
U n iv e rs ity  o f A lb e r ta

P r o b a b il is t ic  A p p r o a c h  f o r  M PC  P e r f o r m a n c e  A s s e s s m e n t

by

N ik h il A garw al

A thesis subm itted to the Faculty of Graduate Studies and Research in partial fulfillment 
of the requirements for the degree of M a s te r  o f  Science.

in

Process Control

Department of Chemical and Materials Engineering

Edmonton, Alberta 
Spring 2007

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Library and 
Archives Canada

Bibliotheque et 
Archives Canada

Published Heritage 
Branch

395 Wellington Street 
Ottawa ON K1A 0N4 
Canada

Your file Votre reference 
ISBN: 978-0-494-29925-8 
Our file Notre reference 
ISBN: 978-0-494-29925-8

Direction du 
Patrimoine de I'edition

395, rue Wellington 
Ottawa ON K1A 0N4 
Canada

NOTICE:
The author has granted a non­
exclusive license allowing Library 
and Archives Canada to reproduce, 
publish, archive, preserve, conserve, 
communicate to the public by 
telecommunication or on the Internet, 
loan, distribute and sell theses 
worldwide, for commercial or non­
commercial purposes, in microform, 
paper, electronic and/or any other 
formats.

AVIS:
L'auteur a accorde une licence non exclusive 
permettant a la Bibliotheque et Archives 
Canada de reproduire, publier, archiver, 
sauvegarder, conserver, transmettre au public 
par telecommunication ou par I'lnternet, preter, 
distribuer et vendre des theses partout dans 
le monde, a des fins commerciales ou autres, 
sur support microforme, papier, electronique 
et/ou autres formats.

The author retains copyright 
ownership and moral rights in 
this thesis. Neither the thesis 
nor substantial extracts from it 
may be printed or otherwise 
reproduced without the author's 
permission.

L'auteur conserve la propriete du droit d'auteur 
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de 
celle-ci ne doivent etre imprimes ou autrement 
reproduits sans son autorisation.

In compliance with the Canadian 
Privacy Act some supporting 
forms may have been removed 
from this thesis.

While these forms may be included 
in the document page count, 
their removal does not represent 
any loss of content from the 
thesis.

Conformement a la loi canadienne 
sur la protection de la vie privee, 
quelques formulaires secondaires 
ont ete enleves de cette these.

Bien que ces formulaires 
aient inclus dans la pagination, 
il n'y aura aucun contenu manquant.

i * i

Canada
R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



dedicated to

the first teachers in m y life 
m y parents

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Abstract

The performance of the MPC controllers can be improved by increasing the degrees of 

freedom (DoF) for control purposes. The degrees of freedom can be increased by relaxing 

the constraints or by reducing the variance of the process variables. The Linear-Quadratic 

(LQ) optimization method can be used for providing guidelines for increasing the DoFs for a 

controller. As the LQ optimization considers mean operating point and the processes do not 

always operate on but around the mean operating point, it is essential to take into account 

the variability or distribution. Due to the presence of variability the process variables have 

the probabilities to be inside and outside the constraint limits. In this thesis, the Bayesian 

method is utilized to  take into account these probabilities for the assessment of the decisions 

related to increasing the controller DoFs. The algorithm, for Bayesian analysis, discussed 

in this thesis can also be used to  obtain the guidelines for increasing the controller DOFs 

to achieve certain level of performance. By extending this idea a probabilistic optimization 

technique is also introduced in this thesis. The optimization function defined in probabilistic 

optimizer (PO) takes into consideration the probabilities for the data  distribution and the 

profit/loss terms associated with the distribution. The PO can be used to obtain the 

constraint tuning guidelines for the controllers. Extending the idea of applying Bayesian 

methods for LQ optimization, a tool is developed for assessing the decisions, based on PO 

approach, for increasing controller DoF.
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I

1
Introduction

1.1 M otiva tion

Performance assessment is a systematic observation of actual performance and the rating of 

th a t performance according to  an established performance criterion. Controller performance 

assessment is the action of evaluating statistics reflecting the control performance at a 

certain point in time. Other terms th a t can be used interchangeably with assessment are 

monitoring and auditing.

Malfunctioning in the control loops and process model mismatch are some of the rea­

sons for poor performance of Model Predictive Controllers (MPCs). The steps involved in 

controller performance assessment are (Jelali 2006):

1. Determination of the control loop to be assessed.

2. Selection and design of benchmark for performance assessment.

3. Assessment and detection of poor performing loops.

4. Diagnosis of the underlying causes.

5. Suggestions of improvement measures.
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Chapter 1. Introduction 2

For a chemical process industry, process control is an engineering activity th a t is con­

cerned with the systematic adjustment of the material and energy balance, around a process 

unit, necessary to keep it on course. A process is said to be ‘in control’ if the adjustments 

are made such tha t the sensors measuring the material and energy balance track their ta r­

get value within some acceptable engineering tolerance (Moore 1988). The performance of 

a control system relates to  its ability to deal with the deviations between the controlled 

variables and their desired values. These deviations are generally quantified by a perfor­

mance index. The most widely used criterion for the performance assessment is variance. 

Performance of the control loop is said to be unacceptable, if the variance of the controlled 

variables exceeds a certain critical value. Different research groups have defined different 

performance indices, like Harris Index, Extended Horizon Performance Index etc. tha t can 

be used for performance assessment of the controllers (Jelali 2006).

The MPCs control the process by repeatedly solving both the online and the optimal 

control problem simultaneously. This is performed by optimizing the defined optimization 

function, over a future horizon (control and prediction horizon), for which constraints are 

defined by the limits for the Controlled Variables (CVs) and the Manipulated Variables 

(MVs). The future predictions for the process variables are made in accordance with the 

process model. In other words, the MPC systems rely upon generating the values of the pro­

cess inputs, as the solution to online optimization problem. The process model, constraint 

limits and the process measurements together define the constraints for the optimization 

problem. As the online optimization defines the control action for the controller, the be­

havior of the controller can be quite complicated; but with the advancement in the field of 

computation techniques and use of computers the problem has been solved for all classes of 

system. The MPC control is very similar to a chess game, where the positions of the chess 

pieces define the state of the chess board, which is to be taken into consideration by the 

player according to the prediction of the future evolution of the game, i.e., the expected 

moves made by the opponent. The objective function for the problem is to obtain a check­

mate and the constraints are set by the rules specified for making the moves on the chess 

board.

The MPCs move the process MVs in order to satisfy one or more of the following 

practical performance criteria (Garcia et al. 1988):
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Chapter 1. Introduction 3

1. Economic: The economic criteria is associated with either maintaining process vari­

ables at the target values dictated by the optimization or dynamically minimizing the 

cost function.

2. Safety and Environment: Some process variables must never violate the specified 

constraints/bounds for safety reasons and/or environmental policies and regulations.

3. Equipment: The control system should not drive the process outside the physical 

limitations of the equipment.

4. Product Quality: The product specifications demanded by the consumer must always 

be satisfied.

5. Human Preferences: The operating personnel should be comfortable with the control 

system.

Thus, the MPC control system can very well ensure safe operation of the process equip­

ment and the operating personnel by taking care of the constraints while exploiting the 

maximum production capacity of the process plant and minimizing the production cost. 

Researchers have focused mainly on the development of MPC control techniques. The out­

come of research in the field of MPC (Rawlings and Muske 1993) has helped in building a 

strong conceptual and practical framework for control theory developers, implementers and 

end users. While several aspects of the controller are still to be explored, the framework 

provides a strong foundation for the development of the control system. W ith most of the 

research work focused on methods to  identify the system and develop the MPC controllers 

little work has been done in the field of assessing the MPC performance and to identify the 

methods to improve the controller performance. Current methods available for improving 

the controller performance are:

1. Changing the structure of the MPC controller.

2. Tuning the controller.

3. Developing the control algorithms for obtaining the numerical solutions to the MPC 

online optimization problem, thus enabling the formulation of more realistic optimiza­

tion problem and therefore improved performance.
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Chapter 1. Introduction 4

It can be seen from the above cited methods for improving the controller performance 

th a t the methods need a thorough knowledge of the process and the control philosophy and 

thus are not recommended to be changed very often. However, it may be noted tha t other 

than the above mentioned methods there are other parameters like CV and MV constraint 

limits tha t also affect the controller performance. Providing the controller with wrong 

constraint limits can restrict the controller from achieving its maximum potential. Thus, it 

is essential that the constraint limits be provided appropriately, so th a t the maximum can 

be extracted from the controller for the given set of conditions.

The current online steady state economic optimization for the MPC controller is defined 

as a linear-quadratic problem, where the linear and quadratic coefficients define whether 

the process variable is to be maximized or minimized and the importance for them to be 

maintained at a certain target value. The linear-quadratic optimization problem is based 

upon the mean operating point for the process variables; however, the variability and the 

constraint limits for the process variables define how far or close the process variables will 

operate, relative to the optimum operating point. The solutions thus obtained are also 

based upon the mean operating points, variability and the constraint limits.

The work by Xu et al. (2007) focuses on the MPC performance assessment using de­

terministic linear-quadratic optimization and obtaining the constraint tuning guidelines for 

the controller. As linear-quadratic optimization function is based upon the mean operating 

point of the process variables, the MPC controller performance is evaluated based upon the 

mean operating point of the process variables. However, the real process operations are 

associated with variability; they seldom operate precisely on the mean operating point, but 

around the mean operating point. The process variables thus have probability of violating 

the constraint limits. Thus, it is essential tha t these probabilities be taken into account 

while making any decisions related to the MPC controller tuning by adjusting the controller 

constraint limits. The literature cites the qualitative effect of adjusting the constraint limits 

of the process variables but do not quantify the effect. Therefore, it is essential to develop 

a methodology to assess the effect of implementing the changes in constraint limits on the 

overall controller performance. Also, at times in industries it is essential to make decisions 

so as to  achieve target return or profits from the process. Thus, it is required to develop 

tools that will help in making decisions for achieving target return. These need to  have a
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Chapter 1. Introduction 5

methodology to  assess the effect of changes in constraint limits and also to get some means 

to obtain guidelines for decision making to achieve target profit levels have motivated our 

research, with an objective to develop algorithms for the same.

The algorithms discussed in the thesis have been used to develop applications using 

MATLAB for the following reasons:

1. MATLAB being a programming language, with debugging facility, that allows easy 

coding.

2. MATLAB is supported by various toolboxes like statistics, and also other toolboxes 

like SeDuMi, BNT are available tha t can be used for the purpose.

3. MATLAB codes are easy to comprehend.

4. MATLAB is widely used for educational and research purposes.

For developing the algorithms for the Bayesian applications, discussed in Chapter 3 and 

5, Bayes Net Toolbox (BNT) developed by Kevin Murphy (http://bnt.sourceforge.net) has 

been used.

1.2 O p tim ization  and B ayesian  A nalysis

The commercially available controllers (Qin and Badgwell 1997) utilize one or the other form 

of the linear-quadratic optimization function of steady state variables. The optimization 

function is determined by the steady state mean operating point and the linear-quadratic 

coefficients for the process variables. The linear-quadratic optimization coefficients define 

the contribution of each process variable to the objective function, and the need to main­

tain them at desired operating points. By function of minimization, the higher the linear 

coefficient for a process variable, the more desirable it is to minimize the process variable; 

and the more negative it is, the more desirable tha t the process variable be maximized. The 

quadratic coefficient defines the need to maintain the process variable at a target value. The 

higher it is, the higher is the desire to maintain the process variable at the target value. 

Due to  the presence of disturbances and plant model mismatch, the process variables are 

operated at some distance from the constraints. This is a trade-off between avoiding con­

straint violation and concession on the profit from the process. The problem in this case
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is identification of the optimal operating point, taking into consideration the process in­

teractions. The closer the process operates to the optimum operating point, the better is 

the performance of the controller. Thus, it is essential to assess the performance of the 

controller as an estimate to how far or close, to the optimum operating points, the process 

is operating. The performance assessment technique, Linear M atrix Inequality Performance 

Assessment (LMIPA), discussed in Xu et a I. (2007) is based upon the linear-quadratic opti­

mization. The algorithm provides with the base case return potential without any tuning, 

the ideal case return and the constraint tuning guidelines for the process variables in the 

MPC controller, so as to obtain a target return defined as a percentage of the ideal return.

Using previous methods, two case studies are carried out, in this thesis, on a simulated 

distillation column (Volk et al. 2005) and an industrial distillation column. In Chapter 2, 

case studies based on LMIPA are performed. The case studies brought about not only the 

advantages of the LMIPA approach but also the shortcomings of the performance assess­

ment using deterministic linear-quadratic optimization. The constraint tuning guidelines 

obtained are at times observed to be unrealistically high, which are practically impossible to 

implement, e.g. in some cases the constraint limit is suggested to be increased by 100% and 

even more. Also, sometimes the suggestions made are obtained for the variables for which 

it is not desired to change the limits e.g. quality CVs. Thus, there is a need to obtain more 

realistic tuning guidelines for the variables for which it is possible to  change the constraints 

and which could be implemented for practical purposes. Also, since the LMIPA approach 

is a deterministic approach for performance assessment, and as the real world, processes 

are never deterministic, it would be appropriate to take into consideration the uncertainties 

associated with the process variability.

The work by Rahim and Shaibu (2000) proposed the use of probabilities for estimating 

the expected return and optimal target values for product qualities. The methodology pro­

posed by them involved the probabilities for product qualities to be inside and outside the 

specifications and the costs/profits associated with them. The methodology considered the 

product qualities only and did not take into account the interaction of various process vari­

ables. The same idea will be extended to assess the performance of MPC controllers using 

Bayesian technique (Korb and Nicholson 2004, Murphy 2001, Tan 2001, Charniak 1991).
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Chapter 1. Introduction 7

Since constraint change can affect the MPC performance, a Bayesian analysis method is 

thus developed to assess the performance of the controller when decisions to apply con­

straint changes are made. The performance assessment thus done will help evaluating the 

decision. To achieve this objective, a Bayesian Network is created for the controller and the 

decision made is provided as the evidence for the Network. The analysis then provides with 

the probabilities for the process variables to be within and outside the specification and 

the expected return are then estimated. Comparison of the expected return thus obtained 

with the current value of expected return will provide the assessment of the performance of 

the controller if the changes are made in the controller. The Bayesian Network can also be 

used to obtain the guidelines for the decisions to be made for achieving the target return 

from the process. The states of process variables, for the target return, are estimated and 

these states act as evidence for the analysis purposes for which the maximum a posteriori 

estimate of the states for the decision of the parent nodes is evaluated.

In Chapter 3, the Bayesian analysis application uses probabilities for evaluating the 

decisions; however, the optimization performed is based on the deterministic approach, 

linear-quadratic optimization. In Chapter 4, extending the idea of the Bayesian analysis 

using probabilities, for the process variables to be within and outside the specifications, a 

Probabilistic Performance Assessment (PPA) application is developed. The objective func­

tion defined for the PPA involves the probabilities for the process variables to be within 

and outside the specifications and the profit/loss associated with them to be inside and 

outside the limits. Unlike deterministic linear-quadratic optimization, which tends to drive 

the mean operating point to the optimal operating point, the PPA tends to  identify the 

optimum operating point for the process variables so tha t its probability to be within the 

specified constraints is maximized and thus the return from the process are also maximized. 

Besides this the PPA can also be provided with the information about which process vari­

ables are available for making constraint changes and what is the maximum change tha t can 

be made in their constraints. The solution optimizes the objective function and provides 

the tuning guidelines for the process variables so that the maximum change of the limits for 

the constraint are not violated. Thus, the results obtained from the PPA are more realistic 

and more practical to implement.

As in the case of Bayesian analysis for the MPC controller using linear-quadratic op­
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timization, in Chapter 5, an algorithm is developed using similar approach for the PPA. 

The Bayesian Network is created for the process in the same manner as for the Bayesian 

technique for linear-quadratic optimization. The decisions for making the changes in the 

constraints are provided, which are the evidence for the analysis purposes. The analysis 

estimates the probabilities for the process variables to be inside and outside the specifica­

tions, using probabilistic optimization function. The expected value of the return is then 

estimated and this can be used to compare with the controller performance with the existing 

constraint limits or the tuning. The same network can also be used to obtain the guidelines 

for tuning the controller constraint limits so that the target return is achieved.

As the processes seldom operate precisely on the mean operating point but around the 

mean operating point, estimating the return by only taking into account the mean operating 

point cannot be a true representation of the controller performance. It is therefore essential 

th a t the return be estimated by taking into account the probability for the process data 

to be inside and outside the specifications. The Bayesian technique using linear-quadratic 

optimization estimates the return from the controller using these probabilities. Thus the 

performance assessment made and the tuning guidelines obtained through this approach 

are more realistic than the simple linear-quadratic performance assessment.

Using probabilities in the optimization objective function is a closer approximation of the 

process than  the Bayesian technique using linear-quadratic optimization. In this approach 

the controller is optimized using the optimization function for PPA. The tuning guidelines 

thus obtained are more practical to be implemented.

1.3 T h esis ou tlin e

The optimization problem discussed in the work by Xu et al. (2007) has been an important 

work in the field of MPC controller performance assessment and tuning the controller with 

the constraints. Chapter 2 of the thesis discusses two case studies using the existing meth­

ods. The first case study is carried out on the binary distillation column described in Volk 

et al. (2005) and the second case study is carried out on an industrial distillation column.
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The tuning guidelines obtained from the analysis are critically analyzed for their effect on 

the overall process, when implemented. Chapter 3 describes the proposed Bayesian meth­

ods and its application for MPC controller performance assessment using linear-quadratic 

optimization. The algorithm is explained with illustrations using the binary distillation col­

umn discussed in Volk et al. (2005) and an industrial distillation column. A new proposed 

probabilistic performance assessment technique and its application are discussed in Chapter

4. The application of probabilistic optimizer is explained again with two applications, one 

with the binary distillation column and second with the industrial distillation column. The 

Bayesian performance assessment of the MPC controller using optimization function used 

for PPA is explained and discussed in Chapter 5. Finally the conclusion of all the work is 

summarized in chapter 6 of the thesis.

This thesis has been written in a paper-format in accordance with the rules and regula­

tions of the Faculty of Graduate Studies and Research, University of Alberta. In order to 

link the different chapters, there is some overlap and redundancy of material. This has been 

done to ensure completeness and cohesiveness of the thesis material and help the reader 

understand the material easily.
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2
MPC economic performance assessment revisit and 

case studies - Deterministic approach

A bstract: For a distillation column, which separates the feed mixture into its compo­

nents, Model Predictive Controller (MPC) has been developed and implemented. The MPC 

has been established as an effective and efficient control strategy th a t deals with economic 

optimization of the process control objective. The performance of the M PC controller needs 

to  be evaluated and if necessary needs to be re-tuned. The performance assessment method 

to  be used in this chapter is based on mean operating points. This study aims at assessing 

the application of performance of MPC controller for a distillation column and evaluating 

the suggestions made for limits tuning for the MPC controller. Through the case studies, 

advantages and disadvantages of the existing approach are discussed. The objective of this 

chapter is therefore 1) to review the existing approach and concepts through case studies, 

2) to identify shortcoming of the existing approach, and 3) to build connection with the 

following chapters.

2.1 In trod uction

W ith the increase in competitive pressures on commercial and technical fronts, process 

control has evolved and is still to reach its peak. Process control ensures most profitable 

production, leading to greater production of consistent quality products, with reliability and 

a t minimum operational cost (Xu et al. 2007). Over the years Model Predictive Control

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Chapter 2. M PC  economic performance assessment revisit and case studies -
Deterministic approach 13

(MPC) has evolved as a popular control strategy (Morari and Lee 1999, Qin and Badgwell 

2003). A number of commercial MPC controllers are available with different optimiza­

tion objective functions. For example, Dynamic Matrix Control (DM C™ ) integrates the 

Linear Programming (LP) for estimating the optimum steady state (Sorensen and Cutler 

1998) whereas, the Robust Model Predictive Control Technology (RM PCT™ ) also includes 

Quadratic Programming (QP) for the optimization of the economic function (Krishnan et 

al. 1998).

As distillation is the most common unit operations in a chemical process plant, two 

distillation operations have been chosen for the purpose of the case study. The purpose of 

the distillation column is to separate the components in the feed stream. In a petroleum 

refinery, the crude oil, a mixture of several hydrocarbons, needs to be fractionated into useful 

product streams. The fractionation of crude oil into various product streams is a complex 

process, thus it needs a proper control strategy. Model Predictive Controller (MPC) has 

emerged as a successful control strategy for a distillation column. The success of MPC can 

be rendered to factors such as (Pannocchia and Rawlings 2002):

1. Ability to operate on multivariable systems.

2. Ability to directly handle the input and output process constraints, using quadratic 

programming.

The process da ta  from the two distillation columns, controlled by their respective MPC 

system, is considered for the purpose of carrying out the study. The main objective behind 

carrying out this study in this chapter are to:

1. Establish the utility of the algorithm developed by Xu et al. (2007),

2. Assess the practicality of implementing the results obtained from the analysis,

3. Suggest modifications, if required, in the optimization problem for making the results 

more pragmatic and acceptable.

The practical implications of results, for the analysis of the data from the two distillation 

column processes, are presented and discussed in this chapter. The effect of implementing 

the suggested tunings on each CV and MV is discussed individually, to bring about the
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significance of each suggestion made by the algorithm. The chapter is organized as follows. 

Section 2.2 discusses the fundamentals of the Linear Matrix Inequality based Performance 

Assessment (LMIPA). Section 2.3 describes the binary distillation column (Volk et al. 2005) 

for which the LMIPA study is carried out and provides the analysis of the results. Section 2.4 

describes an industrial distillation column M PC application for which the LMIPA analysis 

is done followed by analysis of the results obtained. Section 2.5 provides the conclusion of 

the analysis.

2.2 LM IPA  analysis o f  th e  process

Linear M atrix Inequality based Performance Assessment (LMIPA) is a tool for performance 

assessment of MPCs (Xu et al. 2007). This tool, when provided with the process data in 

the required format and the plant model, will do the benefit estimate analysis for all the 

process variables.

For an m  x n  system with n inputs and m outputs, having steady state process gain 

matrix, K, which is controlled by an MPC controller, let (yjo, Ujo) be the current mean 

operating points for ith output and j th input variable and be referred to as the base case 

operating points. Also, let L Vi and HVi be the low and the high limits for y,, and L Uj 

and HUj be the low and the high limits for Uj, respectively. If ( yi,Uj) are the operating 

points for yi and U j ,  respectively, then the economic objective function for the system can 

be defined as a quadratic function:

m  n

J = Y l{ai x &+$ ~ ̂ )2) + H  {ai x +$ (ui ~ ̂ )2)
i = 1 j —1

where, y, and i/j are the target values for ith CV (yi) and j th MV (uj) respectively, on and 

j3i are the linear and quadratic coefficients for yi, a j and i3j are the linear and quadratic 

coefficients for uj.

For the defined system the assessment of yield is done for various cases described in 

detail below:

1. Assessment of ideal yield,

2. Assessment of optimal yield without tuning the controller,
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3. Assessment of improved yield by reducing variability,

4. Assessment of improved yield by constraint relaxation and

5. Constraint tuning for desired yield.

1. Assessment of ideal yield:

For assessing the ideal yield, steady state operations are considered with no variability 

in both yi and uj. Under this scenario the optimization problem for the system is 

defined as:

subject to:

A yi =

Vi =

U j  =

L Vi < 

L Uj <

where, i = 1, 2, . . . , m  and j  — 1, 2, . . . ,  n.

min J  (2.2)
Vi ,Uj

n
x Auj] (2.3)

j= i
yi0 +  A yi (2.4)

ujo + A uj (2.5)

Vi — Hyi (2-6)

Uj  < H Uj (2.7)

2. Assessment of optimal yield without tuning the controller:

The assessment of the optimal yield of the controller without tuning means to assess 

the yield tha t should be obtained from the controller for the given constraints and the 

existing variability in the base case operations. This scenario considers moving the 

actual operating point of yi to its optimal operating conditions, as close as possible, 

subject to the constraints. Under this scenario the optimization problem for the sys­

tem  is the same as defined in equation (2.2) subject to equalities defined in equations

(2.3), (2.4) and (2.5); however, the inequalities are according to  equations (2.8) and 

(2.9):
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Vi “I- 2 x cTjo ^ Vi 5̂  Myi 2 x (̂ *̂ )

L Uj + 2 x  R j 0 < Uj < H Uj -  2 x R j0 (2.9)

where, i =  1 , 2 , . . . , m  and j  = 1 , 2 , cr*o and i?jo are the base case standard 

deviation and the quarter of the range for i / i  and U j ,  respectively. The inequalities 

defined for the problem allow 5% constraint limit violation i.e. 95% of the operation 

is within two standard deviations (Latour et al. 1986, M artin et al. 1991).

3. Assessment o f improved yield by reducing variability:

This case involves tuning of the control system such tha t the variability of one or more 

output variables can be reduced. Reducing the variability provides the opportunity to 

push the operating points closer to the optimum and thus improve the yield. Practi­

cally, the reduction in variance of one variable (say quality variable) is transferred to 

the variability of some other variables, such as constrained variables. Since constraint 

variables do not directly affect the profit, their variability is not of concern, as long as 

they are maintained well within the set limits. Thus, variability of a quality variable 

can be reduced by transferring it to that of the constraint variables. For assessing 

the improved yield by variability reduction the optimization problem and its equality 

conditions are the same as defined in equations (2.2) and [(2.3), (2.4) and (2.5)] re­

spectively; however the inequalities are changed and are defined in equations (2.10) 

and (2.11):

L yi + 2  x ai0 x (1 - S yi) < yi < H yt -  2 x ai0 x (1 -  SVi) (2.10)

LUj + 2 x  R j0 x (1 -  SUj) < uj < HUj -  2 x  R j0 x  (1 -  SUj) (2.11)

where, i = 1 , 2 , . . . , m  and j  = 1 ,2 ,. . .  ,n; SVi and SUj are the percentage reduction in 

the base case variability of y i  and U j .  S yi and S UJ are obtained from Multi-Variable 

Performance Assessment (MVPA) (Xu et al. 2007). The inequalities defined for the

problem allow 5% constraint limit violation (Latour et al. 1986, M artin et al. 1991).
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4. Assessment of improved yield by relaxing constraints:

Relaxing the constraints for one or more process variables in an MPC controller can 

help moving the operating points so as to increase the yields. Relaxing the limits for 

the constraint variables can help in moving the quality variables closer to the optimum 

operating points, improving the yield. Thus, the optimization problem for this case 

can be defined by equation (2.2), the equality conditions are defined by equations

(2.3), (2.4) and (2.5); however, the inequalities defining the constraints are considered 

in equations (2.12) and (2.13):

Lyi f  2 x CiQ Vholi x rVi ^  yi. A fAy, 2 x ai0 * yholi x ryi (2.12)

Luj T  2 x Iljo Uhoij x A Uj 'Ai lly j 2 x Rjo -(- ufi0ij x (2.13)

where, i =  1 , 2 , . . . ,  m and j  — 1 , 2 , . . . ,  n; ryi and rUj are the user specified percentage

relaxation in the limits for y i  and U j .  The inequalities defined for the problem allow 

5% constraint limit violation (Latour et al. 1986, M artin et al. 1991).

5. Constraint tuning for desired yield:

The constraint tuning guidelines for achieving the target value of return or yield from 

the system can be obtained by performing optimization defined for this case. If the 

ratio of target yield and the ideal yield is R c then the constraint tuning guidelines, ry% 

and f Uj for yi and uj, respectively, can be obtained as a solution to the optimization 

problem discussed here. The optimization for the scenario can be defined as:

min r  (2-14)
Vi^jXviXujf

subject to,

Dyi T 2 X <Ti0 Vholi X ‘Tyi A Vi A Ryi 2 X CiQ T  Vholi X ryi (2.15)

Ruj +  2 x Rjo Uhoij x rUj A Uj A Ruj 2 x R jq T  Uhoij x ru  ̂ (2.16)

0 A f yi, f Uj A l  (2.17)

where, i = 1 ,2 , . . .  ,m  and j  — 1 ,2 , . . .  ,n . The equality constraints for the problem

remain the same as in equations (2.3), (2.4) and (2.5).
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The economic performance assessment of the controller can now be done using the infor­

mation obtained after performing the optimizations discussed above. Two terms, econom ic 

perform ance index (tje )  and theoretical econom ic perform ance index (pr ) ,  are defined to 

assess the economic performance.

m  =  | |  P .18)

nr = | |  (2.19)

where, A Je  is the optimal yield without tuning of the controller, as obtained from case- 

2, A J j  is the ideal yield, as obtained from case-1 and A J?  is the upper bound of the 

theoretical yield that can be achieved through minimum variance control plus steady state

optimization, as obtained in case-3 for minimum variance control. By comparing the values

for pe  and pr  the following relation holds:

0 <  Pe < PT < 1 (2.20)

2.3 LM IPA  analysis for a B inary  D istilla tion  C olum n

2.3.1 Description o f the B inary D istillation  Column

The column (fig- 2.1) is a binary distillation column which is used to separate light petrol 

and the heavy petrol from the petrol obtained from an upstream desulphurization unit (Volk 

et al. 2005).The light petrol comprises of the components in the boiling range of 30 to 65°C 

and the heavy petrol has the hydrocarbon components in the boiling range of 65 to 180°C.

The feed to the column is heated by steam and flashed into the column. The lighter 

fractions of the hot feed vaporize and are collected as the top product in the overhead vessel 

and the heavier components are obtained at the bottoms of the column. The vapors from 

the top of the column are cooled and condensed by air fin coolers. A part of the condensed 

overhead vapors are sent back into the column as the reflux and the rest is drawn, under 

a level control, as the top product i.e. the light petrol. The reflux helps in maintaining 

the column top tem perature and helps in maintaining the vapor liquid traffic in the reflux 

zone of the column, which helps in better fractionation. The column operating pressure is
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maintained by a split range control which adjusts the cooling of the overhead vapors and 

if required, vents off the incondensable components from the column, as the off gas. The 

heavier components in the feed do not vaporize and are obtained from the column bottoms. 

A part of the bottom  stream is sent to the reboiler, where it is reboiled by a heating medium 

using a duty controller. The heating medium is heated in the reboiler furnace, whose duty 

is required to  be kept constant. The vapors from the reboiler are sent back into the column 

and they assist in stripping off any lighter components that could not flash into the flash 

zone of the column and are carried to the bottom  of the column. The balance of the heavier 

components is drawn from the column as the heavy petrol, under a bottom level controller. 

The column has the following basic control strategies:

1. Reflux Control: The basic control is a PI control loop which controls the reflux flow 

to the column.

2. Pressure Control: The pressure controller is a split range controller. It takes care of 

the column pressure by adjusting the cooling of the vapors from the column top and 

if required by venting off any non-condensable. At 50% the cooling is at its maximum 

value by adjusting the air fin cooler, a further decrease in pressure is done by venting 

off the off gas to the flare by operating the flare valve, which is undesirable.

3. Feed Temperature Control: This controls the tem perature of the feed to the column 

by controlling the steam flow in the feed heater. Increasing the feed tem perature also 

helps in reducing the duty consumption in the reboiler.

4. Reboiler duty: The reboiler duty can be controlled by adjusting the flow of the heating 

medium.

5. Reflux drum level control: The level in the reflux drum is controlled by controlling 

the light petrol flow.

6. Reboiler level control: The level in the reboiler is maintained by controlling the flow 

of the heavy petrol.

2.3.2 M PC  control strategy and objectives

The MPC controller designed for the system described above has 4 input variables and 10 

output variables. The main control objectives for the MPC controller are to set the range 

under consideration and to minimize the variability. The main process parameters and
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HyPetrol

Figure 2.1: Binary Distillation Column

variables to  be optimized are the light petrol Final Boiling Point (FBP), column bottom  

Pressure Compensated Temperature (PCT), reboiler furnace duty and column pressure. 

The constraint variables th a t are to be maintained within the set constraints while the 

above mentioned parameters are optimized are the feed temperature, top PCT, reflux flow, 

pressure valve position, feed tem perature valve position, bypass valve position.

1. Reflux Flow: The reflux flow is essential to be maintained within a certain limits as 

having less reflux into the column will reduce the vapor-liquid traffic in the reflux zone 

of the column, which will have undesirable effect on the fractionation.

2. Light Petrol FBP: The FB P of the light petrol is essential to be maintained as it 

defines the quality of the main product from the column. The FB P is the boiling 

tem perature of the product, if 99% of the product has been evaporated.

3. Top PCT: Top PC T  is another indication of the top product quality. It shows a 

change in the distillate quality earlier than the measured FBP.

4. Pressure Valve Position: The pressure valve position is always required to be less 

than 50% as for position greater than 50% the off gas flare valve will open, which is 

undesirable.

5. Column Bottom PCT: PCT is a cheaper alternative to the bottom  product quality 

measurements. PC T reflects the pressure and tem perature measurement at bottom 

of the column.
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6. Column Pressure: The column pressure is to be kept minimum so as to reduce the 

energy consumption in the reboiler furnace.

7. Feed Temperature: The column feed tem perature is desired to be maintained as close 

as possible to  the flash tray tem perature and can be increased to reduce the reboiler 

furnace duty.

8. Reboiler Furnace Duty: The heating oil in the reboiler is heated in the reboiler furnace, 

whose duty is required to be kept constant. This can be achieved by adjusting the 

bypass flow of the heating oil, so as to maintain constant reboiler pressure drop. 

Maintaining constant pressure drop, across the bypass valve, ensures constant furnace 

load.

9. Duty: The duty of the reboiler is to be maintained, to ensure some minimum flow 

through the reboiler furnace.

10. Bypass Valve Position: The bypass valve maintains the bypass to the reboiler, in order 

to maintain a constant pressure drop across the reboiler and thus constant reboiler 

furnace duty. The valve position is required to be maintained in a range so that 

hardware constraints of the valve are never violated.

The input variables or the MVs th a t act as the handles to optimize and maintain the 

above discussed controlled variables are:

1. Reflux Flow Controller Set Point: The reflux flow helps in maintaining the column top 

tem perature and it helps maintaining adequate liquid traffic in the reflux zone of the 

column to ensure proper separation between the light and heavy petrol. The minimum 

limits are to be set to ensure th a t the reflux pump has minimum flow required and 

that the trays do not run dry. The maximum limits are to be set to ensure no flooding 

in the trays of the column.

2. Column Pressure Controller Set Point: The column pressure is an important handle 

as it affects all the Controlled Variables. This needs to be minimized to reduce the 

energy consumption. The minimum constraints are to be set so as to avoid jet flooding 

in the column. The high limit is to be set so as to ensure perfect separation and to 

ensure that the column is operated well below the column safety valve setting.
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Table 2.1: LQ optimization coefficients

C V # M V #

1 2 3 4 5 6 7 8 9 10 1 2 3 4

Linear Coef 0 2 0 0 1 1.5 0 1.75 0 0 0 0 0 0

Quad Coef 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3. Feed Temperature Control Valve Position: This valve controls the steam flow through 

the feed heater. The minimum and maximum constraints for this MV define the 

hardware limitation of the control valve.

4. Duty Valve Position: The minimum constraints for this MV are to be set to  ensure 

some minimum furnace circulation and to protect it from film evaporation in case of 

failure of bypass valve and to keep minimum heat transfer coefficient. The maximum 

constraints are set to  avoid meeting hardware constraints of the valve.

The steady state gain matrix for the process can be given as:

0.9500 0 0 0
-0.0469 -4.9852 0.1341 0.3324
-0.0600 -6.3750 0.1715 0.4250

0 -25.000 0 0
-0.0170 -8.8125 0.1930 0.5100

0 0.3750 0 0
0 0 0.2680 0
0 0 -0.0700 0
0 0 0 0.1700
0 0 0 0.6650

2.3.3 Case study

The study was carried out for all the five scenarios, discussed in section 2.2, for the dis­

tillation plant controlled by an MPC. Based on the control objective mentioned in Volk 

et al. (2005), the linear quadratic objective function coefficients required to carry out the 

LMIPA analysis are defined as given in table- 2.1. The base case mean operating points 

and standard deviation for the output variables are listed in table- 2.2. Table- 2.3 lists the 

mean operating points and the quarter of the range for the input variables.
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Table 2.2: Base case mean operating point and Std Dev of output variables

C V # 1 2 3 4 5 6 7 8 9 10

mo 322.39 68.00 60.99 20.11 85.81 0.16 70.09 -500.03 4.75 47.50

Std Dev, <Tjo 11.40 0.13 0.35 0.75 0.57 0.05 1.12 3.13 0.12 0.01

Table 2.3: Base case mean operating point anc

M V # 1 2 3 4

UjO 497.16 0.19 50.32 81.00

Q tr of Rng, Rjo 33.14 0.01 5.00 0.03

Std Dev of output variables

Based on the information provided above, the optimization function can be defined as 

equation (2.21) and the constraints can be defined by substituting K and the values provided 

in tables 2.1, 2.2 and 2.3.

10 4

J = YY (ai x  & + $ -  Vi)2) + Y2 f a x  ni + $  (“ j ~  vi)2) (2 -21)
»=1 j = 1

The constraints for the problem are defined using the steady state gain, K, and the infor­

mation given in tables above.

The results obtained for the five cases discussed in section-2.2 are discussed below:

1. Assessment of ideal yield: The assessment of ideal yield for the process was done by 

the optimization problem given by equation (2.2) subject to  equations (2.3) to (2.7). 

The ideal yield for the process is assessed to be 28.48 units.

2. Assessment of optimal yield without tuning the controller: To assess the optimal yield 

from the process, without tuning the controller, the optimization problem is given 

by equation (2.2) subject to equations (2.3) to (2.5) and equations (2.8) and (2.9). 

The optimal yield from the the process without tuning the controller is assessed to  be 

20.24 units.

3. Assessment of improved yield by reducing variability. To improved yield by reducing 

the variability is assessed by the optimization problem given by equation (2.2) subject 

to equations (2.3) to  (2.5) and equations (2.10) and (2.11). The performance indices
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Figure 2.2: Yield pattern

obtained from MVPA with MVC as benchmark are used to assess the improved yield 

by reducing the variability. The improved yield is assessed to be 22.78 units.

4. Assessment o f improved yield by constraint relaxation: This case provides with the 

sensitivity of the process yield to constraint relaxation. The optimization problem for 

this case is defined by equation (2.2) subject to equations (2.3) to (2.5) and equations 

(2.12) and (2.13). The analysis shows that the process yield is most sensitive to CV5 

constraint changes.

5. Constraint tuning for desired yield: Setting the target yield as 85% of the ideal yield 

the tunign guidelines are obtained from the optimization problem defined in equation 

(2.14) subject to  equations (2.3) to (2.5) and equations (2.15) to (2.17). The tuning 

guidelines thus obtained are given in table-2.4 and shown in fig-2.3.

The results from the analysis showed tha t under ideal conditions the return are expected 

to be 28.48 units; however, the optimum yield without the controller tuning is about 20.24 

units (fig- 2.2). As for the optimum yield estimation, the variability and the constraints for 

the controller are not changed, a high value for the optimum yield indicates that currently 

the controller is running at points far from the optimal constraints. This also indicates that 

there is one or more process variables tha t has high variance. This goes in accordance to 

the data used for the analysis which shows tha t CV1 has a very high variance of 11.40 and 

this restricts the controller from operating at points close to optimum operating points.

A high value for the optimum yield, without tuning of the controller, also indicates that 

with the current controller the plant is operated at points far from the optimum values.
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Table 2.4: Suggested constraint relaxation(%age) for the MPC controller

C V # M V #

1 2 3 4 5 6 7 8 9 10 1 2 3 4

Constraint relaxation 0 0 0 0 6.75 0 0 0 6.75 0 6.75 0 6.75 0

„ 100:
a 80 
I  60
H «

100 ;

80 -

" 40 
1 . 20

0

Figure 2.3: Suggested constraint tuning

This is also reflected by the mean operating points for CV2, CV5, CV6 and CV8. These 

CVs are operated at 68.00, 85.81, 0.16 and -500.03, while their operating limits are (40, 

70), (80, 120), (0.1, 0.4) and (-1000, 0), respectively. For the assessment of optimal yield 

without tuning of the controller the limits for the CVs, estimated using equations (2.8 and 

2.9), are given in table- 2.5. Thus, with reference to the LQ optimization coefficients, the 

optimum operating points for the CV2, CV5, CV6 and CV8 are 40.25, 81.15, 0.21 and 

-993.73 respectively. I t can be seen tha t the controller is currently operating at points far 

away from the optimum.

Setting a target yield as 85% of the ideal yield (24.21 units), the constraints tuning 

guidelines for the controller are obtained. Since return equivalent to 20.24 units can be 

achieved by optimal operations of the controller under the base case conditions, it is only 

a small fraction of the return which have to be extracted by constraint tuning. Thus, the 

controller tuning will contribute to the balance 24.21 -  20.24 =  3.97 units of the return. 

The constraint relaxations suggested by the algorithm are listed in table- 2.4 and shown in 

fig- 2.3, the effect of suggested constraint tunings is discussed below.

Table 2.5: CV Limits considered for assessing optimal yield without tuning

C V # 1 2 3 4 5 6 7 8 9 10

Low Lt 22.79 40.35 40.40 1.50 81.15 0.21 62.86 -993.73 4.24 0.02

High Lt 627.21 69.75 69.30 58.49 118.85 0.29 92.76 -6.27 5.25 94.98
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1. MV3, Feed Temperature Control Valve Position: The constraint limits set for MV3 

are (40, 60) and the mean operating point is 50.32. The operating range for this MV 

is also (40, 60). Thus, relaxing its constraint limits will assist in giving the controller 

more degrees of freedom to manipulate the feed temperature. The controller can 

increase the feed tem perature and thus can reduce the furnace duty. However, this 

will also increase the light petrol FBP and the column bottom PCT (CV2 and CV5) 

but these can be taken care of by increasing the reflux and reducing the column 

operating pressure.

2. MV1, Reflux Flow Controller Set Point: Increasing the reflux to the column helps 

in better fractionation in the reflux zone of the column and also has a cooling effect 

on the column. For the data set provided the column reflux is operated in the range 

(433, 565). W ith this range of operations, the constraints need to be relaxed, so that 

the furnace duty is minimized to  achieve the target return of 20.80 units. Relaxing 

the constraints for the column reflux will enable the controller to increase the reflux 

so as to minimize the effect of the increase in feed tem perature on the top and the 

bottom  temperatures and product qualities.

3. CV5, Column Bottom PCT: The bottom  PC T  is an indicative for the cut between the 

top and the bottom  product. The hard limits in which, this CV is to be maintained 

are (80, 120) and the mean operating point is 85.81 units. As this CV is also to 

be minimized, the value of 81.15, the low limit for the current operating conditions, 

for this CV can be taken as the optimum operating point (table- 2.5). Since the 

current operating point is close to the optimum operating point, any action taken by 

the controller to lower the CV2 value will also decrease the CV5 value. Thus, it is 

essential tha t the constraint limits for CV5 be reduced so tha t CV2 can be reduced 

to its optimum operating point. Therefore, there is a suggestion for relaxing the 

constraints for CV5.

4. CV9, Duty: Relaxing the constraints for this CV will provide more room for the duty 

valve, MV4, to  operate and thus CV2, CV3 and CV5 can much better be optimized.

The results show tha t the A J/=28.48 and A ./^ =20.24. The performance indices from 

MVPA with MVC as the benchmark are given in fig- 2.4 and accordingly, the A J j ’=22.78, 

The economic performance assessment, t]e , of the process is calculated as 71.1% and the 

theoretical economic performance assessment, rjr, is 80.0%. Thus, there exists a large scope
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Figure 2.4: Performance Indices for CVs 

in improving the economic performance of the controller.
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2.5 C onclusion

The LMIPA performance assessment methodology is important work in the field of MPC 

economic performance assessment. It is based upon the mean optimization values of the
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process variables and shows tha t benefit potential can be achieved by constraint tuning of 

process variables, which will enable the process to reach optimum operating conditions.

The LMIPA performance assessment takes into consideration the mean operating point 

for the analysis and optimization purposes. However, the mean operating point is not 

the best representation of actual process operations. Considering the data  distribution 

determined by the mean and the standard deviation is a method to be presented next. 

Thus, the benefit estimation will be done taking into consideration of the probabilities of 

the CVs.

Beyesian methods will be proposed as a tool for taking into consideration these proba­

bilities and providing the tuning guidelines for MPC.
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3
MPC constraint tuning - Bayesian approach via 

deterministic LQ objective function

A bstract: Performance assessment of Model Predictive Control (MPC) systems has 

been focused on evaluation of variability-based performance with minimum variance or 

LQG /M PC simulation as benchmarks. These previous studies are mainly concerned with 

the dynamic disturbance regulatory performance of MPC. However, the benefit of MPC is 

largely attributed to its capability for steady-state economic optimization. The steady state 

economic performance, on the other hand, also depends on the variability reduction achieved 

through dynamic control. There is a need to  assess MPC performance by considering steady 

state economic performance, variability and their relations. One of the best indications 

for this relation is the constraint setup or tuning. In practical MPC applications, the 

constraint setups are important when an MPC is commissioned, and constraint adjustments 

are not uncommon even when the MPC is already on-line. Thus the questions to ask are 

whether the constraint can be adjusted, which constraints should be adjusted, and what 

is the benefit to do so. By investigating the relation between variability and constraints, 

the problems of interest are solved under Bayesian Statistics framework: namely decision 

evaluation and decision making. The decision is referred to whether to adjust constraint 

to achieve optimal economic MPC performance and which constraints to adjust. Detailed 

case study for a distillation column MPC application is provided to illustrate the proposed 

MPC performance assessment and tuning methods.
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3.1 In trod uction

W ith globalization, there is an increase in the commercial and technical competitive pres­

sures on the industries. This has driven the industries to improve their manufacturing 

efficiency, continually reduce their production costs and losses, maintain product qualities 

and reduce off-spec product generation. Process Control can help in improving the man­

ufacturing efficiency by ensuring reliable operations and consistent production of quality 

products. According to Benson (1997), “Process Control ensures th a t the plant operates 

predictably in the most profitable range, leading to greater output of consistent product, 

reliability, yield and quality using less energy” .

Model Predictive Control (MPC) is an advanced method of Process Control, which relies 

on the model of the process. It predicts the behavior of the Controlled Variables (CVs) 

based upon the M anipulated Variables (MVs) to compute a cost minimizing control. A 

multivariable MPC also takes into consideration the effect of change in one process variable 

on the other process variables, due to  interaction between them. Thus, MPC provides a 

better control of the process operations as generally the variables in process plants are highly 

interactive. But having a multivariable controller is not just enough to  serve the purpose. 

They need to  be tuned properly with a proper understanding of the process behavior and 

the control philosophy adopted for the MPC. There are different commercial controllers 

available in the market th a t adopt different control philosophies (Qin and Badgwell 1997) 

but they all need to be tuned at the design and engineering level.

MPC controller tuning is primarily being restricted to the tuning of the penalty matrix 

on the output error and/or control moves so as to minimize the squared error of the con­

troller output over the control horizon (Drogies 1999, Ou and Rhinehart 2002). This tuning 

approach is subjective in nature as the design of the penalty matrix for tuning is guided by 

the fact as to what is more im portant, the tampering of Manipulated Variable (MV) actions 

or to  maintain the CVs within the constraints. The other tuning parameters involved are, 

for example, the prediction horizon and the control horizon. Tuning of MPC controllers 

with these parameters is done at the engineering level and requires a thorough understand­

ing of the process and the control philosophy of the MPC application used. Though these 

are the key tuning parameters for an MPC controller, there are also some other factors that
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contribute to the performance of an MPC controller, such as, the CV/M V constraints and 

CV/M V variability. The CV/M V constraints should be carefully chosen as giving wrong 

constraint limits in CVs or MVs can lead to poor performance of the controller.

In an M PC controller, CVs generally reflect the desired product qualities, subject to 

the constraints, which are to be considered for optimization and the MVs are the handles 

available for controlling and optimizing the CVs within the set constraints. Thus, it is 

essential to provide the controller with proper constraint limits for CVs and MVs. The 

MVs are always within the range specified; however, the CVs can be under-spec (values 

less than the low limit), over-spec (values greater than the high limit) or in-spec (values 

within the limits). Having an in-spec value for the CVs cannot always be called a good 

control as within the limits there also exists an optimum operating point, a t which the 

performance of the MPC controller is maximized under the given set of conditions. Due to 

the presence of variability in the process, CVs have probabilities associated with them  to 

be under-spec, in-spec or over-spec. Also, the variability associated with the CVs defines 

how far or close the CVs are to  the optimum operating point, which typically is located 

at the constraint limits. Thus depending upon the probabilities of CVs, to be under-spec, 

in-spec or over-spec, the expected return (Rahim and Shaibu 2000) from the controller can 

be estimated.

This work is driven by industrial needs and motivated by the following facts: 1) When 

commissioning an MPC and determining the constraint limits, it is highly desirable to have 

a tool to  estim ate the impact (or sensitivity) of the constraints on the performance, thus 

reducing the conservativeness when setting the constraints. 2) Even during operations of 

an MPC controller it is at times required to  change the constraints of one or more CVs 

and MVs. This affects the performance of the controller. Some changes can improve the 

performance while others may have little effect on the performance. 3) Profit or return of 

advanced process control is often estimated based on average operating conditions. In Xu 

et al. (2007) the following problem has been considered: Assume that constraint limits or 

the variability of certain CVs and MVs can be adjusted and tuning of MPC is limited to 

the adjustm ent of the constraint limits and/or variability only. Upon adjustment of the 

constraint limits, CVs/MVs operating points move to their optimum. The new operating 

points are determined through steady state optimization according to an economic objec­
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tive function and the return (profit), by adjusting the constraint limits, can be calculated 

accordingly. However, this procedure only considers the average operation and return is 

calculated based on the average response. The actual response can be different from the 

optimum owing to the variability. This study is thus to provide a probabilistic method to 

evaluate the effect of the change in the constraints, of the process variables, on the over­

all economic performance of the MPC controller, by taking into account the uncertainties 

introduced by the variability. The study also aims at providing the maximum a posteriori 

(MAP) explanation for the decisions to be made for achieving target value of return. The 

algorithm exploits the Bayesian methods for making the decisions to achieve the target value 

of return. Bayesian Statistics is a branch of statistical inference technique that deals with 

probabilities of occurrence of certain events given certain set of conditions or observations 

(Charniak 1991).

To make Bayesian inference and for decision making, what we need in the proposed 

approach is the plant routine operating data, the plant steady state gains, and other related 

process information such as, which CVs and MVs are allowed to change their limits and 

what is the preference to make any change. The algorithm performs optimization on the 

various combinations of the constraint changes on these CVs and MVs to establish the new 

optimum operating points under changed conditions and then to establish the new under- 

spec, in-spec and over-spec probability of the CVs. The new probability is then used to 

estimate the expected return through Bayesian methods.

A Bayesian network can be developed for the system with the CVs and the MVs, for 

which the constraints can be changed, as the parent node. All the quality CVs are the 

child nodes. The new probabilities estimated through the optimization are used to form 

the Conditional Probability Distribution Tables (C PT or CPD) for the network (Korb and 

Nicholson 2004, Pearl and Russel 2000). Once the Bayesian network for the system has 

been created, the network can then be provided with various cases of evidences to  evaluate 

the probabilities for CVs to be in various states and thus evaluates the return.

The contribution of the chapter can be summarized as: 1) A systematic approach to 

Bayesian analysis of the decisions related to the constraint changes for CVs and MVs. 2)
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Guidelines for constraint changes are derived according to the statistical inferences based 

upon the target value of return anticipated from the controller. The remainder of the 

chapter is organized as follows: Section 3.2 explains the preliminary concepts, where the 

problem is defined and some basic concepts of Bayesian methods are explained. Section

3.3 derives the Bayesian methods for MPC constraint analysis and tuning followed by an 

illustration in section 3.4. Section 3.5 and 3.6 provide case studies on a binary distillation 

column and an industrial distillation column, respectively. The conclusions are presented 

in section 3.7.

3.2 P relim inaries

3.2.1 Defining the problem

For illustration purposes, consider the process d a ta  as shown in fig- 3.1. As can be seen 

from the figure tha t even though the mean values for this set of data  is within the specified 

limits, there are instances when the process values lie outside the limits. And if this data 

set represents a quality variable then having its value outside the set limits is undesirable 

as it can render the product unmarketable.

Decisions to  change the constraints for an MPC controller, obtained by the LMIPA 

method, as discussed in Chapter 2, are based upon the mean operating point. As stated 

above, even when the mean operating point is within the constraint limits, at instances, 

data may lie outside the limits. Thus, it is essential that the decisions obtained from LMIPA 

method be analyzed taking into account the probabilities associated with the data  to lie 

inside and outside the limits. The probabilities can be used to estimate significant relation 

between relaxation of particular set of constraints and the final plant performance.

The limits for the CVs and the MVs and their variability determine the optimum op­

erating point for the MPC controller. Relaxing the limits for one or more process variables 

provides the controller with increased degrees of freedom and thus may help in improving 

the expected return even if there is no reduction in the variability of the variables. This is 

indicated in fig- 3.2.
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Figure 3.1: Base case data and distribution for a process variable
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Figure 3.2: Effect of change in limits

As can be seen from fig- 3.2 tha t even though y\ is far from the optimum operating 

point, the high limit, it may not be further raised to optimum value as yi is hitting the 

constraints at the high limit. Relaxing the constraint for yi on the high limits may provide 

the controller with additional degrees of freedom and y\ may be raised to  a point closer to 

the optimum operating point, leading to  improvement of the controller performance. Thus 

it is essential to quantify the interaction between them in order to analyze the effect of 

change in constraints of one variable on the other variables. Using Bayesian methods, the 

effect can be quantified in terms of probabilities for the quality variables to be within the 

limits or outside the limits.

Since the limits for CVs/ MVs for an MPC controller cannot be changed dramatically, 

in this study, 10% constraint relaxation is considered.
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3 .2 .2  B a y e s ia n  S ta t i s t i c s

Named after Thomas Bayes, Bayesian analysis is a branch of statistical inference th a t can 

be applied for decision making and statistical analysis using knowledge of prior events 

to predict future events. The Bayes theorem forms the backbone of Bayesian analysis. It 

enables calculating conditional probabilities for a hypothesis (Korb and Nicholson 2004, Tan 

2001) and is also known as the principle of inverse probability.

Probability for a hypothesis A  conditional on a given evidence B  is the ratio of prob­

ability of the conjunction of A  and B  to the probability of B  (Korb and Nicholson 2004)

i.e.

P {A \B )  =
P (B )

P (B \A ) x P (A)
(3.1)

P (B \A ) x P (A ) +  P {B \^A )  x P(-,A) 

where, P (A ) is the prior probability of occurrence of hypothesis A, also known as priori. 

P{B\A) is the likelihood of obtaining evidence B  given hypothesis A  is true and P (A \B )  is 

the posterior probability of A  to be true given the evidence B  is obtained. ->A represents 

the case when the hypothesis A  is not true.

3 .2 .3  B a y e s ia n  n e tw o rk s

For a system comprising of more random variables than A  and B, a network connecting 

all variables can be built. This network representing the relationship between the various 

random variables is called a Bayesian network. A Bayesian network is defined by Korb and 

Nicholson (2004) as “a graphical structure that allows us to represent and reason about 

an uncertain domain. The nodes in the network represent a set of random variables.” A 

pair of nodes are connected through directed arcs that represent a relationship between 

the nodes. The node through which the arc originates is called parent node and the node 

where it term inates is called child node. The nodes in a Bayesian network are the variables 

of interest and the link between them represents the probabilistic dependencies among 

the nodes (Pearl and Russel 2000). To specify the probability distribution of a Bayesian 

network, prior probabilities are to be defined for the root nodes i.e. the nodes with no
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A B X Y Z
1 1 0 0.8 0.2
t 2 0.2 07 0.1
2 1 0.4 05 0.1
2 2 0.5 0.3 0,2

c P 0
X 0,2 0B
Y 0.5 0.5
2 0.4 G.S

Figure 3.3: Typical Bayesian network

predecessor and the Conditional Probability Distribution Table (CPD or CPT) is defined 

for all non-root nodes, for all possible combinations of their direct predecessors (Charniak 

1991). The CPT quantitatively represents the relationship between the parent and the child 

nodes. A typical Bayesian network is shown in fig- 3.3. Node C  has two parent nodes A  

and B  and one child node D. Nodes A  and B  have two states (1,2), node C  has three 

states (X , Y ,Z )  and node D  has two states (P ,Q ). The tables beside node A  and B  are 

their prior probabilities and those besides node C  and D  represent their CPT.

A Bayesian network cannot have directed cycles, i.e. a node cannot be reached again by 

following the directed arcs from the child nodes directly. Thus Bayesian networks are also 

called Directed Acyclic Graphs (DAGs). Through DAGs the parameters can be represented 

as nodes or random variables and be associated with a prior distribution. DAGs which 

include decision and utility nodes as well as chance nodes are known as influence diagrams 

or decision networks and be used for optimal decision making (Murphy 20016).

The Conditional Probability Distribution Tables quantify the dependencies between the 

nodes. The CPD’s are probability distribution P (x j |P a t), where ay is the ith node and Pai 

represents all of its Parent nodes (Murphy 2001b, Murphy 2004). There are three types of 

nodes, two of which are used in this paper:

1. Chance Nodes-. These nodes represent random variables and are associated with CPT.

2. Utility Nodes or Value Nodes: These nodes represent the value of the utility function 

(benefit function). The parents for these nodes are the nodes whose outcome directly
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affects the utility. These nodes are associated with utility table, with the value for 

each possible instantiation of its parents perhaps including an action taken (Korb and 

Nicholson 2004).

Thus, if Xj is the set of observed variables, Xi is the set of variables whose values we are 

interested in estimating, X). is the set of variables in the system, not included in Xi and X j, 

then inference in a Bayesian analysis means to compute:

* « = • * - * >  -
P ( x j = a , x J = b , x k)

P(Xi,Xj — b,Xk)

where, P (x i = a\xj = b) is the probability for node Xi to take value a provided tha t node 

Xj takes the value b, and P (x j =  b) is the probability for node x j  to take value b and 

P (xi = a,X j — b) is the probability of conjunction of Xi and Xj.

This can be illustrated by the following example (Wikipedia n.d.). Suppose tha t a test 

for a particular disease has a very high success rate if a tested patient has the disease, 

the test accurately reports ‘positive’ with 99% probability and if a tested patient does not 

have the disease, the test accurately reports ‘negative’ with 95% probability. Suppose also, 

however, that only 0.1% of the population has tha t disease. We now have all the information 

required to use Bayes’s theorem to calculate the probability that, given the test is positive, 

the test is a false positive.

Let A  be the event that the patient has the disease, and B  be the event tha t the test 

return a positive result. Then, using the Bayes’s theorem the probability of a true positive 

is

P (B ) = P (B \A ) x P (A ) + P (B \^A )  x P (^ A )  (3.3)

P (B )  is the probability tha t a given person tests positive. This depends on the two popu­

lations: those with the disease (and correctly test positive 0.99 x 0.001) and those without 

the disease (and incorrectly test positive 0.05 x 0.999).
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P (A \B )

P (B \A ) x P {A )
P (B \A ) x P{A) +  P(B\-^A) x P (^A )

0.99 x 0.001
0.99 x 0.001 +  0.05 x 0.999 

=  0.0198

and hence the probability tha t a positive result is a false positive is about (1 — 0.0198) =

Despite the apparent high accuracy of the test, the incidence of the disease is so low 

(one in a thousand) tha t the vast majority of patients who test positive (98 in a hundred) 

do not have the disease. It should be noted tha t this is quite common in screening tests. It 

is therefore, more im portant to have a very low false negative rate than a high true positive 

rate.

The probability distributions form the basis for the statistical analysis of the data. There 

are a number of probability distributions functions, in this work, the data  is assumed to be 

Gaussian distribution. M athematically Gaussian distribution is represented as:

where, x  is the data with mean x  and standard deviation a.

p(x) plotted against x  gives the probability density function and integral of p(x) in the 

range — oo to x  gives the cumulative distribution function. Cumulative distribution function 

can mathematically be represented as:

0.9802.

(3.6)

(3.5)
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3.3 B ayesian  m eth od s for M P C  constraint analysis and tu n ­

ing

For an MPC application with n  inputs and m outputs, let K  be the steady state gain 

m atrix and (Vio,Ujo) be the current mean operating points, which are defined as the base 

case operating points (Xu et al. 2007). Also let the number of CVs for which it is allowed to 

change (by relaxation) their constraint limits be a and the number of MVs for the same be b. 

Thus a total of N  = a + b variables are available for which it is possible to make the change. 

W ith yes and no  as the options for applying the limit change to these N  variables, there are 

2n  combinations for applying the constraint changes. Each change combination will have a 

specific optimal return, which can be obtained through optimization of the operating point, 

and thus will affect the MPC performance.

The optimization is carried out for each possibility, with the real time CV/M V data 

collected. The objective function is the economic benefit function and the constraints are 

CV and MV constraint limits, by taking into account the variability and the steady state 

gain relations. For simplicity of the presentation, only CVs have been considered as the 

quality variables th a t affect the economic benefit function. W ithout the loss of generality, 

we assume first q CVs, y i , . . . , y q, as quality variables. Thus, the optimization problem can 

be defined as the linear-quadratic function (Xu et al. 2007):

i=1
where, & and pi are the mean operating point and the target operating point for yi, respec­

tively. oti and Bi are the linear and quadratic coefficients for y,.

W ith (yi0, Uj0) as the base case mean operating point, (yi, u,j) as the optimum operating 

point, when the base case operating points are moved by (Ayi, AUj), the equality constraints 

to be satisfied for the economic objective function are (Xu et al. 2007):

(3.7)

n
(3.8)

3 —1

Vi = Vio + A yi

Uj =  Ujo + A.Uj

(3.9)

(3.10)

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Chapter 3. M PC constraint tuning - Bayesian approach via deterministic LQ objective
function  47

Considering tha t upto 5% constraint violation is acceptable (Latour et al. 1986, Martin 

et al. 1991) for the output variables, a set of inequalities can be defined, which also need to 

be satisfied while optimizing the objective function defined in equation (3.7).

For the change of the constraint limits case, the inequalities for the objective function 

are defined by equations (3.11) and (3.12). These inequalities define the new limits for the 

CVs and MVs (Xu et al. 2007):

hyl -t- 2 x a i0  yhoii x J'y, ^  ij, <  Hy. 2 x ~ yholi x (3.11)

Luj 1 2 x I{jo nfiQij x r.;7 ^  Uj Il\ij 2 x 1 ijq -j- j x r,,. (3.12)

where, <7jo is the base case standard deviation for yi, Rjo is the base case quarter of range

for Uj. LUj and HUj are the low and the high limits for Uj respectively. LVi and HVi are the

low and the high limits for yi respectively. rVi and rUj are the allowable change (percentage 

of the range) in the constraint limits for the process variables i.e. 10% for changeable 

constraints and 0% for others, yholi, Uholj are half of the limits for yi and Uj respectively.

Thus, the economic objective function for each of the constraint tuning case can be 

specified as (Xu et al. 2007):

min J  subject to (3.8), (3.9), (3.10), (3.11), (3.12) (3.13)

Thus, 2n  optimum operating points are obtained for each yi, for the constraint change 

case. Superimposing the 2N optimum operating points with the base case variability and 

assuming the data to be Gaussian distributed, the probability distribution for the data is 

obtained.

The Bayesian network is now created with N  parent nodes, q child nodes and one utility 

node. For the limit change case, the parent nodes have two states (yes, no) where yes means 

to change the lim its  and no means not to change. By changing the constraint limits, the 

quality CVs are optimized to be operating as close as possible to their maximum return. In
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the same time, other non-quality CVs are also moved due to the interaction. Each optimal 

values taken by the CVs is called its state and it can take any value within the operaing 

range and is continuous. The expected return from the process can therefore be calculated 

as:

E (E ) =  f  p (y i , - - - ,y q )F (y i , . . . ,y q)dy1 . . .d y g (3.14)
J y u - , y q

where p(y \ , . . . ,  yq) is a probability density function, and F (y i , . . . ,  yq) is a profit function. 

In general q is a small integer, and often there is only one quality variable (q =  1), for 

example, purity of the product, that reflects economic return while others are controlled 

variables, which greatly simplifies the computations. However, for q ^  1, with linear or 

quadratic economic objective function, F (y i , . . .  ,y q) has the following additive form:

F { y i , . . . , y q) = Y j F ^ { y i) (3.15)
i = 1

Therefore,
f  q

E ( F ) =  P ( y i , - - - , y q) ( ^ 2 F {z)(yi ) ) d y 1 . . . d y q (3.16)
J y u - , V q  i=1

Each CV can be discretized into a finite number of operating zones, in this chapter, 

6 zones (Zone 1, Zone 2, Zone 3, Zone 4, Zone 5, Zone 6 ), defining the range in which 

the value of the output variables will lie, illustrated in fig- 3.4 (the number of zones can 

be increased depending upon the resolution required). Zone 1 and Zone 6  represent the 

region below and above the limits, respectively, and Zone 2 to  Zone 5 represent the four 

zones defined within the limits. Thus, if LVi and HVi are the low and the high limits for a 

particular CV (y,) then A* is the span of the range in which its value is to be maintained

i.e.

A, =  Hyt — LVi

Then the six zones for the states of the CV can be defined as:
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Figure 3.4: Division of zones for a child node

Zone  1 =  —oo to L Vi 

Zone  2 =  L Vi to ( l Vi +  ^

Zone  3 — ( L Vi H— — ) to [ L Vi H——

3A
-  (^  + t )

Zone  4 =  to ^  +

Zone  5 =  '̂L yi +  to HVi

Zone  6 =  H Vi to  oo (3-17)

The probability distribution for each yi to  be in the six zones is obtained for all the 2'v 

values obtained from optimization. For this purpose, the optimization results are superim­

posed with the base case variability and the data  is assumed to be Gaussian distributed. 

Fig-3.5 shows the probabilities for ith output variable to be in any of the six zones defined 

for CVs. Based on the probabilities thus obtained for each case and for each output variable, 

the C PT is created.

A simple discretized version of equation (3.14) can then be written as

E (R ) =  (3.i8)
V l , - , V q

where P (y i , . . .  ,y q) is now a probability function. Furthermore, if the uncertainties associ­

ated with each of y i , . . .  ,y q are mutually independent1, and the profit function is additive 

independence of j / i , . . . ,  y q in terms of their uncertainties is possible since the properly selected quality
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Oj timura 
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Figure 3.5: Probability for yi to be in the six zones 

shown in equation (3.15), then equation (3.18) can be further simplified to

E ( R )  =  f t  P(Vi)  x  F ^ ( y k)
i=1 k=1

or

(3.19)

V  \ C i l x P ( y i e n x)
7—1 \

/  \ /  Zone  1 \
Zone 2
Zone  3

CI4 Zone 4
^5 Zone  5

\ n 6 )  ̂ Zone  6 y

k=1
(3.20)

where, fi =

Jik is the value of the objective function for ith output variable to be in the kth zone, Cn  

and Cie might be the penalty values set for i th output variable to be in Zone 1 and Zone 6  

respectively, and P  (yi e  i lk) is the probability for y, to be in Zone k. Jik can be calculated 

as:

*| /* a v

Jik = 77 j  I X yi  +  Pi (yi — Pi)  J
ttkyi -  ^kyi JLkVi V '

d yi (3.21)

where, H kyi, L kyi are the high and the low limits set for kth zone for the ith output variable 

and can be identified as given in equation (3.17).

In general, the probability for the CVs to  be in each of the 6 zones is estimated by 

assuming the d ata  to be Gaussian distributed with mean yi and covariance of quality vari­

ables. For the constraint change only, the covariance remains the same as tha t of the base 

variables typically reflect distinct aspects of the process.
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case operation since the dynamic control is not touched. Optimizing the objective function 

subject to  the new constraints provides the optimum operating points that will be the new 

mean operating points The new mean operating points and base-case covariance, based 

upon the multivariate Gaussian distribution, are used to  obtain the probabilities for the 

CVs to be in each of the six zones defined for them. For the simpler case where the un­

certainties associated with the quality variables are mutually independent or there is only 

one economic quality variable, equation (3.22) can be applied. For computation tractabil- 

ity, when performing optimizations this thesis only considers the case of either q = l  or the 

selected quality CVs are independent.

p ta e k )  - C '  (-lsS r L) d I  ( 3 - 2 2 )

where, <7jo is the standard deviation of yi in base case operation, i =  1,2, and k =  

1 ,2 ,...,6 .

For q quality variables affecting the objective function there will be 6 q return values of 

the utility nodes. The values for the utility node are provided by the mean values taken by 

the economic objective function in all the 6 zones for each q quality variable.

The prior probability or the priori for the parent nodes can be user defined or obtained 

from the historical data. It indicates the preference to change or not to change the limits. 

For example, if a parent node has a priori of 0.8 for making a change to the limits. This 

means tha t the constraint limits for this variable has 80% tendency to change and 20% not 

to change.

Fig- 3.6 shows the Bayesian network thus created which can be used for decision evalua­

tion and decision making purposes. P a  in the figure represents the parent nodes, C h  in the 

figure represents the child nodes and U is the utility node representing the benefit function.

1. Decision evaluation i.e. to infer the expected return (or the objective function values), 

if certain decisions regarding to make or not to make the change are made. For the 

decision evaluation, the decision whether to change or not to change the limits is 

provided. This is equivalent to  the evidence for the Bayesian network conditional on

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Chapter 3. M PC constraint tuning - Bayesian approach via deterministic LQ objective
function   52

PaNPa3

 C C h q
q_Child_No_des

Chi Ch2

Figure 3.6: Bayesian network for m x n  plant

which, the probabilities of locations of the CVs are then estimated. Thus the expected 

return can be evaluated using the relation specified in equation (3.20).

2. Decision making i.e. to obtain the maximum a posteriori explanation for decision 

making tha t will help to  achieve a target value of expected return. For decision making 

purposes the target expected return are provided and the corresponding states for the 

CVs affecting the benefit function axe then read from the utility node table. The 

states thus obtained from the table are the evidences for the Bayesian network and 

the maximum a posteriori estimate of the states of the parent nodes (i.e. change the 

limits or not) can be made.

3.4 Illu stration  on  bu ild ing a B ayesian  netw ork

To illustrate the computation procedure adopted for the proposed method consider four 

variables of a 2 x 2 system, i.e. 2 CV and 2 MV system, for which the steady state gain 

matrix, K , is represented as:

k u  fci2 
. &21 &22

where, CV1 is a constraint variable and CV2 is a quality variable. The linear and quadratic 

coefficients for the output and the input variables considered in the application and whether 

they are allowed to change the limits are listed in table- 3.1 and table- 3.2 respectively.
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Table 3.1: LQ Coef fc Change allowed for CVs

CV L Coef Q Coef Allowed to change

1 a i A Yes

2 C*2 A No

Table 3.2: LQ Coef fc Change allowed for MVs

MV L Coef Q Coef Allowed to change

1 a i A No

2 a  2 A Yes

As there are two variables available for making the changes the Bayesian network cre­

ated, for the said system, will have two parent nodes: (MV2 and CV1*) and one child node: 

(CV2).

For the limits change, the parent and child nodes along with their states are described 

in table- 3.3 and table- 3.4 respectively.

For illustration purposes the prior probability for both MV2 and CV2*, is taken as

0.5, which means tha t there is no preference to make or not to make a change, i.e. both 

the process variables are equally likely to  have the change. Table- 3.5 defines the prior 

probabilities for the parent nodes.

For the said system, there will be 22 =  4 cases for which the optimizations are carried 

out with these combinations of limits changes for (MV2, CV1*): (No, No), (No, Yes), (Yes, 

No), (Yes, Yes). The optimizations are carried out for the optimization problem defined 

by equation (3.13).

Table 3.3: States for parent nodes for limit change

Parent Nodes MV2 CV1*

States (Yes,No) (Yes,No)
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Table 3.4: States for child node for limit change

Child Node CV2

States (Zone 1, Zone 2, 

Zone 3, Zone 4, 

Zone 5, Zone 6)

Table 3.5: Prior probability for making limits changes for parent nodes

Parent Node Change Do not change

MV2 0.5 0.5

CV1* 0.5 0.5

The optimum operating points are then obtained for each case of the change limits (table- 

3.7). In table- 3.7, is the optimal operating point for i th CV and the pth case. However, 

due to variability, only average operating point can be at the optimal. The actual data can 

be distributed in any of the six zones. The probability for ith CV to be in each of the six 

zones is estimated assuming the da ta  to be Gaussian distributed with mean as the optimal 

operating point calculated from optimization and variance as the variance calculated from 

base operation. These probabilities form the CPT for the network (table- 3.8), where, Ppk 

is the probability for CV2 to be in k tfl zone for pth case.

In this example, as the profit function is defined only for the CV2, it is the only variable 

affecting the value for the expected return. The return values taken by the value node in 

the six zones or states are specified in table- 3.9.

The expected return for the existing system is calculated using equation (3.20), according 

to the values given in table- 3.9 and the probabilities for the variables to be in six zones

Table 3.6: Possible cases for applying limit changes

Parent Node Case 1 Case 2 Case 3 Case 4

MV2 No No Yes Yes

CV1* No Yes No Yes
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Table 3.7: Optimum operating point for each identified case

Case 1 Case 2 Case 3 Case 4

CV1 y n 2/12 2/13 2/14

CV2 2/21 2/22 2/23 2/24

Table 3.8: Conditional probabilities for the child node

Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 6

Case 1 P n P 12 Pl3 P u P 15 Pie

Case 2 P21 P22 P23 P24 P25 P26

Case 3 P31 P32 P33 P34 P35 P36

Case 4 P n P42 Pi3 P44 P45 P46

Table 3.9: Utility table with profit values

CV2 state Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 6

U N ode Ui u 2 u 3 U4 Us u 6

MV2 cvr

CV2

Figure 3.7: Bayesian network for 2 x 2 plant
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Node Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 6

CV2 P 21 P 2 2 P 2 3 ■P24 P 2 5 P 2 6

(table- 3.8). W ith CV2 as child node, MV2 and CV1* as parent nodes, priori as mentioned 

in table- 3.5, and the C PT for CV2 as given in table- 3.8, the Bayesian network for the 

system is created as shown in fig- 3.7. The network is now ready for performing decision 

evaluation and decision making.

1. Decision evaluation: For the purpose of decision evaluation the network is provided 

with the decision to be taken, which is equivalent to the evidence in the network. The 

evidence is then utilized to estimate the probabilities for the child node to  have values 

in the six zones, which are then used to estimate the expected return.

If the decision is made to change the limits for MV2, then the probability of CV2 to be 

in any of the six zones is estimated using Baye’s Theorem. For illustration purposes 

one calculation is shown below:

P21 =  P{C V2  =  Z o n el\M V 2  = Yes)
P (C V  2 = Zone  1 \M V2 = Yes)

P (M V 2  = Yes)
Y.CV l* P (C V l* , C V 2 = Zone 1, M V 2 =  Y es)

E c v i* ,c v 2 P(CV1*, C V 2, M V 2 = Yes)

where according to fig- 3.7, the joint probability P (C V 1 * ,C V 2 ,M V 2 )  can be calcu­

lated as:

P (C V l* ,C V 2 ,M V 2 ) = P (C V l* )P (M V 2 )P (C V 2 \C V l* ,M V 2 )

The probabilities for CV2 to be in any of the six zones are similarly estimated and

listed in table- 3.10. The value of the expected return is then estimated using equation

(3.20). Comparing to  the nominal expected return the effect of the decision to change 

the limits for MV2 can be anticipated.

2. Decision Making: For the decision making purposes, the network is provided with the 

target value of the expected return. Thus reading from the table for the utility node, 

the value closest to the target value is selected and the corresponding states of the
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child nodes act as the evidence for the analysis. If the target is set to  have expected 

return of U units, such tha t U2 < U < C/3  and U is closer to U2 than it is to U3 , 

then from the table- 3.9, the state for CV2 to be in Zone 2 is the evidence for the 

evaluation purposes. Thus, with CV2 to be in Zone 2 as evidence the maximum a 

posteriori explanation for decision to be made is to change the limits for parent node

3.5 C ase stu d y  o f  a B inary  D istilla tio n  C olum n

Consider the simulated binary distillation column MPC application, discussed in section- 2.3 

of the thesis, with 10 Controlled Variables (outputs, y), 4 M anipulated Variables (inputs, 

u).

As CV2 and CV8  govern the overall economics of the operations of the column, they are 

chosen as the quality CVs here. The correlation coefficient between these two CVs is 0.0049 

and they can be considered as independent. The economic coefficients for these two CVs 

can be determined through a profit function to be discussed in detail in Chapter-4. The 

profit function can be transferred to the following LQ cost function for the sake of applying 

the LMIPA algorithm.

where, (0 2 , fh ) and (as, /3s) are (0.2364,0) and (0.1714,0), respectively. The list of CVs 

and MVs for the MPC application and whether or not they are available for limit change is 

given in table- 3.11 and 3.12 respectively. (Cii, C\e) have been assigned a value of (65.00, 

0) and (200.00, 0) for CV2 and CV8  respectively and (0, 0) for rest of the CVs and MVs.

Based on the information provided in table- 3.11 and table- 3.12, a total of 27 =  128 

optimizations were carried out. The Bayesian network was created for the system defined 

with 7 parent nodes, 2 child nodes and 1 utility node. Table- 3.13 give the prior probabilities 

for making the limit changes on the parent nodes. The optimization results are used to 

create the CPT for the child nodes.

CV1*.

(3.23)
* = 2,8
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Tab e 3.11: Change allowed for CVs

CV Description Change Lt

1 Ref Flow No

2 Lt Petrol FBP Yes

3 Top PC T No

4 P r Vlv OP No

5 B ttm  PCT Yes

6 Col P r Yes

7 Feed Temp Yes

8 Reb Furnace Duty No

9 Duty No

10 Bypass Vlv OP No

Tab e 3.12: Change allowed for MVs

MV Description Change Lt

1 Ref Flow SP Yes

2 Col P r SP Yes

3 Feed Temp Vlv OP Yes

4 Duty Vlv OP No

Table 3.13: Prior probability for making limit changes for parent nodes

Parent Node Change Do not change

MV1 0.5 0.5

MV2 0.5 0.5

MV3 0.5 0.5

CV2* 0.5 0.5

CV5* 0.5 0.5

CV6* 0.5 0.5

CV7* 0.5 0.5
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Figure 3.8: Comparison of expected return

The expected return for the system was estimated using equation (3.20)and (3.21), the 

information provided in the table- 3.11, table- 3.12 and table- 3.13 and the conditional 

probabilities of the CVs in the six zones. For the existing system setup the expected return 

for the operation are estimated to  be 145.36 units.

Once the Bayesian network has been created for the system it can then be used for 

either of the two purposes previously discussed, namely, Decision evaluation and Decision 

making.

1. Decision Evaluation: For the purpose of inferencing the expected return for the system 

when a decision is made with regards to changing the constraint limits of the process 

variables in an MPC controller, the Bayesian network can be utilized.

If the decision is to be made to increase the reflux flow (MV1) set point then the 

maximum a posteriori estimate of state of CV2 and CV8 are Zone 3 and Zone 4 and 

the expected return are 173.27 units. The comparison of the expected return of the 

controller before and after the decision is made and shown in fig- 3.8.

Thus, it can be inferred tha t the decision to increase the limits set for the reflux flow 

to the column will increase the yield of operations.

2. Decision Making: This aspect of the algorithm can be utilized to help in decision 

making if the target to increase the expected return to  a certain value is set. This 

helps in providing the directions for constraint changes for the MPC controller. Once 

the targets are set, the states for the CVs are determined from the table of the utility 

node and the states thus obtained are the evidence for the decision making.

If the target is set to  increase the return to 165.00 then the states for all child nodes
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Table 3.

C V # state

CV2 Zone 1

CV8 Zone 4

Figure 3.9: Decision for changing the constraint limits

i.e. CV2 and CV8 for this plant, are determined and listed in table- 3.14. W ith these 

states as evidence, the maximum a posteriori for the state of the parent nodes that 

are to have their limits changed are calculated.

For the case when the objective function value is targeted to change 165.00 units, 

parent node 3 i.e. MV3 is expected to  have its limits changed (fig-3.9).
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3 .7  C onclusion

The methodology tha t takes into consideration the process variability to tune the MPC 

controller for limit has been developed. The proposed method gives the constraint tun­

ing guidelines by performing the Bayesian analysis of the process variables in the MPC 

controller.

As the real world is associated with uncertainty, the Bayesian approach of analysis is 

an appropriate tool th a t takes into consideration the probabilities for CVs to lie in the 

different zones defined. The results thus obtained from the analysis are more realistic than 

commonly used simple deterministic profit calculations. The Bayesian network built can 

also be used to assist in decision making when the set target value for objective function is 

defined.
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The case studies provided in the chapter explain the industrial utility of the tool. The 

results from the study illustrate its significance and utility for the process engineer for day 

to day maintenance of the MPC controllers in the plant. The tuning guidelines obtained 

from the tool can be applied to improve the controller performance.
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4 t

MPC economic performance assessment - 
Probabilistic approach

A bstract: Advanced Process Control (APC), in particular Model Predictive Control 

(MPC), has emerged as the most effective control strategy in process industry, and numer­

ous applications have been reported. Nevertheless, there are several factors th a t limit the 

achievable performance of MPC. One of the limiting factors considered in this chapter is the 

presence of constraints. To exploit optimal control performance, continuous performance as­

sessment with respect to constraints of M PC is necessary. MPC performance assessment has 

received increasingly interest both in academia and in industries. This chapter is concerned 

with a practical aspect of performance assessment of industrial MPC by investigating the 

relationship among process variability, constraints, and probabilistic economic performance 

of MPC. The proposed approach considers the uncertainties induced by process variability 

and evaluates economic performance through probabilistic calculations. It also provides the 

guideline for the constraint tuning so as to  improve MPC performance.

4.1 In trod u ction

Advanced Process Control (APC) applications such as Model Predictive Control (MPC) 

was emerged in mid-seventies of the twentieth century. Since then they have been regarded 

as the most popular industrial advanced multivariable control strategy. The main objective 

of the MPC controller is to calculate the control signals and to minimize the sum of the
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squares of the error between the reference signal and the output signal within a given future 

horizon (Bars and Haber 2006). On the top of dynamic control objective, an economic 

objective function is utilized to  optimize steady state economic performance, subject to 

process constraints. The economic optimization drives the controlled variables (CVs) and 

manipulated variables (MVs) to their steady state optimum, thus generating economic 

benefits.

Despite great success of MPC, there are certain limitations on achievable performance. 

For example, performance of practical MPC applications can be limited by model un­

certainty (Clarke 1998, Morari and Lee 1999, Singh and Seto 2002), as well as possible 

conservative tuning such as conservativeness in setting up constraints. The latter is not 

uncommon and has been the motivation of this work. Many commercial controllers are 

now available th a t are able to improve MPC controller performance by resolving one or the 

other of the practical issues (Qin and Badgwell 1997, Qin and Badgwell 2003). W ith most of 

the research being focused on the areas of developing MPC controllers, relatively less work 

has been reported in the field of evaluation and the practical tuning of MPC controllers. 

Conventional tuning for the MPC controller involves tuning the controller with respect to 

the prediction and control horizon, linear and quadratic objective functions (M aurath et 

al. 1988, M adar et al. 2005). Guidelines are available in literature, which provide qualita­

tive relations between these parameters; however the quantitative relations differ from one 

system to another. Tuning of the controllers through these parameters is generally done 

at the design stage and is not advised to be changed on a day to day basis. To change 

these parameters it is essential to have thorough process knowledge, a deep understanding 

about the M PC control algorithm and the effect of these changes on the MPC controller 

performance. In daily operations, on the other hand, it is not uncommon to change some 

of the CV and MV constraint limits. This action is simple but affects the operating points 

of the CVs and the MVs. It can sometimes improve the controller performance and other 

times may have little effect. Thus, understanding of the relation among constraints, process 

variability, and economic objective functions is im portant to guide the constraint tuning.

Change of constraints is a decision making process in the economic optimization layer. 

In words of Hummel et al. (1991), “Plant optimization can be defined as the maximization 

of the profit function describing the economics of the plant. This function contains terms
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with product values, feedstock process, operational costs etc” . P re tt and Garcia (1988) 

states th a t the decision making is a multilayered process, involving measurement, controls, 

optimization and logistics. Measurement is gathering of information of the process measure­

ments. Control is the manipulation of process degrees of freedom for satisfying the operation 

criteria. Optimization is defined as plant optimization which is a technique of manipulating 

the process degrees of freedom to  satisfy the plant economic objectives. Logistics is the 

high level scheduling to respond to  external market changes for profit maximization. The 

optimization layer contributes the most to  the profit improvement. This layer receives the 

inputs of economic targets from the logistics layer and then passes the optimum operating 

target to  the control layer for realization.

The previous work in the direction of performance assessment with respective to con­

straints analysis has focused primarily on evaluating the deterministic linear and quadratic 

objective function (Xu et al. 2007) subject to process variability. In this early work the 

economic function was evaluated by considering the mean operating points of the process 

variables subject to  the constraints on the CVs/MVs, the process variance, and the steady 

state process gains. However, due to the presence of the disturbances, there is a variability 

associated with the process operating points, and consequently process variables do not 

always operate at the mean operating points. It is necessary to consider probabilistic ob­

jective function involving the uncertain operating points of the CVs and MVs, the profits 

associated with each operating points, and the probabilities for CVs and MVs to be in each 

operating points. The problem thus formulated will be nonlinear and the approach taken 

in this chapter is a step towards more realistic assessment of MPC control performance.

The contributions of this chapter can be summarized as: 1) a probabilistic approach 

for MPC performance assessment via constraint analysis is proposed; 2) guidelines for opti­

mal constraint tuning are derived; 3) detail simulated as well as industrial case studies are 

presented. The chapter is organized as follows. Section 4.2 introduces the problem formu­

lation. The formulation of the probabilistic objective function and the algorithms used for 

the Probabilistic Performance Assessment (PPA) are discussed in section 4.3. The section 

4.4 illustrates a application for a simulated binary distillation column, and application to 

an industrial distillation column is discussed in section 4.5, followed by conclusion in section 

4.6.
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Figure 4.1: True process data

Figure 4.2: Process d ata  distribution

4.2 P rob lem  descrip tion

4.2.1 M ean operating point

The previous MPC performance assessment with respect to constraint analysis calculates 

economic optimum based on the mean operating point (Xu e t al. 2007). As the plant seldom 

operates precisely on the mean operating point, it is essential to consider the data distri­

bution while evaluating economic objective function. Thus, the probabilistic performance 

assessment method needs to be developed, which takes into consideration the probability 

distribution.

To illustrate this, consider two outputs, y \  and of a system. Let y \ be the quality 

variable and 2/2 be a constraint variable. The current operating data, defined as base case 

operating data, for y \  and 2/2 are shown in fig- 4.1. Fig- 4.2 shows the probability distribution 

for the base case data  when the Gaussian distribution is to be approximated.

As can be seen from fig- 4.1 and fig- 4.2 tha t even though the mean operating points 

for yi and are within the constraint limits throughout the period for which the data 

are collected, the data trend shows tha t most of time they are not on the mean operating
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Figure 4.3: High probability of violating Low Limit

Figure 4.4: Low probability of violating Low Limit

points, and sometime even outside the constraint limits. Since yi is a quality CV, having its 

value outside the set limits is highly undesirable as it can render the product unmarketable. 

Considering only the mean operating point for performance assessment, the performance 

of the controller for the above data  set can be referred to as satisfactory, but when also 

considering the data distribution the above performance may not necessarily be satisfactory. 

There exists an optimum operating point at which the value of the probabilistic expected 

economic objective function can be optimized, by taking into account data distribution. 

This can be explained as follows: assume th a t the target operating point for yi is a t its 

low limit. Now moving its mean operating point closer to the low limit will not necessarily 

increase the profit margins. This is so, because due to  the presence of variance, moving 

the operating point closer to the low limit will also increase the probability of violating the 

low limits and thus a tradeoff has to  be considered while moving closer to the low limit 

(fig- 4.3, 4.4).

4.2.2 Effect o f changing constraints

The effect of relaxing the constraint limits provides the controller with some additional 

degrees of freedom to operate, and thus improve the controller performance (section 3.2.1 

of the thesis). This study is therefore to investigate the potential of increasing the expected
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return by changing the operating points or changing constraints on selected CVs/MVs. 

The optimal operating conditions are identified by optimizing the probabilistic economic 

objective function subject to the constraints and variability (Latour et al. 1986, M artin et 

al. 1991).

4.2.3 Problem  formulation

For an m x n  system with n  inputs and m outputs, let K  be the steady state gain m atrix 

and (yio,Ujo) be the current mean operating points for ith CV and j th MV, i.e. the base 

case mean operating points. Let (yi,U j) be the corresponding optimal operating points to 

be determined.

For the sake of simplicity of the presentation, in the sequel, we assume th a t the profit 

depends on CVs only, i.e. CVs are quality variables. The results can be easily extended to 

include MVs as quality variables. Given the mean operating points and the variance of the 

process data, the expected return, for a process with q quality variables, can be calculated 

as equation (3.14). If F ( y i , . . .  ,y q) takes additive form, equation (3.15), then the expected 

return can be estimated as equation (3.16).

Each specific value th a t CV and MV (yi,U j) takes is called a state, and the state can 

be any value within the operating region and is continuous. For computation tractability, 

we discretize operating region of each CV into a finite number of operating zones. For 

illustration, we consider 6  equal spaced zones for each CV (Agarwal et al. 2007); thus each 

CV has a corresponding state space of dimension 6 . If a higher resolution is required, the 

number of zones can be increased and this can be done easily in the computation program. 

As discussed previously, in section- 3.3 (fig- 3.4), discretizing each CV in 6  zones, the state 

space ST for the CV can be written as:

( ih  \ /  Zone  1 ^
Zone  2

fts Zone  3
SI4 Zone 4
SI5 Zone 5

 ̂ Sl6 )  ̂ Zone 6  )

Thus discretizing the operating region for each CV, equation (3.16) can also be dis­

cretized (equation 3.18). Furthermore, if the uncertainties associated with each o f y i , . . . , y q
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are mutually independent, and the profit function is additive shown in equation (3.15), then 

equation (3.18) can be further simplified to

q 6

= E  E  p (yi e  nk) X F{Vi € nk) (4.1)
i=1 k= 1

The probability for the CVs to  be in one of the six zones is estimated according to the 

distribution of the data. For a process comprising of one quality variable (CV) or having 

mutually independent uncertainties associated with the quality variables, the probability 

for each zone can be determined according to  the mean pi and standard deviation cq, where 

the standard deviation is calculated from the base operating data. Thus, P(pi 6  Slk) is

p  {Vi e 0fe) = L kyi exp ) dx (4-2)
where, k = 1 , 2 ,..., 6  and i = 1 , 2 L kyi and H kyi are the low and the high zone-limits 

of the k th zone for the variable yt and can be determined by equation- 3.17. However, 

for a process comprising of more then one quality variables (CVs), with non-independent 

uncertainties, multivariate probability distribution has to  be considered.

The return for y\ to be in each of the six zones can be user specified according to 

economic data. The minimum return (loss relative to the return of in-spec) is assigned for 

the products to be under-spec (in Zone 1 ) or over-spec (in Zone 6 ). The maximum return 

is obtained when the process operates at the maximum-return operating points (zones), and 

the maximum-return points typically lie in one of the constraint limits. Thus the maximum 

return can be either at the high constraint limit or at the low constraint limit. Given the 

maximum return and the minimum return, the profit for yi in the in-spec zones can be 

estimated through interpolation and be calculated as given below.

Let Fk denote the return for the process variable yi to  operate at the kth zone. If Pi is 

to be maximized, i.e. the maximum return is at the high constraint limit i.e. Fmax =  Fs, 

Fmin = Fi, then
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Figure 4.5: Profits for j/* to be in the six zones

A F  =  J ( F 5 - ^ i )

F2 = Fi +  A F

F3 = Fi +  2 x A F

p 4 = Fi +  3 x A F  (4.3)

This calculation is illustrated in the left panel of fig- 4.5.

If yi is to be minimized, i.e. the maximum return is a t the low constraint limit i.e. 

Fmax ~ F2 , Fmin = Fq, then

A F  = \ ( F 2 - F e )

F5 = Fq +  A F

F4 = Fe + 2 x A F

F 3 =  F6 +  3 x A F  (4.4)

This calculation is illustrated in the middle panel of fig- 4.5.

However, if y, is neither to be maximized or minimized then

F 2 =  F3 =  F4 =  F 5 =  F  (4.5)

This calculation is illustrated in the right panel of fig- 4.5.

F i and F6 are shown as dotted lines in fig- 4.5, which represents that these can have 

values less than, greater than or equal to the return in Zone 2 and Zone 5 respectively, 

depending on specific processes.
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Not all processes operate at their optimum even if there is potential to do so. Thus, 

it is possible to increase the profit by simply adjusting the operating points without doing 

any other tunings. There is a need for assessment of performance potential. The potential 

for expected return E(Rp) by simply adjusting the operating points, without any other 

tuning such as constraint limits relaxation, is then estimated through the maximization of 

the expected economic objective function (equation-4.1). Thus, the objective function for 

the optimization can be specified as:

q 6
J  =  6  n k) X F (yi e  Slk) (4.6)

i=1 fc=1

W ith (yio, Uio) as the base case mean operating point, (pi, uf) as new mean operating 

point when the base case operating points are adjusted by (Api, A Ui), then the above 

maximization should be subject to  the following equality constraints:

n
A yi — ^  , \Ejj  x A tij] (4.7)

j =l

Vi = ViO +  A yi (4.8)

Uj = Ujo + A u j  (4.9)

where i = 1 ,2 , . . . ,  m and j  =  1 ,2 , . . . ,  n.

Considering that up to  5% constraint violation is acceptable for the output variables

(Latour et al. 1986, M artin et al. 1991) a set of inequalities, defining the limits for pi and

Uj, can be identified. The following inequalities are required to be satisfied while optimizing 

the objective function defined in equation (4.1):

P y i  T  2 X cri0 — Pi ^  M yi  2 X (7j0 (4.10)

L Uj +  2  x R j 0  <  Uj < HUj — 2  x Rjo (4-11)

where i = 1, 2 , . . . ,  m  and j  =  1 , 2 , . . . , n. <7*0 is the standard deviation for the base operation

data pi, Rjo is the quarter of the existing operating range for the base operation data Uj.

L Uj and HUj are the low and the high constraint limits for Uj and L Vi and H Vi are the
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low and the high constraint limits for yi, respectively. Thus, the performance assessment 

problem can be specified as:

max J  subject to (4.7), (4.8), (4.9), (4.10), (4.11) (4-12)
j/l; •••) Vm
U\j ..., un

The value of J  thus estimated through the objective function defined in equation (4.6), 

subject to the constraints defined by relations defined in (4.7), (4.8), (4.9), (4.10) and (4.11), 

gives the potential to improve return by simply adjusting the operating points.

In practice, owing to  some conservativeness or lack of information on the potential 

economic impacts of certain constraints when setting up their limits, the constraint limits 

for some CV and MV are often readjusted during process operations. Therefore, there is an 

incentive to  determine the best adjustment of constraint limits according to the base case 

operation data. The results obtained can serve as a powerful tool set for process control 

engineers when they make adjustments of the constraints. On the other hand, even if there 

is no intention to  change the constraints, the results can also provide an understanding of 

the sensitivity of the constraint limits of each variable in terms of economic return. These 

problems are considered next.

Let B  be the maximum allowable change in the constraint limits tha t can be made for 

a CV or MV, and r (r < B  ) be the adjustment of the limits for tha t CV or MV tha t will 

yield the maximum return.

Under this scenario, the expected return E {R C) is given by the objective function (4.6) 

subject to  the equalities specified in (4.7), (4.8) and (4.9); however the inequalities (4.10) 

and (4.11) change to (4.13) and (4.14) respectively.
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X cri0 + Vhoii x Ty. (4.13)

x Rj0 + Uhoij x r£. (4.14)

(4.15)

(4.16)

(4.17)

(4.18)

where, i =  1,2, . . . , m  and j  =  1,2, . . . , n  and yholi, Uhoij are half of the range of the 

constraint limits for yi and uj; By., By., B%., B ^. are the maximum allowable change 

(percentage of the range specified) in the limits for the CVs and MVs respectively; r^.,

are the actual limit changes for the CVs and MVs respectively. Subscript ‘y f

Ly^ -f 2 X (TiQ yholi

VIX

Vi < H y ,

L Uj  "f 2 x Rjo i^hoij

VI 
 ̂

s' 

X

U j < H Uj

0 < rLVi < * V i

o <
r H  
1 Vi

o < r Lu j < B u j

o < r H
' Uj < B *—  U j

and ‘u j ’ represent the the ith output and j th input; the superscripts ‘L ’ and lPP represent
Vi ’ Uj  > 1 Uj

*3
low and the high limits respectively. Thus, the performance assessment problem can be 

specified as:

max J  subject to  (4.7), (4.8), (4.9), (4.13) — (4.18) (4-19)
2/15 •**> Vm 
t i l ,  'U-n

'  VI > ' Vm
T*1 U\  1 •**>'
rH

1 Ul  » '  u n

4 .3  A lgorith m

The procedure discussed in the previous section provides the solutions to  the problem by 

constraint limits relaxation for the CVs and the MVs. The objective function defined for 

this purpose is nonlinear whereas the constraint equalities and the inequalities are linear.

For the purpose of explaining the calculations involved for the optimization, the terms 

involved in the objective function, equation (4.6), can be restated as: F(yi G fIk) is esti­

m ated using equations (4.3), (4.4) or (4.5), and the probabilities are given by:

P(Vi e Q i ) =  P(yi < L Vi),

P (yi G fl6) =  P(Vi > H Vi), and
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P(Vi € Ptk) — P(Lkyi ^  Vi Hkyi)

where, k =  2 ,3 ,4 ,5 ; Lyi and HVi are the low and the high constraint limit for y,; LkVi and 

Hkyi are the low and the high limits for the kth zone of yi. As the process data  is Gaussian 

distributed the above mentioned probabilities can be written as equation (4.2), or in the 

case of the cumulative probability function, it can be written as:

P(Ui < Lyi) —

P{yi > Hyi) —

P(Lkyt <  Vi <  H^yf) ~~

where, Pd(x) is the probability for pi to  take value less than x, and e r f(x )  is defined as

erf{x )  =  -^=  J  e x p ( - f2) dt (4.23)

Substituting equation (4.20), (4.21) and (4.22) in the objective function equation (4.6), 

it can be further written as equation (4.24). For simplicity of the terms, F(pi e  Llk) has 

been replaced by FkVi ■

1 /  Lyi yi

u 1 + e r / r a
Pd{Lyi)

P a(H lyi)
Hyi Vi

&iV21 - 2 ( 1 + erf

1 ~ P c i ( H yi )

1 — P d  ( L e y , )

P(yi ^ H k y i )  ~ P(lJi L k y i )  

Pci ( H k y i ) — Pci (L k y i ) 

P c i ( L ( k + l) j/ i) — Pci (L k y i )

(4.20)

(4.21)

(4.22)
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J  — (P(yi < Lyi) x F iVi + P (L 2yt < 2/j <  H2yi) X F^y,
i= 1

+  ^  Vi C  Ll^yf)  X F^Jyj +  P ( L 4 y % <  J/j <  H 4 y f )  X

F Vi F Hzyt) x F15yi +  P(yi <  Ffy,) x F ^ )
q

— ( Pci{L2Vi) X F iyj +  (Pcj(L 3yj) — Pd{L 2yi)) x P2yi
t=l

+  (L>d{L\y i) — Pd(Lsyi)) X F ^  +  ( P cj(Z<5yi ) — P cj ( i ,4 y i ) )  X i*4yt

T (Pci(Leyt) — Pci(F'5y1)) x p5y4 +  (1 — Pd(Leyi) x Feyi)) 
q

=  { P c i { L 2 y i ) x  (F ly *  — -F^yj) +  P d { L s y i ) X ( F ^  ~  F ^ )
i=l
+  F k ( F 4 y i ) X ( F l3yi — F ljy j)  +  P d i L ^ y f )  X (F ljy , — F^yf)

+ Pa(L6yi x (p 5yt — F^y;) +  Fgy^) (4.24)

Also the equality constraints for the problem, defined by equation (4.7), (4.8) and (4.9) 

can be simplified as:

2/i — y/o l y  ' FQy x C'tij 
j =1 
n

=  IViO "1" y  '  F f y  X  ( 11 j  U j o )

j= l

— | ViO y  '  F tj x UjQ I * y   ̂F jj x Uj (4.25)
i = i  /  j = i

where, i =  1 , 2 , . . . ,  to and j  =  1 , 2 , . . . ,  n.

The inequalities specified by equations (4.13) and (4.18) can be reformulated in the 

A x  < b format as:

-V holi x ry. -  yi < - L yi -  2 x cri0

yh o li X r y,  +  Vi <  H y t  -  2 x (7,0

(4.26)

(4.27)

(4.28)
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u h o lj  x r %

— Uj < Luj 2 x RjQ (4.29)

+ Uj < HUj -  2 x Rj0 (4.30)

Vi < 0 (4.31)

rL 
' Vi < B Lyi (4.32)

- r HVi < 0 (4.33)

rHVi
< K (4.34)

- f t . < 0 (4.35)

rtj < B £ (4.36)

- r H>Uj < 0 (4.37)

rH' Uj < < (4.38)

(4.39)

The optimization problem is now defined as equation (4.24), the equality constraint 

(4.25) and the inequalities (4.27) to (4.39) for constraint limits relaxation case. The decision 

variables for the objective function are [ryi t r ^ , r ^  ,r^ ,y i,U j] , where i =  1,2, . . . ,m and 

j  =  1 ,2 ,..., n. The values of these decision variables can now be calculated to optimize the 

objective function while satisfying the constraints.

The objective function defined is non-linear, and the constraints are linear. Sequential 

Quadratic Programming (SQP) is employed for solving the problem. In the SQP method 

the non-linear optimization function is quadratically approximated, by its Taylor series, 

and then the approximated function is optimized (Dixon 1975, Wismer and Chattergy 

1978, Jacobs 1986, Berghen 2004).

4.4  C ase stu d y  o f  a B inary  D istilla tio n  C olum n

The binary distillation column (Section-2.3, Fig- 2.1) used to fractionate the petrol, obtained 

from an upstream  desulphurization unit, into light petrol and the heavy petrol is considered. 

The controller designed for the column has 10 CVs and 4 MVs. The list of CVs along with 

the profit associated with them  to be under-spec (u/s), in-spec(maximum) and over-spec 

(o/s) and their control objective are listed in table- 4.1. The list of MVs is given in table-
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Table 4.1: Control objective and the profits for the CVs

CV Description Objective P ro fit

u /s Max o/s

1 Reflux Flow Constraint 0 0 0

2 Lt Petrol FBP Minimize 65 65 0

3 Top PCT Constraint 0 0 0

4 P r Vlv OP Constraint 0 0 0

5 Bttm  PCT Minimize 0 0 0

6 Col Pr Minimize 0 0 0

7 Feed Temp Constraint 0 0 0

8 Reboiler Duty Minimize 200 200 0

9 Duty Constraint 0 0 0

10 Bypass Vlv OP Constraint 0 0 0

MV Description

1 Reflux SP

2 Col P r SP

3 Feed Temp Vlv OP

4 Duty Vlv OP

4.2. As it has been discussed in Chapter-3, CV2 and CV8 are two independent quality 

variables.

As can be seen from the table- 4.1 tha t CV2 and CV8 are the quality variables to be 

minimized, the profits associated with these CVs to be in the six zones can be identified 

using equation (4.4).

For the optimization of the process with regards to the constraint limits change and the 

assumed maximum constraint change allowed for the process variables as listed in table- 4.3,
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Table 4.3: Maximum constraint change allowed

In Low Lt In High Lt

CV1 0 0

CV2 10 10

CV3 0 0

CV4 0 0

CV5 10 0

CV6 10 0

CV7 10 0

CV8 0 0

CV9 0 0

CV10 0 0

MV1 10 10

MV2 10 10

MV3 10 50

MV4 0 0

the optimization problem can be defined as equation 4.40.

6

_ max J  = ^ 2 ^ 2  P (yi e  x F (yi e  (4'4°)
2/1,- •,2/io
u \ , ...,u 4

r k r-k.

r y l ’ "">r y l 0
*.L

r uV •> u4
u l ’ *••> u4

subject to  equations (4.7) to (4.9) and (4.13) to (4.18).

The expected return estimated for the base case operation, potential by adjusting op­

erating points and potential by constraints relaxation are calculated using the proposed 

Probabilistic Performance Assessment (PPA) method. The results obtained are listed in 

table- 4.4. The results for the three scenarios of the PO  method are shown in fig- 4.6.
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Table 4.4: Comparison of the three scenarios

Scenario Expected return 

PO

Base Case 145.36

Base Case 

Potential

190.64

Constraint

Adjustment

192.38

Expected Returns
2 0 0 1----------

180 

160 

140

1 “ Existing Ret 2=Existing Pot. 3=Max Ret

Figure 4.6: Comparison of the expected return
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CVL.L Tuning CV HL Tuning

Figure 4.7: Constraint tuning guidelines (%age)

Fig- 4.6 shows tha t the expected return of base case operation is 145.36 units, whereas 

the potential return by adjusting operating points is 190.64 units, and the potential return 

by adjusting constraints is 192.38 units. To achieve the expected return of 192.38 units, the 

optimizer has suggested constraint relaxations for certain variables, listed in table- 4.5 and 

shown in fig- 4.7.
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Section-4.5 (pages 84(part) and 85 to 89) has been removed from this thesis for propri­

etary reasons.
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4.6 C onclusion

A performance assessment and constraint tuning method for the MPC controllers, which 

takes into account the distribution of the process da ta  and the profits associated with 

the product quality, has been developed in this chapter. As the real processes always in­

volve uncertainties, it is pertinent to develop probabilistic approach for M PC performance 

assessment. The developed method calculates expected return of base case operation, po­

tential improvement of the expected return through adjusting the operating points as well 

as through adjusting constraints. It furthermore provides tuning guideline and determines 

which variables need to be adjusted and by how much. Two case studies, one for a sim­

ulated binary distillation column and the other for an industrial distillation column, have 

been provided, which illustrate the industrial utility of the proposed algorithm. The results 

from the studies show the feasibility of the proposed algorithm and also bring forth its the 

utility for the process control engineers for day to day maintenance of M PC controllers in 

a plant and for economic assessment of the performance of the controller.
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5
MPC constraint tuning - Bayesian approach via 

probabilistic opimization

A bstract: Any change in the operating conditions for an MPC application can affect 

the controller performance in one way or the other. The changes can be made either by 

changing the constraint limits for the CVs and the MVs of the controller among others. The 

tuning guidelines for the M PC controller can be obtained by optimizing the controller per­

formance, either using probabilistic optimization function or a deterministic linear-quadratic 

optimization function. The probabilistic optimization function uses the probabilities and 

the profits associated with the process variables, whereas the linear-quadratic optimization 

function uses mean values of the process variables. As probabilistic optimization function is 

more realistic than the mean-value based linear-quadratic optimization function, the tuning 

guidelines thus obtained are more pragmatic. However, to seek the answers to questions 

such as: For which variables can the constraints be adjusted? Should the constraints for 

a particular variable be changed or not? Bayesian Statistics can be used. A detailed case 

study on a simulated distillation column MPC application is also provided to  illustrate the 

proposed performance assessment method.

5.1 In trod uction

Process control has helped industries in improving the efficiency of the operations and re­

ducing the losses. A control system for any process is required to  satisfy three general
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classes of needs (Stephanopoulos 1997). Firstly, to suppress the influence of external distur­

bances, secondly, to  ensure stability of the process and lastly, to  optimize the performance 

of the process. To satisfy the process specifications, is the key operational objective for 

any process. Once the objective is satisfied, the next operational goal is to optimize and 

to  make the operations more profitable. As the process operations, to a great extent, are 

governed by the market forces of demand and profits, the operating conditions are required 

to be changed with the change in the demands and the product price patterns. However, 

the changes are required to be made in such a manner th a t the economic objective function 

is always optimized.

The Model Predictive Control (MPC) system performs the job of economic objective 

function optimization, on top of the dynamic optimization. Success of M PC system relies 

upon the accuracy of the model of the process for a good control. Using the process model, 

the controller predicts the behavior of the dependent variables (the output variables or 

the Controlled Variables (CVs)) of a dynamic system with respect to the changes in the 

independent process variables (the input variables or the Manipulated Variables (MVs)). 

The current process values and the process model are used to predict the future movements 

of the MVs tha t will result in the operation of the process honoring all the constraint 

limits defined for the CVs and the MVs (Wikipedia n.d.). Today, a lot of commercial 

controllers are available, each with its own control philosophy (Qin and Badgwell 1997, 

Qin and Badgwell 2003) and economic objective function. For example, Dynamic M atrix 

Control (DM C™ ) uses linear objective function through linear programming for optimizing 

the process operations (Sorensen and Cutler 1998) whereas, Honeywell’s Robust Model 

Predictive Control Technology (R M PCT™ ) uses quadratic function along with the linear 

objective function to optimize and maintain the process variables at the desired values 

(Krishnan et al. 1998).

Having an MPC controller installed for a process, does not guarantee optimization of the 

process operations. For optimization, the controller is required to  be tuned. The handles 

available to  tune the controller are the control and prediction horizon, the step size for 

the moves on the MVs etc. Tuning of the controller, with these parameters, require a 

thorough understanding of the behavior of the process and the control philosophy of the 

MPC application being used. The controllers are tuned with these parameters at the design
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stage and it is not recommended to change them on day to day basis.

The performance of the controllers is also affected by the constraint limits given to  the 

CVs and the MVs. Providing the controller with wrong and/or conflicting constraint limits 

is a main factors which can prevent the controller from operating the process at the optimum 

operating point. Since, in daily operations of the process plant, it is common to change the 

constraints, the controller performance is definitely affected when they are changed. Thus, 

it becomes imperative to assess the effect of any decision made with regards to constraint 

limits change. A methodology is therefore required to assess the change in the controller 

performance due to  these changes. A statistical technique such as Bayesian Statistics can 

thus be used for the purpose.

The Bayesian analysis of the controller performance, as discussed in (Agarwal et al. 2007) 

is based on the linear-quadratic optimization (Xu et al. 2007), which is based upon the mean 

operating points. However, in reality the processes do not operate precisely on the mean 

operating point but around the mean operating point. Due to this, the process variables 

have probabilities associated with them to be inside and outside the constraint limits. Thus, 

it is essential th a t the objective function should also take into account the da ta  distribution. 

An objective function taking into account the da ta  distribution has been discussed in the 

previous chapter. Thus, extending the idea of Bayesian analysis for performance assessment 

of the MPC controller optimized through linear-quadratic optimization function (Agarwal et 

al. 2007) a similar analysis is proposed for the MPC performance assessment for a controller 

optimized with the probabilistic optimization function.

As discussed in the Chapter 3 of the thesis, for Bayesian analysis purposes, the fol­

lowing information is required: the routine operating data; process steady state gains; the 

profit/loss terms associated with the CVs to  be within and outside the constraint limits 

and other related process information such as which CVs and MVs are allowed to change 

their limits and the preference to change them (prior probabilities). The algorithm then 

performs optimization on the various combinations of making the changes to obtain new op­

timum operating points. The optimization results are then used to establish the subsequent 

Bayesian decision making process.
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A Bayesian network for the MPC application, under consideration, is then created with 

all CVs and MVs for which the changes can be made and all the quality variables. The 

probabilities estim ated through the various optimization purposes are used to form the Con­

ditional Probability Distribution Table (CPD or CPT) for the network (Korb and Nicholson 

2004, Pearl and Russel 2000). The decisions regarding the changes axe the evidences for the 

analysis. The analysis then provides the probabilities for the CVs to  be inside and outside 

the specifications, which are then used for making the assessment of the performance of 

the controller. The network can also be used for the obtaining guidelines for making the 

decisions so as to obtain the desired performance level of the controller.

The contribution of this chapter can be summarized as: 1) A systematic approach 

for Bayesian analysis of the decisions related to the constraint changes for the CVs and 

the MVs, using a probabilistic optimization function. 2) Guidelines for making constraint 

changes, to achieve target controller performance, are derived according to  the statistical 

inferences. As the theoretical concepts utilized for developing this algorithm have been 

discussed in detail in Chapter 3 of this thesis, they are not discussed here. The remainder 

of the chapter is organized as follows: Section 5.2 derives the Bayesian methods for MPC 

constraint analysis and tuning followed by case studies, on a simulated binary distillation 

column and an industrial distillation column, in section 5.3 and 5.4 respectively. Conclusion 

is given in Section 5.5.

5.2 B ayesian  m eth od s for M P C  constraint analysis and tu n ­

ing

As discussed previously, in detail in Chapter 3 of the thesis, for a m  x n  system, with the 

steady state gain matrix, K ,  and (yio,Ujo), the base case mean operating point of j/, and ir­

respectively, a Bayesian network can be prepared tha t can be used to evaluate the decisions 

related to constraint changes for the controller. If a and b represent the number of CVs 

and MVs tha t are available for making constraint change, respectively, then N  =  a +  b is 

the total number of process variables available for making the changes. Thus, the Bayesian 

network will have N  parent nodes. If the system has q quality variables, then the network 

will comprise of q child nodes. In continuation with the previous chapter, the algorithm has 

been developed for processes with CVs as the quality variables.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Chapter 5. M PC constraint tuning - Bayesian approach via probabilistic opimization 97

The options available for applying the constraint change are yes and no (yes means 

to make the changes and no means not to make the changes in the constraints). Thus, 

there are 2N combinations for applying the constraint change. The optimal operating point 

corresponding to each application of the change can be obtained from the optimization 

function according to  equation ( 4.19) and constraints defined for the case. The optimal 

expected return can then be estimated, using equation (3.14) for the optimal operating 

points. For q =  1, F (y i)  is the return from the variables; however for q >  1, F (y i , . . . ,  yq) 

has the additive form (equation- 3.15). Therefore, the expected return can be estimated as 

equation (3.16).

In continuation with the discussions in previous chapters, the continuous operating 

region for the CVs is discretized into 6  zones (Agarwal et al. 2007). Thus, each CV has a 

corresponding state space f1 of dimension 6  (Zone 1, Zone 2, Zone S, Zone 4, Zone 5, Zone 

6) (see section-3.3, fig- 3.4), which can be written as:

/  fli \ f  Zone  1
Zone  2

O3 Zone  3
H4 Zone  4
SI5 Zone  5

\  H6 j \  Zone  6  J

If the uncertainties associated with each of y i , . . . ,  yq are mutually independent, and the 

profit function is additive shown in equation (3.15), then equation (3.16) can be further 

simplified to

q 6

P  {Vi F ^fc) * F  (Vi F ^fc) (b-1)
i= 1 k= 1

P{yi  € il/c) is the probability for yi to  be in the k th zone. F{yi G is the profit/loss for 

Pi to  be in the kth zone. For <7 =  1 univariate probability distribution function can be used, 

whereas, for q >  1 multivariate probability distribution function is to be used for estimating 

the probabilities for them to be in the various zones. However, in continuation with Chapter 

4, the scope of the algorithm discussed here has been restricted to MPC applications with 

either one quality variable or quality variables tha t have mutually independent uncertainties. 

The probabilities for one or mutually independent quality variables to be in the six zones
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can be estimated using equation (5.2).

For Zone k, P  (yi £ Slfc) is:

P  (Vi 6  fife) = (5.2)

where, i = 1 , . . . ,  q and k  =  1 , 2 ,..., 6 . LkVi and HkVi are the low and the high limits for ia 

in the kth zone (equation-3.17)

The return for the quality variables to  be in each of the six zones are user specified 

according to  the economic data. The profit/loss is usually assigned for the products to be

Fq are the profits associated with pi to  be in Zone 1 and Zone 6, respectively and F  is 

the maximum return associated with it when the process operates in the maximum return 

zone i.e. the optimum operating zone, which typically lie at the constraint limits. Thus, 

the maximum return, with the constraint limit, will be in either Zone 2 or Zone 5. Then 

assuming F  to be the profit for optimum operating zone, the profit for pi in the other 3 in- 

spec zones can be estimated through interpolation and be calculated using equation (4.3), 

(4.4), (4.5), as the case may be.

The optimization function can now be defined as equation-5.3.

W ith (pm , Ujo) as the base case mean operating point, (yi, Uj) as the optimum operating 

point, when the base case operating points are moved by (A pi, A Uj), the equality constraints 

to  be satisfied for the economic objective function are as defined in the previous chapter as:

under-spec (in Zone 1), in-spec (in Zone 2 to 5) and over-spec (in Zone 6). If F\ and

(5.3)
i= 1 k=l

n

(5.4)
j'= i

Pi ~  Vio +  A yi

Uj = Ujo + A Uj

(5.5)

(5.6)

where, i =  1 , 2 , . . . ,  m  and j  =  1 , 2 , . . . ,  n.
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Considering the acceptable limit for constraint violation, for the output variables, to 

be 5% (Latour et al. 1986, M artin et al. 1991), a set of inequalities can be defined which 

also need to be satisfied while optimizing the objective function defined in equation (5.3). 

The inequalities for the objective function are defined by equations (5.7) and (5.8). These 

inequalities define the constraint limits for the CVs and MVs:

-by, T  2 X <7i0 Vholi X Cyi jji ^  2 X CTjO T  yiioli X Vy  ̂ (6*7)

T-Uj T  2 x Pjo Uhoij x 7‘u - ̂  Uj ̂  I t 2 x PjO T  iihoij x ru  ̂ (5.8)

where, i = 1 , 2 , . . .  ,m  and j  =  1 , 2 , . . . , n  and yholh uhoij are half of the range for yi and 

U j ; r y i , r Uj are the percentage change in the limits for the process variables. Subscript

‘yi and ‘Uj’ represents the variable for the ith output and j th input variables, respectively.

Since the constraint limits for any CV or MV are not changed randomly by large numbers, 

for illustration purposes, it is assumed th a t a change of 1 0 % of the existing limit range 

can be made for the changeable variables. Thus, for the constraint limit change case the 

optimization problem can be defined as equation (5.9):

max J  subject to  (5.4), (5.5), (5.6), (5.7), (5.8) (5.9)
2/1 * •••) Urn.
M l ,  . . . ,  Un

The data  and the optimization results thus obtained for all the cases of the limit change 

can now be used to build the Bayesian network for the process. The network comprises of 

the N  variables available for making the changes as the parent nodes, q child nodes and 

one utility node, which represents the value of the benefit function for the process. For 

the constraint limits change case, the parent nodes have two states (change limits, do not 

change limits). The child nodes in the network have six states (Zone 1, Zone 2, Zone 3, 

Zone 4, Zone 5, Zone 6).

The prior probability or the priori define the preference for making or not making the 

change in the limits for the parent nodes. These can either be user defined or can be 

obtained from the historical data  of the process. The Conditional Probability Table (CPT) 

sta te  the probabilities for the child nodes to be in each of the six zones or the states. The 

optimization results for yi, when combined with the standard deviation for the case and
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using Gaussian distribution, provides its probabilities for yi to be in each of the six zones, 

which are used to make the CPTs for the child nodes.

For q quality variables affecting the economic objective functions, the utility node will 

have a total of 6 9 values.

The Bayesian network thus created can now be used for decision evaluation and decision 

making purposes.

5.3  C ase stu d y  o f  a  B inary D istilla tion  C olum n

Consider the MPC application for the simulated binary distillation column, discussed in 

section-2.3. The M PC controller designed for the process has 10 Controlled Variables (CVs) 

and 4 M anipulated Variables (MVs). The list of the CVs and their control objective and 

the profits associated with them  to be under-spec (u/s), in-spec (i/s) and over-spec (o/s) 

are listed in table- 5.1 and the list of MVs if given in the table- 5.2. As it has been discussed 

in Chapter-3, CV2 and CV8  are two independent quality variables. As can be seen from 

the table- 5.1 that CV2 and CV8  are the quality variables to be minimized, the profits 

associated with these CVs to be in the six zones can be identified using equation (4.4).

The process variables th a t are available for making the constraint are listed in table- 5.3 

and the optimization problem can be defined as equation (5.10).

6

_ max_ J  =  Y I  P (yi e  fifc) x F (Vi e  n fc) (5-10)
2/1, ■••,2/10 t=2,8 k=l
Ml, •••,U4

subject to, equations (5.4) to (5.8).

Based on the information provided in table- 5.3, the Bayesian network for the system 

can be created with 7 parent nodes (MV1, MV2, MV3, CV2*, CV5*, CV6 * and CV7*), 2 

child nodes (CV2 and CV8 ), and one utility node. The prior probabilities for the parent 

nodes were user defined and are listed in table- 5.4. Corresponding to 7 parent nodes for 

the network with two limit change states, 27 =  128 optimizations were carried out. The
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Table 5.1: Control objective and the profits for the CVs

c v Description Objective P ro f it

u /s Max o/s

1 Reflux Flow Constraint 0 0 0

2 Lt Petrol FBP Minimize 65 65 0

3 Top PC T Constraint 0 0 0

4 Pr Vlv OP Constraint 0 0 0

5 B ttm  PCT Minimize 0 0 0

6 Col P r Minimize 0 0 0

7 Feed Temp Constraint 0 0 0

8 Reboiler Duty Minimize 200 200 0

9 Duty Constraint 0 0 0

10 Bypass Vlv OP Constraint 0 0 0

Table 5.2: List, of MVs

MV Description

1 Reflux SP

2 Col P r SP

3 Feed Temp Vlv OP

4 Duty Vlv OP
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Table 5.3: Variab es available for change

Change Lt

CV1 No

CV2 Yes

CV3 No

CV4 No

CV5 Yes

CV6 Yes

CV7 Yes

CV8 No

CV9 No

CV10 No

M V 1 Yes

MV2 Yes

MV3 Yes

MV4 No
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Table 5.4: Prior probability for making constraint changes for parent nodes

Change Limits Do not Change Limits

MV1 0.5 0.5

MV2 0.5 0.5

MV3 0.5 0.5

CV2* 0.5 0.5

CV5* 0.5 0.5

CV6 * 0.5 0.5

CV7* 0.5 0.5

128 optimization results obtained for all the child nodes were used to create the CPT for 

the child nodes.

As for the process under consideration CV2 and CV8  are the two variables affecting 

the overall economic performance of the operations, the utility node for the process will 

have 6 2 =  36 values for various combinations of the states of these CVs. The expected 

return from the process is 145.36 units and this will be used as the basis for evaluating the 

decisions made for applying limits change to  the controller. The network was then used for 

decision evaluation and decision making purposes.

1. Decision Evaluation: For the said system if, the decision is made to change the limits 

of MV1, then the maximum a posterior estimate of the states of CV2 and CV8  are 

Zone 4 and Zone 3 respectively. For this decision, the expected return is estimated 

to be 176.61 units. The comparison of the expected return of the controller before 

and after the decision is made is shown in fig- 5.1. Thus, it can be inferred that the 

decision to increase the limits set for the MV1 will increase the expected return of the 

operations.

2. Decision Making: For the process under consideration, if the targets are set to increase 

the expected return from 145.36 units to  190.00 units, then the states (or the locations) 

of all the key process variables, i.e. the CVs affecting the utility node (CV2 and 

CV8 ) are determined (table- 5.5). W ith these states as the evidence, the maximum
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Figure 5.1: Comparison of the expected return

Table 5.5: States for key child nodes

c v # State

CV2 Zone 4

CV8 Zone 3

a posteriori states for the parent nodes th a t are to  have their limits changed are 

calculated.

For the case when the expected return  are targeted to change from 145.36 units to 

190.00 units, the parent node 1 and 3 i.e. MV1 and MV3 are expected to  have their 

constraint limits changed by 10%, the same is shown in fig- 5.2.

* 2  3  1 b t
F<j/e t S o - b '

Figure 5.2: Tuning guidelines for limits change case
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Section-5.4 (pages 104(part), 105 to 108 and 109(part)) has been removed from this 

thesis for proprietary reasons.
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5.5 C onclusion

This chapter has brought about the use of Bayesian analysis for performance assessment 

of M PC controllers using probabilistic optimization function with regards to constraints 

tuning. The optimizer performs the optimization of the process for the controller taking 

into account the process variability and the same is being exploited by the above discussed 

methodology for evaluating the decisions regarding constraint changes for an M PC controller 

and for obtaining the guidelines for changing the constraint limits for the controller, so as 

to achieve the target return from the process.

Case studies have also been discussed those bring about the utility of the tool in process 

industry. The results obtained from the process can be used for day to day monitoring of 

the MPC controllers and for getting guidelines of making decisions for constraint changes 

for the controller. The decision guidelines obtained from the algorithm can be applied to 

improve the overall controller performance and thus improve the expected return from the 

process.
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6
Conclusion and Future Work

6.1 C onclusion

This thesis has proposed a probabilistic approach for MPC controller performance assess­

ment and to obtain guidelines for tuning the controller. The approach recommends to take 

into consideration the process da ta  variability to  assess the performance of the controller. 

Taking into consideration the variability for the controller performance evaluation gives a 

more realistic assessment. Thus, the constraint tuning guidelines obtained by the use of 

probabilities is more practical and realistic.

Chapter 2 of the thesis provides two case studies on the Linear Matrix Inversion Per­

formance Assessment (LMIPA). The first case study is on a simulated distillation column, 

while the second case study is performed on a distillation column from industry. The pro­

cess data  for these plants and the steady state gain models for the process were provided 

to  the LMIPA for carrying out the analysis. The performance assessment for the con­

trollers brought about some shortcomings about the LMIPA method. As, for performance 

assessment, the LMIPA method takes into consideration the mean operating points for the 

process variables while, in reality, the processes seldom operate precisely on the mean oper­

ating point, the controller tuning guidelines, provided by the algorithm, are function of the 

mean operating points only. Since the data  trends show that even if the mean operating 

points are within the specifications, the data can be outside the specified limits at times,
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thus it is recommended tha t to obtain the controller tuning guidelines, data  distribution be 

taken into account. A Bayesian approach is thus proposed for assessing and obtaining the 

controller tuning guidelines.

A Bayesian approach for controller performance assessment and constraint tuning has 

been provided in chapter 3 of the thesis. The approach utilizes linear-quadratic optimiza­

tion function to evaluate the controller performance, for the various possible combination 

of tuning arrangements. It then provides the tuning decision analysis and the tuning guide­

lines, when provided with the target values of the controller performance assessment. Since 

the Bayesian analysis involves the use of probabilities to provide the controller tuning, the 

tuning guidelines provided by the controller are closer to reality and thus more realistic 

than using mean operating points for controller performance assessment.

The Bayesian algorithm discussed in the chapter 3 of this thesis utilized probabilities 

for decision analysis and to  obtain the guidelines for making the decisions; however, the 

objective function used for the optimization purposes was based upon deterministic mean 

operating points for the process variables. Therefore, as an attem pt to make more re­

alistic optimization function, the idea of using probabilities, as in Bayesian approach of 

chapter 3, has been extended to the optimization function. A probabilistic optimization 

function, involving the probabilities, for Probabilistic Performance Assessment (PPA), has 

been introduced in chapter 4 of this thesis. Since the objective function used for controller 

performance assessment involves the probabilities, the controller performance is more re­

alistic. The algorithm also facilitates the user to provide the maximum constraint change 

tha t is acceptable for each variable. It then provides with the optimal tuning of the process 

variables that can be made subject to the maximum change provided. Since the objective 

function involves the use of the in-spec and off-spec probabilities, it is more realistic and 

so are the tuning guidelines provided by it. It has also been demonstrated th a t LMIPA 

performance assessment is a special case of the probabilistic performance assessment.

Extending the idea of using Bayesian analysis for controller performance assessment, 

through LMIPA method, an algorithm has been developed for Bayesian analysis of the 

MPC controllers using Probabilistic Optimization method (chapter 5). Just as discussed for
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chapter 2, this algorithm also provides controller tuning decision analysis and the controller 

tuning guidelines for achieving the target value of the return. However, for this algorithm, 

since the optimization is carried out using the probabilistic objective function, the results 

are more pragmatic and realistic for practical applications.

6.2 Future work

The applications discussed in this thesis have been developed by assuming the d ata  to 

be Gaussian Distributed and by discretizing the operating regions, of the CVs, into six 

zones. However, in reality, the process data is not necessarily be Gaussian Distributed and 

also, the process variables can assume values in continuous fashion. Thus, scope exists for 

developing similar algorithms that performs optimization and the analysis by estimating 

the true distribution for the data  and for continuous regions of operations.

Also, for performing Bayesian analysis of the controllers, currently, processes with either 

one quality variable or with q quality variables with independent uncertainties have been 

considered and a 10% change from the original tuning values has been assumed. Scope also 

exists for developing algorithm th a t considers multivariate probability distribution and can 

provide the optimum tuning required for the changeable variables, by performing Bayesian 

analysis.
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A .l  B ayesian-L M IP A

Figure A .l: Bayesian-LMIPA for limits change 

Steps involved in using the GUI:

1. Load MPC model and the base case process data.

2. From the ‘TagList’ select the tags th a t are available for making the limit change and 

provide their probabilities for making the changes (Default value =  0.5).

3. Provide the profit/loss associated with the process variables to be under-spec and 

over-spec (Default value =  0).

4. Click ‘Optimize’ to start the optimization and to build the Bayesian Network for the 

process.

5. For ‘Decision Evaluation’, select ‘Inferencing’ radio button and select the parent node 

from the node list and provide the decisions for limits change as evidence. Click 

‘Check’ to perform the evaluation.

6. For ‘Decision Making’, select ‘Decision Making’ radio button and provide the target 

Expected Returns for the process in the space that will appear on selecting this mode. 

Click ‘Check’ to obtain the guidelines for making the decisions.
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A .2 P rob ab ilistic  P erform ance A ssessm en t (P P A )
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Figure A.2: Probabilistic Performance Assessment (PPA)

Steps involved in using the GUI:

1. Load MPC model and the base case process data.

2. From the ‘TagList’ select the tags that are available for making the limits change and 

provide the maximum allowable limits change tha t can be made to their low and the 

high limits (Default value =  10%).

3. Provide the profit/loss associated with the process variables to be under-spec, in-spec 

and over-spec (Default value =  0).

4. The left hand side plot area shows the process data  trend, probability distribution 

and the cumulative probability distribution for the tag selected from the tag list.

5. Click ‘Optimize’ to start the optimization.

6. The right hand side plot area will show the base case expected returns, base case 

potential and the maximum expected returns that can be obtained after suggested 

constraint tunings are made. Suggested tuning guidelines can also be obtained from 

this plot area by selecting appropriate item from the drop down of ‘Returns’.
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Figure A.3: Bayesian-PPA for limits change

Steps involved in using the GUI:

1. Load M PC model and the base case process data.

2. From the ‘TagList’ select the tags th a t are available for making the limits change and 

provide their probabilities for making the changes (Default value =  0.5).

3. Provide the profit/loss associated with the process variables to be under-spec, in-spec 

and over-spec (Default value =  0).

4. The upper plot area shows the process data trend, probability distribution and the 

cumulative probability distribution for the tag selected from the tag list.

5. Click ‘Optimize’ to start the optimization and to build the Bayesian Network for the 

process.

6. For ‘Decision Evaluation’, select ‘Inferencing’ radio button and select the parent node 

from the node list and provide the decisions for limits change as evidence. Click 

‘Check’ to  perform the evaluation.
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7. For ‘Decision Making’, select ‘Decision Making’ radio button and Provide the target 

Expected Returns for the process in the space tha t will appear on selecting this mode. 

Click ‘Check’ to obtain the guidelines for making the decisions.
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