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Abstract

This thesis is concerned with the development of three novel equalization techniques for
DMT systems employing critically decimated filterbanks, namely, the Integer-Delay Equal-
ization, One-Tap Interpolation Equalization and Multi-Tap Interpolation Equalization tech-
niques. Based on the investigation of various DMT systems and equalization techniques,
this thesis focuses on the analysis of the dominant effect of channel delay in DMT systems.
The proposed equalization techniques equalize the channel (integer or fractional) delay by
combining one or multiple polyphase components of the analysis filter output, leading to
high Signal-to-Noise Ratios (SNRs) (for example, about 15 dB higher than the output com-
biner technique) while requiring a small number of equalizer taps. Tradeoff can be made
between various equalization parameters, leading to high computational flexibility. Two
suboptimal solutions are also proposed to simplify the equalizer training with a small loss

in the system output SNR.
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Chapter 1

Introduction

Wireline communication is the most widely used communication technology all over the
world. Originally, twisted-pair copper line was the only media for wireline communication.
With the increasing requirement of fast Internet access and real-time multimedia communi-
cation, more and more new media, such as coaxial cables and optical fibres, were employed
in wireline communication. However, the twisted-pair copper line is not obsolete. Various
new techniques make the twisted-pair copper line suitable for high speed digital communi-
cation. Usually, these techniques are referred to as various Digital Subscriber Lines (xDSL)
[14].

An important modulation/demodulation technique family widely used in xDSL appli-
cations is the Discrete Multitone (DMT) modulation/demodulation technique which is a
multicarrier modulation technique employing multirate filterbanks to do modulation and
demodulation. DMT techniques can be used not only in xDSL applications but also in
other communication applications such as cable TV communications or even wireless com-
munications [24] [31].

A major issue in DMT systems is the channel equalization. Based on the investigation
of various DMT systems and equalization techniques, this thesis focuses on the analysis of

the channel delay effect in DMT systems, and proposes three novel equalization techniques.

1.1 Background

Although wireless communication was first used in the world in ancient time when a person
communicated with other person by shouting, wireline communication has been the most
widely used and the most important communication method since the invention of telephone
in 1876. Nowadays, the telephone network is available almost everywhere people live, and is

the largest communication network in the world. Originally, it was designed only for voice



communication, as called Plain Old Telephone Services (POTS) today. However, the POTS
system has also been used for various types of data communications such as facsimile, audio
and video communications, and Internet applications. It has partly been, and in the near
future, will be totally incorporated into the Internet network with the trend involving the
convergence of telecommunications and computing [40].

The increasing requirement of various data communications makes the POTS system
necessary to be used for broadband communications. The backbone of the telephone net-
work has been (mostly, if not completely) replaced with optical fiber, which is the highest
bit-rate wireline communication media today. However, the so-called “last one mile” of the
telephone network, which refers to the telephone line between the end user and the nearest
central office, is still using the twisted-pair copper line. It is not economical to upgrade ev-
ery “last one mile” to the optical fiber. Therefore, the reuse of existing twisted-pair copper
line for high speed data communications presents a feasible and relatively cheaper way to
solve the “last one mile” problem.

The voice modem is the first commercial device to transfer bitstreams through the
twisted-pair copper line. Its speed varies from ordinary 300 bit per second (bps) to today’s
56k bps. The main standards of voice modems made by International Telecommunication

Union (ITU) are listed! in Table 1.1.

| Standard | Bit Rate (bps) |

V.21 300

V.22 1200

V.22 bis 2400

V.27 ter 4800/2400

V.32 9600

V.32 bis 14400

V.34 33600

V.90 56000 (downstream)
33600 (upstream)

V.92 56000 (downstream)
48000 (upstream)

Table 1.1: Voice modem standards

In POTS system, the frequency band of the twisted-pair copper line used for voice
communication (called voice-frequency-band) is from 0 to 4k Hz. The voice-frequency-band
now is standardized as a channel of 8k Hz sampling rate and 8 bits/sample, i.e. 64k bps.

The voice modem also uses the same voice-frequency-band for data communications (this is

'Data are obtained from http://www.itu.int



why people cannot use voice modems at the same time when making phone calls). Because
usually 1 bit in each sample is used for error detection, the highest bit-rate of the voice
modem is 56k bps [50].

The voice-frequency-band is only 4k Hz wide. However, the whole frequency bandwidth
of the twisted-pair copper line that suitable for data communication can be much higher
(for example, up to 1.1M Hz for Asymmetric Digital Subscriber Line (ADSL)). Therefore,
the frequency spectrum higher than 4k Hz can be exploited for data communications.

The Integrated Services Digital Network (ISDN) [50] is the first technology to utilize
the unused bandwidth of the twisted-pair copper line for data communications. It provides
several 64k bps bearer channels? (B channels) for voice and data communications3, and one
16k or 64k bps data channel (D channel) for signalling and call set-up information. There
are two user-network interfaces of ISDN. One is the Basic Rate Interface (BRI) while the
other one is the Primary Rate Interface (PRI). Table 1.2 gives some specifications of these

two interfaces for comparison.

| User-Network Interface | Channels | Bit Rate (bit/s) |
BRI 2B+D (D channel is 16k bps) | 144k
PRI (T1 in North America) | 23B+D (D channel is 64k bps) | 1536k
PRI (E1 in Europe) 30B+D (D channel is 64k bps) | 1984k

Table 1.2: ISDN user-network interfaces

Cable Internet is a Internet access service provided by cable TV companies. It uses a
cable modem to provide high bit-rate transmission. A splitter is needed in the cable modem
to split the digital data from analog television signals. The cable modem can provide 27—
56M bps digital transmission [10]. However, usually each communication channel (coaxial
cable) between the cable TV company and the end users is shared by a group of cable
Internet subscribers. Therefore, the actual transmission bit-rate depends on the number of
users sharing the same cable.

In recent years, xDSL technologies have been used for high bit-rate transmission over
twisted-pair copper line. The transmission bit-rate depends highly on the distance between
the central office and the end user. Therefore, these technologies are used mainly to solve

the “last one mile” bottleneck. The downstream? bit-rate of a xDSL system is higher than

2The definition of a bearer channel is that “an ISDN communication channel that bears or carries voice,
circuit, or packet conversations” [15].

30ne B channel occupies the voice-frequency-band and can be used for telephone communications if
needed.

4Downstream and upstream are defined in the next section.



T1 (1.5M bps) and will be up to 52M bps in the future [51]. Because of the star network
structure of the Public Switched Telephone Network (PSTN) between the central office and
the end users, each communication channel is exclusively used by a single user. Nowadays,
with xDSL technologies, the twisted-pair copper line is capable of fast Internet access and

multimedia applications such as full motion video and Video-on-Demand.

1.2 Digital Subscriber Lines

xDSL applications use higher frequency band of the twisted-pair copper line for data com-
munications and leave the lower frequency band for use by POTS and/or ISDN. The fre-
quency band used by xDSL applications can be divided into two parts [20], namely, the
upstream and downstream channels. The downstream refers to the bitstream transmitted
from the central office to the end user while the upstream refers to the bitstream trans-
mitted from the end user to the central office. Because the Internet applications usually
transmit much more information in downstream than that in upstream (i.e. for Internet ap-
plications, downloading is more dominant than uploading), the downstream usually requires
much higher bit-rate than the upstream. An illustration of the frequency band allocation is
shown in Figure 1.1. In this figure, two approaches can be used to create the upstream and
the downstream signals. The Frequency Division Multiplexing (FDM) approach (Figure
1.1a) assigns different bands to the upstream and the downstream signals. On the other
hand, by using Echo Cancellation approach (Figure 1.1b), the upstream band overlaps with
the downstream band, and local echo cancellation techniques are needed to separate the
upstream and the downstream signals. In both cases, normally a splitter has to be used to

separate the POTS/ISDN channels from xDSL channels.

POTS  Upstream Downstream POTS  Upstream Downstream
Frequency 1M Hz Frequency 1M Hz
a) Frequency Division Multiplexing b) Echo Cancellation

Figure 1.1: Frequency band allocation for xDSL applications

There are several types of xDSL techniques. Some of them® as shown in Table 1.3 are:

*Data are obtained from http://www.dslforum.org



SDSL (Symmetric DSL or Single line DSL), HDSL (High bit-rate DSL), ADSL (Asymmetri-
cal DSL), G.Lite (the simplified ADSL without using splitters), and VDSL (Very-high-speed
DSL), where VDSL is still under development.

| Name | Bit-rate (bps) | Mode | Media |
SDSL 128k-2.32M Symmetric 1 pair
HDSL 1.544M (T1) Symmetric 2 pairs (T1)
2.3M (E1) 3 pairs (E1)
ADSL 1.5M-6M (Downstream) Asymmetric 1 pair
16k—640k (Upstream)
G.Lite 1.5M (Downstream) Asymmetric 1 pair
500k (Upstream)
VDSL 13M-55M (Downstream) Asymmetric 1 pair
1.6M—6M (Upstream)

Table 1.3: xDSL techniques

As mentioned above, the bit-rate of a xDSL system varies in accordance with the distance
between the central office and the end user. As an example, Table 1.4 shows the relationship

between the bit-rate and the distance in ADSL systems.

| Bit-rate | Distance (ft) [ Distance (km) |
1.544 Mbps 18,000 5.5
2.048 Mbps 16,000 4.8
6.312 Mbps 12,000 3.7
8.448 Mbps 9,000 2.7

Table 1.4: Relationship between the bit-rate and distance between the central office and
the end user for ADSL systems

In xDSL applications, various modulation/demodulation techniques are used to obtain
high transmission bit-rates. Most of these techniques are Multicarrier Modulation (MCM)
techniques. For example, the conventional DMT technique has been selected by ANSI and
ITU as the standard modulation/demodulation technique for ADSL applications [4]. In the
next section, some important concepts of MCM techniques are discussed as the foundation

for the coming chapters.

1.3 Multicarrier Modulation

1.3.1 Structure of Multicarrier Modulation

MCM technique is a type of orthogonal FDM technique that transmits data “by dividing

it into several interleaved bit streams, and using these to modulate several carriers” [7]. It



divides the communication channel into several orthogonal subchannels by using a set of
carriers, and transmits bitstreams through these subchannels in parallel. The block diagram

of general MCM systems is shown in Figure 1.2.

Bit stream | Serial-to- | 4 o o
—  Parallel : Encoder : Modulator :
Converter N To ghmnel
> S >
a) MCM transmitter
--- Equalizers may be here
: v
v (N _" !
Parallel
From channel . . arallel-to-| it stream
— Demodulator : Decoder : Serial |[—
_ Converter

b) MCM Receiver
Figure 1.2: Block diagram of general MCM systems

At the transmitter, the serial input bitstream is parsed into several subchannels by using
a Serial-to-Parallel (S/P) converter. Then, an encoder is used to group the bitstream in
each subchannel into bit blocks and encode these bit blocks into symbols (as explained
later). After that, the generated symbols are modulated into different subchannels by
using a modulator, and eventually summed together and sent through the channel. At the
receiver, the received symbols are demodulated by using the demodulator. Equalizers may
be used before or after the demodulator to compensate for the channel distortion to obtain
the recovered symbols. After demodulation and equalization, the recovered symbols are
decoded into parallel bitstreams by using a decoder. Then, after Parallel-to-Serial (P/S)

conversion, the serial input bitstream is recovered at the system output.

1.3.2 Communication Channel

An ideal communication channel is a distortionless and noiseless channel such that its output
signal is exactly the same as its input signal. In discrete-domain, the impulse response c(n)

of an ideal channel can be written as

c(n) = dé(n), (1.1)



where 6(n) is defined as

5(n)é{1’ n=0, (1.2)

0, otherwise.
However, in practical situations, the channel is non-ideal and may introduce distortion and
noise into the transmitted signal. Usually, the channel noise is assumed to be additiveS. In
this case, an actual (noisy) channel can be represented by a noiseless channel’ C(z) with a

noise input e(n), as shown in Figure 1.3.

e(n)
o(n) y(n)
— ) —#——

Figure 1.3: Channel model

By assuming that the channel noise is an Additive White Gaussian Noise (AWGN) (28],
i.e. additive noise with uniformly distributed Power Spectral Density (PSD), C. E. Shannon
[48] gave an upper-bound for the system capacity in bps (called Shannon system capacity)
as

b = BW log,(1 + SNR), (1.3)

where BW represents the channel bandwidth, and SNR represents the channel Signal-to-
Noise Ratio (SNR). Eqn (1.3) can also be written in bit per symbol as

b=logy(1+ SNR). (1.4)

Usually in xDSL systems, the Shannon system capacity cannot be reached because of
the existence of multitudes of non-Gaussian noise components in the twisted-pair copper
line channel, such as the Near-End Crosstalk (NEXT), Far-End Crosstalk (FEXT) [8], and

narrow-band noise (for example, radio frequency interferences).

1.3.3 Receiver Biases and Signal-to-Noise Ratio

In Communication system, the SNR is often used to measure the system performance.
Depending on two different receiver settings, there are two types of SNRs: the biased SNR
and the unbiased SNR [13]. Figure 1.4 illustrates the two receiver settings.

5This is true when the channel input is decorrelated with the channel noise and the power of the channel
input is larger than that of the channel noise. When the channel noise is not additive, the communication
channel model has to be changed, for example, using the multiplicative noise model or distributive noise
model.

"(C(z) represents the z-transform of the channel impulse response c(n).



Figure 1.4: Biased receiver and unbiased receiver

In this figure, the output of the biased receiver is

y(n) = a(z(n) +u(n)) , (1.5)

where « is a positive constant, and u(n) are the summation of noise and interference com-
ponents contained in y(n). This receiver is called as “biased” because the system input
component az(n) contained in the receiver output y(n) is not equal to z(n). In this case,
the output SNR is the biased SNR in accordance with

2
E [j2(n)P] 52

z (1.6)

SNRg £ = ;
B[la(m) -y lof o+ 1 - o’ o2

where 02 and o2 represent the autocorrelation of z(n) and u(n), respectively.
On the other hand, the unbiased receiver (the dashed box in Figure 1.4) is the biased

receiver cascaded by a scaler —é The output of the unbiased receiver can be written as

(n) = z(n) + 4(n), (1.7

where 4(n) are the summation of noise and interference components contained in §(n).
Therefore, the system input component contained in the receiver output g(n) is equal to
z(n). In this case, the output SNR is the unbiased SNR in accordance with

R & E [2(n))’] .

E [la(n) - §(n)?]

where 02 represents the autocorrelation of %(n). It can be proved [13] that the biased SNR

: (1.8)

bl

and the unbiased SNR have the relationship as

SNRg = SNRy + 1. (1.9)



1.3.4 PAM/QAM Encoding and Water-Filling Strategy

In the MCM system, the encoder is used to convert binary inputs into symbols. In each
subchannel, different number of bits are grouped into blocks and then converted into symbols
using Pulse-Amplitude Modulation (PAM) or Quadrature Amplitude Modulation (QAM)
encoding. Therefore, each symbol belongs to a fixed finite set of values (or collectively called
a constellation) [53]. These values may be real numbers in PAM constellation or complex

numbers in GQAM constellation. Examples of PAM and QAM constellations are given in

Figure 1.5.
T o o
> O G O—» >
o o
2-bit PAM 2-bit QAM
or 4-PAM or 4-QAM

Figure 1.5: Constellation examples

In MCM systems, the number of bits allocated into each subchannel depends on the
SNR of the corresponding subchannel. The bit allocation strategy is called as “water-filling
strategy” [53]. Suppose the channel C(z) can be fully equalized by using an equalizer
1/C(z). Then, the noise PSD at the equalizer output (the effective noise PSD) becomes
See(e?)

Sul®) = o

(1.10)

where w represents the real frequency variable, and See(e'?), Syq(e/%), and C(e’) represent
the noise PSD at the equalizer input, the noise PSD at the equalizer output, and the
frequency response of the channel, respectively. By using the water-filling strategy, the
optimal input power distribution is

A — Syq(€?), when this > 0,

i (1.11)
0, otherwise,

Spz(e9?) = {

where ) is a constant. The graphical illustration is shown in Figure 1.6, which looks like a
bowl filling of water.

Eqn (1.11) means that in the channel frequency region where Syq(€/?) > X, no bit should
be allocated, in the channel frequency region where S;;(e/“) > 0 but small, small number
of bits should be allocated, and in the channel frequency region where Sy, (€’*) > 0 is large,
a large number of bits should be allocated. With this strategy, the system capacity can be

maximized.



A\ N

~___ ¥ T

0 P24

Figure 1.6: Illustration of water-filling strategy

1.3.5 Matched Filter Bound

If the channel noise is AWGN, from Eqns (1.10) and (1.11), one can conclude that the
upper-bound of the system capacity is determined by the channel frequency response. In
this case, the upper-bound of the system capacity is called as Matched Filter Bound (MFB).

Suppose the number of subchannels in a MCM system is M. When M is large, the
frequency response of each subchannel can be approximated by a constant magnitude and a

linear phase response. In this case, together with the assumption of AWGN channel noise,

the MFB of the i-th subchannel (i =0, ..., M — 1) is defined as

o
SNRurs,; 2 %— , (1.12)

€
where € ;, €¢, and C; represent the PSD of the input of the i-th subchannel, the PSD of
the noise, and the approximated magnitude response of the i-th subchannel, respectively.

Then, the Shannon system capacity becomes

M-1 M-1
b= bm= ) logy(l+SNRyrs,)
m=0 m=0
M-1 o (1.13)
Ee
m=0

Usually, the margins of coding gain and SNR gap have to be considered. Then, the Shannon
system capacity becomes

M-1
b= logy(1 + 103NRmare.i) (1.14)
m=0

where SNRyarg s is conventionally defined in dB as

SNRumarg.,i(AB) £ SNRyvrB,i(dB) + 7:(dB) — 1, (dB) — I,(dB), (1.15)
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with 7.(dB), ¥,(dB), and I',(dB) representing the coding gain, noise margin, and SNR gap
in dB, respectively. Note that by replacing SNRymrg ;(dB) in Eqn (1.15) with the actual
SNR of the i-th subchannel, Eqn (1.14) can also be used to calculate the actual system
capacity. Moreover, after determining the system capacity b, the transmission bit-rate (in

bps) is obtained as

bfs

BitRate =
itRate 7R

(1.16)

where f, represents the sampling frequency.

1.4 Problem Statement and Thesis Overview

The MFB discussed above corresponds to the case that only one symbol in each subchan-
nel is transmitted. In practical situations, because the channel is non-ideal, interferences
exist in system output when a series of symbols are transmitted®. To eliminate the inter-
ferences and recover the input symbols at the system output, channel equalization has to
be employed to compensate for the channel distortion. In this thesis, various DMT sys-
tems and equalization techniques are investigated. Based on the investigation, the thesis
mainly focuses on the study of the relationship between the channel phase response and
the decimator used in DMT system. In light of the effect of channel delay, this thesis
proposes three new equalization methods, namely, integer-delay equalization (resulting in
relatively low SNR but having no additional equalization cost, suitable for binary or low
bit-rate communication cases), one-tap interpolation equalization (resulting in moderate
SNR with low equalization cost, suitable for moderate bit-rate communication cases), and
multi-tap interpolation equalization (the generalization of the former two equalization tech-
niques, resulting high SNR with relatively small equalization cost, suitable for high bit-rate
communication cases). Moreover, tradeoff between various equalization parameters is al-
lowed in the multi-tap interpolation equalization, leading to high computational flexibility.
In addition, a significant simplification in the equalizer training can be achieved through
constraining the search for the optimal solution to within the channel lower and upper
group-delay bounds within each subchannel.

Chapter 2 is concerned with the investigation of various DMT systems. The general
filterbank-based DMT system is introduced together with its properties. The optimal or-
thonormal DMT system is discussed, which gives a theoretical upper-bound for optimal

DMT system design. Four commonly used DMT systems are also discussed, namely, the

8A detailed explanation of interferences is given in Section 2.3.3.
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conventional DMT, zipper DMT, Discrete Wavelet Multitone (DWMT), and Filtered Mul-
titone (FMT) systems.

Chapter 3 gives an investigation of various equalization techniques. Three equalization
techniques that are widely used in various DMT systems are discussed in detail, namely,
time-domain equalization, per tone equalization, and the output combiner.

In Chapter 4, the effect of channel phase response and the relationship between the
channel delay and decimators are studied. The dominant role of the channel delay in output
distortion is placed in evidence. Moreover, in filterbank-based DMT systems, the channel
delay exhibits a periodic-like property, and can be represented by its principal-value. When
channel delay mismatches the time synchronization of the decimator, symbols that contain
important information about the system input are discarded by the decimator. In light of
this, the integer-delay equalization technique for DMT systems using critically decimated
filterbanks is proposed, which uses one of the M polyphase components of the analysis filter
output as the recovered symbols. This equalization technique is suitable for the low bit-rate
cases with no additional cost.

In Chapter 5, the study of the effect of channel delay is extended to the non-integer
quantity case. In this case, no polyphase components of the analysis filter output can be used
as the recovered symbols. However, some polyphase components of the analysis filter output
still contain important information that can be used for equalization. With this study, the
one-tap interpolation equalization technique for DMT systems using critically decimated
filterbanks is proposed, which combines two carefully selected polyphase components of the
analysis filter output to recover the system input. By using this equalization technique,
moderate system output SNR can be obtained with significantly low equalization cost. In
addition, a suboptimal solution is also proposed to simplify the equalizer training with a
small loss in the system output SNR.

Chapter 6 proposes the multi-tap interpolation equalization technique as the general-
ization of the integer-delay equalization and one-tap interpolation equalization techniques.
The multi-tap interpolation equalization technique can obtain high system output SNR
with a small number of equalizer taps. It also has high computational flexibility because
it permits a tradeoff between various equalization parameters. A further simplification for
equalizer training is also proposed towards the end of the chapter. This simplification is
proven (c.f. Appendix C) to be the generalization of the per tone equalization technique.

Chapter 7 presents general conclusions of this thesis, including the main contributions

and the future work.
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Chapter 2

Discrete Multitone Modulations

Originally, the name “DMT” was used for the special technique invented by Amati Corp.
However, nowadays in the field of wireline communication, it is extended to name any type
of multirate filterbank transmultiplexers (as a kind of technique, Amati’s DMT system can
be interpreted as a special type of multirate filterbank transmultiplexers, which will be
explained later.) Followed by this trend, therefore, in the remainder of this thesis, the name
“DMT?” is referred to the set of multirate filterbank transmultiplexers and the one invented
by Amati Corp. is called “the conventional DMT".

In this chapter, the conventional DMT system is investigated first. Then, followed by
the concepts and investigation of the general multirate filterbank-based DMT systems, three
other most important DMT systems will be investigated, which are: zipper DMT, DWMT,
and FMT.

2.1 Conventional DMT System

The conventional Discrete Multitone (DMT) modulation/demodulation technique [12] is
the standard technique adopted by ANSI and ITU for ADSL [4] applications while it is also
widely used in xDSL applications, permitting high bit-rate transmissions over commonly
used twisted-pair copper lines. DMT and its variation are currently candidates of the future

Very-high-speed Digital Subscriber Line (VDSL) standard.

2.1.1 Modulation and Demodulation Procedure

The conventional DMT system uses the Inverse Discrete Fourier Transform (IDFT) and
the Discrete Fourier Transform (DFT) for modulation and demodulation, respectively, to
efficiently use the communication channel. It divides the channel into several orthogonal

subchannels using IDFT and DFT, and allocates proper number of bits into each subchannel
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with accordance to the SNR of the corresponding subchannel. Bitstreams allocated to
subchannels are transmitted simultaneously, therefore, the variation of the line attenuation
can be compensated and the throughput can be maximized. In practical situations, the
conventional DMT system is efficiently implemented using Inverse Fast Fourier Transform
(IFFT) and Fast Fourier Transform (FFT). This makes it very easy to implement and be
the most cost-efficient system among all DMT systems.

The idea of the conventional DMT system is to treat the input symbols as samples
in frequency-domain, and multiplex input symbols using IDFT. The block diagram of the
conventional DMT transmitter is shown in Figure 2.1, where N usually is an integer power

of 2, and D/A represents the Digital-to-Analog (D/A) converter.

z(n) Iﬂ} .
Parallel-to- | — D/A Channel l“"’

Serial —
Convertor

QAM
Encoder

Convertor |-

N-point IDFT

Ty, (1) T, v (M)
Figure 2.1: Block diagram of the conventional DMT transmitter

At the transmitter side, a S/P converter is used to parse the input bitstream into N/2+1
subchannels. The parsing consists of a bit-loading algorithm [30] to allocate a suitable
number of bits into each subchannel with accordance to the SNR. of the corresponding
subchannel. Then, the subchannel bitstreams are encoded to a set of complex symbols!
zo(n), ..., Tpy2(n) (except zo(n) and zy/o(n) which must be real) by using a Discrete QAM
encoder. These symbols are subsequently extended to a length-N Hermitian symmetric
symbol set zo(n), ..., zny-1(n), such that

zo(n) and zy/5(n) are real,
(2.1)
zi(n) =x%_,(n), i=1, .., N/2-1,
where (-)* represents complex conjugate operation. These N complex symbols are called a

symbol frame, and will be transmitted in parallel. After the Hermitian symmetric extension,

In those papers about the conventional DMT system, the QAM-coded symbols are denoted using capital
letters (Xo(n), ..., Xn—1(n)) to highlight the meaning of frequency-domain symbols. However, in this thesis,
these symbols are denoted using lowercase letters (zo(n), ..., zv—1(n)) to make them consistent with the
notation of the input symbols in the general filterbank-based DMT systems (see Section 2.3), and use
z¢,0(n), ..., ©r,n—1(n) to represent the corresponding time-domain symbols.
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each symbol frame is transformed into time-domain by using N-point IDFT in accordance
with

1 N-1

Ty p(n) = N Z zi(n)el?™*/N - =0,..,N—-1. (2.2)
i=0

Note that because of the Hermitian symmetric extension in Eqn (2.1), the resulting time-
domain symbol frame {z¢o(n), ..., z¢,y—1(n)} is real. This time-domain symbol frame is
then converted to serial by using a P/S converter. Then, a cyclic prefix (will be explained
later) is added to the beginning of each time-domain symbol frame. After D/A conversion,

symbol frames are sent to the channel.

=

Cyclic _ | — to be removed
Prefix

"""""" Yo [ 1y Z(n) -
7 . ‘—'L FEQ()“ QAM B Parallel-to-
_ 2 M ) . : Serial | *
y(n) y(n) | Seria-to- o g 4'@ hd Decoder __* .| Convertor
A/D|—= TEQ » Parallel . g TN T L
—D - Convertor ° ‘Z$~ . Ty (1)
@
Ye.n-1 Yyt ()

Figure 2.2: Block diagram of the conventional DMT receiver

The conventional DMT receiver is illustrated in Figure 2.2, where A/D represents the
Analog-to-Digital (A/D) converter. After A/D conversion, the received time-domain sym-
bols pass through a Time-Domain Equalizer (TEQ) to shorten the channel impulse response.
Then, the cyclic prefix is removed from each time-domain symbol frame and the time-domain
symbol frames are converted back to the frequency-domain frames using N-point DFT in

accordance with
N-1

bi(n) = 3 pepln)e RN, im0, N -1 (23)
k=0

Note that only the first N/2 4+ 1 samples of each frequency-domain frame are used. Sub-
sequently, in each subchannel a one-tap Frequency-Domain Equalizer (FEQ) is used to
compensate for the distortion caused by the channel. Finally, symbol frames are QAM-
decoded and a parallel-to-serial converter is used to obtain the serial bitstream.

When the channel is ideal and noiseless, IDFT and DFT construct an orthogonal basis,
and the input symbols modulated by IDFT operation can be perfectly recovered by DFT
operation. However, when the channel is non-ideal, interferences caused by channel dis-
tortion will destroy the orthogonal property between IDFT and DFT. In this case, cyclic

prefix is used in the conventional DMT system to combat the interferences as discussed in

the following.
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2.1.2 Cyeclic Prefix

Cyclic prefix is an effective method used in Orthogonal Frequency Division Multiplexing
(OFDM) [1][8] and the conventional DMT to combat interferences caused by the actual
non-ideal channel. In order to know the effect of the cyclic prefix, one has to analyze the

interferences in the conventional DMT.

Transmitted
Symbol 2 Symbol 2
Transmitted

Symbol 1 Symbol 3 Transmitted Symbol 3

\—— Symbol 1

= _

Figure 2.3: Dispersion and overlapping in signal transmission

Interferences can be interpreted as the result of signal dispersing and overlapping in
transmission (see Figure 2.3), which happens because of the different transmission speeds of
different frequency components of the transmitted signal. This interpretation is usually used
in optical fiber communication. On the other hand, interferences can also be interpreted
mathematically as follows:

Refer to Figure 2.1, and assume that the channel impulse response is c¢(n). Then, by
ignoring the channel noise, the received symbol y(n) is:

Lc—1
y(n) = z(n) xc(n) = ) z(n - k)e(k)
k=0
Lo—1

= z(n)c(0) + Z z(n — k)e(k),
k=1

(2.4)

where * represents linear convolution, L. is the length of the channel impulse response,
and z(n) is the transmitted signal which is generated from converting the parallel symbols

zti(n) (i =0, ..., N — 1) to serial in accordance with
z(Nn + i) = z:(n) . (2.5)

The second item in the Right-Hand-Side (RHS) of Eqn (2.4) represents interference terms
in the received signal y(n). If z(n — k) and z(n) belong to the same time-domain symbol

frame, the interference from z(n — k) is called Intersymbol Interference (ISI)2. On the other

2Note that, precisely, the ISI here should be called Inter time-domain Symbol Interference (ITSI), which is
different to the ISI in section 2.3, which should be precisely called Inter frequency-domain Symbol Interference
(IFSI). ITSI is the composition of IFSI and Interchannel Interference (ICI). In this thesis, the name “ISI”
instead of “ITSI” or “IFSI” is used to consist with the convention, and for simplifying notations.
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hand, if z(n — k) and z(n) belong to different time-domain symbol frames, the interference
from x(n — k) is called Interframe Interference (IFT).
The main idea of the conventional DMT technique is based on the expectation that the

following relationship holds (suppose N > L.):
yi(n) =z;(n)C(), i=0,..,N—-1, (2.6)

where z;(n) is the i-th complex input symbol in the n-th frame, y;(n) is the i-th complex
symbol in the n-th frame at the DFT output (see Figure 2.1 and 2.2), and C(i) is the i-th
sample of the N-point DFT of the channel impulse response ¢(n). If Eqn (2.6) holds, then

the input symbols can be recovered at the system output:

and 1/C(3) is the coefficient of the one-tap FEQ in the i-th subchannel.

In order to make Eqn (2.6) hold, in time-domain, the n-th output symbol frame {y;;(n)}
has to be the circular convolution (with respect to the index 7 instead of conventionally the
index n) of the n-th input symbol frame {z;;(n)} and channel impulse response {c(i)}.

Therefore, given an arbitrary n and noticing that c¢(k) = 0 when k > L. — 1, we expect that

yri(n) = zei(n) ® c(i)

: = (2.8)
= Zwt,(i—k)(n)c(k) + Z Tt (N+i—k) (n)c(k),
k=0 k=i+1
where ® represents circular convolution, ¢ = 0, ..., N — 1, and the second item in RHS is

equal to zero when i > L, — 1.
In practical situations, the channel output is the linear convolution of the channel input
and the channel impulse response. Note that y; ;(n) = y(Nn+1) when temporarily ignoring

the TEQ. Then, Eqn (2.4) can be rewritten as:

Le—1
yi(n) = Z z(nN + 1 — k)c(k)
k=0
i N-1 (2.9)
= Z Tt (i—k) (n)e(k) + Z Lt,(N+i—k) (n — 1)e(k),
k=0 k=i+1
where ¢ =0, ..., N — 1, and the second item in RHS is equal to zero when ¢ > L. — 1.

Comparing Eqn (2.9) with Eqn (2.8), one can say that, in time-domain, only the last
N — L.+ 1 symbols (i.e., when ¢ = L, — 1, ..., N — 1) of each output symbol frame can

be presented as the circular convolution of the corresponding input symbol frame and the
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channel impulse response. In order to make the first L, — 1 symbols in an output frame
also be the circular convolution of the corresponding input symbol frame and the channel
impulse response, one can insert a cyclic prefix, which is the last L, (L, > L. — 1) symbols
of an time-domain input frame, to the beginning of the corresponding input frame. Let
the resulting time-domain input and output frames be, respectively, Z¢;(n) and ¥ :(n),
i=20,.., N+ L,—1. Then,

Tt (i—L,) (M) i=1Ly, ... N+ Ly —1,

Zti(n) = (2.10)

Ty (i+N—-L,) (M), =0, ooy Ly — 1,
and the last NV symbols of the n-th output frame (i.e., §¢;(n), ¢ > L,) become the cir-
cular convolution of the input symbol frame {z;;_r,)(n)} and channel impulse {c(i)} in

accordance with

Gri(n) = Z &y (i—k) (n)c(k)
k=0

L, N1 (2.11)
= Z Ty (i—Lo—k) (1) (k) + Z Ty (Nti—Ly—k) (R)C(k)
k=0 k=i Ly+1

where i = Ly, ..., N+Ly—1, and the second item in RHS is equal to zero when i—L,, > L.—1.

Now, by inserting a length L, (L, > L. — 1) cyclic prefix to each of the corresponding
time-domain input frame, interferences can be eliminated, and Eqn (2.7) can be used to
recover the input symbols. The effect of the cyclic prefix can also be succinctly illustrated

as shown in Figure 2.4.

Cyclic Pre\\ﬁX Symbols

\J

o Channel Impulse Response
4

Figure 2.4: Effect of cyclic prefix

\J

The use of cyclic prefix will decrease the transmission efficiency by a factor of L, /(N +
L,). In order to maintain a reasonable transmission efficiency, two approaches can be
used. One is to increase the symbol frame length N, such that N > L,. For example, in
the conventional DMT system, usually N is from 256 to 2048. In addition to increasing
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N, another approach is to decrease L,. However, note that for a perfect elimination of
Intersymbol Interference (ISI) and Interframe Interference (IFI), L, has to be greater than
or equal to L, — 1. When L. is large, L, has to be large, and the transmission efficiency
will be significantly lowered. Therefore, the length of channel impulse response, L., has
to be shortened in order to obtain a relatively small L, and increase the transmission
efficiency. A TEQ [12] can be used to shorten L.. When moving the TEQ to the frequency-
domain and incorporate the TEQ with the FEQ, a new equalization scheme, called the per
tone equalization [57], for the conventional DMT can be derived. All of these equalization

schemes will be discussed in the next chapter.

2.2 Zipper DMT

Zipper DMT [22] [23] [49] is an extension of the conventional DMT system. It was proposed
to combat the NEXT problem by allocating different orthogonal subchannels for upstream
and downstream signals. The upstream subchannels usually are dynamically interleav-
ing with downstream subchannels in accordance with the channel frequency response. In
addition to using the cyclic prefix, the zipper DMT also uses the cyclic suffix to ensure
the orthogonality between the transmitted and received signal. Figure 2.5 illustrates the

subchannel allocation of zipper DMT.

ﬁ Upstream subchannel

Downstream subchannel

DERRRERE.

Frequency

Figure 2.5: Subchannel allocation of zipper DMT

In this figure, the upstream signal in one symbol frame can be expressed as

c2nkfs
Zkel_up wke] 2N t, t e [O, 2\7_—%@3]’
Tup(t) = (2.12)
0, otherwise,
where Z,;, represents the index set of the upstream subchannels, IV represents the total

subchannel number, and CP, CS represent the length of the cyclic prefix and cyclic suffix,

respectively. The downstream signal can also be expressed in a similar form of Eqn (2.12). In
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order to ensure the transmitted signal real, the input symbols have to satisfy the Hermitian

symmetric property in accordance with
Th = THn—k - (2.13)
The index set Z,;, has to satisfy the following condition:
If k € Iyp, then 2N —k € I, (2.14)

By using the cyclic suffix, the orthogonality between the upstream and downstream are
ensured, and the NEXT is prevented. This can be explained in a similar manner of Section
2.1.2. The idea of cyclic suffix comes from the universal ADSL that using a longer cyclic
extension to ensure subchannel orthogonality [17].

Both the conventional DMT and the zipper DMT use DFT/IDFT as the modula-
tor/demodulator. From the view of multirate signal processing, DFT/IDFT can be in-
terpreted as a special type of multirate filterbank [52]. Therefore, the conventional DMT
and the zipper DMT systems can also be treated as two special types of multirate filterbank-
based DMT systems, which use DFT and IDFT filterbanks as their modulator and demodu-
lator. In the next section, some important concepts used in the multirate signal processing
will be given for future use, the general multirate filterbank-based DMT system will be
introduced, and the drawback of the conventional DMT as well as the zipper DMT will be

discussed.

2.3 Multirate Filterbank-Based DMT

A multirate filterbank-based DMT system is a MCM system using multirate filterbanks as
its modulator and demodulator. It is the counterpart of the subband coder [55]. Before
giving a detailed description of the multirate filterbank-based DMT system, first let us

examine some important concepts used in multirate signal processing.
2.3.1 Expander, Decimator and Polyphase Representation

x| " ye(n)  x(n) @M

M-fold Expander M-fold Decimator

Figure 2.6: M-fold expander and decimator

Expanders and decimators are widely used in the multirate filterbank-based DMT sys-

tems. Figure 2.6 shows the M-fold expander (1 M) and M-fold decimator (| M) used in
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the multirate filterbank-based DMT systems. The output of the M-fold expander is the

upsampled version of the input with respect to M [52], which in time-domain is

z(n/M), n is integer-multiple of L,
ye(n) = (2.15)
0, otherwise,

or in z domain,
Ye(z) = X(zM). (2.16)
If the sampling frequency of z(n) is 1/T, then, from Eqn (2.15), the sampling frequency of

yp(n) is M/T.
The output of the M-fold decimator is obtained by downsampling the input by a factor

of M [52], represented by

yp(n) = (z(n)),y = 2(Mn) (2.17)
in time-domain, where (-),;, represents downsampling (-) by a factor of M. In z domain,

Eqn (2.17) becomes

Yp(z) = (X(2))r 5

| M1 . (2.18)
— _M__ Z X(zl/Me—kaﬂ'/M)’
k=0

Similarly, if the sampling frequency of z(n) is 1/T, then the sampling frequency of yp(n)
is 1/(MT).

In multirate signal processing, the polyphase representation [52] of a signal or a filter is
widely used. Given a filter H(z) with the impulse response h(n) (or a signal h(n) with the
z-transform H(z)), its type 1 polyphase representation (with respect to M) is:

M-1
H(z) =Y z7"H® (M), (2.19)
k=0

where H(*)(z) is the k-th polyphase component of H(z), as determined in terms of

H®(2) = (H(z)zk> k=0,.., M—1, (2.20)

M’
or in time-domain, as

K®)(n) = M(Mn+k), k=0,.., M—1, (2.21)

where h{¥)(n) represents the k-th polyphase component of h(n) in time-domain, and H®*)(z)

is the z-transform of A(%)(n).
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Similarly, the type 2 polyphase representation (with respect to M) of H(z) is

M-1
H() =Y z-WM-1-0 gl My (2.22)
=0

where H®(z) is the I-th polyphase component of H(z), and HY(z) = HM-1-D(z).

2.3.2 Structure of Filterbank-Based DMT Systems

By using expanders and decimators, the block diagram of a multirate filterbank-based DMT
system is shown in Figure 2.7, where N represents the expansion/decimation ratio, Fy(z)
and Hy(z) represent synthesis and analysis filterbanks, respectively, C(z) represents the

communication channel, and e(n) represents the additive channel noise.

() Zgo(n) ) Zy(n) %) %(n)
0 Jo 0 ey O
z_(n) m' (n) i (n) __‘ H(z) Wi(n) N |y,-(n)
N { Fy(n) | = ’

: — e(n) .
amwhw@mr?]%m L ®
N 7€M.1(Z) 4% C(z) D ) |HM'1(Z)\ IN N’* -
Synthesis Filterbank Channel Analysis Filterbank

Figure 2.7: Block diagram of filterbank-based DMT systems

At the transmitter, the input bitstream is parsed into M branches or subchannels and
PAM or QAM encoding? is used to obtain the M parallel input symbols zo(n), ..., zpr—1(n).
The input symbols are then expanded by a factor of N, yielding the expanded symbols
zE,0(n), ..., e m—1(n). After expansion, the expanded symbols pass through the synthesis
filterbank, and are subsequently added together to obtain the transmitted signal z(n) before
passing through the channel.

At each branch of the receiver, the received signal first passes through the analysis filter,
yielding g;(n) (¢ =0, ..., M — 1). After decimation operation (by the same factor V), the
system output symbols y;(n) are then obtained. To obtain an output bitstream, the system
output symbols are PAM or QAM decoded, and then converted to serial bitstream by using

a Parallel-to-Serial converter (not shown in Figure 2.7).

3When the impulse responses of the analysis and synthesis filterbanks are real numbers, usually PAM
encoding is used. On the other hand, if the impulse responses of the analysis and synthesis filterbanks are
complex numbers, QAM encoding is used.
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The analysis and synthesis filterbanks partition the whole transmission frequency band
into M subchannels. In this thesis, uniform bandwidth partition is assumed, i.e. each
subchannel has the same bandwidth 27/M. When N = M(N > M), the analysis and
synthesis filterbanks are said to be critically (non-critically) decimated filterbanks [52]. In
digital communication area, DMT and FMT techniques use non-critically decimated filter-
banks while DWMT technique and wavelet packet transmultiplexers use critically decimated
filterbanks. Because redundancy is introduced in the non-critically decimated filterbank-
based DMT systems, the channel equalization of these systems is relatively easy while the
critically decimated filterbank-based DMT systems exhibit the maximum throughput be-
cause no redundancy is introduced.

Non-critically decimated filterbank systems can be treated as the extension of critically

decimated filterbank systems. In the next sub-section, the latter systems will be discussed.

2.3.3 Properties and Input/Output Relationships of DMT Systems Using
Critically Decimated Filterbanks

Usually, the filterbank used in a filterbank-based DMT system is carefully designed such that
it has the property of biorthogonality [52]. Given a critically decimated filterbank-based
DMT system (i.e. N = M in Figure 2.7 and M will be used as the expansion/decimation
ratio in this subsection), define G,,;(2) as the product of F,,,(z) and H;(z), then the biorthog-

onal synthesis/analysis filterbanks satisfy the following condition:

1, m=1,
(Gmi(z))lM = (Fm(z)Hi(z))lM = (2.23)
0, m#1,
or in time-domain,
6(”)) m=1,
(9mi(n)) pr = (fm(n) * hs(n)) 0y = (2.24)
0, m# i,

where * represents linear convolution. In Eqn (2.23) and (2.24), gy (n) is a called as a
Nyquist (M) filter [52], i.e.
9% (n) = gui(Mn) = §(n). (2.25)

The biorthogonality means that, in absence of channel effect, i.e. ¢(n) = é6(n), and
e(n) = 0, a DMT system using biorthogonal filterbanks is a Perfect Reconstruction (PR)

system with its output equal to its input.
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Usually, orthonormal filterbanks are used in DMT systems, i.e.

" fin(n— i1 M) fiy (n — iaM) = 8(ky — k2)6(iy — dg) , (2.26)
Z hkl (n - ilM)hk2 (TL - igM) = 5(]{21 - kg)é(il - ig) y (2.27)

where 0 < k1,ke < M — 1, and —0c0 < 41,72 < 0o. Then, the analysis filter has a simple

relationship to the synthesis filter, called time reversed-conjugation [53], as following
hie(n) = fa(-n), k=0,..,M—1. (2.28)

The time reversed-conjugation property significantly simplifies the design of filterbanks
because only one filterbank (either fz(n) or hg(n)) has to be designed while the other
filterbank can be derived simply by using Eqn (2.28).

When a channel is used, in Figure 2.7, let us define s,,;(n) as the impulse response of
the overall transfer function from the m-th expander to the i¢-th decimator, in accordance

with

JA.
Smi (TL) = yl(n) |xE,,'(n)=6(n) . (2'29)
21 (1)=0 (5£3)
e(n)=0

Then, smi(n) can be written as

smi(n) = fm(n) * c(n) * hi(n) = gmi(n) * c(n) (2.30)

or in z-domain,
where Spi(2z) and C(z) are z-transforms of s,,;(n) and c(n), respectively.
With above definitions, in Figure 2.7,

M-1
Yi(2) = Y Xp(2™)Spmi(2) + E(2)Hi(2) . (2.32)

m=0

where Yi(z), X;n(z) and E(z) are z-transforms of §i;(n), zm(n) and e(n), respectively. The
polyphase components of f",(z) with respect to M are

Y9 (2) = Z X (2)S8) (2 (E(z)Hi(z)zk)lM, k=0, ., M—1. (2.33)

The polyphase components of f’;(z) will be used in Chapter 5 to develop the proposed

Interpolation Equalization scheme.
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By using the polyphase representation, the system output in Figure 2.7 can be written

as

M-1
Yie) = (%), = %) = D Xn(2)Smi () + (BEHE (2.34)
or in time-domain,
M-1
yi(n) = Y () * s (n) + (e(n) * ha(n))
= M1 (2.35)
= zi(n) % 530 () + > Tm(n) * s (n) + (e(n) * hi(n))
m=0
m#i

The second term in the RHS of Eqn (2.35) is the Interchannel Interference (ICI) in the

DY . L
mi (1) is not a d function, ISI exists in the system output.

system output. When s
In practical situation, the channel is non-ideal, and s,,i(n) # gmi(n). In this case,
biorthogonal systhesis/analysis filterbanks would not ensure a filterbank-based DMT system
to be a PR system, and the system output will be distorted from the system input because
of the ICI and ISI. In this case, the PR property should be ensured by either redesigning
the synthesis and/or analysis filterbanks such that
©) o(n), m=r1,
S (M) = (2.36)
0, m#£i,
(gmi(n) would not satisfy Eqn (2.24) then), or by using an equalizer at the receiver side
while keeping Eqn (2.24) hold.
Before further discussion, let us consider the effective implementation of the filterbank-

based DMT system.

2.3.4 Effective Matrix Implementation

Because expanders and decimators are used, a drawback of the filterbank-based DMT sys-
tem is that the synthesis and analysis filterbanks have to work at higher sampling frequencies
than those of the input and output symbols. Specifically, suppose the sampling frequency
of the input symbols z;(n) in Figure 2.7 is 1/T". Then, after expansion operation, the sam-
pling frequency of zg;(n) is N/T. Therefore, the synthesis and analysis filterbanks have
to work with the sampling frequency of N/T', which is N times higher than the input and
output symbols. This leads to a high hardware requirement for the filterbank-based DMT

system, specially when the sampling frequencies of the input/output symbols are very high.
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However, an effective implementation structure of the filterbank-based DMT system can be
derived by using matrix representation of the analysis/synthesis filterbanks [52]:

The transmitted signal z(n) in Figure 2.7 can be written in z-domain as

M-1
(2.37)

o

which can be rewritten in matrix form as

Xo(zN)
X1 (ZN)

X(z) = [Fo(z) Fi(z) -+ Fum-1(2)] : : (2.38)

XM_1 (ZN)

By decomposing Fp,(z) (m = 0, ..., M — 1) into its type 1 polyphase components with

respect to N, one can write Fy,(z) in matrix form as

F (M)
2~N+1] ’(’E)FZN) : (2.39)
F,%N—i) (=)

Substitute Eqn (2.39) into Eqn (2.38), we have

FO(,N) FQ N T Xo(xY)
(1) (1) N
X(z)=[1 271 ..o Z N4 B FM_%(ZN) Xl(.z ) (2.40)
FéN_l)(zN) Fﬁv_—ll)(zN) XM—l(ZN)
Define F(z) as
Fo(o) z FISI))—l(Z)
(¢, 1),
F(z)— Fy(z) . FM—:1( ) _ (2.41)
FY ) - BYG)
Then,
1 —N+1 N : ’
X@)=[1 =z z | F(z )[Xo(zN) X (z) XM—l(ZN)}
- (2.42)
:[1 1 . z_N+1] (F(z) [XO(Z) Xl(z) XM_l(Z)] >TN,

where [-]T represents the matrix transpose operation, and (*); v represents expansion oper-

ation by a factor of N.
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Similarly, by decomposing H;(z) (¢ = 0, ..., M —1) into its type 1 polyphase components

with respect to N, the system output can be expressed as

Xo(2) 1 1]
N o1 21
X e . Y| =HE Clve | L ewe)
XM—l(Z) 4~ N+1 I Z—N—i—l_ 1N
wher _
e () B (2) =NV (2)
H(z) = : : : : (2.44)
HY (2) Hyp, () - H3 @)
and
Y(2) = X(2)C(z) + E(z) . (2.45)

Combining Eqn (2.42) and (2.43), an effective implementation of Figure 2.7 can be

derived as shown in Figure 2.8.

@y (n) ’——17 . ._’_—— i/ﬁ).
o) ()
1 F() v I P70 -
Zua (1) o E : M)
A@_J 2 z"L{@_,,

Figure 2.8: Efficient implementation of filterbank-based DMT systems

This effective implementation has three advantages. First, instead of originally working
with a high sampling frequency N/T, the synthesis and analysis filter matrices F'(z) and
H (z) now are working at the same sampling frequency (1/T") of the input symbols. The
lowered sampling frequency makes the hardware implementation of a DMT system easier.
Moreover, the transmitted signal z(n) is generated by simply converting the output of F(z)
into serial using a P/S converter (instead of originally adding together the output of the
synthesis filterbank, which is more expensive in hardware implementation). Also, the input
of the analysis filter matrix H(z) is obtained by parsing the received signal y(n) in parallel
using a S/P converter. Furthermore, this effective implementation structure is suitable for
fast implementation using some kinds of fast computation algorithms such as Fast Wavelet

Transform (FWT) or FFT.
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2.3.5 Drawbacks of the Conventional and Zipper DMT Systems

The conventional and the zipper DMT systems belong to a special case of the DMT systems
using orthonormal filterbanks, where the synthesis and analysis filterbanks are IDFT and
DFT filterbanks [52], respectively. IDFT and DFT filterbanks satisfy the time reversed-
conjugation property shown in Eqn (2.28), and all filters of them are modulated versions of
a single prototype filter pp(n) that (ignoring the cyclic prefix)

1, n=0,...,N—1,

po(n) = (2.46)
0, otherwise,

and

fr(n) = %po(n)ej“k”, (2.47)
hi(n) = po(n)e 7™, (2.48)

where wy, = 27 /N is the k-th center-frequency.

The magnitude response of the IDFT filterbank is shown in Figure 2.9, where the first
sidelobe of the magnitude response of each synthesis filter is only about -13 dB. The mag-
nitude responses of the DFT filterbank is the same as in Figure 2.9. Because of the large
sidelobes (only -13 dB) associated with the synthesis and analysis filterbank, substantial
spectral overlapping takes place particularly between the adjacent subchannels. This spec-
tral overlap leads to poor subchannel isolation and makes the conventional DMT system
sensitive to channel distortion and narrowband noise, which is the main drawback of the
conventional DMT system. The other two drawbacks of the conventional DMT and the
zipper DMT are the lowered transmission efficiency, which has been discussed in Section
2.1, and drawbacks (e.g. the difficulty to find an optimal decision delay) inherited in the
design of TEQ, which will be discussed in the next chapter.

In order to improve the spectral isolation, other DMT systems employing multirate fil-
terbanks that own smaller or none spectral overlapping have become popular. In [56] and
[54], Vaidyanathan indicated the theoretical upper bound of the optimal orthonormal filter-
banks used in DMT systems. Cherubini, et al proposed the Filtered Multitone (FMT) sys-
tem in [11], which uses non-critically decimated filterbanks as the modulator/demodulator.
Although the non-critically decimated filterbanks make the spectral overlapping negligible,
the resulting redundancy leads to a lowered throughput. In [45], Sandberg and Tzannes pre-
sented another filterbank-based DMT system called Discrete Wavelet Multitone (DWMT)
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Magnitude (dB)

Figure 2.9: Magnitude response of the IDFT filterbank

[45]. This system uses critically decimated filterbanks that have small spectral overlap-
ping, such as the Cosine-Modulated Filterbanks (CMFBs), as the modulator/demodulator.

Unlike the conventional and zipper DMT systems, all of these systems need no cyclic prefix.

2.4 Optimal Orthonormal DMT Systems

In Section 1.3.4, it has been shown that for a given channel frequency response and a
fixed channel noise power spectrum, the maximum transmission bit-rate is determined by
the effective noise PSD Sgq(e’“) ( cf. Eqn (1.10) ). Based on this fact, Vaidyanathan
et al. [56] [54] gave a theoretical proof that for orthonormal DMT systems in a noisy
environment, the optimal receiver filterbank {Hg(z)} maximizing the total bit-rate is the
Principal Component Filterbank (PCFB) if a PCFB solution exists.

The PCFB is a special type of orthonormal PR filterbank explained as follows. Let us

denote a class of M-subchannel orthonormal PR filterbanks as C, i.e.
C={H;}, i=1,..,0 (2.49)

where {2 represents the number of filterbanks in C, and Hj; represents the i-th filterbank in

accordance with

H; = {Hix(2)}, k=0,.,M -1, (2.50)

with H; i (2) representing the k-th filter of the i-th filterbank H.
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Figure 2.10: Receiver filterbank H;

Given an input signal g(n) of power spectrum Sgq(e’?), as shown in Figure , for each
filterbank H; (: = 1,..., §2), let us denote its outputs as {g;x(n)} (k = 0,..,M — 1), and
denote the variance of ¢; x(n) as {01'2, }- Moreover, without loss of generality, suppose the
index k of the outputs {g; x(n)} is rearranged such that {ogk} are in non-increasing order
(i.e. Uz'Q,k > O'Z k+1)- Then, the partial sum of each filterbank H; can be defined as

1
Siu2> ok, 0<I<SM-—1. (2.51)
k=0

Obviously, S;; m—1 = Sip,m—1 for any 1 <iq,42 < £2.
Now, the PCFB C;, is a filterbank in C such that

Sipl = max{S;;}, for any [, (2.52)

or equivalently,
2 2 2 2 2 2
0'1:070 Z U’i,O’ Uio,O + U’io,l Z O'i’o + 0',,:’1, “es (2.53)

A PCFB divides the whole frequency band into M subchannels. Each subchannel con-
tains the frequency regions that have same SNR. For example, all “best” frequency regions
that have large SNRs are in one subchannel while all “worst” frequency regions that have
small SNRs are in another subchannel. Figure 2.11 illustrates the frequency subdivision by
using a PCFB (Figure 2.11a) and by using a brick-wall filterbank (Figure 2.11b). By using
a PCFB, the frequency regions in a subchannel have same SNR. Then, a “bad” frequency
region that has small SNR would not affect other “good” frequency region that has large
SNR. Therefore, the transmission bit-rate can be maximized. On the other hand, by using
a brick-wall filterbank, a subchannel may contain both “good” and “bad” frequency regions
(c.f. Figure 2.11b). In this case, the effective SNR of this subchannel is the average of the
SNRs of both frequency regions. Therefore, the subchannel SNR, and then the transmission

bit-rate, would be lowered.
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Figure 2.11: Frequency subdivision for a) PCFB and b) brick-wall filterbank

The above discussion implies that each filter in a PCFB may have multiple passbands.
Also, the frequency location and the width of each passband are determined by the channel
frequency response. Moreover, the subdivision of the whole frequency band is not uniform
anymore, and the widths of passbands are different to each other. On the other hand,
because the DFT and Cosine-Modulated Filterbank (CMFB) filterbanks are modulated
filterbanks (i.e. each filter is a modulated version of the same prototype filter), their fre-
quency subdivision is uniform and the widths of their passbands are the same. Therefore,
the PCFB solution is not exist in DFT and CMFB filterbank classes.

Although, generally, the PCFB solution for DMT systems is difficult to implement (or
not exist), it can be used as a guideline for performance comparisons of other possible
suboptimal solutions. Moreover, an approximation of the PCFB solution can be made by
using brick-wall filterbank when the number of subchannel are significantly large. In this
case, each subchannel is narrow enough. Then, the “bad” frequency region would not belong
to the same subchannel as the “good” frequency region. Now, by treating each group of
subchannels that have the same SNR as a single (multi-passband) subchannel, the PCFB

solution is approximated.

31



2.5 Discrete Wavelet Multitone Modulations

2.5.1 Modulation and Demodulation Procedure

S.D. Sandberg and M.A. Tzannes introduced the DWMT system in 1995 [45] by replacing
the IDFT and DFT in the conventional DMT system with the Inverse Discrete Wavelet
Transform (IDWT) and Discrete Wavelet Transform (DWT), respectively, where IDWT
and DWT can be efficiently implemented in practical situations by using the Inverse Fast
Wavelet Transform (IFWT) and DWT. As shown in Figure 2.12, the DWMT system divides
the channel frequency band into M equal-width subchannels. Note that spectral overlap
still occurs in adjacent subchannels. However, this spectral overlap can be significantly

small by carefully designing the filterbank used in the DWMT system.
_

\

|

Figure 2.12: Frequency band subdivision of the DWMT system

%
T
!

The block diagram of the DWMT system is shown in Figure 2.13. At the transmitter,
the serial input bitstream is first parsed into several parallel bitstreams by using a S/P
converter. Then, these parallel bitstreams are converted into symbol sequences at the
constellation encoder outputs. The resulting symbol sequences are then transformed into
time-domain by using the IDWT operation. Finally, the time-domain signal is converted to

analog signal by a D/A converter and then sent to the communication channel.

Bit Stream Serial-to- . : . To D/A converter
s S || Comtaon |+ |y
Converter
| L L]
a) DWMT Transmitter
From A/D converter . Post-Detection | . Constellation | .  (Parallel-to-Serial| Bit Stream
E— DWT : L . : -
: Equalization : Decoder : Converter

b) DWMT Receiver

Figure 2.13: Block diagram of the DWMT system
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At the receiver, after A/D conversion, the received symbols are demodulated by the
DWT operation and then pass through the post-detection equalizers to equalize the channel
distortion and obtain the recovered symbols. After that, the corresponding constellation
decoders and a P/S converter are used to convert the recovered symbols back to a serial

bitstream.

2.5.2 Filterbank Structure and Pulse Overlap

Similar to the conventional DMT system, the DWMT system is also a special type of
DMT system that employs critically decimated filterbanks as its modulator and demodu-
lator. Several types of critically decimated filterbanks can be used in DWMT systems, for
example, the Fourier transforms (DFT and IDFT), M-band wavelet trasnforms [60], the
Lapped Orthogonal Transform (LOT) and extended LOT [37][38], and CMFBs [32]. These
filterbanks can be carefully designed such that the sidelobes of the frequency response of
the filters used are significantly small. Therefore, better spectral isolation can be achieved
compared to DFT and IDFT filterbanks. In [45], the authors employed the Cosine IV bases
CMFB to design the DWMT system.

When treated as a type of filterbank-based DMT system, the block diagram of the
DWMT system is the same as Figure 2.7 with N = M. All properties discussed in Section
2.3.3 also hold for the DWMT system. Specifically, the analysis and synthesis filterbanks
({Fn(2)} and {H;(z)} where m,i = 0, ..., M — 1) used in DWMT systems satisfy the
biorthogonality expressed in Eqns (2.23) and (2.24), and the time reversed-conjugation
property in Eqn (2.28). When CMFBs are employed, all filters used in the CMFB are

modulated from a single prototype filter pp(n) in accordance with

Fm(n) = 2po(n) cos (—A”Z(m +0.5)(n — g) - (—1)’n%> : (2.54)
hi(n) = 2po(n) cos (%(z +0.5)(n — g) + (—1)‘%) , (2.55)

where 0 <m,i < M — 1, and L is the length of the prototype filter pp(n).

The length of each filter in the CMFB is equal to the length of the prototype filter po(n).
For a M-band CMFB, usually, the length of pp(n) is chosen to be L = gM, where g > 1 is
an integer*. In this case, “the pulse waveforms for different symbol blocks overlap in time”
([45], section II), and usually, g is called as the overlap factor. This “pulse overlap” can be

clearly explained as follows.

4For conventional DMT systems, the length of the prototype filter L = N (N is the number of subchan-
nels), which means that g = 1.
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Referring to Figure 2.7, in the m-th subchannel of the transmitter, the output Z,,(n) of
the synthesis filter Fy,(z) can be written as

Im(n) = 2 m(n) * fm(n) = Z zEm(k) * fm(n — k)
k=—o0
= D om(k) * fn(n — ME) (2.56)
k=—o0
L7r )]
= Z Tm (k) * fm(n — ME),
k=| % —g]

where || represents rounding to zero. From Eqn (2.56), it is clear that any sample of Z,,(n)
is the convolution of the synthesis filter f,(n) and g samples of the corresponding system
input (ie. {zm(k)}, where k = |2t — g, ..., [ %%]). Therefore, one can say that each
transmitted symbol is generated from overlapped input symbol blocks. This procedure can

be graphically illustrated in Figure 2.14.

O

: o e

Figure 2.14: Graphical illustration of pulse overlap

2.5.3 Design of CMFB

There are a lot of techniques to design the CMFB [25] [26] [33] [43] [47]. In this thesis,
the Kaiser window approach proposed in [33] is used. In general, in order to design a PR

CMFB, the prototype filter po(n) has to satisfy the following conditions [52]:

‘P(ej“’)| ~ 0, for |w|>n/M, (2.57)
. ) 2M—1

T(e™) ~ 1, where T(e) = 3 lP(eJ(w CZON (2.58)
k=0
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Now, if the stopband edge w; is set to wy, = 7/M, the first condition (Eqn (2.57)) can be
achieved. Note that because T(e/“) is periodic with period /M, only the T(e’*) in the
interval [0, w/M) has to be considered. By letting ws = 7/M, T((e’“) can be approximated
as

. . : 2
T(e%) ~ iP(e"")I2 + IP(eJ(“’””/M))i , for0<w<n/M. (2.59)
With this approximation, the objective function can be formed from Eqn (2.58) as
min {¢} , (2.60)
Wp

where wy, is the passband edge of the frequency response of po(n), and ¢ is defined as

p= mjx{\T(ej‘”) -1}

= max
w

A linear phase prototype filter can be obtained by using Kaiser window approach. With

2.61
|P(e)]” + |P(ej<w—“/M>)}2 ~1 (261)

}, 0<w<n/M.

this approach, a filter pp(n) of length L + 1 is designed as
po(n) = h(n)w(n), (2.62)

where h(n) is an ideal filter with cutoff frequency w., and w(n) is a Kaiser window in
accordance with

_sin(we(n — 0.5L))

Io(8)y/1-(25852)"
w(n) = Io(ﬁ)o == 0sn<, (2.64)
0, otherwise,

where Io(-) is the zeroth-order modified Bessel function. For given stopband attenuation

As, the parameter j is [52]

0.1102( A, — 8.7), A, > 50,
B =4 0.5842(A, — 21)%4 1 0.07886(As — 21), 21 < A, < 50, (2.65)
0, Ag < 21.

The relationship between the order of the window L, the stopband attenuation A, and

an appropriately chosen transition bandwidth Aw is

. A,—T7.95
" 14.36 Aw/27

By using Eqns (2.62) — (2.66), the prototype filter po(n) can be generated and its

(2.66)

frequency response can be adjusted by a single parameter: the cut-off frequency w.. Now

define a filter
g(n) = po(n) * po(—n), (2.67)
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which means that in frequency-domain

G(e/) = |P(™)[?

(2.68)
By substituting Eqn (2.68) into Eqn (2.61), one can say that the filter g(n) that satisfies the
objective function in Eqn (2.60) is approximately a Nyquist (2M) filter, i.e. g(2Mn) =~ é(n).

In light of this, the objective function can be simplified as

%in {¢new} 3 (269)
where
Ornew = rgax{[g(?Mn)]} . (2.70)
n#0

This optimization problem can be solved by using region elimination methods [44].

2.5.4 Advantages and Disadvantages

Compared to the conventional DMT system, DWMT systems have the advantage of higher
throughput because no redundancy is introduced in it. Also, DWMT systems are robust to
narrow-band channel noise because of its better spectral isolation. Usually, post-detection
equalizers are used in DWMT systems to equalizer each subchannel separately. Therefore,
the equalization can directly related to the optimization of the transmission bit-rate. More-
over, because each subchannel is equalized separately, no tradeoff has to be made between
different subchannels in equalization procedure, and the maximum transmission bit-rate
can be achieved.

On the other hand, DWMT systems have two main disadvantages. First, because the
overlap factor g > 1, longer filters are used in DWM'T systems, which means that more
memory units have to be used “to maintain a symbol buffer of size gM” [45]. Another
disadvantage of DWMT systems is that the equalization is more complicated compared
to the conventional DMT systems and other DMT systems using non-critically decimated

filterbanks.

2.6 Filtered Multitone Modulations

Although the spectral isolation of DWMT systems is significantly better that the conven-
tional DMT system, spectral overlap of DWMT systerms still exists between the neighboring
subchannels. In order to further increase the spectral isolation, the FMT technique was in-

troduced in [11].
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The FMT system uses complex-exponential-modulated filter banks with

Fi(n) = po(n)e? ™M, (2.71)
hi(n) = ps(—n)e 72mHM (2.72)

where k=0, ..., M — 1.

Usually, FMT systems employ non-critically decimated filterbanks (Figure 2.7 with
N > M) so as to introduce redundancy to combat the channel distortion. The frequency
division of FMT systems is illustrated in Figure 2.15. In this figure, the frequency re-
sponses of neighboring subchannel pairs cross at the stopband frequencies instead of the
cutoff frequencies in DMT systems using critically decimated filterbanks. Therefore, there
is (approximately®) no spectral overlap in the FMT system.
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Figure 2.15: Frequency subdivision for FMT systems

The penalty for the added redundancy is the reduction in the bandwidth efficiency.
However, the reduction in the bandwidth efficiency can be minimized by making N close to
M, which requires filters with sharper roll-offs (increasing their implementation complexity
and the system latency).

An efficient implementation of FMT systems using FFT and IFFT is shown in Figure
2.16, where (F(O)(z), ..., FO4-1) (z)) are M polyphase components of the prototype filter
po(n), and (HO(2), ..., HM=1)(z)) are M polyphase components of p§(—n).

=0 b ”’ e(n) "@ e
4

IFFT N P/ S/P FFT

2]

Figure 2.16: Efficient implementation of FMT systems

5Here, we say “approximately” because in practical situations, the stopband of each filter is not precisely
equal to 0.
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Chapter 3

Channel Equalization

Channel equalization plays an important role in DMT systems for combatting the distortion
caused by the communication channel. Generally, channel equalization can be divided into

two categories as illustrated in Figure 3.1.

— e(n) e
* | Transmitter Mﬂ@ Receiver | °

—

—

a) Equalizing channel distortion using a TEQ

e Cdmy [ e B e
: Transmitter 7{ @ —ng> Receiver 7
I . ~«»§ EQqu.

b) Equalizing channel distortion subchannel-by-subchannel

e

Figure 3.1: Two channel equalization categories

In the first category (Figure 3.1a), a TEQ is cascaded at the input of the system re-
ceiver to equalize the channel distortion in the whole channel frequency band. In the
other category (Figure 3.1b), on the other hand, each subchannel has a separate equalizer
(EQg, ---» EQ,s_1) at the system output end, which equalizes the channel distortion only
within the frequency band of the corresponding subchannel. Usually, the latter category is
called as “post-detection equalization”. Most of the conventional DMT systems use TEQ to
equalize (or shorten) the channel to a small length and then use the cyclic prefix to combat
the remaining channel distortion (including ISI and ICI). On the other hand, other DMT
systems such as FMT and DWMT systems usually employ the post-detection equalization
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to equalize the channel distortion in each subchannel separately.

3.1 Time-domain Equalizer in Conventional DMT System

A TEQ [12] is usually an Finite Impulse Response (FIR) filter cascaded with the channel
to equalize the channel distortion, as shown in Figure 3.2, where C(z) and W (z) represent

the channel and TEQ), respectively.

e(n) _
@)*va‘ y(n) W) y(n)>

Figure 3.2: TEQ cascaded with the channel

If the channel is fully equalized (in which case g(n) = z(n)), then a zero-forcing equal-
izer! W(z) = 1/C(z) has to be used. However, the zero-forcing equalizer has two problems.
First, generally it cannot be implemented using an FIR filter. In other words, a FIR
zero-forcing equalizer cannot fully eliminate the ISI. Another problem of the zero-forcing
equalizer is the noise enhancement. In practical situations, the channel attenuation in high
frequency band is high. Then, the gain in the high frequency band of the zero-forcing
equalizer W (z) has to be large, which will make the high-frequency noise component at the
system output intolerably large and significantly lower the transmission bit-rate. A solution
to this problem is used in the conventional DMT system where, instead of fully equalizing
the channel distortion, an equalizer is used to shorten the channel impulse response to a
small number of taps (i.e. partially equalizing the channel distortion), while using the cyclic
prefix to combat the remaining channel distortion. In the other word, as mentioned in Sec-
tion 2.1, in order to fully eliminate the ISI and IFI, the length L, of the cyclic prefix has
to be greater or equal to L, — 1, where L, represents the length of the channel impulse re-
sponse. However, L,, has to be small so as to maintain a reasonable transmission efficiency.
Therefore, the length of the channel impulse response has to be shortened by using a TEQ
[12].

3.1.1 Minimum Mean-Squared Error Design Model for TEQ

The block diagram in Figure 3.3 is the model for the design of TEQ equalizers [2] [29]

[3]. In this model, c(n) represents the channel? impulse response, w(n) represents the

!The zero-forcing equalizer is named because the ISI is “forced to zero” [13].
2The channel used in this thesis is a discrete model of a practical continuous-time channel and the
additional A/D, D/A converters, the splitter (if used), and so on.
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impulse response of the TEQ, z(n) and §(n) represent the transmitted signal at the input
of the channel and the received signal at the output of the channel, respectively, and e(n)
represents the additive channel noise. The TEQ w(n) shortens the channel impulse response
c(n) approximately to the desired short-length Target Impulse Response (TIR) b(n) with
a decision delay of A and an approximation error of 7(n). This model is employed to find

the optimal TEQ w(n) that leads to the Minimum Mean-Squared Error (MMSE) of r(n).

e(m) _
(nTﬂé% e

Channel

”Mj**— m y(n) T(n)’

Decision delay

z(n)

Figure 3.3: TEQ structure

A comment has to be mentioned before the mathematical calculation of the optimal
TEQ settings. Note that the lower path in Figure 3.3 (i.e. the combination of the TIR
b(n) and the decision delay A) is drawn only for the optimization of the TEQ settings and
would not be present in an actual xDSL modem. Moreover, in an actual xDSL modem, the
TEQ output has to be advanced by A samples® to compensate for the decision delay.

Let Lg, Ly, and Ly represent the length of the channel, the TEQ, and the TIR, respec-

tively. The channel output can be written as

L.—1

y(n) = z(n) x c(n) + e(n) = Z c(k)x(n — k) +e(n). (3.1)

k=0
Then, L,, successive symbols of the channel output, y(n), y(n — 1), ..., y(n — Ly, + 1), can

be expressed in matrix form as

y(n) = Cx(n) +e(n), (3.2)

where y(n), (n), and e(n) are defined as

)2 [y(n) y(n—1) - yn—Ly+1)]", (3.3)
2z(n) z(n—1) - z(n—Le—Ly+1)]", (3.4)
e(n) s [e(n) e(n—1) - a(n—Ly+1)]", (3.5)

3Because of the successive S/P operation (see Figure 2.2), here the operation of advancing the TEQ
output by A samples is equivalent to delaying the TEQ output by N + L, — A samples in a causal system
with the only difference of the number of leading zeros in the output of the S/P converter. In this thesis,
the noncausal representation is often used to simplify the notation.
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with ()7 representing matrix transpose operation, and C is defined as

c0) ¢y -+ e(L.—1) 0 0
0 c0) c1 c(L,—1 0
ga |0 O e (Lo = 1) S D
o - 0 c(0) c(1) < ¢e(Le—1)
In Figure 3.3, the output of the TEQ is
Ly—1
g(n) =y(n)xw(n) = Y wk)y(n—k), (3.7)
k=0
which can be rewritten in matrix form as
g(n) = w'y(n), (3.8)

where (-)’ denotes the conjugate transpose operation, and
w2 [w0) wl) - wly—1)] . (3.9)
By substituting Eqn (3.2) into Eqn (3.8), one has
i(n) = w'Cz(n) + w'e(n). (3.10)

On the other hand, §(n) in Figure 3.3 can be expressed as

Ly—1
§(n) = > b(k)z(n -k — 4), (3.11)
k=0
or in matrix form, as
() = Hpo(m), (312)

where by is an extended version of the TIR vector b, where

b2 [b0) b(1) - b(Ly-1)], (3.13)

bEé[leA v 01><(LC+Lw—A—Lb)] 5 (3.14)

with the notation 0y,.xn, representing a n,-by-n. all-zero matrix.

Then, the approximation error r(n) is
r(n) = g(n) — §(n) = bgx(n) — w'Cx(n) — w'e(n). (3.15)

Assuming the channel noise e(n) is independent of the channel input z(n), the Mean-

Squared Error (MSE), defined as MSE £ E [|r(n)|?], becomes

MSE = E [( e (n) — w'Cx(n) — w'e(n)) (bgz(n) — w'Cx(n) — 'w'e(n))']

(3.16)
= b Rybp — by R.C'w — w'CR,bp +w' (CR,C' + R w,
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where FE[-| represents the expectation operator, R, and R, represent the autocorrelation

matrices of z(n) and e(n), respectively, and

>

[2(n)x(n)'] , (3.17)
le(n)e(n)'] . (3.18)

1>

R, £E
R.2E
Note that in Eqn (3.16), MSE is a scaler. In this way, each item in the RHS of Eqn (3.16)

is also a scaler, and b, R;C'w = w'CR;bg. Therefore, Eqn (3.16) can be written as
MSE = by Rybg — 2w' CRybg + w' (CR,C' + Re) w. (3.19)

The MSE is minimized when
9 (E[Ir(n)l])

=0 2
Ow ! (3.20)
which leads to

CR.by = (CR,C'+R.)w. (3.21)

By substituting Eqn (3.21) into Eqn (3.19), the minimized MSE becomes
MSE = bR, br, (3.22)

where

R, = R, - R,C' (CR,C' + R,)”' CR,, (3.23)

with (-)7! representing the matrix inverse operation.
Note that the position of b in its extended version bg depends on the decision delay A.
In order to explicitly use b to calculate the MSE, let us define R as a Lp-by-Lp sub-matrix
of R, starting from the A-th row and A-th column of R, i.e. let
OAXLb

Ry = [ObeA I, Obe(Lc+Lw—A—Lb)] R, I, , (3.24)
O(LotLuw—A—Ly)xLy

where Iy, represents a Ly-by-L; unity matrix. Then, Eqn (3.22) becomes
MSE = b'Rb, (3.25)

where R, is a positive-definite matrix because MSE > 0 in practical (noisy) situations.

A constraint on b is needed to avoid the trivial solution b = w = 0. Either the Unit-Tap
Constraint (UTC) or Unit-Energy Constraint (UEC) can be applied to the coefficients of b.
The UTC is that one tap of b is selected as the reference tap and set to unity, i.e. b'u; =1

with u; representing the ¢-th unit vector (u; = [0 SRR B O]T, where the i-th element
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of u; is equal to 1 while other elements are 0). On the other hand, the UEC is that the
energy of b is set to unity, i.e. ¥'b=1.

Before introducing the optimal TEQ solution under UTC or UEC constraint, one has to
note that the optimal solution highly depends on the choice of the decision delay A. To find
the best choice of A that leads to the minimum MSE, an exhaustive search of A is needed,
which increases the training time of the TEQ. On the other hand, heuristic methods for the
determination of A can be used to simplify the search of A. In [36], a windowing method

was used to estimate the optimal A in accordance with
Aratio = arg mX‘X RE(A)7 (326)

where
Ru(A) 2 energy insifie a WiTldOW , (3.27)
energy outside a window

with the window of length (L, + 1) samples beginning at the index (A + 1).

3.1.2 Optimal TEQ Solution under Unit-Tap Constraint
The Lagrangian function can be formed to minimize the MSE subject to the UTC constraint:
LYIC(b,\) =  Rab + A(b'u; — 1). (3.28)

The minimum of LYTC(b, \) can be found by letting its partial derivatives with respect to

b and A equal to 0O,

UuTC
oL 8b(b,,\) —0,

(3.29)
OLYTC (b)) 0
oA - Y
Then, we have
2RAb = —Auy,
(3.30)
ub=1.

By solving the above simultaneous equations, the optimal TIR coefficients and the MMSE

are given by

Rilu,
bopt, = ——p AR 3.31
o RAl (Zopt., 'Lopt.) ( )
MMSEVTC = ! , (3.32)

RZI (iopt. ) 7:opt.)
where Rzl (%opt., fopt.) Tepresents the element of RZI in the 4gpt -th row and 7yp¢ -th column,

and iopt. is the index that achieves the MMSE, i.e.

Gopt. = arg Oginzb {Rzl(i,i)} . (3.33)
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From Eqn (3.21), the optimal coefficients of the TEQ wqp. are
Wopt, = (CRzCI + Re) i CR;bg. (3.34)

3.1.3 Optimal TEQ Solution under Unit-Energy Constraint

When minimizing the MSE subject to the UEC constraint (b'b = 1), the Lagrangian func-
tion can be formed as

LUEC(b,\) = b'RaAb — A\(b'b—1). (3.35)

By letting the partial derivatives of LYEC(p, A) with respect to b and A equal to 0, one has

RAb=M\b,
(3.36)
bb=1,
which means that bgpt. is an eigenvector of R4. Then, the MSE becomes
MSE = b'Rab= \b'b= ). (3.37)
Now the MMSE is equal to the minimum eigenvalue (denoted as Amin.) of Ra, i.e.
MMSEVEC = A\pin. (3.38)

Then, the optimal TIR bept. is equal to the eigenvector corresponding to Ayin.. The closed
form of the optimal TEQ wgpt. is the same as in Eqn (3.34).

It can be shown that MMSEVEC < MMSEVTC. When the channel is memoryless and the
input and the channel noise are white, all the eigenvalues of R4 are equal and MMSEVEC =
MMSEVTC which means the TEQ achieves the MFB under either the UTC or the UEC
(See [2]).

3.1.4 Geometric SNR Method

An equalization method based on Geometric SNR was presented in [3] for the maximization
of the bit-rate of the conventional DMT system. The total number of bits transmitted in

one symbol is given by

N/2 N/2

SNR;
i=1 i=1 ¢ (3.39)
N SNRgeom
= —2—10g2 (1+ ——Fge—> ,
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where SNR; represents the SNR of the i-th subchannel, I'; represents the SNR gap for the
i-th subchannel, and I'; = I" for all ¢ (meaning that all subchannels have the same error

probability). Moreover, SNRgeom represents the geometric SNR given by

2/N
L 12 SR,
SNRgeom 2 I'S [ {1+ T -15. (3.40)
i=1

Obviously, when SNR; is high enough for all ¢, SNRgeom can be approximated as

N/2 2/N

SNRgeom ~ | ] ] (SNRy) . (3.41)

i=1
Therefore, the maximum bit-rate is achieved by maximizing SNRgeom, which entails a non-
linear optimization problem.
In [6], an improvement to the geometric SNR was made by incorporating the ISI term
in SNR; in accordance with
Sz | Hsignai|?
Sni | Huoise,il” + Sz i | Hist )’

where S;;, Sni, Hsignali, Hisi; are the signal power, noise power, signal path gain, noise

SNR; =

(3.42)

path gain, and ISI path gain in the i-th subchannel, respectively.

3.1.5 Shortening Signal-to-Noise Ratio Method

Melsa et al [39] use a different argument to measure the effectiveness of the channel impulse
response shortening. Recall that the shortened channel impulse response b(n) is the convo-
lution of the channel impulse response ¢(n) and the TEQ w(n), and that perfect channel
shortening may not be possible in practical situations. Therefore, define the Shortening
Signal-to-Noise Ratio (SSNR) as

energy in byin(n)

energy in byan(n) ’
where byin(n) is a windowed part of b(n), beginning at the A-th sample of b(n), and having
a length of L, + 1. Moreover, byay(n) denotes the remainder of b(n) (all zeros for perfect
channel shortening).

The main objective is to maximize the SSNR subject to a unit-energy constraint on
bwin(n) (so as to avoid the trivial solution w(n) = 0). This, in turn, is equivalent to
minimizing the energy in byan(n). By denoting by.n(n) and w(n) in matrix form as by,

and w, respectively, the constrained objective function is
muiin{vavaubwau} s.t. b byin = 1. (3.44)
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The SSNR method has the same disadvantage as the MMSE method, for example, the

highest bit-rate capacity may not be achieved.

3.1.6 Main Disadvantages of TEQ

TEQ technique has the advantage of simple structure and relatively low computation com-

plexity. However, it has several disadvantages listed as follows.

1. As discussed in Section 3.1, generally, the channel cannot fully be equalized by a FIR
TEQ. Therefore, TEQ technique can only be used to shorten the channel impulse
response, and other techniques (for example, the cyclic prefix) have to be used together

with TEQ to recover the system input.

2. Before of the same reason, when a FIR TEQ is used to shorten the channel, the energy
leakage (i.e. the samples outside the TIR window in the equalized channel impulse
response) causes the ISI and ICI remain in the equalized channel. The remaining ISI
and ICI would not cause any severe problem in the conventional DMT system because
redundancy (the cyclic prefix) is introduced in the system. However, these remaining
interferences may lead to severe distortion in DMT systems using critically decimated

filterbanks.

3. The TEQ technique equalizes the whole channel frequency band by using a single
equalizer. Then, the characteristics of the equalized channel is the sum of the char-
acteristics of the whole channel frequency band (weighted by the TEQ). Therefore,
a severely distorted channel frequency band would affect the equalization of other

channel frequency band, and lower the overall equalization effect.

4. Usually, the optimization of TEQ requires an UTC or UEC constraint. However,

either constraint has no relation to the system transmission bit-rate.

5. The optimization of TEQ is based on maximizing the SNR at the TEQ output. How-
ever, this objective has no direct relation to the system transmission bit-rate. There-
fore, the highest transmission bit-rate may not be achieved when the SNR of TEQ

output is maximized.

6. The equalized channel frequency response may have some notches, which do not exist

in the original channel frequency response.
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3.2 Per Tone Equalization in Conventional DMT system

The per tone equalization was introduced by K. Van Acker et al. [57] for channel equaliza-
tion of the conventional DMT system. It modifies the receiver structure of the conventional
DMT system such that the TEQ operation is transferred to the frequency-domain, and
leads to a post-detection equalization technique that equalizes each subchannel separately.
While it is only a modification of the conventional DMT receiver, the cyclic prefix is still

needed in the whole system.

L Ly [TOL e |

]

JIN+L) % (n) \_I.)({_] &y(n)

N-point | Y2 () D _'ile (n)
DET ‘N2 ’

™

N Subchannelsg
w

‘ l-a{ IN+L, |
Figure 3.4: Explicit form of the conventional DMT receiver

The explicit form of the conventional DMT receiver (with TEQ) is redrawn in Figure
3.4, where W (2) represents the TEQ and Dy, ..., Dy, represent the N/2 + 1 1-tap FEQs.
The advance component z4 is used to compensate the decision delay. Compared to Figure
2.2, the S/P converter is replaced by an advance chain and a set of decimators. The
QAM decoder and the P/S converter are disregarded here to concentrate on the channel
equalization and the relationship between the TEQ and the per tone equalization.

The output of the i-th FEQ can be expressed as

N-1
#(n) = Diyi(n) = D; S §(Ngn + Ly + A + k)e 32ki/N
k=0
G(Ngn + L, + A) (3.45)
=D, [1 e"ij/N v e_jQW(N—l)i/N] y(NEn + Ijv + A+ 1) |

G(Ngn+ Ly + A+ N — 1)

where N = N + L,,. The TEQ output can also be written in matrix form as

(o) Ly—1
gn)= > yln—kuwk)= > yn—kwk)
k=—00 k=0
wg(g (3.46)
= [y(n) y(n-1) y(n — Ly +1)] )
w(Ly — 1)
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Substituting Eqn (3.46) into Eqn (3.45), one has
Bi(n) = Dy [I e~m/N ... e=i2n(N-Di/N] (Y)
= DZ'I‘OWZ'{.FN}(Y’U)) (347)
= Dirowi{fN(Yw)} R
|
1 FFT
where row;{-} represents the i-th row of the matrix (-), and Fn, Y, and w represent the
N-by-N DFT matrix, the N-by-L,, Toeplitz matrix of the received symbols, and the TEQ

vector, in accordance with

1 1 . 1
1 e—im/N .. gmi2m(N-1)/N
fN é . . . ) (3'48)
| e—i2n(N=1/N ... g=j2m(N-1)(N=-1)/N
y(Ngn+ Ly, +A4) -+ y(Ngn+Ly+A— Ly +1)
Ngn+Ly+A+1) - y(Npgn+Ly+A— Ly +2
va Ve . ). y(Np o w ), (3.49)
y(Ng(n+1)+A4-1) -+  y(Ng(n+1)+A4A—Ly)
and
w2 [w0) w(l) - w(ly—1)]" . (3.50)

It is always possible to exchange the positions of the TEQ and the FEF'T processor
in Figure(3.4). By changing the computing sequence of Eqn (3.47), the TEQ w can be
moved to the frequency-domain and combined with the original FEQ D; to form a per tone
equalizer w; in accordance with

£i(n) = Dirow;{Fn}(Yw)
= row;{FnY }HDjw) (3.51)
= row; {FNY } w;,
——
Ly FFT’s
where w; = D;w is a (complex) L-tap per tone equalizer for the i-th subchannel. With
this modification, the per tone equalization is achieved with the cost of L,, N-point DFTs
(instead of the original one N-point DFT). The modified receiver incorporating with per
tone equalizers is shown in Figure 3.5. Note that this figure is modified from Fig.3 in
[57] to give hints of the relationship between the per tone equalization and the proposed
interpolation equalization.
The structure in Figure 3.5 can be further simplified to employ one N-point DFT with

additional symbol differences. By decomposing the matrix Y into a column-circulant matrix
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Figure 3.5: Per tone equalization with sliding DFT

and a difference matrix, one can arrive at a new set of per tone equalizer coeflicients v; =

[fui,o ey Lw_l]T for per tone equalization in accordance with
'U'i,O 1 ai—l ce a(i_l)(Lw_l) wi,O
Vi1 : wi,1
R I LU A, (3.52)
Lo i1 :
Vi, Ly—1 o --.. 0 1 Wi Ly,—1
where o = ¢772"/N_ Then, Eqn (3.51) can be rewritten as
) [ I, |0 —Ip -
) — T Loy—1 Ly—1
xz(n) Y; 0 \ fN(i7 :) :l Y. (353)
}T
where 87 = [v;p,—1 -+ vi0], IL,—1 is the (Ly — 1) X (Ly — 1) unity matrix, Fy(4,:) is
the i-th row of N x N DFT matrix, and
y=[y(Ngn+Ly+A—Ly+1) -+ y(Ng(n+1)+A— 1)]T : (3.54)

Therefore, the calculation of Z;(n) involves one DFT calculation (c.f. Fn(%,:)) with addi-
tional symbol differences (c.f. the first block row in Fi multiplying with y), as implemented

in the block diagram shown in Figure 3.6.
In this way, the per tone equalizer coefficients can be optimized separately with the

MMSE objective function defined as

min {E [m(n) - a;i(n)ﬂ } . (3.55)

v
The per tone equalization exhibits superior performance in terms of the bit-rate as compared

to schemes employing TEQ. In addition, it exhibits a smooth bit-rate distribution as a
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Figure 3.6: Per tone equalization with symbol differences
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function of A, making it possible to achieve the optimum capacity easily. The computational
complexity of the per tone equalization is comparable to that of TEQ schemes and can be

further simplified by tone grouping [57)].

3.3 Output Combiner in DMT Systems Employing Critically
Decimated Filterbanks

The output combiner proposed by S. D. Sandberg and M. A. Tzannes [45] is a type of
post-detection equalization technique for the DWMT system. This equalization technique
can also be used in other DMT systems using critically decimated filterbanks. The block
diagram of the DWMT system incorporating with output combiners is shown in Figure 3.7,

where OCy, ..., OCps_1 represent output combiners.

e we | e | B0 oy [

BRI ECIS i | .

SO e} rno} b o
Analysis

Fsi}lftnetrlll)zmni Chanel Filterbank

Figure 3.7: DWMT system incorporating output combiners

For a given subchannel, the idea of the output combiner is based on combining the out-

puts of several neighboring subchannels to recover the input symbols of the given subchan-
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nel. The block diagram of the output combiner used in the é-th subchannel (¢ =0, ..., M —1)
is shown in Figure 3.8. In this figure, the i-th subchannel and its 2N, neighboring subchan-
nels (symmetrically centered around the i-th subchannel, i.e. subchannels with indices of
{i — Ny, ..., i + N,}) are used to recover the system input?, where the output of the deci-
mator in each subchannel is filtered by an equalizer W; x(2) (k = i — No, ..., i + N,), and

then, these 2N, + 1 filtered outputs are summed together to form the recovered symbols.

i, ()
@

O[]0

Y ﬂEnJ) W, @) B

Figure 3.8: Block diagram of the i-th output combiner OC;

Originally in [45], a TEQ equalizer (not shown in Figure 3.8) is also used for performance
comparison of the DWMT and the conventional DMT systems. The advance component®
24 used in each subchannel of Figure 3.8 was employed in [45] to compensate the decision
delay A of TEQ. Because the TEQ is not a necessary part of the output combiner, it is
ignored in Figure 3.8. However, our experiments show that the advance component 24
strongly affects the SNR of the output combiner regardless of the use of TEQ. Therefore,
it cannot be ignored even if the TEQ is not used.

The use of TEQ in [45] makes it become a tedious procedure to find the optimal output
combiner settings. In this section, the TEQ is neglected and the procedure of finding the
optimal solution is rewritten in a more straightforward manner. If for some reasons a TEQ

is needed, one can still use the conclusion of this section by simply replacing the channel

C(z) with the TIR (c.f. section 3.1.1 for the definition of TIR).

“Here, we say 2N, neighboring subchannels only for the sake of simplifying the notation. Note that
some subchannels do not have 2N, neighbors. Therefore, precisely, the neighboring subchannels used for the
equalization of the i-th subchannel are subchannels with indices of {max{i— N,,0}, ..., min{i+ N,, M —1}}.

5 Actually, [45] employed a delay component 2479M  which is the causal counterpart of the advance
component 22,
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First, from Figure 3.7, y;(n) (where i =0, ..., M — 1) can be expressed as
-1

M

yi(n) =Y Tm(n) * (fm(n) x c(n) * 6(n+ A) * hi(n)) 5y

m=0
+ (e(n) * 6(n + A) * hy(n)) | (3.56)
M-1
> wm(n) % sty () + (e(n + A) x b)) 1y

m=0

where s (n) is the A-th polyphase component of sy,;(n), and sy;(n) is defined in Eqn
(2.29). Next, from Figure 3.8, the recovered symbols of the i-th subchannel can be written

as
i+N,

Bi(n) = Y yuln) xwik(n), (3.57)

k=i—N,
where w; k(n) represents the impulse response of the k-th equalizer in the i-th output com-

biner. Then, by substituting Eqn (3.56) into Eqn (3.57), one has

i+N, M-1 A
Zi(n) = Z Z T () * sgnk) (n) * w; k(n)
k=i—N, m=0
N, (3.58)
+ Z e(n+ A) * hg(n)) | 5 * wik(n) .
k=i—-N,

Suppose all equalizers {w; x(n)} (k =i — Ny, ..., i + Ny, i = 0, ..., M — 1) have the same
length L, and all {hg(n}) have the same length Lj. Then Eqn (3.58) can be rewritten as

i+No M—-1Ly—1 oo

Zi(n) = Z Z Z Z wm(l (n—1—t)w;(t)

k=i—N, m=0 t=0 |=—o0

+ >0 Y ) eMh(M(n—t) + A= Dw(t)

k=i—Np l=—00 t=0

M-1 oo i+No Ly—1 A (359)
Z Z Z s?(nk) (n—1—t)w; i (t)
=0 [=— k=i—N, t=0
i+Ny Ly—1 00
+ >0 ) wig®) D eMh(M(n—t)+A-1).
k=i—N, t=0 l=—00

The first term in the RHS of Eqn (3.59) represents the signal components (denoted as
&;s(n)) in the recovered symbols while the second term represents the noise component
(denoted as Z;n(n)).

First, consider the signal component &; ;(n). It can be expressed in matrix form as

M—-1 oo i+ N,
Ty s(n) = E Z Zm(l) Z wé,ksmk(n -1, (3.60)
m=0 l=—o00 k=i—N,
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where w;  and Smi(n — 1) are defined as

C wik(0) ] sG]
wi k(1) sn—1-1)
Wi = s smk(n - l) = . (3.61)
(Wi (Lo = 1) 5D —1—Ly+ 1))

Eqn (3.60) can further be written in compact form as

—

f: Tm()wism,(n—1), (3.62)

M
Tis (n) =
m=0 [=—00

where w; and sy,(n—1) are two new vectors that contain all w; ; and s,;i(n—1), respectively,

in accordance with

[ w;;n, | [ Sm—ny)(n—1) ]
Wi j—No+1 Sm(i—~No+1) (n—1)

w; = , Sm(n—1) = . (3.63)
L wivi+N0 . L Sm(l+No) (n - l) d

By defining k = n — I, Eqn (3.62) becomes

M-1 oo
Bis(n) =Y Y Tm(n—k)wis,(k). (3.64)
m=0 k=—o0
Now, suppose all {sgfk)(n)} have the same length Ls. Then, note that sy,(k) becomes all-
zero matrix when k < 0 and k > Lg+ Ly, — 2, therefore, the infinite range of k in Eqn (3.64)
can be confined to a finite range 0 < k < L; + Ly, — 2, and Eqn (3.64) becomes

M—1 Ls+Ly—2

Fis( Z Z k)w;sm (k)
m=0

M—1 Lo+Lw—2 (3.65)
= zi(n — k;)w;s;(k;) + Z Z m(n — k)wism (k) ,
mA k=h

where k; is the relative delay between the recovered symbols and the corresponding system
input symbols. In Eqn (3.65), the first term of the RHS is the desired symbol while the

second term represents interferences (both ICI and ISI).
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Next, consider the noise component Z; »(n). It can be written in matrix form as

i+No Ly—1 0

Zin(n) = Z Z w; k(1) Z e(Dhg(M(n—t)+ A1)
k=i—No =0 l=—00 (3.66)
i+N,
Z wg,ka(n)
k=i—N,
where w; i, is defined in Eqn (3.61), and gg(n) is defined as
Do €Dhi(Mn+ A —1)
22 s e(Dh(M(n—1)+ A1)
qk(n) =
R e ehe(M(n— Ly + 1) + A—1)
Eqn (3.66) can further be written in compact form as
Fin(n) = wig(n), (3.67)

where w; is defined in Eqn (3.63), and g(n) is a new vector that contains all gg(n) in

accordance with

gi—n,(n) |

gi-N,+1(n)
q(n) =

L Gi+N, (1) |
Now, substitute Eqns (3.65) and (3.67) in to Eqn (3.59), one has
M—1 Lg+Ly—2
Zi(n) = zi(n — ky)wjs;(k;) + Z Z k)w; 8 (k)
m=0 (368)
m#£i k;ék,v
+wigq(n) .
Then, with the assumption that {z;(n)} are mutually uncorrelated for any ¢ and n, and
zi(n) is uncorrelated to the noise e(n), by using the MMSE criterion, the SNR in &;(n)

becomes )
lw;s; (k)|

Ls+Ly—2 2 N 21
n=g St s (R + B (|50 (0]
m#£i k#ki

SNR; =

(3.69)

where [|:Ez,n(n)|2] =FE [\w;q(n)ﬂ is the autocorrelation of the noise component Z; ,(n).
Note that
E []:%z,n(n)lﬂ = E [wiq(n)q(n) w;] = w;Cw;, (3.70)
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where C is the covariance matrix of vector g(n) defined as

C = E[q(n)q(n)] .

and its element Cj, ;, can be calculated by

oo o0
Ciin= 3. > Re(lh —lo)hw, (lh + A— Mty hg, (Is + A— Mty,),
l1=00la=00
where R.(l; — l2) = E[e(l1)e(l2)] is the autocorrelation of e(n). k;, and k;, represent the
subscript index of hg(l+A—Mt) of the i1- and iz-th elements of the vector g(n), respectively,
while ¢;, and t;, represent the corresponding index ¢ of hg(l + A — Mt) of the i;- and iy-th

elements of the vector g(n), respectively. Then, SNR; becomes

SNR, — w;si(ki)si (k) w; (3.71)
= - . . .
T

The optimal equalizer coefficient vector w; can be found by maximizing SNR; under the

constraint of wjs;(k;) = 1.
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Chapter 4

Channel Phase Response and
Integer-Delay Equalization
Technique

Chapter 3 introduced several equalization techniques for filterbank-based DMT systems. By
examining such equalization techniques, one can notice an interesting fact that no matter
what kind of equalization structure and optimization technique is used, every equalization
technique has to deal with the same design parameter: the decision delay A. Simulation
results show that the decision delay plays a critical role in the system output SNR and the
transmission bit-rate. An improper choice of decision delay may significantly decrease the
system output SNR and transmission bit-rate.

The decision delay is determined by the channel phase response. In the hitherto litera-
ture, the effect of channel phase response in channel equalization for filterbank-based DMT
systems has been considered only occasionally. For example, the TEQ technique for DWMT
system [18] was proposed to linearize the channel phase response. The wavelet packet-based
equalization algorithm [21] was proposed for the case of binary input, which is based on
replacing the equalizers by a set of delays to compensate for the channel delay. However,
neither the interplay between the channel delay and the multirate decimator, nor the effect
of the fractional channel delay was considered. Note that because of the use of decimators,
most samples of the filterbank outputs are discarded. When the time synchronization of
decimators mismatch that of the filterbank outputs because of the channel phase distortion,
the samples discarded by decimators may contain information highly useful or relevant to
the characteristic of input symbols. Based on this fact, a new equalization technique can
be developed at essentially little or no additional cost.

In this chapter, the effect of channel phase response is investigated to place in evidence
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the dominant role of the channel delay. Then, an integer-delay equalization technique is
proposed for binary or low bit-rate input cases.

The DMT system used in this chapter employs critically decimated filterbanks. Its
block diagram is the same as that in Figure 2.7 with the condition N = M. With this
condition, M will be used as the expansion/decimation ratio. Moreover, the synthesis and
analysis filterbanks (Fy,,(z) and H;(z) where m,7 =0, ..., M — 1) are assumed to satisfy the
biorthogonality property.

4.1 Effect of Channel Phase Response

In MCM systems including filterbank-based DMT systems, the channel phase response
(compared to the channel magnitude response) plays a dominant role in system output
distortion. This can be revealed by inspecting the signal flow in a DMT system using a set
of ideal brick-wall filters forming its critically decimated filterbanks.

A brick-wall filter is an ideal (but non-practical) linear phase filter with nonzero con-
stant passband magnitude response, zero stopband magnitude response, and zero transi-
tion bandwidth. In the ideal case where all filters in the synthesis and analysis filterbanks
are brick-wall filters, the whole transmission frequency band is ideally partitioned into M
subchannels and no spectral overlapping exists between any two subchannels. This! is

illustrated in Figure 4.1, where the bandwidth of each subchannel is 27 /M.

Figure 4.1: Ideal frequency subdivision of a M-subchannel filterbank-based DMT system

In this case (ignoring the channel noise), S;,;(z) = 0 when m # i, implying that no ICI
exists in the system output. Then, Eqn (2.34) can be simplified as

Yi(2) = ,9(2) = Xi(2)8{ (). (4.1)

The block diagram of the i-th subchannel can also be simplified as Figure 4.2.

Depending on the design of the synthesis and analysis filterbanks, the frequency subdivision may be
different from Figure 4.1. However, the bandwidth of each subchannel is still 27/M for the M-band frequency
subdivision and the discussion in this chapter still holds.
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Figure 4.2: Block diagram of the simplified i-th subchannel

In filterbank-based DMT systems, the bandwidth of each subchannel is sufficiently nar-
row provided that M is sufficiently large. In this case, the frequency response of each
subchannel can be approximated as a piecewise flat magnitude and piecewise linear phase,

i.e. the channel frequency response C(e’“) can be approximated as
C(e7) = |C() e @) ~ Cre™ %%, w1 <w < w2, (4.2)

where |C(e’“)| represents the channel magnitude response (approximated as a constant
number C;), ¢(w) represents the channel phase response (approximated as linear phase
d;w). Here, d; > 0 is an integer or fractional constant number representing the subchannel
delay, and w; and wy are the left and right cut-off frequencies of the i-th subchannel,
respectively.

In the above DMT system, C; can be easily compensated for by using a 1-tap equalizer
1/C; in each subchannel at the receiver?. However, the subchannel delay d; plays dominant
role in the output distortion of a system using decimators, and is more difficult to com-
pensate than the channel magnitude C;. In the following discussion, we will assume that
C; = 1 so as to concentrate on the effect of the subchannel delay d; only.

Eqn (4.2) means that for the i-th subchannel of a DMT system (see Figure 4.2), one can

use Z_d

+ as an approximation® for C(z) without changing the relationship between y;(n),
g;(n) and x;(n). With this approximation, the relationship between §;(n) and z;(n) in

z-domain can be written as
Yi(z) = Xi(z")Su(z) = Xi(zM)Gu(2) 2%, (4.3)

1)

where Gj;(z) satisfies the biorthogonality, i.e. G(O)(z) = (Gii(2)); s = 1. Then, the k-th

polyphase component of ¥;(z) becomes

k=0,..,M—1, (44)

k22

Y (2) = Xi(2)8P (2) = Xi(2) (Gii(z)z_di+k> i’

2If the subchannel gain is zero, the corresponding demodulator gain becomes infinity. But in practical
situations, a subchannel with zero-gain is usually not used. Therefore, the case of zero-gain subchannel can
be ignored in subsequent discussions.

3 Although the case of d; being a non-integer is not defined in discrete domain, we can relax the conven-
tional integer delay restriction to accommodate the general channel delay cases. The meaning of non-integer
delay will be explained by using the concept of Continuous-Time Processing of Discrete-Time Signals ([41],
Chapter 4).
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Now the effect of the subchannel delay d; in the output distortion can be seen by
considering the following cases.
Case 1: d; = m;M, where m; > 0 is an integer.

In this case, the input symbols can be perfectly recovered at the system output (except

for the delay m;), in accordance with

Yi(2) = ¥, (2) = Xi(2) (Gii(2)z™™M) 4
= Xu(2)r ™G0 () (45)

= Xi(z)z ™™ .

Note that Y;(z) is but the 0-th polyphase component of Y;(z). Moreover, in general,
fo ) (2) # 1 when k # 0. Therefore, other polyphase components of Y;(z) are distorted

versions of X;(z) because
Y (2) = Xi(2)e ™G (2) # Xi(2), k=1, ., M—1. (4.6)

Eqns (4.5) and (4.6) indicate that in time-domain, §;(n) is a combination of the desired sym-
bols ( z;(n—m;) ) and a large number of other unwanted (and conventionally unimportant)
symbols interleaving together.
Case 2: d; > 0 is an integer but not an integer multiple of M.

In this case, let

di = miM + d; , (4.7)
where m; > 0 is an integer, and 1 < d; <M —1. Then,

Yi(z) = Xi(2) <Gii(z)z_miM—di>1M

= Xi(2) (Gii(z)z—(miﬂ)MZM—Ji)lM (4.8)

= Xi(z)z ™ 1G M) ().

Because G&M _di)(z) # 1, the system output is distorted from the system input. However,
note that

V9 (2) = Xy(2)2 ™G (2) = Xi(e)e ™. (4.9)

Therefore, in time-domain, the d;-th polyphase component of 7i(n) is the desired symbol
z;(n — m;), but, unfortunately, it is conventionally discarded at the decimator output.
By recalling that the only difference between Cases 1 and 2 is the different values of

d;, it is clear that the shape of §;(n) in Case 2 is the same as that in Case 1 ( c.f. Eqn
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(4.3) ). Therefore, it is obvious that the channel delay d; makes the decimator work at
improper time synchronization, as a result of which the desired symbols are discarded while
the decimator output is unwanted symbols.

With the above discussions, it is clear that the channel delay (or phase response) is a
more dominant factor than the channel magnitude response. The desired symbols z;(n) can
be extracted from ¢;(n) if and only if the time synchronization of the decimator matches that
of §;(n). However, the channel delay may put the decimator out of the time synchronization,
and make the decimator discard the undistorted symbols (or important information that can
be used to recover the input symbols, when considering the nonlinear magnitude and phase
distortions). A small channel delay may cause the the decimator output become highly
distorted. This distortion is much more severe in high-frequency than in low-frequency
subchannels because §;(n) of high-frequency subchannels fluctuate much more rapidly than
that of low-frequency subchannels. In light of this fact, more attention should be paid to
the channel phase response when equalizing a channel in filterbank-based DMT systems.
If the characteristics of the channel phase response can be fully exploited, efficient equal-
ization techniques can be found by compensating the channel delay to restore correct time
synchronization of the decimator so as to match the channel delay.

Another useful conclusion can also be drawn from the above discussion. Note that the
channel delay can be decomposed into two parts, an integer multiple of M (m;M) and a
principle-value delay d; ( c.f. Eqn (4.7) ). Because decimators are used in the filterbank-
based DMT system, m;M will only delay the system output by m; samples, and would not
distort the system output. It is the principle-value delay d; which leads to the distortion
in the system output (c.f. Eqn (4.9)). Therefore, the effect of the channel delay d; exhibits
the periodic-like property, i.e. after subtraction of suitable integer multiples of M, d; can
always be represented by (“mapped to”) its principle-value delay d;, which can be related
to one or some of the M polyphase components of g;(n). Then, the channel equalization
can be restricted in a limited range of delay (0, ..., M- 1) and simplify the equalization.
Specifically, the channel equalization can be done by using one or some of the M polyphase
components of g;(n).

Note that the above discussion does not consider the case of d; being a non-integer.
This case will be discussed in Chapter 5, where a new interpolation equalization technique

is proposed.
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4.2 Channel Phase Response — Linear or Nonlinear?

The channel used in the filterbank-based DMT system is often assumed to be a linear
phase channel. However, this assumption does not hold true in practical situations. As an
example, the frequency response of the standard channel Carrier Serving Area (CSA) loop*

#1 is shown in Figure 4.3.

Channel Frequency Response
0 T T i T T T T T T

Magnitude (dB)

- : i 1 i i 1. { i
[ 0.1 0.2 0.3 0.4 0.5 0.6 07 08 0.9 1
Normalized Frequency {xr rad/sample)

Phase (degrees)

Frequency

Figure 4.3: Frequency response associated with CSA loop #1

The channel phase response shown in Figure 4.3 looks as if it is linear, but actually it
is not. A channel is linear phase if and only if its group-delay is a constant number. The
group-delay of CSA loop #1 is shown in Figure 4.4, together with an enlarged portion in
Figure 4.5. It is clear that even in view of the large frequency scale, this channel cannot be
treated as linear phase because there is steep decrease at the low frequency band®, as well
as two dips around w = 0.227 and w = 0.687, respectively, and rapid fluctuations at high-
frequency band. Moreover, even in the frequency region which is roughly flat in view of the
large frequency scale, for example the area around 0.57, the group-delay is also fluctuating
and cannot be treated as linear from the view of small frequency scale (c.f. Figure 4.5).

Same conclusion can be drawn regarding other practical channels. Generally, the phase
response of an actual channel cannot be treated as linear because the channel impulse
response is neither symmetric nor anti-symmetric [5].

Generally, it is difficult to equalize the channel phase response using a single pre-

detection equalizer when the channel phase response is nonlinear. However, because the

“The data for CSA loops as used in this thesis comes from the DMT Toolboz designed by Guner Arslan,
et al., Embedded Signal Processing Laboratory, Department of Electrical and Computer Engineering, The
University of Texas at Austin, under the terms of the GNU General Public License.

5This is because of the AC property inherited in the twisted copper line.
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Figure 4.4: Group-delay associated with CSA loop #1
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Figure 4.5: Enlarged illustration of the group-delay for CSA loop #1 around frequency
w = 0.57

channel phase response can be approximated as piecewise linear, it can easily be equalized

piece by piece, or subchannel by subchannel, in filterbank-based DMT systems.

4.3 Pre-Decimation or Post-Decimation Equalization

As discussed above, each subchannel needs a separate equalizer at the receiver to equalize
the channel distortion. Generally, there are two locations at the receiver to put the equal-
izer. One location is before the decimator, which is referred to as Pre-Decimation Equal-
ization. The other location is after the decimator, which is referred to as Post-Decimation
Equalization. The pre- and post-decimation equalizations are shown in Figure 4.6, where
EQyg, ..., EQps_; represent equalizers.

The main drawback of the pre-decimation equalization is that there are too many un-
wanted symbols mixed with the desired symbols taking part in the equalization, leading to

high computation complexity. On the other hand, the main drawback of the post-decimation
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Figure 4.6: Pre-decimation and post-decimation equalizations

equalization is that the output of the decimator may be unwanted symbols that are severely
distorted from the input symbols, which leads to a lowered output SNR.. Therefore, a better
approach is to combine the pre- and the post-decimation equalization together by fully ex-
ploiting the characteristic of the channel phase response, paving the way to the development

of efficient equalization techniques.

4.4 Integer-Delay Equalization

In Case 2 in Section 4.1, the channel was assumed to have a (piecewise) constant integer
delay. Then, in each subchannel, one polyphase component of the analysis filter output
contains undistorted input symbols. If the assumption of the constant integer subchannel
delay is acceptable, then, instead of using a decimator, a certain polyphase component of
the analysis filter output can be picked out to recover the input symbols. This leads to the
integer-delay equalization technique with no additional cost.

The integer-delay equalization technique is the direct implementation counterpart of
the wavelet packet-based equalization algorithm proposed in [21] where the channel is un-

known and the equalization only depends on the statistics of the output. The integer-delay
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equalization technique has the same disadvantage as the wavelet packet-based equaliza-
tion technique, i.e., the performance measured by the Signal-to-Interference Ratio (SIR) in
noiseless environment may be low and can only be used for binary or low bit-rate input
cases. However, this equalization technique has the advantage of very simple implementa-
tion. It is a good starting point to derive the interpolation equalization technique which
can obtain high SIR with limited complexity. The interpolation equalization technique will
be introduced in Chapter 5.

The block diagram of the integer-delay equalization technique is shown in Figure 4.7. In

4 is inserted before the decimator®, where a; and d;

each subchannel, a 1-tap equalizer a;z
(d; is an integer) are used to compensate the channel magnitude distortion and the channel

delay in the i-th subchannel, respectively.

e(n)

. mj | ey

Synthesis Analysis
Filterbank Channel Filterbank

Figure 4.7: Integer-delay equalization technique

In the i-th subchannel, by ignoring the channel noise, the z-transform of §;(n) can be

written as:
M-1

X (2 (2)aiz® . (4.10)

m=0
When synthesis and analysis filterbanks are carefully designed, ICI can be ignored and Eqn
(4.10) can be simplified as

Yi(2) = a; Xi(zM)Sii(z) 2% . (4.11)

Decomposing d; by using Eqn (4.7), the z-transform of the system output Z;(n) can be
expressed as

Xi(2) = a; X;(z) 2™ (Sii(z)zdi>lM = aiXi(z)zmiSi(gi)(z) . (4.12)

If the channel effect in the i-th subchannel is fully equalized by the 1-tap equalizer a;z%,

the system output X;(z) is equal to the system input Xi(z). Then, by letting Eqn (4.12)
be equal to X;(z), one can say that Sj;(2)z% is a delayed and scaled Nyquist (M) filter [52]

SWithout loss of generality, suppose d; > 0.
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in accordance with
1

(sﬁ(z)zdi)lM = W) (z) = —m (4.13)
Therefore, in time-domain, the d;-th polyphase component of s;;(n) is a delayed (and scaled)
0 function (a%é(n —m;)). If d; is known, one can use the d;-th polyphase component of
#i(n) as the recovered symbols’. In light of this, the equalization objective now becomes
finding which polyphase component of s;;(n) is a delayed ¢ function.

Suppose the channel impulse response is known. Then, s;;(n) is also known. By decom-
posing s;;(n) into its M polyphase components {sgn) (n)} (m =0, ..., M — 1), the objective
of the integer-delay equalization technique is to find an optimal polyphase components of
ii(n) which is most similar to a (delayed and scaled) ¢ function. The modified filterbank-

based DMT system incorporating the integer-delay equalization technique is shown in Figure

4.8.

Ty(n) _@ Zgo(n) W’ . ] H yo‘(") _|\_ Eon mo(n)ﬂ
- B A0 4,(n)
w0 [ O —{ Ao B, P
: e(n) .
M@ e @) “’t%ﬁ C_(; "J} y—(ﬁ Hy (2 }’—’lyMVI ® EQ,, iﬂl—l(ﬁ)’
Synthesis Filterbank Channel Analysis Filterbank

Figure 4.8: The modified filterbank-based DMT system incorporating equalizers

In each branch of the modified filterbank-based DMT system receiver, the decimator
used in the original filterbank-based DMT receiver (see Figure 2.7) is replaced by an integer-
delay equalizer. The block diagram of the i-th integer-delay equalizer EQ, is shown in
Figure 4.9. In this figure, a S/P converter is used to parse §;(n) (see Figure 4.8) into
its M polyphase components. Then, one polyphase component, say the d;-th polyphase
component ( ggd")(n) ), that corresponds the optimal polyphase component of s;i(n) is
picked out as the recovered symbols after being scaled by a;.

The algorithm for finding d; and the corresponding a; is as follows:

1. Calculate s;;(n) using Eqn (2.30) where m = i. Then parse s;;(n) into its M polyphase

components, {sgn) (n)}, where sgim) (n)=su(nM+m)and m=0, ..., M — 1.

"Note that in original filterbank-based DMT systems (c.f. Figure 2.7), the system output is the 0-th
polyphase component of §;(n).
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Figure 4.9: The ¢-th integer-delay equalizer

2. Find the maximum of each sgn) (n), and denote it as sgn) (nm). Then 1/ sgn) () is a

candidate for a;.

3. Normalize each s(m)(

i

{s4" (n) /50 (nm) }.

n) such that its maximum sample value is equal to 1, i.e. calculate

4. Search the above normalized polyphase components of s;;(n) to find an optimal one,

say the d;-th polyphase component, which mostly resembles a delayed § function.

5. After finding d;, pick up the d;-th polyphase component of §;(n) and scale it by the

corresponding a; ( =1/ sg")(ndi) ) as the recovered symbols.

In Step 4, the optimal d; can be found by minimizing the co-norm or 2-norm of the

error sequence rpm ;(n), where rp, ;(n) is defined as

s s )
Tmi(n) = —24——— —6(n — npm), (4.14)
' (m)
Sii (Tm)
where
sgn)(nm) = max sz(-im) (n), (4.15)
with n,, representing the sample index of the maximum of sgn ) (n).

Minimizing the oo-norm of r;(n) corresponds to the Minimax optimization [9], having

the objective function
min {mgx {|rm7i(n)|}} . (4.16)

On the other hand, minimizing the 2-norm of r;(n) corresponds to the MMSE optimization,

having the objective function

min {Z |7‘m7i(n)|2} : (4.17)
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4.5 Simulation Results

In this section, it is assumed that system inputs {z;(n)} for various subchannels are mutually
uncorrelated. Also, it is assumed that all input symbols within each subchannel are mutually
uncorrelated. The filterbank-based DMT system uses critically decimated CMFB as its
modulator/demodulator, where the design parameters of the CMFB are as listed in Table
4.1. Channels used in this simulation are standard CSA loops #1-#8 and are assumed to

be noiseless. Their impulse and frequency responses are shown in Appendix A.

Design approach Kaiser windowing [33]
DMT prototype filter | Sidelobe attenuation A5 (dB) | > 50
Filter length 12M

Table 4.1: CMFB design parameters for simulation of integer-delay equalization

In the following, the output SIR for different channels and for different M are compared,
where the output SIRs are defined as

B {lzi(n) |
B {Jzi(n) - &:(m)*}

Figures 4.11 and 4.12 show the output SIRs for CSA loops #1-#8 when M = 64. As

SIR; £ for e(n) =0. (4.18)

comparison, the SIR for the case of an ideal channel ( ¢(n) = §(n) ) is shown in Figure 4.10.
In this case, no equalizer is needed and the output SIR is 42 dB8. Although the SIRs in
Figures 4.11 and 4.12 are much lower than 42dB, the SIRs of most subchannels are around
15-30dB, which means that the integer-delay equalization technique is at least suitable for
binary and low bit-rate input cases.

To compare the relationship between the SIR and the subchannel number M, Figure
4.13 shows the output SIRs for CSA loop #1-#4 when M = 128. Compared to the SIRs
in Figure 4.11, one can see that the SIR ratio becomes higher when M increases. This is
because the error of the piecewise linear phase approximation decreases when the number
of subchannels increases.

A question arises when comparing Figures 4.11 and Figure 4.13: why are there several
subchannels whose SIRs remain significantly low even for large M7 Candidate examples
for this question are subchannels #11, #22, #32, #33 and #39 of CSA loop #1 in Figure
4.11a, which are the counterparts of subchannels #22, #43, #64, #65, #77 of CSA loop #1

8The SIR for the ideal channel is only 42dB because here the CMFB used in the filterbank-based DMT
system is a pseudo PR filterbank [52]. For PR filterbank, the SIR for ideal channel is infinity, i.e. no
interference exists in the system output.
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Subchannels

in Figure 4.13a. To answer this question, the channel phase response and the assumption
of integer d; used in the integer-delay equalization technique has to be re-examined, and

the effect of non-integer channel delay has to be considered.
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Figure 4.11: SIRs for integer-delay equalization for CSA loops #1-#4 when M = 64
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Figure 4.12: SIRs for integer-delay equalization for CSA loops #5-#8 when M = 64
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Figure 4.13: SIRs for integer-delay equalization for CSA loops #1-#4 when M = 128
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Chapter 5

Channel Non-Integer Delay and
One-Tap Interpolation
Equalization

In the investigation of the effect of channel phase response in Chapter 4, the case where
the subchannel delay d; is a non-integer number was temporarily deferred. In practical
situations, the subchannel delay is usually non-integer. In this chapter, the effect of non-
integer delay will be investigated in detail. Then, a novel one-tap interpolation equalization
technique [59] and its generalization, the multi-tap interpolation equalization technique [58]
(Chapter 6), are proposed for DMT systems employing critically decimated filterbanks.
This technique is based on the equalization of the channel fractional delay in each sub-
channel in time synchronization with the constituent decimator at the receiver end. This
time synchronization is achieved through the exploitation of a subset (i.e. several polyphase
components) of the signal samples of the analysis filter output (before decimation). The
resulting equalization gives rise to a high SNR, while requiring a small number of equalizer
taps. Moreover, it permits a tradeoff between various equalization parameters, leading to
high computational flexibility. Generally, a complete search for the optimal polyphase com-
ponents has to be done to obtain the maximum SNR. However, a significant simplification
of this search can be achieved through constraining the search to within the channel lower
and upper group-delay bounds within each subchannel.

As in Chapter 4, the DMT system under consideration employs critically decimated
filterbanks (c.f. Figure 2.7 with the condition N = M), while the synthesis and analy-
sis filterbanks (F,(z) and H;(z) where m,i = 0, ..., M — 1) are assumed to satisfy the
biorthogonality property. Also, M will be used as the expansion/decimation ratio. The

block diagram of the DMT system using critically decimated filterbanks is drawn in Fig-
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ure 5.1. Some useful notations from Section 2.3 are repeated in the following for ease of

reference.

% Zgo (1) 'D&Z) 5 —'L Hoiz) LO(,,), Y ﬁ,(nl
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e(n)
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Synthesis Filterbank Channel Analysis Filterbank

Figure 5.1: Block diagram of the DMT system using critically decimated filterbanks

Gmi(2) 2 Fin(2)Hi(2), (5.1)

Smi(z) & Fin(2)C(2)Hi(2) = Gmi(2)C (2), (5.2)
M-1

Yi(z) = > Xn(z")Smi(2) + E(2) Hi(z) - (5.3)
m=0

By ignoring the ICI and channel noise, Eqn (5.3) is approximated as

Yi(2) = X;(2M)S5(z2) . (5.4)
By decomposing Y;(z) into its M polyphase components, the k-th polyphase component
can be written as

79 (2) = Xi(2)8F(2). (55)

k2
Once again, the channel is approximated as having piecewise flat magnitude response
and piecewise linear phase response!. In the i-th subchannel (i = 0, ..., M —1), the approx-
imated subchannel magnitude and subchannel delay are denoted as C; and d;, respectively.

Then, Eqn (5.4) becomes
YZ(Z) ~ X@(ZM)SM(Z) 7 CZXz(zM)Gn(Z)Z—dZ . (5.6)
5.1 Interpretation of Fractional Delay in Discrete Domain

A non-integer delay is not defined in discrete domain. However, by using the concept of

Continuous-Time Processing of Discrete-Time Signals ([41], Chapter 4), a non-integer delay

'If any of these two assumptions is not satisfied, the one-tap interpolation equalization technique being
proposed in this chapter will give rise to relatively low output SNR (c.f. the simulation results in section
5.3.2). However, if the above assumptions are not satisfied, one can instead use the multi-tap interpolation
equalization technique to obtain the desired high output SNR (c.f. Chapter 6).
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becomes meaningful and helpful in practical applications.
A signal z(n) may be visualized as discrete samples of an underlying continuous-time

signal z.(t) in accordance with
z(n) = 2c(nT") = Tc(t)|i=nT (5.7)

where T represents the sampling period. Then, if z.(t) is delayed by tg, the corresponding

discrete-time signal, denoted by Z(n) becomes

. to
= Ze(t = to)lianT = Te(nT — o) = ~ 7
500) = 2l — o)l = w(nT = t0) = 2e{(n ~ 22)T) 55
=z(n—d),
where d £ to/T" is the delay between #(n) and z(n). Obviously, if to # kT (k is an integer),

then d becomes a non-integer delay.

5.2 Effect of Channel Non-Integer Delay

Consider the case where d; > 0 is a non-integer number. In this case, no polyphase com-
ponent of §;(n) is equal to x;(n). Specifically, let d; = d; + &, where d; is an integer and
|€;] < 0.5. Then, an integer-delay equalizer can only compensate the integer part d;, and
the fractional part &; will cause the system output to be distorted from the corresponding
system input. This distortion depends on the amount of the remaining subchannel delay
as well as on how rapidly s;(n) fluctuates. Generally, if |§;| < 0.5 and/or s;;(n) fluctuates
relatively slowly, the output distortion is relatively small. Otherwise, the output distortion
is large. Figure 5.2 illustrates the effect of the non-integer channel delay when M = 2 and
the channel magnitude response is assumed to be 1. The dashed curve represents g;;(n) and
the solid curve represents s;;(n). The circles on the dash curve represent (gi(n)) ,, while
the circles on the solid curve represent (s;i(n)) ;- The delay between g;i(n) and s;(n) is
roughly 0.5 sample, i.e. d; =~ 0.5.

From Figure 5.2, it is clear that (gii(n)), is a delayed § function ( = d(n —4) ).
However, (s;(n)) |, is far from such a § function and no polyphase component of s;;(n) can
be approximated as a (delayed) ¢ function, although d; =~ 0.5 is quite small.

When d; is a non-integer number, all polyphase components of §(n) are distorted from
zi(n). However, some of the polyphase components of §(n) still embody important infor-
mation about x;(n) (will be explained later in this section). By taking this into account, the

system input can still be recovered from the combination of several polyphase components

of gi(n).
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Figure 5.2: Effect of non-integer channel delay

First, suppose that fﬁ(z) can be advanced by a non-integer advance component? z% to

fully compensate for the subchannel delay d;. Then, from Eqn (5.6) one has
(Y’i(z)zdi) = i Xi(2), (5.9)

or in time-domain

G+ di)) gy = 50 (0 + di) = CiXi(2), (5.10)

i.e. the 0-th polyphase component of §;(n + d;) is a scaled version of the input symbols

Generally, a fractional delay (or, equivalently, a fractional advance) all-pass filter is
difficult to implement. Numerous techniques were proposed in this topic [16] [19] [27] [34]
[35] [42]. Most of these techniques are based on interpolation of time-domain samples.
However, all of them are impractical to be used in DMT systems. On the other hand, the
fractional delay component is not a necessary part in our equalizer because the only purpose
of equalization is to recover the input signal. Any approach can be used to substitute the
fractional delay component as long as the input signal can be recovered. Also, in xDSL
applications, usually, the channel impulse response can be found during the initialization
of the xDSL modem?3. Therefore, instead of implementing a fractional delay all-pass filter,
one can exploit the idea of sample interpolation as well as the effect of channel delay in

filterbank-based DMT systems to find an efficient equalization technique.

2 Although the advance component is noncausal, one can employ it through adding an extra delay 2.
3For those applications that the channel impulse response cannot be known in advance, blind equalization

techniques have to be used [46].
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From the view of Continuous-Time Processing of Discrete-Time Signals, one has

i(n) = Jei(nT) = §e,i(t) lt=nt, (5.11)
371 (TL + di) = gc,i(nT + dzT) = gc,i (t —+ diT)|t=nT s (5.12)

where T is the sampling period, and . ;(t -+ d;T") is a continuous-time signal advanced from
the continuous-time signal §.;(t). Note that the shape of §.;(t + d;T') is the same as that
of §e;(t) regardless of the value of d;. Then, §;(n) and §;(n +d;) can also be treated as two
different sample sets of the same continuous-time signal . ;(t), which are sampled
at different time instants. Therefore, §;(n + d;) can be obtained through interpolation of
¥i(n) samples.

Now suppose d; = dijo + d;1, where djg > 0 is an integer number, and 0 < dj; < 1.
Then, given an arbitrary integer sample index ng, gi(no + dio) and g;(no + dio + 1) are
two neighboring samples of the g;(ng + d;) sample. Therefore, §;(ng + d;) can be obtained
by using two-point interpolation of §;(ng + dio) and §;(ng + dio + 1). An illustration of
interpolation is shown in Figure 5.3. In this figure, two sample series §;(n) and g;(n + d;),
as well as the corresponding continuous time signal g ;(t), are drawn together. On the curve
Jei(t), “o” represents the sample of §j;(n) while “¢” represents the sample of ¢;(n + d;).
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Figure 5.3: Illustration of sample interpolation

Consider the sample point yo and its two neighbors y; and ys, which correspond to

gi(no +di), Gi(no + dio) and §;(ng +dio + 1), respectively. By using two-point interpolation?

4Generally, interpolation involving more than two points leads to nonlinear equalization.
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of §;(ng + dio) and §;(no + dip + 1), Js(no + d;) can be approximated as

- - to—1 - to—t
Gi(no + di) = Gi(no + dig) ~——= + §i(no + dio + 1) S
t1 — 12 to — 11 (5'13)
= @iofi(no + dio) + aadi(no + dio + 1),
where a;p and a;1 are defined as
~ A tO - t2
0 = 5.14
a50 tl — t2 ) ( )
. ato—1t1
1= —, 5.15
a1 tg 4 ( )

and |aiol, di1] < 1.

After finding ¢;(n + d;) by sample interpolation, the system input can be recovered
using Eqn (5.10). However, not all samples of §;(n +d;) need to be obtained. As mentioned
before, 7;(n + d;) is the combination of desired symbols z;(n) and a large number of other
unwanted symbols interleaved together. Therefore, from Eqn (5.9), only samples of the 0-th
polyphase component of ¢;(n + d;) have to be obtained.

In accordance with the above discussion, the input symbols can be recovered as

1 . - -
zi(n) = (5%(” + di)) = aio (Ji(n + dio)) y + air (Gs(n+dio + 1)) 15, (5.16)
i M
where
a0t La, (5.17)
0 — Cz 30 5 .
A 1 5 (5 18)
agl = Ciazl .

are weighting coefficients (to be determined later). Now let us decompose d;p into two parts,

dio = mi;M + l;, where m;,l; > 0 are two integers. Then, Eqn (5.16) becomes

xi(n) = aio (Gi(n +miM + 1)) 5 + @i (Galn +miM + 1+ 1)) 5y

(5.19)
= aw??@(li)(n +m;) + ai1@§li+l)(n +m;),
or in causal form
zi(n —m;) = aioﬂgli)(n) + ailg)i(liﬂ) (n), (5.20)
where
) i), =0,.., M -2,
i (n) = o (5.21)
31On+1), L=M-1,
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i.e. whenl; = M -1, gjgl"ﬂ)(n) has to map to the 0-th polyphase component with 1 sample

advanced ( :&50) (n+1)).
Eqn (5.20) indicates that the input symbols can be recovered by summing together
two scaled polyphase components of §;(n), leading to a one-tap interpolation equalization

technique.

5.3 One-Tap Interpolation Equalization

The one-tap interpolation equalization technique uses the interpolation of two certain neigh-
boring polyphase components of the analysis filter output to compensate for the channel
non-integer delay and recover the system input. It may result in relatively high performance
quantified by the system output SNR. With the structural modification of the original
filterbank-based DMT system, the computational complexity of this equalization technique
is very low. In this section, the optimal equalizer coefficients are found by using MMSE op-
timization. Then, the relationship between the channel group-delay and the optimal index
of the polyphase components chosen for equalization is obtained. This relationship can be

exploited to accelerate the equalizer training procedure.

5.3.1 Optimal Equalizer Settings under MMSE Criterion

The modified structure of the DMT system employing critically decimated filterbanks and
a set of one-tap interpolation equalizers is the same as Figure 4.8 in Section 4.4. Presently,
the equalizers {EQ,} (i =0, ..., M — 1) in Figure 4.8 are one-tap interpolation equalizers.

The block diagram of the i-th one-tap interpolation equalizer is shown in Figure 5.4.

Gy
AN Q) %
§,(n) |Serial-to-|  * M-input- | 9% @) —L;ﬁi(n)
¢ ’%9 U

Parallel . 2-output
Converter Selector a

0 3
g ()

Figure 5.4: The ¢-th one-tap interpolation equalizer

In this figure, the output ¢;(n) of the i-th analysis filter is parsed into its M polyphase
components. By using a M-input-2-output selector, two polyphase components ( gjgli)(n),

and® y)l(liﬂ) (n) ) of §i(n) are selected, weighted by the corresponding 1-tap equalizers ao

53}5”4'1)(71) is defined in Eqn (5.21).
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and a;;, and subsequently summed together to produce the recovered symbol &;(n). Three
parameters have to be determined during equalizer initialization, which are the polyphase
component index I;, and the equalizer coeflicients a;y and a;;.

The equalizer output Z;(n) can be written in z-domain as

Xi(2) = an¥, " (2) + a1 VTV (2). (5.22)
In this section, it is assumed that the filterbanks used in the DMT system are well designed
such that no spectral overlap exists and the ICI can be neglected. Also, suppose the channel

is noiseless®. Then, by substituting Eqns (5.5) and (5.21) into Eqn (5.22), one has
Xi(2) = Xi(2) (a0 (2) + 0 55 (2)) | (5.23)

where

A SEG), =0, .., M -2,

S ) = (5.24)
SO, L=M-1.

Rewriting Eqn (5.23) in time-domain, one has

#i(n) = 2i(n) * (aiosf (1) + ansf T (m)) (5.25)
where )
s (n), 1;=0,.,M-=2,
Emy =4 " (5.26)
s$On+1), L=M-1,

ie. sgiﬂ) (n) also has to map back to the 0-th polyphase component with 1 sample advanced
( sgiﬂ)(n +1) ) whenl; = M — 1.
Now, define the error sequence between the recovered symbols and the corresponding

input symbols as

g

ri(n) £ Zi(n) —zi(n — k;) , (5.27)

where k; represents the relative delay between recovered and input symbols. Without loss
of generality, suppose sg’)(n) and §§éi+1)(n) have the same lengths Ly. Then, 0 < k; < L.

The optimal a0, a;1 and {; can be found by minimizing MMSE r;(n). Note that when
r;(n) is minimized, the recovered symbol Z;(n) is approximately equal to the corresponding

delayed system input symbol z;(n — k;). Then, from Eqn (5.25), one has

ains (n) + a3l (n) ~ 8(n — ki), (5.28)

5The generalization to the case when both ICI and channel noise are considered will be deferred to Section
6.
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which means that the ISI is approximately eliminated by using two-point interpolation of
two polyphase components of the overall transfer function S;;(2). As mentioned above, the
ICI is also eliminated with the assumption of no spectral overlap. Therefore, the system
input can be recovered after equalization.

First, let us rewrite Eqn (5.25) in matrix form, in accordance with

xi(n)
Zi(n) = apo [sg’) o) --- sgzl.i)(Ls - 1)} :
zi(n— Ls+1)
zi(n)
+ a1 [égﬁl)(o) .. §§£i+1)(LS _ 1)] (5.29)
xz(n — L, + 1)
S0 - s - ()
= [ai aa) et ) () : ,
i (0) -+ 87 (Ls—1) zi(n — Ls+ 1)

&i(n) = A\Sgai(n), (5.30)
where
&‘Fﬂ’@‘ s(0) éﬂu—n,
o §©) - s, -
and
2i(n) = [zi(n) - m(n—Ly+1)]".

By substituting Eqn (5.30) into Eqn (5.27), r;(n) becomes
ri(n) = Zi(n) — z;(n — k;) = A} Sy xi(n) — u%zwl(n) , (56.31)

where uy, representing the k;-th unit vector [leki 1 le(Ls_ki"l)],' Then, the MSE of

ri(n) can be obtained as
MSE; 2 B [|ri(n)|?]
=F [(A; Sii xi(n) — uy,xi(n)) (A] S xi(n) — ufczmz(n))/]) (5.32)
= A}SiR() S} A — 2A[Si R wy, + wj,, R{Duy,,

where R%) represents the autocorrelation matrix of #;(n) in accordance with
R 2 Elg;(n)a!(n)]. (5.33)
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The optimal solution of Eqn (5.32) can be found by letting the partial derivative of
MSE; with respect to A; equal to zero, yielding

S;RWSLA; = S Ry, . (5.34)
Then, A; and MSE; become
A; = (SRS}, Su R uy, , (5.35)

MSE; = 'u’;c,,;R(ii)ukz‘ — ALS; Ry,

T T

) - y -1 y (5.36)
v (B9 - s (5.5t R )

Note that because Sj; is determined by {;, the MMSE of r;(n) depends on the choice of
l;. Moreover, for a given l;, the MMSE of r;(n) also depends on k;. The optimal k; can be
obtained in a straightforward fashion as follows.

Let us define A; a1 as
A an = (SuR®S,) 18, R . (5.37)
Then, Eqn (5.35) can be rewritten in the form
A; = A anug,, (5.38)
while Eqn (5.36) becomes

MSE; = uj, (I — A} ,1Su) R uy,

%, all

(5.39)
= uﬁcl&ukz s
where I is the L x L, identity matrix and &; is defined as:
& = (I - Aj ,ySi)RE . (5.40)

Now, the MMSE of r;(n) is the entry with the minimum value on the main diagonal of &;,
ie.

MMSE; = min {diag(&;)} , (5.41)
where diag(-) represents the main diagonal of the matrix (-). The optimal k; becomes the

index that achieves the MMSE, in accordance with
ki opt. = arg 0<min {diag(&)}. (5.42)
After finding k; opt., the optimal equalizer coeflicient matrix A; becomes

Ai,opt. = Ai,all uki,opt, . (543)
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Now assume that all inputs for various subchannels are mutually uncorrelated, and that
all inputs within each subchannel are mutually uncorrelated having a constant PSD o2 over

full channel bandwidth. With these assumptions, ing? can be simplified as:

R = 521 (5.44)
Then, Eqn (5.37) and Eqn (5.40) can be simplified as:
A = (SuS5;) ' S, (5.45)

and

& =02(I — A} ;1Si) . (5.46)

Therefore, the optimal equalizer coefficient matrix A; op. and the MMSE of r;(n) are sim-
plified as
Aiopt. = (Siisz{i)_—lsiiuki,opt, 1 (5.47)

and

MMSE; = 02(1 — AjSiux, ., ) - (5.48)

To find the optimal equalizer settings, a search for all possible l; € {0, ..., M — 1} is
needed to find the MMSE between the system input and the corresponding system output.
When M is large, the search for /; involves a heavy computational task. But as the channel
is known, its characteristics can be fully exploited to narrow down the search space for I;.
A discussion of the relationship between the optimal /; and channel group-delay is given in
Section 5.3.3.

It should be noted that as A; consists of only two coefficients a;o and a;1, its computa-
tional overhead is very low. It should also be noted that the adverse effect of subchannel
magnitude and phase distortions becomes relatively more pronounced as the number of
subchannels M becomes smaller, mainly due to the fact that the subchannel cannot be
approximated as a delayed ideal channel any longer. In such situations, the one-tap inter-

polation equalization technique should be extended to multi-tap equalization.

5.3.2 Simulation Results

In this section, all assumptions and design parameters are the same as those in Section
4.5. Also, the output SIRs for different channel cases are compared in this section with the
assumption of noiseless channel. Figures 5.5-5.8 show the output SIRs for CSA loops #1,
#2, #3, and #6 when M = 64 and M = 128. The SIRs for other CSA loops are shown in
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Figure 5.5: SIRs for one-tap interpolation equalization for CSA loop #1 when M = 64 and
M =128
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Figure 5.6: SIRs for one-tap interpolation equalization for CSA loop #2 when M = 64 and
M =128
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Figure 5.7: SIRs for one-tap interpolation equalization for CSA loop #3 when M = 64 and
M =128
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Figure 5.8: SIRs for one-tap interpolation equalization for CSA loop #6 when M = 64 and
M =128
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a) SIR for CSA loop #4
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c) SIR for CSA loop #7
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b) SIR for CSA loop #5
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d) SIR for CSA loop #8
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Figure 5.9: SIRs for one-tap interpolation equalization for CSA loops #4, #5, #7, and #8
when M = 64 and M = 128

Figure 5.9. In these figures, the dash-dot curves (or dotted curves in Figure 5.9) represent
the SIRs for M = 64 while the solid curves represent the SIRs for M = 128. Note that
the subchannel numbers for M = 64 are scaled by 2 in order to be consistent with the
subchannel numbers for M = 128. In case of an ideal channel ( ¢(n) = 6(n) ), the SIRs for
both M = 64 and M = 128 are about 42 dB (c.f. Figure 4.10).

From these figures, one can see that the one-tap interpolation equalization can obtain a
moderate SIR ratio. In each channel case, the SIRs for most subchannels are higher than
30dB. Some of them are close to the SIR of the ideal channel case, which are determined
by the design of the CMFB”. Also, with increasing M, the output SIR increases. One can
expect that with a better design for CMFB that makes the CMFB closer to a PR filterbank,
the output SIR will be higher.

Next, by comparing SIRs in Figures 5.5-5.9 with channel group-delays shown in Ap-
pendix A, it is clearly noticed that the output SIRs are also determined by the channel
group-delay. For example, in Figure A.lc, the group-delay of CSA loop #1 has two dips

around w = 0.227 and w = 0.687, respectively. In the regions around these two frequency

"Recall that the CMFB used here is a type of pseudo PR filterbank. Therefore, distortions (although
very small) exist in the system output.
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Figure 5.10: SIRs for one-tap interpolation equalization for CSA loop #1 where M = 64,
and g = 12,8, 6,4 (top to bottom)
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Figure 5.11: SIRs for one-tap interpolation equalization for CSA loop #3 where M = 64,
and g = 12,8,6,4 (top to bottom)
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points, the channel group-delay has large fluctuation. This means that the assumption of
the subchannel linear phase response is not satisfied in these frequency regions. Therefore,
in Figure 5.5, the SIRs of subchannels #20-#30 and #70-#90 for M = 128 (or subchannels
#10-#15 and #35-#45 for M = 64, which are subchannels whose center frequencies are
around w = 0.227 and w = 0.68m, respectively) are relatively low. On the other hand, the
channel group-delays of CSA loops #3, #6, and #8 (c.f. Figures A.3c, A.6c, and A.8c,
respectively) are relatively flat (i.e. the assumption of the channel linear phase response
is satisfied very well®). Therefore, the corresponding SIRs (c.f. Figures 5.7, 5.8, and 5.9d,
respectively) are relatively high and have no dips. With this comparison, one can conclude
that the performance of the one-tap interpolation equalization (measured by the output
SIR) is highly determined by the channel group-delay. Moreover, there is also a simple
relationship between the channel group-delay and the optimal [; (the index of the optimal
polyphase components of the analysis filter output used for equalization). This relationship
will be shown in Section 5.3.3.

Besides the number M of subchannels and the channel group-delay discussed above, the
output SIR is also affected by the ICI. Note that the ICI is determined by the level of the
spectral overlap between two subchannels. The larger the spectral overlap, the more severe
is the ICI. For CMFB system, recall that the spectral overlap is determined by the overlap
factor g (c.f. Section 2.5.2). Then, the output SIR is affected by the overlap factor g. Figures
5.10 and 5.11 show the relationship between the output SIR and various g for CSA loops
#1 and #3 when M = 64. In each figure, the four curves, from top to bottom, represent the
SIRs for g = 12,8, 6,4. One can see that with g increasing (i.e. the length of the prototype
filter increasing and the spectral overlap decreasing), the output SIR increases. Note that
in both figures, the output SIR for ¢ = 12 is very close to that for g = 8. This is because in
the frequency domain, two neighboring filters of CMFB cross at their cut-off frequencies,
which means the spectral overlap always exists no matter how sharp the transition band of
the prototype filter is. Therefore, after the length of the prototype filter exceeds a special

limit, the spectral overlap (and then the ICI) would not significantly decrease.

5.3.3 Relationship between Optimal /; and Channel Group-Delay

As mentioned in Section 4.1, in each subchannel of a filterbank-based DMT system, the

channel effect can be approximated as piecewise flat magnitude and piecewise linear phase

8A similar conclusion can also be drawn for these channels by examining the magnitude responses of
these channels.
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response in accordance with Eqn (4.2). Although the subchannel approximation of |C(e?*)]
by C; is quite acceptable, experimental investigations indicate that the subchannel approx-
imation of ¢(w) by d;w maybe quite inaccurate. This is due to the fact that although ¢(w)
is approximately a straight line, it possesses ripples that cannot be neglected.

Let w1 < wp < wy represents an arbitrary frequency in the i-th subchannel frequency
band, where wy and wy are the left and right cut-off frequencies of the i-th subchannel,
respectively. Then, the channel phase response within this subchannel can be written in

the form

$(w) = (wo) + ¢/ (wo) (w — wo) + o((w — wp)?)

¢(w0) ¢I(WO)> wo + O((W - w0)2) )

4
— ¢ (wow + (w_o _ (5.49)

where w; < w < wa, ¢ (wp) is the first order derivative of ¢(w) with respect to w at w = wp.
By definition, ¢'(wo) represents the channel group-delay at w = wp. Similarly, ¢(wo)/wo
represents the channel phase delay at wg. In this way, once the frequency wp has been fixed,
the second term in the right hand side (RHS) of Eqn (5.49)becomes a constant (independent
of w). Based on the specific choice of wp, the second and third terms in the RHS of Eqn

(5.49) can be ignored and the subchannel phase response can be approximated as:

P(w) ~ ¢ (wo)w . (5.50)

In this way, the equalization has to compensate for ¢'(wp).

Eqn (5.50) means that the optimal I; can be represented by ¢’(wp), which implies that
the optimal [; is within the range of subchannel group-delay. Now, if the range of the
subchannel group-delay is known, only those I; within this range need to be searched to
find the optimal I; (instead of searching through all M possible I;). Thus, the training of
equalizers can be significantly simplified.

Figure 5.12 illustrates the relationship between the optimal /; and the channel group-
delay for CSA loop #1. The grey curve represents the channel group-delay for CSA loop
#1, and the black curve represents the optimal ;. It is clear that the optimal l; of most
subchannels are within the range of channel-group-delay. To further avoid the possible
deviation between the optimal /; and the range of channel group-delay, one can enlarge the
search range from the both end of the range of subchannel group-delay. For example, if
the range of a subchannel group-delay is [di1, di2], then, the search range can be chosen
as [din — de, dig + d¢], where d. is an arbitrary positive constant, and if a delay dy (€
[di1 — d¢, dia + d¢]) is greater than M — 1 or less than 0, it should be represented by its

principal-value by subtracting or adding suitable integer multiples of M.
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Figure 5.12: Comparison of optimal I/; and channel group-delay for CSA loop #1 where
M =64
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Figure 5.13: SIRs for one-tap interpolation equalization (M = 64) for CSA loop #1 when
calculating optimal [; within an enlarged range of subchannel group-delay
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Figure 5.14: SIRs for one-tap interpolation equalization (M = 64) for CSA loop #6 when
calculating optimal [; within an enlarged range of subchannel group-delay

Figures 5.13 and 5.14 show the comparison of SIRs for CSA loops #1 and #6 when
searching the optimal /; among all M possible choices, and within an enlarged range based
on the range of subchannel group-delay (d. = 5). In each figure, the dotted curve represents
the SIR when searching the optimal /; among all M possible choices while the solid curve
represents the SIR when searching the optimal I; within the enlarged range based on the
range of subchannel group-delay. From these two figures, one can see that the deviation only
occurs in several lower frequency subchannels. However, by recalling that usually the lower
frequency subchannels are reserved for telephone communication, this deviation would not

affect the transmission bit-rate of a practical DMT system.
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Chapter 6

Multi-Tap Interpolation
Equalization

The one-tap interpolation equalization technique in the previous chapter is based on channel
approximation of piecewise constant magnitude and piecewise linear phase response. When
M is relatively small and/or channel phase response fluctuates rapidly, channel magnitude
and phase responses cannot be adequately regarded as being piecewise flat. In this case,
one can combine more polyphase components of §;(n) and/or use multi-tap equalizers for
each polyphase component to equalize the channel, leading to the multi-tap interpolation
equalization technique [58].

Multi-tap interpolation equalization is the generalization or extension of the integer-
delay equalization and one-tap interpolation equalization technique. It gives rise to a high
system output SNR, while requiring a small number of equalizer taps. Moreover, it permits a

tradeoff between various equalization parameters, leading to high computational flexibility.

6.1 Structure of Multi-Tap Interpolation Equalizer

The structure of the DMT system employing critically decimated filterbanks and a set
of multi-tap interpolation equalizers is the same as Figure 4.8 in Section 4.4, while each
equalizer EQ; (1 =0, ..., M — 1) becomes a multi-tap interpolation equalizer. Similarly, the
block diagram of the i-th multi-tap interpolation equalizer is shown in Figure 6.1.

In this figure, the output §;(n) of the i-th analysis filter is decomposed into its M
polyphase components 371(0) (n)y «uy gng_l) (n), among which L successive polyphase compo-
nents {ﬂi(lﬁk) (n)}, (k =0, ..., L — 1) are selected by an M-input-L-output selector. Each
selected polyphase component ﬂ§li+k)(n) passes a corresponding multi-tap equalizer A; y(z)

(associating with the impulse response a; ;(n), where k =0, ..., L—1). Then, the L filtered
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Figure 6.1: Multi-tap interpolation equalization scheme

polyphase components are summed together to obtain the recovered symbols.
Before further discussion, let us decompose the recovered symbols Z;(n) into two parts

as
:%@(n) = :%i,s(n) + Z; n(n) ) (61)
where
Zi,s(n) = 25(n)]e(n)=0 (6.2)

represents the output of the signal path in Figure 4.8 and 6.1. On the other hand,

~

Tin(n) = j;i(n)|zi(n):0,i:0,...,M—l (6.3)

represents the output of the corresponding noise path in Figure 4.8 and 6.1. With this
decomposition, the signal path and the noise path will be examined separately in the fol-
lowing sections. A closed form solution is developed for the optimal equalizer settings.
Moreover, In order to give a more general discussion and to obtain a more precise solution
of the multi-tap equalizer settings, ICI terms are considered in the optimization of equalizer

coefficients.

6.2 Analysis of Signal Path

By considering the signal path in Figure 4.8 and 6.1, £; ;(n) can be written as

L-1
Zis(n) = agn(n) * 3™ (n)
k=0

M—-1L-1 (6.4)
= Z Z Ty () * a; 1 (n) * sfjffk)(n) ,
m=0 k=0

where g]§f;+k)(n) is the (I; +k)-th polyphase component of §; s(n), and §; s(n) = §i(n)|e(m)—o-

Note that with a discussion similar to that in section 5.3, when l; + L — 1 > M, itk (n)

mi
(li + k > M) in Eqn (6.4) has to be mapped to gllith=M) m+li+k—M+1).

m
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G0 (n)

Suppose all {s, } have the same lengths Ls, and all {a;r(n)} have the same

lengths L,. Then, Eqn (6.4) can be expressed in matrix form as

M-1L-1
Bism) = > Y ApSEz,(n), (6.5)
m=0 k=0
where
a; x(0) Tm(n)
ai k(1) Tm(n—1)
Azk = ' s wm(n) = 3
a;k(Le — 1) (n— Lg— Lg +2)
and
() I A T Y 0 0
go_| 0 s e - 0
0 0 SE0) S, )

To find the optimal equalizer settings, let us form a new equalizer coefficient vector A;
which contains the coefficients of all equalizers, and a new matrix S,,; which contain all

polyphase components of sy;(n) used in Eqn (6.5) in accordance with

A?,O S(O)
Azl S(l)
Al B y and qu, =
. L1
Az(L—l) S'T(m )

Then, Eqn (6.5) can be rewritten in a more compact form as
M—
£is(n) = Y AjSpmiwm(n). (6.6)

In Eqn (6.6) ( as well as in Eqns (6.4) and (6.5) ), the terms with m ## ¢ are ICI terms.
In practical situations, ICI between the i- and m-th subchannels decreases with increasing
the “distance” |i — m| between these two subchannels. Therefore, some of the ICI terms in
Eqn (6.6) can be neglected!. In this case, Eqn (6.6) can be modified as Eqn (6.7), taking
into account ICI terms from 2N; neighboring subchannels symmetrically centered around

the i-th subchannel.
i+Ng

Bis(n)= D AiSmimm(n), (6.7)
m=z—Nt

where Ny < M/2 is an integer, and Sp; has to map to Sy (or S(m_M)i) when m < 0
(or m > M).

n actual circumstances, it is sufficient to consider ICI between adjacent subchannels only.
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6.3 Analysis of Noise Path

The i-th subchannel of the modified DMT receiver employing multi-tap interpolation equal-
izers is redrawn in Figure 6.2. In this figure, for the sake of simplicity, only two polyphase
components of the analysis filter output are used to recover the system input (i.e. L = 2).
The cases when L # 2 can be obtained through the extension of the case L = 2. In Fig-
ure 6.2, two pathes are drawn, where each path corresponds to a polyphase component
of the analysis filter output filtered by the corresponding multi-tap interpolation equal-
izer. In order to find the noise model at the system output, the S/P converter and the
M-input-L-output selector in Figure 6.1 are replaced by an advance component followed
by a M-fold decimator. In this figure, e(n) represents the additive channel noise while
Uin(n), gjg;) (n), gz(f;“) (n), and #;,(n) represent the channel noise path components of

gi(n), ggli)(n), gglﬁl)(n), and £;(n), respectively.

l;-th Polyphase Component

etny A
i () 7 (n)
"l C(Z) "LU H’(Q Zl ‘4’ J/M - Ai()(z)
Channel e
Fin(m) G0 (n) RN
HE A L [ A

(l7+1)-th Polyphase Component

Figure 6.2: The noise path in the i-th subchannel of DMT receiver employing multi-tap
interpolation equalizer

(L)

Now consider the channel noise path component §; . (n) in the l;-th polyphase compo-

nent of #;(n) (c.f. the dashed box region in Figure 6.2). First, rewrite H;(z) using its Type
1 polyphase representation with respect to M in accordance with
M-1
Hi(z)= > zmH™ (M), (6.8)

m=0

Then the z-transform of gff;) {n) can be written as:

i\n

v ) (2) = (E(z)zl‘ Hz(z)> "

(6.9)



Eqn (6.9) means that ﬂfl;) (n) can be obtained by using a modified structure? as shown in

Figure 6.3. This modified structure can also be derived graphically by using noble identities

[52]. gj(liﬂ)(n) can be obtained in a similar manner.

ok |-

e(Mn+l,-1)

e I T

e(M(n-1)+1+1)

Figure 6.3: Modified structure for the [;-th polyphase component of analysis filter output
in Figure 6.2

It is easy to show that the noise component at the output of m-th decimator (m =
0, ..., M —1) in Figure 6.3 is e(Mn+1;—m). If the noise e(n) is AWGN, all {e(Mn+1;—m)}
(for any I; and m) are also AWGN and independent of each other because only delay chain
and decimators are passed [52]. Now by incorporating Figure 6.3 in Figure 6.2, Z; ,(n) can

be written as

M-1
Zinn) =Y e(Mn+1 —m) x h{™(n) * aip(n)
m=0
M-1 (6.10)
+ e(Mn—{—li+1—m)*h§m)(n)*ai1(n).
m=0

By factoring the terms in the first and second summations in Eqn (6.10), Z;,(n) can be

2This structure can also be used in signal path.
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rewritten as

e

Zin(n) e(Mn+1l;+1—m)x hz(.m—l) (n) x ajo(n)
m=1
M-1
+ 3" e(Mn+1; +1—m) « b™ (n)  aia (n)
=0
M-1
= e(Mn+1;+1—m)=* (hgmﬁl)(n) x ao(n) + hz(m)(n) * 041 (n))
m=1
+e(M(n—1)+1+1)x th_l) (n) * aip(n)
6.11
+e(Mn+1;+1)x hgo) (n) * a;1(n) (6.11)
M-1
= eMn+1;+1—m)x (hl(-m_l) (n) x ajp(n) + hgm) (n) * ail(n)>
m=1
+e(Mn+1l;+1)* (thwl)(n — 1) % ap(n)
+e(Mn+1;+1)x h@(o) (n) * ail(n)>
M-1 )
= e(Mn+1;+1—m)x (hgm) (n) x ajo(n) + hgm)(n) * a“(n)> ,
m=0
where
. WM -1), m=0,
hgm)(n) - (6.12)
h{™ Y (n), m=1, .., M-1.
In the last two steps of Eqn (6.11), the following identity is used:
z(n — 1) xy(n) * z(n) = z(n) xy(n — 1) x z(n) . (6.13)

Eqgn (6.11) can be easily extended to the case when L > 2 polyphase components of

7;(n) are used in equalization. In this case, Z; (1) becomes

M-—1L-1
Bin(m) = 3 S e(Mn+U +1—m) «hi (n) * ai(n) (6.14)
m=0 k=0
where
R B () m—L+k+1>0,
B (n) = (6.15)
PR (L4 k+1), m—L+k+1<0.

From Eqn (6.14) (or Eqn (6.11) when L = 2), the contribution of the channel AWGN
to the i-th subchannel of the system output can be considered as the sum of M AWGN

components.
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Suppose the length of h;(n) is L. Then, Eqn (6.14) can be rewritten in matrix form as

M-1
Bin(n) =Y AlHme(Mn+1li+1-m), (6.16)
m=0
where
e(Mn+10l;+1—m) Hi(gn)
e(Mn+l;+1—-—m—1) Hg”)
o l—m—Ly— (m)
e(Mn+1l;+1—m—Ls— Lo+ 2) Hi(L—l)
and
Moy oo B (L -1 0 0
ik()() i (L )()
H(m) — 0 hilrcn (O) : hi,T (thM - 1) 0
ik . : ,
o - 0 RO e B T = 1)

where k = 0, ... L—1, Ly yy is the length of hg?) and Ly = [Lp/M, with [-] representing

rounding to infinity.

6.4 Closed Forms of Optimal Equalizer Settings

By substituting Eqns (6.7) and (6.16) into Eqn (6.1), the system input/output relationship
can be expressed in vector form as

~

i(n) = 2i,s(n) + Zin(n)

il Ml (6.17)
= Z AlLSyizm(n) + Z A Hpe(Mn+1;+1—m).
m=i—Ny m=0

Next, by assuming that all system inputs {z;(n)} for various subchannels are mutually
uncorrelated, the channel noise e(n) is AWGN with a constant PSD 2, and each z;(n) is

uncorrelated with e(n) ( thereby e(Mn +1; + 1 —m) ), one has
R{mm2) & Bl (n)@m,(n)] =0, when mq # ms, (6.18)
Rie 2 Elzi(n)e(Mn+1; +1—-m)]=0, (6.19)
R™ 2 Ele(Mn+1l;+1—my)e(Mn+1; + 1 — my)']

_ agI, ml =m2, (6.20)
0, ml # m2.
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By using Eqns (6.17)-(6.20), the MSE between the system input and the corresponding

system output becomes

MSE; 2 E ||ni(n)[*| = Ell:(n) - ai(n — k)|

i+Ny M-1
" K . AiSmiwm(n) + D AiHmie(Mntli+1-m) - uzimi<n>> |

m=i— N m=0

i+Ny M-1 /
< Z A Smitm(n) + Z AHpie(Mn+1l;+1—m)— u%g:,(n))

m=i—N; m=0

i+ N; M-1
=Ai| > SmBRI™SL+02> HpH), | A
m=i—N; m=0

—2A:S; R(“)u;c + uy, R(”)uk ,
(6.21)

where uy, representing the k;-th unit vector, and k; represents the relative delay between
recovered and input symbols (c.f. Section 5.3.1).
Following the same procedure of section 5.3.1, by minimizing the MSE; in Eqn (6.21),

the optimal solution of A; is

i+Ny -1
_< S S.ROMS, +J2ZHmiH,’m-> SeRGun . (622)
m=i—N¢

and the MMSE of r;(n) becomes
MMSEi e mm{MSEz}

! i

=up,, RPDuy, . — AjSuRWuy, ., (6.23)
/

= U, & multi. Uk, »

where
.. IL+Nt -
gi,rnulti. = R‘Scz;) ” Sl ( Z szR ke Sl it 02 Z HmlHr,m> S”R:(ca:) )
m=i— Nt

with k; opt. representing the index of the minimum value of the main diagonal of &; ;. (
c.f. Eqn (5.42) ).

Finally, let us assume that all inputs within each subchannel are mutually uncorrelated
and have a constant PSD afg over full channel bandwidth. Then, RS}}? can be simplified as

in Eqn (5.44). In this case, the optimal equalizer coeflicient matrix A;qpt. is simplified to

i+ N 2 M— -1
zopt - < Z szs;m ; Z Hmz > S":":uki,opt.’ (6.24)
m=i—N¢ Oz m=0
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while the MMSE of r;(n) is still calculated by using Eqn (6.23) with & myy;. simplified to

i+ Nt 0_2 M-1 -1
2 / / e !
Eiai = 05 [ I =S5 | Y SmiSpi+—5 D HmiHy | Si
m=i— Ny Z m=0

The multi-tap interpolation equalization technique owns high flexibility in computation
because tradeoff can be made between L, (the length of equalizers), L (the number of
polyphase components of the analysis filter output used in equalization), and N; (2N, is
the number of ICI terms considered in equalization). Moreover, the multi-tap interpolation
equalization technique is the generalization of the integer-delay equalization and one-tap
interpolation equalization techniques. When L = L, = N; = 1, the multi-tap interpolation
equalization technique becomes the integer-delay equalization. When L =2 and L, = N; =

1, it becomes the one-tap interpolation equalization.

6.5 Simulation Results

In this section, the filterbank-based DMT system uses 64-subchannel critically decimated
CMFB as its modulator/demodulator. The design parameters of CMFB are the same
as those in Table 4.1. Moreover, it is assumed that system inputs {z;(n)} for various
subchannels are mutually uncorrelated, and all input symbols within each subchannel are
also mutually uncorrelated. Furthermore, it is assumed that the channel noise is AWGN

and all system inputs {z;(n)} are mutually uncorrelated with the channel noise.

6.5.1 Noiseless Channel Cases

First, the simulation results for noiseless channel cases are compared. Figure 6.4-6.7 illus-
trate the SIRs for CSA loop #1, #2, #3, and #6 for various L, (the length of equalizers)
and L (the number of polyphase components of the analysis filter output used in equal-
ization). The SIRs for other CSA loops are shown in Figure 6.8. The four curves in each
figure, from top to bottom, represent the SIR for L =3 and L, =7, L=2and L, =7,
L=2and L, =3, as well as L = 2 and L, = 1, respectively. As a comparison, the SIR for
the case using ideal channel is also drawn as the straight line (42 dB) in these figures
From these figures, it is clear that with increasing L and/or L, the SIR increases. Note
that because the filterbank used in this simulation is the pseudo PR filterbank, interference
exists in the system output even when an ideal channel is used. However, by using the

multi-tap interpolation equalization technique with moderate L and L,, the interference
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Figure 6.4: SIRs for multi-tap interpolation equalization for CSA loop #1 for various L and
L,
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Figure 6.5: SIRs for multi-tap interpolation equalization for CSA loop #2 for various L and
L,
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Figure 6.6: SIRs for multi-tap interpolation equalization for CSA loop #3 for various L and
L,
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Figure 6.7: SIRs for multi-tap interpolation equalization for CSA loop #6 for various L and
Le
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Figure 6.8: SIRs for multi-tap interpolation equalization for CSA loops #4, #5, #7, and
#8 for various L and L,

caused by the filterbank can also be compensated for, and the output SIR can exceed the

SIR (42 dB) for the case using the pseudo PR filterbank and an ideal channel.

6.5.2 Noisy Channel Cases

In this subsection, the SNRs for noisy channel cases are compared. The length of the
prototype filter of the CMFB is 12M = 768. Other simulation parameters are as listed in
Table 6.1.

Subchannel number M 64
Sampling frequency f 2.208M Hz
System inputs Mean 0
(same for all subchannels) PSD (dBm/Hz) -40
Channel noise Mean 0

PSD (dBm/Hz) -140

Table 6.1: Simulation parameters for multi-tap interpolation equalization
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The output SNR of the i-th subchannel SNR; is defined as
B {Jzi(n)?}

E {Jai(n) - #:(n) ]}

Note that because the MMSE optimization is used in this chapter, the receiver is a biased

receiver [13] (c.f. Appendix B). Then, SNR; defined in Eqn (6.25) is the biased SNR.
However, by comparing to the definition of the unbiased SNR ( c.f. Eqn (1.8) ), the MFB

SNR; £

(6.25)

defined in Eqn (1.12) corresponds to the unbiased SNR. Therefore, in order to compare the
output SNR to the MFB, the MFB used in this section is modified to biased SNR as

Nz
SNRMFB@ L Eggi + 1. (6.26)

e

Figure 6.9-6.12 illustrate the SNRs for CSA loops #1, #2, #3, and #6 for various L,
and L. The SNRs for other CSA loops are shown in Figure 6.13. The four solid curves in
each figure, from top to bottom, represent the SNR for L = 2 and L, = 16, L = 3 and
Lyo=7,L=2and L, =3, as well as L = 2 and L, = 1, respectively. As a comparison,
in each figure, the MFB for the corresponding channel case is also drawn as the dash-dot
curve (or dotted curves in Figure 6.13).

From these figures, one can see that with increasing L and/or L,, the SNR increases.
In each channel case, when L = 2 and L, = 16, the SNR is close to the MFB of the
corresponding channel. Note that in each channel case, the SNRs of the high-frequency
subchannels are close to the channel MFB even when L and L, are relatively small (for
example, L = 2 and L, = 3). The reason of this can be interpreted as follows.

When L and L, are relatively small, the interference in the recovered symbols is relatively
large. However, compared to the low-frequency subchannels, because of the channel high
attenuation in high-frequency subchannels, the desired signal components (as well as the
interference) in the output symbols of high-frequency subchannels are significantly small and
the channel noise components in the output symbols of these subchannels are dominant.
Therefore, in the high-frequency subchannels, the interferences can be neglected, and the
output SNR is close to the MFB. By knowing this, it is sufficient to measure the performance

of the equalization by using the output SIR (i.e. assuming noiseless channel).

6.5.3 SIR Comparisons between Multi-Tap Interpolation Equalization,
Output Combiner, and Per Tone Equalization

In this subsection, the multi-tap interpolation equalization technique will be compared with

the output combiner and per tone equalization techniques in accordance with the output
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Figure 6.9: SNRs for multi-tap interpolation equalization for CSA loop #1 for various L
and L,
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Figure 6.10: SNRs for multi-tap interpolation equalization for CSA loop #2 for various L
and L,
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Figure 6.11: SNRs for multi-tap interpolation equalization for CSA loop #3 for various L
and L,

0 ) ; l
0 10 20 30 40 50 60
Subchannel Number

Figure 6.12: SNRs for multi-tap interpolation equalization for CSA loop #6 for various L
and L,
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Figure 6.13: SNRs for multi-tap interpolation equalization for CSA loops #4, #5, #7, and
#8 for various L and L,

SIR. In the following comparisons, two channels are used, which are CSA loop #1 and #3.
The group-delay of CSA loop #1 has violent fluctuations while the group-delay of CSA loop
#3 is relatively smooth. Therefore, these two channels can be used as the worst and best
channel cases.

First, the SIR comparison for the multi-tap interpolation equalization and the output
combiner is shown in Figures 6.14 (for CSA loop #1) and 6.15 (for CSA loop #6). The
DMT system for both equalization techniques uses 64-subchannel CMFB as the modula-
tor/demodulator, with the 384-tap prototype filter. The multi-tap interpolation equaliza-
tion combines 3 polyphase components of the analysis filter output for equalization, and
the output combiner also combines 3 receiver outputs for equalization. In Figures 6.14 and
6.15, the two solid curves, from top to bottom, are SIRs for the multi-tap interpolation
equalization with equalizer length of 15 and 7, respectively. The two dotted curves, from
top to bottom, are SIRs for the output combiner with equalizer length of 15 and 7, respec-
tively. Therefore, the total equalizer length for the multi-tap interpolation equalization and
the output combiner are the same. From Figures 6.14 and 6.15, it has been shown that the

multi-tap interpolation equalization leads to higher SIR than the output combiner.
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Figure 6.14: SIR comparison for multi-tap interpolation equalization and output combiner
for CSA loop #1
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Figure 6.15: SIR comparison for multi-tap interpolation equalization and output combiner
for CSA loop #6
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Figure 6.16: SIR comparison for multi-tap interpolation equalization and per tone equal-
ization for CSA loop #1
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Figure 6.17: SIR comparison for multi-tap interpolation equalization and per tone equal-
ization for CSA loop #6
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Moreover, note that the 3 polyphase components used for the multi-tap interpolation
equalization are all from the same analysis filter output. Therefore, in the equalizer training
stage, only one overall transfer function (s;(n)) has to be used for multi-tap interpolation
equalization. On the other hand, because the output combiner uses 3 receiver outputs, in
the equalizer training stage, 3 overall transfer functions (s;;;_1y(n), si(n), and s;;41)(n))
have to be used. Also note that these 3 overall transfer functions may be used for the
equalizer training of other subchannels (for example, s;;(n), and s;(;11)(n) are used for the
equalizer training of the (¢ + 1)-th subchannel), each overall transfer function is needed to
be calculated once. Therefore, the computational complexities in equalizer training stage
for multi-tap interpolation equalization and the output combiner are the same. However,
the storage space used for equalizer training of the output combiner is 3 times as that of
the multi-tap interpolation equalization.

Next, the SIR comparison for the multi-tap interpolation equalization and the per tone
equalization is shown in Figures 6.16 (for CSA loop #1) and 6.17 (for CSA loop #6). The
DMT system for the multi-tap interpolation equalization uses 128-subchannel CMFB as
the modulator/demodulator, with the 384-tap prototype filter. The multi-tap interpolation
equalization combines 2 polyphase components of the analysis filter output for equalization
with various equalizer lengths. On the other hand, the per tone equalization uses 512-point
IDFT/DFT as the modulator/demodulator, with the 4-sample cyclic prefix (this leads to a
transmission throughput loss of 0.8%). In Figures 6.16 and 6.17, the two solid curves, from
top to bottom, are SIRs for the multi-tap interpolation equalization with equalizer lengths
of 16 and 4, respectively. The two dotted curves, from top to bottom, are SIRs for the
per tone equalization with equalizer lengths of 32 and 8, respectively. Therefore, the total
equalizer length for the multi-tap interpolation equalization and the per tone equalization
are the same. From Figures 6.16 and 6.17, it has been shown that the multi-tap interpolation
equalization leads to comparable SIR to the per tone equalization.

Because the DMT system for the multi-tap interpolation equalization employs longer
filters than the DMT system for the per tone equalization, the computational complexity of
the former is higher than that of the latter. However, the former system has higher spectral
containment and maximum transmission throughput. Moreover, the per tone equalization
is based on the assumption that the length of the IDFT/DFT is longer than the length of
the channel impulse response while the multi-tap interpolation equalization does not need
this assumption. Therefore, the multi-tap interpolation equalization can be used for more

channel cases than the per tone equalization.
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6.6 A Sub-Optimal Interpolation Equalization Approach
6.6.1 A Sub-Optimal Solution for Interpolation Equalization

The multi-tap interpolation equalization technique combines several polyphase components
of the analysis filter output to recover the input symbols. The optimal polyphase compo-
nent set has to be searched in order to obtain a high output SNR. Therefore, one can say
that among the M polyphase components, some (i.e. the optimal polyphase component set)
are suitable for channel equalization (let us call them “good” polyphase components) while
others are not suitable for channel equalization (let us call them “bad” polyphase compo-
nents). Once the “good” polyphase components are included in the polyphase component
set used for multi-tap interpolation equalization, the output SNR will be high (although
may not be the highest) no matter how many and which “bad” polyphase components are
also included. Then, by combining more polyphase components, the index set of the optimal
polyphase components will have a larger range, and the output SNR will be less sensitive
to the choice of the used polyphase component set. For example, suppose the index set
of the “good” polyphase components is {10, 11}, then, by combining 3 polyphase compo-
nents, only 2 polyphase component index sets ({9, 10, 11} and {10, 11, 12}) can lead to
high SNR. However, if combining 6 polyphase components, 5 polyphase component index
sets ({6, ..., 11}-{10, ..., 15}) will lead to high SNR. Moreover, from Figure 5.12, when
2 polyphase components are used in equalization, the difference of the optimal polyphase
component index set between most subchannels is relatively small. Therefore, by combing
a large number of polyphase components in equalization, one can expect that the index sets
for the optimal polyphase components for all subchannels are same (or similar).

Based on the above analysis, a suboptimal (but simplified) interpolation equalization
approach can be proposed, where a large L (the number of used polyphase components) is
used and all subchannels use the same polyphase component index set, i.e. I; = I for all

0 <i¢ < M —1. In this case, the recovered signal &;(n) (c.f. Figure 6.1 with I; = [) becomes

L-1
Bia(n) = > agi(n) * G (n). (6.27)
k=0

With this suboptimal solution, the optimal polyphase index set does not need to be
searched subchannel-by-subchannel. Therefore, the computational complexity in equalizer

training stage can be significantly simplified.
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6.6.2 Simulation Results

In this subsection, the DMT system uses 64-subchannel CMFB with the prototype filter
of length 12M = 768. Other simulation parameters are the same as in Table 6.1. In
the following simulation, the transmission bit-rates for various equalizer settings and two
channel cases (CSA loops #1 and #6) are compared. For each channel case, the sub-
optimal interpolation equalization combines various number L of polyphase components of
the analysis filter output, with each polyphase component passing through a 4-tap equalizer

(i.e. Ly =4). The transmission bit-rate is calculated as

f M-1
— s SNRmar e
b= % m2;010&(1 +10 gai) (6.28)

where SNRuarg. s is conventionally defined in dB as
SNRmarg.i(dB) = SNR;(dB) + 7c(dB) — v, (dB) — I',(dB), (6.29)

where SNR; is defined in Eqn (6.25) representing the output SNR of the i-th subchannel,
and the coding gain .(dB) = 3dB, noise margin ,,(dB) = 6dB, and the SNR gap I';(dB) =
9.8dB.

Figures 6.18 and 6.19 illustrate the transmission bit-rates in function of the optimal
polyphase index set [ for CSA loops #1 and #6, respectively. In each figure, from top to
bottom, the three curves represent the transmission bit-rates for the cases when L = 16,
8, and 3, respectively. Also as a comparison, the corresponding transmission bit-rates for
the multi-tap interpolation equalization technique (i.e. using different optimal polyphase

component index set for each subchannel) are listed in Table 6.2.

Equalizer settings CSA loop #1 CSA loop #6
L=16,L,=4 11.84 Mb/s 10.38 Mb/s
L=8,L,=4 11.26 Mb/s 10.17 Mb/s
L=3,L,=4 11.02 Mb/s 9.94 Mb/s

Table 6.2: Transmission bit-rates for multi-tap interpolation equalization

From Figures 6.18 and 6.19, and Table 6.2, it is clear that the transmission bit-rate for
the sub-optimal interpolation equalization is close to the bit-rate for the multi-tap interpo-
lation equalization (i.e. the optimal solution) when combing a large number L of polyphase
components. Also, with increasing L, the transmission bit-rate is less sensitive to selection
of the optimal polyphase component index set [. This observation leads to a further simpli-
fication to the sub-optimal interpolation equalization, where the optimal [ can be arbitrarily

chosen from a pre-selected index range, instead of searching for the optimal I.
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Figure 6.18: Bit-rate in function of optimal polyphase index set I for CSA loop #1

105 ! ! ! ! ! !

Bit-rate (bps)

! . I i !
10 20 30 40 50 60
Optimal polyphase component indices

7.5 i
0
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It can also be shown (c.f. Appendix C) that the per-tone equalization technique used in
the conventional DMT system is a special case of this sub-optimal interpolation equalization
approach, where the DFT filterbanks are used as the synthesis/analysis filterbanks, and
the equalization of each subchannel combines multiple (equal to the length of a per tone
equalizer) polyphase components and each polyphase component is weighted by a one-tap

interpolation equalizer.
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Chapter 7

Conclusion and future work

7.1 Conclusion

This thesis has been concerned with the design of Integer-Delay Equalization, One-Tap and
Multi-Tap Interpolation Equalization Techniques for Filterbank-Based Discrete Multitone
(DMT) Systems used in various Digital Subscriber Line (xDSL) applications. The main

contributions of this thesis are as follows:

1. The dominant effects of channel delay has been investigated. It has been shown that
when the time synchronization of decimators mismatch that of the filterbank outputs
because of the channel phase distortion, the samples discarded by decimators may
contain information highly useful or relevant to the characteristic of input symbols. It
has also been shown that the channel delay exhibits the periodic-like property. With
this property, after subtraction of suitable integer multiples of M, the channel delay
can always be represented by its principle-value delay, which can be related to one or

some of the M polyphase components of the analysis filter output.

2. An integer-delay equalization technique has been proposed for the case of channels
characterized by integer delays. Instead of using the 0-th polyphase component of
the analysis filter output, this equalization technique selects an optimal polyphase
component as the recovered symbols. This equalization technique can be used for

binary and low bit-rate communication cases with no additional cost.

3. The effect of channel non-integer delay has been analyzed. When channel delay is a
non-integer, no polyphase component of the analysis filter output can be used as the
recovered symbols. However, it has been proved that the interpolation approach can
be used to recover the system input by combining two carefully selected polyphase

components of the analysis filter output.
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4,

7.2

The one-tap interpolation equalization technique has been proposed. This technique
combines two carefully selected polyphase components of the analysis filter output,
and weights each polyphase component by a one-tap equalizer to recover the system
input. It has been shown that this technique leads to moderate SNR with small

equalization cost (only two equalizer taps for each subchannel).

. A suboptimal (but simplified) solution for one-tap equalization technique has been

proposed. This suboptimal solution restricts the index of the candidates of the opti-
mal polyphase components within the upper and lower bounds of the corresponding
subchannel group-delay. With this solution, the search of the optimal polyphase com-

ponents can be significantly simplified.

. As a generalization of the integer-delay equalization and the one-tap interpolation

equalization, the multi-tap interpolation equalization has been proposed. This equal-
ization technique employs multiple polyphase components, and weights each polyphase
component by a multi-tap equalizer to recover the system input. Generally, this tech-
nique has higher computational complexity compared to the other two equalization
techniques proposed in this thesis. However, it leads to high system output SNRs
(for example, about 15 dB higher than the output combiner technique) and permits
high flexibility in computation because a tradeoff can be made between the length of
equalizers, the number of polyphase components used in equalization, and the number
of ICI terms considered in equalization. It has comparable computational complex-
ity and higher SNR compared to other equalization techniques such as the output

combiner and the per tone equalization.

Another suboptimal (but simplified) solution for the multi-tap interpolation equal-
ization technique has been proposed. By combining a large number of polyphase
components, the equalizers of all subchannels can use the same optimal polyphase
component index set, instead of searching it subchannel-by-subchannel. It has also

been shown that the per tone equalization is a special case of this suboptimal solution.

Future Work

The one-tap interpolation equalization techniques use linear interpolation to recover the sys-

tem input. The multi-tap interpolation equalization is also based on linear interpolation.

Other interpolation approaches such as high-order Lagrange interpolation and Newton in-
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terpolation may lead to higher SNR. These interpolation approaches have not been studied
yet.

In this thesis, the effect of channel phase response has been studied. This study is based
on the assumption that the channel impulse response is known, which is true in wireline
communication cases. On the other hand, when the channel is not known, an adaptive
equalization technique is needed. This technique can be derived by studying the statistics
of different polyphase components of the analysis filter output. The work of this topic
can extend the use of multi-tap interpolation equalization into wireless communication area
(where the channel is time-variant fading channel, and is usually supposed to be unknown).

The equalization techniques proposed in this thesis are used for DMT systems employing
critically decimated filterbanks. A future work can be done by extending these equalization
techniques for DMT systems employing non-critically decimated filterbanks, for example,

the FMT system, to achieve high output SNR with relatively low equalization cost.
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Appendix B

Signal-to-Noise Ratio when Using
MMSE Optimization

In this thesis, the MMSE optimization is employed to determine the optimal equalizer
settings. Figure B.1 shows the illustration of equalization. In this figure, S(z), W(z)
represent the transfer function between the system input and the corresponding receiver
output, and the equalizer, respectively. z(n), g(n), y(n), and &(n) represent the system

input, the filtered channel noise, the receiver output, and the recovered signal, respectively.

g(n)
fﬁn) Tﬁ(a"é y(n) W) - fﬂ(n)

Figure B.1: Illustration of equalization

The recovered signal £(n) can be written as
#(n) = z(n) * s(n) * w(n) + w(n) * ¢(n)
=3 N an-k-Dstkyw®) + Y aln—kyw(k) (B.1)

k=—00l=-00 k=—o00
= a(z(n) +u(n)) ,
where
a = s(0)w(0), (B.2)
and
u(n) & m k_z_:oo l_}_:oox(n — k= Ds(k)w(l) + k_zooq(n —wwE | . ®3)
kA0 1£0
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The MMSE optimization is based on minimizing the MSE of r(n), where 7(n) is the error
between the system input z(n) and the corresponding equalizer output Z(n) in accordance
with

r(n) £ z(n) — 2(n). (B.4)

Then, the SNR becomes

2Ll % (©.5)

SNRMMSE 2 = ,
Elr@p] lefol+i-al’o?

where o2 and o2 represent the autocorrelation of z(n) and u(n), respectively. By comparing

Eqn (B.5) to Eqn (1.6), it is clear that SNRyvsg is the biased SNR.
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Appendix C

Relationship between Multi-Tap

Interpolation Equalization and Per

Tone Equalization

The per tone equalization is a special case of the multi-tap interpolation equalization when

no cyclic prefix is used. This can be proved as follows.

From Eqn (3.51), the per tone equalization modifies the conventional DMT receiver

such that a L,-fold sliding DFT is used as the demodulator. Note that in Eqn (3.51),

Ngp = N + L,. Then, by assuming that no cyclic prefix is used, one has L, = 0, and

Ng = N. With this assumption, Eqn (3.51) can be rewritten as

wWi,0
5 ~ - - W1
Zi(n) = [yi,o(n) yi,l(n) e yi’Lw_l(n)]
Wi L,~1
Ly—1
=Y Gik(n)wik,
k=0
where
y(Nn+ A —k)
$2m Nn+A+1—k
gi,k(n) = [1 ejgﬁl e 6‘7 N (N 1)] y( . )

y(N(n+1)+A—-1-k)
By denoting e/ ¥ {V=1) a5 py, (t=0, .., N—1), Eqn (C.2) can be rewritten as

N-1
Uik (n y(Nn+1)+A—-1—k—t)h;.
t=0

Now by defining a filter h;(n) with the impulse response as

’ 0, otherwise,
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Eqn (C.3) becomes

o0

Jig(n) = D y(N(n+1)+A—1—k—t)h(t)
e (C.5)
=(y(n+N+A—1—k)*hi(n))lN )
=37 P,
where ﬂgA_l_k) (n+1) is the (A — 1 — k)-th polyphase component of §;(n + 1), and
gi(n) = y(n) * hi(n) (C.6)
is the output of the filter h;(n) with the input of y(n).
Substituting Eqn (C.5) into Eqn (C.1), one has
! ol (A—1—k
ii(n Z yz k(n wz k= Z wy k:yl )(TL + 1) (07)
k=0
Then, by defining I = A — L,,, Eqn (C.7) can be rewritten as
Fi(n — 1) 2 wi ki (n (C.8)
Moreover, by re-index the recovered symbols Z;(n), Eqn (C.8) becomes
e Ltk
= > wpit ™M), (C.9)
k=0

which is exactly the same as Eqn (6.27).
With the above discussion, a conventional DMT system employing per tone equalization
and without cyclic prefix is equivalent to the filterbank-based DMT system employing the

interpolation equalization with the specifications as following.

The filterbank-based DMT system using critically decimated filterbank as the modu-

lator /demodulator,

The synthesis filterbank is the IDFT filterbank, and the analysis filterbank is {h;(n)},

The number of subchannels is NV,

The interpolation equalization combines L,, polyphase components of the analysis

filter output, with each polyphase component weighted by a one-tap equalizer w; k.
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