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Nobody’s perfect: can irregularities in pit structure
influence vulnerability to cavitation?
Lenka Plavcová1*, Steven Jansen1, Matthias Klepsch1 and Uwe G. Hacke 2

1 Institute for Systematic Botany and Ecology, Ulm University, Ulm, Germany
2 Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada

Edited by:

Qiang Sun, University of
Wisconsin-Stevens Point, USA

Reviewed by:

Zhong-Nan Yang, Shanghai Normal
University, China
Hannetz Roschzttardtz, University of
Wisconsin-Madison, USA

*Correspondence:

Lenka Plavcová, Institute for
Systematic Botany and Ecology, Ulm
University, Albert-Einstein-Allee 11,
D-89081 Ulm, Germany
e-mail: lenka.plavcova@uni-ulm.de

Recent studies have suggested that species-specific pit properties such as pit membrane
thickness, pit membrane porosity, torus-to-aperture diameter ratio and pit chamber depth
influence xylem vulnerability to cavitation. Despite the indisputable importance of using
mean pit characteristics, considerable variability in pit structure within a single species or
even within a single pit field should be acknowledged. According to the rare pit hypothesis,
a single pit that is more air-permeable than many neighboring pits is sufficient to allow air-
seeding.Therefore, any irregularities or morphological abnormalities in pit structure allowing
air-seeding should be associated with increased vulnerability to cavitation. Considering the
currently proposed models of air-seeding, pit features such as rare, large pores in the pit
membrane, torus extensions, and plasmodesmatal pores in a torus can represent potential
glitches.These aberrations in pit structure could either result from inherent developmental
flaws, or from damage caused to the pit membrane by chemical and physical agents. This
suggests the existence of interesting feedbacks between abiotic and biotic stresses in
xylem physiology.
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INTRODUCTION
Adjacent xylem conduits in both gymnosperms and angiosperms
are joined by common endwalls. In order to facilitate connectiv-
ity, the endwalls are permeable to water and dissolved substances,
making the xylem network well suited for the long-distance trans-
port of water, nutrients, and signaling molecules. A certain
degree of xylem network compartmentalization is, however, desir-
able because it helps to confine the spread of air embolism and
xylem-borne pathogens. The conflicting needs for the connectiv-
ity and isolation within the xylem network have been ingeniously
solved by the evolution of endwall pitting.

Bordered pits in water-conducting xylem cells have a character-
istic structure of two basic components – the pit membrane and
the pit border. Pit membranes are uniformly thick and porous in
most angiosperms, whereas two distinct regions – a thicker solid
torus and a thinner highly porous margo – are characteristic for the
pit membranes of gymnosperms. While pits shares common fea-
tures in their overall structure, the finer-scale characteristics such
as the pit size, pit membrane thickness, pit chamber depth, torus
to aperture overlap vary substantially between different species
(Jansen et al., 2009; Pittermann et al., 2010) as well as within the
same species depending on growing conditions (Schoonmaker
et al., 2010; Plavcová et al., 2011) or the position within a plant
(Domec et al., 2008; Hacke and Jansen, 2009).

Looking for links between pit structure and embolism resis-
tance has become very topical in the field of xylem hydraulics.
Most studies so far have focused on the structure of a typical pit
and assessed parameters such as mean pit membrane thickness,
mean pit membrane porosity, or mean torus to aperture over-
lap. However, considerable variation in the structure of pits exists

even within the same pit field (Figures 1A,B). Moreover, some
pits exhibit remarkable structural aberrations, including partic-
ularly large pores independent of mean porosity in angiosperms
(Figures 1A,C) and punctured or irregular tori in gymnosperms
(Figures 1E–G). Arguably these pits, which represent the tails of,
or even outliers in, the overall pit distribution, matter the most for
the spread of embolism (Christman et al., 2009).Thus, the aim of
this paper is (1) to highlight the existence of irregularities in pit
structure that can have substantial influence on their permeability
to air, and (2) to review possible mechanisms that can give rise to
such irregularities.

DEVELOPMENTAL IRREGULARITIES OF PIT MEMBRANES
The ontogeny of pits is a complex process consisting of several
steps. Pit development is initiated by the delineation of their
outlines in the primary cell wall (Wardrop, 1954; Imamura and
Harada, 1973), followed by the gradual deposition of secondary
wall constituting pit borders (Chaffey et al., 1997) and the exten-
sive hydrolysis and remodeling of pit membranes (Czaninski,1972;
Butterfield and Meylan, 1982; Kim et al., 2011).

In angiosperms, the selective hydrolysis of pit membranes is a
critical step affecting their final porosity. While the chemical com-
position of pit membranes remains poorly characterized (Choat
et al., 2008), it is generally assumed that most of the non-cellulosic
components are removed before xylem conduits reach maturity
(O’Brien and Thimann, 1967; Czaninski, 1972). Depending on
the thickness of the pit membrane and the amount of amorphous
material left after the hydrolysis, some pit membranes show pores
embedded within the fibrillar meshwork, whereas other mem-
branes appear non-porous when observed with scanning electron
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FIGURE 1 | Structural variability in adjacent pits (A, B) and examples of

profound irregularities in pit structure (C–E). (A) Pit field in Acer negundo
in which some pit membranes are homogenously porous while others show
rare large pores (photo courtesy of Brendan Choat); (B) adjacent pits in hybrid
poplar Populus trichocarpa × deltoides showing different average porosity;
(C) rare large pore independent of the average porosity in Acer negundo
(photo courtesy of B. Choat); (D) perforated pit in a non-conductive ITE in

Lycium andersonii ; (E) sporadic torus extensions in Picea mariana (photo
courtesy of Amanda Schoonmaker); (F) numerous torus extensions in
Widdringtonia cederbergensis; (G) punctured torus in Sequoia sempervirens.
Scale bars show 1 μm. Arrowheads indicate irregularities in the pit structure.
cml, compound middle lamella; m, margo; pm, pit membrane; pp, perforated
pit; rp, rare large pore; scw, secondary cell wall; t, torus; te, torus extension;
tp, torus perforation.

microscope (SEM; Jansen et al., 2009). In multi-cellular vessels,
the primary cell wall of some endwalls is hydrolyzed completely,
giving rise to perforation plates (Benayoun et al., 1981). Inter-
estingly, transitional cases between scalariform perforation plates
and pitted endwalls are sometimes found in ferns (Carlquist
and Schneider, 1997, 2001) and basal groups of vessel-bearing
angiosperms (Carlquist, 1992; Sperry et al., 2007). The pit mem-
branes of vesselless angiosperms typically exhibit high porosity
(Hacke et al., 2007). Furthermore, pits between imperforate tra-
cheary elements (ITEs) provide an interesting comparison to
intervessel pit membranes. In a recent study, Sano et al. (2011)
showed that there is a clear difference in the integrity of the pit
membrane depending on the ITE’s function. While homogenously
porous pit membranes are present in conductive ITEs, pit mem-
branes are often perforated in non-conductive ITEs (Figure 1D).

However, it is not clear at what stage of their development the
membranes of non-conductive ITEs become perforated, or what
mechanisms are responsible. Taken together, these observations
suggest that the hydrolytic machinery involved in the develop-
ment of intervessel pit membranes must have been painstakingly
fine-tuned over the course of evolution in order to produce
the relatively efficient and safe vessel-based xylem of extant
eudicots.

For the same reason, it seems unlikely that such an extensive
and complex hydrolytic process is always flawless. One can eas-
ily imagine that a local excess of hydrolytic activity or a slight
irregularity in the thickness or arrangement of the primary cell
wall could give rise to a particularly large pore within the pit
membrane (Figures 1A,C). This idea is consistent with the “rare
pit” hypothesis (Hargrave et al., 1994; Choat et al., 2003; Wheeler
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et al., 2005; Christman et al., 2009). According to this hypothe-
sis, a small portion of pits contain a large pore, while the vast
majority of pits have much narrower, air-tight pores. Exception-
ally large pores are occasionally observed with SEM (Figures 1A,C;
Sano, 2005) independent of the average membrane porosity; how-
ever, it remains uncertain whether these pores are real, or artifacts
resulting from sample preparation. The existence of rare leaky
pits has been nevertheless supported by particle perfusion exper-
iments (Choat et al., 2003), air-seeding experiments (Christman
et al., 2009, 2012), and observed correlations between intervessel
pit area and vulnerability to cavitation (Wheeler et al., 2005; Hacke
et al., 2006).

The deposition of secondary material resulting in the develop-
ment of a torus represents a characteristic step in the ontogeny
of pits in gymnosperms. The secondary layer is initially deposited
over the entire surface of the pit membrane, with its thickness
being greatest in the center of the membrane. Subsequently, some
of the material is removed by autolysis, which exposes the highly
porous margo and defines the final shape and thickness of the
torus (Dute, 1994; Dute et al., 2008). Tori are usually depicted
as round symmetrical discs. However, tori of many pits show
structural irregularities such as scalloped tori and torus exten-
sions (Figures 1E,F). Tori with scalloped margins are characteristic
of Cedrus but can occasionally be found in other Pinaceae and
Cupressaceae (Richter et al., 2004). Torus extensions are relatively
common among gymnosperms, although their occurrence is not
frequently highlighted. It is imaginable that these irregularities
can potentially prevent tori from properly sealing the apertures.
In support of this hypothesis, Schoonmaker et al. (2010) found a
higher occurrence of torus extensions in more vulnerable xylem
of Picea mariana grown in an understory in comparison with less
vulnerable trees grown in an open field. In contrast, Pittermann
et al. (2010) found that torus extensions were more frequent in
cavitation resistant species of Cupressaceae.

Punctured tori (Figure 1G) represent another irregularity in
the structure of gymnosperm pits that appears to be associated
with increased vulnerability (Jansen et al., 2012). Punctured tori
frequently occur in Pinaceae but are also observed in some mem-
bers of Cupressaceae and Cephalotaxaceae (Jansen et al., 2012).
These “imperfections” likely arise from the combination of plas-
modemata present during early developmental stages of the torus,
and the lack of matrix removal from the torus (as observed for
instance in Abies firma, but not in Metasequoia glyptostroboides,
Dute et al., 2008).

In summary, the ontogeny of pits in both angiosperms and
gymnosperms is a complex process and the mechanisms regulat-
ing this process are not well understood. Obtaining more detailed
knowledge of the hydrolytic machinery involved in the remodel-
ing of pit membranes would be particularly useful as rare large
pores, irregularities of torus margins, and punctured tori could be
underpinned by variation in the hydrolytic activity exerted during
the pit membrane development.

DAMAGE TO PIT MEMBRANES BY PHYSICAL AND
CHEMICAL AGENTS
With a typical thickness between 100 and 300 nm, pit membranes
represent delicate structures likely prone to structural damage by

physical or chemical stress, or a combination of the two. Extensive
disruption of pit membranes has been documented with SEM in
several studies. Harvey and van den Driessche (1997) observed
a higher occurrence of ripped and torn membranes in drought
susceptible poplar clones. Sperry et al. (1991) showed that pit
membrane degradation and increased vulnerability to cavitation
are concomitants of wood senescence in trembling aspen. More
recently, pit deterioration has also been documented in grapevine
stems infested with the bacterial pathogen Xylella fastidiosa (Sun
et al., 2011). While these studies portray extreme situations, they
illustrate what may commonly occur in planta, although to a more
moderate extent. Choat et al. (2003) highlighted some of these
studies and suggested that occasional damage to pit membranes
could represent an important source of air-seeding sites. Here we
elaborate upon this hypothesis and review possible mechanism
potentially causing pit membrane damage.

Under field conditions, substantial mechanical forces can be
generated by factors such as wind, snow-load, hail, or rough
handling by animals; e.g., large mammalian herbivores bend-
ing a twig while chewing on leaves (Cannell and Morgan, 1989;
Lucas et al., 2000; Rudnicki et al., 2001). Wood typically exhibits
sufficient mechanical strength not to break under these types of
loading. However, it is possible that the perturbations are suffi-
cient to deform the pit fields and cause occasional damage to the
pit membranes, especially in younger branches. Close correlations
between xylem vulnerability and wood density or conduit wall
thickness are frequently observed (e.g., Hacke et al., 2001a; Fichot
et al., 2010; Plavcová and Hacke, 2012; Lens et al., 2013). It is pos-
sible that stronger mechanical reinforcement helps to prevent pit
membrane damage caused by external mechanical stress.

Alternatively, this reinforcement may be required to avoid con-
duit collapse caused by negative xylem pressure (Hacke et al.,
2001a; Jacobsen et al., 2005). The implosion of xylem conduits
has not been frequently observed except in xylem with a severely
perturbed deposition of cell wall lignin (Barnett, 1977; Turner
and Somerville, 1997; Coleman et al., 2008; Voelker et al., 2011),
suggesting that air-seeding typically occurs before the xylem
pressure reaches the implosion limit. This raises yet another
important question, namely, what is the effect of the pressure dif-
ference exerted on the pit membranes during and shortly before
air-seeding. When subjected to internal mechanical stress, pit
membranes deflect, and stretch. This may cause transient or per-
manent changes in pit membrane porosity (Choat et al., 2004)
and eventually lead to membrane rupture (Sperry and Hacke,
2004; Domec et al., 2006). There is also evidence that xylem
becomes more vulnerable as a result of a previous cavitation event.
This “cavitation fatigue” phenomenon has been observed in two
poplar species (Populus tremuloides and P. angustifolia), sunflower
(Helianthus annuus), and chestnut petioles (Aesculus hippocas-
tanum; Hacke et al., 2001b; Stiller and Sperry, 2002; Anderegg
et al., 2013). It was hypothesized that increased air permeability
in weakened xylem results from rupture or loosening of pit mem-
brane fibrils (Hacke et al., 2001b), but direct evidence for this idea
is still lacking.

In spite of the general perception that pit membranes are fragile,
no permanent differences in the permeability of pit membranes
to colloidal gold were observed after applying injection pressures
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of up to 6 MPa (Choat et al., 2004). Furthermore, Michaletz et al.
(2012) demonstrated that pit membranes of Populus balsamifera
are durable under conditions of extreme heat. Exposure to a tem-
perature of 65◦C did not change pit membrane permeability to
air, despite causing severe deformations of conduit walls. How-
ever, this result originates from a laboratory experiment and it
is possible that additional perturbations can cause pit membrane
damage more easily in xylem weakened by the heat. Such situation
may readily occur in the field; e.g., as a forest stand is exposed to
more wind following forest fire.

Furthermore, the integrity of pit membranes can be dis-
rupted by chemical agents reacting with the structural compo-
nents of the membrane. Besides water, xylem sap contains a
wide array of chemicals, some of which are known to induce
the loosening of plant cell walls. Among these are numerous
polysaccharide-hydrolyzing enzymes. The destructive effect of cel-
lulase on pit membranes has been demonstrated by a marked
increase in xylem hydraulic conductivity following the hydrolytic
treatment (Schulte et al., 1987). Under natural conditions, pit
membranes weakened by a hydrolytic reaction may serve as gate-
way for pathogens colonizing the xylem. While some viruses such
as the tobacco rattle virus can spread through pit membranes
without the need to widen the pores (Garbaczewska et al., 2012),
larger bacteria must perturb the structure of the pit membranes
in order to penetrate the adjacent conduit (Pérez-Donoso et al.,
2010). For instance, Xyllela fastidiousa, which causes the Pierce’s
disease in grapevine, likely disrupts pit membranes by secreting
a cocktail of hydrolytic enzymes including β-1,4-endoglucanses,
xylanases, xylosidases, and polygalacturonases (Roper et al., 2007;
Pérez-Donoso et al., 2010). Another bacterium, Pseudomonas fluo-
rescens, has been shown to degrade torus-margo pits in pine wood
chips. While the margo region underwent substantial degrada-
tion, the torus region remained largely intact, demonstrating the
differential resistance of these pit membrane regions to micro-
bial degradation (Burnes et al., 2000). Fungal infestations are also
known to cause pit membrane degradation, with most observa-
tions being done on dead decaying wood (Schwarze et al., 2006).
There is a plethora of fungal pathogens infecting the sapwood
of standing trees (e.g., blue stain fungi, root- and trunk-rots);
however, little is known about their actual effects on xylem
hydraulics.

Another way to alter the pore size in pit membranes is the deple-
tion of Ca2+. Calcium-pectin complexes are presumably present
throughout the entire surface of the pit membrane (Zwieniecki
et al., 2001; Gortan et al., 2011) or at least in a restricted part of
the membrane (Plavcová and Hacke, 2011). Indirect evidence that
calcium removal causes enlargement of pit membrane pores has
been provided by Sperry and Tyree (1988) and by Herbette and
Cochard (2010) who showed that the perfusion of xylem with
calcium-chelating agents such as oxalic acid, EGTA, and phos-
phate buffer results in increased vulnerability to cavitation. In a
similar experiment, the stems of Drymis winteri were treated with a
calcium-chelating phosphate buffer, which resulted in an increase
in the mean pit membrane porosity from 6 to 120 nm as measured
with SEM (Klepsch et al., unpublished). Furthermore, it has been
suggested that the rice yellow mottle virus extracts Ca2+ from the
pit membrane and incorporates it in its own structures. The result

is a loosening of pectin hydrogels and widening of pit membrane
pores, in turn allowing systemic virus transport via xylem conduits
(Opalka et al., 1998).

Reactive oxygen species (ROS) represent another type of
chemical agent potentially capable of disrupting pit membranes,
although this hypothesis has not yet been tested. ROS are com-
monly found in xylem sap and their concentration increases as a
result of biotic or abiotic stress (Wang et al., 2008). The oxidative
activity of ROS is known to induce cleavage of cell wall polysac-
charides in vivo during normal plant growth and development
(Schopfer, 2001; Müller et al., 2009). Moreover, high concentra-
tions of ROS may lead to severe oxidative damage. For instance,
in two pea (Pisum sativum) cultivars subjected to saline stress,
necrotic leaf lesions were induced in close proximity of minor
veins and could be linked with the elevated ROS concentration in
the leaf apoplast (Hernández et al., 2001).

Thus, more research is still needed to demonstrate whether
mature pit membranes stay intact throughout the entire functional
period, or whether more or less significant signs of pit damage are
encountered. As discussed in the previous text, there is substantial
evidence that pit membrane damage occurs; however, it is not
yet clear how common this phenomenon is. It is possible that
damage accumulates slowly over time, but because old wood is
gradually replaced by newly formed wood, vulnerability of the bulk
xylem remains constant. However, under some circumstances the
accumulation of damage can be so rapid that it overwhelms the
capacity for xylem tissue maintenance and renewal. This brings
up an interesting question: is there any coordination between the
sapwood longevity, pit characteristics and intensity of external and
internal stress typically encountered?

Importantly, the mechanisms potentially causing pit damage
may not be mutually exclusive. On the contrary, they likely work
in tandem and reinforce one another. For instance, the deforming
effects of large pressure differences exerted on pit membranes may
be amplified by oxidative damage caused by rising ROS concen-
tration in xylem sap during drought. From a broader ecological
perspective, pit membrane damage can provide interesting con-
nections between abiotic and biotic stress. For instance, damage to
pit membranes by pathogens may render plants more susceptible
to drought. This may add another link to what already is an intri-
cate network of feedbacks linking drought stress and pathogen
outbreaks (McDowell et al., 2008; Jactel et al., 2012).

CONCLUSIONS
There is a natural tendency to report the most “perfect looking”
specimens of pits in the scientific literature. However, neglecting
inherent variability in pit structure may lead to a biased view. Con-
sidering the potential importance of the rare pit hypothesis, we
suggest that more attention should be given to structural irregu-
larities, as those may represent the rare sites ultimately responsible
for air-seeding.

Studying pit irregularities with SEM is challenging, and com-
parable to the proverbial needle in a haystack problem. Moreover,
artifacts potentially associated with sample preparation represent
an additional difficulty (Jansen et al., 2008). Thus, studies com-
bining microscopic observations with hydraulic measurements
(e.g., air-seeding experiments) will be necessary to move the field

Frontiers in Plant Science | Plant Physiology November 2013 | Volume 4 | Article 453 | 4

http://www.frontiersin.org/Plant_Physiology/
http://www.frontiersin.org/Plant_Physiology/archive


“fpls-04-00453” — 2013/11/11 — 7:13 — page 5 — #5

Plavcová et al. Irregularities in pit structure

forward. Gaining a better understanding of the processes that lead
to such irregularities provides an additional strategy for addressing
this issue. We wish to emphasize that intrinsic developmental flaws
and damage caused to the pit membranes by physical or chemical
stress may represent two potential sources of irregularities in pit
structure.
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