 3.15 (see page 52) illustrates the prediction results. This result shows
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that when the error zone value was 10~4, the smallest “mse” (5.4658 x 10-8) 

was obtained. This prediction result was obviously better than  the previous 

one, but still the searching process continued.

Since the new search range should be around 10”4, it was refined to  [0, 

2 x 10-4], with a step size of 10-5 . Table 3.16 (see page 53) illustrates the 

experiment results. When e equalled 10”5, the smallest “mse” (4.8233x 10~9) 

was obtained. The ratio between this “mse” value and the previous one was: 

(5.4658 x 10-8 —4.8233 x 10-9 )/(5.4658 x 10“ 8) =  0.90 according to Equation 

(3.2). The search continued and it is clear th a t the “mse” value becomes 

smaller as the error zone value does.

A new searching range was refined to [0, 2.0 x 10-5], with a step size 

of 10“6. Table 3.17 (see page 53) illustrates the prediction results. When 

the error zone value is equal to 9.0 x 10-6 , the smallest “mse” (4.8086 x 

10-9) is obtained. The ratio between this “mse” value and the previous one 

was: (4.8233 x 10~9 -  4.8086 x 10“9)/(4.8233 x 10“ 9) =0.003. It is smaller 

than the required precision of 0.01. This means tha t there is no significant 

difference between the two “mse” values in terms of prediction accuracy. The 

prediction results when the error zone is 10-5 and 9.0 x 10”6 respectively are 

considered identical. The experiment for finding the optimal error zone value 

is stopped because the “mse” ratio will decrease as the search goes on. As a 

result, the prediction results would not show significant improvement if the 

search continued. Figure 3.3 shows the prediction results a t the error zone 

values of 10-5 and 9.0 x 10-6 respectively. It can be clearly seen that the
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Figure 3.3: “Rmsv” D ata Set Prediction Result

predicted curves merged together when the error zone values are 10“5 and 

9.0x 10-6 . However, the predicting time changes as different error zone values 

are taken into the SVM regression model. The smaller the error zone value, 

the longer the predicting time. Taking the predicting time into account, 10-5 

is considered to be the optimal error zone value for this data  set. As well 

since the accuracy of the input target value is 10“4, the optimal error zone 

value equals to one-tenth of the accuracy of input target value.

3.3 D iscussion  o f the Error Zone Value

From the above experiments, we can see tha t the optimal error zone, e, is 

closely related to the accuracy of the input target value. In SVM theory,
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the model parameter, e, is called the error zone value; it is used to control 

the noise between the predicted data  and the real da ta  [30]. For every data 

point in the data  set, the predicted noise (also called predicted errors) can 

be presented in the following formula:

Vi Vi'

The average noise of the whole data  set is:

5 —  ̂(<̂ 1 + <̂ 2 + ••• + •

In the SVM regression model, the error zone value depends on the average 

noise, 5 [15]. T hat is to say the error zone value is closely related to the 

input target value, ?/;, and the predicting target value, y*. Through literature 

review and our experiments, we have found tha t the predicted performance of 

SVM regression is more accurate than  other predictors and hence is superior 

to them. This means tha t the predicted target value, is very close to 

the input target value, 7/j. It is possible that the noise between these two 

values is related to  the accuracy of the input target value, which is the only 

information available before a prediction is made. In accordance with SVM 

regression theory, the experiments show that the error zone value depends 

on the accuracy of the input target value. The rule of thumb summarized 

here is: the optimal error zone value is equal to one-tenth of the accuracy of 

input target value.
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Table 3.1: Sine D ata Set Prediction Result 1-1: Corresponding “mse” with 
e and o Varying

£ \  a 1 2 3 4 5
0.000 0.0832 0.0786 0.0881 0.0948 0.0989
0.001 0.0363 0.0059 0 .00 34 0.0056 0.0075
0.002 0.0401 0.0071 0.0036 0.0048 0.0061
0.003 0.0434 0.0086 0.0041 0.0046 0.0055
0.004 0.0466 0.103 0.0052 0.0052 0.0057
0.005 0.0500 0.0121 0.0066 0.0061 0.0064
0.006 0.0532 0.0142 0.0082 0.0074 0.0075
0.007 0.0539 0.0164 0.0101 0.0090 0.0089
0.008 0.0546 0.0185 0.0123 0.0110 0.0107
0.009 0.0552 0.0204 0.0147 0.0132 0.0129
0.010 0.0557 0.0224 0.0163 0.0151 0.0149
£ \  a 1 2 3 4 5
0.011 0.0564 0.0243 0.0181 0.0166 0.0163
0.012 0.0570 0.0260 0.0203 0.0185 0.0180
0.013 0.0576 0.0280 0.0227 0.0208 0.0201
0.014 0.0582 0.0289 0.0250 0.0232 0.0225
0.015 0.0588 0.0294 0.0268 0.0254 0.0249
0.016 0.0595 0.0296 0.0266 0.0269 0.0271
0.017 0.0601 0.0298 0.0264 0.0265 0.0269
0.018 0.0608 0.0300 0.0262 0.0262 0.0265
0.019 0.0615 0.0303 0.0260 0.0259 0.0261
0.020 0.0621 0.0305 0.0259 0.0256 0.0257
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Table 3.2: Sine D ata Set Prediction Result 1-2: Corresponding “mse” with 
s and a  Varying

£  \  <7 6 7 8 9 10
0.000 0.1014 0.1031 0.1042 0.1050 0.1056
0.001 0.0091 0.0100 0.0104 0.0106 0.0107
0.002 0.0070 0.0077 0.0081 0.0085 0.0087
0.003 0.0063 0.0068 0.0072 0.0074 0.0076
0.004 0.0062 0.0066 0.0069 0.0071 0.0072
0.005 0.0068 0.0071 0.0073 0.0074 0.0075
0.006 0.0077 0.0079 0.0081 0.0082 0.0083
0.007 0.0090 0.0092 0.0093 0.0093 0.0094
0.008 0.0107 0.0108 0.0109 0.0109 0.0109
0.009 0.0128 0.0128 0.0128 0.0129 0.0129
0.010 0.0148 0.0149 0.0149 0.0150 0.0151
£ \  a 6 7 8 9 10
0.011 0.0162 0.0162 0.0162 0.0162 0.0163
0.012 0.0179 0.0178 0.0178 0.0178 0.0178
0.013 0.0198 0.0197 0.0197 0.0197 0.0196
0.014 0.0222 0.0220 0.0220 0.0219 0.0219
0.015 0.0247 0.0246 0.0245 0.0244 0.0244
0.016 0.0269 0.0268 0.0267 0.0267 0.0266
0.017 0.0272 0.0274 0.0276 0.0277 0.0278
0.018 0.0268 0.0269 0.0271 0.0272 0.0273
0.019 0.0263 0.0265 0.0267 0.0267 0.0268
0.020 0.0259 0.0260 0.0260 0.0263 0.0263
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Table 3.3: Sine D ata Set Prediction Result 2-1: Corresponding “mse” with 
e and o' Varying

£ \  <J 1 2 3 4 5
0.0000 8.3204e-002 7.8549e-002 8.8080e-002 9.4801e-002 9.8892e-002
1.0e-004 3.2716e-002 2.1343e-003 4.9325e-004 7.7552e-004 1.1004e-003
2.0e-004 3.3160e-002 2.6280e-003 8.4367e-004 1.1191e-003 1.3808e-003
3.0e-004 3.3611e-002 3.1606e-003 1.3538e-003 1.6890e-003 1.9101e-003
4.0e-004 3.4026e-002 3.6391e-003 1.9098e-003 2.4628e-003 2.6849e-003
5.0e-004 3.4387e-002 4.1454e-003 2.5529e-003 3.4189e-003 3.6622e-003
6.0e-004 3.4753e-002 4.6324e-003 2.9980e-003 4.5338e-003 4.8397e-003
7.0e-004 3.5125e-002 4.8861e-003 3.4423e-003 4.9702e-003 6.1452e-003
8.0e-004 3.5501e-002 5.0854e-003 3.4034e-003 5.3621e-003 7.1939e-003
9.0e-004 3.5882e-002 5.4583e-003 3.3315e-003 5.7652e-003 7.4519e-003
1.0e-003 3.6268e-002 5.8554e-003 3.4321e-003 5.5695e-003 7.5222e-003
£ \  O 1 2 3 4 5
l.le-003 3.6659e-002 6.0040e-003 3.5246e-003 5.4628e-003 7.3347e-003
1.2e-003 3.7049e-002 6.1201e-003 3.5071e-003 5.3293e-003 7.0971e-003
1.3e-003 3.7438e-002 6.2385e-003 3.4940e-003 5.2318e-003 6.8778e-003
1.4e-003 3.7852e-002 6.3591e-003 3.4853e-003 5.1395e-003 6.7373e-003
1.5e-003 3.8230e-003 6.4819e-003 3.4809e-003 5.0524e-003 6.6027e-003
1.6e-003 3.8603e-002 6.6070e-003 3.4955e-003 4.9707e-003 6.4739e-009
1.7e-003 3.8979e-002 6.7343e-003 3.5178e-003 4.8943e-003 6.4033e-003
1.8e-003 3.9359e-002 6.8639e-003 3.5437e-003 4.8380e-003 6.2335e-003
1.9e-003 3.9742e-003 6.9958e-003 3.5731e-003 4.7971e-003 6.1023e-003
2.0e-003 4.0129e-002 7.1298e-003 3.6062e-003 4.7605e-003 6.0615e-003
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Table 3.4: Sine D ata Set Prediction Result 2-2: Corresponding “mse” with 
e and er Varying

e \  a 6 7 8 9 10
0.0000 1.0144e-001 1.0310e-001 1.0422e-001 1.0501e-001 1.0558e-001
1.0e-004 1.3419e-003 1.5191e-003 1.6614e-003 1.7973e-003 1.9560e-003
2.0e-004 1.5817e-003 1.7377e-003 1.8773e-003 2.0311e-003 2.2349e-003
3.0e-004 2.0802e-003 2.2204e-003 2.3563e-003 2.5208e-003 2.7507e-003
4.0e-004 2.8523e-003 2.9875e-003 3.1232e-003 3.2933e-003 3.5348e-003
5.0e-004 3.8354e-003 3.9734e-003 4.1110e-003 4.2827e-003 4.5252e-003
6.0e-004 5.0300e-003 5.1752e-003 5.3140e-003 5.4814e-003 5.7126e-003
7.0e-004 6.4328e-003 6.5894e-003 6.7288e-003 6.8861e-003 7.0940e-003
8.0e-004 7.5855e-003 7.8488e-003 8.0597e-003 8.2423e-003 8.4522e-003
9.0e-004 8.6930e-003 8.9839e-003 9.1964e-003 9.3772e-003 9.5660e-003
1.0e-003 9.0805e-003 9.9704e-002 1.0410e-002 1.0574e-002 1.0725e-002
e \  a 6 7 8 9 10
l.le-003 8.7124e-003 9.8059e-003 1.0580e-002 1.1142e-002 1.1558e-002
1.2e-003 8.2995e-003 9.3379e-003 1.0076e-002 1.0611e-002 1.1009e-002
1.3e-003 8.0815e-003 8.8605e-003 9.5668e-003 1.0080e-002 1.0462e-002
1.4e-003 7.8693e-003 8.6500e-003 9.2039e-003 9.5742e-003 9.9356e-003
1.5e-003 7.7059e-003 8.4683e-003 9.0043e-003 9.3911e-003 9.6776e-003
1.6e-003 7.5486e-003 8.2928e-003 8.8166e-003 9.1948e-003 9.5023e-003
1.7e-003 7.3974e-003 8.1236e-003 8.6352e-003 9.0049e-003 9.2789e-003
1.8e-003 7.2522e-003 7.9605e-003 8.4601e-003 8.8214e-003 9.0893e-003
1.9e-003 7.1132e-003 7.8037e-003 8.2914e-003 8.6443e-003 8.9062e-003
2.0e-003 7.0118e-003 7.6755e-003 8.1447e-003 8.4845e-003 8.7367e-003
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Table 3.5: Sine D ata Set Prediction Result 3-1: Corresponding “mse” with 
£ and er Varying

e \  er 1 2 3 4 5
0.00000 8.3204e-002 7.8549e-002 8.8080e-002 9.4801e-002 9.8892e-002
1.0e-005 3.2294e-002 1.6414e-003 2.7088e-004 6.5881e-004 1.0592e-003
2.0e-005 3.2341e-002 1.6920e-003 2.8822e-004 6.06277e-004 1.0011e-003
3.0e-005 3.2389e-002 1.7436e-003 3.0741e-004 6.6898e-004 1.0511e-003
4.0e-005 3.2437e-002 1.7962e-003 3.2843e-004 6.7748e-004 1.0507e-003
5.0e-005 3.2485e-002 1.8499e-003 3.5130e-004 6.8816e-004 1.0528e-003
6.0e-005 3.2533e-002 1.9047e-003 3.7601e-004 7.0113e-004 1.0574e-003
7.0e-005 3.2581e-002 1.9605e-003 4.0256e-004 7.1635e-004 1.0645e-003
8.0e-005 3.2628e-002 2.0174e-003 4.3095e-004 7.3382e-004 1.0740e-003
9.0e-005 3.2672e-002 2.0753e-003 4.6118e-004 7.5354e-004 1.0860e-003
1.0e-004 3.2716e-002 2.1343e-003 4.9325e-004 7.7552e-004 1.1004e-003
e \  a 1 2 3 4 5
l.le-004 3.2762e-002 2.1943e-003 5.2716e-004 709975e-004 1.1173e-003
1.2e-004 3.2804e-002 2.2554e-003 5.6292e-004 8.2622e-004 1.1367e-003
1.3e-004 3.2849e-002 2.3108e-003 6.0051e-004 8.5495e-004 1.1586e-003
1.4e-004 3.2893e-002 2.3603e-003 6.3995e-004 8.8593e-004 1.1829e-003
1.5e-004 3.2937e-002 2.4081e-003 6.8123e-004 9.1916e-004 1.2097e-003
1.6e-004 3.2982e-002 2.4499e-003 7.1556e-004 9.5464e-004 1.2390e-003
1.7e-004 3.3026e-002 2.4881e-003 7.4530e-004 9.9238e-004 1.2708e-002
1.8e-004 3.3071e-002 2.5341e-003 707657e-004 1.0324e-003 1.3050e-003
1.9e-004 3.3115e-002 2.5808e-003 8.0936e-004 1.0746e-003 1.3416e-003
2.0e-004 3.3160e-002 2.6280e-003 8.4367e-004 1.1191e-003 1.3808e-003
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Table 3.6: Sine D ata Set Prediction Result 3-2: Corresponding “mse” with 
e and a  Varying

e \  a 6 7 8 9 10
0.00000 1.0144e-001 1.0310e-001 1.0422e-001 1.0501e-001 1.0558e-001
1.0e-005 1.3473e-003 1.5480e-003 1.6921e-003 1.8056e-003 1.9182e-003
2.0e-005 1.3363e-003 1.5343e-003 1.6782e-003 1.7944e-003 1.9132e-003
3.0e-005 1.3280e-003 1.5231e-003 1.6669e-003 1.7858e-003 1.9106e-003
4.0e-005 1.3222e-003 1.5146e-003 1.6582e-003 1.7798e-003 1.9105e-003
5.0e-005 1.3190e-003 1.5088e-003 1.6522e-003 1.7763e-003 1.9127e-003
6.0e-005 1.3184e-003 1.5056e-003 1.6487e-003 1.7754e-003 1.9173e-003
7.0e-005 1.3204e-003 1.5050e-003 1.6480e-003 1.7770e-003 1.9243e-003
8.0e-005 1.350e-003 1.5071e-003 1.6498e-003 1.7812e-003 1.9338e-003
9.0e-005 1.3322e-003 1.5118e-003 1.6543e-003 1.7879e-003 1.9456e-003
1.0e-004 1.3419e-003 1.5191e-003 1.6614e-003 1.7973e-003 1.9600e-003
£  \  O 6 7 8 9 10
l.le-004 1.3542e-003 1.5291e-003 1.6711e-003 1.8091e-003 1.9766e-003
1.2e-004 1.3692e-003 1.5417e-003 1.6835e-003 1.8236e-003 1.9956e-003
1.3e-004 1.3869e-003 1.5570e-003 1.6985e-003 1.8405e-003 2.0171e-003
1.4e-004 1.4068e-003 1.5749e-003 1.7162e-003 1.8601e-003 2.0410e-003
1.5e-004 1.4295e-003 1.5954e-003 1.7364e-003 1.8822e-003 2.0673e-003
1.6e-004 1.4547e-003 1.6186e-003 1.7593e-003 1.9069e-003 2.0960e-003
1.7e-004 1.4826e-003 1.6444e-003 1.7849e-003 1.9341e-003 2.1271e-003
1.8e-004 1.5131e-003 1.6728e-003 1.8130e-003 1.9639e-003 2.1606e-003
1.9e-004 1.5461e-003 1.7039e-003 1.8438e-003 1.9962e-003 2.1966e-003
2.0e-004 1.5817e-003 1.7377e-003 1.8773e-003 2.0311e-003 2.2349e-003
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Table 3.7: Sine D ata Set Prediction Result 4-1: Corresponding “mse” with 
£ and <r Varying

£ \  CT 1 2 3 4 5
0.000000 8.3204e-002 7.8549e-002 8.8080e-002 9.4801e-002 9.8892e-002
1.0e-006 3.2250e-002 1.5968e-003 2.5684e-004 6.5716e-004 1.0661e-003
2.0e-006 3.2255e-002 1.6017e-003 2.5839e-004 6.5726e-004 1.0652e-003
3.0e-006 3.2260e-002 1.6066e-003 2.583e-004 6.5737e-004 1.0644e-003
4.0e-006 3.2265e-002 1.6115e-003 2.6136e-004 6.5751e-004 1.0636e-003
5.0e-006 3.2270e-003 1.6165e-003 2.6290e-004 6.5767e-004 1.0628e-003
6.0e-006 3.2275e-003 1.6215e-003 2.6446e-004 6.5785e-004 1.0620e-003
7.0e-006 3.2279e-003 1.6264e-003 2.6603e-004 6.5806e-004 1.0613e-003
8.0e-006 3.2289e-003 1.6364e-003 2.6763e-004 6.5828e-003 1.0606e-003
9.0e-006 3.2289e-003 1.6364e-003 2.6924e-004 6.5853e-004 1.0599e-003
1.0e-005 3.2293e-003 1.6414e-003 2.7088e-004 6.5881e-004 1.0592e-003
£  \  <7 1 2 3 4 5
l.le-005 3.2298e-003 1.6464e-003 2.7253e-004 6.5910e-004 1.0586e-003
1.2e-005 3.2303e-003 1.6514e-003 2.7420e-004 6.5942e-004 1.0579e-003
1.3e-005 3.2308e-003 1.6564e-003 2.7589e-004 6.5976e-004 1.0574e-003
1.4e-005 3.2313e-003 1.6615e-003 2.7760e-004 6.6012e-004 1.0579e-003
1.5e-005 3.2317e-003 1.6665e-003 2.7932e-004 6.6054e-004 1.0562e-003
1.6e-005 3.2322e-003 1.6716e-003 2.106e-004 6.6091e-004 1.0557e-003
1.7e-005 3.2327e-003 1.6767e-003 2.8283e-004 6.6134e-004 1.0552e-003
1.8e-005 3.2332e-003 1.6818e-003 2.8461e-004 6.6180e-004 1.0548e-003
1.9e-005 3.2337e-003 1.6868e-003 2.8640e-004 6.6227e-004 1.05432e-003
2.0e-005 3.2341e-003 1.6919e-003 2.8822e-004 6.6277e-004 1.0539e-003
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Table 3.8: Sine D ata Set Prediction Result 4-2: Corresponding “mse” with 
e and <7 Varying

£  \  (7 6 7 8 9 10
0.000000 1.0144e-001 1.0310e-001 1.0422e-001 1.0501e-001 1.0558e-001
1.0e-006 1.3593e-003 1.5627e-003 1.7069e-003 1.8178e-003 1.9248e-003
2.0e-006 1.3579e-003 1.5609e-003 1.7052e-003 1.8163e-003 1.9240e-003
3.0e-006 1.3565e-003 1.5592e-003 1.7034e-003 1.8149e-003 1.9232e-003
4.0e-006 1.3551e-003 1.5575e-003 1.7017e-003 1.8135e-003 1.9223e-003
5.0e-006 1.3537e-003 1.5559e-003 1.7001e-003 1.8121e-003 1.9216e-003
6.0e-006 1.3524e-003 1.5543e-003 1.6984e-003 1.8107e-003 1.9209e-003
7.0e-006 1.3510e-003 1.5527e-003 1.6968e-003 1.8094e-003 1.9202e-003
8.0e-006 1.3498e-003 1.5511e-003 1.6952e-003 1.8081e-003 1.9195e-003
9.0e-006 1.3485e-003 1.5495e-003 1.6937e-003 1.8068e-003 1.9189e-003
1.0e-005 1.3473e-003 1.5480e-003 1.6921e-003 1.8056e-003 1.9182e-003
£  \  O 6 7 8 9 10
l.le-005 1.3460e-003 1.5465e-003 1.6906e-003 1.8043e-003 1.9176e-003
1.2e-005 1.3449e-003 1.5451e-003 1.6891e-003 1.8031e-003 1.9170e-003
1.3e-005 1.3437e-003 1.5436e-003 1.6877e-003 1.8020e-003 1.9165e-003
1.4e-005 1.3426e-003 1.5422e-003 1.6862e-003 1.8008e-003 1.9159e-003
1.5e-005 1.3415e-003 1.5408e-003 1.6848e-003 1.8000e-003 1.9154e-003
1.6e-005 1.3404e-003 1.5394e-003 1.6834e-003 1.7986e-003 1.9149e-003
1.7e-005 1.3393e-003 1.5381e-003 1.6821e-003 1.7975e-003 1.9145e-003
1.8e-005 1.3383e-003 1.5368e-003 1.6808e-003 1.7964e-003 1.9140e-003
1.9e-005 1.3373e-003 1.5355e-003 1.6795e-003 1.7954e-003 1.9136e-003
2.0e-005 1.3363e-003 1.5343e-003 1.6782e-003 1.7944e-003 1.9132e-003
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Table 3.9: Sine D ata Set Prediction Result 5-1: Corresponding “mse” with 
e and ct Varying

£ \  CT 1 2 3 4 5
0 8.3204e-002 7.8549e-002 8.8080e-003 9.4801e-003 9.8892e-002
1.0e-007 3.2246e-002 1.5924e-003 2.5552e-004 6.5710e-003 1.0669e-003
2.0e-007 3.2247e-002 1.5929e-003 2.5567e-004 6.5711e-003 1.0008e-003
3.0e-007 3.2267e-002 1.6014e-003 2.5698e-004 7.2200e-003 1.0668e-003
4.0e-007 3.2248e-002 1.5938e-003 2.5596e-004 6.5712e-003 1.0666e-003
5.0e-007 3.2248e-002 1.5943e-003 2.5611e-004 6.5713e-004 1.0665e-003
6.0e-007 3.2248e-002 1.5948e-003 2.5625e-003 6.5713e-004 1.0664e-003
7.0e-007 3.2249e-002 1.5953e-003 2.5640e-004 6.5714e-004 1.0663e-003
8.0e-007 3.2250e-002 1.5958e-003 2.5655e-004 6.5715e-004 1.0663e-003
9.0e-007 3.2250e-002 1.5963e-003 2.5670e-004 6.5716e-004 1.0662e-003
1.0e-006 3.2251e-002 1.5968e-003 2.5684e-004 6.5716e-004 1.0661e-003
£ \  CT 1 2 3 4 5
l.le-006 3.2251e-002 1.5973e-003 2.5699e-004 6.5717e-004 1.0660e-003
1.2e-006 3.225e-002 1.598e-003 2.5714e-004 6.5718e-004 1.0659e-003
1.3e-006 3.225e-002 1.5982e-003 2.5729e-004 6.5719e-004 1.0658e-003
1.4e-006 3.225e-002 1.5987e-003 2.5744e-004 6.5720e-004 1.0657e-003
1.5e-006 3.225e-002 1.5992e-003 2.5758e-004 6.5720e-004 1.0011e-003
1.6e-006 3.2314e-002 1.6016e-003 2.7110e-004 7.2211e-004 1.0656e-003
1.7e-006 3.225e-002 1.6002e-003 2.5788e-004 6.5723e-004 1.0655e-003
1.8e-006 3.225e-002 1.6007e-003 2.5803e-004 6.5724e-004 1.0654e-003
1.9e-006 3.225e-002 1.6011e-003 2.5818e-004 6.5725e-004 1.0653e-003
2.0e-006 3.225e-002 1.6017e-003 2.583e-004 6.5726e-004 1.0652e-003
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Table 3.10: Sine D ata Set Prediction Result 5-2: Corresponding “mse” with 
e and o Varying

e \ o 6 7 8 9 10
0 1.0144e-001 1.0310e-001 1.0442e-001 1.0501e-001 1.0558e-001
1.0e-007 1.3606e-003 1.5642e-003 1.7085e-003 1.8191e-003 1.9256e-003
2.0e-007 1.3605e-003 1.5641e-003 1.7083e-003 1.8191e-003 1.9255e-003
3.0e-007 1.3603e-003 1.5639e-003 1.7082e-003 1.8188e-003 1.9254e-003
4.0e-007 1.3602e-003 1.5637e-003 1.7080e-003 1.8187e-003 1.9253e-003
5.0e-007 1.3600e-003 1.5635e-003 1.7078e-003 1.8185e-003 1.9252e-003
6.0e-007 1.3599e-003 1.5634e-003 1.7076e-003 1.8184e-003 1.9251e-003
7.0e-007 1.3598e-003 1.5632e-003 1.7074e-003 1.8182e-003 1.9250e-003
8.0e-007 1.3596e-003 1.5630e-003 1.7073e-003 1.8181e-003 1.9250e-003
9.0e-007 1.3595e-003 1.5628e-003 1.7071e-003 1.8179e-003 1.9249e-003
1.0e-006 1.3593e-003 1.5627e-003 1.7069e-003 1.8178e-003 1.9248e-003
e \ o 6 7 8 9 10
l.le-006 1.3592e-003 1.5625e-003 1.7067e-003 1.8177e-003 1.9247e-003
1.2e-006 1.3590e-003 1.5623e-003 1.7065e-003 1.8175e-003 1.9246e-003
1.3e-006 1.3589e-003 1.5621e-003 1.7064e-003 1.8174e-003 1.9245e-003
1.4e-006 1.3587e-003 1.5620e-003 1.7062e-003 1.8172e-003 1.9245e-003
1.5e-006 1.3586e-003 1.5618e-003 1.7060e-003 1.8171e-003 1.9244e-003
1.6e-006 1.3584e-003 1.5616e-003 1.7059e-003 1.8169e-003 1.9243e-003
1.7e-006 1.3583e-003 1.5614e-003 1.7057e-003 1.8168e-003 1.9242e-003
1.8e-006 1.3582e-003 1.5613e-003 1.7055e-003 1.8166e-003 1.9241e-003
1.9e-006 1.3580e-003 1.5611e-003 1.7053e-003 1.8165e-003 1.9241e-003
2.0e-006 1.3579e-003 1.5609e-003 1.7052e-003 1.8163e-003 1.9240e-003
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Table 3.11: Sunspot D ata Set Prediction Result 1: Corresponding “mse” 
with e Varying

£ 0 1 2 3 4 5
mse 202.47 144.48 147.79 150.67 152.92 155.35
£ 6 7 8 9 10 11
mse 157.81 160.40 163.50 166.85 170.41 174.19

Table 3.12: Sunspot Data Set Prediction Result 2: Corresponding “mse” 
with e Varying

£ 0.0 0.1 0.2 0.3 0.4 0.5 0.6
mse 202.47 142.03 142.27 142.52 142.78 143.05 143.31
£ 0.7 0.8 0.9 1.0 1.1 1.2 1.3
mse 143.59 143.87 144.17 144.48 144.78 145.09 145.42
£ 1.4 1.5 1.6 1.7 1.8 1.9 2.0
mse 145.77 146.11 146.46 146.81 147.14 147.46 147.79

Table 3.13: Sunspot Data Set Prediction Result 3: Corresponding “mse” 
with e Varying

£ 0.00 0.01 0.02 0.03 0.04 0.05 0.06
mse 202.47 141.79 141.82 141.85 141.87 141.90 141.93
£ 0.07 0.08 0.09 0.10 0.11 0.12 0.13
mse 141.96 141.98 142.01 142.03 142.05 142.08 142.10
£ 0.14 0.15 0.16 0.17 0.18 0.19 0.20
mse 142.13 142.15 142.17 142.20 142.23 142.25 142.27
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Table 3.14: Rmsv D ata Set Prediction Result 1: Corresponding “mse” with 
e Varying

£ 0.000 0.001 0.002 0.003 0.004
mse=1.0e-007* 1.0893 6.3837 20.5906 55.6539 92.8517
£ 0.005 0.006 0.007 0.008 0.009
mse=1.0e-007* 109.908 119.489 125.047 128.509 130.901
£ 0.010 0.011 0.012 0.013 0.014
mse=1.0e-007* 132.546 133.730 134.615 135.294 135.829
£ 0.015 0.016 0.017 0.018 0.019
mse=1.0e-007* 136.257 136.606 136.895 137.136 37.341
£ 0.020
mse=1.0e-007* 137.515

Table 3.15: Rmsv D ata Set Prediction Result 2: Corresponding “mse” with 
e Varying

e=1.0e-004* 0 1 2 3 4 5
mse=1.0e-008* 10.8933 5.4658 11.639 16.937 21.751 27.671
e=1.0e-004* 6 7 8 9 10 11
mse=1.0e-008* 32.270 40.049 49.672 55.247 63.837 75.460
e=1.0e-004* 12 13 14 15 16 17
mse=1.0e-008* 90.098 107.654 128.254 142.760 148.620 157.918
e=1.0e-004* 18 19 20
mse=1.0e-008* 170.057 186.557 205.906
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Table 3.16: Rmsv D ata Set Prediction Result 3: Corresponding “mse” with 
e Varying

e=1.0e-005* 0 1 2 3 4 5 6
mse=1.0e-009* 108.93 4.8233 5.409 6.866 10.122 15.383 19.874
e=1.0e-005* 7 8 9 10 11 12 13
mse=1.0e-009* 27.14 35.74 44.78 54.658 63.31 70.92 78.33
e=1.0e-005* 14 15 16 17 18 19 20
mse=1.0e-009* 85.69 92.65 97.53 102.53 107.03 111.52 116.39

Table 3.17: Rmsv D ata Set Prediction Result 4: Corresponding “mse”with 
e Varying

e=1.0e-006* 0 1.0 2.0 3.0 4.0 5.0 6.0
mse=1.0e-009* 108.93 5.0162 4.9780 4.9225 4.8968 4.8435 4.8341
£=1.0e-006* 7.0 8.0 9.0 10 11 12 13
mse=1.0e-009* 4.8112 4.8105 4.8086 4.8233 4.8465 4.8791
e=1.0e-006* 14 15 16 17 18 19 20
mse=1.0e-009* 4.9204 4.9670 5.0152 5.0771 5.1608 5.2227 5.3185
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C h a p t e r  4

U s i n g  T h e  G o l d e n  S e c t i o n  S e a r c h  

O p t i m i z a t i o n  R o u t i n e  F o r  V e r i f y i n g  t h e  

O p t i m a l  E r r o r  Z o n e  V a l u e

4.1 Introduction  to  th e  G olden  Section  Search M eth od

The golden section search m ethod is a one-dimensional optimization search 

method which determines a minimizer of a unimodal function over a closed 

interval [3]. The solution to the golden section search routine is a local min­

imizer in the whole data range, tha t is a global minimizer which remains 

within two given points as long as the function is unimodal. The golden 

section search method is defined as the follows:

Let L  be a closed interval L — [a, b}. The function f ( x )  for x  G L  is 

an unimodal function with a minimizer if and only if there exists a point 

x* € L  such tha t /  (x) is monotonically decreasing on the left side of x*and 

monotonically increasing on the right side of x*. After each iteration, the
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remaining interval length is reduced to 61.8% of the starting interval length. 

We define r  as 0.618; is the length of the final interval. Thus, the number 

of iterations needed is N  = log (^ /l ) /  l°g r - The golden section search algo­

rithm  is:

L — b — a,

x l  = b — t L , x2 =  a +  t L,

For i — 1 to N by 1

If /  (x l) >  /  (x2 ), a — x l ,  L — b — a, x l  = x2, x2 =  a +  t L,

Else b — x2, L — b — a, x2 — x l ,  x l  = b — t L,

End

x* = ( b - a ) / 2, f (x*) .

4.2 M otivation  for U sing  th e  G olden Section  Search M eth od

The rule of thumb on the optimal error zone value was derived based on 

the experiment results in Chapter 3. It is found to be one-tenth of the 

accuracy of the input target value. In this chapter, the optimal error zone 

value is searched only because the optimal kernel param eter and the suitable 

kernel have been found out for every data set in Chapter 3. The experiments 

described in Chapter 3 present the relationship between the “mse” value and 

the error zone value. It is:

1. The smaller the error zone value, the smaller the “mse” value.

2. The “mse” will get smaller very slowly after the error zone value reaches
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a very small value and approaches to zero.

3. When the error zone value is given as zero, the “mse” value is relatively 

large.

E rror Zone Vo.Ute

Figure 4.1: MSE vs. Error Zone Values

The relationship between “mse” value and error zone value are presented in 

Figure 4.1. Based on the above observation, we believe tha t for every data 

set, there is a optimal error zone value at which the “mse” function will 

monotonically increase on the right side of the optimal point and monoton­

ically decrease on the left side of the optimal point. The objective function 

“mse” with a variable error zone value is regarded as a unimodal function. In 

this situation, the golden section search optimization m ethod is used to find 

the smallest “mse” value and corresponding optimal error zone value. Nor­
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mally, the golden section search optimization m ethod is a local optimization 

method, which means tha t the result obtained by this method is not nec­

essarily a global minimizer; however, the optimal error zone value has been 

figured out for every data  set in Chapter 3. Thus, the optimal error zone 

value searched for here using the golden section search optimization method 

would be global. The stopping criterion, on the basis of which the searching 

process is halted, is defined below.

W hen the “mse” ratios [see Equation (3.2)] for five consecutive golden 

section search iterations are all less than 10“ 5, the searching process will 

stop.

4.3 C ase Studies  

4.3.1 T h e Sine D ata  Set

The first da ta  set is the Sine data set. There are 51 data  points in this data 

set. The accuracy of the input target value of this da ta  set is 10-5 . From the 

experiments carried out in Chapter 3, we have confirmed tha t the optimal 

error zone value is in the range of [0, 1], Thus, the optimal error zone value 

is searched for in this range by using the golden section search optimization 

method.

The middle point of the interval at iteration n  (n =  1, 2, 3,...) of the error 

zone values and the corresponding “mse” values are shown in Table 4.1 (see 

page 71). W ith the number of the iterations increasing, the error zone value
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MSE vs. Error Zone Value for Sine Data Set

to  1 0 '

Error Zone Value

Figure 4.2: MSE vs. Error Zone Values for the Sine D ata Set

and “mse” are both decreasing. The searching process is stopped at iteration 

43. This is because the “mse” ratio between 38 and 39 is larger than  10—5, 

while the “mse” ratios for the five consecutive iterations, from iteration 39 to 

iteration 43, are all less than 10“5, which is the criterion for stopping. The 

process is presented below.

• The “mse” ratio between iterations 38 and 39 is: (2.55383 x 1CV4 — 

2.55380 x 10_4)/(2 .55383 x 10"4) =  1.17 x 10“ 5

•  The “mse” ratio between iterations 39 and 40 is: (2.55380 x 10~4 — 

2.55379 x 10_4)/(2 .55379 x 10“4) =  3.916 x 10"6

• The “mse” ratio between iterations 40 and 41 is: (2.55379 x 10-4 — 

2.55378 x 10“4)/(2 .55379 x 10"4) -  3.916 x 10“6
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• The “mse” ratio between iterations 41 and 42 is: (2.55378 x 10 4 — 

2.55377 x 10~4)/(2 .55378 x 1CT4) =  3.916 x 1CT6

• The “mse” ratio between iterations 42 and 43 is: (2.55377 x 10-4 — 

2.55376 x 10“4)/(2.55377 x 10“4) =  3.916 x 10"6

So far, the searching process has satisfied the stopping criterion, which takes 

into consideration the fact that the “mse” values don’t change even though 

the error zone value is decreasing. There is no need to search for a smaller 

“mse” . The searching process stops here. The experiment result is plotted 

in Figure 4.2. It presents the relation between the “mse” value and the 

error zone value. We find tha t the error zone value, 1.16 x 10-6 is a critical 

point in Figure 4.2. The “mse” curve remains almost flat once the error 

zone value is smaller than it, whereas, the “mse” curve has a obvious slope 

once the error zone value is larger than it. This means tha t the “mse” 

changes significantly when the error zone value is larger than  1.16 x 10-6 , 

and the “mse” value shows no significant change when the error zone value is 

smaller than  1.16 x 10~6. In addition, we know the predicting time is also an 

im portant factor in the assessment of prediction. We have mentioned before 

that the smaller the error zone value, the longer the predicting time since 

smaller error zone values result in more support vectors, and more support 

vectors need more calculating time. The experiments regarding the relation 

between the predicting time and the error zone value are conducted, some 

error zone values in Table 4.1 are chosen and the calculating time for each
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error zone value is recorded. The results are presented in Table 4.2 (see page 

71). The predicting time has varied in a range from 29s to 56s while the 

error zone value has changed in the range of [3.1942 x 10“ 10, 1]. The smaller 

the error zone value, the longer the calculating time.

Summarizing the results described in Table 4.1, Table 4.2, and Figure 

4.2, we may say th a t fixing the error zone value a t 1.16 x 10-6 was a good 

choice for this data  set. It can guarantee not only the predicting accuracy 

but also the short predicting time. It should be noted, however, th a t we got 

this error zone value from the plot; it is a rough value instead of an exact 

one. In this situation, it would be a wise choice to use a round value which 

is smaller, the one closest to 1.16 x 10-6 . From Figure 4.2, it is clear tha t 

10”6 is the value we need. The reasons are presented below:

1. 10-6 is a round, smaller value and the one closest to 1.16 x 10-6 . The 

experiment shows tha t the predicting time between error zone values 

1.16 x 10-6 and 1CT6 are almost the same. Thus, choosing 10-6 as the 

error zone value not only guarantees the prediction accuracy but also 

a short predicting time.

2. Numerically, the “mse” ratio between the error zone 10~6 and the small­

est error zone value (3.1942 x 10-10) is: (2.56844 x 10-4 — 2.55376 x 

10_4)/(2 .56844 x 10-4) =  0.0057. It is smaller than 0.01. In Chapter 3, 

we stipulated tha t the two prediction results are regarded as identical 

if the “mse” ratio between them is less than 0.01. For this reason, we
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can say tha t the prediction results between the error zone values 10~6 

and 3.1942 x 10-10 are identical. On the other hand, the predicting 

time for these two values are 29.1s and 56s respectively, which are very 

difference.

3. Fixing the error zone value at 10-6 is very simple. It is equal to one- 

tenth of the input target value. It can be obtained directly from the 

input target value before the prediction is performed.

From the above analysis, we can say that fixing 10-6 as the error zone value 

is a reasonable choice. It can guarantee both high prediction accuracy and 

short predicting time. The rule obtained in Chapter 3 is approved further.

MSE vs. Error Zone Value for Sunspot Data Set
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Figure 4.3: MSE vs. Error Zone Values for the Sunspot D ata Set
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4.3.2 T he Sunspot D ata  Set

The second data set is the Sunspot data set. There are 459 data  points in 

this set. The accuracy of the input target value of this data set is 1. The 

experiment process is the same as th a t for the Sine data set. The experiments 

conducted in Chapter 3 show th a t the range of the optimal error zone value 

is within [0, 1]. The golden section search optimization m ethod is used to 

find the optimal error zone value in this range for the desired prediction 

accuracy. Similar to the last data  set, the middle point of the interval at 

the nth iteration, (n  =  1 ,2 ,3 ,...) of the error zone values and corresponding 

“mse” values are presented in Table 4.3 (see page 72). W ith the increase 

in iteration number, the error zone value decreases. The search is stopped 

at iteration 17. This is because the “mse” ratio for iterations 12 and 13 is 

bigger than 10~5, while the “mse” ratios for the five consecutive iterations 

from 13 to 17 are all smaller than  10~5, the defined stopping criterion. The 

results are presented below:

• The “mse” ratio between iterations 12 and 13 is:

(141.766 -  141.7645)/141.766 =  1.06 x 10"5

• The “mse” ratio between iterations 13 and 14 is:

(141.7645 -  141.76375)/141.7645 =  5.29 x 10~6

• The “mse” ratio between iterations 14 and 15 is:

(141.76375 -  141.76370)/141.76375 =  3.53 x 10“ 7
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• The “mse” ratio between iterations 15 and 16 is:

(141.76370 -  141.76298)/141.76370 =  5.079 x 10~6

• The “mse” ratio between iterations 16 and 17 is:

(141.76298 -  141.76279)/141.76298 =  1.34 x 10~6

The above “mse” ratios from iterations 13 to 17 are all smaller than 10“5, 

the defined stopping criterion. The “mse” curve has become very flat so the 

“mse” remains virtually unchanged even though the error zone value is de­

creasing. The searching process stops here. The error zone value is divided 

from 1 to 8.6604 x 10-5 . Figure 4.3 presents the trend between the “mse” and 

error zone values. The error zone value 0.108 is a critical point, for the “mse” 

curve is relatively flat at error zone values smaller than  0.108, bu t has a ob­

vious slop at error zone values larger than 0.108. This means th a t the “mse” 

value changes significantly when the error zone value is larger than  0.108, 

but remains virtually unchanged when the error zone value is smaller than

0.108. Normally, the prediction accuracy and predicting time are two factors 

considered crucial to prediction performance. The experiment regarding the 

relation between predicting time and error zone value is conducted, in which 

several error zone values in Table 4.3 are chosen and the calculating time 

for each error zone value is recorded. Table 4.4 (see page 72) and Figure 4.4 

present the result - the smaller the error zone value, the longer the predicting 

time. Based on this observation, it would appear tha t fixing the error zone 

value at 0.108 is a good choice. The reasons are the same as those given
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Predicting Time vs. Error Zone Value for Sunspot Data Set
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Figure 4.4: Predicting Time vs. Error Zone Values for the Sunspot D ata Set

for the last data set analyzed above: the ability to obtain a high prediction 

accuracy and, as well, a short predicting time. Note, however, tha t we ob­

tained this value from the figure; it is a rough value, not an exact one. In 

this case, using the value 0.1 to replace the value 0.108 would be a reason­

able choice. This is because 0.1 is smaller than  0.108, so it can guarantee 

prediction accuracy without adversely affecting time, which remains almost 

the same since the two values are so close. As well, 0.1 is equal to one-tenth 

of the accuracy of the input target value. We can obtain this value directly 

from the input target value. The “mse” ratio 0.1 and the smallest error zone 

value of 8.6604 x 10-5 is calculated. At (142.03 — 141.76279)/142.03 =  0.002, 

it is smaller than 0.01, the defined stopping criterion given in Chapter 3. 

According to this stopping criterion, the prediction results between the error
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zone value 0.1 and the smallest error zone value (8.6604 x 10~5) is identical, 

while the predicting times are 14s and 31s respectively. Thus, fixing the er­

ror zone value at 0.1 can guarantee both the prediction accuracy and short 

predicting time. The rule obtained from Chapter 3 has been supported once 

again.

4.3.3 T he V ibration  D ata  Set “R oot M ean Square”

The vibration data  vertical root mean square (Rmsv) is the processed vi­

bration signals collected from the Gearbox Lifetime Assessment Experiment 

carried out in the Reliability Research Lab at the University of Alberta. It 

represents the vibration trend of the machines in a degradation state. There 

are 237 data  points in this data set. The accuracy of the input target value 

of this data  set is 10-4 . Experiments are conducted th a t are similar to those 

conducted on the last two data sets. The searching rang for the error zone 

value is [0, 0.01] based on the experiments in Chapter 3. The middle point of 

the interval at the n th iteration, (n =  1,2, 3,...) of the error zone values and 

corresponding “mse” values are presented in Table 4.5 (see page 73). As the 

number of the iteration increases, the error zone value decreases. The smaller 

the error zone value, the smaller the “mse” value. The smallest error zone 

value searched is 2.6910 x 10-7 . The searching process stopped at iteration 

29. This is because even though the “mse” ratio between iterations 24 and 

25 is ((4.8255 x 10“ 9) -  (4.812541 x 10-9))/(4.8255 x 10"9) =  2.685 x 10 3, 

which is larger than 0.01, the “mse” values from 25 to 29 are all equal to
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MSE vs. Error Zone Value for "rmsv" Data Set
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Figure 4.5: MSE vs. Error Zone Value for the Rmsv D ata Set

4.812584136851701 x 10-9 . As a result, the “mse” ratios between the consec­

utive iterations are all less than 10—5, the defined stopping criterion. Thus, 

the searching process has stopped here. The trend between “mse” values 

and error zone values is plotted in Figure 4.5. From this figure, we find tha t 

the error zone value of 1.13 x 1CT5 is a sensitive point. The “mse” curve 

has a very flat slope when the error zone value is smaller than 1.13 x 10—5, 

whereas, it has a relatively steep slope when the error zone value is larger 

than 1.13 x 10~5. This means tha t the prediction accuracy changes obviously 

when the error zone value is larger than  1.13 x 10-5 , bu t shows no significant 

change when the error zone value is smaller.

Moreover, the predicting time is still an important factor that should be 

considered here. As well, the relation between time and error zone value
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Time vs. Error zone Value for Rmsv Data Set
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Figure 4.6: Time vs. Error Zone Value for the Rmsv D ata Set

is studied. Several error zone values are chosen and the calculating time 

for each error zone value is recorded. The results are illustrated in Table 

4.6 (see page 73) and Figure 4.6. We find that the predicting time changes 

following the change of error zone value. The smaller the error zone value, 

the longer the predicting time. Based on the above analysis, it seems tha t 

fixing the error zone value at 1.13 x 10-5 is a good choice, considering both 

prediction accuracy and predicting time. Note, however, th a t we got this 

value roughly from the plot; It is not an accurate value. Using the same 

methods as the last two data sets, the round value is chosen th a t is smaller 

and closest to the value 1.13 x 1CT5. It would be a wise choice to use the value 

10-5 to replace the value 1.13 x 10-5 . The “mse” ratio between 10-5 and 

the smallest error zone value (2.6910 x 10-7) is calculated: (4.8233 x 10-9 —
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4.812541 x 10_9)/(4.8233 x  10"9) =  0.0023. This is smaller than 0.01, the 

stopping criterion defined in Chapter 3. According to this stopping criterion, 

the predicting results of the error zone values of ICR5 and 2.6910 x 10-7 can 

be considered identical, while the predicting times between these two values 

are 15.2s and 21s respectively. Thus, fixing the value at 10” 5 can guarantee 

both high prediction accuracy and a short predicting time. Moreover, we 

noticed tha t the error zone value of 10-5 is one-tenth of the accuracy of the 

input target value of the “Rmsv” data set. It is much easier to obtain this 

value from the input target value. The rule formulated in Chapter 3 has 

received further support.

4.4 D iscussion  and C onclusion

In the experiments conducted in Chapters 3 and 4, three data  sets were used 

to test the prediction performance of the SVM regression model. First, the 

optimal error zone value and kernel param eter were found simultaneously 

according to  the procedures proposed in Chapter 3. The range of the opti­

mal error zone value was found for every data  set. Roughly, the conclusion 

reached in Chapter 3 was: the optimal error zone value is equal to one-tenth 

of accuracy of the input target value. In Chapter 4, the error zone value was 

found only because the optimal kernel param eter and type had been figured 

out for every data set in Chapter 3. Because the “mse” function with vari­

able error zone value is considered as a unimodal function, the golden search 

optimization method was adopted for a more in-depth search on the optimal
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error zone value. The rule on the optimal error zone value is further proved 

in Chapter 4 considering both the prediction accuracy and predicting time. 

The benefits of the rule on the SVM regression for prediction include:

1. In SVM prediction performance, the complication of prediction cal­

culations can be reduced greatly if the error zone value, one of the 

im portant parameters, can be fixed before the prediction is processed.

2. The proper selection of the error zone value would guarantee not only 

higher prediction accuracy with SVM regression but also shorter pre­

dicting time.

3. Fixing the optimal error zone value according to the accuracy of the 

input target value, the only information tha t can be obtained before 

prediction, can guarantee high prediction accuracy will be obtained 

without any predicting time being wasted. But this doesn’t mean tha t 

the SVM regression model can’t obtain the same results a t other error 

zone values. If the error zone value closed to the optimal error zone 

value is carried into the SVM regression model, the prediction accuracy 

and predicting time may be almost the same as those obtained when the 

optimal error zone value is used. This doesn’t mean th a t the optimal 

error zone value is useless; when a new data set is collected and there 

is no prior knowledge about the properties of this da ta  set, this rule 

provides a basis for the selection of the error zone value. W ithout this, 

the wrong selection of error zone value could lead to SVM prediction
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performance failure. Such failure would leave SVM users confused and 

dubious regarding SVM regression’s ability to  predict.
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Table 4.1: Mean Square Error according to the Error Zone Values for the 
Sine Data Set

£ 0.3090 0.191 0.118 0.07296
mse 0.11712 0.10592 0.07108 0.04942

£ 0.04509 0.02787 0.017224 0.006580
mse 0.03662 0.02872 0.02605 0.01263

£ 0.004067 0.002513 0.0015536 9.6015e-004
mse 0.006614 0.00424 0.00358 0.00351

£ 5.9349e-004 3.6678e-004 2.2671e-004 1.4011e-004
mse 3.4569e-003 2.2394e-003 1.2423e-003 7.5517e-004

£ 8.6604e-005 5.3527e-005 3.3083e-005 2.0445e-005
mse 5.1694e-004 3.9216e-004 3.3040e-004 2.9811e-004

£ 1.2637e-005 7.810e-006 4.8276e-006 2.9834e-006
mse 2.8040e-004 2.7031e-004 2.6440e-004 2.6088e-004

£ 1.8441e-006 1.1397e-006 7.04461e-007 4.3536e-007
mse 2.5875e-004 2.5745e-004 2.5665e-004 2.56164e-004

£ 2.6910e-007 1.6630e-007 1.0280e-007 6.3529e-008
mse 2.55862e-004 2.55676e-004 2.5562e-004 2.5549e-004

£ 3.9269e-008 2.4268e-008 1.5000e-008 9.2704e-009
mse 2.5545e-004 2.5542e-004 2.5540e-004 2.5539e-004

£ 5.7302e-009 3.5412e-009 2.1890e-009 1.3528e-009
mse 2.5539e-004 2.55383e-004 2.55380e-004 2.55379e-004

£ 8.3618e-010 5.1676e-010 3.1942e-010
mse 2.55378e-004 2.55377e-004 2.55376e-004

Table 4.2: Predicting Time according to the Error Zone Values for the Sine 
D ata Set

£ 0.309 0.07296 0.0066 0.04509 0.00155
Time(s) 17 19 20 21 22

£ 1.4e-004 3.3e-005 1.16e-006 1.0e-006 2.82e-009
Time(s) 24 27 29 29.1 56
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Table 4.3: Mean Square Error according to the Error Zone Values for the 
Sunspot Data Set

£ 0.3094 0.1914 0.1181 0.07296
mse 142.73 142.36 142.14 142.01

£ 0.04509 0.02787 0.017224 0.006580
mse 141.92 141.86 141.82 141.79

£ 0.004067 0.002513 0.0015536 9.6015e-004
mse 141.78 141.77 141.768 141.766

£ 5.9349e-004 3.6678e-004 2.2671e-004 1.4011e-004
mse 141.7645 141.76375 141.76370 141.76298

£ 8.6604e-005
mse 141.76279

Table 4.4: Predicting Time vs. Error Zone Values for the Sunspot D ata Set

£ 1.14 0.108 0.1 0.0730 0.0041 0.0016 0.00037 4.8276e-006
Time (s) 8 14 14.1 17.26 19.67 22.01 25.10 31
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Table 4.5: Mean Square Error according to the Error Zone Value for the 
Rmsv D ata Set

e 0.3094 0.1914 0.1181 0.07296
mse 1.3917e-005 1.3916e-005 1.3914e-005 1.3908e-005

£ 0.04509 0.02787 0.017224 0.006580
mse 1.3894e-005 1.3859e-005 1.3771e-005 1.2889e-005

£ 0.004067 0.002513 0.0015536 9.6015e-004
mse 1.1025e-006 6.0868e-006 1.9023e-006 8.8021e-007

£ 5.9349e-004 3.6678e-004 2.2671e-004 1.4011e-004
mse 4.3370e-007 2.4626e-007 1.6053e-007 1.0409e-007

£ 8.6604e-005 5.3527e-005 3.3083e-005 2.0445e-005
mse 6.0961e-008 2.3970e-008 1.0525e-009 6.0369e-009

£ 1.2637e-005 7.810e-006 4.8276e-006 2.9834e-006
mse 5.0633e-009 4.8255e-009 4.8324e-009 4.8255e-009

£ 1.8441e-006 1.1397e-006 7.0446e-007 4.3536e-007
mse 4.812541e-009 4.812541e-009 4.812541e-009 4.812541e-007

£ 2.6910e-007
mse 4.812541e-009

Table 4.6: Predicting Time vs. Error Zone Value for the Rmsv D ata Set

£ 0.0066 9.6e-004 1.4e-004 5.4e-005 1.2637e-005
Time(s) 13.3 13.5 14 14.1 15

£ 1.0e-005 1.13e-005 1.8e-006 7.04e-007 1.028e-007
Time(s) 15.2 15.3 17.6 19 21
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C h a p t e r  5

C o m p a r i s o n  b e t w e e n  C M a ’s M e t h o d  a n d  M y  

M e t h o d  o n  t h e  O p t i m a l  E r r o r  Z o n e  V a l u e

5.1 In trod uction  to  C M a’s m ethod

Cherkassky and Ma [6] published a paper which describes a simple yet prac­

tical analytical approach to select the error zone value, one of the SVM 

regression parameters, directly from the training data. This m ethod is sim­

ply called CM a’s method. The error zone value obtained using this method 

is called the calculated error zone value. The approach involves basing the 

selection of the error zone value on the noise in the training data, and the 

(known) number of training samples. The assumption is tha t the error zone 

value is proportional to the input noise level. They assumed th a t the larger 

data  set needs smaller error zone value. CMa’s m ethod relies heavily on the 

“knn” method [6], which makes predictions for the training data  first, then 

calculates the noise level. Here, “noise” is defined as the error between the
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observed data and the predicted data. The error zone value is thus calculated 

according to the formula defined by the authors, which is:

where, a is the variance of the noise and n  is the sample size.

Thus, CMa’s method can be realized in the following steps:

1. The “Knn” regression m ethod is used to make predictions, and y  is 

obtained.

2. The formula d 2 — ? ^ k-  * ^ J2 {yi — Hi)2 is used to calculate the noise
n  !5 k - 1  1=1

variance.

3. The e value is fixed according to  Equation (5.1).

5.2 Case Studies

In this section, three data  sets, the Sine data  set, the Sunspot d a ta  set and 

the vibration data set “Rmsv” are used to provide comparison results.

5.2.1 The Sine D ata  Set

The first data set is the Sine data set, with a size of 51. The error zone value 

is calculated first using CM a’s method. The results are presented below:

• When the first half of the data set, the first 25 data, are used as training 

data, the error zone value is 0.0055.
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Sine Data Set Predicting Result when Error Zone Value is 0.0055

Observed Data Set 
-  Predicted Data Set
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Figure 5.1: The Sine D ata Set Prediction Result when the Error Zone Value 
is 0.0055

• W hen the first 30 data  are used as training data, the error zone value 

is 0.0048.

• W hen the first 40 data  are used as the training data, the error zone 

value is 0.0039.

• When the whole data  set is used as the training data, the error zone 

value is 0.0034.

We can see tha t for this data  set the error zone value decreases as the training 

data size increases. When the largest and the smallest calculated error zone 

values are inserted into the SVM regression model, the following results are 

obtained:
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Sine Data Set Predicting Result when Error zone Value is 0.0034
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Figure 5.2: The Sine D ata Set Prediction Result when the Error Zone Value 
is 0.0034

• When the error zone value is 0.0055, “mse” is 0.007564, the result is as 

illustrated in Figure 5.1.

• When the error zone value is 0.0034, “mse” is 0.00452679, the result is 

as shown in Figure 5.2.

•  When the optimal error zone value, 10~6, is inserted into the SVM 

regression model for the Sine data set, “mse” is 0.00025684.

Comparing the above results, we can see that, for the Sine data  set, inter­

polating the above two calculated error zone values into the SVM regression 

model doesn’t produce the same good prediction result as th a t obtained us­

ing the optimal error zone value. The “mse” ratio as the error zone value
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is 0.0055 and 10-6 is 0.96, while, the “mse” ratio as the error zone value is 

0.0034 and 10-6 is 0.94. It shows tha t the prediction accuracy has significant 

difference between two calculated error zone value and the optimal error zone 

value. Moreover, it is not reasonable to take the whole data  set as training 

data.

5.2.2 T h e Sunspot D ata  Set

The second data set is the Sunspot data  set, with a d a ta  size of 459. The 

above procedure is repeated again. The following results are obtained:

•  W hen the training data size is 70, the error zone value is 1.14, “mse” 

is 144.85.

• W hen the training data size is 100, the error zone value is 0.76, “mse” 

is 143.73.

• W hen the training data  size is 200, (almost half the whole data set), 

the error zone value is 0.39, “mse” is 142.70.

•  Using the whole data  set of 459 as the training data, the error zone 

value is 0.19966, “mse” is 142.25.

•  W hen the error zone value adopts the optimal error zone value of 0.1, 

“mse” is 142.03.

The above experiments results demonstrate that the larger the training 

data  size, the smaller the error zone value. When the training data  size is
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70 or 100, the calculated error zone values are larger than  the optimal error 

zone value, and the “mse” obtained by using the calculated error zone value 

is much larger than tha t obtained by using the optimal error zone value. The 

“mse” ratios are calculated as below:

• The “mse” ratio as error zone values are 1.14 and 0.1 is: (144.85 —

142.03)/144.85 =  0.019, larger than  0.01.

• The “mse” ratio as error zone values are 0.76 and 0.1 is: 143.73 —

142.03)/143.73 =  0.012, larger than 0.01.

When half of the data points are used as training data, the calculated error 

zone value closes with the optimal error zone value, and the “mse” is not 

significantly different from th a t obtained by using the optimal error zone 

value (the “mse” ratio is less than 0.01). When the full data  set is used 

as training data, the calculated error zone value much closely approximates 

the optimal error zone value, and the “mse” value is almost the same as tha t 

obtained by using the optimal error zone value. It is not reasonable, however, 

to use the whole data set as training data.

5.2.3 T he V ibration  D a ta  Set “R m sv”

The third data set is the “Rmsv” data  set, with a data size of 236. The 

above procedure is repeated again and the following results are obtained:

• When the training data  size is 50, the error zone value is 1.0522e-005, 

the “mse” is 4.8315 x 10“9.
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• W hen the training data  size is 100, the error zone value is 6.5947e-006, 

the “mse” is 4.8257 x 10”9.

• W hen the training data  size is 150, the error zone value is 5.1822e-006, 

the “mse” is 4.8104 x 10“9.

• W hen the training data  size is 200, the error zone value is 7.7695e-005, 

the “mse” is 3.0781 x 10“8.

• W hen the training data  size is 236, the error zone value is 6.2729e-005, 

the “mse” is 2.6752 x 10~8.

• The optimal error zone value based on my rule is 0.00001, the “mse” 

is 4.8283 x 10“9.

From the above results, we can see that the calculated error zone value is 

different with different training data sizes, however, this result breaks the rule 

formulated on the basis of the above two data  sets - the bigger the data size, 

the smaller the error zone value. In contrast, for this da ta  set, larger data 

sizes produced larger error zone values and result in larger “mse” value. The 

“mse” ratios between every calculated error zone value and the optimal error 

zone value are calculated. The results show that the “mse” ratios are less 

than 0.01 as the training data  size is 50, 100, and 150 respectively, whereas, 

the “mse” ratios are more than 0.80 as the training data  size is 200 and 236 

(full data set) respectively. The experiments showed th a t CM a’s method is 

not stable.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5.3 Discussion and Conclusion 81

5.3 D iscussion  and C onclusion

In this chapter, CM a’s m ethod is compared with the rule of thumb presented 

in Chapter 3. Three data  sets are used, and the comparisons are analyzed. 

For the Sine data set, we can see tha t the error zone value obtained using 

CMa’s method is larger than the optimal error zone value obtained using 

my method even though the whole data set is used as training data. As a 

result, the “mse” obtained by using the calculated error zone value is larger 

that obtained by using the optimal error zone value. Thus, the prediction 

accuracy obtained using calculated error zone value from CM a’s method is 

inferior to that obtained using the optimal error zone value from my method. 

For the Sunspot data set, the calculated error zone value is larger than the 

optimal error zone value, when the training data  size is smaller. As a result, 

the prediction accuracy is inferior to tha t obtained using the optimal error 

zone value. On the other hand, the calculated error zone value is very close to 

the optimal error zone value when the training data  size is equal to or larger 

than half of the whole data set. As a result, the same prediction accuracy 

can be obtained by using either method. It is not reasonable, however, that 

the training data  size is very larger. Thus, if CM a’s m ethod is used for this 

data set, the problem arises of how to fix the training data size to obtain a 

suitable calculated error zone value. For the vibration Rmsv data set, the 

error zone value calculated using CMa’s method is very close to the optimal 

error zone value from my method even though the training size is smaller.
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As a result, the “mse” value is not significantly different for either method, 

and the same prediction accuracy is possible. It should be noted, however, 

that the result from the Rmsv vibration data  set breaks the rule set by the 

other two data  sets. The rule is th a t the larger the training data  size, the 

smaller the error zone value. According to CM a’s paper, their method is 

based on the concept that the error zone value chosen is related to the data 

size; this is because they believe larger data  sets require smaller error zone 

values in order to obtain high prediction accuracy. The above experiment 

showed that this is not always true. From the above discussion, we can 

conclude th a t the calculated error zone value is, for some data  sets, very 

close to or even the same as, the optimal error zone value. This means 

that CM a’s method can obtain the same prediction accuracy as my method 

for some data  sets. On the other hand, the calculated error zone value is, 

for other data  sets, larger than the optimal error zone value, and results in 

lower prediction accuracy. Moreover, CMa’s method requires more complex 

calculations. Since the training data size needs to be determined before 

prediction, my method is superior to CMa’s.
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C h a p t e r  6

A p p l i c a t i o n  o f  SVM R e g r e s s i o n  F o r  

V i b r a t i o n  T r e n d  F o r e c a s t i n g

6.1 V ibration  D ata  from  th e  G earbox L ifetim e A ssessm ent E x­

perim ent

Using the rule of thumb developed earlier, we applied the SVM regression 

model with an optimal error zone value to the prediction of vibration trends 

for rotating machines. A gearbox lifetime assessment experiment was carried 

out in order to obtain real vibration signals. Some kinds of vibration data 

sets were obtained after the vibration signals were processed. The vibration 

data sets were used as indicators reflecting the health status of the pieces 

of equipment. There are several indicators th a t demonstrate the trend of 

deterioration for different aspects of the deteriorating equipment. The com­

monly used indicators are amplitude of vibration signal, peak-peak value, 

root mean square value, and kurtosis value. Among these indicators, the
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peak-peak value is chosen as the deterioration trend indicator in our exper­

iment. This is because it is stable and can best present the vibration trend 

among these indicators. The peak-to-peak value is defined as:

peak-peak  =  max[xi] — mm[xi}.  (6.1)

We can see tha t the peak-peak value measures the difference between maxi­

mum amplitude and minimum amplitude. It reflects the to ta l fluctuation of 

the vibration trend [8, 37].

6.2 SV M  w ith  O ptim al Error Zone V alue for V ib ration  Trend 

P red iction

A peak-to-peak value data set is chosen for vibration trend prediction by 

using the SVM regression model. According to the rule, the error zone value 

can be fixed using the accuracy of input target value. For this data  set, the 

accuracy of the target value is 10~4; the optimal error zone value should be 

equal to one-tenth of the accuracy of the input target value. On this basis, 

the optimal e should be 10-5 . Thus, the prediction program becomes sim­

ple because one loop normally used to find the optimal error zone value can 

be omitted. Through experiments, we found tha t the “poly” was the best 

choice among the three kernels in terms of prediction accuracy. The kernel 

param eter for “poly” is fixed at 1. The second loop used to find the optimal 

kernel param eter is omitted as well. The prediction program thus become
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x 10~3 "peak-peak" Prediction Result as Error Zone Value is 10- 5

Predicted Data Set 
Observed Data Set

ro
03Q.

14060 100 120
Time

Figure 6.1: The “peak-peak” D ata Set Prediction Result 1

very simple, and the predicting time is reduced greatly. It only takes for 

54 seconds. On the other hand, it spent 4 minutes and 20 seconds for the 

prediction without using the rule on the error zone value. The prediction 

results with error zone value is presented in Figure 6.1. We can see that the 

SVM regression model used for predicting the degradation status of mechan­

ical equipment can not only offer a to tal trend but also some details on the 

degradation status of the equipment. This prediction result is compared with 

other prediction results as different error zone values is used. The prediction 

results as error zone value at 10-3 , 10-4 , and 10-6 respectively are plotted 

in Figures 6.2, 6.3, and 6.4 (see pages 87 and 88). Even virtually, it is clear 

that the prediction results as error zone value at 10-3 and 10~4 are worse
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than tha t as error zone value is 1CT5; the prediction results when error zone 

values are 10~5 and 10-6 are almost the same.

6.3 D iscussion  and Sum m ary

In this chapter, The SVM regression model has been used to  predict vibra­

tion trends. The peak-peak vibration data was chosen because it could best 

present the to tal vibration trend. The proposed rule on the optimal error 

zone value has been adopted. It makes the work of prediction much easier 

and the predicting time is reduced greatly. This is because one loop used to 

search for the error zone value can be reduced. The error zone value can be 

set according to  the accuracy of the input target value. In this way, the high 

prediction accuracy is guaranteed and predicting time is reduced greatly.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



6.3 Discussion and Summary
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Predicted Data 
Observed Data4.5

3.5

2.5

0.5

100 120 140
Time

Figure 6.2: The “peak-peak” D ata Set Prediction Result 2
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Figure 6.3: The “peak-peak” D ata Set Prediction Result 3
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Figure 6.4: The “peak-peak” D ata Set Prediction Result 4
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C h a p t e r  7

C o n c l u s i o n  a n d  F u t u r e  W o r k

7.1 C onclusion

In this thesis, the SVM regression model applied for prediction is studied in 

detail. Two benchmark data  sets from the literature and two vibration data 

sets from the “gearbox lifetime assessment experiment” conducted in the 

Reliability Lab in University of A lberta are used to investigate the impact of 

SVM parameters on SVM prediction performance. The results of these are 

analyzed and the following conclusions are reached.

• The SVM model’s parameter, error zone value, can be fixed according 

to the accuracy of the input target value. The high prediction accuracy 

can be obtained without time being waste by using the optimal error 

zone value, which is equal to one-tenth of the accuracy of the input 

target value.

• The above conclusion is compared with CMa’s m ethod and found to
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be superior.

• The SVM regression model with optimal error zone value can be used 

in prediction of mechanical vibration trends. Successful use of the 

rule on optimal error zone value simplifies the forecasting of machines’ 

degradation status, and greatly reduces predicting time.

7.2 Future W ork

Thus, the focus has been on determining how to select one of the SVM 

regression model parameter, error zone value. Some conclusions have been 

proposed, however, the prediction performance of the SVM regression model 

also depends on the other two factors and the rule of selection of the other 

two, needs to be investigated further. Through the experiment, we found tha t 

the value of the regulation factor greatly affects the predicting time. Some 

research could focus on this point. Moreover, the SVM regression model 

with optimal error zone value is used in the mechanical engineering field for 

prediction of machines’ degradation status based on vibration signals. In my 

view, other modern predictors should be applied and tried out in predicting 

the lifetime of mechanical equipment. As mentioned in the literature review, 

several papers have compared SVM regression and Neural Networks in some 

fields. The same work can be done for the prediction of the degradation 

status of mechanical equipment.
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